WorldWideScience

Sample records for evolution molecular

  1. Landscapes and molecular evolution

    Science.gov (United States)

    Schuster, Peter

    1997-02-01

    Evolution of RNA molecules in vitro is visualized as a hill-climbing process on a fitness landscape that can be derived from molecular properties and functions. The optimization process is shaped by a high degree of redundance in sequence-to-structure mappings: there are many more sequences than structures and sequences folding into the same structure are (almost) randomly distributed in sequence space. Two consequences of this redundance are important for evolution: shape space covering by small connected regions in sequence space and the existence of extended neutral networks. Both results together explain how nature can fast and efficiently find solutions to complex optimization problems by trial and error while the number of possible genotypes exceeds all imagination. In the presence of neutral networks populations avoid being caught in evolutionary traps and eventually reach the global optimum through a composite dynamics of adaptive walks and random drift. Results derived from mathematical analysis are confronted with the results of computer simulation and available experimental data.

  2. Molecular Evolution in Historical Perspective.

    Science.gov (United States)

    Suárez-Díaz, Edna

    2016-12-01

    In the 1960s, advances in protein chemistry and molecular genetics provided new means for the study of biological evolution. Amino acid sequencing, nucleic acid hybridization, zone gel electrophoresis, and immunochemistry were some of the experimental techniques that brought about new perspectives to the study of the patterns and mechanisms of evolution. New concepts, such as the molecular evolutionary clock, and the discovery of unexpected molecular phenomena, like the presence of repetitive sequences in eukaryotic genomes, eventually led to the realization that evolution might occur at a different pace at the organismic and the molecular levels, and according to different mechanisms. These developments sparked important debates between defendants of the molecular and organismic approaches. The most vocal confrontations focused on the relation between primates and humans, and the neutral theory of molecular evolution. By the 1980s and 1990s, the construction of large protein and DNA sequences databases, and the development of computer-based statistical tools, facilitated the coming together of molecular and evolutionary biology. Although in its contemporary form the field of molecular evolution can be traced back to the last five decades, the field has deep roots in twentieth century experimental life sciences. For historians of science, the origins and consolidation of molecular evolution provide a privileged field for the study of scientific debates, the relation between technological advances and scientific knowledge, and the connection between science and broader social concerns.

  3. Molecular evolution under fitness fluctuations.

    Science.gov (United States)

    Mustonen, Ville; Lässig, Michael

    2008-03-14

    Molecular evolution is a stochastic process governed by fitness, mutations, and reproductive fluctuations in a population. Here, we study evolution where fitness itself is stochastic, with random switches in the direction of selection at individual genomic loci. As the correlation time of these fluctuations becomes larger than the diffusion time of mutations within the population, fitness changes from an annealed to a quenched random variable. We show that the rate of evolution has its maximum in the crossover regime, where both time scales are comparable. Adaptive evolution emerges in the quenched fitness regime (evidence for such fitness fluctuations has recently been found in genomic data). The joint statistical theory of reproductive and fitness fluctuations establishes a conceptual connection between evolutionary genetics and statistical physics of disordered systems.

  4. Bringing molecules back into molecular evolution.

    Directory of Open Access Journals (Sweden)

    Claus O Wilke

    Full Text Available Much molecular-evolution research is concerned with sequence analysis. Yet these sequences represent real, three-dimensional molecules with complex structure and function. Here I highlight a growing trend in the field to incorporate molecular structure and function into computational molecular-evolution work. I consider three focus areas: reconstruction and analysis of past evolutionary events, such as phylogenetic inference or methods to infer selection pressures; development of toy models and simulations to identify fundamental principles of molecular evolution; and atom-level, highly realistic computational modeling of molecular structure and function aimed at making predictions about possible future evolutionary events.

  5. Molecular evolution tracks macroevolutionary transitions in Cetacea.

    Science.gov (United States)

    McGowen, Michael R; Gatesy, John; Wildman, Derek E

    2014-06-01

    Cetacea (whales, dolphins, and porpoises) is a model group for investigating the molecular signature of macroevolutionary transitions. Recent research has begun to reveal the molecular underpinnings of the remarkable anatomical and behavioral transformation in this clade. This shift from terrestrial to aquatic environments is arguably the best-understood major morphological transition in vertebrate evolution. The ancestral body plan and physiology were extensively modified and, in many cases, these crucial changes are recorded in cetacean genomes. Recent studies have highlighted cetaceans as central to understanding adaptive molecular convergence and pseudogene formation. Here, we review current research in cetacean molecular evolution and the potential of Cetacea as a model for the study of other macroevolutionary transitions from a genomic perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Three duplication events and variable molecular evolution ...

