WorldWideScience

Sample records for evolution

  1. Evolution

    Science.gov (United States)

    Peter, Ulmschneider

    When we are looking for intelligent life outside the Earth, there is a fundamental question: Assuming that life has formed on an extraterrestrial planet, will it also develop toward intelligence? As this is hotly debated, we will now describe the development of life on Earth in more detail in order to show that there are good reasons why evolution should culminate in intelligent beings.

  2. Teaching Evolution

    Science.gov (United States)

    Bryner, Jeanna

    2005-01-01

    Eighty years after the famous 1925 Scopes "monkey trial," which tested a teacher's right to discuss the theory of evolution in the classroom, evolution--and its most recent counterview, called "intelligent design"--are in the headlines again, and just about everyone seems to have an opinion. This past July, President Bush weighed in, telling…

  3. Trinity Evolution.

    Science.gov (United States)

    Rush, Shannon M

    2010-06-01

    Trinity Evolution Cryopreserved Cell Viable Bone Matrix is a minimally manipulated, human cellular, and tissue-based allograft containing adult mesenchymal stem cells, osteoprogenitor cells, and a demineralized cortical component. The cancellous bone used to produce Trinity Evolution is derived from freshly recovered donor tissue by Food and Drug Administration-registered facilities and processed under aseptic conditions. Preclinical in vivo and in vitro testing as well as strict donor screening has demonstrated the safety of Trinity Evolution as well as its osteoinductive and osteogenic potential contained within a natural osteoconductive matrix.

  4. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  5. Schumpeter's Evolution

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    This draft of a book on Schumpeter is distributed for commenting. It is a stylised intellectual biography that focus on the emergence and extension of the Schumpeterian vision and analysis of economic and social evolution. The draft provides novel interpretations of Schumpeter's six major books. He...... originally developed his evolutionary research programme in Wesen from 1908 by studying the inherent limitations of Neoclassical Economics. He presented core results on economic evolution and sketched an extension evolutionary analysis to all social sciences in Entwicklung from 1912. He made a partial...... reworking of his basic theory of economic evolution in Development from 1934, and this reworking was continued in Cycles from 1939. Here Schumpeter also tried to handle the statistical and historical evidence on the waveform evolution of the capitalist economy. Capitalism from 1942 modified the model...

  6. Animal evolution

    DEFF Research Database (Denmark)

    Nielsen, Claus

    This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes it possi......This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes...

  7. Representing Evolution

    DEFF Research Database (Denmark)

    Hedin, Gry

    2012-01-01

    . This article discusses Willumsen's etching in the context of evolutionary theory, arguing that Willumsen is a rare example of an artist who not only let the theory of evolution fuel his artistic imagination, but also concerned himself with a core issue of the theory, namely to what extent it could be applied...

  8. Accepting evolution.

    Science.gov (United States)

    Chinsamy, Anusuya; Plagányi, Eva

    2008-01-01

    Poor public perceptions and understanding of evolution are not unique to the developed and more industrialized nations of the world. International resistance to the science of evolutionary biology appears to be driven by both proponents of intelligent design and perceived incompatibilities between evolution and a diversity of religious faiths. We assessed the success of a first-year evolution course at the University of Cape Town and discovered no statistically significant change in the views of students before the evolution course and thereafter, for questions that challenged religious ideologies about creation, biodiversity, and intelligent design. Given that students only appreciably changed their views when presented with "facts," we suggest that teaching approaches that focus on providing examples of experimental evolutionary studies, and a strong emphasis on the scientific method of inquiry, are likely to achieve greater success. This study also reiterates the importance of engaging with students' prior conceptions, and makes suggestions for improving an understanding and appreciation of evolutionary biology in countries such as South Africa with an inadequate secondary science education system, and a dire lack of public engagement with issues in science.

  9. Greening Evolution

    African Journals Online (AJOL)

    Administrator

    African Journal of Environmental Science and Technology Vol. ... Greening Evolution. The second week in July marks the occasion of an extraordinary conference entitled "Future Trends in Genetics and. Biotechnology for Safe Environment," sponsored by the ... For example, the information presented in Figure 2 shows.

  10. Thought Evolution

    Directory of Open Access Journals (Sweden)

    Shadrikov V.D.

    2015-08-01

    Full Text Available The thought evolution is studied by historical reconstruction method that is based on the propositions of the theory of culturalhistorical determination of the psyche development, and the data of the morphological analysis and child development, and the conception of the psyche neuroontogenesis. The grounds for advisability of protothinking are presented. The protothinking is understood as the use of objective thought in cases of awareness absence. It is shown that protothinking is a form of transition from animal thinking to human speech. The particular attention is paid to the process of the word producing and thought generation in that process. The conditions of word producing as cooccurring acoustic pattern served for though expression are discussed. It is emphasized that a word is produced by a particular person. The historical development of the language and the specificity of this development are pointed out

  11. Oxygen and Biological Evolution.

    Science.gov (United States)

    Baugh, Mark A.

    1990-01-01

    Discussed is the evolution of aerobic organisms from anaerobic organisms and the accompanying biochemistry that developed to motivate and enable this evolution. Uses of oxygen by aerobic organisms are described. (CW)

  12. Cannabis: evolution and ethnobotany

    National Research Council Canada - National Science Library

    Clarke, Robert Connell; Merlin, Mark David

    2013-01-01

    "Cannabis: Evolution and Ethnobotany is a comprehensive, interdisciplinary exploration of the natural origins and early evolution of this famous plant, highlighting its historic role in the development of human societies...

  13. The Evolution of Design

    Science.gov (United States)

    Stebbins, G. Ledyard

    1973-01-01

    Describes the basic logic behind the modern view of evolution theory. Despite gaps in fossil records, evidence is indicative of the origin of life from nonliving molecules and evolution of higher forms of life from simpler forms. (PS)

  14. Inlet Geomorphology Evolution

    Science.gov (United States)

    2015-04-01

    APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Inlet Geomorphology Evolution 5a. CONTRACT NUMBER 5b...Std Z39-18 Coastal Inlets Research Program Inlet Geomorphology Evolution The Inlet Geomorphology Evolution work unit of the CIRP evaluates

  15. Has Human Evolution Stopped?

    Directory of Open Access Journals (Sweden)

    Alan R. Templeton

    2010-07-01

    Full Text Available It has been argued that human evolution has stopped because humans now adapt to their environment via cultural evolution and not biological evolution. However, all organisms adapt to their environment, and humans are no exception. Culture defines much of the human environment, so cultural evolution has actually led to adaptive evolution in humans. Examples are given to illustrate the rapid pace of adaptive evolution in response to cultural innovations. These adaptive responses have important implications for infectious diseases, Mendelian genetic diseases, and systemic diseases in current human populations. Moreover, evolution proceeds by mechanisms other than natural selection. The recent growth in human population size has greatly increased the reservoir of mutational variants in the human gene pool, thereby enhancing the potential for human evolution. The increase in human population size coupled with our increased capacity to move across the globe has induced a rapid and ongoing evolutionary shift in how genetic variation is distributed within and among local human populations. In particular, genetic differences between human populations are rapidly diminishing and individual heterozygosity is increasing, with beneficial health effects. Finally, even when cultural evolution eliminates selection on a trait, the trait can still evolve due to natural selection on other traits. Our traits are not isolated, independent units, but rather are integrated into a functional whole, so selection on one trait can cause evolution to occur on another trait, sometimes with mildly maladaptive consequences.

  16. Oxygen evolution reaction catalysis

    Science.gov (United States)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  17. Museums teach evolution.

    Science.gov (United States)

    Diamond, Judy; Evans, E Margaret

    2007-06-01

    Natural history museums play a significant role in educating the general public about evolution. This article describes Explore Evolution, one of the largest evolution education projects funded by the National Science Foundation. A group of regional museums from the Midwestern United States worked with leading evolutionary scientists to create multiple permanent exhibit galleries and a curriculum book for youth. This program invites the public to experience current evolutionary research on organisms that range in size from HIV to whales. Learning research is being conducted on museum visitors to understand how they reason about evolution and to determine what influences the process of conceptual change.

  18. Adaptability and evolution.

    Science.gov (United States)

    Bateson, Patrick

    2017-10-06

    The capacity of organisms to respond in their own lifetimes to new challenges in their environments probably appeared early in biological evolution. At present few studies have shown how such adaptability could influence the inherited characteristics of an organism's descendants. In part, this has been because organisms have been treated as passive in evolution. Nevertheless, their effects on biological evolution are likely to have been important and, when they occurred, accelerated the pace of evolution. Ways in which this might have happened have been suggested many times since the 1870s. I review these proposals and discuss their relevance to modern thought.

  19. Evolution, epigenetics and cooperation

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... while on the whole their genes do. He proposed that, there- fore, Darwinian evolution has acted on the genes. Dawkins' approach to evolution was presented in characteristically entertaining form when he suggested that the organism is. '… a robot vehicle blindly programmed to preserve its selfish genes'.

  20. Software evolution with XVCL

    DEFF Research Database (Denmark)

    Zhang, Weishan; Jarzabek, Stan; Zhang, Hongyu

    2004-01-01

    This chapter introduces software evolution with XVCL (XML-based Variant Configuration Language), which is an XML-based metaprogramming technique. As the software evolves, a large number of variants may arise, especially whtn such kinds of evolutions are related to multiple platforms as shown in our...

  1. The Nature of Evolution

    Science.gov (United States)

    Alles, David L.

    2005-01-01

    The nature of evolution, the historical change in the universe, and the change that is caused by the workings of the dynamic processes at the smallest and largest scales are studied. It is viewed that the cumulative change in the historical systems is caused by evolution, which is a type of causal relationship and evolutionary processes could be…

  2. Evolution for Young Victorians

    Science.gov (United States)

    Lightman, Bernard

    2012-01-01

    Evolution was a difficult topic to tackle when writing books for the young in the wake of the controversies over Darwin's "Origin of Species." Authors who wrote about evolution for the young experimented with different ways of making the complex concepts of evolutionary theory accessible and less controversial. Many authors depicted presented…

  3. Kognition, evolution og Bibel

    DEFF Research Database (Denmark)

    Jensen, Hans Jørgen Lundager

    2012-01-01

    En opfordring til, at Bibelvidneskaberne oprienterer sig i retning af aktuelle teorier om bio-kulturel evolution (Merlin Donald, aksetids-teori hos fx Robert Bellah)......En opfordring til, at Bibelvidneskaberne oprienterer sig i retning af aktuelle teorier om bio-kulturel evolution (Merlin Donald, aksetids-teori hos fx Robert Bellah)...

  4. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  5. Evolution, epigenetics and cooperation

    Indian Academy of Sciences (India)

    Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the ...

  6. Evolution Under Attack

    Science.gov (United States)

    Muench, David; Newell, Norman D.

    1974-01-01

    The article points out the growing attempts by creationists to have special creation presented with evolution in any educational discussion of the origin of life. The evolution theory is shown to be consistent with known scientific facts while the theory of special creation does not adequately account for these facts. (LS)

  7. Reconciling Evolution and Creation.

    Science.gov (United States)

    Tax, Sol

    1983-01-01

    Proposes a way to reconcile evolution with creationism by hypothesizing that the universe was created when the scientific evidence shows, speculating that this was when God began the series of creations described in Genesis, and assuming that God gave humans intelligence to uncover the methods by which he ordained scientific evolution. (Author/MJL)

  8. Groupware requirements evolution patterns

    NARCIS (Netherlands)

    Pumareja, D.T.

    2013-01-01

    This study is an empirical investigation of requirements evolution for groupware systems in use by means of case studies. Its goal is to contribute to the development of a theory of requirements evolution. A conceptual framework offering an integrated view of requirements as a collection of domains

  9. Science, Evolution, and Creationism

    Science.gov (United States)

    National Academies Press, 2008

    2008-01-01

    How did life evolve on Earth? The answer to this question can help us understand our past and prepare for our future. Although evolution provides credible and reliable answers, polls show that many people turn away from science, seeking other explanations with which they are more comfortable. In the book "Science, Evolution, and…

  10. Characteristic Evolution and Matching

    Directory of Open Access Journals (Sweden)

    Winicour Jeffrey

    2001-01-01

    Full Text Available I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress is traced from the early stage of 1D feasibility studies to current 3D codes that simulate binary black holes. A prime application of characteristic evolution is Cauchy-characteristic matching, which is also reviewed.

  11. Evolution of Constructivism

    Science.gov (United States)

    Liu, Chu Chih; Chen, I Ju

    2010-01-01

    The contrast between social constructivism and cognitive constructivism are depicted in different ways in many studies. The purpose of this paper is to summarize the evolution of constructivism and put a focus on social constructivism from the perception of Vygotsky. This study provides a general idea of the evolution of constructivism for people…

  12. Thermodynamical Arguments against Evolution

    Science.gov (United States)

    Rosenhouse, Jason

    2017-01-01

    The argument that the second law of thermodynamics contradicts the theory of evolution has recently been revived by anti-evolutionists. In its basic form, the argument asserts that whereas evolution implies that there has been an increase in biological complexity over time, the second law, a fundamental principle of physics, shows this to be…

  13. Om religion og evolution

    DEFF Research Database (Denmark)

    Geertz, Armin W.

    2011-01-01

    for kulturens kausale virkning på den menneskelige kognition og ikke mindst den hominine evolution. Ud fra, hvad vi ved om den menneskelige evolution, ses det, at den hominine evolution har en dybde, som sjældent medtænkes i teorier og hypoteser om den menneskelige evolution. Den menneskelige evolution er...... begyndt længe før homo-arten, endog før Australopithecus, hvor man finder primitive sten redskaber og tilstedeværelse af (dog ikke kontrol over) ild, og hvor de fysiologiske og genetiske forandringer, som førte til mennesket, også var påbegyndt. Dernæst opstilles otte træk, som kan have været til stede i...

  14. Chemical evolution of galaxies

    CERN Document Server

    Matteucci, Francesca

    2012-01-01

    The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of ...

  15. The evolution of airplanes

    Science.gov (United States)

    Bejan, A.; Charles, J. D.; Lorente, S.

    2014-07-01

    The prevailing view is that we cannot witness biological evolution because it occurred on a time scale immensely greater than our lifetime. Here, we show that we can witness evolution in our lifetime by watching the evolution of the flying human-and-machine species: the airplane. We document this evolution, and we also predict it based on a physics principle: the constructal law. We show that the airplanes must obey theoretical allometric rules that unite them with the birds and other animals. For example, the larger airplanes are faster, more efficient as vehicles, and have greater range. The engine mass is proportional to the body size: this scaling is analogous to animal design, where the mass of the motive organs (muscle, heart, lung) is proportional to the body size. Large or small, airplanes exhibit a proportionality between wing span and fuselage length, and between fuel load and body size. The animal-design counterparts of these features are evident. The view that emerges is that the evolution phenomenon is broader than biological evolution. The evolution of technology, river basins, and animal design is one phenomenon, and it belongs in physics.

  16. Contemporary evolution strategies

    CERN Document Server

    Bäck, Thomas; Krause, Peter

    2013-01-01

    Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies. This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the a

  17. Chromosomal Evolution in Chiroptera

    Directory of Open Access Journals (Sweden)

    Cibele G. Sotero-Caio

    2017-10-01

    Full Text Available Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62. As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae, focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  18. Dual phase evolution

    CERN Document Server

    Green, David G; Abbass, Hussein A

    2014-01-01

    This book explains how dual phase evolution operates in all these settings and provides a detailed treatment of the subject. The authors discuss the theoretical foundations for the theory, how it relates to other phase transition phenomena and its advantages in evolutionary computation and complex adaptive systems. The book provides methods and techniques to use this concept for problem solving. Dual phase evolution concerns systems that evolve via repeated phase shifts in the connectivity of their elements. It occurs in vast range of settings, including natural systems (species evolution, landscape ecology, geomorphology), socio-economic systems (social networks) and in artificial systems (annealing, evolutionary computing).

  19. Evolution of science I: Evolution of Mind

    CERN Document Server

    Vahia, M N

    2016-01-01

    The central nervous system and particularly the brain was designed to control the life cycle of a living being. With increasing size and sophistication, in mammals, the brain became capable of exercising significant control over life. In Homo Sapiens the brain became significantly powerful and capable of comprehension beyond survival needs with visualisation, formal thought and long term memory. Here we trace the rise of the powers of the brains of the Homo Sapiens and its capability of three comprehending the three spatial dimensions as well as time. By tracing the evolution of technology over the last millennium and particularly the late arrival of astronomy to discuss the evolution of the formal thinking process in humans. In a follow up paper we will trace the extensive use of this new faculty by humans to comprehend the working of the universe.

  20. Evolution without evolution and without ambiguities

    Science.gov (United States)

    Marletto, C.; Vedral, V.

    2017-02-01

    In quantum theory it is possible to explain time, and dynamics, in terms of entanglement. This is the timeless approach to time, which assumes that the universe is in a stationary state, where two noninteracting subsystems, the "clock" and the "rest," are entangled. As a consequence, by choosing a suitable observable of the clock, the relative state of the rest of the universe evolves unitarily with respect to the variable labeling the clock observable's eigenstates, which is then interpreted as time. This model for an "evolution without evolution" (Page and Wootters, 1983), albeit elegant, has never been developed further, because it was criticized for generating severe ambiguities in the dynamics of the rest of the universe. In this paper we show that there are no such ambiguities; we also update the model, making it amenable to possible new applications.

  1. Chemical evolution and life

    Directory of Open Access Journals (Sweden)

    Malaterre Christophe

    2015-01-01

    Full Text Available In research on the origins of life, the concept of “chemical evolution” aims at explaining the transition from non-living matter to living matter. There is however strong disagreement when it comes to defining this concept more precisely, and in particular with reference to a chemical form of Darwinian evolution: for some, chemical evolution is nothing but Darwinian evolution applied to chemical systems before life appeared; yet, for others, it is the type of evolution that happened before natural selection took place, the latter being the birthmark of living systems. In this contribution, I review the arguments defended by each side and show how both views presuppose a dichotomous definition of “life”.

  2. Computer technology and evolution

    OpenAIRE

    Mainzer, Klaus

    1998-01-01

    Computer technology and evolution : from artificial intelligence to artificial life. - In: Advances in the philosophy of technology / ed. by Evandro Agazzi ... - Newark, Del. : Soc. for Philosophy and Technology, 1999. - S. 105-119

  3. Evolution, epigenetics and cooperation.

    Science.gov (United States)

    Bateson, Patrick

    2014-04-01

    Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the organism and higher-order assemblages of organisms. These ideas impact on the theories of how cooperation might have evolved. Two of the theories, i.e. that cooperating individuals are genetically related or that they cooperate for self-interested reasons, have been accepted for a long time. The idea that adaptation takes place at the level of groups is much more controversial. However, bringing together studies of development with those of evolution is taking away much of the heat in the debate about the evolution of group behaviour.

  4. Co-Evolution.

    Science.gov (United States)

    McGhee, Robert

    2002-01-01

    Discusses the role of techniques of DNA analysis in assessing the genetic relationships between various species. Focuses on wolf-dog evolution using DNA evidence and historical data about human/wolf-dog relationships. (DDR)

  5. Epigenetics and Plant Evolution

    National Research Council Canada - National Science Library

    Ryan A. Rapp; Jonathan F. Wendel

    2005-01-01

    .... Here, we provide an introduction to epigenetic mechanisms in plants, and highlight some of the empirical studies illustrative of the possible connections between evolution and epigenetically mediated alterations in gene expression and morphology.

  6. Grand Views of Evolution.

    Science.gov (United States)

    de Vladar, Harold P; Santos, Mauro; Szathmáry, Eörs

    2017-05-01

    Despite major advances in evolutionary theories, some aspects of evolution remain neglected: whether evolution: would come to a halt without abiotic change; is unbounded and open-ended; or is progressive and something beyond fitness is maximized. Here, we discuss some models of ecology and evolution and argue that ecological change, resulting in Red Queen dynamics, facilitates (but does not ensure) innovation. We distinguish three forms of open-endedness. In weak open-endedness, novel phenotypes can occur indefinitely. Strong open-endedness requires the continual appearance of evolutionary novelties and/or innovations. Ultimate open-endedness entails an indefinite increase in complexity, which requires unlimited heredity. Open-ended innovation needs exaptations that generate novel niches. This can result in new traits and new rules as the dynamics unfolds, suggesting that evolution is not fully algorithmic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Software Architecture Evolution

    Science.gov (United States)

    2013-12-01

    Software Architecture Evolution Jeffrey M. Barnes December 2013 CMU-ISR-13-118 Institute for Software Research School of Computer Science Carnegie...DEC 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Software Architecture Evolution 5a. CONTRACT NUMBER 5b...systems eventually undergo changes to their basic architectural structure. Such changes may be prompted by new feature requests, new quality attribute

  8. Population genetics and evolution

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, G.

    1988-01-01

    This volume reevaluates the position of population genetics in evolutionary biology by using population genetics as the tool to study the role of development and adaptation in evolution. The emphasis is on the organismic process of selection, and on how the study of selection means connecting variation at the molecular, biochemical, and phenotypic levels of organization with the resulting variation in fitness. This book illustrates that the tendency to view single locus differences in isolation as the building blocks of evolution is disappearing.

  9. Software evolution in prototyping

    OpenAIRE

    Berzins, V.; Qi, Lu

    1996-01-01

    This paper proposes a model of software changes for supporting the evolution of software prototypes. The software evolution steps are decomposed into primitive substeps that correspond to monotonic specification changes. This structure is used to rearrange chronological derivation sequences into structures containing only meaning-preserving changes. The authors indicate how this structure can be used to automatically combine different changes to a specification. A set of examples illustrates ...

  10. The theory of evolution

    Directory of Open Access Journals (Sweden)

    Oleg Bazaluk

    2015-06-01

    Full Text Available The book The Theory of Evolution: from the Space Vacuum to Neural Ensembles and Moving Forward, an edition of 100 copies, was published in Russian language, in December 2014 in Kiev. Its Russian version is here: http://en.bazaluk.com/journals.html. Introduction, Chapter 10 and Conclusion published in English for the first time. Since 2004 author have been researching in the field of theory of Evolution, Big History. The book was written on the base of analysis of more than 2000 primary sources of this research topic. The volume is 90,000 words (with Reference. The book is for a wide range of professionals, from students to professors and researchers working in the fields of: philosophical anthropology, philosophy, Big History, cosmology, biology, neuroscience and etc. In the book, the author defines the evolution as continuous and nonlinear complication of the structure of matter, the types of interaction and environments; analyzes existing in modern science and philosophy approaches to the research of the process of evolution, degree of development of the factors and causes of evolution. Unifying interdisciplinary researches of evolution in cosmology, biology, neuroscience and philosophy, the author presents his vision of the model of «Evolving Matter», which allows us to consider not only the laws of transition of space vacuum in neural ensembles but also to see our Universe as a complication, heterogeneous organization. Interdisciplinary amount of information on the theory of evolution is systematized and a new method of world perception is proposed in the book.

  11. Creationism, Evolution, and Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Eugenie C. (National Center for Science Education)

    2005-06-22

    Many topics in the curriculum of American schools are controversial, but perhaps the one with the longest tenure is evolution. Three arguments are made against evolution: that it is allegedly weak science ('evolution is a theory in crisis'); that it is incompatible with religion; and that it is only 'fair' to 'balance' evolution with creationism. Regardless of the appropriateness of their application to science education, all three of the arguments are made to try to restrict the teaching of evolution. Variants of the fairness argument such as balancing evolution with 'scientific alternatives to evolution' or balancing evolution with 'arguments against evolution' have in fact become the current predominant antievolutionist strategy. Current events in the creationism/evolution controversy will be reviewed, and suggestions made for how to promote sound science education in the schools.

  12. Evolution of Active Regions

    Directory of Open Access Journals (Sweden)

    Lidia van Driel-Gesztelyi

    2015-09-01

    Full Text Available The evolution of active regions (AR from their emergence through their long decay process is of fundamental importance in solar physics. Since large-scale flux is generated by the deep-seated dynamo, the observed characteristics of flux emergence and that of the subsequent decay provide vital clues as well as boundary conditions for dynamo models. Throughout their evolution, ARs are centres of magnetic activity, with the level and type of activity phenomena being dependent on the evolutionary stage of the AR. As new flux emerges into a pre-existing magnetic environment, its evolution leads to re-configuration of small-and large-scale magnetic connectivities. The decay process of ARs spreads the once-concentrated magnetic flux over an ever-increasing area. Though most of the flux disappears through small-scale cancellation processes, it is the remnant of large-scale AR fields that is able to reverse the polarity of the poles and build up new polar fields. In this Living Review the emphasis is put on what we have learned from observations, which is put in the context of modelling and simulation efforts when interpreting them. For another, modelling-focused Living Review on the sub-surface evolution and emergence of magnetic flux see Fan (2009. In this first version we focus on the evolution of dominantly bipolar ARs.

  13. Characteristic Evolution and Matching.

    Science.gov (United States)

    Winicour, Jeffrey

    2012-01-01

    I review the development of numerical evolution codes for general relativity based upon the characteristic initial-value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D-axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black-hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black-hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.

  14. Cultural evolution and personalization

    CERN Document Server

    Xi, Ning; Zhang, Yi-Cheng

    2012-01-01

    In social sciences, there is currently no consensus on the mechanism for cultural evolution. The evolution of first names of newborn babies offers a remarkable example for the researches in the field. Here we perform statistical analyses on over 100 years of data in the United States. We focus in particular on how the frequency-rank distribution and inequality of baby names change over time. We propose a stochastic model where name choice is determined by personalized preference and social influence. Remarkably, variations on the strength of personalized preference can account satisfactorily for the observed empirical features. Therefore, we claim that personalization drives cultural evolution, at least in the example of baby names.

  15. Evolution of Scale Worms

    DEFF Research Database (Denmark)

    Gonzalez, Brett Christopher

    ) caves, and the interstitium, recovering six monophyletic clades within Aphroditiformia: Acoetidae, Aphroditidae, Eulepethidae, Iphionidae, Polynoidae, and Sigalionidae (inclusive of the former ‘Pisionidae’ and ‘Pholoidae’), respectively. Tracing of morphological character evolution showed a high degree...... of adaptability and convergent evolution between relatively closely related scale worms. While some morphological and behavioral modifications in cave polynoids reflected troglomorphism, other modifications like eye loss were found to stem from a common ancestor inhabiting the deep sea, further corroborating...... the deep sea ancestry of scale worm cave fauna. In conclusion, while morphological characterization across Aphroditiformia appears deceptively easy due to the presence of elytra, convergent evolution during multiple early radiations across wide ranging habitats have confounded our ability to reconstruct...

  16. Software architecture evolution

    DEFF Research Database (Denmark)

    Barais, Olivier; Le Meur, Anne-Francoise; Duchien, Laurence

    2008-01-01

    architecture. Following the early aspect paradigm, Tran SAT allows the software architect to design a software architecture stepwise in terms of aspects at the design stage. It realises the evolution as the weaving of new architectural aspects into an existing software architecture.......Software architectures must frequently evolve to cope with changing requirements, and this evolution often implies integrating new concerns. Unfortunately, when the new concerns are crosscutting, existing architecture description languages provide little or no support for this kind of evolution....... The software architect must modify multiple elements of the architecture manually, which risks introducing inconsistencies. This chapter provides an overview, comparison and detailed treatment of the various state-of-the-art approaches to describing and evolving software architectures. Furthermore, we discuss...

  17. Boussinesq evolution equations

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Schaffer, H.; Madsen, Per A.

    2004-01-01

    This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic...... Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over...... a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave...

  18. Lossless Conditional Schema Evolution

    DEFF Research Database (Denmark)

    Jensen, Ole Guttorm; Bøhlen, Michael Hanspeter

    2003-01-01

    The paper considers conditional schema evolution, where schema changes change the schema of the tuples that satisfy the change condition. When the schema of a relation change some tuples may no longer fit the current schema. Handling the mismatch between the intended schema of tuples and the reco......The paper considers conditional schema evolution, where schema changes change the schema of the tuples that satisfy the change condition. When the schema of a relation change some tuples may no longer fit the current schema. Handling the mismatch between the intended schema of tuples...... and the recorded schema of tuples is at the core of a DBMS that supports schema evolution. We propose to keep track of schema mismatches at the level of individual tuples, and prove that conditionally evolving schemas, in contrast to current commercial database systems, are lossless when the schema evolves...

  19. Overview of TMD Evolution

    Science.gov (United States)

    Boer, Daniël

    2016-02-01

    Transverse momentum dependent parton distributions (TMDs) appear in many scattering processes at high energy, from the semi-inclusive DIS experiments at a few GeV to the Higgs transverse momentum distribution at the LHC. Predictions for TMD observables crucially depend on TMD factorization, which in turn determines the TMD evolution of the observables with energy. In this contribution to SPIN2014 TMD factorization is outlined, including a discussion of the treatment of the nonperturbative region, followed by a summary of results on TMD evolution, mostly applied to azimuthal asymmetries.

  20. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed......, the complex phenomenon of a manufacturing network evolution is observed by combining the analysis of a manufacturing plant and network level. The historical trajectories of manufacturing networks that are presented in the case studies are examined in order to understand and determine the future shape...

  1. TMDs: Evolution, modeling, precision

    Directory of Open Access Journals (Sweden)

    D’Alesio Umberto

    2015-01-01

    Full Text Available The factorization theorem for qT spectra in Drell-Yan processes, boson production and semi-inclusive deep inelastic scattering allows for the determination of the non-perturbative parts of transverse momentum dependent parton distribution functions. Here we discuss the fit of Drell-Yan and Z-production data using the transverse momentum dependent formalism and the resummation of the evolution kernel. We find a good theoretical stability of the results and a final χ2/points ≲ 1. We show how the fixing of the non-perturbative pieces of the evolution can be used to make predictions at present and future colliders.

  2. Multitemporal conditional schema evolution

    DEFF Research Database (Denmark)

    Jensen, Ole Guttorm; Bøhlen, Michael Hanspeter

    2004-01-01

    Schema evolution is the ability of the database to respond to changes in the real world by allowing the schema to evolve.  The multidimensional conditionally evolving schema (MD-CES) is a conceptual model for conditional schema changes, which modify the schema of those tuples that satisfy...... two time dimensions.  We show that the space complexity of these new evolution models is linear or polynomial. 1D-CES and 2D-CES are compared to temporal schema versioning, and we show that, unlike valid time versioning, they are lossless and achieve the same space complexity as temporal versioning...

  3. Evolution. Teacher's Guide.

    Science.gov (United States)

    Bershad, Carol

    This teacher's guide was developed to assist teachers in the use of multimedia resources for the Public Broadcasting System (PBS) program, "Evolution." Each unit uses an inquiry-based approach to meet the National Science Education Standards. Units include: (1) "What is the Nature of Science?"; (2) "Who Was Charles Darwin?"; (3) "What is the…

  4. Emergence and Evolution

    DEFF Research Database (Denmark)

    Bullwinkle, Tammy J; Ibba, Michael

    2013-01-01

    are. Beyond their central role in translation, aaRSs and their numerous homologs have evolved a wide array of alternative functions both inside and outside translation. Current understanding of the emergence of the aaRSs, and their subsequent evolution into a functionally diverse enzyme family...

  5. Darwinism: Evolution or Revolution?

    Science.gov (United States)

    Holt, Niles R.

    1989-01-01

    Maintains that Darwin's theory of evolution was more than a science versus religion debate; rather it was a revolutionary concept that influenced numerous social and political ideologies and movements throughout western history. Traces the impact of Darwin's work historically, utilizing a holistic approach. (RW)

  6. The Evolution of Darwinism.

    Science.gov (United States)

    Stebbins, G. Ledyard; Ayala, Francisco J.

    1985-01-01

    Recent developments in molecular biology and new interpretations of the fossil record are gradually altering and adding to Charles Darwin's theory, which has been the standard view of the process of evolution for 40 years. Several of these developments and interpretations are identified and discussed. (JN)

  7. Evolution of lifespan.

    Science.gov (United States)

    Neill, David

    2014-10-07

    Present-day evolutionary theory, modern synthesis and evo-devo, appear to explain evolution. There remain however several points of contention. These include: biological time, direction, macroevolution verses microevolution, ageing and the extent of internal as opposed to external mediation. A new theoretical model for the control of biological time in vertebrates/bilaterians is introduced. Rather than biological time being controlled solely by a molecular cascade domino effect, it is suggested there is also an intracellular oscillatory clock. This clock (life's timekeeper) is synchronised across all cells in an organism and runs at a constant frequency throughout life. Slower frequencies extend lifespan, increase body/brain size and advance behaviour. They also create a time void which could aid additional evolutionary change. Faster frequencies shorten lifespan, reduce body/brain size and diminish behaviour. They are therefore less likely to mediate evolution in vertebrates/mammals. It is concluded that in vertebrates, especially mammals, there is a direction in evolution towards longer lifespan/advanced behaviour. Lifespan extension could equate with macroevolution and subsequent modifications with microevolution. As life's timekeeper controls the rate of ageing it constitutes a new genetic theory of ageing. Finally, as lifespan extension is internally mediated, this suggests a major role for internal mediation in evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The Evolution of Compilers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 8. The Evolution of Compilers. Priti Shankar. General Article Volume 12 Issue 8 August 2007 pp 8-26 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  9. Evolution Projects Yield Results

    Science.gov (United States)

    Sparks, Sarah D.

    2010-01-01

    When a federal court in 2005 rejected an attempt by the Dover, Pennsylvania, school board to introduce intelligent design as an alternative to evolution to explain the development of life on Earth, it sparked a renaissance in involvement among scientists in K-12 science instruction. Now, some of those teaching programs, studies, and research…

  10. Evolution of rhizobium symbiosis

    NARCIS (Netherlands)

    Camp, Op den R.H.M.

    2012-01-01

    The evolution of rhizobium symbiosis is studied from several points of view in this thesis. The ultimate goal of the combined approaches is to unravel the genetic constrains of the symbiotic interaction. To this end the legume rhizobium symbiosis is studied in model plant species from the

  11. Evolution Of Cenospheres

    Science.gov (United States)

    Kwack, Eug Y.; Shakkottai, Parthasarathy; Massier, Paul F.; Back, Lloyd H.

    1989-01-01

    Microscopy reveals changes in structure during combustion. Experiments performed to trace evolution of structures of droplets of burning fuel oil. Many droplets burn incompletely, forming cenospheres. Knowledge of structure at various stages of combustion process contributes to efforts to design equipment to burn cenospheres.

  12. Differential evolution with deoptim

    NARCIS (Netherlands)

    Ardia, David; Boudt, Kris; Carl, Peter; Mullen, Katharine M.; Peterson, Brian G.

    2011-01-01

    The R package DEoptim implements the Differential Evolution algorithm. This algorithm is an evolutionary technique similar to classic genetic algorithms that is useful for the solution of global optimization problems. In this note we provide an introduction to the package and demonstrate its utility

  13. The timetable of evolution

    Science.gov (United States)

    Knoll, Andrew H.; Nowak, Martin A.

    2017-01-01

    The integration of fossils, phylogeny, and geochronology has resulted in an increasingly well-resolved timetable of evolution. Life appears to have taken root before the earliest known minimally metamorphosed sedimentary rocks were deposited, but for a billion years or more, evolution played out beneath an essentially anoxic atmosphere. Oxygen concentrations in the atmosphere and surface oceans first rose in the Great Oxygenation Event (GOE) 2.4 billion years ago, and a second increase beginning in the later Neoproterozoic Era [Neoproterozoic Oxygenation Event (NOE)] established the redox profile of modern oceans. The GOE facilitated the emergence of eukaryotes, whereas the NOE is associated with large and complex multicellular organisms. Thus, the GOE and NOE are fundamental pacemakers for evolution. On the time scale of Earth’s entire 4 billion–year history, the evolutionary dynamics of the planet’s biosphere appears to be fast, and the pace of evolution is largely determined by physical changes of the planet. However, in Phanerozoic ecosystems, interactions between new functions enabled by the accumulation of characters in a complex regulatory environment and changing biological components of effective environments appear to have an important influence on the timing of evolutionary innovations. On the much shorter time scale of transient environmental perturbations, such as those associated with mass extinctions, rates of genetic accommodation may have been limiting for life. PMID:28560344

  14. Software Architecture Evolution

    Science.gov (United States)

    Barnes, Jeffrey M.

    2013-01-01

    Many software systems eventually undergo changes to their basic architectural structure. Such changes may be prompted by new feature requests, new quality attribute requirements, changing technology, or other reasons. Whatever the causes, architecture evolution is commonplace in real-world software projects. Today's software architects, however,…

  15. Evolution of Osmolyte Systems.

    Science.gov (United States)

    Banfalvi, Gaspar

    1991-01-01

    Osmotic aspects of aqueous solutions that are usually disregarded in biochemistry textbooks are presented. This article discusses the osmolarity of seawater, evolution of organisms over geological time, ionic adaptation of cells, ionic concentrations in bacteria, osmolytes and blood electrolytes in water-stressed organisms and land vertebrates,…

  16. Himalaya: Emergence and Evolution

    Indian Academy of Sciences (India)

    Himalaya: Emergence and Evolution. Rasoul Sorkhabi. Book Review Volume 8 Issue 6 June 2003 pp 80-81. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/06/0080-0081. Author Affiliations. Rasoul Sorkhabi1. Senior Geologist, Japan National Oil Corporation, Japan.

  17. Early cellular evolution.

    Science.gov (United States)

    Margulis, L.

    1972-01-01

    Study of the evolutionary developments that occurred subsequent to the origin of ancestral cells. Microbial physiology and ecology are potential sharp tools for shaping concepts of microbial evolution. Some popular unjustified assumptions are discussed. It is considered that certain principles derived mainly from the advances of molecular biology can be used to order the natural groups (genera) of extant prokaryotes and their patterns phylogenetically.

  18. Evolution of Business Models

    DEFF Research Database (Denmark)

    Antero, Michelle C.; Hedman, Jonas; Henningsson, Stefan

    2013-01-01

    The ERP industry has undergone dramatic changes over the past decades due to changing market demands, thereby creating new challenges and opportunities, which have to be managed by ERP vendors. This paper inquires into the necessary evolution of business models in a technology-intensive industry (e...

  19. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  20. Evolution of subsidiary competences

    DEFF Research Database (Denmark)

    Geisler Asmussen, Christian; Pedersen, Torben; Dhanaraj, Charles

    of competitive advantage of nations, we hypothesize the contingencies under which heterogeneity in host environments influences subsidiary competence configuration. We test our model with data from more than 2,000 subsidiaries in seven Western European countries. Our results provide new insights on the evolution...

  1. Lossless conditional schema evolution

    DEFF Research Database (Denmark)

    Jensen, Ole Guttorm; Böhlen, Michael

    2004-01-01

    of a DBMS that supports schema evolution. We propose to keep track of schema mismatches at the level of individual tuples, and prove that evolving schemas with conditional schema changes, in contrast to database systems relying on data migration, are lossless when the schema evolves. The lossless property...

  2. Open-Ended Evolution

    DEFF Research Database (Denmark)

    Taylor, Tim; Bedau, Mark A.; Channon, Alastair

    2016-01-01

    This report describes the First Workshop on Open-Ended Evolution: Recent Progress and Future Milestones (OEE1), held during the ECAL 2015 conference at the University of York, U.K., in July 2015. We briefly summarise the content of the talks and discussions and the workshop, and provide links...

  3. Evolution Perception with Metaphors

    Science.gov (United States)

    Yilmaz, Fatih

    2016-01-01

    The main objective of this research is to find out how the teacher candidates who graduated from the Faculty of Theology and study in pedagogical formation program perceive the theory of evolution. Having a descriptive characteristic, this research is conducted with 63 Faculty of Theology graduate teacher candidates of which 36 is women and 27 is…

  4. Orchid flower evolution

    Indian Academy of Sciences (India)

    Unknown

    A framework on orchid flower evolution has been pro- posed based on three different findings and their resultant implications. (i) The general occurrence of semipeloric natural orchid mutants suggest a common underlying genetic mechanism. (ii) The phenotypic expressions of both wild-type orchids and the semipeloric ...

  5. Evolution of housing

    NARCIS (Netherlands)

    Slob, C.; Mohammadi, S.; Geraedts, R.P.

    2012-01-01

    ‘Perfection means something is complete and stands still and what stands still doesn’t change or evolve and is automatically dead. Everything in the universe changes, evolution implies that the creation is not complete hence the possibility of evolving’ (Osho, 1985). Our society and economy are

  6. Collection Evaluation and Evolution

    Science.gov (United States)

    Habermann, Ted; Kozimor, John

    2017-01-01

    We will review metadata evaluation tools and share results from our most recent CMR analysis. We will demonstrate results using Google spreadsheets and present new results in terms of number of records that include specific content. We will show evolution of UMM-compliance over time and also show results of comparing various CMR collections (NASA, non-NASA, and SciOps).

  7. Evolution of morphological allometry

    OpenAIRE

    Pelabon, Christophe; Firmat, Cyril Joel Patrick; Bolstad, Geir Hysing; Voje, Kjetil L.; Houle, David; Cassara, Jason; Le Rouzic, Arnaud; Hansen, Thomas F

    2014-01-01

    Morphological allometry refers to patterns of covariance between body parts resulting from variation in body size. Whether measured during growth (ontogenetic allometry), among individuals at similar developmental stage (static allometry), or among populations or species (evolutionary allometry), allometric relationships are often tight and relatively invariant. Consequently, it has been suggested that allometries have low evolvability and could constrain phenotypic evolution by forcing evolv...

  8. Technologies for ECLSS Evolution

    Science.gov (United States)

    Diamant, Bryce L.

    1990-01-01

    Viewgraphs and discussion on technologies for Environmental Control and Life Support System (ECLSS) evolution are presented. Topics covered include: atmosphere revitalization including CO2 removal, CO2 reduction, O2 generation, and trace contaminant control; water recovery and management including urine processing, hygiene water processing, and potable water processing; and waste management. ECLSS technology schematics, process diagrams, and fluid interfaces are included.

  9. Effective Strategies for Teaching Evolution: The Primary Evolution Project

    Science.gov (United States)

    Hatcher, Chris

    2015-01-01

    When Chris Hatcher joined the Primary Evolution Project team at the University of Reading, his goal was to find effective strategies to teach evolution in a way that keeps children engaged and enthused. Hatcher has collaborated with colleagues at the University's Institute of Education to break the evolution unit down into distinct topics and…

  10. Ontology Evolution: Not the Same as Schema Evolution

    NARCIS (Netherlands)

    Noy, Natalya F.; Klein, Michel

    2004-01-01

    As ontology development becomes a more ubiquitous and collaborative process, ontology versioning and evolution becomes an important area of ontology research. The many similarities between database-schema evolution and ontology evolution will allow us to build on the extensive research in schema

  11. Viral Evolution Core | FNLCR Staging

    Science.gov (United States)

    Brandon F. Keele, Ph.D. PI/Senior Principal Investigator, Retroviral Evolution Section Head, Viral Evolution Core Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research Frederick, MD 21702-1201 Tel: 301-846-173

  12. Evolution and transitions in complexity

    NARCIS (Netherlands)

    Jagers op Akkerhuis, Gerard A.J.M.

    2016-01-01

    This book discusses several recent theoretic advancements in interdisciplinary and transdisciplinary integration in the field of evolution. While exploring novel views, the text maintains a close link with one of the most broadly held views on evolution, namely that of "Darwinian evolution." This

  13. On Genetic and Evolution Algebras

    Science.gov (United States)

    Qaralleh, Izzat

    2017-03-01

    The genetic and evolution algebras generally are non-associative algebra. The concept of evolution and genetic algebras were introduced to answer the question what non-Mendelian genetics offers to mathematics. This paper we review some results of evolution and genetic algebras.

  14. Fla. Panel's Evolution Vote Hailed

    Science.gov (United States)

    Cavanagh, Sean

    2008-01-01

    This article reports on how the compromise hammered out in Florida recently over the treatment of evolution in the state's science classrooms is winning praise from scientists and educators. The new science standards will refer to evolution as the "scientific theory of evolution." These changes will replace more-general language in the…

  15. Expanding the Understanding of Evolution

    Science.gov (United States)

    Musante, Susan

    2011-01-01

    Originally designed for K-12 teachers, the Understanding Evolution (UE) Web site ("www.understandingevolution.org") is a one-stop shop for all of a teacher's evolution education needs, with lesson plans, teaching tips, lists of common evolution misconceptions, and much more. However, during the past five years, the UE project team learned that…

  16. Galaxy formation and evolution

    CERN Document Server

    Mo, Houjun; White, Simon

    2010-01-01

    The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

  17. Evolution of clustered storage

    CERN Multimedia

    CERN. Geneva; Van de Vyvre, Pierre

    2007-01-01

    The session actually featured two presentations: * Evolution of clustered storage by Lance Hukill, Quantum Corporation * ALICE DAQ - Usage of a Cluster-File System: Quantum StorNext by Pierre Vande Vyvre, CERN-PH the second one prepared at short notice by Pierre (thanks!) to present how the Quantum technologies are being used in the ALICE experiment. The abstract to Mr Hukill's follows. Clustered Storage is a technology that is driven by business and mission applications. The evolution of Clustered Storage solutions starts first at the alignment between End-users needs and Industry trends: * Push-and-Pull between managing for today versus planning for tomorrow * Breaking down the real business problems to the core applications * Commoditization of clients, servers, and target devices * Interchangeability, Interoperability, Remote Access, Centralized control * Oh, and yes, there is a budget and the "real world" to deal with This presentation will talk through these needs and trends, and then ask the question, ...

  18. Education and Evolution

    DEFF Research Database (Denmark)

    Hjermitslev, Hans Henrik

    2015-01-01

    and in discussing the philosophical consequences of an evolutionary worldview. In the late 1870s and 1880s several of Spencer’s works were translated into Danish and Swedish and he became a household name among liberal intellectuals who primarily discussed his views on education and evolution. His most influential...... and widespread work in Scandinavia was Education from 1861. It was translated into Danish in 1876, into Swedish in 1883 and into Norwegian in 1900. Parts of his works on sociology, ethics and philosophy were also translated into the Scandinavian languages, and a new generation of university professors...... known foreign thinkers in the general public at the time of his death in 1903. Moreover, in the decades around 1900 Spencer’s thoughts on education were part of the curricula at many colleges of education. Spencer’s ideas on evolution and education were thus widely circulated and positively received...

  19. Evolution 2.0

    DEFF Research Database (Denmark)

    Andersen, Casper; Bek-Thomsen, Jakob; Clasen, Mathias

    2013-01-01

    in primary and secondary schools. No universal strategy can be applied in overcoming the barriers of learning that exist and that are part of the practical and daily life in classrooms all over the world. In light of this, a huge challenge is to make high standard teaching materials fit to specific target......Studies in the history of science and education have documented that the reception and understanding of evolutionary theory is highly contingent on local factors such as school systems, cultural traditions, religious beliefs, and language. This has important implications for teaching evolution...... audiences readily available. As more and more schools require teachers to use low cost or free web-based materials, in the research community we need to take seriously how to facilitate that demand in communication strategies on evolution. This article addresses this challenge by presenting the learning...

  20. Managing Software Process Evolution

    DEFF Research Database (Denmark)

    This book focuses on the design, development, management, governance and application of evolving software processes that are aligned with changing business objectives, such as expansion to new domains or shifting to global production. In the context of an evolving business world, it examines...... the complete software process lifecycle, from the initial definition of a product to its systematic improvement. In doing so, it addresses difficult problems, such as how to implement processes in highly regulated domains or where to find a suitable notation system for documenting processes, and provides...... essential insights and tips to help readers manage process evolutions. And last but not least, it provides a wealth of examples and cases on how to deal with software evolution in practice. Reflecting these topics, the book is divided into three parts. Part 1 focuses on software business transformation...

  1. Anatomy of Scientific Evolution

    Science.gov (United States)

    Yun, Jinhyuk; Kim, Pan-Jun; Jeong, Hawoong

    2015-01-01

    The quest for historically impactful science and technology provides invaluable insight into the innovation dynamics of human society, yet many studies are limited to qualitative and small-scale approaches. Here, we investigate scientific evolution through systematic analysis of a massive corpus of digitized English texts between 1800 and 2008. Our analysis reveals great predictability for long-prevailing scientific concepts based on the levels of their prior usage. Interestingly, once a threshold of early adoption rates is passed even slightly, scientific concepts can exhibit sudden leaps in their eventual lifetimes. We developed a mechanistic model to account for such results, indicating that slowly-but-commonly adopted science and technology surprisingly tend to have higher innate strength than fast-and-commonly adopted ones. The model prediction for disciplines other than science was also well verified. Our approach sheds light on unbiased and quantitative analysis of scientific evolution in society, and may provide a useful basis for policy-making. PMID:25671617

  2. Massive binary evolution

    Science.gov (United States)

    Podsiadlowski, Philipp

    2010-03-01

    Understanding the evolution of massive binaries is essential for understanding many observed classes of stellar systems, ranging from Algols to X-ray binaries, recycled pulsars, double-neutron-star systems and quite possibly gamma-ray burst sources. Here recent progress and some of the main remaining uncertainties are being reviewed, particularly emphasizing stellar mergers and their possible implications for supernovae like SN 1987A, Thorne-Żytkow objects and η Car-like eruptions. It is shown how binary evolution can affect both the envelope and the core structure of a massive star, explaining - at least in part - the observed diversity of core-collapse supernovae and potentially producing different kick distributions for systems in binaries. Various ideas linking gamma-ray bursts to massive binaries are also being discussed.

  3. The evolution of norms.

    Science.gov (United States)

    Chalub, F A C C; Santos, F C; Pacheco, J M

    2006-07-21

    We develop a two-level selection model in the framework of evolutionary game theory, in which fitness selection at different levels is related to different games. We consider an archipelago of communities, such that selection operates at an individual level inside each community and at a group level whenever evolution of communities is at stake. We apply this model to the evolution of social norms, an open problem of ubiquitous importance in social science. Extensive statistical analysis of our results lead to the emergence of one common social norm, of which the evolutionary outcomes in different communities are simple by-products. This social norm induces reputation-based cooperative behavior, and reflects the evolutionary propensity to promote simple, unambiguous norms, in which forgiveness and repent are welcome, while punishment is implacable.

  4. The metaphysics of evolution.

    Science.gov (United States)

    Dupré, John

    2017-10-06

    This paper briefly describes process metaphysics, and argues that it is better suited for describing life than the more standard thing, or substance, metaphysics. It then explores the implications of process metaphysics for conceptualizing evolution. After explaining what it is for an organism to be a process, the paper takes up the Hull/Ghiselin thesis of species as individuals and explores the conditions under which a species or lineage could constitute an individual process. It is argued that only sexual species satisfy these conditions, and that within sexual species the degree of organization varies. This, in turn, has important implications for species' evolvability. One important moral is that evolution will work differently in different biological domains.

  5. QCD Evolution Workshop

    CERN Document Server

    2015-01-01

    These are the proceedings of the QCD Evolution 2015 Workshop which was held 26–30 May, 2015 at Jefferson Lab, Newport News, Virginia, USA. The workshop is a continuation of a series of workshops held during four consecutive years 2011, 2012, 2013 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques we look forward with great enthusiasm to the 2015 meeting. A special attention was also paid to participation of experimentalists as the topics discussed are of immediate importance for the JLab 12 experimental program and a future Electron Ion Collider.

  6. Kamikazes and cultural evolution.

    Science.gov (United States)

    Allen-Hermanson, Sean

    2017-02-01

    Is cultural evolution needed to explain altruistic selfsacrifice? Some contend that cultural traits (e.g. beliefs, behaviors, and for some "memes") replicate according to selection processes that have "floated free" from biology. One test case is the example of suicide kamikaze attacks in wartime Japan. Standard biological mechanisms-such as reciprocal altruism and kin selection-might not seem to apply here: The suicide pilots did not act on the expectation that others would reciprocate, and they were supposedly sacrificing themselves for country and emperor, not close relatives. Yet an examination of both the historical record and the demands of evolutionary theory suggest the kamikaze phenomenon does not cry out for explanation in terms of a special non-biological selection process. This weakens the case for cultural evolution, and has interesting implications for our understanding of altruistic self-sacrifice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Evolution of mycorrhiza systems

    Science.gov (United States)

    Cairney, J. W. G.

    Most terrestrial plants live in mutualistic symbiosis with root-infecting mycorrhizal fungi. Fossil records and molecular clock dating suggest that all extant land plants have arisen from an ancestral arbuscular mycorrhizal condition. Arbuscular mycorrhizas evolved concurrently with the first colonisation of land by plants some 450-500 million years ago and persist in most extant plant taxa. Ectomycorrhizas (about 200million years ago) and ericoid mycorrhizas (about 100million years ago) evolved subsequently as the organic matter content of some ancient soils increased and sclerophyllous vegetation arose as a response to nutrient-poor soils respectively. Mycorrhizal associations appear to be the result of relatively diffuse coevolutionary processes. While early events in the evolution of mycorrhizal symbioses may have involved reciprocal genetic changes in ancestral plants and free-living fungi, available evidence points largely to ongoing parallel evolution of the partners in response to environmental change.

  8. Relative constraints and evolution

    Science.gov (United States)

    Ochoa, Juan G. Diaz

    2014-03-01

    Several mathematical models of evolving systems assume that changes in the micro-states are constrained to the search of an optimal value in a local or global objective function. However, the concept of evolution requires a continuous change in the environment and species, making difficult the definition of absolute optimal values in objective functions. In this paper, we define constraints that are not absolute but relative to local micro-states, introducing a rupture in the invariance of the phase space of the system. This conceptual basis is useful to define alternative mathematical models for biological (or in general complex) evolving systems. We illustrate this concept with a modified Ising model, which can be useful to understand and model problems like the somatic evolution of cancer.

  9. Evolution of the ventricles.

    OpenAIRE

    Victor, S.; Nayak, V M; Rajasingh, R

    1999-01-01

    We studied the evolution of ventricles by macroscopic examination of the hearts of marine cartilaginous and bony fish, and by angiocardiography and gross examination of the hearts of air-breathing freshwater fish, frogs, turtles, snakes, and crocodiles. A right-sided, thin-walled ventricular lumen is seen in the fish, frog, turtle, and snake. In fish, there is external symmetry of the ventricle, internal asymmetry, and a thick-walled left ventricle with a small inlet chamber. In animals such ...

  10. MITOCHONDRIAL DNA- REVOLUTIONARY EVOLUTION

    Directory of Open Access Journals (Sweden)

    Vaidhehi Narayan Nayak

    2017-07-01

    Full Text Available BACKGROUND Mitochondrion, the sausage-shaped organelle residing in the cytoplasm of all eukaryotic cells, apart from being the power house, represents endosymbiotic evolution of a free living organism to intracellular structure. Anthropologically, mitochondrial DNA is the fossilised source to trace the human ancestry particularly of maternal lineage. This article attempts to highlight the various biological functions of mitochondrial DNA (mtDNA with a note on its forensic application.

  11. Centromere Emergence in Evolution

    OpenAIRE

    Ventura, Mario; Archidiacono, Nicoletta; Rocchi, Mariano

    2001-01-01

    Evolutionary centromere repositioning is a paradox we have recently discovered while studying the conservation of the phylogenetic chromosome IX in primates. Two explanations were proposed: a conservative hypothesis assuming sequential pericentric inversions, and a more challenging assumption involving centromere emergence during evolution. The complex evolutionary history showed by chromosome IX did not allow us to clearly distinguish between these two hypotheses. Here we report comparative ...

  12. Evolution of Social networks

    OpenAIRE

    Hellmann, Tim; Staudigl, Mathias

    2014-01-01

    Modeling the evolution of networks is central to our understanding of modern large communication systems, such as theWorld-Wide-Web, as well as economic and social networks. The research on social and economic networks is truly interdisciplinary and the number of modeling strategies and concepts is enormous. In this survey we present some modeling approaches, covering classical random graph models and game-theoretic models, which may be used to provide a unified framework to model an...

  13. Evolution, Teleology, Intentionality

    OpenAIRE

    Dennett, Daniel

    1993-01-01

    No response that was not as long and intricate as the two commentaries combined could do justice to their details, so what follows will satisfy nobody, myself included. I will concentrate on one issue discussed by both commentators: the relationship between evolution and teleological (or intentional) explanation. My response, in its brevity, may have just one virtue: it will confirm some of the hunches (or should I say suspicions) that these and other writers have entertained about my views. ...

  14. Stochastic Models of Evolution

    Science.gov (United States)

    Bezruchko, Boris P.; Smirnov, Dmitry A.

    To continue the discussion of randomness given in Sect. 2.2.1, we briefly touch on stochastic models of temporal evolution (random processes). They can be specified either via explicit definition of their statistical properties (probability density functions, correlation functions, etc., Sects. 4.1, 4.2 and 4.3) or via stochastic difference or differential equations. Some of the most widely known equations, their properties and applications are discussed in Sects. 4.4 and 4.5.

  15. Epistasis in protein evolution

    Science.gov (United States)

    Starr, Tyler N.

    2016-01-01

    Abstract The structure, function, and evolution of proteins depend on physical and genetic interactions among amino acids. Recent studies have used new strategies to explore the prevalence, biochemical mechanisms, and evolutionary implications of these interactions—called epistasis—within proteins. Here we describe an emerging picture of pervasive epistasis in which the physical and biological effects of mutations change over the course of evolution in a lineage‐specific fashion. Epistasis can restrict the trajectories available to an evolving protein or open new paths to sequences and functions that would otherwise have been inaccessible. We describe two broad classes of epistatic interactions, which arise from different physical mechanisms and have different effects on evolutionary processes. Specific epistasis—in which one mutation influences the phenotypic effect of few other mutations—is caused by direct and indirect physical interactions between mutations, which nonadditively change the protein's physical properties, such as conformation, stability, or affinity for ligands. In contrast, nonspecific epistasis describes mutations that modify the effect of many others; these typically behave additively with respect to the physical properties of a protein but exhibit epistasis because of a nonlinear relationship between the physical properties and their biological effects, such as function or fitness. Both types of interaction are rampant, but specific epistasis has stronger effects on the rate and outcomes of evolution, because it imposes stricter constraints and modulates evolutionary potential more dramatically; it therefore makes evolution more contingent on low‐probability historical events and leaves stronger marks on the sequences, structures, and functions of protein families. PMID:26833806

  16. Software evolution and maintenance

    CERN Document Server

    Tripathy, Priyadarshi

    2014-01-01

    Software Evolution and Maintenance: A Practitioner's Approach is an accessible textbook for students and professionals, which collates the advances in software development and provides the most current models and techniques in maintenance.Explains two maintenance standards: IEEE/EIA 1219 and ISO/IEC14764Discusses several commercial reverse and domain engineering toolkitsSlides for instructors are available onlineInformation is based on the IEEE SWEBOK (Software Engineering Body of Knowledge)

  17. Galaxy evolution. Galactic paleontology.

    Science.gov (United States)

    Tolstoy, Eline

    2011-07-08

    Individual low-mass stars have very long lives, comparable to the age of the universe, and can thus be used to probe ancient star formation. At present, such stars can be identified and studied only in the Milky Way and in the very closest of our neighboring galaxies, which are predominantly small dwarf galaxies. These nearby ancient stars are a fossil record that can provide detailed information about the physical processes that dominated the epoch of galaxy formation and subsequent evolution.

  18. The Evolution of Aesthesis

    OpenAIRE

    Mandoki, Katya

    2017-01-01

    Based on the understanding of aesthetics as the study of all processes and activities related to aesthesis in his original etymological sense as «sensibility», this paper argues that an evolutionary approach must follow the evolution of aesthesis from its inception. A degree of sensibility may perhaps be traced already at molecules sensing borders in DNA replication. The next stage, which may be defined as “cyto-aesthesis”, refers to evidence of cells’ actions to antigens, virus, enzymes or b...

  19. Evolution and ageing

    Science.gov (United States)

    de Oliveira, S. Moss; Alves, Domingos; Martins, J. S. Sá

    2000-09-01

    The idea of this review is to connect the different models of evolution to those of biological ageing through Darwin's theory. We start with the Eigen model of quasispecies for microevolution, then introduce the Bak-Sneppen model for macroevolution and, finally, present the Penna model for biological ageing and some of its most important results. We also explore the concept of coevolution using this model.

  20. Covariant quantum Markovian evolutions

    Science.gov (United States)

    Holevo, A. S.

    1996-04-01

    Quantum Markovian master equations with generally unbounded generators, having physically relevant symmetries, such as Weyl, Galilean or boost covariance, are characterized. It is proven in particular that a fully Galilean covariant zero spin Markovian evolution reduces to the free motion perturbed by a covariant stochastic process with independent stationary increments in the classical phase space. A general form of the boost covariant Markovian master equation is discussed and a formal dilation to the Langevin equation driven by quantum Boson noises is described.

  1. The evolution of seeds.

    Science.gov (United States)

    Linkies, Ada; Graeber, Kai; Knight, Charles; Leubner-Metzger, Gerhard

    2010-06-01

    The evolution of the seed represents a remarkable life-history transition for photosynthetic organisms. Here, we review the recent literature and historical understanding of how and why seeds evolved. Answering the 'how' question involves a detailed understanding of the developmental morphology and anatomy of seeds, as well as the genetic programs that determine seed size. We complement this with a special emphasis on the evolution of dormancy, the characteristic of seeds that allows for long 'distance' time travel. Answering the 'why' question involves proposed hypotheses of how natural selection has operated to favor the seed life-history phenomenon. The recent flurry of research describing the comparative biology of seeds is discussed. The review will be divided into sections dealing with: (1) the development and anatomy of seeds; (2) the endosperm; (3) dormancy; (4) early seed-like structures and the transition to seeds; and (5) the evolution of seed size (mass). In many cases, a special distinction is made between angiosperm and gymnosperm seeds. Finally, we make some recommendations for future research in seed biology.

  2. Consciousness and biological evolution.

    Science.gov (United States)

    Lindahl, B I

    1997-08-21

    It has been suggested that if the preservation and development of consciousness in the biological evolution is a result of natural selection, it is plausible that consciousness not only has been influenced by neural processes, but has had a survival value itself; and it could only have had this, if it had also been efficacious. This argument for mind-brain interaction is examined, both as the argument has been developed by William James and Karl Popper and as it has been discussed by C.D. Broad. The problem of identifying mental phenomena with certain neural phenomena is also addressed. The main conclusion of the analysis is that an explanation of the evolution of consciousness in Darwinian terms of natural selection does not rule out that consciousness may have evolved as a mere causally inert effect of the evolution of the nervous system, or that mental phenomena are identical with certain neural phenomena. However, the interactionistic theory still seems, more plausible and more fruitful for other reasons brought up in the discussion.

  3. The evolution of teaching.

    Science.gov (United States)

    Fogarty, L; Strimling, P; Laland, K N

    2011-10-01

    Teaching, alongside imitation, is widely thought to underlie the success of humanity by allowing high-fidelity transmission of information, skills, and technology between individuals, facilitating both cumulative knowledge gain and normative culture. Yet, it remains a mystery why teaching should be widespread in human societies but extremely rare in other animals. We explore the evolution of teaching using simple genetic models in which a single tutor transmits adaptive information to a related pupil at a cost. Teaching is expected to evolve where its costs are outweighed by the inclusive fitness benefits that result from the tutor's relatives being more likely to acquire the valuable information. We find that teaching is not favored where the pupil can easily acquire the information on its own, or through copying others, or for difficult to learn traits, where teachers typically do not possess the information to pass on to relatives. This leads to a narrow range of traits for which teaching would be efficacious, which helps to explain the rarity of teaching in nature, its unusual distribution, and its highly specific nature. Further models that allow for cumulative cultural knowledge gain suggest that teaching evolved in humans because cumulative culture renders otherwise difficult-to-acquire valuable information available to teach. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  4. The evolution within us

    Science.gov (United States)

    Cobey, Sarah; Wilson, Patrick; Matsen, Frederick A.

    2015-01-01

    The B-cell immune response is a remarkable evolutionary system found in jawed vertebrates. B-cell receptors, the membrane-bound form of antibodies, are capable of evolving high affinity to almost any foreign protein. High germline diversity and rapid evolution upon encounter with antigen explain the general adaptability of B-cell populations, but the dynamics of repertoires are less well understood. These dynamics are scientifically and clinically important. After highlighting the remarkable characteristics of naive and experienced B-cell repertoires, especially biased usage of genes encoding the B-cell receptors, we contrast methods of sequence analysis and their attempts to explain patterns of B-cell evolution. These phylogenetic approaches are currently unlinked to explicit models of B-cell competition, which analyse repertoire evolution at the level of phenotype, the affinities and specificities to particular antigenic sites. The models, in turn, suggest how chance, infection history and other factors contribute to different patterns of immunodominance and protection between people. Challenges in rational vaccine design, specifically vaccines to induce broadly neutralizing antibodies to HIV, underscore critical gaps in our understanding of B cells' evolutionary and ecological dynamics. PMID:26194749

  5. Reconstructing human evolution

    CERN Multimedia

    AUTHOR|(CDS)2074069

    1999-01-01

    One can reconstruct human evolution using modern genetic data and models based on the mathematical theory of evolution and its four major factors : mutation, natural selection, statistical fluctuations in finite populations (random genetic drift), and migration. Archaeology gives some help on the major dates and events of the process. Chances of studying ancient DNA are very limited but there have been a few successful results. Studying DNA instead of proteins, as was done until a few years ago, and in particular the DNA of mitochondria and of the Y chromosome which are transmitted, respectively, by the maternal line and the paternal line, has greatly simplified the analysis. It is now possible to carry the analysis on individuals, while earlier studies were of necessity based on populations. Also the evolution of ÒcultureÓ (i.e. what we learn from others), in particular that of languages, gives some help and can be greatly enlightened by genetic studies. Even though it is largely based on mechanisms of mut...

  6. ENVIRONMENT AND PROTOSTELLAR EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yichen [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Tan, Jonathan C., E-mail: yczhang.astro@gmail.com [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)

    2015-04-01

    Even today in our Galaxy, stars form from gas cores in a variety of environments, which may affect the properties of the resulting star and planetary systems. Here, we study the role of pressure, parameterized via ambient clump mass surface density, on protostellar evolution and appearance, focusing on low-mass Sun-like stars and considering a range of conditions from relatively low pressure filaments in Taurus, to intermediate pressures of cluster-forming clumps like the Orion Nebula Cluster, to very high pressures that may be found in the densest infrared dark clouds or in the Galactic center. We present unified analytic and numerical models for the collapse of prestellar cores, accretion disks, protostellar evolution, and bipolar outflows, coupled with radiative transfer calculations and a simple astrochemical model to predict CO gas-phase abundances. Prestellar cores in high-pressure environments are smaller and denser and thus collapse with higher accretion rates and efficiencies, resulting in higher luminosity protostars with more powerful outflows. The protostellar envelope is heated to warmer temperatures, affecting infrared morphologies (and thus classification) and astrochemical processes like CO depletion onto dust grain ice mantles (and thus CO morphologies). These results have general implications for star and planet formation, especially via their effect on astrochemical and dust grain evolution during infall to and through protostellar accretion disks.

  7. Anmeldelse af Evolution, Literature and Film

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh

    2011-01-01

    Diskussion af basisproblemer i evolutionær fiktionsteori med udgangspunkt i en anmeldelse af Evolution, Literature and Film......Diskussion af basisproblemer i evolutionær fiktionsteori med udgangspunkt i en anmeldelse af Evolution, Literature and Film...

  8. Experimental Evolution with Caenorhabditis Nematodes

    Science.gov (United States)

    Teotónio, Henrique; Estes, Suzanne; Phillips, Patrick C.; Baer, Charles F.

    2017-01-01

    The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host–pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative. PMID:28592504

  9. Next generation PON evolution

    Science.gov (United States)

    Srivastava, Anand

    2013-01-01

    Passive optical network (PON) features a point-to-multi-point (P2MP) architecture to provide broadband access. The P2MP architecture has become the most popular solution for FTTx deployment among operators. PON-based FTTx has been widely deployed ever since 2004 when ITU-T Study Group 15Q2 completed recommendations that defined GPON system [ITU-T seriesG.984]. As full services are provisioned by the massive deployment of PON networks worldwide, operators expect more from PONs. These include improved bandwidths and service support capabilities as well as enhanced performance of access nodes and supportive equipment over their existing PON networks. The direction of PON evolution is a key issue for the telecom industry. Full Service Access Network (FSAN) and ITU-T are the PON interest group and standard organization, respectively. In their view, the next-generation PONs are divided into two phases: NG-PON1 and NG-PON2. Mid-term upgrades in PON networks are defined as NG-PON1, while NG-PON2 is a long-term solution in PON evolution. Major requirements of NG-PON1 are the coexistence with the deployed GPON systems and the reuse of outside plant. Optical Distribution Networks (ODNs) account for 70% of the total investments in deploying PONs. Therefore, it is crucial for the NGPON evolution to be compatible with the deployed networks. With the specification of system coexistence and ODN reuse, the only hold-up of the migration from GPON to NG-PON1 is the maturity of the industry chain. Unlike NG-PON1 that has clear goals and emerging developments, there are many candidate technologies for NG-PON2. The selection of NG-PON2 is under discussion. However, one thing is clear, NG-PON2 technology must outperform NG-PON1 technologies in terms of ODN compatibility, bandwidth, capacity, and cost-efficiency.

  10. Evolution before genes

    Directory of Open Access Journals (Sweden)

    Vasas Vera

    2012-01-01

    Full Text Available Abstract Background Our current understanding of evolution is so tightly linked to template-dependent replication of DNA and RNA molecules that the old idea from Oparin of a self-reproducing 'garbage bag' ('coacervate' of chemicals that predated fully-fledged cell-like entities seems to be farfetched to most scientists today. However, this is exactly the kind of scheme we propose for how Darwinian evolution could have occurred prior to template replication. Results We cannot confirm previous claims that autocatalytic sets of organic polymer molecules could undergo evolution in any interesting sense by themselves. While we and others have previously imagined inhibition would result in selectability, we found that it produced multiple attractors in an autocatalytic set that cannot be selected for. Instead, we discovered that if general conditions are satisfied, the accumulation of adaptations in chemical reaction networks can occur. These conditions are the existence of rare reactions producing viable cores (analogous to a genotype, that sustains a molecular periphery (analogous to a phenotype. Conclusions We conclude that only when a chemical reaction network consists of many such viable cores, can it be evolvable. When many cores are enclosed in a compartment there is competition between cores within the same compartment, and when there are many compartments, there is between-compartment competition due to the phenotypic effects of cores and their periphery at the compartment level. Acquisition of cores by rare chemical events, and loss of cores at division, allows macromutation, limited heredity and selectability, thus explaining how a poor man's natural selection could have operated prior to genetic templates. This is the only demonstration to date of a mechanism by which pre-template accumulation of adaptation could occur. Reviewers This article was reviewed by William Martin and Eugene Koonin.

  11. Modeling Subglacial Permafrost Evolution

    Science.gov (United States)

    Koutnik, M. R.; Marshall, S.

    2002-12-01

    Permanently frozen ground was present both beneath and peripheral to the Quaternary ice sheets. In areas where the ice sheet grew or advanced over permafrost, the ice sheet insulated the ground, leading to subglacial permafrost degradation. This has created distinct signatures of ice sheet occupation in the Canadian north and in Alaska during the last glacial period, with greatly diminished permafrost thickness in regions that were ice covered for an extended period. In contrast, areas peripheral to the ice sheet, including the Midwest United States, were cooled by the glacial climate conditions and the regional cooling influence of the ice sheet, leading to permafrost growth. We have developed a sub- and proglacial diffusion based permafrost model that utilizes a logarithmic grid transformation to more efficiently track the changing depth of permafrost with time. This model is coupled with the ice sheet thermodynamic model of Marshall and Clarke [1997a] to explore the geologic signatures of the last glacial cycle in North America. This offers the potential for new constraints on modeled ice sheet history. Preliminary model runs show that the overlying ice sheet has a significant effect on the underlying and peripheral permafrost degradation and formation. Subglacial permafrost is also important because its evolution influences the basal temperature of the ice sheet, critical for evolution of subglacial hydrology and fast flow instabilities (e.g. ice streams). We present results of permafrost conditions under the last glacial maximum ice sheet and the effect of permafrost on basal temperature evolution through the last glacial cycle in North America. Marshall, S. J. and G. K. C. Clarke, 1997a. J. Geophys. Res., 102 (B9), 20,599-20,614.

  12. Evolution before genes.

    Science.gov (United States)

    Vasas, Vera; Fernando, Chrisantha; Santos, Mauro; Kauffman, Stuart; Szathmáry, Eörs

    2012-01-05

    Our current understanding of evolution is so tightly linked to template-dependent replication of DNA and RNA molecules that the old idea from Oparin of a self-reproducing 'garbage bag' ('coacervate') of chemicals that predated fully-fledged cell-like entities seems to be farfetched to most scientists today. However, this is exactly the kind of scheme we propose for how Darwinian evolution could have occurred prior to template replication. We cannot confirm previous claims that autocatalytic sets of organic polymer molecules could undergo evolution in any interesting sense by themselves. While we and others have previously imagined inhibition would result in selectability, we found that it produced multiple attractors in an autocatalytic set that cannot be selected for. Instead, we discovered that if general conditions are satisfied, the accumulation of adaptations in chemical reaction networks can occur. These conditions are the existence of rare reactions producing viable cores (analogous to a genotype), that sustains a molecular periphery (analogous to a phenotype). We conclude that only when a chemical reaction network consists of many such viable cores, can it be evolvable. When many cores are enclosed in a compartment there is competition between cores within the same compartment, and when there are many compartments, there is between-compartment competition due to the phenotypic effects of cores and their periphery at the compartment level. Acquisition of cores by rare chemical events, and loss of cores at division, allows macromutation, limited heredity and selectability, thus explaining how a poor man's natural selection could have operated prior to genetic templates. This is the only demonstration to date of a mechanism by which pre-template accumulation of adaptation could occur.

  13. Evolution of sexual asymmetry

    Directory of Open Access Journals (Sweden)

    Hoekstra Rolf F

    2004-09-01

    Full Text Available Abstract Background The clear dominance of two-gender sex in recent species is a notorious puzzle of evolutionary theory. It has at least two layers: besides the most fundamental and challenging question why sex exists at all, the other part of the problem is equally perplexing but much less studied. Why do most sexual organisms use a binary mating system? Even if sex confers an evolutionary advantage (through whatever genetic mechanism, why does it manifest that advantage in two, and exactly two, genders (or mating types? Why not just one, and why not more than two? Results Assuming that sex carries an inherent fitness advantage over pure clonal multiplication, we attempt to give a feasible solution to the problem of the evolution of dimorphic sexual asymmetry as opposed to monomorphic symmetry by using a spatial (cellular automaton model and its non-spatial (mean-field approximation. Based on a comparison of the spatial model to the mean-field approximation we suggest that spatial population structure must have played a significant role in the evolution of mating types, due to the largely clonal (self-aggregated spatial distribution of gamete types, which is plausible in aquatic habitats for physical reasons, and appears to facilitate the evolution of a binary mating system. Conclusions Under broad ecological and genetic conditions the cellular automaton predicts selective removal from the population of supposedly primitive gametes that are able to mate with their own type, whereas the non-spatial model admits coexistence of the primitive type and the mating types. Thus we offer a basically ecological solution to a theoretical problem that earlier models based on random gamete encounters had failed to resolve.

  14. Evolution and human sexuality.

    Science.gov (United States)

    Gray, Peter B

    2013-12-01

    The aim of this review is to put core features of human sexuality in an evolutionary light. Toward that end, I address five topics concerning the evolution of human sexuality. First, I address theoretical foundations, including recent critiques and developments. While much traces back to Darwin and his view of sexual selection, more recent work helps refine the theoretical bases to sex differences and life history allocations to mating effort. Second, I consider central models attempting to specify the phylogenetic details regarding how hominin sexuality might have changed, with most of those models honing in on transitions from a possible chimpanzee-like ancestor to the slightly polygynous and long-term bonded sociosexual partnerships observed among most recently studied hunter-gatherers. Third, I address recent genetic and physiological data contributing to a refined understanding of human sexuality. As examples, the availability of rapidly increasing genomic information aids comparative approaches to discern signals of selection in sexuality-related phenotypes, and neuroendocrine studies of human responses to sexual stimuli provide insight into homologous and derived mechanisms. Fourth, I consider some of the most recent, large, and rigorous studies of human sexuality. These provide insights into sexual behavior across other national samples and on the Internet. Fifth, I discuss the relevance of a life course perspective to understanding the evolution of human sexuality. Most research on the evolution of human sexuality focuses on young adults. Yet humans are sexual beings from gestation to death, albeit in different ways across the life course, and in ways that can be theoretically couched within life history theory. Copyright © 2013 Wiley Periodicals, Inc.

  15. Requirements Evolution for Dwellings

    Directory of Open Access Journals (Sweden)

    Răzvan Giuşcă

    2008-01-01

    Full Text Available At a certain point of society evolution appears, due to an aberrant culture, more actually due to a subculture, one point occurred during the development of society, due to an aberrant culture, an exacerbated resources consumption, exaggerated, extravagant, that generates waste. Were produced objects without value having a small using importance, it appears whim, unnecessary, kitsch or groundless products. There was an exaggerated consumption even for fundamental or existential needs fulfilment. In our days in superstores the market basket is fill out and that goes to indigestion, obesity, diabetes, excess medicines, cardiac crisis and finally nothingness.

  16. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  17. Electrochemical Hydrogen Evolution

    DEFF Research Database (Denmark)

    Laursen, A.B.; Varela Gasque, Ana Sofia; Dionigi, F.

    2012-01-01

    The electrochemical hydrogen evolution reaction (HER) is growing in significance as society begins to rely more on renewable energy sources such as wind and solar power. Thus, research on designing new, inexpensive, and abundant HER catalysts is important. Here, we describe how a simple experiment....... The curve visually shows students that the best HER catalysts are characterized by an optimal hydrogen binding energy (reactivity), as stated by the Sabatier principle. In addition, students may use this volcano curve to predict the activity of an untested catalyst solely from the catalyst reactivity...

  18. Ultrastructure, macromolecules, and evolution

    CERN Document Server

    Dillon, Lawrence S

    1981-01-01

    Thus far in the history of biology, two, and only two, fundamental principles have come to light that pervade and unify the entire science-the cell theory and the concept of evolution. While it is true that recently opened fields of inves­ tigation have given rise to several generalizations of wide impact, such as the universality of DNA and the energetic dynamics of ecology, closer inspection reveals them to be part and parcel of either of the first two mentioned. Because in the final analysis energy can act upon an organism solely at the cellular level, its effects may be perceived basically to represent one facet of cell me­ tabolism. Similarly, because the DNA theory centers upon the means by which cells build proteins and reproduce themselves, it too proves to be only one more, even though an exciting, aspect of the cell theory. In fact, if the matter is given closer scrutiny, evolution itself can be viewed as being a fundamental portion of the cell concept, for its effects arise only as a consequence ...

  19. Oxytocin and Human Evolution.

    Science.gov (United States)

    Carter, C Sue

    2017-08-16

    A small, but powerful neuropeptide, oxytocin coordinates processes that are central to both human reproduction and human evolution. Also embedded in the evolution of the human nervous system are unique pathways necessary for modern human sociality and cognition. Oxytocin is necessary for facilitating the birth process, especially in light of anatomical restrictions imposed by upright human locomotion, which depends on a fixed pelvis. Oxytocin, by facilitating birth, allowed the development of a large cortex and a protective bony cranium. The complex human brain in turn permitted the continuing emergence of social sensitivity, complex thinking, and language. After birth is complete, oxytocin continues to support human development by providing direct nutrition, in the form of human milk, and emotional and intellectual support through high levels of maternal behavior and selective attachment. Oxytocin also encourages social sensitivity and reciprocal attunement, on the part of both the mother and child, which are necessary for human social behavior and for rearing an emotionally healthy human child. Oxytocin supports growth during development, resilience, and healing across the lifespan. Oxytocin dynamically moderates the autonomic nervous system, and effects of oxytocin on vagal pathways allowing high levels of oxygenation and digestion necessary to support adaptation in a complex environment. Finally, oxytocin has anti-oxidant and anti-inflammatory effects, helping to explain the pervasive adaptive consequences of social behavior for emotional and physical health.

  20. Stellar Structure and Evolution

    CERN Document Server

    Kippenhahn, Rudolf; Weiss, Achim

    2013-01-01

    This long-awaited second edition of the classical textbook on Stellar Structure and Evolution by Kippenhahn and Weigert is a thoroughly revised version of the original text. Taking into account modern observational constraints as well as additional physical effects such as mass loss and diffusion, Achim Weiss and Rudolf Kippenhahn have succeeded in bringing the book up to the state-of-the-art with respect to both the presentation of stellar physics and the presentation and interpretation of current sophisticated stellar models. The well-received and proven pedagogical approach of the first edition has been retained. The book provides a comprehensive treatment of the physics of the stellar interior and the underlying fundamental processes and parameters. The models developed to explain the stability, dynamics and evolution of the stars are presented and great care is taken to detail the various stages in a star’s life. Just as the first edition, which remained a standard work for more than 20 years after its...

  1. Cloud Particles Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-01-01

    Full Text Available Many evolutionary algorithms have been paid attention to by the researchers and have been applied to solve optimization problems. This paper presents a new optimization method called cloud particles evolution algorithm (CPEA to solve optimization problems based on cloud formation process and phase transformation of natural substance. The cloud is assumed to have three states in the proposed algorithm. Gaseous state represents the global exploration. Liquid state represents the intermediate process from the global exploration to the local exploitation. Solid state represents the local exploitation. The cloud is composed of descript and independent particles in this algorithm. The cloud particles use phase transformation of three states to realize the global exploration and the local exploitation in the optimization process. Moreover, the cloud particles not only realize the survival of the fittest through competition mechanism but also ensure the diversity of the cloud particles by reciprocity mechanism. The effectiveness of the algorithm is validated upon different benchmark problems. The proposed algorithm is compared with a number of other well-known optimization algorithms, and the experimental results show that cloud particles evolution algorithm has a higher efficiency than some other algorithms.

  2. Evolution of Supernova Remnants

    Science.gov (United States)

    Arbutina, B.

    2017-12-01

    This book, both a monograph and a graduate textbook, is based on my original research and partly on the materials prepared earlier for the 2007 and 2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course 'Supernovae and Their Remnants' that was held for the first time in 2011 at the Department of Astronomy, Faculty of Mathematics, University of Belgrade, and a graduate course 'Evolution of Supernova Remnants' that I teach at the aforementioned university. The first part Supernovae (introduction, thermonuclear supernovae, core-collapse supernovae) provides introductory information and explains the classification and physics of supernova explosions, while the second part Supernova remnants (introduction, shock waves, cosmic rays and particle acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio evolution of supernova remnants), which is the field I work in, is more detailed in scope i.e. technical/mathematical. Special attention is paid to details of mathematical derivations that often cannot be found in original works or available literature. Therefore, I believe it can be useful to both, graduate students and researchers interested in the field.

  3. Landscapes and molecular evolution

    Science.gov (United States)

    Schuster, Peter

    1997-02-01

    Evolution of RNA molecules in vitro is visualized as a hill-climbing process on a fitness landscape that can be derived from molecular properties and functions. The optimization process is shaped by a high degree of redundance in sequence-to-structure mappings: there are many more sequences than structures and sequences folding into the same structure are (almost) randomly distributed in sequence space. Two consequences of this redundance are important for evolution: shape space covering by small connected regions in sequence space and the existence of extended neutral networks. Both results together explain how nature can fast and efficiently find solutions to complex optimization problems by trial and error while the number of possible genotypes exceeds all imagination. In the presence of neutral networks populations avoid being caught in evolutionary traps and eventually reach the global optimum through a composite dynamics of adaptive walks and random drift. Results derived from mathematical analysis are confronted with the results of computer simulation and available experimental data.

  4. Evolution of river dolphins.

    Science.gov (United States)

    Hamilton, H; Caballero, S; Collins, A G; Brownell, R L

    2001-03-07

    The world's river dolphins (Inia, Pontoporia, Lipotes and Platanista) are among the least known and most endangered of all cetaceans. The four extant genera inhabit geographically disjunct river systems and exhibit highly modified morphologies, leading many cetologists to regard river dolphins as an unnatural group. Numerous arrangements have been proposed for their phylogenetic relationships to one another and to other odontocete cetaceans. These alternative views strongly affect the biogeographical and evolutionary implications raised by the important, although limited, fossil record of river dolphins. We present a hypothesis of river dolphin relationships based on phylogenetic analysis of three mitochondrial genes for 29 cetacean species, concluding that the four genera represent three separate, ancient branches in odontocete evolution. Our molecular phylogeny corresponds well with the first fossil appearances of the primary lineages of modern odontocetes. Integrating relevant events in Tertiary palaeoceanography, we develop a scenario for river dolphin evolution during the globally high sea levels of the Middle Miocene. We suggest that ancestors of the four extant river dolphin lineages colonized the shallow epicontintental seas that inundated the Amazon, Paraná, Yangtze and Indo-Gangetic river basins, subsequently remaining in these extensive waterways during their transition to freshwater with the Late Neogene trend of sea-level lowering.

  5. Process Information and Evolution.

    Science.gov (United States)

    Chastain, Erick; Smith, Cameron

    2016-12-01

    Universal Semantic Communication (USC) is a theory that models communication among agents without the assumption of a fixed protocol. We demonstrate a connection, via a concept we refer to as process information, between a special case of USC and evolutionary processes. In this context, one agent attempts to interpret a potentially arbitrary signal produced within its environment. Sources of this effective signal can be modeled as a single alternative agent. Given a set of common underlying concepts that may be symbolized differently by different sources in the environment, any given entity must be able to correlate intrinsic information with input it receives from the environment in order to accurately interpret the ambient signal and ultimately coordinate its own actions. This scenario encapsulates a class of USC problems that provides insight into the semantic aspect of a model of evolution proposed by Rivoire and Leibler. Through this connection, we show that evolution corresponds to a means of solving a special class of USC problems, can be viewed as a special case of the Multiplicative Weights Updates algorithm, and that infinite population selection with no mutation and no recombination conforms to the Rivoire-Leibler model. Finally, using process information we show that evolving populations implicitly internalize semantic information about their respective environments.

  6. Evolution Of Cosmic Strings

    CERN Document Server

    Vanchurin, V

    2005-01-01

    We investigate the evolution of finite loops and infinite strings as a part of a complete cosmic string network. We give dynamical arguments showing that the structures on infinite strings should obey a scaling law. We perform a simulation of the network which uses functional forms for the string position and thus is exact to the limits of computer arithmetic. The effective box size of our simulation is at least two orders of magnitude larger than what was previously reached. Our results confirm that the wiggles on the strings obey a scaling law described by universal power spectrum. The average distance between long strings also scales accurately with the time. Production functions of string loops do not show scaling. With low intercommutation probability p the true scaling régime is not reached until very late cosmic times, which makes it difficult to simulate such evolutions. Via the expansion of the box technique, we were able to reach scaling with a wide range of p. The physical correlation ...