    Indian Academy of Sciences (India)

    Three duplication events and variable molecular evolution characteristics involved in multiple GGPS genes of six Solanaceae species. FENG LI CHUNYANG WEI CHAN QIAO ZHENXI CHEN PENG WANG PAN WEI RAN WANG LIFENG JIN JUN YANG FUCHENG LIN ZHAOPENG LUO. RESEARCH NOTE Volume 95 Issue ...

  7. Molecular evolution of mammalian ribonucleases 1

    NARCIS (Netherlands)

    Dubois, J.Y; Ursing, B.M.; Kolkman, J.A.; Beintema, J.J

    There have been many studies on the chemistry of mammalian pancreatic ribonucleases (ribonucleases 1), but the functional biology of this family of homologous proteins is still largely unknown. Many studies have been performed on the molecular evolution and properties of this enzyme from species

  8. HBV And HCV Molecular Evolution

    Directory of Open Access Journals (Sweden)

    Flor H. Pujol

    2007-02-01

    support and evade several selective pressures imposed by the host, like the innate immune response, the production of neutralizing antibodies and cytotoxic lymphocites. More recently, even if many drugs currently developed against HCV have not been aproved yet for use in humans, in vitro studies have allowed to identified already drug resistance mutations. As for HIV, these mutation may be resulting also in a reduction of viral fitness, and compensatory mutations have also been described, that restore at least partially the replication capacity of the mutated viruses. The extensive variability of HCV is one of the main reasons that had hampered the production of an eefective vaccine against this virus.

     

    REFERENCES

    1. Devesa, M. & Pujol, F.H. (2007: Hepatitis B virus genetic diversity in Latin America. Virus Research: in press.

    2. Simmonds P. (2004: Genetic diversity and evolution of hepatitis C virus--15 years on. J Gen Virol 85: 3173-3188.

    3. Stumpf, M.P.H. & Pybus, O.G. (2002: Genetic diversity and models of viral evolution for the hepatitis C virus. FEMS Microbiology Letters 214: 143-152.

  9. The Molecular Basis of Human Brain Evolution.

    Science.gov (United States)

    Enard, Wolfgang

    2016-10-24

    Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Molecular clock in neutral protein evolution

    Directory of Open Access Journals (Sweden)

    Wilke Claus O

    2004-08-01

    Full Text Available Abstract Background A frequent observation in molecular evolution is that amino-acid substitution rates show an index of dispersion (that is, ratio of variance to mean substantially larger than one. This observation has been termed the overdispersed molecular clock. On the basis of in silico protein-evolution experiments, Bastolla and coworkers recently proposed an explanation for this observation: Proteins drift in neutral space, and can temporarily get trapped in regions of substantially reduced neutrality. In these regions, substitution rates are suppressed, which results in an overall substitution process that is not Poissonian. However, the simulation method of Bastolla et al. is representative only for cases in which the product of mutation rate μ and population size Ne is small. How the substitution process behaves when μNe is large is not known. Results Here, I study the behavior of the molecular clock in in silico protein evolution as a function of mutation rate and population size. I find that the index of dispersion decays with increasing μNe, and approaches 1 for large μNe . This observation can be explained with the selective pressure for mutational robustness, which is effective when μNe is large. This pressure keeps the population out of low-neutrality traps, and thus steadies the ticking of the molecular clock. Conclusions The molecular clock in neutral protein evolution can fall into two distinct regimes, a strongly overdispersed one for small μNe, and a mostly Poissonian one for large μNe. The former is relevant for the majority of organisms in the plant and animal kingdom, and the latter may be relevant for RNA viruses.