  7. Evolution of morphological allometry.

    Science.gov (United States)

    Pélabon, Christophe; Firmat, Cyril; Bolstad, Geir H; Voje, Kjetil L; Houle, David; Cassara, Jason; Rouzic, Arnaud Le; Hansen, Thomas F

    2014-07-01

    Morphological allometry refers to patterns of covariance between body parts resulting from variation in body size. Whether measured during growth (ontogenetic allometry), among individuals at similar developmental stage (static allometry), or among populations or species (evolutionary allometry), allometric relationships are often tight and relatively invariant. Consequently, it has been suggested that allometries have low evolvability and could constrain phenotypic evolution by forcing evolving species along fixed trajectories. Alternatively, allometric relationships may result from natural selection for functional optimization. Despite nearly a century of active research, distinguishing between these alternatives remains difficult, partly due to wide differences in the meaning assigned to the term allometry. In particular, a broad use of the term, encompassing any monotonic relationship between body parts, has become common. This usage breaks the connection to the proportional growth regulation that motivated Huxley's original narrow-sense use of allometry to refer to power-law relationships between traits. Focusing on the narrow-sense definition of allometry, we review here evidence for and against the allometry-as-a-constraint hypothesis. Although the low evolvability and the evolutionary invariance of the static allometric slope observed in some studies suggest a possible constraining effect of this parameter on phenotypic evolution, the lack of knowledge about selection on allometry prevents firm conclusions. © 2014 New York Academy of Sciences.

  8. Toward Documentation of Program Evolution

    DEFF Research Database (Denmark)

    Vestdam, Thomas; Nørmark, Kurt

    2005-01-01

    The documentation of a program often falls behind the evolution of the program source files. When this happens it may be attractive to shift the documentation mode from updating the documentation to documenting the evolution of the program. This paper describes tools that support the documentation...... of program evolution. The tools are refinements of the Elucidative Programming tools, which in turn are inspired from Literate Programming tools. The version-aware Elucidative Programming tools are able to process a set of program source files in different versions together with unversioned documentation...... files. The paper introduces a set of fine grained program evolution steps, which are supported directly by the documentation tools. The automatic discovery of the fine grained program evolution steps makes up a platform for documenting coarse grained and more high-level program evolution steps...

  9. Evolution across the Curriculum: Microbiology

    Science.gov (United States)

    Burmeister, Alita R.; Smith, James J.

    2016-01-01

    An integrated understanding of microbiology and evolutionary biology is essential for students pursuing careers in microbiology and healthcare fields. In this Perspective, we discuss the usefulness of evolutionary concepts and an overall evolutionary framework for students enrolled in microbiology courses. Further, we propose a set of learning goals for students studying microbial evolution concepts. We then describe some barriers to microbial evolution teaching and learning and encourage the continued incorporation of evidence-based teaching practices into microbiology courses at all levels. Next, we review the current status of microbial evolution assessment tools and describe some education resources available for teaching microbial evolution. Successful microbial evolution education will require that evolution be taught across the undergraduate biology curriculum, with a continued focus on applications and applied careers, while aligning with national biology education reform initiatives. Journal of Microbiology & Biology Education PMID:27158306

  10. Evolution across the Curriculum: Microbiology

    Directory of Open Access Journals (Sweden)

    Alita R. Burmeister

    2016-05-01

    Full Text Available An integrated understanding of microbiology and evolutionary biology is essential for students pursuing careers in microbiology and healthcare fields. In this Perspective, we discuss the usefulness of evolutionary concepts and an overall evolutionary framework for students enrolled in microbiology courses. Further, we propose a set of learning goals for students studying microbial evolution concepts. We then describe some barriers to microbial evolution teaching and learning and encourage the continued incorporation of evidence-based teaching practices into microbiology courses at all levels. Next, we review the current status of microbial evolution assessment tools and describe some education resources available for teaching microbial evolution. Successful microbial evolution education will require that evolution be taught across the undergraduate biology curriculum, with a continued focus on applications and applied careers, while aligning with national biology education reform initiatives.

  11. Student Visual Communication of Evolution

    Science.gov (United States)

    Oliveira, Alandeom W.; Cook, Kristin

    2017-06-01

    Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring the types of evolutionary imagery deployed by secondary students. Our visual design analysis revealed that students resorted to two larger categories of images when visually communicating evolution: spatial metaphors (images that provided a spatio-temporal account of human evolution as a metaphorical "walk" across time and space) and symbolic representations ("icons of evolution" such as personal portraits of Charles Darwin that simply evoked evolutionary theory rather than metaphorically conveying its conceptual contents). It is argued that students need opportunities to collaboratively critique evolutionary imagery and to extend their visual perception of evolution beyond dominant images.

  12. Wavelet dimensions and time evolution

    OpenAIRE

    Guérin, Charles-Antoine; Holschneider, Matthias

    1999-01-01

    International audience; In this chapter, we study some aspects of the chaotic behaviour of the time evolution generated by Hamiltonian systems, or more generally dynamical systems. We introduce a characteristic quantity, namely the lacunarity dimension, to quantify the intermittency phenomena that can arise in the time evolution. We then focus on the time evolution of wave packets according to the Schrödinger equation with time independent Hamiltonian. We introduce a set of fractal dimensions...

  13. Quantum Computation by Adiabatic Evolution

    OpenAIRE

    Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Sipser, Michael

    2000-01-01

    We give a quantum algorithm for solving instances of the satisfiability problem, based on adiabatic evolution. The evolution of the quantum state is governed by a time-dependent Hamiltonian that interpolates between an initial Hamiltonian, whose ground state is easy to construct, and a final Hamiltonian, whose ground state encodes the satisfying assignment. To ensure that the system evolves to the desired final ground state, the evolution time must be big enough. The time required depends on ...

  14. Tracing Cultural Evolution Through Memetics

    OpenAIRE

    Tiktik Dewi Sartika

    2004-01-01

    Viewing human being, as a part of evolution process is still a controversial issue for some people, in fact the evolution runs. As a sociocultural entity, human being has distinctive characters in its evolution process. A Theory inherited from Darwin may have only been able to answer how a simple unit such genes evolve to such complex animal like human. Yet, how among those complex animals interact, communicate, and replicate idea in so forth formed a such self-organized sociocultural complex...

  15. Evolution algebras and their applications

    CERN Document Server

    Tian, Jianjun Paul

    2008-01-01

    Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.

  16. Evolution models of red supergiants

    Science.gov (United States)

    Georgy, Cyril

    2017-11-01

    The red supergiant (RSG) phase is a key stage for the evolution of massive stars. The current uncertainties about the mass-loss rates of these objects make their evolution far to be fully understood. In this paper, we discuss some of the physical processes that determine the duration of the RSG phase. We also show how the mass loss affect their evolution, and can allow for some RSGs to evolve towards the blue side of the Hertzsprung-Russell diagram. We also propose observational tests that can help in better understanding the evolution of these stars.

  17. Micro-droplet based directed evolution outperforms conventional laboratory evolution

    DEFF Research Database (Denmark)

    Sjostrom, Staffan L.; Huang, Mingtao; Nielsen, Jens

    2014-01-01

    We present droplet adaptive laboratory evolution (DrALE), a directed evolution method used to improve industrial enzyme producing microorganisms for e.g. feedstock digestion. DrALE is based linking a desired phenotype to growth rate allowing only desired cells to proliferate. Single cells...

  18. Explaining Poverty Evolution

    DEFF Research Database (Denmark)

    Arndt, Channing; Hussain, Mohammad Azhar; Jones, Edward Samuel

    Measuring poverty remains a complex and contentious issue. This is particularly true in sub-Saharan Africa where poverty rates are higher, information bases typically weaker, and the underlying determinants of welfare relatively volatile. This paper employs recently collected data on household...... consumption in Mozambique to examine the evolution of consumption poverty with focus on the period 2002/03 to 2008/09. The paper contributes in four areas. First, the period in question was characterized by major movements in international commodity prices. Mozambique provides an illuminating case study...... of the implications of these world commodity price changes for living standards of poor people. Second, a novel ‘backcasting’ approach using a computable general equilibrium model of Mozambique, linked to a poverty module is introduced. Third, the backcasting approach is also employed to rigorously examine...

  19. Monitoring Evolution at CERN

    CERN Document Server

    Andrade, P; Murphy, S; Pigueiras, L; Santos, M

    2015-01-01

    Over the past two years, the operation of the CERN Data Centres went through significant changes with the introduction of new mechanisms for hardware procurement, new services for cloud provisioning and configuration management, among other improvements. These changes resulted in an increase of resources being operated in a more dynamic environment. Today, the CERN Data Centres provide over 11000 multi-core processor servers, 130 PB disk servers, 100 PB tape robots, and 150 high performance tape drives. To cope with these developments, an evolution of the data centre monitoring tools was also required. This modernisation was based on a number of guiding rules: sustain the increase of resources, adapt to the new dynamic nature of the data centres, make monitoring data easier to share, give more flexibility to Service Managers on how they publish and consume monitoring metrics and logs, establish a common repository of monitoring data, optimise the handling of monitoring notifications, and replace the previous ...

  20. Evolution of Flat Roofs

    Directory of Open Access Journals (Sweden)

    Şt. Vasiliu

    2009-01-01

    Full Text Available Roofs are constructive subassembles that are located at the top of buildings, which toghether with perimetral walls and some elements of the infrastructure belongs to the subsystem elements that close the building. Roofs must meet resistance requirements to mechanical action, thermal insulating, waterproofing and acoustic, fire resistance, durability, economy and aesthetics. The man saw the need to build roofs from the oldest ancient times. Even if the design of buildings has an empirical character, are known and are preserved until today constructions that are made in antiquity, by the Egyptians, Greeks and Romans with architectural achievements, worthy of admiration and in present time. General composition of civil construction has been influenced throughout the evolution of construction history by the level of production forces and properties of building materials available in every historical epoch. For over five millennia, building materials were stone, wood and ceramic products (concrete was used by theRomans only as filling material.

  1. Field Independent Cosmic Evolution

    Directory of Open Access Journals (Sweden)

    Nayem Sk

    2013-01-01

    Full Text Available It has been shown earlier that Noether symmetry does not admit a form of corresponding to an action in which is coupled to scalar-tensor theory of gravity or even for pure theory of gravity taking anisotropic model into account. Here, we prove that theory of gravity does not admit Noether symmetry even if it is coupled to tachyonic field and considering a gauge in addition. To handle such a theory, a general conserved current has been constructed under a condition which decouples higher-order curvature part from the field part. This condition, in principle, solves for the scale-factor independently. Thus, cosmological evolution remains independent of the form of the chosen field, whether it is a scalar or a tachyon.

  2. Evolution of Biological Complexity

    Science.gov (United States)

    Goldstein, Raymond E.

    It is a general rule of nature that larger organisms are more complex, at least as measured by the number of distinct types of cells present. This reflects the fitness advantage conferred by a division of labor among specialized cells over homogeneous totipotency. Yet, increasing size has both costs and benefits, and the search for understanding the driving forces behind the evolution of multicellularity is becoming a very active area of research. This article presents an overview of recent experimental and theoretical work aimed at understanding this biological problem from the perspective of physics. For a class of model organisms, the Volvocine green algae, an emerging hypothesis connects the transition from organisms with totipotent cells to those with terminal germ-soma differentiation to the competition between diffusion and fluid advection created by beating flagella. A number of challenging problems in fluid dynamics, nonlinear dynamics, and control theory emerge when one probes the workings of the simplest multicellular organisms.

  3. Major transitions in human evolution.

    Science.gov (United States)

    Foley, Robert A; Martin, Lawrence; Mirazón Lahr, Marta; Stringer, Chris

    2016-07-05

    Evolutionary problems are often considered in terms of 'origins', and research in human evolution seen as a search for human origins. However, evolution, including human evolution, is a process of transitions from one state to another, and so questions are best put in terms of understanding the nature of those transitions. This paper discusses how the contributions to the themed issue 'Major transitions in human evolution' throw light on the pattern of change in hominin evolution. Four questions are addressed: (1) Is there a major divide between early (australopithecine) and later (Homo) evolution? (2) Does the pattern of change fit a model of short transformations, or gradual evolution? (3) Why is the role of Africa so prominent? (4) How are different aspects of adaptation-genes, phenotypes and behaviour-integrated across the transitions? The importance of developing technologies and approaches and the enduring role of fieldwork are emphasized.This article is part of the themed issue 'Major transitions in human evolution'. © 2016 The Author(s).

  4. Student Visual Communication of Evolution

    Science.gov (United States)

    Oliveira, Alandeom W.; Cook, Kristin

    2017-01-01

    Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring…

  5. Statistical features of quantum evolution

    Indian Academy of Sciences (India)

    Abstract. It is shown that the integral of the uncertainty of energy with respect to time is independent of the particular Hamiltonian of the quantum system for an arbitrary pseudo-unitary (and hence PT -) quantum evolution. The result generalizes the time– energy uncertainty principle for pseudo-unitary quantum evolutions.

  6. Evolution, Fruit Flies and Gerontology

    Indian Academy of Sciences (India)

    Evolution, Fruit Flies and Gerontology. Evolutionary Biology Helps Unravel the Mysteries of Ageing. Amitabh Joshi. In the past decade or so, genetic theories of the evolution of ageing and studies on populations of fruit flies (Dro- sophila spp.) in the laboratory have provided a new per- spective on the phenomenon of ageing ...

  7. Evolution: Understanding Life on Earth.

    Science.gov (United States)

    Dybas, Cheryl Lyn

    2002-01-01

    Reports on presentations representing evolution at the 53rd annual meeting of the American Institute of Biological Sciences (AIBS) which was held March 22-24, 2002. Explains evolutionary patterns, phylogenetic pageantry, molecular clocks, speciation and biogeography, speciation and macroevolution, and human-induced evolution of drugs-resistant…

  8. Evolution of the Insects

    Science.gov (United States)

    Grimaldi, David; Engel, Michael S.

    2005-05-01

    This book chronicles the complete evolutionary history of insects--their living diversity and relationships as well as 400 million years of fossils. Introductory sections cover the living species diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections then explore the relationships and evolution of each order of hexapods. The volume also chronicles major episodes in the evolutionary history of insects from their modest beginnings in the Devonian and the origin of wings hundreds of millions of years before pterosaurs and birds to the impact of mass extinctions and the explosive radiation of angiosperms on insects, and how they evolved into the most complex societies in nature. Whereas other volumes focus on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Illustrated with 955 photo- and electron- micrographs, drawings, diagrams, and field photos, many in full color and virtually all of them original, this reference will appeal to anyone engaged with insect diversity--professional entomologists and students, insect and fossil collectors, and naturalists. David Grimaldi and Michael S. Engel have collectively published over 200 scientific articles and monographs on the relationships and fossil record of insects, including 10 articles in the journals Science, Nature, and Proceedings of the National Academy of Sciences. David Grimaldi is curator in the Division of Invertebrate Zoology, American Museum of Natural History and adjunct professor at Cornell University, Columbia University, and the City University of New York. David Grimaldi has traveled in 40 countries on 6 continents, collecting and studying recent species of insects and conducting fossil excavations. He is the author of Amber: Window to the Past (Abrams, 2003). Michael S. Engel is an assistant professor in the

  9. Evolution of Interstellar Grains

    Science.gov (United States)

    Allamandola, Lou J.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    During the past two decades observations combined with laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the raw materials from which planets, comets and stars form. Most interstellar material is concentrated in large molecular clouds where simple molecules are formed by dust-grain and gas-phase reactions. Gaseous species striking the cold (10K) dust stick, forming an icy grain mantle. This accretion, coupled with UV photolysis, produces a complex chemical mixture containing volatile, non-volatile, and isotopically fractionated species. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, H2, and perhaps some NH3 and H2CO, as well as more complex species. The evidence for these compounds, as well as carbon-rich materials, will be reviewed and the possible connections with comets and meteorites will be presented in the first part of the talk . The second part of the presentation will focus on interstellar/precometary ice photochemical evolution and the species likely to be found in comets. The chemical composition and photochemical evolution of realistic interstellar/pre-cometary ice analogs will be discussed. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and more complex molecules. When ices representative of interstellar grains and comets are exposed to UV radiation at low temperature a series of moderately complex organic molecules are formed in the ice including: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C=N (nitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. After warming to room temperature an organic residue remains. This is composed primarily of hexamethylenetetramine (HMT, C6H12N4), with lesser amounts of polyoxymethylene-related species (POMs), amides, and ketones. This is in sharp contrast to the organic residues produced by

  10. Nanosciences: Evolution or revolution?

    Science.gov (United States)

    Pautrat, Jean-Louis

    2011-09-01

    In miniaturized objects fabricated by modern technology the smallest linear size may be of a few nanometers. In the field of microelectronics, the advantages of such a miniaturization are huge (increased complexity and reliability, reduced costs). The technology is now approaching the limits where further size reduction will be impossible, except for very novel techniques such as molecular electronics. Miniaturization research has also led to the discovery of nanometric objects such as carbon nanotubes, which turn out to be particularly appropriate for inventing new materials. Miniaturization techniques have been progressively applied in other fields, with the hope of obtaining improvements similar to those encountered in microelectronics. Examples are biochips, which concentrate on a few cm 2 the recognition of ADN sequences, or 'lab-on-a-chip' devices, each of which constitutes a whole laboratory of chemical analysis, or MEMs (Micro Electro Mechanical Systems). New therapies will use miniaturized objects with multiple functions: For instance a nanoparticle can both recognize the target organ thanks to an appropriate protein, and deliver the therapeutic molecule to this target. These results have only been possible through new observation instruments, able to observe and manipulate nano objects. Is the observed evolution really a revolution of science and techniques? This is a point discussed in the conclusion, which also deals with risks associated to nanotechnologies, while the need for a social regulation is stressed.

  11. Directed polymerase evolution.

    Science.gov (United States)

    Chen, Tingjian; Romesberg, Floyd E

    2014-01-21

    Polymerases evolved in nature to synthesize DNA and RNA, and they underlie the storage and flow of genetic information in all cells. The availability of these enzymes for use at the bench has driven a revolution in biotechnology and medicinal research; however, polymerases did not evolve to function efficiently under the conditions required for some applications and their high substrate fidelity precludes their use for most applications that involve modified substrates. To circumvent these limitations, researchers have turned to directed evolution to tailor the properties and/or substrate repertoire of polymerases for different applications, and several systems have been developed for this purpose. These systems draw on different methods of creating a pool of randomly mutated polymerases and are differentiated by the process used to isolate the most fit members. A variety of polymerases have been evolved, providing new or improved functionality, as well as interesting new insight into the factors governing activity. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Evolution of the ventricles.

    Science.gov (United States)

    Victor, S; Nayak, V M; Rajasingh, R

    1999-01-01

    We studied the evolution of ventricles by macroscopic examination of the hearts of marine cartilaginous and bony fish, and by angiocardiography and gross examination of the hearts of air-breathing freshwater fish, frogs, turtles, snakes, and crocodiles. A right-sided, thin-walled ventricular lumen is seen in the fish, frog, turtle, and snake. In fish, there is external symmetry of the ventricle, internal asymmetry, and a thick-walled left ventricle with a small inlet chamber. In animals such as frogs, turtles, and snakes, the left ventricle exists as a small-cavitied contractile sponge. The high pressure generated by this spongy left ventricle, the direction of the jet, the ventriculoarterial orientation, and the bulbar spiral valve in the frog help to separate the systemic and pulmonary circulations. In the crocodile, the right aorta is connected to the left ventricle, and there is a complete interventricular septum and an improved left ventricular lumen when compared with turtles and snakes. The heart is housed in a rigid pericardial cavity in the shark, possibly to protect it from changing underwater pressure. The pericardial cavity in various species permits movements of the heart-which vary depending on the ventriculoarterial orientation and need for the ventricle to generate torque or spin on the ejected blood- that favor run-off into the appropriate arteries and their branches. In the lower species, it is not clear whether the spongy myocardium contributes to myocardial oxygenation. In human beings, spongy myocardium constitutes a rare form of congenital heart disease.

  13. Schramm–Loewner evolution

    CERN Document Server

    Kemppainen, Antti

    2017-01-01

    This book is a short, but complete, introduction to the Loewner equation and the SLEs, which are a family of random fractal curves, as well as the relevant background in probability and complex analysis. The connection to statistical physics is also developed in the text in an example case. The book is based on a course (with the same title) lectured by the author. First three chapters are devoted to the background material, but at the same time, give the reader a good understanding on the overview on the subject and on some aspects of conformal invariance. The chapter on the Loewner equation develops in detail the connection of growing hulls and the differential equation satisfied by families of conformal maps. The Schramm–Loewner evolutions are defined and their basic properties are studied in the following chapter, and the regularity properties of random curves as well as scaling limits of discrete random curves are investigated in the final chapter. The book is aimed at graduate students or researcher...

  14. Sociality, evolution and cognition.

    Science.gov (United States)

    Byrne, Richard W; Bates, Lucy A

    2007-08-21

    Variations in brain size and proportions can be linked to the cognitive capacities of different animal species, and correlations with ecology may give clues to the evolutionary origins of these specializations. Much recent evidence has implicated the social domain as a major challenge driving increases in problem-solving abilities of mammals. However, the methods of measurement available to researchers are often indirect and sometimes appear to give conflicting answers, and other intellectual challenges may also have been influential in cognitive evolution. While the cause of an evolutionary increase in intelligence may be domain-specific (sociality, for example), and the brain specialization that results may largely implicate a single perceptual system, such as vision, the intelligence shown in consequence can be very 'general-purpose' (as in primates and some avian taxa). Future research needs to get beyond vague ascription of 'greater intelligence' or 'faster learning' towards a precise account of the cognitive mechanisms that underlie particular mental skills in different species; that will allow theory-testing against data from complex, natural situations as well as from the laboratory, on a common metric.

  15. Evolution of Cyclodextrin Nanosponges.

    Science.gov (United States)

    Caldera, Fabrizio; Tannous, Maria; Cavalli, Roberta; Zanetti, Marco; Trotta, Francesco

    2017-10-15

    Cyclodextrin-based nanosponges (CD-NSs) are insoluble, highly cross-linked 3D network polymers used in several scientific and technological fields, the main area of investigation concerns the pharmaceutical applications, in which CD-NSs have been mostly employed as drug delivery systems. CD-NSs can be generally grouped into four consecutive generations, taking into account their chemical composition and properties. The 1st generation of NSs are plain nanosponges, subdivided into four main types: urethane, carbonate, ester and ether NSs, depending on the chemical nature of the functional group connecting the CD to the cross-linker. The 2nd generation of NSs are modified nanosponges characterized by specific properties, such as fluorescence and electric charge. The 3rd generation of NSs is represented by stimuli-responsive CD polymers, which are able to modulate their behavior according to external variations in the environment, such as pH and temperature gradients, oxidative/reducing conditions, and finally the 4th generation of NSs, a new family of molecularly imprinted CD polymers (MIPs), exhibiting a high selectivity towards specific molecules. The following review focuses on the evolution of cyclodextrin nanosponges, listing some examples of each generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Freud and evolution.

    Science.gov (United States)

    Scharbert, Gerhard

    2009-01-01

    The essay analyzes the influence of evolutionary thought in the work of Sigmund Freud. Based on Freud's initial occupation as a neuro-anatomist and physiologist certain aspects stemming from the history of nature and developmental biological reasoning that played a role in his endeavours to find a new basis for medical psychology will be pointed out. These considerations are to be regarded as prolegomena of the task to reread Freud once again, and in doing so avoiding the verdict that holds his neuro-anatomic and comparative-morphological works as simply "pre-analytic." In fact, the time seems ripe to reconsider in a new context particularly those evolutionary, medical, and cultural-scientific elements in Freud's work that appear inconsistent at first sight. The substantial thesis is that Freud, given the fact that he was trained in comparative anatomy and physiology in the tradition of Johannes Müller, had the capability of synthesizing elements of this new point of view with the findings and interrogations concerning developmental history and the theory of evolution. More over, this was perceived not merely metaphoric, as he himself stressed it (Freud 1999, XIII, 99), but in the sense of Ubertragung, that inscribed terms and methods deriving from the given field into the realm of psychology. The moving force behind this particular Ubertragung came from a dynamically-neurological perception of the soul that emerged in France since 1800, which Freud came to know trough the late work of Charcot.

  17. Chess Evolution Visualization.

    Science.gov (United States)

    Lu, Wei-Li; Wang, Yu-Shuen; Lin, Wen-Chieh

    2014-05-01

    We present a chess visualization to convey the changes in a game over successive generations. It contains a score chart, an evolution graph and a chess board, such that users can understand a game from global to local viewpoints. Unlike current graphical chess tools, which focus only on highlighting pieces that are under attack and require sequential investigation, our visualization shows potential outcomes after a piece is moved and indicates how much tactical advantage the player can have over the opponent. Users can first glance at the score chart to roughly obtain the growth and decline of advantages from both sides, and then examine the position relations and the piece placements, to know how the pieces are controlled and how the strategy works. To achieve this visualization, we compute the decision tree using artificial intelligence to analyze a game, in which each node represents a chess position and each edge connects two positions that are one-move different. We then merge nodes representing the same chess position, and shorten branches where nodes on them contain only two neighbors, in order to achieve readability. During the graph rendering, the nodes containing events such as draws, effective checks and checkmates, are highlighted because they show how a game is ended. As a result, our visualization helps players understand a chess game so that they can efficiently learn strategies and tactics. The presented results, evaluations, and the conducted user studies demonstrate the feasibility of our visualization design.

  18. Evolution of the atmosphere.

    Science.gov (United States)

    Nunn, J F

    1998-01-01

    Planetary atmospheres depend fundamentally upon their geochemical inventory, temperature and the ability of their gravitational field to retain gases. In the case of Earth and other inner planets, early outgassing released mainly carbon dioxide and water vapour. The secondary veneer of comets and meteorites added further volatiles. Photodissociation caused secondary changes, including the production of traces of oxygen from water. Earth's gravity cannot retain light gases, including hydrogen. but retains oxygen. Water vapour generally does not pass the cold trap at the stratopause. In the archaean, early evolution of life, probably in hydrothermal vents, and the subsequent development of photosynthesis in surface waters, produced oxygen, at 3500 Ma or even earlier, becoming a significant component of the atmosphere from about 2000 Ma. Thereafter banded iron formations became rare, and iron was deposited in oxidized red beds. Atmospheric levels of carbon dioxide and oxygen have varied during the Phanerozoic: major changes may have caused extinctions. particularly the Permian/Triassic. The declining greenhouse effect due to the long-term decrease in carbon dioxide has largely offset increasing solar luminosity, and changes in carbon dioxide levels relate strongly to cycles of glaciation.

  19. The evolution of replicators.

    Science.gov (United States)

    Szathmáry, E

    2000-01-01

    Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators. PMID:11127914

  20. Evolution of VCSELs

    Science.gov (United States)

    Tatum, Jim A.

    2014-02-01

    Over the last 20 years, nearly 1 billion VCSELs have been shipped, the vast majority of them emitting at 850nm using GaAs active regions, and primarily used in data communications and optical tracking applications. Looking to the future, the ever increasing speed of data communications is driving the VCSEL to evolve with more complex active regions, optical mode control, and alternate wavelengths to meet the more stringent requirements. We will discuss the current state of VCSELs for 28Gbps, and higher speeds, focusing on evolution to more complex active regions and alternate wavelength approaches, particularly as the market evolves to more active optical cables. Other high volume applications for VCSELs are driving improvements in single mode and optical power characteristics. We will present several evolving market trends and applications, and the specific VCSEL requirements that are imposed. The ubiquitous 850nm, GaAs active region VCSEL is evolving in multiple ways, and will continue to be a viable optical source well in to the future.

  1. Genetics and recent human evolution.

    Science.gov (United States)

    Templeton, Alan R

    2007-07-01

    Starting with "mitochondrial Eve" in 1987, genetics has played an increasingly important role in studies of the last two million years of human evolution. It initially appeared that genetic data resolved the basic models of recent human evolution in favor of the "out-of-Africa replacement" hypothesis in which anatomically modern humans evolved in Africa about 150,000 years ago, started to spread throughout the world about 100,000 years ago, and subsequently drove to complete genetic extinction (replacement) all other human populations in Eurasia. Unfortunately, many of the genetic studies on recent human evolution have suffered from scientific flaws, including misrepresenting the models of recent human evolution, focusing upon hypothesis compatibility rather than hypothesis testing, committing the ecological fallacy, and failing to consider a broader array of alternative hypotheses. Once these flaws are corrected, there is actually little genetic support for the out-of-Africa replacement hypothesis. Indeed, when genetic data are used in a hypothesis-testing framework, the out-of-Africa replacement hypothesis is strongly rejected. The model of recent human evolution that emerges from a statistical hypothesis-testing framework does not correspond to any of the traditional models of human evolution, but it is compatible with fossil and archaeological data. These studies also reveal that any one gene or DNA region captures only a small part of human evolutionary history, so multilocus studies are essential. As more and more loci became available, genetics will undoubtedly offer additional insights and resolutions of human evolution.

  2. NLO evolution of color dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Ian Balitsky; Giovanni Chirilli

    2008-01-01

    The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-lines operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the next-to-leaing order the BK equation gets contributions from quark and gluon loops as well as from the tree gluon diagrams with quadratic and cubic nonlinearities. We calculate the gluon contribution to small-x evolution of Wilson lines (the quark part was obtained earlier).

  3. Discovering evolution equations with applications

    CERN Document Server

    McKibben, Mark

    2011-01-01

    Most existing books on evolution equations tend either to cover a particular class of equations in too much depth for beginners or focus on a very specific research direction. Thus, the field can be daunting for newcomers to the field who need access to preliminary material and behind-the-scenes detail. Taking an applications-oriented, conversational approach, Discovering Evolution Equations with Applications: Volume 2-Stochastic Equations provides an introductory understanding of stochastic evolution equations. The text begins with hands-on introductions to the essentials of real and stochast

  4. Confronting the Evolution Education Abyss

    Science.gov (United States)

    Zook, Douglas

    This article discusses recent evolution education literature and highlights key themes and perspectives recognized in the scientific community but only minimally exposed within either the science classroom or the science education research agenda. Examples include: macroevolution, expressed as the history of life on earth; the microbial dominance of most of earth time as a learning tool and theme organizer; sym-biogenesis and frequently accompanying horizontal gene transfer; Lamarck and the roles of others traditionally ridiculed in evolution study; and new views of fundamental evolution topics such as speciation. Several recommendations are given to address these important omissions within the science educator community.Received: 7 October 1994; Revised: 11 April 1995;

  5. Landscape evolution of Antarctica

    Science.gov (United States)

    Jamieson, S.S.R.; Sugden, D.E.

    2007-01-01

    The relative roles of fluvial versus glacial processes in shaping the landscape of Antarctica have been debated since the expeditions of Robert Scott and Ernest Shackleton in the early years of the 20th century. Here we build a synthesis of Antarctic landscape evolution based on the geomorphology of passive continental margins and former northern mid-latitude Pleistocene ice sheets. What makes Antarctica so interesting is that the terrestrial landscape retains elements of a record of change that extends back to the Oligocene. Thus there is the potential to link conditions on land with those in the oceans and atmosphere as the world switched from a greenhouse to a glacial world and the Antarctic ice sheet evolved to its present state. In common with other continental fragments of Gondwana there is a fluvial signature to the landscape in the form of the coastal erosion surfaces and escarpments, incised river valleys, and a continent-wide network of river basins. A selective superimposed glacial signature reflects the presence or absence of ice at the pressure melting point. Earliest continental-scale ice sheets formed around 34 Ma, growing from local ice caps centered on mountain massifs, and featured phases of ice-sheet expansion and contraction. These ice masses were most likely cold-based over uplands and warm-based across lowlands and near their margins. For 20 million years ice sheets fluctuated on Croll-Milankovitch frequencies. At ~14 Ma the ice sheet expanded to its maximum and deepened a preexisting radial array of troughs selectively through the coastal mountains and eroded the continental

  6. Mechanisms of oxygen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Radmer, R; Cheniae, G

    1976-08-01

    The production of O/sub 2/ from water requires the collaboration of four oxidizing equivalents. When dark-adapted O/sub 2/ evolving photosynthetic material is illuminated by a sequence of short (less than 2 ..mu..sec) saturating flashes, the amount of O/sub 2/ evolved per flash oscillates with a period of four. This indicates that a charge-collector, operating with its own reaction center, successively collects and stores four oxidizing equivalents, which are used in a concerted oxidation of two water molecules. Luminescence, fluorescence, and pH changes also reflect this cycle of four. The O/sub 2/ precursor states are quite stable; under some conditions they can have a lifetime of several minutes. The O/sub 2/-yielding reactions and reactions associated with trap recovery are fast relative to the rate-limiting step of photosynthesis. The molecular identity of the charge-collector is unknown, but correlative evidence suggests that a manganese containing catalyst (approximately 4 Mn/charge collector) participates, possibly directly. Formation of the active Mn-containing catalyst occurs via a multi-quantum process occurring within the System II reaction center. The photoactivated catalyst, located on the inner face of the thylakoid membrane, remains permanently active and essentially inaccessible to chemicals other than analogs of H/sub 2/O (e.g., NH/sub 3/, NH/sub 2/OH). This O/sub 2/ evolving catalyst can be deactivated by a variety of treatments that do not alter the system II reaction center. Anions such as chloride seem to participate rather directly in the O/sub 2/ evolution process via unknown mechanism(s).

  7. Linguistics: evolution and language change.

    Science.gov (United States)

    Bowern, Claire

    2015-01-05

    Linguists have long identified sound changes that occur in parallel. Now novel research shows how Bayesian modeling can capture complex concerted changes, revealing how evolution of sounds proceeds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Plate tectonics: Crustal recycling evolution

    Science.gov (United States)

    Magni, Valentina

    2017-09-01

    The processes that form and recycle continental crust have changed through time. Numerical models reveal an evolution from extensive recycling on early Earth as the lower crust peeled away, to limited recycling via slab break-off today.

  9. Molecular evolution under fitness fluctuations.

    Science.gov (United States)

    Mustonen, Ville; Lässig, Michael

    2008-03-14

    Molecular evolution is a stochastic process governed by fitness, mutations, and reproductive fluctuations in a population. Here, we study evolution where fitness itself is stochastic, with random switches in the direction of selection at individual genomic loci. As the correlation time of these fluctuations becomes larger than the diffusion time of mutations within the population, fitness changes from an annealed to a quenched random variable. We show that the rate of evolution has its maximum in the crossover regime, where both time scales are comparable. Adaptive evolution emerges in the quenched fitness regime (evidence for such fitness fluctuations has recently been found in genomic data). The joint statistical theory of reproductive and fitness fluctuations establishes a conceptual connection between evolutionary genetics and statistical physics of disordered systems.

  10. Clonal evolution in myelodysplastic syndromes

    NARCIS (Netherlands)

    da Silva-Coelho, Pedro; Kroeze, Leonie I.; Yoshida, Kenichi; Koorenhof-Scheele, Theresia N.; Knops, Ruth; van de Locht, Louis T.; de Graaf, Aniek O.; Massop, Marion; Sandmann, Sarah; Dugas, Martin; Stevens-Kroef, Marian J.; Cermak, Jaroslav; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; de Witte, Theo; Blijlevens, Nicole M. A.; Muus, Petra; Huls, Gerwin; van der Reijden, Bert A.; Ogawa, Seishi; Jansen, Joop H.

    2017-01-01

    Cancer development is a dynamic process during which the successive accumulation of mutations results in cells with increasingly malignant characteristics. Here, we show the clonal evolution pattern in myelodysplastic syndrome (MDS) patients receiving supportive care, with or without lenalidomide

  11. The Evolution of Creationist Movements

    National Research Council Canada - National Science Library

    Matzke, Nicholas J

    2010-01-01

    Every discipline has its hazards, and for evolution scientists and educators, a major hazard consists of encounters with creationists, their rhetoric, and their attempts to insert antievolutionism into public education...

  12. Giant lobelias exemplify convergent evolution

    Directory of Open Access Journals (Sweden)

    Givnish Thomas J

    2010-01-01

    Full Text Available Abstract Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution.

  13. Fire Control and Human Evolution.

    Science.gov (United States)

    Russell, Claire

    1978-01-01

    Briefly outlines some aspects of the discovery of fire control by primitive people, such as the preadaptation for speech, the evolution of the human brain, and natural selection for human nakedness or loss of hair. (CS)

  14. Secular Evolution of Spiral Galaxies

    National Research Council Canada - National Science Library

    Zhang, Xiaolei

    2003-01-01

    It is now a well established fact that galaxies undergo significant morphological transformation during their lifetimes, manifesting as an evolution along the Hubble sequence from the late to the early Hubble types...

  15. Extinction Events Can Accelerate Evolution

    DEFF Research Database (Denmark)

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate...

  16. The evolution of life histories

    National Research Council Canada - National Science Library

    Stearns, S. C

    1992-01-01

    .... It will interest all biologists wishing to understand the evolution of the life cycle and the causes of phenotypic variation in fitness, and it contains the seeds of applications of life history...

  17. Extinction Events Can Accelerate Evolution

    OpenAIRE

    Joel Lehman; Risto Miikkulainen

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. ...

  18. Prolegomenon to patterns in evolution.

    Science.gov (United States)

    Kauffman, Stuart A

    2014-09-01

    Despite Darwin, we remain children of Newton and dream of a grand theory that is epistemologically complete and would allow prediction of the evolution of the biosphere. The main purpose of this article is to show that this dream is false, and bears on studying patterns of evolution. To do so, I must justify the use of the word "function" in biology, when physics has only happenings. The concept of "function" lifts biology irreducibly above physics, for as we shall see, we cannot prestate the ever new biological functions that arise and constitute the very phase space of evolution. Hence, we cannot mathematize the detailed becoming of the biosphere, nor write differential equations for functional variables we do not know ahead of time, nor integrate those equations, so no laws "entail" evolution. The dream of a grand theory fails. In place of entailing laws, I propose a post-entailing law explanatory framework in which Actuals arise in evolution that constitute new boundary conditions that are enabling constraints that create new, typically unprestatable, adjacent possible opportunities for further evolution, in which new Actuals arise, in a persistent becoming. Evolution flows into a typically unprestatable succession of adjacent possibles. Given the concept of function, the concept of functional closure of an organism making a living in its world becomes central. Implications for patterns in evolution include historical reconstruction, and statistical laws such as the distribution of extinction events, or species per genus, and the use of formal cause, not efficient cause, laws. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. How Biology Students in Minnesota View Evolution, the Teaching of Evolution and the Evolution-Creationism Controversy

    Science.gov (United States)

    Moore, Randy; Froehle, Ann Marie; Kiernan, Julie; Greenwald, Barry

    2006-01-01

    Although most high school students want their biology classes to include evolution, most high school biology classes in Minnesota do not emphasize evolution. This lack of an emphasis on evolution defies state educational standards and is associated with most students (high school and college) having serious misconceptions about evolution. The…

  20. Molecular Evolution in Historical Perspective.

    Science.gov (United States)

    Suárez-Díaz, Edna

    2016-12-01

    In the 1960s, advances in protein chemistry and molecular genetics provided new means for the study of biological evolution. Amino acid sequencing, nucleic acid hybridization, zone gel electrophoresis, and immunochemistry were some of the experimental techniques that brought about new perspectives to the study of the patterns and mechanisms of evolution. New concepts, such as the molecular evolutionary clock, and the discovery of unexpected molecular phenomena, like the presence of repetitive sequences in eukaryotic genomes, eventually led to the realization that evolution might occur at a different pace at the organismic and the molecular levels, and according to different mechanisms. These developments sparked important debates between defendants of the molecular and organismic approaches. The most vocal confrontations focused on the relation between primates and humans, and the neutral theory of molecular evolution. By the 1980s and 1990s, the construction of large protein and DNA sequences databases, and the development of computer-based statistical tools, facilitated the coming together of molecular and evolutionary biology. Although in its contemporary form the field of molecular evolution can be traced back to the last five decades, the field has deep roots in twentieth century experimental life sciences. For historians of science, the origins and consolidation of molecular evolution provide a privileged field for the study of scientific debates, the relation between technological advances and scientific knowledge, and the connection between science and broader social concerns.

  1. Mode decomposition evolution equations.

    Science.gov (United States)

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2012-03-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  2. The Galaxy Evolution Probe

    Science.gov (United States)

    Glenn, Jason; Galaxy Evolution Probe Team

    2018-01-01

    The Galaxy Evolution Probe (GEP) is a concept for a far-infrared observatory to survey large regions of sky for star-forming galaxies from z = 0 to beyond z = 3. Our knowledge of galaxy formation is incomplete and requires uniform surveys over a large range of redshifts and environments to accurately describe mass assembly, star formation, supermassive black hole growth, interactions between these processes, and what led to their decline from z ~ 2 to the present day. Infrared observations are sensitive to dusty, star-forming galaxies, which have bright polycyclic aromatic hydrocarbon (PAH) emission features and warm dust continuum in the rest-frame mid infrared and cooler thermal dust emission in the far infrared. Unlike previous far-infrared continuum surveys, the GEP will measure photometric redshifts commensurate with galaxy detections from PAH emission and Si absorption features, without the need for obtaining spectroscopic redshifts of faint counterparts at other wavelengths.The GEP design includes a 2 m diameter telescope actively cooled to 4 K and two instruments: (1) An imager covering 10 to 300 um with 25 spectral resolution R ~ 8 bands (with lower R at the longest wavelengths) to detect star-forming galaxies and measure their redshifts photometrically. (2) A 23 – 190 um, R ~ 250 dispersive spectrometer for redshift confirmation and identification of obscured AGN using atomic fine-structure lines. Lines including [Ne V], [O IV], [O III], [O I], and [C II] will probe gas physical conditions, radiation field hardness, and metallicity. Notionally, the GEP will have a two-year mission: galaxy surveys with photometric redshifts in the first year and a second year devoted to follow-up spectroscopy. A comprehensive picture of star formation in galaxies over the last 10 billion years will be assembled from cosmologically relevant volumes, spanning environments from field galaxies and groups, to protoclusters, to dense galaxy clusters.Commissioned by NASA, the

  3. Galapagos III World Evolution Summit: why evolution matters.

    Science.gov (United States)

    Paz-Y-Miño-C, Guillermo; Espinosa, Avelina

    There is no place on Earth like the Galapagos Islands and no better destination to discuss the reality of evolution. Under the theme 'Why Does Evolution Matter', the University San Francisco of Quito (USFQ), Ecuador, and its Galapagos Institute for the Arts and Sciences (GAIAS), organized the III World Evolution Summit in San Cristóbal Island. The 200-attendee meeting took place on 1 to 5 June 2013; it included 12 keynote speakers, 20 oral presentations by international scholars, and 31 posters by faculty, postdocs, and graduate and undergraduate students. The Summit encompassed five sessions: evolution and society, pre-cellular evolution and the RNA world, behavior and environment, genome, and microbes and diseases. USFQ and GAIAS launched officially the Lynn Margulis Center for Evolutionary Biology and showcased the Galapagos Science Center, in San Cristóbal, an impressive research facility conceptualized in partnership with the University of North Carolina at Chapel Hill, USA. USFQ and GAIAS excelled at managing the conference with exceptional vision and at highlighting the relevance of Galapagos in the history of modern evolutionary thinking; Charles Darwin's visit to this volcanic archipelago in 1835 unfolded unprecedented scientific interest in what today is a matchless World Heritage.

  4. American Muslim Undergraduates' Views on Evolution

    Science.gov (United States)

    Fouad, Khadija Engelbrecht

    2016-01-01

    A qualitative investigation into American Muslim undergraduates' views on evolution revealed three main positions on evolution: theistic evolution, a belief in special creation of all species, and a belief in special creation of humans with evolution for all non-human species. One can conceive of the manner in which respondents chose their…

  5. Student Teachers' Approaches to Teaching Biological Evolution

    Science.gov (United States)

    Borgerding, Lisa A.; Klein, Vanessa A.; Ghosh, Rajlakshmi; Eibel, Albert

    2015-01-01

    Evolution is fundamental to biology and scientific literacy, but teaching high school evolution is often difficult. Evolution teachers face several challenges including limited content knowledge, personal conflicts with evolution, expectations of resistance, concerns about students' conflicts with religion, and curricular constraints. Evolution…

  6. Musical emotions: Functions, origins, evolution

    Science.gov (United States)

    Perlovsky, Leonid

    2010-03-01

    Theories of music origins and the role of musical emotions in the mind are reviewed. Most existing theories contradict each other, and cannot explain mechanisms or roles of musical emotions in workings of the mind, nor evolutionary reasons for music origins. Music seems to be an enigma. Nevertheless, a synthesis of cognitive science and mathematical models of the mind has been proposed describing a fundamental role of music in the functioning and evolution of the mind, consciousness, and cultures. The review considers ancient theories of music as well as contemporary theories advanced by leading authors in this field. It addresses one hypothesis that promises to unify the field and proposes a theory of musical origin based on a fundamental role of music in cognition and evolution of consciousness and culture. We consider a split in the vocalizations of proto-humans into two types: one less emotional and more concretely-semantic, evolving into language, and the other preserving emotional connections along with semantic ambiguity, evolving into music. The proposed hypothesis departs from other theories in considering specific mechanisms of the mind-brain, which required the evolution of music parallel with the evolution of cultures and languages. Arguments are reviewed that the evolution of language toward becoming the semantically powerful tool of today required emancipation from emotional encumbrances. The opposite, no less powerful mechanisms required a compensatory evolution of music toward more differentiated and refined emotionality. The need for refined music in the process of cultural evolution is grounded in fundamental mechanisms of the mind. This is why today's human mind and cultures cannot exist without today's music. The reviewed hypothesis gives a basis for future analysis of why different evolutionary paths of languages were paralleled by different evolutionary paths of music. Approaches toward experimental verification of this hypothesis in

  7. Musical emotions: functions, origins, evolution.

    Science.gov (United States)

    Perlovsky, Leonid

    2010-03-01

    Theories of music origins and the role of musical emotions in the mind are reviewed. Most existing theories contradict each other, and cannot explain mechanisms or roles of musical emotions in workings of the mind, nor evolutionary reasons for music origins. Music seems to be an enigma. Nevertheless, a synthesis of cognitive science and mathematical models of the mind has been proposed describing a fundamental role of music in the functioning and evolution of the mind, consciousness, and cultures. The review considers ancient theories of music as well as contemporary theories advanced by leading authors in this field. It addresses one hypothesis that promises to unify the field and proposes a theory of musical origin based on a fundamental role of music in cognition and evolution of consciousness and culture. We consider a split in the vocalizations of proto-humans into two types: one less emotional and more concretely-semantic, evolving into language, and the other preserving emotional connections along with semantic ambiguity, evolving into music. The proposed hypothesis departs from other theories in considering specific mechanisms of the mind-brain, which required the evolution of music parallel with the evolution of cultures and languages. Arguments are reviewed that the evolution of language toward becoming the semantically powerful tool of today required emancipation from emotional encumbrances. The opposite, no less powerful mechanisms required a compensatory evolution of music toward more differentiated and refined emotionality. The need for refined music in the process of cultural evolution is grounded in fundamental mechanisms of the mind. This is why today's human mind and cultures cannot exist without today's music. The reviewed hypothesis gives a basis for future analysis of why different evolutionary paths of languages were paralleled by different evolutionary paths of music. Approaches toward experimental verification of this hypothesis in

  8. Cyanobacterial evolution during the Precambrian

    Science.gov (United States)

    Schirrmeister, Bettina E.; Sanchez-Baracaldo, Patricia; Wacey, David

    2016-07-01

    Life on Earth has existed for at least 3.5 billion years. Yet, relatively little is known of its evolution during the first two billion years, due to the scarceness and generally poor preservation of fossilized biological material. Cyanobacteria, formerly known as blue green algae were among the first crown Eubacteria to evolve and for more than 2.5 billion years they have strongly influenced Earth's biosphere. Being the only organism where oxygenic photosynthesis has originated, they have oxygenated Earth's atmosphere and hydrosphere, triggered the evolution of plants -being ancestral to chloroplasts- and enabled the evolution of complex life based on aerobic respiration. Having such a strong impact on early life, one might expect that the evolutionary success of this group may also have triggered further biosphere changes during early Earth history. However, very little is known about the early evolution of this phylum and ongoing debates about cyanobacterial fossils, biomarkers and molecular clock analyses highlight the difficulties in this field of research. Although phylogenomic analyses have provided promising glimpses into the early evolution of cyanobacteria, estimated divergence ages are often very uncertain, because of vague and insufficient tree-calibrations. Results of molecular clock analyses are intrinsically tied to these prior calibration points, hence improving calibrations will enable more precise divergence time estimations. Here we provide a review of previously described Precambrian microfossils, biomarkers and geochemical markers that inform upon the early evolution of cyanobacteria. Future research in micropalaeontology will require novel analyses and imaging techniques to improve taxonomic affiliation of many Precambrian microfossils. Consequently, a better understanding of early cyanobacterial evolution will not only allow for a more specific calibration of cyanobacterial and eubacterial phylogenies, but also provide new dates for the tree

  9. New model systems for experimental evolution.

    Science.gov (United States)

    Collins, Sinéad

    2013-07-01

    Microbial experimental evolution uses a few well-characterized model systems to answer fundamental questions about how evolution works. This special section highlights novel model systems for experimental evolution, with a focus on marine model systems that can be used to understand evolutionary responses to global change in the oceans. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  10. Stellar Evolution and Social Evolution: A Study in Parallel Processes

    Science.gov (United States)

    Carneiro, Robert L.

    From the beginning of anthropology, social evolution has been one of its major interests. However, in recent years the study of this process has languished. Accordingly, those anthropologists who still consider social evolution to be of central importance to their discipline, and who continue to pursue it, find their endeavor bolstered when parallel instances of evolutionary reconstructions can be demonstrated in other fields. Stellar evolution has long been a prime interest to astronomers, and their progress in deciphering its course has been truly remarkable. In examining astronomers' reconstructions of stellar evolution, I have been struck by a number of similarities between ways stars and societies have evolved. The parallels actually begin with the method used by both disciplines, namely, the comparative method. In astronomy, the method involves plotting stars on a Hertzsprung-Russell Diagram, and interpreting, diachonically, the pattern made by essentially synchronic data used for plotting. The comparative method is particularly appropriate when one is studying a process that cannot be observed over its full range in the life of any single individual, be it a star or a society. Parallels also occur in that stars and societies have each followed distinctive stages in their evolution. These stages are, in both cases, sometimes unlinear and sometimes multilinear. Moreover, the distinction drawn by anthropologists between a pristine and a secondary state (which depends on whether state so represented is the first such occurrence in an area, or was a later development derivative from earlier states) finds its astronomical parallel in the relationship existing between Population II and Population I stars. These and other similarities between stellar and social evolution will be cited and discussed.

  11. Evolution of neurotransmitter receptor systems.

    Science.gov (United States)

    Venter, J C; di Porzio, U; Robinson, D A; Shreeve, S M; Lai, J; Kerlavage, A R; Fracek, S P; Lentes, K U; Fraser, C M

    1988-01-01

    The presence of hormones, neurotransmitters, their receptors and biosynthetic and degradative enzymes is clearly not only associated with the present and the recent past but with the past several hundred million years. Evidence is mounting which indicates substantial conservation of protein structure and function of these receptors and enzymes over these tremendous periods of time. These findings indicate that the evolution and development of the nervous system was not dependent upon the formation of new or better transmitter substances, receptor proteins, transducers and effector proteins but involved better utilization of these highly developed elements in creating advanced and refined circuitry. This is not a new concept; it is one that is now substantiated by increasingly sophisticated studies. In a 1953 article discussing chemical aspects of evolution (Danielli, 1953) Danielli quotes Medawar, "... endocrine evolution is not an evolution of hormones but an evolution of the uses to which they are put; an evolution not, to put it crudely, of chemical formulae but of reactivities, reaction patterns and tissue competences." To also quote Danielli, "In terms of comparative biochemistry, one must ask to what extent the evolution of these reactivities, reaction patterns and competences is conditional upon the evolution of methods of synthesis of new proteins, etc., and to what extent the proteins, etc., are always within the synthetic competence of an organism. In the latter case evolution is the history of changing uses of molecules, and not of changing synthetic abilities." (Danielli, 1953). Figure 4 outlines a phylogenetic tree together with an indication of where evidence exists for both the enzymes that determine the biosynthesis and metabolism of the cholinergic and adrenergic transmitters and their specific cholinergic and adrenergic receptors. This figure illustrates a number of important points. For example, the evidence appears to show that the transmitters

  12. Teaching evolution: challenging religious preconceptions.

    Science.gov (United States)

    Lovely, Eric C; Kondrick, Linda C

    2008-08-01

    Teaching college students about the nature of science should not be a controversial exercise. College students are expected to distinguish between astronomy and astrology, chemistry and alchemy, evolution and creationism. In practice, however, the conflict between creationism and the nature of science may create controversy in the classroom, even walkouts, when the subject of evolution is raised. The authors have grappled with the meaning of such behaviors. They surveyed 538 students in a public, liberal arts college. Pre/post course surveys were analyzed to track changes in student responses to questions that were either consistent or inconsistent with the Theory of Evolution after a semester of instruction in a college biology or zoology course in which evolution was taught. Many students who were initially undecided about issues regarding evolution had shifted in their viewpoints by the end of the course. It was found that more education about the evidence for and the mechanics of evolutionary processes did not necessarily move students toward a scientific viewpoint. The authors also discovered a "wedge" effect among students who were undecided about questions pertaining to human ancestry at the beginning of the course. About half of these students shifted to a scientific viewpoint at the end of the course; the other half shifted toward agreement with statements consistent with creationism.

  13. Thermodynamics of neutral protein evolution.

    Science.gov (United States)

    Bloom, Jesse D; Raval, Alpan; Wilke, Claus O

    2007-01-01

    Naturally evolving proteins gradually accumulate mutations while continuing to fold to stable structures. This process of neutral evolution is an important mode of genetic change and forms the basis for the molecular clock. We present a mathematical theory that predicts the number of accumulated mutations, the index of dispersion, and the distribution of stabilities in an evolving protein population from knowledge of the stability effects (delta deltaG values) for single mutations. Our theory quantitatively describes how neutral evolution leads to marginally stable proteins and provides formulas for calculating how fluctuations in stability can overdisperse the molecular clock. It also shows that the structural influences on the rate of sequence evolution observed in earlier simulations can be calculated using just the single-mutation delta deltaG values. We consider both the case when the product of the population size and mutation rate is small and the case when this product is large, and show that in the latter case the proteins evolve excess mutational robustness that is manifested by extra stability and an increase in the rate of sequence evolution. All our theoretical predictions are confirmed by simulations with lattice proteins. Our work provides a mathematical foundation for understanding how protein biophysics shapes the process of evolution.

  14. Chaos and unpredictability in evolution.

    Science.gov (United States)

    Doebeli, Michael; Ispolatov, Iaroslav

    2014-05-01

    The possibility of complicated dynamic behavior driven by nonlinear feedbacks in dynamical systems has revolutionized science in the latter part of the last century. Yet despite examples of complicated frequency dynamics, the possibility of long-term evolutionary chaos is rarely considered. The concept of "survival of the fittest" is central to much evolutionary thinking and embodies a perspective of evolution as a directional optimization process exhibiting simple, predictable dynamics. This perspective is adequate for simple scenarios, when frequency-independent selection acts on scalar phenotypes. However, in most organisms many phenotypic properties combine in complicated ways to determine ecological interactions, and hence frequency-dependent selection. Therefore, it is natural to consider models for evolutionary dynamics generated by frequency-dependent selection acting simultaneously on many different phenotypes. Here we show that complicated, chaotic dynamics of long-term evolutionary trajectories in phenotype space is very common in a large class of such models when the dimension of phenotype space is large, and when there are selective interactions between the phenotypic components. Our results suggest that the perspective of evolution as a process with simple, predictable dynamics covers only a small fragment of long-term evolution. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  15. Experimental evolution in biofilm populations

    Science.gov (United States)

    Steenackers, Hans P.; Parijs, Ilse; Foster, Kevin R.; Vanderleyden, Jozef

    2016-01-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  16. Oxygen and Early Animal Evolution

    Science.gov (United States)

    Xiao, S.

    2012-12-01

    It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.

  17. Extinction events can accelerate evolution.

    Science.gov (United States)

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term.

  18. Institutional Evolution and Corporate Boards

    DEFF Research Database (Denmark)

    Chen, Victor Zitian; Hobdari, Bersant; Sun, Pei

    2014-01-01

    We argue that corporate boards are a dynamic repository of human- and social capital in response to external institutional evolution. Theoretically, integrating institutional economics, agency theory and resource dependence theory, we explain that evolution of market-, legal- and political......, since the board changes are typically proposed by the block shareholders, whose motivation for doing so is closely associated with a corporation’s financial performance, we further argue that financial performance is a key moderator of the relationships between institutional evolution and changes...... institutions restructures the particular context in which board members play their two primary roles: monitoring the CEO on behalf of the shareholders, suggested by the agency theory, and supporting the CEO by providing resources, knowledge and information, suggested by the resource dependence theory...

  19. Evolution of the Cosmic Web

    Science.gov (United States)

    Einasto, J.

    2017-07-01

    In the evolution of the cosmic web dark energy plays an important role. To understand the role of dark energy we investigate the evolution of superclusters in four cosmological models: standard model SCDM, conventional model LCDM, open model OCDM, and a hyper-dark-energy model HCDM. Numerical simulations of the evolution are performed in a box of size 1024 Mpc/h. Model superclusters are compared with superclusters found for Sloan Digital Sky Survey (SDSS). Superclusters are searched using density fields. LCDM superclusters have properties, very close to properties of observed SDSS superclusters. Standard model SCDM has about 2 times more superclusters than other models, but SCDM superclusters are smaller and have lower luminosities. Superclusters as principal structural elements of the cosmic web are present at all cosmological epochs.

  20. Explaining the Evolution of Poverty

    DEFF Research Database (Denmark)

    Arndt, Channing; Hussain, Azhar; Jones, Edward Samuel

    2012-01-01

    We provide a comprehensive approach for analyzing the evolution of poverty using Mozambique as a case study. Bringing together data from disparate sources, we develop a novel “back-casting” framework that links a dynamic computable general equilibrium model to a micro-simulation poverty module....... This framework provides a new approach to explaining and decomposing the evolution of poverty, as well as to examining rigorously the coherence between poverty, economic growth, and inequality outcomes. Finally, various simple but useful and rarely-applied approaches to considering regional changes in poverty...

  1. Origins and Evolution of Life

    Science.gov (United States)

    Gargaud, Muriel; López-García, Purificación; Martin, Hervé

    2011-01-01

    Part I. What Is Life?: 1. Problems raised by a definition of life M. Morange; 2. Some remarks about uses of cosmological anthropic 'principles' D. Lambert; 3. Minimal cell: the biologist point of view C. Brochier-Armanet; 4. Minimal cell: the computer scientist point of view H. Bersini; 5. Origins of life: computing and simulation approaches B. Billoud; Part II. Astronomical and Geophysical Context of the Emergence of Life: 6. Organic molecules in interstellar medium C. Ceccarelli and C. Cernicharo; 7. Cosmochemical evolution and the origin of life: insights from meteorites S. Pizzarello; 8. Astronomical constraints on the emergence of life M. Gounelle and T. Montmerle; 9. Formation of habitable planets J. Chambers; 10. The concept of galactic habitable zone N. Prantzos; 11. The young Sun and its influence on planetary atmospheres M. Güdel and J. Kasting; 12. Climates of the Earth G. Ramstein; Part III. Role of Water in the Emergence of Life: 13. Liquid water: a necessary condition to all forms of life K. Bartik, G. Bruylants, E. Locci and J. Reisse; 14. The role of water in the formation and evolution of planets T. Encrenaz; 15. Water on Mars J. P. Bibring; Part IV. From Non-Living Systems to Life: 16. Energetic constraints on prebiotic pathways: application to the emergence of translation R. Pascal and L. Boiteau; 17. Comparative genomics and early cell evolution A. Lazcano; 18. Origin and evolution of metabolisms J. Peretó; Part V. Mechanisms for Life Evolution: 19. Molecular phylogeny: inferring the patterns of evolution E. Douzery; 20. Horizontal gene transfer: mechanisms and evolutionary consequences D. Moreira; 21. The role of symbiosis in eukaryotic evolution A. Latorre, A. Durbán, A. Moya and J. Peretó; Part VI. Life in Extreme Conditions: 22. Life in extreme conditions: Deinococcus radiodurans, an organism able to survive prolonged desiccation and high doses of ionising radiation S. Sommer and M. Toueille; 23. Molecular effects of UV and ionizing

  2. Phenomenological implementations of TMD evolution

    Energy Technology Data Exchange (ETDEWEB)

    Boglione, Mariaelena [University of Turin, Torino, Italy; Gonzalez Hernandez, Jose Osvaldo [University of Virginia, Charlottesville, VA; Melis, Stefano [European Centre for Theoretical Studies; Prokudin, Alexey [JLAB

    2015-03-01

    Although the theoretical set-up of TMD evolution appears to be well established, its phenomenological implementations still require special attention, particularly as far as the interplay between perturbative and non-perturbative contributions is concerned. These issues have been extensively studied in Drell-Yan processes, where they seem to be reasonably under control. Instead, applying the same prescriptions and methodologies to Semi-Inclusive Deep Inelastic (SIDIS) processes is, at present, far from obvious. Some of the controversies related to the applications of TMD Evolution to SIDIS processes will be discussed with practical examples, exploring different kinematical configurations of SIDIS experiments.

  3. Computational optimization and biological evolution.

    Science.gov (United States)

    Goryanin, Igor

    2010-10-01

    Modelling and optimization principles become a key concept in many biological areas, especially in biochemistry. Definitions of objective function, fitness and co-evolution, although they differ between biology and mathematics, are similar in a general sense. Although successful in fitting models to experimental data, and some biochemical predictions, optimization and evolutionary computations should be developed further to make more accurate real-life predictions, and deal not only with one organism in isolation, but also with communities of symbiotic and competing organisms. One of the future goals will be to explain and predict evolution not only for organisms in shake flasks or fermenters, but for real competitive multispecies environments.

  4. Student Teachers' Approaches to Teaching Biological Evolution

    Science.gov (United States)

    Borgerding, Lisa A.; Klein, Vanessa A.; Ghosh, Rajlakshmi; Eibel, Albert

    2015-06-01

    Evolution is fundamental to biology and scientific literacy, but teaching high school evolution is often difficult. Evolution teachers face several challenges including limited content knowledge, personal conflicts with evolution, expectations of resistance, concerns about students' conflicts with religion, and curricular constraints. Evolution teaching can be particularly challenging for student teachers who are just beginning to gain pedagogical knowledge and pedagogical content knowledge related to evolution teaching and who seek approval from university supervisors and cooperating teachers. Science teacher educators need to know how to best support student teachers as they broach the sometimes daunting task of teaching evolution within student teaching placements. This multiple case study report documents how three student teachers approached evolution instruction and what influenced their approaches. Data sources included student teacher interviews, field note observations for 4-5 days of evolution instruction, and evolution instructional artifacts. Data were analyzed using grounded theory approaches to develop individual cases and a cross-case analysis. Seven influences (state exams and standards, cooperating teacher, ideas about teaching and learning, concerns about evolution controversy, personal commitment to evolution, knowledge and preparation for teaching evolution, and own evolution learning experiences) were identified and compared across cases. Implications for science teacher preparation and future research are provided.

  5. Statistical features of quantum evolution

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 2. Statistical features of ... Abstract. It is shown that the integral of the uncertainty of energy with respect to time is independent of the particular Hamiltonian of the quantum system for an arbitrary pseudo-unitary (and hence P T -) quantum evolution. The result ...

  6. Adaptive evolution in ecological communities.

    Directory of Open Access Journals (Sweden)

    Martin M Turcotte

    Full Text Available Understanding how natural selection drives evolution is a key challenge in evolutionary biology. Most studies of adaptation focus on how a single environmental factor, such as increased temperature, affects evolution within a single species. The biological relevance of these experiments is limited because nature is infinitely more complex. Most species are embedded within communities containing many species that interact with one another and the physical environment. To understand the evolutionary significance of such ecological complexity, experiments must test the evolutionary impact of interactions among multiple species during adaptation. Here we highlight an experiment that manipulates species composition and tracks evolutionary responses within each species, while testing for the mechanisms by which species interact and adapt to their environment. We also discuss limitations of previous studies of adaptive evolution and emphasize how an experimental evolution approach can circumvent such shortcomings. Understanding how community composition acts as a selective force will improve our ability to predict how species adapt to natural and human-induced environmental change.

  7. Adaptive evolution in ecological communities.

    Science.gov (United States)

    Turcotte, Martin M; Corrin, Michael S C; Johnson, Marc T J

    2012-01-01

    Understanding how natural selection drives evolution is a key challenge in evolutionary biology. Most studies of adaptation focus on how a single environmental factor, such as increased temperature, affects evolution within a single species. The biological relevance of these experiments is limited because nature is infinitely more complex. Most species are embedded within communities containing many species that interact with one another and the physical environment. To understand the evolutionary significance of such ecological complexity, experiments must test the evolutionary impact of interactions among multiple species during adaptation. Here we highlight an experiment that manipulates species composition and tracks evolutionary responses within each species, while testing for the mechanisms by which species interact and adapt to their environment. We also discuss limitations of previous studies of adaptive evolution and emphasize how an experimental evolution approach can circumvent such shortcomings. Understanding how community composition acts as a selective force will improve our ability to predict how species adapt to natural and human-induced environmental change.

  8. Concept Generation in Language Evolution

    OpenAIRE

    Lewis, Martha; Lawry, Jonathan

    2016-01-01

    This thesis investigates the generation of new concepts from combinations of existing concepts as a language evolves. We give a method for combining concepts, and will be investigating the utility of composite concepts in language evolution and thence the utility of concept generation.

  9. Developmental evolution facilitates rapid adaptation.

    Science.gov (United States)

    Lin, Hui; Kazlauskas, Romas J; Travisano, Michael

    2017-11-21

    Developmental evolution has frequently been identified as a mode for rapid adaptation, but direct observations of the selective benefits and associated mechanisms of developmental evolution are necessarily challenging to obtain. Here we show rapid evolution of greatly increased rates of dispersal by developmental changes when populations experience stringent selection. Replicate populations of the filamentous fungus Trichoderma citrinoviride underwent 85 serial transfers, under conditions initially favoring growth but not dispersal. T. citrinoviride populations shifted away from multicellular growth toward increased dispersal by producing one thousand times more single-celled asexual conidial spores, three times sooner than the ancestral genotype. Conidia of selected lines also germinated fifty percent faster. Gene expression changed substantially between the ancestral and selected fungi, especially for spore production and growth, demonstrating rapid evolution of tight regulatory control for down-regulation of growth and up-regulation of conidia production between 18 and 24 hours of growth. These changes involved both developmentally fixed and plastic changes in gene expression, showing that complex developmental changes can serve as a mechanism for rapid adaptation.

  10. The Evolution of Diesel Engines

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 4. The Evolution of Diesel Engines. U Shrinivasa. General Article Volume 17 Issue 4 April 2012 pp 365-377. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/017/04/0365-0377. Keywords.

  11. Musical Emotions: Functions, Origins, Evolution

    Science.gov (United States)

    2010-01-01

    Integrated cognition and language . In: Gudwin R, Queiroz J, editors. Semiotics and intelligent systems development. Hershey, PA: Idea Group; 2006. p... language , and the other preserving emotional connections along with semantic ambiguity, evolving into music. The proposed hypothesis departs from other... languages . Arguments are reviewed that the evolution of language toward becoming the semantically powerful tool of today required emancipation from emotional

  12. The evolution of massive stars

    Science.gov (United States)

    1982-01-01

    The hypotheses underlying theoretical studies of the evolution of massive model stars with and without mass loss are summarized. The evolutionary tracks followed by the models across theoretical Hertzsprung-Russell (HR) diagrams are compared with the observed distribution of B stars in an HR diagram. The pulsational properties of models of massive star are also described.

  13. Evolution of management of gastroschisis

    African Journals Online (AJOL)

    Background/purpose The management protocols and outcome of neonates with gastroschisis have improved significantly during the past two decades. The purpose of this study was to evaluate the evolution in management and outcome of gastroschisis in our institution. Materials and methods All patients treated for.

  14. Angiosperm ovules: diversity, development, evolution.

    Science.gov (United States)

    Endress, Peter K

    2011-06-01

    Ovules as developmental precursors of seeds are organs of central importance in angiosperm flowers and can be traced back in evolution to the earliest seed plants. Angiosperm ovules are diverse in their position in the ovary, nucellus thickness, number and thickness of integuments, degree and direction of curvature, and histological differentiations. There is a large body of literature on this diversity, and various views on its evolution have been proposed over the course of time. Most recently evo-devo studies have been concentrated on molecular developmental genetics in ovules of model plants. The present review provides a synthetic treatment of several aspects of the sporophytic part of ovule diversity, development and evolution, based on extensive research on the vast original literature and on experience from my own comparative studies in a broad range of angiosperm clades. In angiosperms the presence of an outer integument appears to be instrumental for ovule curvature, as indicated from studies on ovule diversity through the major clades of angiosperms, molecular developmental genetics in model species, abnormal ovules in a broad range of angiosperms, and comparison with gymnosperms with curved ovules. Lobation of integuments is not an atavism indicating evolution from telomes, but simply a morphogenetic constraint from the necessity of closure of the micropyle. Ovule shape is partly dependent on locule architecture, which is especially indicated by the occurrence of orthotropous ovules. Some ovule features are even more conservative than earlier assumed and thus of special interest in angiosperm macrosystematics.

  15. Exploiting social evolution in biofilms

    DEFF Research Database (Denmark)

    Boyle, Kerry E; Heilmann, Silja; van Ditmarsch, Dave

    2013-01-01

    and thus, regrettably, select for resistance against their own action. A possible solution lies in targeting the mechanisms by which bacteria interact with each other within biofilms. The emerging field of microbial social evolution combines molecular microbiology with evolutionary theory to dissect...

  16. The Evolution of Scientific Knowledge

    DEFF Research Database (Denmark)

    Jensen, Hans Siggaard; Ricard, Lykke Margot; Vendelø, Morten Thanning

    The Evolution of Scientific Knowledge aims to reach a unique understanding of science with the help of economic and sociological theories. They use institutional and evolutionary theories and the sociological theories draw from the type of work on social studies of science that have, in recent...

  17. Evolution of general transcription factors.

    Science.gov (United States)

    Gunbin, K V; Ruvinsky, A

    2013-02-01

    Three genes GTF2IRD1, GTF2I, and GTF2IRD2, which encode members of the GTF2I (or TFII-I) family of so-called general transcription factors, were discovered and studied during the last two decades. Chromosome location and similarity of exon-intron structures suggest that the family evolved by duplications. The initial duplication of ancestral proto-GTF2IRD1 gene likely occurred in early vertebrates prior to origin of cartilaginous fish and led to formation of GTF2I (>450 MYA), which was later lost in bony fish but successfully evolved in the land vertebrates. The second duplication event, which created GTF2IRD2, occurred prior to major radiation events of eutherian mammalian evolution (>100 MYA). During recent steps of primate evolution there was another duplication which led to formation of GTF2IRD2B (evolution of the genes. The atypical substitutions are often located on secondary structures joining α-helices and affect 3D arrangement of the protein globule. Such substitutions are commonly traced at the early stages of evolution in Tetrapoda, Amniota, and Mammalia.

  18. The evolution of Saccharomycotina yeasts

    Science.gov (United States)

    Associations between traits are prevalent in nature, occurring across a diverse range of taxa and traits. The evolution of trait correlations can be driven by factors intrinsic or extrinsic to an organism, but few studies, especially in microbes, have simultaneously investigated both across a broad ...

  19. The middle way of evolution.

    Science.gov (United States)

    Hunt, Tam

    2012-09-01

    THIS ESSAY PROVIDES A CRITICAL REVIEW OF TWO RECENT BOOKS ON EVOLUTION: Richard Dawkins' The Greatest Show on Earth, and Jerry Coyne's Why Evolution is True, as well as a critique of mainstream evolutionary theory and of natural selection. I also suggest a generalization of sexual selection theory that acknowledges mind as pervasive in nature. Natural selection, as the primary theory of how biological change occurs, must be carefully framed to avoid the long-standing "tautology problem" and must also be modified to more explicitly include the role of mind in evolution. A propensity approach to natural selection, in which "expected fitness" is utilized rather than "fitness," can save natural selection from tautology. But to be a productive theory, natural selection theory should be placed alongside sexual selection - which is explicitly agentic/intentional - as a twin force, but also placed alongside purely endogenous factors such as genetic drift. This framing is contrary to the normal convention that often groups all of these factors under the rubric of "natural selection." I suggest some approaches for improving modern evolutionary theory, including a "generalized sexual selection," a panpsychist extension of Darwin's theory of sexual selection that explicitly recognizes the role of mind at all levels of nature and which may play the part of a general theory of evolution better than natural selection theory.

  20. Evolution, Fruit Flies and Gerontology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 11. Evolution, Fruit Flies and Gerontology Evolutionary Biology Helps Unravel the ... Author Affiliations. Amitabh Joshi1. Animal Behaviour Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bangalore 560 064, India ...

  1. Evolution versus Creationism in Education

    Science.gov (United States)

    Apple, Michael W.

    2008-01-01

    As part of the continuing series of the Reviewing Policy section, this article examines some of the recent literature on the creation-evolution controversy. These controversies are placed within a larger analysis of the growth of authoritarian populist movements in the United States. The article then focuses attention on debates both over a number…

  2. Temperature evolution during dissipative collapse

    Indian Academy of Sciences (India)

    Abstract. We investigate the gravitational collapse of a radiating sphere evolving into a final static configuration described by the interior Schwarzschild solution. The temperature profiles of this particular model are obtained within the framework of causal thermodynamics. The overall temperature evolution is enhanced by ...

  3. Feynman formulae for evolution semigroups

    Directory of Open Access Journals (Sweden)

    Ya. A. Butko

    2014-01-01

    Full Text Available The paper systematically describes an approach to solution of initial and initial-boundary value problems for evolution equations based on the representation of the corresponding evolution semigroups with the help of Feynman formulae. The article discusses some of the methods of constructing Feynman formulae for different evolution semigroups, presents specific examples of solutions of evolution equations. In particular, Feynman formula is obtained for evolution semigroups generated by multiplicative perturbations of generators of some initial semigroups. In this case semigroups on a Banach space of continuous functions defined on an arbitrary metric space are considered; Feynman formulae are constructed with the help of operator families, which are Chernoff equivalent to the initial unperturbed semigroups. The present result generalizes the author's paper \\Feynman formula for semigroups with multiplicative perturbed generators" and some of the results of the joint with O.G. Smolyanov and R.L. Schilling paper \\Lagrangian and Hamiltonian Feynman formulae for some Feller processes and their perturbations". The approach to the construction of Feynman formulae for semigroups with multiplicative and additive perturbed generators is illustrated with examples of the Cauchy problem for the Schrodinger equation, the approximation of transition probabilities of some Markov processes.Further, a wider class of additive and multiplicative perturbations of a particular generator | the Laplace operator | is considered in the paper. And Feynman formula for the solution of the Cauchy problem for a second order parabolic equation with unbounded variable coefficients is proved. In addition, the article describes a method for constructing Feynman formulae for solutions of the Cauchy | Dirichlet problem for parabolic differential equations. The method is also illustrated by a second order parabolic equation with variable coefficients. These results generalize some

  4. Relation between Hydrogen Evolution and Hydrodesulfurization Catalysis

    DEFF Research Database (Denmark)

    Šaric, Manuel; Moses, Poul Georg; Rossmeisl, Jan

    2016-01-01

    A relation between hydrogen evolution and hydrodesulfurization catalysis was found by density functional theory calculations. The hydrogen evolution reaction and the hydrogenation reaction in hydrodesulfurization share hydrogen as a surface intermediate and, thus, have a common elementary step...

  5. Orchid flowers: evolution and molecular development

    DEFF Research Database (Denmark)

    Johansen, Bo; Frederiksen, Signe Elisabeth

    2002-01-01

    MADS-box genes, ABS model, Orchid flower evolution, Gene expression in orchid flowers, in situ PCR......MADS-box genes, ABS model, Orchid flower evolution, Gene expression in orchid flowers, in situ PCR...

  6. Guiding Architects in Selecting Architectural Evolution Alternatives.

    NARCIS (Netherlands)

    Ciraci, S.; Sözer, Hasan; Aksit, Mehmet

    Although there exist methods and tools to support architecture evolution, the derivation and evaluation of alternative evolution paths are realized manually. In this paper, we introduce an approach, where architecture specification is converted to a graph representation. Based on this

  7. Space Station Displays and Controls Technology Evolution

    Science.gov (United States)

    Blackburn, Greg C.

    1990-01-01

    Viewgraphs on space station displays and controls technology evolution are presented. Topics covered include: a historical perspective; major development objectives; current development activities; key technology areas; and technology evolution issues.

  8. Evolution of energy structures; Evolution des structures energetiques

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France)

    2005-07-01

    Because of the big inertia and long time constants of energy systems, their long-time behaviour is mainly determined by their present day state and by the trends of their recent evolution. For this reason, it is of prime importance to foresee the evolution of the different energy production sources which may play an important role in the future. A status of the world energy consumption and production is made first using the energy statistics of the IEA. Then, using the trends observed since 1973, the consequences of a simple extrapolation of these trends is examined. Finally, the scenarios of forecasting of energy structures, like those supplied by the International institute for applied systems analysis (IIASA) are discussed. (J.S.)

  9. The Genomic Evolution of Prostate Cancer

    Science.gov (United States)

    2015-10-01

    the following courses: From year 1: Responsible Conduct of Research Ecology and Evolution : Principles of Population Genetics I 10 Ecology and...Statistical Methods and their Applications The Ecology and Evolution : Fundamentals of Molecular Evolution course from year 1, and Intro to Statistical...AWARD NUMBER: DoD Award W81XWH-13-1-0451 TITLE: The Genomic Evolution of Prostate Cancer PRINCIPAL INVESTIGATOR: David VanderWeele, M.D

  10. J Maynard Smith: From Engineering to Evolution

    Indian Academy of Sciences (India)

    John Maynard Smith (1920-2004) was a very versatile evolutionary biologist who applied his mind to a number of vexatious conceptual questions in evolution, includ- ing whether the unit of selection is typically the individual or the group, the evolution- ary maintenance of sexual reproduction, the evolution of social ...

  11. Embodied Evolution in Collective Robotics : A Review

    NARCIS (Netherlands)

    Bredeche, Nicolas; Haasdijk, Evert; Prieto, Abraham

    2017-01-01

    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also

  12. Investigating Human Evolution Using Digital Imaging & Craniometry

    Science.gov (United States)

    Robertson, John C.

    2007-01-01

    Human evolution is an important and intriguing area of biology. The significance of evolution as a component of biology curricula, at all levels, can not be overstated; the need to make the most of opportunities to effectively educate students in evolution as a central and unifying realm of biology is paramount. Developing engaging laboratory or…

  13. DOES EVOLUTION REALLY THREATEN RELIGION?

    OpenAIRE

    Ostrowick, John

    2013-01-01

    • What is Creationism? Is it true?• What is The Theory of Evolution? Is it true?• Does theTheory of Evolution threaten religion generally? • Does it threaten some religions? • Does evolution help theism?  

  14. Reproduction - a factor of plant evolution

    Directory of Open Access Journals (Sweden)

    Ion I. Bǎra

    2014-01-01

    Full Text Available The process of reproduction (amphimixis and apomixis represents a major factor of evolution. The facultative apomictic species are the pioneers of evolution. They combine the adventages of amphimixis (high degree of variability and heterogenesis and apomixis (relative stability and low material expenditure assuring a rapid rate of adaptive evolution.

  15. The evolution of triple-star systems

    Science.gov (United States)

    Toonen, Silvia; Hamers, Adrian; Portegies Zwart, Simon

    2017-01-01

    While the principles of stellar and binary evolution theory have been accepted for a long time, our understanding of triple-star evolution is lagging behind. It is important to understand these systems, as triples are common in the field. About 15% of low-mass stellar systems are triples, but for high-mass stars the fraction increases to over 50%. At the same time, triple evolution is often invoked to explain exotic systems which cannot be explained easily by binary evolution. Examples are low-mass X-ray binaries, supernova type Ia progenitors and blue stragglers.Modeling triple evolution, however, is challenging as it is a combination of three-body dynamics and stellar evolution. In the past, most studies of three-body systems have focused on purely dynamical aspects without taking stellar evolution into account. However, in recent years, the first interdisciplinary studies have taken place which demonstrate the richness of the interacting regime. Here, I will show the first results of our new code TRES for simulating the evolution of stellar triples, which combines stellar evolution and interactions with three-body dynamics. In this talk, I will give an overview of the evolution of realistic (stellar) triples and I will discuss how triple evolution differs from binary evolution. What are the common evolutionary pathways that triple systems evolve through? Are there any evolutionary pathways open to triples, which are not open to isolated binaries? These are some of the important questions we want to answer.

  16. Nonlinear Evolution of Alfvenic Wave Packets

    Science.gov (United States)

    Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.

    1998-01-01

    Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.

  17. Florida Teachers' Attitudes about Teaching Evolution

    Science.gov (United States)

    Fowler, Samantha R.; Meisels, Gerry G.

    2010-01-01

    A survey of Florida teachers reveals many differences in comfort level with teaching evolution according to the state's science teaching standards, general attitudes and beliefs about evolution, and the extent to which teachers are criticized, censured, disparaged, or reprehended for their beliefs about the teaching of evolution.

  18. Darwin and Mendel: Evolution and Genetics

    Science.gov (United States)

    Bizzo, Nelio; El-Hani, Charbel N.

    2009-01-01

    Many studies have shown that students' understanding of evolution is low and some sort of historical approach would be necessary in order to allow students to understand the theory of evolution. It is common to present Mendelian genetics to high school students prior to Biological Evolution, having in mind historical and epistemological…

  19. Evolution, Creationism, and the Courts: 20 Questions

    Science.gov (United States)

    Moore, Randy; Miksch, Karen L.

    2003-01-01

    The teaching of evolution and creationism is controversial to many people in the United States. Knowledge of the many important court-decisions about the teaching of evolution and creationism in the United States can be used not only to resist anti-evolution activities of creationists, but also to help teachers address questions about the teaching…

  20. The Shifting Balance Theory of Evolution

    Indian Academy of Sciences (India)

    evolution, the evolution- ary genetics of biological clocks, the evolution of ecological specialization, and small population and meta population dynam- ics. He also enjoys music. (especially traditional qawwali in Braj, Farsi,. Punjabi and Urdu), history, philosophy, and reading and writing poetry in Urdu, Hindi and. English.

  1. High School Students' Perceptions of Evolution Instruction: Acceptance and Evolution Learning Experiences

    Science.gov (United States)

    Donnelly, Lisa A.; Kazempour, Mahsa; Amirshokoohi, Aidin

    2009-01-01

    Evolution is an important and sometimes controversial component of high school biology. In this study, we used a mixed methods approach to explore students' evolution acceptance and views of evolution teaching and learning. Students explained their acceptance and rejection of evolution in terms of evidence and conflicts with religion and…

  2. Analysis of the Science and Technology Preservice Teachers' Opinions on Teaching Evolution and Theory of Evolution

    Science.gov (United States)

    Töman, Ufuk; Karatas, Faik Özgür; Çimer, Sabiha Odabasi

    2014-01-01

    In this study, we investigate of science and technology teachers' opinions about the theory of evolution and the evolution teaching. The aim of this study, we investigate of science and technology teachers' opinions about the theory of evolution and the evolution teaching. This study is a descriptive study. Open-ended questions were used to…

  3. Historical Evolution of Spatial Abilities

    Directory of Open Access Journals (Sweden)

    A. Ardila

    1993-01-01

    Full Text Available Historical evolution and cross-cultural differences in spatial abilities are analyzed. Spatial abilities have been found to be significantly associated with the complexity of geographical conditions and survival demands. Although impaired spatial cognition is found in cases of, exclusively or predominantly, right hemisphere pathology, it is proposed that this asymmetry may depend on the degree of training in spatial abilities. It is further proposed that spatial cognition might have evolved in a parallel way with cultural evolution and environmental demands. Contemporary city humans might be using spatial abilities in some new, conceptual tasks that did not exist in prehistoric times: mathematics, reading, writing, mechanics, music, etc. Cross-cultural analysis of spatial abilities in different human groups, normalization of neuropsychological testing instruments, and clinical observations of spatial ability disturbances in people with different cultural backgrounds and various spatial requirements, are required to construct a neuropsychological theory of brain organization of spatial cognition.

  4. Modularity: genes, development and evolution.

    Science.gov (United States)

    Melo, Diogo; Porto, Arthur; Cheverud, James M; Marroig, Gabriel

    2016-01-01

    Modularity has emerged as a central concept for evolutionary biology, providing the field with a theory of organismal structure and variation. This theory has reframed long standing questions and serves as a unified conceptual framework for genetics, developmental biology and multivariate evolution. Research programs in systems biology and quantitative genetics are bridging the gap between these fields. While this synthesis is ongoing, some major themes have emerged and empirical evidence for modularity has become abundant. In this review, we look at modularity from an historical perspective, highlighting its meaning at different levels of biological organization and the different methods that can be used to detect it. We then explore the relationship between quantitative genetic approaches to modularity and developmental genetic studies. We conclude by investigating the dynamic relationship between modularity and the adaptive landscape and how this potentially shapes evolution and can help bridge the gap between micro- and macroevolution.

  5. Human development, heredity and evolution.

    Science.gov (United States)

    Nishinakamura, Ryuichi; Takasato, Minoru

    2017-06-15

    From March 27-29 2017, the RIKEN Center for Developmental Biology held a symposium entitled 'Towards Understanding Human Development, Heredity, and Evolution' in Kobe, Japan. Recent advances in technologies including stem cell culture, live imaging, single-cell approaches, next-generation sequencing and genome editing have led to an expansion in our knowledge of human development. Organized by Yoshiya Kawaguchi, Mitinori Saitou, Mototsugu Eiraku, Tomoya Kitajima, Fumio Matsuzaki, Takashi Tsuji and Edith Heard, the symposium covered a broad range of topics including human germline development, epigenetics, organogenesis and evolution. This Meeting Review provides a summary of this timely and exciting symposium, which has convinced us that we are moving into the era of science targeted on humans. © 2017. Published by The Company of Biologists Ltd.

  6. Shell Evolutions and Nuclear Forces

    Science.gov (United States)

    Sorlin, O.

    2014-03-01

    During the last 30 years, and more specifically during the last 10 years, many experiments have been carried out worldwide using different techniques to study the shell evolution of nuclei far from stability. What seemed not conceivable some decades ago became rather common: all known magic numbers that are present in the valley of stability disappear far from stability and are replaced by new ones at the drip line. By gathering selected experimental results, beautifully consistent pictures emerge, that very likely take root in the properties of the nuclear forces.The present manuscript describes some of these discoveries and proposes an intuitive understanding of these shell evolutions derived from observations. Extrapolations to yet unstudied regions, as where the explosive r-process nucleosynthesis occurs, are proposed. Some remaining challenges and puzzling questions are also addressed.

  7. Machine learning for evolution strategies

    CERN Document Server

    Kramer, Oliver

    2016-01-01

    This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.

  8. Language Evolution: A Changing Perspective.

    Science.gov (United States)

    Corballis, Michael C

    2017-04-01

    From ancient times, religion and philosophy have regarded language as a faculty bestowed uniquely and suddenly on our own species, primarily as a mode of thought with communication as a byproduct. This view persists among some scientists and linguists and is counter to the theory of evolution, which implies that the evolution of complex structures is incremental. I argue here that language derives from mental processes with gradual evolutionary trajectories, including the generative capacities to travel mentally in time and space and into the minds of others. What may be distinctive in humans is the means to communicate these mental experiences along with knowledge gained from them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Population dynamics and evolution modelling

    Directory of Open Access Journals (Sweden)

    Aleksej Olenin

    2013-03-01

    Full Text Available Ecological system modelling is a powerful tool that provides better understanding of interspecies interaction. Although a complex model gives more information about the modelled object it also drastically increases the computational time needed to get that information. In this paper a rather simple three trophic level population dynamics model with an evolution mechanism is described which can be run on any personal computer. The performance capacity of the evolution mechanism was shown by running the model 1100 times for both carnivores and herbivores so that only one type of animals could evolve. Also it was shown that attempts of controlling the population abundances with chemicals or by hunting while being somewhat effective still can be overcome by animals if they have the ability to evolve.

  10. Five Misunderstandings About Cultural Evolution.

    Science.gov (United States)

    Henrich, Joseph; Boyd, Robert; Richerson, Peter J

    2008-06-01

    Recent debates about memetics have revealed some widespread misunderstandings about Darwinian approaches to cultural evolution. Drawing from these debates, this paper disputes five common claims: (1) mental representations are rarely discrete, and therefore models that assume discrete, gene-like particles (i.e., replicators) are useless; (2) replicators are necessary for cumulative, adaptive evolution; (3) content-dependent psychological biases are the only important processes that affect the spread of cultural representations; (4) the "cultural fitness" of a mental representation can be inferred from its successful transmission; and (5) selective forces only matter if the sources of variation are random. We close by sketching the outlines of a unified evolutionary science of culture.

  11. Evolution equation for quantum coherence.

    Science.gov (United States)

    Hu, Ming-Liang; Fan, Heng

    2016-07-07

    The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures.

  12. Evolution of Chinese airport network

    CERN Document Server

    Zhang, Jun; Du, Wen-Bo; Cai, Kai-Quan

    2011-01-01

    With the rapid development of economy and the accelerated globalization process, the aviation industry plays more and more critical role in today's world, in both developed and developing countries. As the infrastructure of aviation industry, the airport network is one of the most important indicators of economic growth. In this paper, we investigate the evolution of Chinese airport network (CAN) via complex network theory. It is found that although the topology of CAN remains steady during the past several years, there are many dynamic switchings inside the network, which changes the relative relevance of airports and airlines. Moreover, we investigate the evolution of traffic flow (passengers and cargoes) on CAN. It is found that the traffic keeps growing in an exponential form and it has evident seasonal fluctuations. We also found that cargo traffic and passenger traffic are positively related but the correlations are quite different for different kinds of cities.

  13. Automatic Detection of Terminology Evolution

    Science.gov (United States)

    Tahmasebi, Nina

    As archives contain documents that span over a long period of time, the language used to create these documents and the language used for querying the archive can differ. This difference is due to evolution in both terminology and semantics and will cause a significant number of relevant documents being omitted. A static solution is to use query expansion based on explicit knowledge banks such as thesauri or ontologies. However as we are able to archive resources with more varied terminology, it will be infeasible to use only explicit knowledge for this purpose. There exist only few or no thesauri covering very domain specific terminologies or slang as used in blogs etc. In this Ph.D. thesis we focus on automatically detecting terminology evolution in a completely unsupervised manner as described in this technical paper.

  14. Modularity: genes, development and evolution

    Science.gov (United States)

    Melo, Diogo; Porto, Arthur; Cheverud, James M.; Marroig, Gabriel

    2017-01-01

    Modularity has emerged as a central concept for evolutionary biology, providing the field with a theory of organismal structure and variation. This theory has reframed long standing questions and serves as a unified conceptual framework for genetics, developmental biology and multivariate evolution. Research programs in systems biology and quantitative genetics are bridging the gap between these fields. While this synthesis is ongoing, some major themes have emerged and empirical evidence for modularity has become abundant. In this review, we look at modularity from an historical perspective, highlighting its meaning at different levels of biological organization and the different methods that can be used to detect it. We then explore the relationship between quantitative genetic approaches to modularity and developmental genetic studies. We conclude by investigating the dynamic relationship between modularity and the adaptive landscape and how this potentially shapes evolution and can help bridge the gap between micro- and macroevolution. PMID:28966564

  15. Endosymbiosis and Eukaryotic Cell Evolution.

    Science.gov (United States)

    Archibald, John M

    2015-10-05

    Understanding the evolution of eukaryotic cellular complexity is one of the grand challenges of modern biology. It has now been firmly established that mitochondria and plastids, the classical membrane-bound organelles of eukaryotic cells, evolved from bacteria by endosymbiosis. In the case of mitochondria, evidence points very clearly to an endosymbiont of α-proteobacterial ancestry. The precise nature of the host cell that partnered with this endosymbiont is, however, very much an open question. And while the host for the cyanobacterial progenitor of the plastid was undoubtedly a fully-fledged eukaryote, how - and how often - plastids moved from one eukaryote to another during algal diversification is vigorously debated. In this article I frame modern views on endosymbiotic theory in a historical context, highlighting the transformative role DNA sequencing played in solving early problems in eukaryotic cell evolution, and posing key unanswered questions emerging from the age of comparative genomics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biological evolution: Some genetic considerations

    Directory of Open Access Journals (Sweden)

    Mohammad Saad Zaghloul Salem

    2014-01-01

    Conclusion: Natural selection might be observed in nature but not in life. The concept of biological evolution is an illogic and insensible hypothesis since it stands in direct contradiction with our current knowledge regarding the behavior as well as the structural and functional characteristics of the human genome and human proteome. Additionally, almost all basic postulations of this concept can neither be tested nor imitated for experimentation, which is a prerequisite for acceptance and validation of any scientific hypotheses.

  17. First stars evolution and nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bahena, D. [Institute of Astronomy of the Academy of Sciences, Bocni II 1401, 14131 Praha 4, (Czech Republic); Klapp, J. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Dehnen, H. [Fachbereich Physik, Universitat Konstanz, 78457 Konstanz (Germany)]. e-mail: bahen@hotmail.com

    2007-12-15

    The first stars in the universe were massive and luminous with typical masses M {>=} 100M. Metal-free stars have unique physical characteristics and exhibit high effective temperatures and small radii. These so called Population III stars were responsible for the initial enrichment of the intergalactic medium with heavy elements. In this work, we study the structure, evolution and nucleosynthesis of 100, 200, 250 and 300M galactic and pregalactic Population III mass losing stars with metallicities Z 10{sup -6} and Z = 10{sup -9}, during the hydrogen and helium burning phases. Using a stellar evolution code, a system of 10 structure and evolution equations together with boundary conditions, and a set of 30 nuclear reactions, are solved simultaneously, obtaining the star's structure, evolution, isotopic abundances and their ratios. Motivated by recent stability analysis, almost all very massive star (VMS) calculations during the past few years have been performed with no mass loss. However, it has recently been claimed that VMS should have strong mass loss. We present in this work new VMS calculations that includes mass loss. The main difference between zero-metal and metal-enriched stars lies in the nuclear energy generation mechanism. For the first stars, nuclear burning proceeds in a non-standard way. Since Population III stars can reach high central temperatures, this leads to the first synthesis of primary carbon through the 3 {alpha} reaction activating the CNO-cycles. Zero-metal stars produce light elements, such as He, C, N and O. Thus, very massive pregalactic Population III stars experienced self-production of C, either at the zero-age main sequence or in later phases of central hydrogen burning. In advanced evolutionary phases, these stars contribute to the chemical enrichment of the intergalactic medium through supernova explosions. (Author)

  18. Non-local cosmological evolutions

    Science.gov (United States)

    Carreras, M. Sanfrutos; Cembranos, J. A. R.

    2012-07-01

    The cosmological evolution of a non-local model is investigated. As it is standard in the early Universe, we assume the thermalization of the source of the Friedmann equation. In such a case, the non-local correction to the classic Einstein-Hilbert action can be locally represented by a non-standard thermal fluid. We give a particular realization of this idea by using the p-adic string model.

  19. The evolution of reciprocal sharing

    OpenAIRE

    Moore, Jim

    1984-01-01

    Genetical models of the evolution of reciprocal altruism (as distinct from cooperation, mutualism, or nepotism) have difficulty explaining the initial establishment of an altruist gene in a selfish deme. Though potential mechanisms have been suggested, there is an alternative: much "altruistic" behavior may in fact be purely selfish in origin and consequently reciprocity need not be invoked to provide a selective benefit to the actor. _Sharing_ and _helping_ are fundamentally different behavi...

  20. Clonal evolution in myelodysplastic syndromes

    OpenAIRE

    da Silva-Coelho, Pedro; Kroeze, Leonie I.; Yoshida, Kenichi; Koorenhof-Scheele, Theresia N.; Knops, Ruth; van de Locht, Louis T.; de Graaf, Aniek O.; Massop, Marion; Sandmann, Sarah; Dugas, Martin; Stevens-Kroef, Marian J.; Cermak, Jaroslav; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko

    2017-01-01

    Cancer development is a dynamic process during which the successive accumulation of mutations results in cells with increasingly malignant characteristics. Here, we show the clonal evolution pattern in myelodysplastic syndrome (MDS) patients receiving supportive care, with or without lenalidomide (follow-up 2.5?11 years). Whole-exome and targeted deep sequencing at multiple time points during the disease course reveals that both linear and branched evolutionary patterns occur with and without...

  1. INNOVATIONS AND TOURISTIC ACTIVITY EVOLUTION

    Directory of Open Access Journals (Sweden)

    V. S. Novikov

    2012-01-01

    Full Text Available Fundamental and applied innovations impact activities in the tourist industry and evolution thereof. More and more sophisticated technologies and communication techniques are practically used to serve tourists. Basically, innovative tourist activity development concept represents innovation of values and in particular means that tourist’s impression is taken into account to higher extent and tourist product personification changes the products’ consumer value. Discussed in the article are tourist activity, tourist cluster, destination and glocalization development prospects.

  2. Helicity Evolution at Small x

    Science.gov (United States)

    Sievert, Michael; Kovchegov, Yuri; Pitonyak, Daniel

    2017-01-01

    We construct small- x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the g1 structure function. These evolution equations resum powers of ln2(1 / x) in the polarization-dependent evolution along with the powers of ln(1 / x) in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-Nc and large-Nc &Nf limits. After solving the large-Nc equations numerically we obtain the following small- x asymptotics for the flavor-singlet g1 structure function along with quarks hPDFs and helicity TMDs (in absence of saturation effects): g1S(x ,Q2) ΔqS(x ,Q2) g1L S(x ,kT2) (1/x) > αh (1/x) 2.31√{αsNc/2 π. We also give an estimate of how much of the proton's spin may be at small x and what impact this has on the so-called ``spin crisis.'' Work supported by the U.S. DOE, Office of Science, Office of Nuclear Physics under Award Number DE-SC0004286 (YK), the RIKEN BNL Research Center, and TMD Collaboration (DP), and DOE Contract No. DE-SC0012704 (MS).

  3. Birds, behavior, and anatomical evolution.

    OpenAIRE

    Wyles, J S; Kunkel, J.G.; Wilson, A. C.

    1983-01-01

    Study of more than 200 species suggests that the anatomical differences among birds are as big as those among other vertebrates of comparable taxonomic rank. The result is notable because, for more than 100 years, many biologists have believed that birds are more uniform anatomically than other classes of vertebrates. Furthermore, assessment of biochemical and geological evidence suggests that the time scale for bird evolution could be quite short. Hence, birds may share with placental mammal...

  4. Hominid evolution: genetics versus memetics

    Science.gov (United States)

    Carter, Brandon

    2012-01-01

    The last few million years on planet Earth have witnessed two remarkable phases of hominid development, starting with a phase of biological evolution characterized by rather rapid increase of the size of the brain. This has been followed by a phase of even more rapid technological evolution and concomitant expansion of the size of the population that began when our own particular ‘sapiens’ species emerged, just a few hundred thousand years ago. The present investigation exploits the analogy between the neo-Darwinian genetic evolution mechanism governing the first phase, and the memetic evolution mechanism governing the second phase. From the outset of the latter until very recently - about the year 2000 - the growth of the global population N was roughly governed by an equation of the form dN/Ndt=N/T*, in which T* is a coefficient introduced (in 1960) by von Foerster, who evaluated it empirically as about 200 000 million years. It is shown here how the value of this hitherto mysterious timescale governing the memetic phase is explicable in terms of what happened in the preceding genetic phase. The outcome is that the order of magnitude of the Foerster timescale can be accounted for as the product of the relevant (human) generation timescale, about 20 years, with the number of bits of information in the genome, of the order of 10 000 million. Whereas the origin of our ‘homo’ genus may well have involved an evolutionary hard step, it transpires that the emergence of our particular ‘sapiens’ species was rather an automatic process.

  5. Evolution caused by extreme events.

    Science.gov (United States)

    Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna

    2017-06-19

    Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  6. X Chromosome Evolution in Cetartiodactyla.

    Science.gov (United States)

    Proskuryakova, Anastasia A; Kulemzina, Anastasia I; Perelman, Polina L; Makunin, Alexey I; Larkin, Denis M; Farré, Marta; Kukekova, Anna V; Lynn Johnson, Jennifer; Lemskaya, Natalya A; Beklemisheva, Violetta R; Roelke-Parker, Melody E; Bellizzi, June; Ryder, Oliver A; O'Brien, Stephen J; Graphodatsky, Alexander S

    2017-08-31

    The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David's deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups.

  7. Evolution of the Human Pelvis.

    Science.gov (United States)

    Rosenberg, Karen R; DeSilva, Jeremy M

    2017-05-01

    No bone in the human postcranial skeleton differs more dramatically from its match in an ape skeleton than the pelvis. Humans have evolved a specialized pelvis, well-adapted for the rigors of bipedal locomotion. Precisely how this happened has been the subject of great interest and contention in the paleoanthropological literature. In part, this is because of the fragility of the pelvis and its resulting rarity in the human fossil record. However, new discoveries from Miocene hominoids and Plio-Pleistocene hominins have reenergized debates about human pelvic evolution and shed new light on the competing roles of bipedal locomotion and obstetrics in shaping pelvic anatomy. In this issue, 13 papers address the evolution of the human pelvis. Here, we summarize these new contributions to our understanding of pelvic evolution, and share our own thoughts on the progress the field has made, and the questions that still remain. Anat Rec, 300:789-797, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Bacterial Stationary-Phase Evolution

    Directory of Open Access Journals (Sweden)

    Ana Butorac

    2011-01-01

    Full Text Available Metagenomics and advances in molecular biology methods have enhanced knowledge of microbial evolution, metabolism, functions, their interactions with other organisms and their environment. The ability to persist and adapt to changes in their environment is a common lifestyle of 1 % of the known culturable bacteria. Studies in the variety of species have identified an incredible diversity of bacterial lifespan. The holy grail of molecular biology is to understand the integrated genetic and metabolic patterns of prokaryotic organisms like the enteric bacterium Escherichia coli. The usual description of E. coli life cycle comprises four phases: lag, logarithmic, stationary, and death phase, omitting their persistence and evolution during prolonged stationary phase. During prolonged stationary/starvation period, in batch bacterial culture, selected mutants with increased fitness express growth advantage in stationary phase (GASP, which enables them to grow and displace the parent cells as the majority population. The analyses of growth competition of Gram-negative and/or Gram-positive mixed bacterial cultures showed that GASP phenomenon can result in four GASP phenotypes: strong, moderate, weak or abortive. Bacterial stress responses to starvation include functions that can increase genetic variability and produce transient mutator state, which is important for adaptive evolution.

  9. Adaptive evolution of Mediterranean pines.

    Science.gov (United States)

    Grivet, Delphine; Climent, José; Zabal-Aguirre, Mario; Neale, David B; Vendramin, Giovanni G; González-Martínez, Santiago C

    2013-09-01

    Mediterranean pines represent an extremely heterogeneous assembly. Although they have evolved under similar environmental conditions, they diversified long ago, ca. 10 Mya, and present distinct biogeographic and demographic histories. Therefore, it is of special interest to understand whether and to what extent they have developed specific strategies of adaptive evolution through time and space. To explore evolutionary patterns, the Mediterranean pines' phylogeny was first reconstructed analyzing a new set of 21 low-copy nuclear genes with multilocus Bayesian tree reconstruction methods. Secondly, a phylogenetic approach was used to search for footprints of natural selection and to examine the evolution of multiple phenotypic traits. We identified two genes (involved in pines' defense and stress responses) that have likely played a role in the adaptation of Mediterranean pines to their environment. Moreover, few life-history traits showed historical or evolutionary adaptive convergence in Mediterranean lineages, while patterns of character evolution revealed various evolutionary trade-offs linking growth-development, reproduction and fire-related traits. Assessing the evolutionary path of important life-history traits, as well as the genomic basis of adaptive variation is central to understanding the past evolutionary success of Mediterranean pines and their future response to environmental changes. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Evolution and biogeography of gymnosperms.

    Science.gov (United States)

    Wang, Xiao-Quan; Ran, Jin-Hua

    2014-06-01

    Living gymnosperms comprise only a little more than 1000 species, but represent four of the five main lineages of seed plants, including cycads, ginkgos, gnetophytes and conifers. This group has huge ecological and economic value, and has drawn great interest from the scientific community. Here we review recent advances in our understanding of gymnosperm evolution and biogeography, including phylogenetic relationships at different taxonomic levels, patterns of species diversification, roles of vicariance and dispersal in development of intercontinental disjunctions, modes of molecular evolution in different genomes and lineages, and mechanisms underlying the formation of large nuclear genomes. It is particularly interesting that increasing evidence supports a sister relationship between Gnetales and Pinaceae (the Gnepine hypothesis) and the contribution of recent radiations to present species diversity, and that expansion of retrotransposons is responsible for the large and complex nuclear genome of gymnosperms. In addition, multiple coniferous genera such as Picea very likely originated in North America and migrated into the Old World, further indicating that the center of diversity is not necessarily the place of origin. The Bering Land Bridge acted as an important pathway for dispersal of gymnosperms in the Northern Hemisphere. Moreover, the genome sequences of conifers provide an unprecedented opportunity and an important platform for the evolutionary studies of gymnosperms, and will also shed new light on evolution of many important gene families and biological pathways in seed plants. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Evolution of democracy in Europe

    Science.gov (United States)

    Oberoi, Mukesh K.

    The emphasis of this thesis is to build an intuitive and robust GIS (Geographic Information systems) Tool which will give a survey on the evolution of democracy in European countries. The user can know about the evolution of the democratic histories of these countries by just clicking on them on the map. The information is provided in separate HTML pages which will give information about start of revolution, transition to democracy, current legislature, women's status in the country etc. There are two separate web pages for each country- one shows the detailed explanation on how democracy evolved in diff. countries and another page contains a timeline which holds key events of the evolution. The tool has been developed in JAVA. For the European map MOJO (Map Objects Java Objects) is used. MOJO is developed by ESRI. The major features shown on the European map were designed using MOJO. MOJO made it easy to incorporate the statistical data with these features. The user interface, as well as the language was intentionally kept simple and easy to use, to broaden the potential audience. To keep the user engaged, key aspects are explained using HTML pages. The idea is that users can view the timeline to get a quick overview and can go through the other html page to learn about things in more detail.

  12. Mainstreaming Caenorhabditis elegans in experimental evolution.

    Science.gov (United States)

    Gray, Jeremy C; Cutter, Asher D

    2014-03-07

    Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host-pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery.

  13. De-internationalization: Evolution of the Concept

    DEFF Research Database (Denmark)

    Turcan, Romeo V.

    In this paper I discuss the evolution of the concept of de-internationalization. I look at the evolution of de-internationalization via empirical and theoretical lenses. I draw on recent empirical evidence to exemplify the evolution of what, how, why, who, where, when of de-internationalization. ...... then discuss the evolution of theoretical developments of the concept employing a number theory building strategies. I conclude the paper by mapping theoretical landscape of de-internationalization phenomenon suggesting future research directions.......In this paper I discuss the evolution of the concept of de-internationalization. I look at the evolution of de-internationalization via empirical and theoretical lenses. I draw on recent empirical evidence to exemplify the evolution of what, how, why, who, where, when of de-internationalization. I...

  14. Mainstreaming Caenorhabditis elegans in experimental evolution

    Science.gov (United States)

    Gray, Jeremy C.; Cutter, Asher D.

    2014-01-01

    Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host–pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery. PMID:24430852

  15. The terminals - evolution of concepts; Les aerogares - evolution des concepts

    Energy Technology Data Exchange (ETDEWEB)

    Andreu, P. [Aeroport de Paris, ADP/ANAE (France)

    1996-12-31

    An history of airports and terminals could be summarized as follows: `always farther, always bigger and always more expensive`. The `always farther` concepts is a disaster for the users while the `always more expensive` is a consequence of the `always bigger`. In this paper, the author who is an architect, gives his point of view concerning the future evolution of terminal concepts according to the tendencies of the development of air transports: future projects of huge capacity planes, adaptation to different types of traffic, improvement of passengers` comfort and autonomy, multi-modality with common use of terminal equipments and facilities for trains, busses and planes. (J.S.)

  16. On the Evolution of Comets

    Science.gov (United States)

    Guilbert-Lepoutre, A.; Besse, S.; Mousis, O.; Ali-Dib, M.; Höfner, S.; Koschny, D.; Hager, P.

    2015-12-01

    Studying comets is believed to bring invaluable clues on the formation and evolution of our planetary system. In comparison to planets, they have undergone much less alteration, and should have therefore retained a relatively pristine record of the conditions prevailing during the early phases of the solar system. However, comets might not be entirely pristine. As of today, we have not been able to determine which of the observed physical, chemical and orbital characteristics of comets, after they have evolved for more than 4 Gyr in a time-varying radiative and collisional environment, will provide the best clues to their origin. Comet physical characteristics as inherited from their formation stage may be very diverse, both in terms of composition and internal structure. The subsequent evolution of comet nuclei involves some possible processing from radiogenic heating, space weathering and large- and small-scale collisions, which might have modified their primordial structures and compositions with various degrees. When comets enter the inner solar system and become active, they start to lose mass at a very high rate. The effects of activity on comet nuclei involve a layering of the composition, a substantial non-even erosion and modification of their size and shape, and may eventually result in the death of comets. In this review, we present the dominating processes that might affect comet physical and chemical properties at different stages of their evolution. Although the evolutionary track may be specific to each comet, we can focus on long-lasting modifications which might be common to all nuclei after their formation stage, during their storage in reservoirs in the outer solar system, and once comets enter the inner solar system and become active objects.

  17. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  18. Evolution of Earth Like Planets

    Science.gov (United States)

    Monroy-Rodríguez, M. A.; Vega, K. M.

    2017-07-01

    In order to study and explain the evolution of our own planet we have done a review of works related to the evolution of Earth-like planets. From the stage of proto-planet to the loss of its atmosphere. The planetary formation from the gas and dust of the proto-planetary disk, considering the accretion by the process of migration, implies that the material on the proto-planet is very mixed. The newborn planet is hot and compact, it begins its process of stratification by gravity separation forming a super dense nucleus, an intermediate layer of convective mantle and an upper mantle that is less dense, with material that emerges from zones at very high pressure The surface with low pressure, in this process the planet expands and cools. This process also releases gas to the surface, forming the atmosphere, with the gas gravitationally bounded. The most important thing for the life of the planet is the layer of convective mantle, which produces the magnetic field, when it stops the magnetic field disappears, as well as the rings of van allen and the solar wind evaporates the atmosphere, accelerating the evolution and cooling of the planet. In a natural cycle of cataclysms and mass extinctions, the solar system crosses the galactic disk every 30 million years or so, the increase in the meteorite fall triggers the volcanic activity and the increase in the release of CO2 into the atmosphere reaching critical levels (4000 billion tons) leads us to an extinction by overheating that last 100 000 years, the time it takes CO2 to sediment to the ocean floor. Human activity will lead us to reach critical levels of CO2 in approximately 300 years.

  19. X Chromosome Evolution in Cetartiodactyla

    Science.gov (United States)

    Proskuryakova, Anastasia A.; Kulemzina, Anastasia I.; Makunin, Alexey I.; Kukekova, Anna V.; Lynn Johnson, Jennifer; Lemskaya, Natalya A.; Beklemisheva, Violetta R.; Roelke-Parker, Melody E.; Bellizzi, June; Ryder, Oliver A.; O’Brien, Stephen J.; Graphodatsky, Alexander S.

    2017-01-01

    The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David’s deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups. PMID:28858207

  20. The evolution of offensive realism.

    Science.gov (United States)

    Johnson, Dominic D P; Phil, D; Thayer, Bradley A

    Offensive realism, a theory of international relations, holds that states are disposed to competition and conflict because they are self-interested, power maximizing, and fearful of other states. Moreover, it argues that states are obliged to behave this way because doing so favors survival in the international system. Debate continues as to whether modern states actually do, or should, behave in this way, but we are struck by a different question. In this article, we ask whether the three core assumptions about behavior in offensive realism-self-help, power maximization, and outgroup fear-have any basis in scientific knowledge about human behavioral evolution. We find that these precise traits are not only evolutionarily adaptive but also empirically common across the animal kingdom, especially in primate and human societies. Based on these findings, we hypothesize that states behave as offensive realists predict not just because of anarchy in the modern international system but also because of the legacy of our evolution. In short, offensive realism may really be describing the nature of the human species more than the nature of the international system. If our hypothesis is correct, then evolutionary theory offers the following: (1) a novel ultimate cause of offensive realist behavior; (2) an extension of offensive realism to any domain in which humans compete for power; and (3) an explanation for why individual leaders themselves, and not just states, seek power. However, a key insight from evolution is that the primacy of self-help, power maximization, and outgroup fear does not necessarily condemn individuals or groups to competition and conflict; rather, these traits can in themselves give rise to cooperation and alliances.

  1. Modeling Shoreline Evolution on Mars

    Science.gov (United States)

    Kraal, E. R.; Ashpaug, E. I.; Lorenz, R. D.

    2003-05-01

    Geomorphic evidence of surface water on Mars has important implications for planetary surface evolution, as well as for the continuing exploration of the planet as future landing sites are selected. Here we present the initial results from forward models of crater lake basin evolution motivated by the identification of intracrater landforms on Mars which exhibit possible evidence for a history of surface water. Proposed lacustrine Martian landforms include shorelines, terraces, and wave cut benches - features that have received considerable attention in terrestrial lacustrine geomorphology but which have never been quantitatively addressed with sufficient rigor on Mars. In particular, the existing body of terrestrial research has yet to be applied adequately to planets of different gravity, temperature (or working fluid) and atmospheric pressure, such as Mars and Titan. The 2-D model includes wave generation, shore erosion, and other factors. Wave generation depends primarily on wind speed and basin size. The erosive power of the generated waves along the shoreline depends on wave size and period, initial topography, rock hardness, and the effects of crater impact formation on the bedrock. Other factors include water loss to evaporation and infiltration, sediment transport within the basin, wind transported sediment, and ice cover. Waves are generated using terrestrial empirical equations that have been modified for the lower gravity on Mars. Erosion is based on equations for terrestrial rocky coastline evolution models that have been modified for Martian conditions. Results presented here will focus on the first two aspects, wave generation and shoreline erosion. Additional research will include exploring the effect of different air pressures on the system as well as modifying the model for application to possible crater lakes of liquid hydrocarbons on Titan.

  2. Sisyphean evolution in Darwin's finches.

    Science.gov (United States)

    McKay, Bailey D; Zink, Robert M

    2015-08-01

    The trajectory of speciation involves geographic isolation of ancestral populations followed by divergence by natural selection, genetic drift or sexual selection. Once started, the process may experience fits and starts, as sometimes diverging populations intermittently reconnect. In theory populations might cycle between stages of differentiation and never attain species status, a process we refer to as Sisyphean evolution. We argue that the six putative ground finch species (genus Geospiza) of the Galápagos Islands represent a dramatic example of Sisyphean evolution that has been confused with the standard model of speciation. The dynamic environment of the Galápagos, closely spaced islands, and frequent dispersal and introgression have prevented the completion of the speciation process. We suggest that morphological clusters represent locally adapted ecomorphs, which might mimic, and have been confused with, species, but these ecomorphs do not form separate gene pools and are ephemeral in space and time. Thus the pattern of morphological, behavioural and genetic variation supports recognition of a single species of Geospiza, which we suggest should be recognized as Darwin's ground finch (Geospiza magnirostris). We argue that instead of providing an icon of insular speciation and adaptive radiation, which is featured in nearly every textbook on evolutionary biology, Darwin's ground finch represents a potentially more interesting phenomenon, one of transient morphs trapped in an unpredictable cycle of Sisyphean evolution. Instead of revealing details of the origin of species, the mechanisms underlying the transient occurrence of ecomorphs provide one of the best illustrations of the antagonistic effects of natural selection and introgression. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  3. A comparison of biological and cultural evolution.

    Science.gov (United States)

    Portin, Petter

    2015-03-01

    This review begins with a definition of biological evolution and a description of its general principles. This is followed by a presentation of the biological basis of culture, specifically the concept of social selection. Further, conditions for cultural evolution are proposed, including a suggestion for language being the cultural replicator corresponding to the concept of the gene in biological evolution. Principles of cultural evolution are put forward and compared to the principles of biological evolution. Special emphasis is laid on the principle of selection in cultural evolution, including presentation of the concept of cultural fitness. The importance of language as a necessary condition for cultural evolution is stressed. Subsequently, prime differences between biological and cultural evolution are presented, followed by a discussion on interaction of our genome and our culture. The review aims at contributing to the present discussion concerning the modern development of the general theory of evolution, for example by giving a tentative formulation of the necessary and sufficient conditions for cultural evolution, and proposing that human creativity and mind reading or theory of mind are motors specific for it. The paper ends with the notion of the still ongoing coevolution of genes and culture.

  4. Evolution und Kreationismus in Europa

    Science.gov (United States)

    Graf, Dittmar; Lammers, Christoph

    Das Phänomen der Ablehnung des wissenschaftlichen Faktums der Evolution wird als Kreationismus von vielen Europäern in erster Linie jenseits des Atlantiks in den USA verortet. In der europäischen Presse wird beispielsweise immer einmal wieder über Gerichtsverhandlungen berichtet, in denen darüber gestritten wird, ob das Thema Kreationismus in seinen verschiedenen Spielarten Teil des Biologieunterrichts sein darf. In der Tat sind diese gerichtlichen Auseinandersetzungen über Schulstoff in Europa weit weniger verbreitet als in den USA, wo sie Konsequenz aus der amerikanischen Verfassung sind, nach der in öffentlichen Schulen kein Religionsunterricht erteilt werden darf.

  5. Controlled quantum evolutions and transitions

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, Nicola Cufaro [INFN Sezione di Bari, INFM Unitadi Bari and Dipartimento Interateneo di Fisica dell' Universitae del Politecnico di Bari, Bari (Italy); De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio [INFM Unitadi Salerno, INFN Sezione di Napoli - Gruppo collegato di Salerno and Dipartimento di Fisica dell' Universitadi Salerno, Baronissi, Salerno (Italy)

    1999-10-29

    We study the nonstationary solutions of Fokker-Planck equations associated to either stationary or non stationary quantum states. In particular, we discuss the stationary states of quantum systems with singular velocity fields. We introduce a technique that allows arbitrary evolutions ruled by these equations to account for controlled quantum transitions. As a first significant application we present a detailed treatment of the transition probabilities and of the controlling time-dependent potentials associated to the transitions between the stationary, the coherent, and the squeezed states of the harmonic oscillator. (author)

  6. Archeology and evolution of QCD

    CERN Document Server

    De Rújula, A.

    2017-01-01

    These are excerpts from the closing talk at the "XIIth Conference on Quark Confinement and the Hadron Spectrum", which took place last Summer in Thessaloniki --an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which --to my judgement-- illustrate well the QCD evolution (in time), both from a scientific and a sociological point of view.

  7. Archeology and evolution of QCD

    Science.gov (United States)

    De Rújula, A.

    2017-03-01

    These are excerpts from the closing talk at the "XIIth Conference on Quark Confinement and the Hadron Spectrum", which took place last Summer in Thessaloniki -an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which -to my judgement- illustrate well the QCD evolution (in time), both from a scientific and a sociological point of view.

  8. Phylogeny and Evolution of Lepidoptera.

    Science.gov (United States)

    Mitter, Charles; Davis, Donald R; Cummings, Michael P

    2017-01-31

    Until recently, deep-level phylogeny in Lepidoptera, the largest single radiation of plant-feeding insects, was very poorly understood. Over the past two decades, building on a preceding era of morphological cladistic studies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yielding to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution.

  9. Secular Evolution in Disk Galaxies

    Science.gov (United States)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  10. Evolution of Juvenile Ankylosing Spondylitis

    Directory of Open Access Journals (Sweden)

    Ye.V. Prohorov

    2013-02-01

    Full Text Available Evolution of juvenile ankylosing spondylitis tend to follow a more frequent involvement in the pathological process of elbow and ankle joints, development of enthesiopathies, changes of intraarticular meniscal horns, forming of Baker’s cysts, cartilage flaps and systemic osteoporosis, and total value of all these signs 13 times exceeds thereof in patients with with the debut of disease in adulthood, but for juvenile ankylosing spondylitis vertebral lesion is less common. Age dimorphism of the use of certain groups of drugs and physiotherapy facilities is observed.

  11. Evolution of meaning special handbook

    CERN Document Server

    Wöhlbier, Fred H

    2014-01-01

    The Evolution of Meaning is based upon the premise that the Universe consists of information processing events. 'Information' is to be understood here not in the bare mathematical sense, but in the full active life/observation/meaning sense. From this viewpoint, the scientific description of Nature is seen to involve not only the fabric of spacetime, material aggregates and the forces acting between them, but also various equally real and fundamental groups of laws and law-like entities, as well as the concepts of subjectivity and value-oriented essential dimensi

  12. Archeology and evolution of QCD

    Directory of Open Access Journals (Sweden)

    De Rújula A.

    2017-01-01

    Full Text Available These are excerpts from the closing talk at the “XIIth Conference on Quark Confinement and the Hadron Spectrum”, which took place last Summer in Thessaloniki –an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which –to my judgement– illustrate well the QCD evolution (in time, both from a scientific and a sociological point of view.

  13. Evolution of an International Quango

    DEFF Research Database (Denmark)

    Seabrooke, Leonard

    and to facilitate information sharing among a range of state and non-state actors. While privately incorporated and underwritten by its member central banks, the BIS is fundamentally a service provider with quasi-non-governmental organization, `quango', status. This paper traces the evolution of this unique......The Bank for International Settlements (BIS) is the premiere international institution for the regulation of the world's financial system. Originally established to handle German reparations payments, the BIS's contemporary role is to provide global standards for prudential bank regulation...

  14. Robotic technology evolution and transfer

    Science.gov (United States)

    Marzwell, Neville I.

    1992-01-01

    A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.

  15. Sixth Symposium on Chemical Evolution and the Origin and Evolution of Life

    Science.gov (United States)

    Acevedo, Sara (Editor); DeVincenzi, Donald L. (Editor); Chang, Sherwood (Editor)

    1998-01-01

    The 6th Symposium on Chemical Evolution and the Origin and Evolution of Life was convened at NASA Ames Research Center, November 17-20, 1997. This Symposium is convened every three years under the auspices of NASA's Exobiology Program Office. All Principal Investigators funded by this Program present their most recent research accomplishments at the Symposium. Scientific papers were presented in the following areas: cosmic evolution of the biogenic elements, prebiotic evolution (both planetary and chemical), evolution of early organisms and evolution of organisms in extreme environments, solar system exploration, and star and planet formation. The Symposium was attended by over 200 scientists from NASA centers and Universities nationwide.

  16. The evolution of floral gigantism.

    Science.gov (United States)

    Davis, Charles C; Endress, Peter K; Baum, David A

    2008-02-01

    Flowers exhibit tremendous variation in size (>1000-fold), ranging from less than a millimeter to nearly a meter in diameter. Numerous studies have established the importance of increased floral size in species that exhibit relatively normal-sized flowers, but few studies have examined the evolution of floral size increase in species with extremely large flowers or flower-like inflorescences (collectively termed blossoms). Our review of these record-breakers indicates that blossom gigantism has evolved multiple times, and suggests that the evolutionary forces operating in these species may differ from their ordinary-sized counterparts. Surprisingly, rather than being associated with large-bodied pollinators, gigantism appears to be most common in species with small-bodied beetle or carrion-fly pollinators. Such large blossoms may be adapted to these pollinators because they help to temporarily trap animals, better facilitate thermal regulation, and allow for the mimicry of large animal carcasses. Future phylogenetic tests of these hypotheses should be conducted to determine if the transition to such pollination systems correlates with significant changes in the mode and tempo of blossom size evolution.

  17. Tectonic evolution of terrestrial planets

    Science.gov (United States)

    Head, J. W.; Solomon, S. C.

    1981-01-01

    The tectonic style of each terrestrial planet, referring to the thickness and division of its lithosphere, can be inferred from surface features and compared to models of planetary thermal history. Factors governing planetary tectonic evolution are planet diameter, chemistry, and external and internal heat sources, all of which determine how a planet generates and rids itself of heat. The earth is distinguished by its distinct, mobile plates, which are recycled into the mantle and show large-scale lateral movements, whereas the moon, Mars, and Mercury are single spherical shells, showing no evidence of destruction and renewal of the lithospheric plates over the latter 80% of their history. Their smaller volume to surface area results in a more rapid cooling, formation, and thickening of the lithosphere. Vertical tectonics, due to lithospheric loading, is controlled by the local thickness and rheology of the lithosphere. Further studies of Venus, which displays both the craterlike surface features of the one-plate planets, and the rifts and plateaus of earth, may indicate which factors are most important in controlling the tectonic evolution of terrestrial planets.

  18. Evolution of Karyotypes in Chameleons

    Directory of Open Access Journals (Sweden)

    Michail Rovatsos

    2017-12-01

    Full Text Available The reconstruction of the evolutionary dynamics of karyotypes and sex determining systems in squamate reptiles is precluded by the lack of data in many groups including most chameleons (Squamata: Acrodonta: Chamaeleonidae. We performed cytogenetic analysis in 16 species of chameleons from 8 genera covering the phylogenetic diversity of the family and also phylogenetic reconstruction of karyotype evolution in this group. In comparison to other squamates, chameleons demonstrate rather variable karyotypes, differing in chromosome number, morphology and presence of interstitial telomeric signal (ITS. On the other hand, the location of rDNA is quite conserved among chameleon species. Phylogenetic analysis combining our new results and previously published data tentatively suggests that the ancestral chromosome number for chameleons is 2n = 36, which is the same as assumed for other lineages of the clade Iguania, i.e., agamids and iguanas. In general, we observed a tendency for the reduction of chromosome number during the evolution of chameleons, however, in Rieppeleon brevicaudatus, we uncovered a chromosome number of 2n = 62, very unusual among squamates, originating from a number of chromosome splits. Despite the presence of the highly differentiated ZZ/ZW sex chromosomes in the genus Furcifer, we did not detect any unequivocal sexual differences in the karyotypes of any other studied species of chameleons tested using differential staining and comparative genomic hybridization, suggesting that sex chromosomes in most chameleons are only poorly differentiated.

  19. The mystery of language evolution

    Science.gov (United States)

    Hauser, Marc D.; Yang, Charles; Berwick, Robert C.; Tattersall, Ian; Ryan, Michael J.; Watumull, Jeffrey; Chomsky, Noam; Lewontin, Richard C.

    2014-01-01

    Understanding the evolution of language requires evidence regarding origins and processes that led to change. In the last 40 years, there has been an explosion of research on this problem as well as a sense that considerable progress has been made. We argue instead that the richness of ideas is accompanied by a poverty of evidence, with essentially no explanation of how and why our linguistic computations and representations evolved. We show that, to date, (1) studies of nonhuman animals provide virtually no relevant parallels to human linguistic communication, and none to the underlying biological capacity; (2) the fossil and archaeological evidence does not inform our understanding of the computations and representations of our earliest ancestors, leaving details of origins and selective pressure unresolved; (3) our understanding of the genetics of language is so impoverished that there is little hope of connecting genes to linguistic processes any time soon; (4) all modeling attempts have made unfounded assumptions, and have provided no empirical tests, thus leaving any insights into language's origins unverifiable. Based on the current state of evidence, we submit that the most fundamental questions about the origins and evolution of our linguistic capacity remain as mysterious as ever, with considerable uncertainty about the discovery of either relevant or conclusive evidence that can adjudicate among the many open hypotheses. We conclude by presenting some suggestions about possible paths forward. PMID:24847300

  20. Controlling Tensegrity Robots Through Evolution

    Science.gov (United States)

    Iscen, Atil; Agogino, Adrian; SunSpiral, Vytas; Tumer, Kagan

    2013-01-01

    Tensegrity structures (built from interconnected rods and cables) have the potential to offer a revolutionary new robotic design that is light-weight, energy-efficient, robust to failures, capable of unique modes of locomotion, impact tolerant, and compliant (reducing damage between the robot and its environment). Unfortunately robots built from tensegrity structures are difficult to control with traditional methods due to their oscillatory nature, nonlinear coupling between components and overall complexity. Fortunately this formidable control challenge can be overcome through the use of evolutionary algorithms. In this paper we show that evolutionary algorithms can be used to efficiently control a ball-shaped tensegrity robot. Experimental results performed with a variety of evolutionary algorithms in a detailed soft-body physics simulator show that a centralized evolutionary algorithm performs 400 percent better than a hand-coded solution, while the multi-agent evolution performs 800 percent better. In addition, evolution is able to discover diverse control solutions (both crawling and rolling) that are robust against structural failures and can be adapted to a wide range of energy and actuation constraints. These successful controls will form the basis for building high-performance tensegrity robots in the near future.

  1. Evolution, plant breeding and biodiversity

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2011-11-01

    Full Text Available This paper deals with changes in biodiversity during the course of evolution, plant domestication and plant breeding. It shows than man has had a strong influence on the progressive decrease of biodiversity, unconscious at first and deliberate in modern times. The decrease in biodiversity in the agricultures of the North causes a severe threat to food security and is in contrasts with the conservation of biodiversity which is part of the culture of several populations in the South. The concluding section of the paper shows that man could have guided evolution in a different way and shows an example of participatory plant breeding, a type of breeding which is done in collaboration with farmers and is based on selection for specific adaptation. Even though participatory plant breeding has been practiced for only about 20 years and by relatively few groups, the effects on both biodiversity and crop production are impressive. Eventually the paper shows how participatory plant breeding can be developed into ‘evolutionary plant breeding’ to cope in a dynamic way with climate changes.

  2. Understanding Collateral Evolution in Linux Device Drivers

    DEFF Research Database (Denmark)

    Padioleau, Yoann; Lawall, Julia Laetitia; Muller, Gilles

    2006-01-01

    In a modern operating system (OS), device drivers can make up over 70% of the source code. Driver code is also heavily dependent on the rest of the OS, for functions and data structures defined in the kernel and driver support libraries. These properties pose a significant problem for OS evolution......, as any changes in the interfaces exported by the kernel and driver support libraries can trigger a large number of adjustments in dependent drivers. These adjustments, which we refer to as collateral evolutions, may be complex, entailing substantial code reorganizations. As to our knowledge there exist...... no tools to help in this process, collateral evolution is thus time consuming and error prone.In this paper, we present a qualitative and quantitative assessment of collateral evolution in Linux device driver code. We provide a taxonomy of evolutions and collateral evolutions, and use an automated patch...

  3. Omissions in the synthetic theory of evolution.

    Science.gov (United States)

    Frías L, Daniel

    2010-01-01

    The Synthetic Theory of Evolution is the most unifying theory of life science. This theory has dominated scientific thought in explaining the mechanisms involved in speciation. However, there are some omissions that have delayed the understanding of some aspects of the mechanisms of organic evolution, principally: 1) the bridge between somatic and germinal cells, especially in some phylum of invertebrates and vertebrates; 2) horizontal genetic transferences and the importance of viruses in host adaptation and evolution; 3) the role of non-coding DNA and non-transcriptional genes; 4) homeotic evolution and the limitations of gradual evolution; and 5) excessive emphasis on extrinsic barriers to animal speciation. This paper reviews each of these topics in an effort to contribute to a better comprehension of organic evolution. Molecular findings suggest the need for a new evolutionary synthesis.

  4. A Python Calculator for Supernova Remnant Evolution

    Science.gov (United States)

    Leahy, D. A.; Williams, J. E.

    2017-05-01

    A freely available Python code for modeling supernova remnant (SNR) evolution has been created. This software is intended for two purposes: to understand SNR evolution and to use in modeling observations of SNR for obtaining good estimates of SNR properties. It includes all phases for the standard path of evolution for spherically symmetric SNRs. In addition, alternate evolutionary models are available, including evolution in a cloudy ISM, the fractional energy-loss model, and evolution in a hot low-density ISM. The graphical interface takes in various parameters and produces outputs such as shock radius and velocity versus time, as well as SNR surface brightness profile and spectrum. Some interesting properties of SNR evolution are demonstrated using the program.

  5. Avoiding the Theory Trap When Discussing Evolution

    Science.gov (United States)

    Morrison, David

    2006-02-01

    Public opinion polls tell us that we are losing the battle to explain the nature of evolution and its central role in science. One problem, I believe, is letting the opponents of evolution frame the discussion to our disadvantage. Framing involves the selective use of language or context to trigger responses, either support or opposition. As a prime example, we undercut our communications efforts with many nonscientists by defending the `theory of evolution.' Theory is the wrong word to use in addressing the public. In the contemporary U.S., theory means a hunch or idea that has not been established by evidence. It is thus no surprise that polls show that nearly three quarters of U.S. people think that ``evolution is commonly referred to as the theory of evolution because it has not yet been proven scientifically.'' Those who advocate adding ``only a theory'' disclaimers in textbooks know that to call evolution a theory is sufficient to undermine its acceptance.

  6. Luminosity and spectral evolution of QSOs

    CERN Document Server

    Choi, Y Y; Yi, I S

    1999-01-01

    We apply the observed spectral states of the Galactic black hole candidates (GBHCs) to the quasi-stellar object (QSO) luminosity evolution based on the correlation between luminosity and the spectrum, which is strongly supported by the similarities of emission mechanisms in GBHCs and QSOs. We derive the QSO luminosity evolution trends in the UV/optical and the X-ray energy bands and demonstrate that their trends are significantly affected by the spectral evolution. Each energy band shows distinct evolution properties. We test one of the widely discussed cosmological evolution scenarios of QSOs, in which QSOs evolve as a single long-lived population, and show that the resulting luminosity functions seen in different energy bands exhibit distinguishable and potentially observable evolution signatures in the X-ray energy bands.

  7. Evolution of the extinction curves in galaxies

    OpenAIRE

    Asano, Ryosuke S.; Takeuchi, Tsutomu T.; Hirashita, Hiroyuki; Nozawa, Takaya

    2014-01-01

    We investigate the evolution of extinction curves in galaxies based on our evolution model of grain size distribution. In this model, we considered various processes: dust formation by SNe II and AGB stars, dust destruction by SN shocks in the ISM, metal accretion onto the surface of grains (referred to as grain growth), shattering and coagulation. We find that the extinction curve is flat in the earliest stage of galaxy evolution. As the galaxy is enriched with dust, shattering becomes effec...

  8. Evolution in time-dependent fitness landscapes

    OpenAIRE

    Wilke, Claus O.

    1998-01-01

    Evolution in changing environments is an important, but little studied aspect of the theory of evolution. The idea of adaptive walks in fitness landscapes has triggered a vast amount of research and has led to many important insights about the progress of evolution. Nevertheless, the small step to time-dependent fitness landscapes has most of the time not been taken. In this work, some elements of a theory of adaptive walks on changing fitness landscapes are proposed, and are subsequently app...

  9. Thermalization through unitary evolution of pure states

    OpenAIRE

    Skrøvseth, Stein Olav

    2006-01-01

    The unitary time evolution of a critical quantum spin chain with an impurity is calculated, and the entanglement evolution is shown. Moreover, we show that the reduced density matrix of a part of the chain evolves such that the fidelity of its spectrum is very high with respect to a state in thermal equilibrium. Hence, a thermal state occurs through unitary time evolution in a simple spin chain with impurity.

  10. Group Evolution Discovery in Social Networks

    OpenAIRE

    Bródka, Piotr; Saganowski, Stanisław; Kazienko, Przemysław

    2013-01-01

    Group extraction and their evolution are among the topics which arouse the greatest interest in the domain of social network analysis. However, while the grouping methods in social networks are developed very dynamically, the methods of group evolution discovery and analysis are still uncharted territory on the social network analysis map. Therefore the new method for the group evolution discovery called GED is proposed in this paper. Additionally, the results of the first experiments on the ...

  11. Lifetime monogamy and the evolution of eusociality

    DEFF Research Database (Denmark)

    Boomsma, Jacobus J

    2009-01-01

    and termites is thus analogous to the evolution of multicellularity. Focusing on lifetime monogamy as a universal precondition for the evolution of obligate eusociality simplifies the theory and may help to resolve controversies about levels of selection and targets of adaptation. The monogamy window...... underlines that cooperative breeding and eusociality are different domains of social evolution, characterized by different sectors of parameter space for Hamilton's rule....

  12. Quantum vacuum influence on pulsars spindown evolution

    OpenAIRE

    Dupays, Arnaud; Rizzo, Carlo; Giovanni Fabrizio, Bignami

    2012-01-01

    International audience; In this letter we show that Quantum Vacuum Friction (QVF) should play an important role in neutron star evolution. Taking into account this effect we show that magnetars could be understood as a natural evolution of standard pulsars. For the Crab pulsar, of which the characteristic age is known, we present the first completely coherent time evolution for its period and braking index. For this pulsar we also give the predicted value of the current first derivative of th...

  13. The resolved history of galaxy evolution.

    Science.gov (United States)

    Brinchmann, Jarle

    2002-12-15

    We briefly review the study of the evolution of galaxies from an observational point of view, with particular emphasis on the role of the Hubble Space Telescope in probing the evolution of the different morphological types of galaxy. We show how using the stellar mass of galaxies as a tracer of evolution can improve our understanding of the physical process taking place before turning our eyes towards the future and giving an overview of what we can expect from future advances in technology.

  14. Using Differential Evolution for the Graph Coloring

    OpenAIRE

    Fister, Iztok; Brest, Janez

    2012-01-01

    Differential evolution was developed for reliable and versatile function optimization. It has also become interesting for other domains because of its ease to use. In this paper, we posed the question of whether differential evolution can also be used by solving of the combinatorial optimization problems, and in particular, for the graph coloring problem. Therefore, a hybrid self-adaptive differential evolution algorithm for graph coloring was proposed that is comparable with the best heurist...

  15. Topology Optimization of Structure Using Differential Evolution

    Directory of Open Access Journals (Sweden)

    Chun-Yin Wu

    2008-02-01

    Full Text Available The population-based evolutionary algorithms have emerged as powerful mechanism for finding optimum solutions of complex optimization problems. A promising new evolutionary algorithm, differential evolution, has garnered significant attention in the engineering optimization research. Differential evolution has the advantage of incorporating a relatively simple and efficient form of mutation and crossover. This paper aims at introducing differential evolution as an alternative approach for topology optimization of truss and continuous structure with stress and displacement constraints. In comparison the results with other studies, it shows that differential evolution algorithms are very effective and efficient in solving topology optimization problem of structure.

  16. Enhancer evolution across 20 mammalian species

    DEFF Research Database (Denmark)

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah

    2015-01-01

    by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements......The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders....... These results provide important insight into the functional genetics underpinning mammalian regulatory evolution....

  17. Evaluation of seismic energy evolution

    Science.gov (United States)

    -Emilian Toader, Victorin; Marmureanu, Alexandru

    2013-04-01

    The program analyzes seismicity on a defined area with the use of bulletins (event information) provided by ANTELOPE software. These include earthquake localization (moment, latitude, longitude, magnitude, depth, P and S for each station and other parameters). The evolution of the calculated energy from the Richter magnitude is characterized by steps which can be linearly interpolated. In this way tendencies of energy accumulation / release through tectonic movement can be estimated. Also, it will be calculated and displayed the 'b' coefficient from the Gutenberg - Richter law. The results will be saved as a HTML list which allows global and individual visualization of the seismic forecasts accompanied by the epicenter position on the map. The ANTELOPE users are the first beneficiaries but the program could be modified for other formats of data which include the same information related to the earthquakes localization. The software allows to select the analysis area in which the epicenters are located. In this respect, we are using the free Google Static Maps service (in this case an internet connection is necessary) as well as there is an offline option. In a configuration file the coordinates of the epicenter area has to be defined, the zoom level and the map type if Google Maps is used. The user may redefine the investigation area in online mode. Furthermore, the program allows the selection of the time interval during which the analysis is performed, the configuration of the magnitude and depth intervals, the folders in which the ANTELOPE bulletins are located and where the results will be saved in HTML format. In a separate panel the time intervals between 2 seismic events, the resulted energy from the magnitude conversion (Ml or Md) and magnitudes - depths evolution at which the earthquakes took place can be visualized. During the analysis of the seismic bulletins generated by ANTELOPE, the epicenters are displayed dynamically in the original selected area

  18. Valley evolution by meandering rivers

    Science.gov (United States)

    Limaye, Ajay Brian Sanjay

    Fluvial systems form landscapes and sedimentary deposits with a rich hierarchy of structures that extend from grain- to valley scale. Large-scale pattern formation in fluvial systems is commonly attributed to forcing by external factors, including climate change, tectonic uplift, and sea-level change. Yet over geologic timescales, rivers may also develop large-scale erosional and depositional patterns that do not bear on environmental history. This dissertation uses a combination of numerical modeling and topographic analysis to identify and quantify patterns in river valleys that form as a consequence of river meandering alone, under constant external forcing. Chapter 2 identifies a numerical artifact in existing, grid-based models that represent the co-evolution of river channel migration and bank strength over geologic timescales. A new, vector-based technique for bank-material tracking is shown to improve predictions for the evolution of meander belts, floodplains, sedimentary deposits formed by aggrading channels, and bedrock river valleys, particularly when spatial contrasts in bank strength are strong. Chapters 3 and 4 apply this numerical technique to establishing valley topography formed by a vertically incising, meandering river subject to constant external forcing---which should serve as the null hypothesis for valley evolution. In Chapter 3, this scenario is shown to explain a variety of common bedrock river valley types and smaller-scale features within them---including entrenched channels, long-wavelength, arcuate scars in valley walls, and bedrock-cored river terraces. Chapter 4 describes the age and geometric statistics of river terraces formed by meandering with constant external forcing, and compares them to terraces in natural river valleys. The frequency of intrinsic terrace formation by meandering is shown to reflect a characteristic relief-generation timescale, and terrace length is identified as a key criterion for distinguishing these

  19. Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life

    Science.gov (United States)

    Wharton, Robert A., Jr. (Editor); Andersen, Dale T. (Editor); Bzik, Sara E. (Editor); Rummel, John D. (Editor)

    1991-01-01

    This symposium was held at the NASA Ames Research Center, Moffett Field, California, July 24-27, 1990. The NASA exobiology investigators reported their recent research findings. Scientific papers were presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  20. Landscape evolution by subglacial quarrying

    DEFF Research Database (Denmark)

    Ugelvig, Sofie Vej; Egholm, D.L.; Iverson, Neal R.

    of sliding and erosion is not well supported when considering models for quarrying of rock blocks from the bed. Iverson (2012) introduced a new subglacial quarrying model that operates from the theory of adhesive wear. The model is based on the fact that cavities, with a high level of bedrock differential...... to a model for glacial hydrology. In order to also include the effects of cavitation on the subglacial sliding rate, we use a sliding law proposed by Schoof (2005), which includes an upper limit for the stress that can be supported at the bed. Computational experiments show that the combined influence...... evolution models. Geology, v. 40, no. 8, 679-682 (2012). Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005). Jaeger, J.C., and Cook, N.G.W. Fundamentals of rock mechanics: New York, Chapman and Hall, 593 p. (1979)...

  1. Viral diseases and human evolution

    Directory of Open Access Journals (Sweden)

    Leal Élcio de Souza

    2000-01-01

    Full Text Available The interaction of man with viral agents was possibly a key factor shaping human evolution, culture and civilization from its outset. Evidence of the effect of disease, since the early stages of human speciation, through pre-historical times to the present suggest that the types of viruses associated with man changed in time. As human populations progressed technologically, they grew in numbers and density. As a consequence different viruses found suitable conditions to thrive and establish long-lasting associations with man. Although not all viral agents cause disease and some may in fact be considered beneficial, the present situation of overpopulation, poverty and ecological inbalance may have devastating effets on human progress. Recently emerged diseases causing massive pandemics (eg., HIV-1 and HCV, dengue, etc. are becoming formidable challenges, which may have a direct impact on the fate of our species.

  2. Quantum evolution by discrete measurements

    Energy Technology Data Exchange (ETDEWEB)

    Roa, L [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Guevara, M L Ladron de [Departamento de Fisica, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Delgado, A [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Olivares-RenterIa, G [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Klimov, A B [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico)

    2007-10-15

    In this article we review two ways of driving a quantum system to a known pure state via a sequence discrete of von Neumann measurements. The first of them assumes that the initial state of the system is unknown, and the evolution is attained only with the help of two non-commuting observables. For this method, the overall success probability is maximized when the eigentstates of the involved observables constitute mutually unbiased bases. The second method assumes the initial state is known and it uses N observables which are consecutively measured to make the state of the system approach the target state. The probability of success of this procedure converges to 1 as the number of observables increases.

  3. EVOLUTIONS IN GLOBAL AUTOMOBILES INDUSTRY

    Directory of Open Access Journals (Sweden)

    Viorel Pop

    2013-09-01

    Full Text Available This paper is a brief overview of the evolution of the global automotive industry during the 20th century, with reference to the main manufacturers, oil crises of 1970-1980, and also the global financial and economic crisis that began in 2008. The analyzed period covers the rise of the Asian Continent, beginning with Japan, then South Korea and more recently the emerging countries: China and India. What was predicted 20-25 years ago, became reality: Asia becomes the economic centre of the world, surpassing unexpectedly fast even the Euro-Atlantic area. Regarding Romania, the revival delay of the automobiles industry, led to the loss of the trucks and bus industry, and after a much awaited rehabilitation of car production, this has stuck now at an unsatisfactory level.

  4. The evolution of early Foraminifera.

    Science.gov (United States)

    Pawlowski, Jan; Holzmann, Maria; Berney, Cédric; Fahrni, José; Gooday, Andrew J; Cedhagen, Tomas; Habura, Andrea; Bowser, Samuel S

    2003-09-30

    Fossil Foraminifera appear in the Early Cambrian, at about the same time as the first skeletonized metazoans. However, due to the inadequate preservation of early unilocular (single-chambered) foraminiferal tests and difficulties in their identification, the evolution of early foraminifers is poorly understood. By using molecular data from a wide range of extant naked and testate unilocular species, we demonstrate that a large radiation of nonfossilized unilocular Foraminifera preceded the diversification of multilocular lineages during the Carboniferous. Within this radiation, similar test morphologies and wall types developed several times independently. Our findings indicate that the early Foraminifera were an important component of Neoproterozoic protistan community, whose ecological complexity was probably much higher than has been generally accepted.

  5. Nonlocal higher order evolution equations

    KAUST Repository

    Rossi, Julio D.

    2010-06-01

    In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.

  6. Evolution of the indoor biome.

    Science.gov (United States)

    Martin, Laura J; Adams, Rachel I; Bateman, Ashley; Bik, Holly M; Hawks, John; Hird, Sarah M; Hughes, David; Kembel, Steven W; Kinney, Kerry; Kolokotronis, Sergios-Orestis; Levy, Gabriel; McClain, Craig; Meadow, James F; Medina, Raul F; Mhuireach, Gwynne; Moreau, Corrie S; Munshi-South, Jason; Nichols, Lauren M; Palmer, Clare; Popova, Laura; Schal, Coby; Täubel, Martin; Trautwein, Michelle; Ugalde, Juan A; Dunn, Robert R

    2015-04-01

    Few biologists have studied the evolutionary processes at work in indoor environments. Yet indoor environments comprise approximately 0.5% of ice-free land area--an area as large as the subtropical coniferous forest biome. Here we review the emerging subfield of 'indoor biome' studies. After defining the indoor biome and tracing its deep history, we discuss some of its evolutionary dimensions. We restrict our examples to the species found in human houses--a subset of the environments constituting the indoor biome--and offer preliminary hypotheses to advance the study of indoor evolution. Studies of the indoor biome are situated at the intersection of evolutionary ecology, anthropology, architecture, and human ecology and are well suited for citizen science projects, public outreach, and large-scale international collaborations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Moduli Evolution in Heterotic Scenarios

    CERN Document Server

    Barreiro, T; Nunes, N J

    2001-01-01

    We discuss several aspects of the cosmological evolution of moduli fields in heterotic string/M-theory scenarios. In particular we study the equations of motion of both the dilaton and overall modulus of these theories in the presence of an expanding Universe and under different assumptions. First we analyse the impact of their couplings to matter fields, which turns out to be negligible in the string and M-theory scenarios. Then we examine in detail the possibility of scaling in M-theory, i.e. how the moduli would evolve naturally to their minima instead of rolling past them in the presence of a dominating background. In this case we find interesting and positive results, and we compare them to the analogous situation in the heterotic string.

  8. Natural evolution and human consciousness.

    Science.gov (United States)

    Holmgren, Jan

    2014-01-01

    A visual conscious experience is my empirical basis. All that we know comes to us through conscious experiences. Thanks to natural evolution, we have nearly direct perception, and can largely trust the information we attain. There is full integration, with no gaps, of organisms in the continuous world. Human conscious experiences, on the other hand, are discrete. Consciousness has certain limits for its resolution. This is illustrated by the so-called light-cone, with consequences for foundations in physics. Traditional universals are replaced by feels and distributions. Conscious experiences can be ordered within a framework of conceptual spaces. Triple Aspect Monism (TAM) can represent the dynamics of conscious systems. However, to fully represent the creative power of human consciousness, an all-inclusive view is suggested: Multi Aspect Monism (MAM).

  9. Clonal evolution in myelodysplastic syndromes

    Science.gov (United States)

    da Silva-Coelho, Pedro; Kroeze, Leonie I.; Yoshida, Kenichi; Koorenhof-Scheele, Theresia N.; Knops, Ruth; van de Locht, Louis T.; de Graaf, Aniek O.; Massop, Marion; Sandmann, Sarah; Dugas, Martin; Stevens-Kroef, Marian J.; Cermak, Jaroslav; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; de Witte, Theo; Blijlevens, Nicole M. A.; Muus, Petra; Huls, Gerwin; van der Reijden, Bert A.; Ogawa, Seishi; Jansen, Joop H.

    2017-01-01

    Cancer development is a dynamic process during which the successive accumulation of mutations results in cells with increasingly malignant characteristics. Here, we show the clonal evolution pattern in myelodysplastic syndrome (MDS) patients receiving supportive care, with or without lenalidomide (follow-up 2.5–11 years). Whole-exome and targeted deep sequencing at multiple time points during the disease course reveals that both linear and branched evolutionary patterns occur with and without disease-modifying treatment. The application of disease-modifying therapy may create an evolutionary bottleneck after which more complex MDS, but also unrelated clones of haematopoietic cells, may emerge. In addition, subclones that acquired an additional mutation associated with treatment resistance (TP53) or disease progression (NRAS, KRAS) may be detected months before clinical changes become apparent. Monitoring the genetic landscape during the disease may help to guide treatment decisions. PMID:28429724

  10. Ejecta evolution during cone impact

    KAUST Repository

    Marston, Jeremy

    2014-07-07

    We present findings from an experimental investigation into the impact of solid cone-shaped bodies onto liquid pools. Using a variety of cone angles and liquid physical properties, we show that the ejecta formed during the impact exhibits self-similarity for all impact speeds for very low surface tension liquids, whilst for high-surface tension liquids similarity is only achieved at high impact speeds. We find that the ejecta tip can detach from the cone and that this phenomenon can be attributed to the air entrainment phenomenon. We analyse of a range of cone angles, including some ogive cones, and impact speeds in terms of the spatiotemporal evolution of the ejecta tip. Using superhydrophobic cones, we also examine the entry of cones which entrain an air layer.

  11. Shaping Robust System through Evolution

    CERN Document Server

    Kaneko, Kunihiko

    2008-01-01

    Biological functions are generated as a result of developmental dynamics that form phenotypes governed by genotypes. The dynamical system for development is shaped through genetic evolution following natural selection based on the fitness of the phenotype. Here we study how this dynamical system is robust to noise during development and to genetic change by mutation. We adopt a simplified transcription regulation network model to govern gene expression, which gives a fitness function. Through simulations of the network that undergoes mutation and selection, we show that a certain level of noise in gene expression is required for the network to acquire both types of robustness. The results reveal how the noise that cells encounter during development shapes any network's robustness, not only to noise but also to mutations. We also establish a relationship between developmental and mutational robustness through phenotypic variances caused by genetic variation and epigenetic noise. A universal relationship betwee...

  12. Evolution of digital angiography systems.

    Science.gov (United States)

    Brigida, Raffaela; Misciasci, Teresa; Martarelli, Fabiola; Gangitano, Guido; Ottaviani, Pierfrancesco; Rollo, Massimo; Marano, Pasquale

    2003-01-01

    The innovations introduced by digital subtraction angiography in digital radiography are briefly illustrated with the description of its components and functioning. The pros and cons of digital subtraction angiography are analyzed in light of present and future imaging technologies. In particular, among advantages there are: automatic exposure, digital image subtraction, digital post-processing, high number of images per second, possible changes in density and contrast. Among disadvantages there are: small round field of view, geometric distortion at the image periphery, high sensitivity to patient movements, not very high spatial resolution. At present, flat panel detectors represent the most suitable substitutes for digital subtraction angiography, with the introduction of novel solutions for those artifacts which for years have hindered its diagnostic validity. The concept of temporal artifact, reset light and possible future evolutions of this technology that may afford both diagnostic and protectionist advantages, are analyzed.

  13. Galapagos: Darwin, evolution, and ENT.

    Science.gov (United States)

    Bluestone, Charles D

    2009-10-01

    This year is especially important in the history of the theory of evolution; 2009 is the bicentennial anniversary of the birth of Charles Darwin and the sesquicentennial anniversary of his publication, The Origin of Species. Darwin visited the Galapagos Islands as a young man, which greatly influenced his thinking. My son Jim and I had the good fortune to visit these islands in January 2009 and see firsthand what led Darwin to arrive at his monumental insights into the origins of life on this planet. I have described my observations and related some of this experience to the ear, nose, and throat, albeit with whimsy in several instances. Nonetheless, some of the adaptations in the animals on these unique islands may have bearing on my hypotheses related to the incidence and pathogenesis of otitis media in humans. It is hoped the reader will share my enthusiasm for the experience we had on these fantastic islands and tour them in the future.

  14. Early Evolution of Prestellar Cores

    Science.gov (United States)

    Horedt, G. P.

    2013-08-01

    Prestellar cores are approximated by singular polytropic spheres. Their early evolution is studied analytically with a Bondi-like scheme. The considered approximation is meaningful for polytropic exponents γ between 0 and 6/5, implying radial power-law density profiles between r -1 and r -2.5. Gravitationally unstable Jeans and Bonnor-Ebert masses differ at most by a factor of 3.25. Tidally stable prestellar cores must have a mean density contrast >~ 8 with respect to the external parent cloud medium. The mass-accretion rate relates to the cube of equivalent sound speed, as in Shu's seminal paper. The prestellar masses accreted over 105 years cover the whole stellar mass spectrum; they are derived in simple closed form, depending only on the polytropic equation of state. The stellar masses that can be formed via strict conservation of angular momentum are at most of the order of a brown dwarf.

  15. Evolution of random catalytic networks

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, S.M. [Santa Fe Inst., NM (United States); Reidys, C.M. [Santa Fe Inst., NM (United States)]|[Los Alamos National Lab., NM (United States)

    1997-06-01

    In this paper the authors investigate the evolution of populations of sequences on a random catalytic network. Sequences are mapped into structures, between which are catalytic interactions that determine their instantaneous fitness. The catalytic network is constructed as a random directed graph. They prove that at certain parameter values, the probability of some relevant subgraphs of this graph, for example cycles without outgoing edges, is maximized. Populations evolving under point mutations realize a comparatively small induced subgraph of the complete catalytic network. They present results which show that populations reliably discover and persist on directed cycles in the catalytic graph, though these may be lost because of stochastic effects, and study the effect of population size on this behavior.

  16. Chemical evolution of star clusters.

    Science.gov (United States)

    van Loon, Jacco Th

    2010-02-28

    I discuss the chemical evolution of star clusters, with emphasis on old Galactic globular clusters (GCs), in relation to their formation histories. GCs are clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of GCs in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the GCs formed. Instead, a formation deep within the proto-Galaxy or within dark-matter mini-haloes might be favoured. Not all GCs may have formed and evolved similarly. In particular, we may need to distinguish Galactic Halo from Galactic Bulge clusters.

  17. Observing and Simulating Galaxy Evolution

    DEFF Research Database (Denmark)

    Olsen, Karen Pardos

    , but 50% smaller _CO factors, with the latter decreasing towards the center of each model galaxy. In a second study, SÍGAME is adapted to model the fine-structure line of singly ionized carbon, [CII] at 158 _m, the most powerful emission line of neutral ISM. Applying SÍGAME to the same type of galaxies......It remains a quest for modern astronomy to answer what main mechanisms set the star formation rate (SFR) of galaxies. Massive galaxies present a good starting point for such a quest due to their relatively easy detection at every redshift. Since stars form out of cold and dense gas, a comprehensive...... model for galaxy evolution should explain any observed connection between SFR and the amount and properties of the molecular gas of the interstellar medium (ISM). In proposed models of that kind, an active galactic nucleus (AGN) phase is often invoked as the cause for the decrease or cease of star...

  18. Evolution models with extremal dynamics

    Directory of Open Access Journals (Sweden)

    Petri P. Kärenlampi

    2016-08-01

    Full Text Available The random-neighbor version of the Bak-Sneppen biological evolution model is reproduced, along with an analogous model of random replicators, the latter eventually experiencing topology changes. In the absence of topology changes, both types of models self-organize to a critical state. Species extinctions in the replicator system degenerates the self-organization to a random walk, as does vanishing of species interaction for the BS-model. A replicator model with speciation is introduced, experiencing dramatic topology changes. It produces a variety of features, but self-organizes to a possibly critical state only in a few special cases. Speciation-extinction dynamics interfering with self-organization, biological macroevolution probably is not a self-organized critical system.

  19. UTBB FDSOI: Evolution and opportunities

    Science.gov (United States)

    Monfray, Stephane; Skotnicki, Thomas

    2016-11-01

    As today's 28 nm FDSOI (Fully Depleted Silicon On Insulator) technology is at the industrialization level, this paper aims to summarize the key advantages allowed by the thin BOX (Buried Oxide) of the FDSOI, through the technology evolution but also new opportunities, among logic applications and extending the possibilities offered by the platform. We will summarize how the advantages provided by the thin BOX have been first explored and developed, and how the back biasing techniques are the key to the outstanding performances provided by the FDSOI at low voltage. Then, as the FDSOI technology is also a solution to develop innovative platforms and applications, we will detail some opportunities. In particular, we will present monolithic 3D integration, ultra-low power devices for IoT (Internet of Things) and ultra-sensitive sensors.

  20. INFORMATION SOCIETY EVOLUTION AND EFFECTS

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2016-01-01

    The evolution and effects of the information society can be exemplified via many threads, both in hard and soft science, according to ones’ discipline and field. In this contribution, the speaker’s three decades of applied research acts as a vehicle to demonstrate development and impact via...... commercial product, national and international projects, and industry startups (including impactful third party research investigations) form the basis for discussion. Beyond this, a wider more generic perspective reflects on product adoption that illustrate todays’ contemporary e-society tendencies where...... recent influx and uptake of consumer-targeted artificial reality products point to society’s desire for alternative sensory experiences. Posited is how aligned with this desire there is a need for new ethical considerations in research as was found in the speaker’s research at the end of the 20th century...

  1. Theory of microbial genome evolution

    Science.gov (United States)

    Koonin, Eugene

    Bacteria and archaea have small genomes tightly packed with protein-coding genes. This compactness is commonly perceived as evidence of adaptive genome streamlining caused by strong purifying selection in large microbial populations. In such populations, even the small cost incurred by nonfunctional DNA because of extra energy and time expenditure is thought to be sufficient for this extra genetic material to be eliminated by selection. However, contrary to the predictions of this model, there exists a consistent, positive correlation between the strength of selection at the protein sequence level, measured as the ratio of nonsynonymous to synonymous substitution rates, and microbial genome size. By fitting the genome size distributions in multiple groups of prokaryotes to predictions of mathematical models of population evolution, we show that only models in which acquisition of additional genes is, on average, slightly beneficial yield a good fit to genomic data. Thus, the number of genes in prokaryotic genomes seems to reflect the equilibrium between the benefit of additional genes that diminishes as the genome grows and deletion bias. New genes acquired by microbial genomes, on average, appear to be adaptive. Evolution of bacterial and archaeal genomes involves extensive horizontal gene transfer and gene loss. Many microbes have open pangenomes, where each newly sequenced genome contains more than 10% `ORFans', genes without detectable homologues in other species. A simple, steady-state evolutionary model reveals two sharply distinct classes of microbial genes, one of which (ORFans) is characterized by effectively instantaneous gene replacement, whereas the other consists of genes with finite, distributed replacement rates. These findings imply a conservative estimate of at least a billion distinct genes in the prokaryotic genomic universe.

  2. Do Galaxies Follow Darwinian Evolution?

    Science.gov (United States)

    2006-12-01

    Using VIMOS on ESO's Very Large Telescope, a team of French and Italian astronomers have shown the strong influence the environment exerts on the way galaxies form and evolve. The scientists have for the first time charted remote parts of the Universe, showing that the distribution of galaxies has considerably evolved with time, depending on the galaxies' immediate surroundings. This surprising discovery poses new challenges for theories of the formation and evolution of galaxies. The 'nature versus nurture' debate is a hot topic in human psychology. But astronomers too face similar conundrums, in particular when trying to solve a problem that goes to the very heart of cosmological theories: are the galaxies we see today simply the product of the primordial conditions in which they formed, or did experiences in the past change the path of their evolution? ESO PR Photo 17/06 ESO PR Photo 45/06 Galaxy Distribution in Space In a large, three-year long survey carried out with VIMOS [1], the Visible Imager and Multi-Object Spectrograph on ESO's VLT, astronomers studied more than 6,500 galaxies over a wide range of distances to investigate how their properties vary over different timescales, in different environments and for varying galaxy luminosities [2]. They were able to build an atlas of the Universe in three dimensions, going back more than 9 billion years. This new census reveals a surprising result. The colour-density relation, that describes the relationship between the properties of a galaxy and its environment, was markedly different 7 billion years ago. The astronomers thus found that the galaxies' luminosity, their initial genetic properties, and the environments they reside in have a profound impact on their evolution. "Our results indicate that environment is a key player in galaxy evolution, but there's no simple answer to the 'nature versus nurture' problem in galaxy evolution," said Olivier Le Fèvre from the Laboratoire d'Astrophysique de Marseille

  3. A comparison of biological and cultural evolution

    Indian Academy of Sciences (India)

    The review aims at contributing to the present discussion concerning the modern development of the general theory of evolution, for example by giving a tentative formulation of the necessary and sufficient conditions for cultural evolution, and proposing that human creativity and mind reading or theory of mind are motors ...

  4. A comparison of biological and cultural evolution

    Indian Academy of Sciences (India)

    and our culture. The review aims at contributing to the present discussion concerning the modern development of the general theory of evolution, for example by giving a tentative formulation of the necessary and sufficient conditions for cultural evolution, and proposing that human creativity and mind reading or theory of ...

  5. Cultural evolution as a nonstationary stochastic process

    DEFF Research Database (Denmark)

    Nicholson, Arwen; Sibani, Paolo

    2016-01-01

    We present an individual based model of cultural evolution, where interacting agents are coded by binary strings standing for strategies for action, blueprints for products or attitudes and beliefs. The model is patterned on an established model of biological evolution, the Tangled Nature Model...

  6. Multiscale and Multivariate Visualizations of Software Evolution

    NARCIS (Netherlands)

    Voinea, Lucian; Telea, Alexandru

    2006-01-01

    Software evolution visualization is a promising technique for assessing the software development process. We study how complex correlations of software evolution attributes can be made using multivariate visualization techniques. We use a combination of color and textures to depict up to four

  7. (I): evolution from progressive to modal

    African Journals Online (AJOL)

    Kate H

    doi: 10.5774/52-0-699. The subjective use of postural verb in Afrikaans (I): evolution ... article is to propose a development route for the evolution of the subjective CPV en construction; and to highlight some typical .... Friedländer and StomTaljaner walking with the dogs to the farmhouse – are taking place at the same time.

  8. Phylogeny and evolution of RNA structure.

    Science.gov (United States)

    Gesell, Tanja; Schuster, Peter

    2014-01-01

    Darwin's conviction that all living beings on Earth are related and the graph of relatedness is tree-shaped has been essentially confirmed by phylogenetic reconstruction first from morphology and later from data obtained by molecular sequencing. Limitations of the phylogenetic tree concept were recognized as more and more sequence information became available. The other path-breaking idea of Darwin, natural selection of fitter variants in populations, is cast into simple mathematical form and extended to mutation-selection dynamics. In this form the theory is directly applicable to RNA evolution in vitro and to virus evolution. Phylogeny and population dynamics of RNA provide complementary insights into evolution and the interplay between the two concepts will be pursued throughout this chapter. The two strategies for understanding evolution are ultimately related through the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling both phylogeny and evolution of RNA driven by reproduction and mutation. Thereby the focus will be laid on models for phylogenetic sequence evolution as well as evolution and design of RNA structures with selected examples and notes on simulation methods. In the perspectives an attempt is made to combine molecular structure, population dynamics, and phylogeny in modeling evolution.

  9. A Constructive Approach To Software Evolution

    NARCIS (Netherlands)

    Ciraci, S.; van den Broek, P.M.; Aksit, Mehmet

    2007-01-01

    In many software design and evaluation techniques, either the software evolution problem is not systematically elaborated, or only the impact of evolution is considered. Thus, most of the time software is changed by editing the components of the software system, i.e. breaking down the software

  10. The Evolution of Rotor and Blade Design

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.

    2000-08-01

    The objective of this paper is to provide a historical perspective of the evolution of rotor and blade design during the last 20 years. This evolution is a balanced integration of economic, aerodynamic, structural dynamic, noise, and aesthetic considerations, which are known to be machine type and size dependent.

  11. SYNTHETIC AGB EVOLUTION .1. A NEW MODEL

    NARCIS (Netherlands)

    GROENEWEGEN, MAT; DEJONG, T

    We have constructed a model to calculate in a synthetic way the evolution of stars on the asymptotic giant branch (AGB). The evolution is started at the first thermal pulse (TP) and is terminated when the envelope mass has been lost due to mass loss or when the core mass reaches the Chandrasekhar

  12. Teaching the Evolution of the Angiosperm Carpel.

    Science.gov (United States)

    Laferriere, Joseph E.

    1992-01-01

    The carpel is a highly modified leaf enclosing the ovules. This article describes methods for teaching about the evolution of the carpel and the nature of carpel fusion. Presents an illustration of the evolution of the most common types of compound pistil arrangement from the ancestral single-carpel marginal type of placentation. (PR)

  13. Darwinian evolution in the light of genomics.

    Science.gov (United States)

    Koonin, Eugene V

    2009-03-01

    Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or 'forest' of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future.

  14. Dependence among sites in RNA evolution

    DEFF Research Database (Denmark)

    Yu, Jiaye; Thorne, Jeffrey L

    2006-01-01

    Although probabilistic models of genotype (e.g., DNA sequence) evolution have been greatly elaborated, less attention has been paid to the effect of phenotype on the evolution of the genotype. Here we propose an evolutionary model and a Bayesian inference procedure that are aimed at filling...

  15. Multilevel Evolution and the Emergence of Function

    NARCIS (Netherlands)

    Colizzi, E.S.

    2016-01-01

    In this thesis we have researched how novel functions arise through Darwinian Evolution. Evolution has been generating novel traits, forms and functions since its inception, about four billion years ago. Cellular life did not exist at such an early evolutionary stage and instead, according to the

  16. Addressing Teachers' Concerns about Teaching Evolution

    Science.gov (United States)

    Sanders, Martie; Ngxola, Nonyameko

    2009-01-01

    Evolution was introduced into the senior secondary school Life Sciences curriculum in South Africa for the first time in 2008. Research in other countries shows that evolution is an extremely controversial topic to teach, raising serious concerns for teachers. Curriculum change theory dealing with "stages of concern" suggests that…

  17. A Proactive Strategy for Teaching Evolution

    Science.gov (United States)

    Scharmann, Lawrence C.

    2005-01-01

    A proactive instructional strategy for teaching evolution, which consists of the use of small group and peer discussion, is presented. While teaching about evolution, the teachers should consider and address the needs of the students and see the practical implications of the evolutionary theory by overcoming apprehension, misunderstanding and…

  18. Niche construction and the evolution of leadership

    NARCIS (Netherlands)

    Spisak, B.R.; O'Brien, M.; Nicholson, N.; van Vugt, M.

    2015-01-01

    We use the concept of niche construction - the process whereby individuals, through their activities, interactions, and choices, modify their own and each other's environments - as an example of how biological evolution and cultural evolution interacted to form an integrative foundation of modern

  19. What are windows on language evolution?

    NARCIS (Netherlands)

    Botha, Rudolf

    2008-01-01

    This chapter offers an elucidation of the idea that certain phenomena provide windows on language evolution. Non-metaphorically, such windows are shown to be conceptual constructs used for making inferences about aspects of language evolution from data or assumptions about properties of

  20. Spectral Lag Evolution among -Ray Burst Pulses

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We analyse the spectral lag evolution of -ray burst (GRB) pulses with observations by CGRO/BATSE. No universal spectral lag evolution feature and pulse luminosity-lag relation within a GRB is observed.Our results suggest that the spectral lag would be due to radiation physics and dynamics of a given ...

  1. Textbook Stickers: A Reasonable Response to Evolution?

    Science.gov (United States)

    Borenstein, Jason

    2008-01-01

    Debates concerning how the issue of human life's origins should be handled within the confines of American public schools still continue. In order to mitigate the impact that evolution has on students, some school boards and state legislatures have recommended that stickers voicing a disclaimer about evolution be placed in biology textbooks. Even…

  2. Teaching the Broad, Interdisciplinary Impact of Evolution

    Science.gov (United States)

    Benson, David; Atlas, Pierre; Haberski, Raymond; Higgs, Jamie; Kiley, Patrick; Maxwell, Michael, Jr.; Mirola, William; Norton, Jamey

    2009-01-01

    As perhaps the most encompassing idea in biology, evolution has impacted not only science, but other academic disciplines as well. The broad, interdisciplinary impact of evolution was the theme of a course taught at Marian College, Indianapolis, Indiana in 2002, 2004, and 2006. Using a strategy that could be readily adopted at other institutions,…

  3. Evolution cannot explain how minds work

    NARCIS (Netherlands)

    Bolhuis, Johan J

    Following Jerry Hogan, I argue that questions of function and evolution, and questions of mechanism should be seen as logically distinct. Evolution is concerned with a historical reconstruction of traits, while the actual underlying mechanisms are the domain of cognitive neuroscience and psychology.

  4. Ecology and Evolution: Islands of Change.

    Science.gov (United States)

    Benz, Richard

    This book was designed for middle and junior high school science classes and focuses on island biogeography, ecology, and evolution. Sections include: (1) "Galapagos: Frame of Reference"; (2) "Ecology and Islands"; and (3) "Evolution." Nineteen standards-based activities use the Galapagos Islands as a running theme…

  5. Understanding the Nature of Science through Evolution

    Science.gov (United States)

    Narguizian, Paul

    2004-01-01

    As the common thread in biology, the topic of evolution and its related historical development can help students make sense of diverse biological concepts. The discussion of evolution provides educators with something else--a significant opportunity to teach important lessons involving the nature of science (NOS). This article addresses strategies…

  6. The evolution of plant virus transmission pathways

    Science.gov (United States)

    Frédéric M. Hamelin; Linda J.S. Allen; Holly R. Prendeville; M. Reza Hajimorad; Michael J. Jeger

    2016-01-01

    The evolution of plant virus transmission pathways is studied through transmission via seed, pollen, oravector. We address the questions: under what circumstances does vector transmission make pollen transmission redundant? Can evolution lead to the coexistence of multiple virus transmission pathways? We restrict the analysis to an annual plant population in which...

  7. Getting Goose Bumps about Teaching Evolution

    Science.gov (United States)

    Foster, Collin

    2014-01-01

    Evolution offers an intellectually satisfying and extremely well-supported explanation for the diversity of life in the natural world, its similarities and differences, how changes occur and how new life forms have developed. There are plenty of reasons to anticipate the teaching of evolution with exhilaration. In recent years, the issue of…

  8. Overcoming Deception in Evolution of Cognitive Behaviors

    DEFF Research Database (Denmark)

    Lehman, Joel; Miikkulainen, Risto

    2014-01-01

    evolutionary robotics T-Maze domain is adapted in three separate ways to require agents to communicate, remember, and learn. Indicative of deception, evolution driven by objective-based fitness often converges upon simple non- cognitive behaviors. In contrast, evolution driven to explore novel behaviors, i...

  9. Pragmatics and the aims of language evolution.

    Science.gov (United States)

    Scott-Phillips, Thomas C

    2017-02-01

    Pragmatics has historically played a relatively peripheral role in language evolution research. This is a profound mistake. Here I describe how a pragmatic perspective can inform language evolution in the most fundamental way: by making clear what the natural objects of study are, and hence what the aims of the field should be.

  10. Modes of evolution mainly among marine invertebrates

    NARCIS (Netherlands)

    Mac Gillavry, H.J.

    1968-01-01

    Three modes of evolution are distinguished: 1. evolutionary radiation, 2. opportunistic adaptation, 3. sustained change. Material evidence of evolution is almost non-existent in the first mode, very slight in the second. Opportunistic adaptation is characteristic of the sublittoral benthos;

  11. Space teleoperations technology for Space Station evolution

    Science.gov (United States)

    Reuter, Gerald J.

    1990-01-01

    Viewgraphs on space teleoperations technology for space station evolution are presented. Topics covered include: shuttle remote manipulator system; mobile servicing center functions; mobile servicing center technology; flight telerobotic servicer-telerobot; flight telerobotic servicer technology; technologies required for space station assembly; teleoperation applications; and technology needs for space station evolution.

  12. Chemical evolution and the origin of life

    Science.gov (United States)

    Oro, J.

    1983-01-01

    A review is presented of recent advances made in the understanding of the formation of carbon compounds in the universe and the occurrence of processes of chemical evolution. Topics discussed include the principle of evolutionary continuity, evolution as a fundamental principle of the physical universe, the nuclear synthesis of biogenic elements, organic cosmochemistry and interstellar molecules, the solar nebula and the solar system in chemical evolution, the giant planets and Titan in chemical evolution, and comets and their interaction with the earth. Also examined are carbonaceous chondrites, environment of the primitive earth, energy sources available on the primitive earth, the synthesis of biochemical monomers and oligomers, the abiotic transcription of nucleotides, unified prebiotic and enzymatic mechanisms, phospholipids and membranes, and protobiological evolution.

  13. Evolution of epigenetic regulation in vertebrate genomes

    Science.gov (United States)

    Lowdon, Rebecca F.; Jang, Hyo Sik; Wang, Ting

    2016-01-01

    Empirical models of sequence evolution have spurred progress in the field of evolutionary genetics for decades. We are now realizing the importance and complexity of the eukaryotic epigenome. While epigenome analysis has been applied to genomes from single cell eukaryotes to human, comparative analyses are still relatively few, and computational algorithms to quantify epigenome evolution remain scarce. Accordingly, a quantitative model of epigenome evolution remains to be established. Here we review the comparative epigenomics literature and synthesize its overarching themes. We also suggest one mechanism, transcription factor binding site turnover, which relates sequence evolution to epigenetic conservation or divergence. Lastly, we propose a framework for how the field can move forward to build a coherent quantitative model of epigenome evolution. PMID:27080453

  14. CNEM: Cluster Based Network Evolution Model

    Directory of Open Access Journals (Sweden)

    Sarwat Nizamani

    2015-01-01

    Full Text Available This paper presents a network evolution model, which is based on the clustering approach. The proposed approach depicts the network evolution, which demonstrates the network formation from individual nodes to fully evolved network. An agglomerative hierarchical clustering method is applied for the evolution of network. In the paper, we present three case studies which show the evolution of the networks from the scratch. These case studies include: terrorist network of 9/11 incidents, terrorist network of WMD (Weapons Mass Destruction plot against France and a network of tweets discussing a topic. The network of 9/11 is also used for evaluation, using other social network analysis methods which show that the clusters created using the proposed model of network evolution are of good quality, thus the proposed method can be used by law enforcement agencies in order to further investigate the criminal networks

  15. Professor Attitudes and Beliefs about Teaching Evolution

    Science.gov (United States)

    Barnes, Maryann Elizabeth

    Teaching evolution has been shown to be a challenge for faculty, in both K-12 and postsecondary education. Many of these challenges stem from perceived conflicts not only between religion and evolution, but also faculty beliefs about religion, it's compatibility with evolutionary theory, and it's proper role in classroom curriculum. Studies suggest that if educators engage with students' religious beliefs and identity, this may help students have positive attitudes towards evolution. The aim of this study was to reveal attitudes and beliefs professors have about addressing religion and providing religious scientist role models to students when teaching evolution. 15 semi-structured interviews of tenured biology professors were conducted at a large Midwestern universiy regarding their beliefs, experiences, and strategies teaching evolution and particularly, their willingness to address religion in a class section on evolution. Following a qualitative analysis of transcripts, professors did not agree on whether or not it is their job to help students accept evolution (although the majority said it is not), nor did they agree on a definition of "acceptance of evolution". Professors are willing to engage in students' religious beliefs, if this would help their students accept evolution. Finally, professors perceived many challenges to engaging students' religious beliefs in a science classroom such as the appropriateness of the material for a science class, large class sizes, and time constraints. Given the results of this study, the author concludes that instructors must come to a consensus about their goals as biology educators as well as what "acceptance of evolution" means, before they can realistically apply the engagement of student's religious beliefs and identity as an educational strategy.

  16. Human evolution. Evolution of early Homo: an integrated biological perspective.

    Science.gov (United States)

    Antón, Susan C; Potts, Richard; Aiello, Leslie C

    2014-07-04

    Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments. Copyright © 2014, American Association for the Advancement of Science.

  17. Dynamical Evolution of Planetary Systems

    Science.gov (United States)

    Morbidelli, Alessandro

    The apparent regularity of the motion of the giant planets of our solar system suggested for decades that said planets formed onto orbits similar to the current onesand that nothing dramatic ever happened during their lifetime. The discovery of extrasolar planets showed astonishingly that the orbital structure of our planetary system is not typical. Many giant extrasolar planets have orbits with semimajor axes of ˜ 1 AU,and some have even smaller orbital radii, sometimes with orbital periods of just a few days. Moreover, most extrasolar planets have large eccentricities, up to values that only comets have in our solar system. Why is there such a great diversitybetween our solar system and the extrasolar systems, as well as among the extrasolar systems themselves? This chapter aims to give a partial answer to this fundamental question. Its guideline is a discussion of the evolution of our solarsystem, certainly biased by a view that emerges, in part, from a series of works comprising the "Nice model." According to this view, the giant planets of the solar system migrated radially while they were still embedded in a protoplanetary disk of gas and presumably achieved a multi-resonant orbital configuration, characterized by smaller interorbital spacings and smaller eccentricities and inclinations with respect to the current configuration.The current orbits of the giant planets may have been achieved during a phase of orbital instability, during which the planets acquired temporarily large-eccentricity orbits and all experienced close encounters with at least oneother planet. This instability phase occurred presumably during the putative "Late Heavy Bombardment" of the terrestrial planets, approximately ˜ 3.9 Gy ago (Tera et al. 1974). The interaction with a massive, distant planetesimal disk (the ancestor of the current Kuiper belt) eventually damped the eccentricities of the planets, ending the phase of mutual planetary encounters and parking the planets onto their

  18. Evolution of dynamic combinatorial chemistry.

    Science.gov (United States)

    Cougnon, Fabien B L; Sanders, Jeremy K M

    2012-12-18

    Since its inception in the mid-1990s, dynamic combinatorial chemistry (DCC), the chemistry of complex systems under thermodynamic control, has proved valuable in identifying unexpected molecules with remarkable binding properties and in providing effective synthetic routes to complex species. Essentially, in this approach, one designs the experiment rather than the molecule. DCC has also provided us with insights into how some chemical systems respond to external stimuli. Using examples from the work of our laboratory and others, this Account shows how the concept of DCC, inspired by the evolution of living systems, has found an increasing range of applications in diverse areas and has evolved conceptually and experimentally. A dynamic combinatorial library (DCL) is a thermodynamically controlled mixture of interconverting species that can respond to various stimuli. The Cambridge version of dynamic combinatorial chemistry was initially inspired by the mammalian immune system and was conceived as a way to create and identify new unpredictable receptors. For example, an added template can select and stabilize a strongly binding member of the library which is then amplified at the expense of the unsuccessful library members, minimizing the free energy of the system. But researchers have exploited DCC in a variety of other ways: over the past two decades, this technique has contributed to the evolution of chemistry and to applications in the diverse fields of catalysis, fragrance release, and responsive materials. Among these applications, researchers have built intricate and well-defined architectures such as catenanes or hydrogen-bonded nanotubes, using the ability of complex chemical systems to reach a high level of organization. In addition, DCC has proved a powerful tool for the study of complex molecular networks and systems. The use of DCC is improving our understanding of chemical and biological systems. The study of folding or self-replicating macrocycles in

  19. Teaching genetics prior to teaching evolution improves evolution understanding but not acceptance.

    Science.gov (United States)

    Mead, Rebecca; Hejmadi, Momna; Hurst, Laurence D

    2017-05-01

    What is the best way to teach evolution? As microevolution may be configured as a branch of genetics, it being a short conceptual leap from understanding the concepts of mutation and alleles (i.e., genetics) to allele frequency change (i.e., evolution), we hypothesised that learning genetics prior to evolution might improve student understanding of evolution. In the UK, genetics and evolution are typically taught to 14- to 16-y-old secondary school students as separate topics with few links, in no particular order and sometimes with a large time span between. Here, then, we report the results of a large trial into teaching order of evolution and genetics. We modified extant questionnaires to ascertain students' understanding of evolution and genetics along with acceptance of evolution. Students were assessed prior to teaching, immediately post teaching and again after several months. Teachers were not instructed what to teach, just to teach in a given order. Regardless of order, teaching increased understanding and acceptance, with robust signs of longer-term retention. Importantly, teaching genetics before teaching evolution has a significant (p evolution understanding by 7% in questionnaire scores beyond the increase seen for those taught in the inverse order. For lower ability students, an improvement in evolution understanding was seen only if genetics was taught first. Teaching genetics first additionally had positive effects on genetics understanding, by increasing knowledge. These results suggest a simple, minimally disruptive, zero-cost intervention to improve evolution understanding: teach genetics first. This same alteration does not, however, result in a significantly increased acceptance of evolution, which reflects a weak correlation between knowledge and acceptance of evolution. Qualitative focus group data highlights the role of authority figures in determination of acceptance.

  20. Ape gestures and language evolution

    Science.gov (United States)

    Pollick, Amy S.; de Waal, Frans B. M.

    2007-01-01

    The natural communication of apes may hold clues about language origins, especially because apes frequently gesture with limbs and hands, a mode of communication thought to have been the starting point of human language evolution. The present study aimed to contrast brachiomanual gestures with orofacial movements and vocalizations in the natural communication of our closest primate relatives, bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). We tested whether gesture is the more flexible form of communication by measuring the strength of association between signals and specific behavioral contexts, comparing groups of both the same and different ape species. Subjects were two captive bonobo groups, a total of 13 individuals, and two captive chimpanzee groups, a total of 34 individuals. The study distinguished 31 manual gestures and 18 facial/vocal signals. It was found that homologous facial/vocal displays were used very similarly by both ape species, yet the same did not apply to gestures. Both within and between species gesture usage varied enormously. Moreover, bonobos showed greater flexibility in this regard than chimpanzees and were also the only species in which multimodal communication (i.e., combinations of gestures and facial/vocal signals) added to behavioral impact on the recipient. PMID:17470779

  1. Evolution in a changing environment.

    Directory of Open Access Journals (Sweden)

    Andrea Baronchelli

    Full Text Available We propose a simple model for genetic adaptation to a changing environment, describing a fitness landscape characterized by two maxima. One is associated with "specialist" individuals that are adapted to the environment; this maximum moves over time as the environment changes. The other maximum is static, and represents "generalist" individuals not affected by environmental changes. The rest of the landscape is occupied by "maladapted" individuals. Our analysis considers the evolution of these three subpopulations. Our main result is that, in presence of a sufficiently stable environmental feature, as in the case of an unchanging aspect of a physical habitat, specialists can dominate the population. By contrast, rapidly changing environmental features, such as language or cultural habits, are a moving target for the genes; here, generalists dominate, because the best evolutionary strategy is to adopt neutral alleles not specialized for any specific environment. The model we propose is based on simple assumptions about evolutionary dynamics and describes all possible scenarios in a non-trivial phase diagram. The approach provides a general framework to address such fundamental issues as the Baldwin effect, the biological basis for language, or the ecological consequences of a rapid climate change.

  2. Evolution in a changing environment.

    Science.gov (United States)

    Baronchelli, Andrea; Chater, Nick; Christiansen, Morten H; Pastor-Satorras, Romualdo

    2013-01-01

    We propose a simple model for genetic adaptation to a changing environment, describing a fitness landscape characterized by two maxima. One is associated with "specialist" individuals that are adapted to the environment; this maximum moves over time as the environment changes. The other maximum is static, and represents "generalist" individuals not affected by environmental changes. The rest of the landscape is occupied by "maladapted" individuals. Our analysis considers the evolution of these three subpopulations. Our main result is that, in presence of a sufficiently stable environmental feature, as in the case of an unchanging aspect of a physical habitat, specialists can dominate the population. By contrast, rapidly changing environmental features, such as language or cultural habits, are a moving target for the genes; here, generalists dominate, because the best evolutionary strategy is to adopt neutral alleles not specialized for any specific environment. The model we propose is based on simple assumptions about evolutionary dynamics and describes all possible scenarios in a non-trivial phase diagram. The approach provides a general framework to address such fundamental issues as the Baldwin effect, the biological basis for language, or the ecological consequences of a rapid climate change.

  3. Evolution of the Freshwater Eels

    Science.gov (United States)

    Aoyama, Jun; Tsukamoto, Katsumi

    The freshwater anguillid eels have an unusual life history and world-wide distribution. Questions about the phylogenetic relationships of this group and how their long spawning migrations and larval phase may contribute to their global distribution have not been addressed. This paper is first presentation of molecular phylogeny of Anguilla species, and based on this phylogenetic tree we suggest new aspect of the evolution of this group. Namely, ancestral eels originated during the Eocene or earlier, in the western Pacific Ocean near present-day Indonesia. A group derived from this ancestor dispersed westward, probably by larval transport in the global circum-equatorial current through the northern edge of the Tethys Sea. This group split into the ancestor of the European and American eels, which entered into the Atlantic Ocean, and a second group, which dispersed southward and split into the east African species and Australian species. Thus the world-wide distribution of the eel family can be understood from knowledge of continental drift, ocean currents, a specialized larva and evolutionary forces favoring dispersal and speciation of segregated gene pool.

  4. Mineral evolution and Earth history

    Science.gov (United States)

    Bradley, Dwight C.

    2015-01-01

    The field of mineral evolution—a merger of mineralogy and Earth history—coalesced in 2008 with the first of several global syntheses by Robert Hazen and coworkers in the American Mineralogist. They showed that the cumulative abundance of mineral species has a stepwise trend with first appearances tied to various transitions in Earth history such as the end of planetary accretion at ca. 4.55 Ga and the onset of bio-mediated mineralogy at ca. >2.5 Ga. A global age distribution is best established for zircon. Observed abundance of zircon fluctuates through more than an order of magnitude during successive supercontinent cycles. The pulse of the Earth is also recorded, albeit imperfectly, by the 87Sr/86Sr composition of marine biogenic calcite; the Sr-isotopic ratio of this mineral reflects the balance of inputs of primitive strontium at mid-ocean ridges and evolved strontium that drains off the continents. A global mineral evolution database, currently in the works, will greatly facilitate the compilation and analysis of extant data and the expansion of research in mineralogy outside its traditional bounds and into more interdisciplinary realms.

  5. Can IVF influence human evolution?

    Science.gov (United States)

    Hanevik, Hans Ivar; Hessen, Dag O; Sunde, Arne; Breivik, Jarle

    2016-07-01

    IVF, a procedure in which pharmacological and technological manipulation is used to promote pregnancy, offers help to infertile couples by circumventing selection at the most fundamental level. Fertility is clearly one of the key fitness-promoting drivers in all forms of sexually reproducing life, and fertilization and pregnancy are fundamental evolutionary processes that involve a range of pre- and post-zygotic screening mechanisms. Here, we discuss the various selection and screening factors involved in fertilization and pregnancy and assess IVF practices in light of these factors. We then focus on the possible consequences of these differences in selection pressures, mainly at the individual but also at the population level, to evaluate whether changes in the reproducing genotype can affect human evolution. The aim of the article is not to argue for or against IVF, but to address aspects of assisted reproduction in an evolutionary context. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Cell wall evolution and diversity

    Directory of Open Access Journals (Sweden)

    Jonatan Ulrik Fangel

    2012-07-01

    Full Text Available Plant cell walls display a considerable degree of diversity in their compositions and molecular architectures. In some cases the functional significance of a particular cell wall type appears to be easy to discern: secondary cells walls are often heavy reinforced with lignin that provides the required durability; the thin cell walls of pollen tubes have particular compositions that enable their tip growth; lupin seed cell walls are characteristically thickened with galactan used as a storage polysaccharide. However, more frequently the evolutionary mechanisms and selection pressures that underpin cell wall diversity and evolution are unclear. The rapidly increasing availability of transcriptome and genome data sets, development of high-throughput methods for cell wall analyses, and expansion of molecular probe sets, are providing new insights into the diversity and occurrence of cell wall polysaccharides and associated biosynthetic genes. Such research is important for refining our understanding of some of the fundamental processes that enabled plants to colonise land and subsequently radiate so comprehensively. The study of cell wall structural diversity is also an important aspect of the industrial utilization of global polysaccharide bio-resources.

  7. Biomimetic endodontics: the final evolution?

    Science.gov (United States)

    Clark, David J

    2007-07-01

    We are seeing a gradual evolution by a small but growing number of endodontists and general dentists toward delicate biomimetic, microscope-based shaping. This old-fashioned respect for periradicular dentin is paired with microscopes, ultrasonics, and an appreciation for root morphology. Although no 2 roots are the same, general anatomic patterns allow the microscope-equipped clinician to search for major pulpal regions that will yield a high probability of cleaning and shaping the clinically available pulpal zones. There are complex, anatomically improbable, and clinically impossible areas of pulp that are beyond the reach of even the most gifted hands. Regardless, the clinician has the responsibility to begin each procedure seeking perfection and joyfully finishing with excellence. The shapes that were introduced during the Schilder (crown-down) era have served as a transitional technique to allow the first real 3-dimensional compaction of gutta-percha. Nonetheless, endodontics is in the end a restoratively driven procedure. Large, arbitrary, round shapes create beautiful endodontics but can dramatically weaken the tooth. The shaping philosophy advanced in this treatise allows perfectly adequate shapes to achieve the hydraulics needed for modern obturation. It will require different skills and materials to shape, pack, and restore the exotic architecture of nature. (See Tables 1 to 3.).

  8. Vertebral development and amphibian evolution.

    Science.gov (United States)

    Carroll, R L; Kuntz, A; Albright, K

    1999-01-01

    Amphibians provide an unparalleled opportunity to integrate studies of development and evolution through the investigation of the fossil record of larval stages. The pattern of vertebral development in modern frogs strongly resembles that of Paleozoic labyrinthodonts in the great delay in the ossification of the vertebrae, with the centra forming much later than the neural arches. Slow ossification of the trunk vertebrae in frogs and the absence of ossification in the tail facilitate the rapid loss of the tail during metamorphosis, and may reflect retention of the pattern in their specific Paleozoic ancestors. Salamanders and caecilians ossify their centra at a much earlier stage than frogs, which resembles the condition in Paleozoic lepospondyls. The clearly distinct patterns and rates of vertebral development may indicate phylogenetic separation between the ultimate ancestors of frogs and those of salamanders and caecilians within the early radiation of ancestral tetrapods. This divergence may date from the Lower Carboniferous. Comparison with the molecular regulation of vertebral development described in modern mammals and birds suggests that the rapid chondrification of the centra in salamanders relative to that of frogs may result from the earlier migration of sclerotomal cells expressing Pax1 to the area surrounding the notochord.

  9. Music, cognition, culture, and evolution.

    Science.gov (United States)

    Cross, I

    2001-06-01

    We seem able to define the biological foundations for our musicality within a clear and unitary framework, yet music itself does not appear so clearly definable. Music is different things and does different things in different cultures; the bundles of elements and functions that are music for any given culture may overlap minimally with those of another culture, even for those cultures where "music" constitutes a discrete and identifiable category of human activity in its own right. The dynamics of culture, of music as cultural praxis, are neither necessarily reducible, nor easily relatable, to the dynamics of our biologies. Yet music appears to be a universal human competence. Recent evolutionary theory, however, affords a means for exploring things biological and cultural within a framework in which they are at least commensurable. The adoption of this perspective shifts the focus of the search for the foundations of music away from the mature and particular expression of music within a specific culture or situation and on to the human capacity for musicality. This paper will survey recent research that examines that capacity and its evolutionary origins in the light of a definition of music that embraces music's multifariousness. It will be suggested that music, like speech, is a product of both our biologies and our social interactions; that music is a necessary and integral dimension of human development; and that music may have played a central role in the evolution of the modern human mind.

  10. The Evolution of Poxvirus Vaccines

    Directory of Open Access Journals (Sweden)

    Lucas Sánchez-Sampedro

    2015-04-01

    Full Text Available After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV, the causative agent of smallpox. Cowpox virus (CPXV and horsepox virus (HSPV were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV, which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.

  11. The Evolution of Contractual Morality

    Directory of Open Access Journals (Sweden)

    Alejandro Rosas

    2011-12-01

    Full Text Available Evolutionary explanations of altruism and human cooperation, first set forth by pioneers such as Darwin, Hamilton and Trivers, suggest that biology might be capable of offering a plausible scientific explanation of the core of human morality. According to this project, morality and human cooperation arise when resourcesare scarce; they cannot be exploited by isolated individuals; and individuals cannot maintain a long-term position of domination over others in order to advance their selfish ends. An important philosophical question that arises with respect to this project has to do with the concepts of de morality and moral motivation that itpresupposes. The evolutionary project has not been clear in this respect. The article argues in favor of two theses: 1 evolutionary explanations of cooperation suggest a contractual type of morality, but they are ambiguous regarding the motivations favored by natural selection, thus reflecting, without resolving it, a traditionaldisagreement between Hobbes’s moral contractualism (selfish motivations and that of Kant (altruistic motivations; 2 in their current form, these explanations cannot resolve that disagreement, but a reflection on the role of the capacity to interpret the motivations and character of others in the evolution of morality could provide arguments in favor of Kantian contractualism.

  12. Spatial Evolution of Human Dialects

    Science.gov (United States)

    Burridge, James

    2017-07-01

    The geographical pattern of human dialects is a result of history. Here, we formulate a simple spatial model of language change which shows that the final result of this historical evolution may, to some extent, be predictable. The model shows that the boundaries of language dialect regions are controlled by a length minimizing effect analogous to surface tension, mediated by variations in population density which can induce curvature, and by the shape of coastline or similar borders. The predictability of dialect regions arises because these effects will drive many complex, randomized early states toward one of a smaller number of stable final configurations. The model is able to reproduce observations and predictions of dialectologists. These include dialect continua, isogloss bundling, fanning, the wavelike spread of dialect features from cities, and the impact of human movement on the number of dialects that an area can support. The model also provides an analytical form for Séguy's curve giving the relationship between geographical and linguistic distance, and a generalization of the curve to account for the presence of a population center. A simple modification allows us to analytically characterize the variation of language use by age in an area undergoing linguistic change.

  13. Evolution of Gyrification in Carnivores.

    Science.gov (United States)

    Lyras, George A; Giannakopoulou, Aggeliki; Kouvari, Miranda; Papadopoulos, Georgios C

    2016-01-01

    The order Carnivora is a large and highly diverse mammalian group with a long and well-documented evolutionary history. Nevertheless, our knowledge on the degree of cortical folding (or degree of gyrification) is limited to just a few species. Here we investigate the degree of cortical folding in 64 contemporary and 37 fossil carnivore species. We do so by measuring the length of gyri impressions on endocranial casts. We use this approach because we have found that there is a very good correlation between the degree of cortical folding and the relative length of the gyri that are exposed on the outer surface of the hemispheres. Our results indicate that aquatic and semiaquatic carnivores have higher degrees of cortical folding than terrestrial carnivores. The degree of cortical folding varies among modern families, with viverrids having the lowest values. Furthermore, the scaling of cortical folding with brain size follows different patterns across specific carnivore families. Forty million years ago, the first carnivores had a relatively small cortex and limited cortical folding. Both the size of the cortex and the degree of cortical folding increased independently in each family during evolution. © 2017 S. Karger AG, Basel.

  14. Sociodemographic aspect of society evolution

    Directory of Open Access Journals (Sweden)

    Raisa Viktorovna Nifanova

    2013-12-01

    Full Text Available In the article, the authors have classified theories of human aging, having emphasized the theory of «cellular death» on the basis of generalization of an extensive theoretical and empirical material of domestic and foreign researchers. The main theories of specific duration of human life, the biological and social and economic criteria and health factors of causes of death and longevity are briefly presented. The achievements of the genetics of a human body aging are discussed. In the article, the author stopped on a problem of the human genofond stability and obvious delay of its biological evolution in the historical development. Despite a deep socialization of humanity, people remains in captivity of biological life, obey all the laws of the biological organization including those that keep it and provide it to following generations. The biological factors influencing reproduction of the population, unlike social factors, are more stable in time. Various socioeconomic and physiographic conditions interacted for a long time with biological factors, determine a certain life expectancy. In the modern conditions for forward development of society, the special value gets a question of the human potential realization — gold fund of of manufacture, science, culture. With a «century of biology» which starts with the development of molecular biology, genetics, biological cybernetics, the science has new opportunities for effective adaptation of human to new conditions

  15. Rumor evolution in social networks

    Science.gov (United States)

    Zhang, Yichao; Zhou, Shi; Zhang, Zhongzhi; Guan, Jihong; Zhou, Shuigeng

    2013-03-01

    The social network is a main tunnel of rumor spreading. Previous studies concentrated on a static rumor spreading. The content of the rumor is invariable during the whole spreading process. Indeed, the rumor evolves constantly in its spreading process, which grows shorter, more concise, more easily grasped, and told. In an early psychological experiment, researchers found about 70% of details in a rumor were lost in the first six mouth-to-mouth transmissions. Based on these observations, we investigate rumor spreading on social networks, where the content of the rumor is modified by the individuals with a certain probability. In the scenario, they have two choices, to forward or to modify. As a forwarder, an individual disseminates the rumor directly to their neighbors. As a modifier, conversely, an individual revises the rumor before spreading it out. When the rumor spreads on the social networks, for instance, scale-free networks and small-world networks, the majority of individuals actually are infected by the multirevised version of the rumor, if the modifiers dominate the networks. The individuals with more social connections have a higher probability to receive the original rumor. Our observation indicates that the original rumor may lose its influence in the spreading process. Similarly, a true information may turn out to be a rumor as well. Our result suggests the rumor evolution should not be a negligible question, which may provide a better understanding of the generation and destruction of a rumor.

  16. The Evolution of Global Politics

    Directory of Open Access Journals (Sweden)

    George Moldeski

    1995-08-01

    Full Text Available The rise and decline of world powers has attracted much scholarly attention in recent years. The theory of long cycles answers parsimoniously the question: why, in the past half millenium, have Portugal, the Dutch Republic, Britain (twice, and the United States risen to global leadership while others have failed to do so? This accounts for the success, or failure, of individual states, but to explain the entire sequence we need to employ an evolutionary paradigm that proposes that each of these long cycles is one mechanism in a spectrum of global evolutionary processes. The leadership succession is an intermediate stage in the evolution og global politics, whose next likely major phase, reaching a high point later in the 21st century, will be the gradual absorption of the informal role of global leadership, when embedded in a democratic community, into a network of more formal positions within an emerging global organization of a federalist character. The conditions of that process can now be specified.

  17. The evolution of episodic memory

    Science.gov (United States)

    Allen, Timothy A.; Fortin, Norbert J.

    2013-01-01

    One prominent view holds that episodic memory emerged recently in humans and lacks a “(neo)Darwinian evolution” [Tulving E (2002) Annu Rev Psychol 53:1–25]. Here, we review evidence supporting the alternative perspective that episodic memory has a long evolutionary history. We show that fundamental features of episodic memory capacity are present in mammals and birds and that the major brain regions responsible for episodic memory in humans have anatomical and functional homologs in other species. We propose that episodic memory capacity depends on a fundamental neural circuit that is similar across mammalian and avian species, suggesting that protoepisodic memory systems exist across amniotes and, possibly, all vertebrates. The implication is that episodic memory in diverse species may primarily be due to a shared underlying neural ancestry, rather than the result of evolutionary convergence. We also discuss potential advantages that episodic memory may offer, as well as species-specific divergences that have developed on top of the fundamental episodic memory architecture. We conclude by identifying possible time points for the emergence of episodic memory in evolution, to help guide further research in this area. PMID:23754432

  18. Experimental Evolution withCaenorhabditisNematodes.

    Science.gov (United States)

    Teotónio, Henrique; Estes, Suzanne; Phillips, Patrick C; Baer, Charles F

    2017-06-01

    The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C . briggsae and C. remanei , by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host-pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative. Copyright © 2017 Teotónio et al.

  19. Quantum Correlations Evolution Asymmetry in Quantum Channels

    Science.gov (United States)

    Li, Meng; Huang, Yun-Feng; Guo, Guang-Can

    2017-03-01

    It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels. Supported by the National Natural Science Foundation of China under Grant Nos. 61327901, 61490711, 61225025, 11474268, and the Fundamental Research Funds for the Central Universities under Grant No. WK2470000018

  20. The genomic landscape of compensatory evolution.

    Directory of Open Access Journals (Sweden)

    Béla Szamecz

    2014-08-01

    Full Text Available Adaptive evolution is generally assumed to progress through the accumulation of beneficial mutations. However, as deleterious mutations are common in natural populations, they generate a strong selection pressure to mitigate their detrimental effects through compensatory genetic changes. This process can potentially influence directions of adaptive evolution by enabling evolutionary routes that are otherwise inaccessible. Therefore, the extent to which compensatory mutations shape genomic evolution is of central importance. Here, we studied the capacity of the baker's yeast genome to compensate the complete loss of genes during evolution, and explored the long-term consequences of this process. We initiated laboratory evolutionary experiments with over 180 haploid baker's yeast genotypes, all of which initially displayed slow growth owing to the deletion of a single gene. Compensatory evolution following gene loss was rapid and pervasive: 68% of the genotypes reached near wild-type fitness through accumulation of adaptive mutations elsewhere in the genome. As compensatory mutations have associated fitness costs, genotypes with especially low fitnesses were more likely to be subjects of compensatory evolution. Genomic analysis revealed that as compensatory mutations were generally specific to the functional defect incurred, convergent evolution at the molecular level was extremely rare. Moreover, the majority of the gene expression changes due to gene deletion remained unrestored. Accordingly, compensatory evolution promoted genomic divergence of parallel evolving populations. However, these different evolutionary outcomes are not phenotypically equivalent, as they generated diverse growth phenotypes across environments. Taken together, these results indicate that gene loss initiates adaptive genomic changes that rapidly restores fitness, but this process has substantial pleiotropic effects on cellular physiology and evolvability upon

  1. Balitsky-JIMWLK evolution equation at NLO

    Directory of Open Access Journals (Sweden)

    Chirilli Giovanni Antonio

    2014-01-01

    Full Text Available Wilson line operators are infinite gauge factors ordered along the straight lines of the fast moving particles. Scattering amplitudes of proton-Nucleus or Nucleus-Nucleus collisions at high-energy are written in terms of matrix elements of these operators and the energy dependence of such amplitudes is obtained by the evolution equation with respect to the rapidity parameter: the Balitsky-JIMWLK evolution equation. A brief description of the derivation of the Balitsky-JIMWLK evolution equation at leading order and nextto-leading order will be presented.

  2. Galaxy Evolution in Clusters Since z ~ 1

    Science.gov (United States)

    Aragón-Salamanca, A.

    Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the Universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  3. Iterated learning and the evolution of language.

    Science.gov (United States)

    Kirby, Simon; Griffiths, Tom; Smith, Kenny

    2014-10-01

    Iterated learning describes the process whereby an individual learns their behaviour by exposure to another individual's behaviour, who themselves learnt it in the same way. It can be seen as a key mechanism of cultural evolution. We review various methods for understanding how behaviour is shaped by the iterated learning process: computational agent-based simulations; mathematical modelling; and laboratory experiments in humans and non-human animals. We show how this framework has been used to explain the origins of structure in language, and argue that cultural evolution must be considered alongside biological evolution in explanations of language origins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Two quality evolutions: Industry vs. health care

    Directory of Open Access Journals (Sweden)

    Živaljević Aleksandra

    2016-01-01

    Full Text Available Paper explains evolution of Global Quality Management Theory through changes of different quality management approaches in time and compares it to the evolution of Quality Management in Healthcare. Authors relied on already existing information and data sources published in scientific journals to define evolution paths and conduct their comparison to identify gaps and recommend improvements in Healthcare Quality Management. Additionally, four major activities that could improve healthcare quality management emerged from analysis, such as: mechanism for constant and systematic tracing errors, managing quality of supportive processes, control of outsource organizations and application of IT for quality assurance.

  5. Mathematical Analysis of Evolution, Information, and Complexity

    CERN Document Server

    Arendt, Wolfgang

    2009-01-01

    Mathematical Analysis of Evolution, Information, and Complexity deals with the analysis of evolution, information and complexity. The time evolution of systems or processes is a central question in science, this text covers a broad range of problems including diffusion processes, neuronal networks, quantum theory and cosmology. Bringing together a wide collection of research in mathematics, information theory, physics and other scientific and technical areas, this new title offers elementary and thus easily accessible introductions to the various fields of research addressed in the book.

  6. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  7. Bringing molecules back into molecular evolution.

    Directory of Open Access Journals (Sweden)

    Claus O Wilke

    Full Text Available Much molecular-evolution research is concerned with sequence analysis. Yet these sequences represent real, three-dimensional molecules with complex structure and function. Here I highlight a growing trend in the field to incorporate molecular structure and function into computational molecular-evolution work. I consider three focus areas: reconstruction and analysis of past evolutionary events, such as phylogenetic inference or methods to infer selection pressures; development of toy models and simulations to identify fundamental principles of molecular evolution; and atom-level, highly realistic computational modeling of molecular structure and function aimed at making predictions about possible future evolutionary events.

  8. Teaching genetics prior to teaching evolution improves evolution understanding but not acceptance

    Science.gov (United States)

    Mead, Rebecca; Hejmadi, Momna

    2017-01-01

    What is the best way to teach evolution? As microevolution may be configured as a branch of genetics, it being a short conceptual leap from understanding the concepts of mutation and alleles (i.e., genetics) to allele frequency change (i.e., evolution), we hypothesised that learning genetics prior to evolution might improve student understanding of evolution. In the UK, genetics and evolution are typically taught to 14- to 16-y-old secondary school students as separate topics with few links, in no particular order and sometimes with a large time span between. Here, then, we report the results of a large trial into teaching order of evolution and genetics. We modified extant questionnaires to ascertain students’ understanding of evolution and genetics along with acceptance of evolution. Students were assessed prior to teaching, immediately post teaching and again after several months. Teachers were not instructed what to teach, just to teach in a given order. Regardless of order, teaching increased understanding and acceptance, with robust signs of longer-term retention. Importantly, teaching genetics before teaching evolution has a significant (p students, an improvement in evolution understanding was seen only if genetics was taught first. Teaching genetics first additionally had positive effects on genetics understanding, by increasing knowledge. These results suggest a simple, minimally disruptive, zero-cost intervention to improve evolution understanding: teach genetics first. This same alteration does not, however, result in a significantly increased acceptance of evolution, which reflects a weak correlation between knowledge and acceptance of evolution. Qualitative focus group data highlights the role of authority figures in determination of acceptance. PMID:28542179

  9. Tethyan evolution of central Asia

    Energy Technology Data Exchange (ETDEWEB)

    Sengor, A.M.C. (Instanbul Technical Univ. (Turkey))

    1990-05-01

    The study area extends from the eastern shores of the Caspian Sea in the west to the Helan Shan and Longmen Shan in the east and from about 40{degree}N parallel in the north to the neo-Tethyan sutures in the south, thus including what is called Middle Asia in the Soviet literature. In the region thus delineated lies the boundary between the largely late Paleozoic core of Asia (Altaids) and the Tethyside superorogenic complex. This boundary passes through continental objects that collided with nuclear Asia in the late Paleozoic to terminate its Altaid evolution. Subduction to the south of some of these had commenced before they collided (e.g., Tarim in the Kuen-Lun), in others later (e.g., South Ghissar area west of Pamirs). This subduction 1ed, in the late Paleozoic, to the opening of marginal basins, at least one of which may be partly extant (Tarim). Giant subduction accretion complexes of Paleozoic to earliest Triassic age dominate farther south in the basement of Turan (mainly in Turkmenian SSR) and in the Kuen-Lun/Nan Shan ranges. No discrete continental collisions or any continental basement in these regions could be unequivocally recognized contrary to most current interpretations. Magmatic arcs that developed along the southern margin of Asia in the late Paleozoic to early Mesozoic grew atop these subduction-accretion complexes and record a gradual southerly migration of magmatism through time. Subduction also dominated the northern margin of Gondwanaland between Iran and China in late Paleozoic time, although the record in Afghanistan and northwest Tibet is scrappy. It led to back-arc basin formation, which in Iran and Oman became neo-Tethys and, in at least parts of central Asia, the Waser-Mushan-Pshart/Banggong Co-Nu Jiang ocean. This ocean was probably connected with the Omani part of the neo-Tethys via the Sistan region.

  10. The Evolution of CERN EDMS

    Science.gov (United States)

    Wardzinska, Aleksandra; Petit, Stephan; Bray, Rachel; Delamare, Christophe; Garcia Arza, Griselda; Krastev, Tsvetelin; Pater, Krzysztof; Suwalska, Anna; Widegren, David

    2015-12-01

    Large-scale long-term projects such as the LHC require the ability to store, manage, organize and distribute large amounts of engineering information, covering a wide spectrum of fields. This information is a living material, evolving in time, following specific lifecycles. It has to reach the next generations of engineers so they understand how their predecessors designed, crafted, operated and maintained the most complex machines ever built. This is the role of CERN EDMS. The Engineering and Equipment Data Management Service has served the High Energy Physics Community for over 15 years. It is CERN's official PLM (Product Lifecycle Management), supporting engineering communities in their collaborations inside and outside the laboratory. EDMS is integrated with the CAD (Computer-aided Design) and CMMS (Computerized Maintenance Management) systems used at CERN providing tools for engineers who work in different domains and who are not PLM specialists. Over the years, human collaborations and machines grew in size and complexity. So did EDMS: it is currently home to more than 2 million files and documents, and has over 6 thousand active users. In April 2014 we released a new major version of EDMS, featuring a complete makeover of the web interface, improved responsiveness and enhanced functionality. Following the results of user surveys and building upon feedback received from key users group, we brought what we think is a system that is more attractive and makes it easy to perform complex tasks. In this paper we will describe the main functions and the architecture of EDMS. We will discuss the available integration options, which enable further evolution and automation of engineering data management. We will also present our plans for the future development of EDMS.

  11. Africa and Precambrian biological evolution

    Directory of Open Access Journals (Sweden)

    A. H. Knoll

    1983-12-01

    Full Text Available African sedimentary rocks and their contained fossils have played a fundamental role in the unravelling of Precambrian biological history. Various lines of evidence including stromatolites, filamentous and coccoidal microfossils, stable isotope ratios, organic carbon distribution, and oxide facies iron formation suggest that a complex prokaryotic ecosystem fueled by photosynthesis, and perhaps including aerobic photoautotrophs, existed as early as 3 500 m.y. ago. The primary sources of data on early Archean life are rock sequences in southern Africa and Australia. The diversity of later Archean (ca. 2 700 m.y. communities is attested to by abundant and varied stromatolites found in Zimbabwe. The extensive growth and consolidation of continents that heralded the Proterozoic Eon had profound effects on the earth’s biota. Primary productivity must have increased substantially, resulting in the establishment of an 02-rich atmosphere, and, subsequently, the radiation of aerobic respirers. Southern African sequences provide critical evidence bearing on this crust/atmosphere/biota interaction; however, the best known microfossils of this age come from North America. Upper Proterozoic sedimentary rocks abound in Africa. Stromatolites from northwestern Africa have been well studied; however, microfossil occurrences remain but sketchily described. Contemporaneous sequences from Scandinavia and Australia document the initial radiation of eukaryotes in the planktonic realm, as well as a terminal Precambrian episode of extinction among plankters. Early heterotrophic protists are known from several continents. The Nama Group of South West Africa/Namibia contains important evidence of early invertebrates. In general, Precambrian evolution can be viewed as a series of increasingly elevated biological plateaus connected by steps marking relatively short periods of evolutionary innovation and radiation. With each step, communities have increased in complexity

  12. The archeology of cognitive evolution.

    Science.gov (United States)

    Davidson, Iain

    2010-03-01

    This discussion of archeology of cognition is concerned primarily with the evolutionary emergence of the cognition particular to modern humans but there is an implication for the evolution of cognition among modern humans. Archeological evidence can provide important insights into the evolutionary emergence of human cognition, but theoretical considerations are fundamental in understanding what sorts of cognition there might have been between the ape-like common ancestor and modern humans. Archeology is the only source of evidence for the behavior associated with such theoretical stages. Cognitive archeology, therefore, involves an iterative interaction between theory from outside archeology and more or less direct evidence from the past. This review considers the range of possible evidence from archeology and genetics and summarizes some of the results of analysis of nonhuman primates particularly to assess characteristics of the last common ancestor (LCA) of apes and humans. The history of changes in size and shape of the brain since separation from other apes introduces the need to assess the appropriate cognitive theories to interpret such evidence. The review concentrates on two such approaches: Baddeley's working memory model as interpreted by Coolidge and Wynn, and Barnard's interacting cognitive subsystems as it has been elaborated to define the cognitive conditions for hominins between the LCA and modern people. Most of the rest of the review considers how the evidence from stone tools might be consistent with such theoretical models of cognition. This evidence is consistent with views that modern human behavior only emerged in the last 100,000 years (or so) but it gives an explanation for that in terms of cognition. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Covalency-reinforced oxygen evolution reaction catalyst

    National Research Council Canada - National Science Library

    Yagi, Shunsuke; Yamada, Ikuya; Tsukasaki, Hirofumi; Seno, Akihiro; Murakami, Makoto; Fujii, Hiroshi; Chen, Hungru; Umezawa, Naoto; Abe, Hideki; Nishiyama, Norimasa; Mori, Shigeo

    2015-01-01

    The oxygen evolution reaction that occurs during water oxidation is of considerable importance as an essential energy conversion reaction for rechargeable metal-air batteries and direct solar water splitting...

  14. Big Bang Tumor Growth and Clonal Evolution.

    Science.gov (United States)

    Sun, Ruping; Hu, Zheng; Curtis, Christina

    2017-07-14

    The advent and application of next-generation sequencing (NGS) technologies to tumor genomes has reinvigorated efforts to understand clonal evolution. Although tumor progression has traditionally been viewed as a gradual stepwise process, recent studies suggest that evolutionary rates in tumors can be variable with periods of punctuated mutational bursts and relative stasis. For example, Big Bang dynamics have been reported, wherein after transformation, growth occurs in the absence of stringent selection, consistent with effectively neutral evolution. Although first noted in colorectal tumors, effective neutrality may be relatively common. Additionally, punctuated evolution resulting from mutational bursts and cataclysmic genomic alterations have been described. In this review, we contrast these findings with the conventional gradualist view of clonal evolution and describe potential clinical and therapeutic implications of different evolutionary modes and tempos. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Cancer in Light of Experimental Evolution

    Science.gov (United States)

    Sprouffske, Kathleen; Merlo, Lauren M.F.; Gerrish, Philip J.; Maley, Carlo C.; Sniegowski, Paul D.

    2012-01-01

    Cancer initiation, progression, and the emergence of therapeutic resistance are evolutionary phenomena of clonal somatic cell populations. Studies in microbial experimental evolution and the theoretical work inspired by such studies are yielding deep insights into the evolutionary dynamics of clonal populations, yet there has been little explicit consideration of the relevance of this rapidly growing field to cancer biology. Here, we examine how the understanding of mutation, selection, and spatial structure in clonal populations that is emerging from experimental evolution may be applicable to cancer. Along the way, we discuss some significant ways in which cancer differs from the model systems used in experimental evolution. Despite these differences, we argue that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and we point out some prospects for future research at the interface between these traditionally separate areas. PMID:22975007

  16. Genetic correlations: transient truths of adaptive evolution

    Indian Academy of Sciences (India)

    Unknown

    remains as to whether, genetic correlations among traits are really consistent ... Keywords. genetic architecture; life history; experimental evolution; genetic correlations; genotype × environment interaction; stress resistance; Drosophila ... result from linkage disequilibrium, inbreeding depression, or selection. However, the ...

  17. Genes as leaders and followers in evolution

    NARCIS (Netherlands)

    Schwander, Tanja; Leimar, Olof

    A major question for the study of phenotypic evolution is whether intra- and interspecific diversity originates directly from genetic variation, or instead, as plastic responses to environmental influences initially, followed later by genetic change. In species with discrete alternative phenotypes,

  18. TMD Evolution at Moderate Hard Scales

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Ted [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Collins, John C. [Pennsylvania State Univ., University Park, PA (United States)

    2016-01-01

    We summarize some of our recent work on non-perturbative transverse momentum dependent (TMD) evolution, emphasizing aspects that are necessary for dealing with moderately low scale processes like semi-inclusive deep inelastic scattering.

  19. Mapping the Evolution of Scientific Fields

    Science.gov (United States)

    Herrera, Mark; Roberts, David C.; Gulbahce, Natali

    2010-01-01

    Despite the apparent cross-disciplinary interactions among scientific fields, a formal description of their evolution is lacking. Here we describe a novel approach to study the dynamics and evolution of scientific fields using a network-based analysis. We build an idea network consisting of American Physical Society Physics and Astronomy Classification Scheme (PACS) numbers as nodes representing scientific concepts. Two PACS numbers are linked if there exist publications that reference them simultaneously. We locate scientific fields using a community finding algorithm, and describe the time evolution of these fields over the course of 1985–2006. The communities we identify map to known scientific fields, and their age depends on their size and activity. We expect our approach to quantifying the evolution of ideas to be relevant for making predictions about the future of science and thus help to guide its development. PMID:20463949

  20. Earth Regime Network Evolution Study (ERNESt)

    Science.gov (United States)

    Menrad, Bob

    2016-01-01

    Speaker and Presenter at the Lincoln Laboratory Communications Workshop on April 5, 2016 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. A visual presentation titled Earth Regimes Network Evolution Study (ERNESt).

  1. Art as A Playground for Evolution

    DEFF Research Database (Denmark)

    Beloff, Laura

    2016-01-01

    Art works which engage with the topic of human enhancement and evolution have begun appearing parallel to increased awareness about anthropogenic changes to our environment and acceleration of the speed of technological developments that impact us and our biological environment. The article...... connects artistic activity with play activity and evolution, which are considered on two levels. On the first level, play activity and its beneficial role to evolution is introduced through various science scholars’ research. On the second level, artistic activity that engages with human enhancement...... and related topics is proposed as play activity for adults, which simultaneously experiments directly with ideas concerning evolution and human development. The author proposes that these kinds of experimental art projects support our mental adaptation to evolutionary changes....

  2. Primate comparative genomics: lemur biology and evolution.

    Science.gov (United States)

    Horvath, Julie E; Willard, Huntington F

    2007-04-01

    Comparative genome sequencing projects are providing insight into aspects of genome biology that raise new questions and challenge existing paradigms. Placement in the phylogenetic tree can often be a major determinant of which organism to choose for study. Lemurs hold a key position at the base of the primate evolutionary tree and will be highly informative for the genomics community by offering comparisons of primate-specific characteristics and processes. Combining research in chromosome evolution, genome evolution and behavior with lemur comparative genomic sequencing will offer insights into many levels of primate evolution. We discuss the current state of lemur cytogenetic and phylogenetic analyses, and suggest how focusing more genomic efforts on lemurs will be beneficial to understanding human and primate evolution, as well as disease, and will contribute to conservation efforts.

  3. Evolution of OAM entanglement in turbulence

    CSIR Research Space (South Africa)

    Roux, FS

    2015-08-01

    Full Text Available The evolution of the quantum states of photons propagating through turbulence can be investigated with the infinitesimal propagation equation (IPE). However, when it is expressed directly in terms of an orbital angular momentum (OAM) basis...

  4. New Gene Evolution: Little Did We Know

    Science.gov (United States)

    Long, Manyuan; VanKuren, Nicholas W.; Chen, Sidi; Vibranovski, Maria D.

    2014-01-01

    Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and evolve as critical components of the genetic systems determining the biological diversity of life. Two decades of effort have shed light on the process of new gene origination, and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular and phenotypic functions. PMID:24050177

  5. Xenacoelomorpha's significance for understanding bilaterian evolution.

    Science.gov (United States)

    Hejnol, Andreas; Pang, Kevin

    2016-08-01

    The Xenacoelomorpha, with its phylogenetic position as sister group of the Nephrozoa (Protostomia+Deuterostomia), plays a key-role in understanding the evolution of bilaterian cell types and organ systems. Current studies of the morphological and developmental diversity of this group allow us to trace the evolution of different organ systems within the group and to reconstruct characters of the most recent common ancestor of Xenacoelomorpha. The disparity of the clade shows that there cannot be a single xenacoelomorph 'model' species and strategic sampling is essential for understanding the evolution of major traits. With this strategy, fundamental insights into the evolution of molecular mechanisms and their role in shaping animal organ systems can be expected in the near future. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Temporal genomic evolution of bird sex chromosomes

    DEFF Research Database (Denmark)

    Wang, Zongji; Zhang, Jilin; Yang, Wei

    2014-01-01

    driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species' transcriptomes, over their course of recombination loss between the sex chromosomes. RESULTS: We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous...... protein-coding sites than autosomes, driven by the male-to-female mutation bias ('male-driven evolution' effect). Our genome-wide estimate reveals that the degree of such a bias ranges from 1.6 to 3.8 among different species. G + C content of third codon positions exhibits the same trend of gradual...... ('fast-Z' evolution). And species with a lower level of intronic heterozygosities tend to evolve even faster on the Z chromosome. Further analysis of fast-evolving genes' enriched functional categories and sex-biased expression patterns support that, fast-Z evolution in birds is mainly driven by genetic...

  7. Constrained vertebrate evolution by pleiotropic genes

    DEFF Research Database (Denmark)

    Hu, Haiyang; Uesaka, Masahiro; Guo, Song

    2017-01-01

    Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages...

  8. Telecommunications systems evolution for Mars Exploration

    Science.gov (United States)

    Noreen, Gary; De Paula, Ramon P.; Edwards, Charles D. Jr; Komarek, Thomas; Edwards, Bernard L.; Edwards, Bernard L.; Kerridge, Stuart J.; Diehl, Roger; Franklin, Stephen F.

    2003-01-01

    This paper describes the evolution of telecommunication systems at Mars. It reviews the telecommunications capabilities, technology and limiting factors of current and planned Mars orbiters from Mars Global Surveyor to the planned Mars Telecommunications Orbiter (MTO).

  9. Schema Evolution for Stars and Snowflakes

    DEFF Research Database (Denmark)

    Kaas, Christian; Pedersen, Torben Bach; Rasmussen, Bjørn

    2004-01-01

    The most common implementation platform for multidimensional data warehouses is RDBMSs storing data in relational star and snowflake schemas. DW schemas evolve over time, which may invalidate existing analysis queries used for reporting purposes. However, the evolution properties of star...

  10. THE EVOLUTION OF ACCOUNTING INFORMATION SYSTEMS

    National Research Council Canada - National Science Library

    Andreea C. BENDOVSCHI

    2015-01-01

    .... This article focuses on the way technological evolution changes the accounting practices, starting from the analysis of the traditional model and trying to determine future trends and arising challenges to face...

  11. Albedo evolution of seasonal Arctic sea ice

    National Research Council Canada - National Science Library

    Donald K. Perovich; Christopher Polashenski

    2012-01-01

    .... Here we examine the impact of this shift on sea ice albedo. Our analysis of observations from four years of field experiments indicates that seasonal ice undergoes an albedo evolution with seven phases...

  12. Galaxy evolution in clusters since z=1

    Science.gov (United States)

    Aragón-Salamanca, A.

    2011-11-01

    It is now 30 years since Alan Dressler published his seminal paper onthe morphology-density relation. Although there is still much to learnon the effect of the environment on galaxy evolution, extensive progress has been made since then both observationally and theoretically.Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature'' vs. "nurture'' in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age.Many of the results presented here have been obtainedwithin the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  13. Supporting Product Line Evolution with Framed Aspects

    DEFF Research Database (Denmark)

    Loughran, Neil; Rashid, Awais; Zhang, Weishan

    2004-01-01

    user requirements, new technologies, business rules and features. However, the evolution process can be compromised by inadequate mechanisms for expressing the required changes. It maybe possible to anticipate future evolutions and, therefore, prepare and design the architecture to accommodate this......This paper discusses how evolution in software product lines can be supported using framed aspects: a combination of aspect-oriented programming and frame technology. Product line architectures and assets are subject to maintenance and evolution throughout their lifetime due to the emergence of new......, but there will eventually come a time when a certain feature or scenario appears which could not have been foreseen in the early stages of development. We argue that frames and aspects when used in isolation cannot overcome these weaknesses effectively. However, they can be addressed by using the respective strengths...

  14. Stellar Structure and Evolution: An Introduction

    Science.gov (United States)

    Jeffery, C. Simon

    The synthesis of new elements takes place inside stars. How do stars evolve and distribute this creation to the universe at large? This article starts with the observables that the theory of stellar evolution aims to reproduce, and gives a quick overview of what that theory predicts (Sects. 2-3). It presents the equations governing stellar structure and evolution (Sects. 4-6) and the physics of stellar interiors (Sects. 7-9). Approximate and numerical methods for their solution are outlined (Sects. 10-11) and the general results of stellar structure and evolution are discussed (Sects. 12-13). The structure and evolution of horizontal-branch stars, hydrogen-deficient stars and other stellar remnants are also considered (Sects. 14-15).

  15. Urban Evolution: the Role of Water

    Science.gov (United States)

    The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth's population grows, infrastructure ages, and sociopolitical values alter them. In order to systematically study changes over time, the concept of "urban evolution...

  16. Chance and necessity in eye evolution

    National Research Council Canada - National Science Library

    Gehring, Walter J

    2011-01-01

    ...." Recent discoveries in eye evolution are in agreement with both of these theses. They confirm Darwin's assumption of a simple eye prototype and lend strong support for the notion of a monophyletic origin of the various eye types...

  17. Teaching Evolution: Do State Standards Matter?

    Science.gov (United States)

    Moore, Randy

    2002-01-01

    Explores the relationship of state standards for the teaching of evolution to the actual teaching of that subject. Compares a grading of states for their performance and discusses the question of whether state standards matter. (MM)

  18. Evolution of environmental cues for phenotypic plasticity.

    Science.gov (United States)

    Chevin, Luis-Miguel; Lande, Russell

    2015-10-01

    Phenotypically plastic characters may respond to multiple variables in their environment, but the evolutionary consequences of this phenomenon have rarely been addressed theoretically. We model the evolution of linear reaction norms in response to several correlated environmental variables, in a population undergoing stationary environmental fluctuations. At evolutionary equilibrium, the linear combination of environmental variables that acts as a developmental cue for the plastic trait is the multivariate best linear predictor of changes in the optimum. However, the reaction norm with respect to any single environmental variable may exhibit nonintuitive patterns. Apparently maladaptive, or hyperadaptive plasticity can evolve with respect to single environmental variables, and costs of plasticity may increase, rather than reduce, plasticity in response to some variables. We also find conditions for the evolution of an indirect environmental indicator that affects expression of a plastic phenotype, despite not influencing natural selection on it. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  19. Evolution to 3G Mobile Communication

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 9. Evolution to 3G Mobile Communication - Second Generation Cellular ... Author Affiliations. R Ramachandran1. Department of Computer Science and Engineering Sri Venkateswara College of Engineering Sriperumbudur 602105, India.

  20. Evolution to 3G Mobile Communication

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 11. Evolution to 3G Mobile Communication - Development towards Third Generation Systems. R Ramachandran. General Article Volume 8 Issue 11 November 2003 pp 37-51 ...

  1. Evolution and Creationism: One Long Argument.

    Science.gov (United States)

    Good, Ron

    2003-01-01

    Discusses the dilemma between evolution and creationism in biology teaching. Explains the position of the Louisiana House Education Committee and presents an example from the Louisiana State University (LSU). (Author/SOE)

  2. Physics, Formation and Evolution of Rotating Stars

    CERN Document Server

    Maeder, André

    2009-01-01

    Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the gradua...

  3. Social Evolution: When Promiscuity Breeds Cooperation

    OpenAIRE

    van Zweden, Jelle S.; Cardoen, Dries; Wenseleers, Tom

    2012-01-01

    In social evolution theory, it has become common wisdom that close family ties should promote cooperative behaviour. Yet, in social insects, evidence is accumulating that queen promiscuity and low relatedness sometimes work better.

  4. Action principle for Numerical Relativity evolution systems

    CERN Document Server

    Bona, C; Palenzuela, C

    2010-01-01

    A Lagrangian density is provided, that allows to recover the Z4 evolution system from an action principle. The resulting system is then strongly hyperbolic when supplemented by gauge conditions like '1+log' or 'freezing shift', suitable for numerical evolution. The physical constraint $Z_\\mu = 0$ can be imposed just on the initial data. The corresponding Hamiltonian and canonical equations are also provided. This opens the door to analogous results for other numerical-relativity formalisms, like BSSN, that can be derived from Z4 by a symmetry-breaking procedure. The harmonic formulation can be easily recovered by a slight modification of the procedure. This provides a mechanism for deriving both the field evolution equations and the gauge conditions from the action principle, with a view on using simplectic integrators for a constraint-preserving numerical evolution.

  5. Evolution of transgenerational immunity in invertebrates

    OpenAIRE

    Pigeault, R.; Garnier, R.; Rivero, A.; Gandon, S.

    2016-01-01

    Over a decade ago, the discovery of transgenerational immunity in invertebrates shifted existing paradigms on the lack of sophistication of their immune system. Nonetheless, the prevalence of this trait and the ecological factors driving its evolution in invertebrates remain poorly understood. Here, we develop a theoretical host–parasite model and predict that long lifespan and low dispersal should promote the evolution of transgenerational immunity. We also predict that in species that produ...

  6. Island Biogeography; ecology, evolution, and conservation

    OpenAIRE

    DJAMALI, Morteza

    2014-01-01

    The “Island Biogeography; ecology, evolution, and conservation” is an excellent textbook for the island biology. After a brief chapter “The natural laboratory paradigm”, in which the structure of the book is described, the second chapter gives a comprehensive description of the physical characteristics of the islands; their origin, formation, geological evolution, and natural physical disturbances. In chapter 3, the status of the global biodiversity distribution on the Earth’s islands is shor...

  7. Xenacoelomorpha's significance for understanding bilaterian evolution

    OpenAIRE

    Hejnol, Andreas; Pang, Kevin

    2016-01-01

    The Xenacoelomorpha, with its phylogenetic position as sister group of the Nephrozoa (Protostomia + Deuterostomia), plays a key-role in understanding the evolution of bilaterian cell types and organ systems. Current studies of the morphological and developmental diversity of this group allow us to trace the evolution of different organ systems within the group and to reconstruct characters of the most recent common ancestor of Xenacoelomorpha. The disparity of the clade shows that there canno...

  8. Evolution of solid rocket booster component testing

    Science.gov (United States)

    Lessey, Joseph A.

    1989-01-01

    The evolution of one of the new generation of test sets developed for the Solid Rocket Booster of the U.S. Space Transportation System. Requirements leading to factory checkout of the test set are explained, including the evolution from manual to semiautomated toward fully automated status. Individual improvements in the built-in test equipment, self-calibration, and software flexibility are addressed, and the insertion of fault detection to improve reliability is discussed.

  9. DESIGN ASPECTS IN MACHINE TOOLS EVOLUTION

    OpenAIRE

    CALOTA Lavinia Alexandra

    2010-01-01

    The paper proposes to present some important aspects in the design evolution of some representative types of machine tools, as the evolution of some basic structural elements which compose machine tools majority. The paper, also, present the aspects regarding the machine tools aesthetics, like a result of shape modeling, bounded by the functional role, and with the possibilities of artistical modeling of the structural-geometrical elements, respecting the essential principles of the compositi...

  10. Prevolutionary dynamics and the origin of evolution

    OpenAIRE

    Nowak, Martin A.; Ohtsuki, Hisashi

    2008-01-01

    Life is that which replicates and evolves. The origin of life is also the origin of evolution. A fundamental question is when do chemical kinetics become evolutionary dynamics? Here, we formulate a general mathematical theory for the origin of evolution. All known life on earth is based on biological polymers, which act as information carriers and catalysts. Therefore, any theory for the origin of life must address the emergence of such a system. We describe prelife as an alphabet of active m...

  11. Tidally driven evolution of differentiated terrestrial exoplanets

    Science.gov (United States)

    Walterova, M.; Behounkova, M.

    2017-09-01

    We present a numerical model of tidally driven orbital evolution based on the solution of continuum mechanics equations for a differentiated spherical body, whose mantle is governed by either the Maxwell or the Andrade viscoelastic rheology. The model enables generally heterogeneous structure of the mantle, making thus possible the analysis of coupling between the internal and the orbital evolution of terrestrial exoplanets or icy moons.

  12. On the thermodynamics of multilevel evolution.

    Science.gov (United States)

    Tessera, Marc; Hoelzer, Guy A

    2013-09-01

    Biodiversity is hierarchically structured both phylogenetically and functionally. Phylogenetic hierarchy is understood as a product of branching organic evolution as described by Darwin. Ecosystem biologists understand some aspects of functional hierarchy, such as food web architecture, as a product of evolutionary ecology; but functional hierarchy extends to much lower scales of organization than those studied by ecologists. We argue that the more general use of the term "evolution" employed by physicists and applied to non-living systems connects directly to the narrow biological meaning. Physical evolution is best understood as a thermodynamic phenomenon, and this perspective comfortably includes all of biological evolution. We suggest four dynamical factors that build on each other in a hierarchical fashion and set the stage for the Darwinian evolution of biological systems: (1) the entropic erosion of structure; (2) the construction of dissipative systems; (3) the reproduction of growing systems and (4) the historical memory accrued to populations of reproductive agents by the acquisition of hereditary mechanisms. A particular level of evolution can underpin the emergence of higher levels, but evolutionary processes persist at each level in the hierarchy. We also argue that particular evolutionary processes can occur at any level of the hierarchy where they are not obstructed by material constraints. This theoretical framework provides an extensive basis for understanding natural selection as a multilevel process. The extensive literature on thermodynamics in turn provides an important advantage to this perspective on the evolution of higher levels of organization, such as the evolution of altruism that can accompany the emergence of social organization. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Evolution of ruminant headgear: a review.

    Science.gov (United States)

    Davis, Edward Byrd; Brakora, Katherine A; Lee, Andrew H

    2011-10-07

    The horns, ossicones and antlers of ruminants are familiar and diverse examples of cranial appendages. We collectively term ruminant cranial appendages 'headgear'; this includes four extant forms: antlers (in cervids), horns (in bovids), pronghorns (in pronghorn antelope) and ossicones (in giraffids). Headgear evolution remains an open and intriguing question because phylogenies (molecular and morphological), adult headgear structure and headgear development (where data are available) all suggest different pictures of ruminant evolution. We discuss what is known about the evolution of headgear, including the evidence motivating previous hypotheses of single versus multiple origins, and the implications of recent phylogenetic revisions for these hypotheses. Inclusion of developmental data is critical for progress on the question of headgear evolution, and we synthesize the scattered literature on this front. The areas most in need of attention are early development in general; pronghorn and ossicone development in particular; and histological study of fossil forms of headgear. An integrative study of headgear development and evolution may have ramifications beyond the fields of systematics and evolution. Researchers in organismal biology, as well as those in biomedical fields investigating skin, bone and regenerative medicine, may all benefit from insights produced by this line of research.

  14. Cognition and the evolution of camouflage.

    Science.gov (United States)

    Skelhorn, John; Rowe, Candy

    2016-02-24

    Camouflage is one of the most widespread forms of anti-predator defence and prevents prey individuals from being detected or correctly recognized by would-be predators. Over the past decade, there has been a resurgence of interest in both the evolution of prey camouflage patterns, and in understanding animal cognition in a more ecological context. However, these fields rarely collide, and the role of cognition in the evolution of camouflage is poorly understood. Here, we review what we currently know about the role of both predator and prey cognition in the evolution of prey camouflage, outline why cognition may be an important selective pressure driving the evolution of camouflage and consider how studying the cognitive processes of animals may prove to be a useful tool to study the evolution of camouflage, and vice versa. In doing so, we highlight that we still have a lot to learn about the role of cognition in the evolution of camouflage and identify a number of avenues for future research. © 2016 The Author(s).

  15. Evolution of viral virulence: empirical studies

    Science.gov (United States)

    Kurath, Gael; Wargo, Andrew R.

    2016-01-01

    The concept of virulence as a pathogen trait that can evolve in response to selection has led to a large body of virulence evolution theory developed in the 1980-1990s. Various aspects of this theory predict increased or decreased virulence in response to a complex array of selection pressures including mode of transmission, changes in host, mixed infection, vector-borne transmission, environmental changes, host vaccination, host resistance, and co-evolution of virus and host. A fundamental concept is prediction of trade-offs between the costs and benefits associated with higher virulence, leading to selection of optimal virulence levels. Through a combination of observational and experimental studies, including experimental evolution of viruses during serial passage, many of these predictions have now been explored in systems ranging from bacteriophage to viruses of plants, invertebrates, and vertebrate hosts. This chapter summarizes empirical studies of viral virulence evolution in numerous diverse systems, including the classic models myxomavirus in rabbits, Marek's disease virus in chickens, and HIV in humans. Collectively these studies support some aspects of virulence evolution theory, suggest modifications for other aspects, and show that predictions may apply in some virus:host interactions but not in others. Finally, we consider how virulence evolution theory applies to disease management in the field.

  16. Perspective: Teaching evolution in higher education.

    Science.gov (United States)

    Alters, Brian J; Nelson, Craig E

    2002-10-01

    In the past decade, the academic community has increased considerably its activity concerning the teaching and learning of evolution. Despite such beneficial activity, the state of public understanding of evolution is considered woefully lacking by most researchers and educators. This lack of understanding affects evolution/science literacy, research, and academia in general. Not only does the general public lack an understanding of evolution but so does a considerable proportion of college graduates. However, it is not just evolutionary concepts that students do not retain. In general, college students retain little of what they supposedly have learned. Worse yet, it is not just students who have avoided science and math who fail to retain fundamental science concepts. Students who have had extensive secondary-level and college courses in science have similar deficits. We examine these issues and explore what distinguishes effective pedagogy from ineffective pedagogy in higher education in general and evolution education in particular. The fundamental problem of students' prior conceptions is considered and why prior conceptions often underpin students' misunderstanding of the evolutionary concepts being taught. These conceptions can often be discovered and addressed. We also attend to concerns about coverage of course content and the influence of religious beliefs, and provide helpful strategies to improve college-level teaching of evolution.

  17. Partial evolution based local adiabatic quantum search

    Science.gov (United States)

    Sun, Jie; Lu, Song-Feng; Liu, Fang; Yang, Li-Ping

    2012-01-01

    Recently, Zhang and Lu provided a quantum search algorithm based on partial adiabatic evolution, which beats the time bound of local adiabatic search when the number of marked items in the unsorted database is larger than one. Later, they found that the above two adiabatic search algorithms had the same time complexity when there is only one marked item in the database. In the present paper, following the idea of Roland and Cerf [Roland J and Cerf N J 2002 Phys. Rev. A 65 042308], if within the small symmetric evolution interval defined by Zhang et al., a local adiabatic evolution is performed instead of the original “global" one, this “new" algorithm exhibits slightly better performance, although they are progressively equivalent with M increasing. In addition, the proof of the optimality for this partial evolution based local adiabatic search when M = 1 is also presented. Two other special cases of the adiabatic algorithm obtained by appropriately tuning the evolution interval of partial adiabatic evolution based quantum search, which are found to have the same phenomenon above, are also discussed.

  18. Evolution: Prosaically About the Sublime

    Directory of Open Access Journals (Sweden)

    Vladimir Shashkov

    2016-10-01

    Full Text Available Since the origin of mankind, every living person has tried to the best of his abilities to comprehend his presence in the world around. The question, around which, in one way or another, the topic of evolution centers. All this time, apparently not really successful attempts to create a unified world view have not stopped. The complexity of the problem lies in the fact that, while solving, it is necessary to understand a complex of interconnected intricate problems. Among them there are answers to the following questions: which principles define the evolutionary processes; how can appear and on what principles can function such an apparatus as the brain; how can this apparatus self-identify in its own environment, how it interacts with it; how appear and on what principles form its social relations with the ones of its kind? Afterward, there inevitably appears a necessity to thoroughly consider at least two more topics – appearance of metrology and terminology as the tools of self-identification and mutual understanding, their possibilities and limits of application. Solving of these tasks gives a rather definite base for rational correction of all the fundamental created by the mankind in the sphere of theoretical underpinning of all things, gives an opportunity to select reliable schemes to forecast the future of the mankind. In the format of an article it is complicated to consider the whole complex of tasks, one can only briefly mark some of the main provisions and conclusions, formulate as far as possible the basic provision, on the basis of which an attempt to build a rather equivalent reality of the world order is conducted. Below follows a detailed description of the effects of two quite interesting regularities that underlie evolutionary processes. The first regularity is the paradox that any single, accidental, and indefinitely small interaction in a system becomes a precedent and inevitably enhances the likelihood of further

  19. Biodiversity and models of evolution

    Directory of Open Access Journals (Sweden)

    S. L. Podvalny

    2016-01-01

    Full Text Available Summary. The paper discusses the evolutionary impact of biodiversity, the backbone of noosphere, which status has been fixed by a UN convention. The examples and role of such diversity are considered the various levels of life arrangement. On the level of standalone organisms, the diversity in question manifests itself in the differentiation and separation of the key physiologic functions which significantly broaden the eco-niche for the species with the consummate type of such separation. However, the organismic level of biodiversity does not work for building any developmental models since the starting point of genetic inheritance and variability processes emerges on the minimum structural unit of the living world only, i.e. the population. It is noted that the sufficient gene pool for species development may accumulate in fairly large populations only, where the general rate of mutation does not yield to the rate of ambient variations. The paper shows that the known formal models of species development based on the Fisher theorem about the impact of genodispersion on species adjustment are not in keeping with the actual existence of the species due to the conventionally finite and steady number of genotypes within a population. On the ecosystem level of life arrangement, the key role pertains to the taxonomic diversity supporting the continuous food chain in the system against any adverse developmental conditions of certain taxons. Also, the progressive evolution of an ecosystem is largely stabilized by its multilayer hierarchic structure and the closed circle of matter and energy. The developmental system models based on the Lotka-Volterra equations describing the interaction of the open-loop ecosystem elements only insufficiently represent the position of biodiversity in the evolutionary processes. The paper lays down the requirements to such models which take into account the mass balance within a system; its trophic structure; the

  20. Virtual Exploration of Earth's Evolution

    Science.gov (United States)

    Anbar, A. D.; Bruce, G.; Semken, S. C.; Summons, R. E.; Buxner, S.; Horodyskyj, L.; Kotrc, B.; Swann, J.; Klug Boonstra, S. L.; Oliver, C.

    2014-12-01

    Traditional introductory STEM courses often reinforce misconceptions because the large scale of many classes forces a structured, lecture-centric model of teaching that emphasizes delivery of facts rather than exploration, inquiry, and scientific reasoning. This problem is especially acute in teaching about the co-evolution of Earth and life, where classroom learning and textbook teaching are far removed from the immersive and affective aspects of field-based science, and where the challenges of taking large numbers of students into the field make it difficult to expose them to the complex context of the geologic record. We are exploring the potential of digital technologies and online delivery to address this challenge, using immersive and engaging virtual environments that are more like games than like lectures, grounded in active learning, and deliverable at scale via the internet. The goal is to invert the traditional lecture-centric paradigm by placing lectures at the periphery and inquiry-driven, integrative virtual investigations at the center, and to do so at scale. To this end, we are applying a technology platform we devised, supported by NASA and the NSF, that integrates a variety of digital media in a format that we call an immersive virtual field trip (iVFT). In iVFTs, students engage directly with virtual representations of real field sites, with which they interact non-linearly at a variety of scales via game-like exploration while guided by an adaptive tutoring system. This platform has already been used to develop pilot iVFTs useful in teaching anthropology, archeology, ecology, and geoscience. With support the Howard Hughes Medical Institute, we are now developing and evaluating a coherent suite of ~ 12 iVFTs that span the sweep of life's history on Earth, from the 3.8 Ga metasediments of West Greenland to ancient hominid sites in East Africa. These iVFTs will teach fundamental principles of geology and practices of scientific inquiry, and expose

  1. HBV And HCV Molecular Evolution

    Directory of Open Access Journals (Sweden)

    Flor H. Pujol

    2007-02-01

    support and evade several selective pressures imposed by the host, like the innate immune response, the production of neutralizing antibodies and cytotoxic lymphocites. More recently, even if many drugs currently developed against HCV have not been aproved yet for use in humans, in vitro studies have allowed to identified already drug resistance mutations. As for HIV, these mutation may be resulting also in a reduction of viral fitness, and compensatory mutations have also been described, that restore at least partially the replication capacity of the mutated viruses. The extensive variability of HCV is one of the main reasons that had hampered the production of an eefective vaccine against this virus.

     

    REFERENCES

    1. Devesa, M. & Pujol, F.H. (2007: Hepatitis B virus genetic diversity in Latin America. Virus Research: in press.

    2. Simmonds P. (2004: Genetic diversity and evolution of hepatitis C virus--15 years on. J Gen Virol 85: 3173-3188.

    3. Stumpf, M.P.H. & Pybus, O.G. (2002: Genetic diversity and models of viral evolution for the hepatitis C virus. FEMS Microbiology Letters 214: 143-152.

  2. Second Symposium on Chemical Evolution and the Origin of Life

    Science.gov (United States)

    Devincenzi, D. L. (Editor); model. (Editor)

    1986-01-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  3. Second Symposium on Chemical Evolution and the Origin of Life

    Energy Technology Data Exchange (ETDEWEB)

    Devincenzi, D.L.; Dufour, P.A.

    1986-05-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  4. Biology Teachers' Attitudes toward and Use of Indiana's Evolution Standards

    Science.gov (United States)

    Donnelly, Lisa A.; Boone, William J.

    2007-01-01

    This study examines the relationship between biology teachers' evolution teaching practices and their regard and use of Indiana state evolution standards. A survey developed by the authors contained five subscales: use of standards; attitude toward standards; attitude toward evolution standards; evolution teaching practices; and demographic…

  5. Getting Wrinkly Spreaders to demonstrate evolution in schools.

    Science.gov (United States)

    Spiers, Andrew J

    2014-06-01

    Understanding evolution is crucial to modern biology, but most teachers would assume that practical demonstrations of evolution in school laboratories are unfeasible. However, perhaps they have not heard of 'evolution in a test tube' and how Wrinkly Spreaders can form the basis for both practical demonstrations of bacterial evolution and further work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. K-8 Educators Perceptions and Preparedness for Teaching Evolution Topics

    Science.gov (United States)

    Nadelson, Louis S.; Nadelson, Sandra

    2010-01-01

    Many science education standards mandate teaching evolution concepts in the K-8 curriculum. Yet, not all K-8 certified educators embrace the notion of teaching evolution content Factors influencing K-8 teacher engagement with evolution curriculum include evolution familiarity and personal beliefs conflicts. With this in mind, we investigated the…

  7. EDITORIAL: Permanent revolution - or evolution?

    Science.gov (United States)

    Dobson, Ken

    1998-03-01

    physics. The same fraction of candidates passed at O- and A-level, with much the same distribution of grades. But then at least, amongst other things, we may claim to have produced happier and more knowledgeable failures. Mr Blunkett's revolutionary idea should be extended so that any major educational change must be capable of evaluation. The customers/victims should actually be shown to have benefited - more of them should do better! It is a regrettable fact of history that most revolutions have resulted in tears before bedtime, however bright the following dawn. One problem with revolutions, as Maxim Gorky often pointed out, is that `inside every revolutionary there is a gendarme'. It is one thing to specify a target, another to direct in detail how every child and teacher in the land should achieve it. The latter is very difficult to manage, and when patience inevitably runs out there is likely to be a tendency towards gendarmerie. The control structure begins to dominate the educational one, and the means of control become more important than the ends. Rigidity replaces creativity, fossilization replaces evolution, and the energies and skills of practitioners may be devoted more to conforming passively with or ingeniously evading the constraints of a rule-bound system. There were signs that this effect exists and has been growing, but happily these signs have been detected by the `gendarmerie' and recognized as being deleterious. Government agencies are now consulting, seriously, with practitioners and such organizations as the IoP. It may well be that when the magic number 2000 arrives there will be a well-designed, self-organizing and self-monitoring National Curriculum that will engage the hearts as well as develop the minds of the young.

  8. Flat H Frangible Joint Evolution

    Science.gov (United States)

    Diegelman, Thomas E.; Hinkel, Todd J.; Benjamin, Andrew; Rochon, Brian V.; Brown, Christopher W.

    2016-01-01

    three-dimensional envelope as current designs as well as meet structural loads requirements. There is increased mass associated with the redundant design, and the goal is to minimize the weight impact as much as possible. These requirements presented significant challenges, both technically and financially; these challenges will be explored in this paper. Perhaps greater than the technical issues confronted during this design process, were the financial considerations. These were a significant part of the story of this design and development plan. Insufficient financial and labor resources were formidable barriers to completing this project. Nevertheless, JSC personnel successfully conducted several test series at JSC with very useful results. The many lessons learned drove design improvements, performance efficiency, and increased functional reliability. This paper examines the significant technical and financial challenges that these requirements posed to the project team. It discusses the evolution of the SFT frangible joint design, including optimization, testing, and successful partnering of the Johnson Space Center (JSC) engineering and JSC safety organizations, to enhance the flight safety margin for America's next generation of human-rated space vehicles.

  9. On quantum effects in a theory of biological evolution.

    Science.gov (United States)

    Martin-Delgado, M A

    2012-01-01

    We construct a descriptive toy model that considers quantum effects on biological evolution starting from Chaitin's classical framework. There are smart evolution scenarios in which a quantum world is as favorable as classical worlds for evolution to take place. However, in more natural scenarios, the rate of evolution depends on the degree of entanglement present in quantum organisms with respect to classical organisms. If the entanglement is maximal, classical evolution turns out to be more favorable.

  10. Staged Evolution with Quality Gates for Model Libraries

    OpenAIRE

    Roth, Alexander; Ganser, Andreas; Lichter, Horst; Rumpe, Bernhard

    2014-01-01

    Model evolution is widely considered as a subject under research. Despite its role in research, common purpose concepts, approaches, solutions, and methodologies are missing. Limiting the scope to model libraries makes model evolution and related quality concerns manageable, as we show below. In this paper, we put forward our quality staged model evolution theory for model libraries. It is founded on evolution graphs, which offer a structure for model evolution in model libraries through evol...

  11. C Library for Simulated Evolution of Biological Networks

    OpenAIRE

    Chandran, Deepak; Sauro, Herbert M.

    2010-01-01

    Simulated evolution of biological networks can be used to generate functional networks as well as investigate hypotheses regarding natural evolution. A handful of studies have shown how simulated evolution can be used for studying the functional space spanned by biochemical networks, studying natural evolution, or designing new synthetic networks. If there was a method for easily performing such studies, it can allow the community to further experiment with simulated evolution and explore all...

  12. Evolution of the radiation protection system; L'evolution du systeme de protection radiologique

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, R.H. [International Commission on Radiological Protection, Stockholm (Sweden); Schieber, C.; Cordoliani, Y.S. [Societe Francaise de Radioprotection, 92 - Fontenay aux Roses (France); Brechignac, F. [CEA Cadarache, Institut de Radioprotection et de Surete Nucleaire, Dept. de Protection de l' Environnement, 13 - Saint Paul Lez Durance (France)

    2003-07-01

    The evolution of the system of radiological protection: justification for new ICRP recommendations, thoughts of the SFRP work group about the evolution of the system of radiation protection proposed by the ICRP, protection of environment against ionizing radiations seen by the ICRP are the three parts of this chapter. (N.C.)

  13. Experiences and Practices of Evolution Instructors at Christian Universities That Can Inform Culturally Competent Evolution Education

    Science.gov (United States)

    Barnes, M. Elizabeth; Brownell, Sara E.

    2018-01-01

    Students' religious beliefs and religious cultures have been shown to be the main factors predicting whether they will accept evolution, yet college biology instructors teaching evolution at public institutions often have religious beliefs and cultures that are different from their religious students. This difference in religious beliefs and…

  14. The emphasis given to evolution in state science standards: A lever for change in evolution education?

    Science.gov (United States)

    Skoog, Gerald; Bilica, Kimberly

    2002-07-01

    This study analyzed the science frameworks of 49 states and the District of Colombia to determine the emphasis given to evolution in these documents at the middle and secondary levels. These concepts were species evolve over time, speciation, diversity of life, descent with modification from common ancestry, evidence of evolution, natural selection, pace and direction of evolution, and human evolution. Collectively, the 50 science frameworks emphasized evolution in a manner that suggests that if the public's support for standards-based curricula is a reality, the study of evolution will be emphasized in an unprecedented manner in the nation's schools in the near future. However, all concepts were not emphasized equally in these documents. For example, human evolution was included in only seven documents. The word evolution is absent from some standards. Despite these negatives, recent actions to improve existing standards or to adopt new standards that emphasize evolution have occurred. The metaphor lever of change is often used in the context of school reform. This metaphor suggests a simple system where one change can result in a desired outcome. However, in classrooms where curriculum decisions evolve constantly, multiple factors interact and reinforce one another in response to both internal and external contingencies that emerge. Educational change can not be reduced to a simple linear cause/effect situation. The change process involved is nonlinear where what goes in is not proportional to what comes out because of feedback loops and other factors that complicate results. This nonlinearity is reflected in the varied responses of teachers to specific contingencies. Yet, systems can be changed and nudged towards a structure where desired outcomes will emerge. Judicial rulings indicating that the teaching of evolution cannot be prohibited or equal time for creationism mandated, improved coverage of evolution in secondary school biology textbooks, the negative

  15. Quantum evolution life in the multiverse

    CERN Document Server

    McFadden, Johnjoe

    2000-01-01

    Quantum Evolution presents a revolutionary new scientific theory by asking: is there a force of will behind evolution? In his astonishing first book, Johnjoe McFadden shows that there is. 'McFadden's bold hypothesis that quantum physics plays a key role in the origin and evolution of life looks increasingly plausible. The weird behaviour of matter and information at the quantum level could be just what is needed to explain life's astonishing properties. If these ideas are right, they will transform our understanding of the relationship between physics and biology.' PAUL DAVIES In this brilliant debut, Johnjoe McFadden puts forward a theory of quantum evolution. He shows how living organisms have the ability to will themselves into action. Indeed, such an ability may be life's most fundamental attribute. This has radical implications. Evolution may not be random at all, as recent evolutionary theories have taught: rather, cells may, in certain circumstances, be able to choose to mutate particular genes that pr...

  16. New thinking: the evolution of human cognition.

    Science.gov (United States)

    Heyes, Cecilia

    2012-08-05

    Humans are animals that specialize in thinking and knowing, and our extraordinary cognitive abilities have transformed every aspect of our lives. In contrast to our chimpanzee cousins and Stone Age ancestors, we are complex political, economic, scientific and artistic creatures, living in a vast range of habitats, many of which are our own creation. Research on the evolution of human cognition asks what types of thinking make us such peculiar animals, and how they have been generated by evolutionary processes. New research in this field looks deeper into the evolutionary history of human cognition, and adopts a more multi-disciplinary approach than earlier 'Evolutionary Psychology'. It is informed by comparisons between humans and a range of primate and non-primate species, and integrates findings from anthropology, archaeology, economics, evolutionary biology, neuroscience, philosophy and psychology. Using these methods, recent research reveals profound commonalities, as well striking differences, between human and non-human minds, and suggests that the evolution of human cognition has been much more gradual and incremental than previously assumed. It accords crucial roles to cultural evolution, techno-social co-evolution and gene-culture co-evolution. These have produced domain-general developmental processes with extraordinary power-power that makes human cognition, and human lives, unique.

  17. Mapping the evolution of scientific ideas

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, David C [Los Alamos National Laboratory; Herrera, Mark [UNIV OF MARYLAND; Gulbahce, Natali [NORTHEASTERN UNIV

    2008-01-01

    The importance of interdisciplinary research is ever increasing as challenging world problems require expertise across diverse fields. Despite the apparent conceptual boundaries of scientific fields, a formal description for their evolution is lacking. Here we describe a novel approach to study the dynamics and evolution of scientific ideas and fields using a network-based analysis. We build a idea network consisting of American Physical Society Pacs numbers as nodes representing scientific concepts. Two Pacs numbers are linked in the network if there exist publications that reference them simultaneously. We locate scientific fields using an overlapping community finding algorithm and describe the time evolution of these fields using a community evolution method over the course of 1985-2006. We find that the communities we find map to scientific fields, the lifetime of these fields strongly depends on their size, impact and activity, and longest living communities are least volatile. The described approach to quantify the evolution of ideas is expected to be relevant in making predictions about the future of science and how to guide its development.

  18. Mapping the evolution of scientific ideas

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, David [Los Alamos National Laboratory; Herrera, Mark [UNIV OF MARYLAND; Gulbahce, Natali [UNIV OF BOSTON

    2009-01-01

    Despite the apparent conceptual boundaries of scientific fields, a formal description for their evolution is lacking. Here we describe a novel approach to study the dynamics and evolution of scientific fields using a network-based analysis. We build an idea network consisting of American Physical Society PACS numbers as nodes representing scientific concepts. Two PACS numbers are linked if there exist publications that reference them simultaneously. We locate scientific fields using Cfinder, an overlapping community finding algorithm, and describe the time evolution of these fields using a community evolution method over the course of 1985-2006. The communities we identify map to known scientific fields, and their age strongly depends on t.heir size, impact and activity. Our analysis further suggests that communities that redefine themselves by merging and creating new groups of ideas tend to have more fitness as measured by the impact per paper, and hence communities with a higher fitness tend to be short-lived. The described approach to quantify the evolution of ideas may be relevant in making predictions about the future of science and how to guide its development.

  19. Information-theoretic metamodel of organizational evolution

    Science.gov (United States)

    Sepulveda, Alfredo

    2011-12-01

    Social organizations are abstractly modeled by holarchies---self-similar connected networks---and intelligent complex adaptive multiagent systems---large networks of autonomous reasoning agents interacting via scaled processes. However, little is known of how information shapes evolution in such organizations, a gap that can lead to misleading analytics. The research problem addressed in this study was the ineffective manner in which classical model-predict-control methods used in business analytics attempt to define organization evolution. The purpose of the study was to construct an effective metamodel for organization evolution based on a proposed complex adaptive structure---the info-holarchy. Theoretical foundations of this study were holarchies, complex adaptive systems, evolutionary theory, and quantum mechanics, among other recently developed physical and information theories. Research questions addressed how information evolution patterns gleamed from the study's inductive metamodel more aptly explained volatility in organization. In this study, a hybrid grounded theory based on abstract inductive extensions of information theories was utilized as the research methodology. An overarching heuristic metamodel was framed from the theoretical analysis of the properties of these extension theories and applied to business, neural, and computational entities. This metamodel resulted in the synthesis of a metaphor for, and generalization of organization evolution, serving as the recommended and appropriate analytical tool to view business dynamics for future applications. This study may manifest positive social change through a fundamental understanding of complexity in business from general information theories, resulting in more effective management.

  20. Spatial evolution of quantum mechanical states

    Science.gov (United States)

    Christensen, N. D.; Unger, J. E.; Pinto, S.; Su, Q.; Grobe, R.

    2018-02-01

    The time-dependent Schrödinger equation is solved traditionally as an initial-time value problem, where its solution is obtained by the action of the unitary time-evolution propagator on the quantum state that is known at all spatial locations but only at t = 0. We generalize this approach by examining the spatial evolution from a state that is, by contrast, known at all times t, but only at one specific location. The corresponding spatial-evolution propagator turns out to be pseudo-unitary. In contrast to the real energies that govern the usual (unitary) time evolution, the spatial evolution can therefore require complex phases associated with dynamically relevant solutions that grow exponentially. By introducing a generalized scalar product, for which the spatial generator is Hermitian, one can show that the temporal integral over the probability current density is spatially conserved, in full analogy to the usual norm of the state, which is temporally conserved. As an application of the spatial propagation formalism, we introduce a spatial backtracking technique that permits us to reconstruct any quantum information about an atom from the ionization data measured at a detector outside the interaction region.