  11. Evolution of molecular phenotypes under stabilizing selection

    Science.gov (United States)

    Nourmohammad, Armita; Schiffels, Stephan; Lässig, Michael

    2013-01-01

    Molecular phenotypes are important links between genomic information and organismic functions, fitness, and evolution. Complex phenotypes, which are also called quantitative traits, often depend on multiple genomic loci. Their evolution builds on genome evolution in a complicated way, which involves selection, genetic drift, mutations and recombination. Here we develop a coarse-grained evolutionary statistics for phenotypes, which decouples from details of the underlying genotypes. We derive approximate evolution equations for the distribution of phenotype values within and across populations. This dynamics covers evolutionary processes at high and low recombination rates, that is, it applies to sexual and asexual populations. In a fitness landscape with a single optimal phenotype value, the phenotypic diversity within populations and the divergence between populations reach evolutionary equilibria, which describe stabilizing selection. We compute the equilibrium distributions of both quantities analytically and we show that the ratio of mean divergence and diversity depends on the strength of selection in a universal way: it is largely independent of the phenotype’s genomic encoding and of the recombination rate. This establishes a new method for the inference of selection on molecular phenotypes beyond the genome level. We discuss the implications of our findings for the predictability of evolutionary processes.

  12. Molecular evolution of human species D adenoviruses.

    Science.gov (United States)

    Robinson, Christopher M; Seto, Donald; Jones, Morris S; Dyer, David W; Chodosh, James

    2011-08-01

    Adenoviruses are medium-sized double stranded DNA viruses that infect vertebrates. Human adenoviruses cause an array of diseases. Currently there are 56 human adenovirus types recognized and characterized within seven species (A-G). Of those types, a majority belongs to species D. In this review, the genomic conservation and diversity are examined among human adenoviruses within species D, particularly in contrast to other human adenovirus species. Specifically, homologous recombination is presented as a driving force for the molecular evolution of human adenoviruses and the emergence of new adenovirus pathogens. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Amino acid properties conserved in molecular evolution.

    Directory of Open Access Journals (Sweden)

    Witold R Rudnicki

    Full Text Available That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows splitting the matrix into two parts - one that depends only on mutabilities of amino acids and another that depends on pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties. The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological applications.

  14. Archaea: Evolution, Physiology, and Molecular Biology

    DEFF Research Database (Denmark)

    Introduced by Crafoord Prize winner Carl Woese, this volume combines reviews of the major developments in archaeal research over the past 10-15 years with more specialized articles dealing with important recent breakthroughs. Drawing on major themes presented at the June 2005 meeting held in Muni...... and technological context, and include accounts of cutting-edge research developments. The book spans archaeal evolution, physiology, and molecular and cellular biology and will be an essential reference for both graduate students and researchers....... to honor the archaea pioneers Wolfram Zillig and Karl O. Stetter, the book provides a thorough survey of the field from its controversial beginnings to its ongoing expansion to include aspects of eukaryotic biology. The editors have assembled articles from the premier researchers in this rapidly burgeoning...

  15. Coalescing molecular evolution and DNA barcoding.

    Science.gov (United States)

    Zinger, Lucie; Philippe, Hervé

    2016-05-01

    The DNA barcoding concept (Woese et al. ; Hebert et al. ) has considerably boosted taxonomy research by facilitating the identification of specimens and discovery of new species. Used alone or in combination with DNA metabarcoding on environmental samples (Taberlet et al. ), the approach is becoming a standard for basic and applied research in ecology, evolution and conservation across taxa, communities and ecosystems (Scheffers et al. ; Kress et al. ). However, DNA barcoding suffers from several shortcomings that still remain overlooked, especially when it comes to species delineation (Collins & Cruickshank ). In this issue of Molecular Ecology, Barley & Thomson () demonstrate that the choice of models of sequence evolution has substantial impacts on inferred genetic distances, with a propensity of the widely used Kimura 2-parameter model to lead to underestimated species richness. While DNA barcoding has been and will continue to be a powerful tool for specimen identification and preliminary taxonomic sorting, this work calls for a systematic assessment of substitution models fit on barcoding data used for species delineation and reopens the debate on the limitation of this approach. © 2016 John Wiley & Sons Ltd.

  16. Molecular epidemiology and evolution of fish Novirhabdoviruses

    Science.gov (United States)

    Kurath, Gael

    2014-01-01

    The genus Novirhabdoviridae contains several of the important rhabdoviruses that infect fish hosts. There are four established virus species: Infectious hematopoietic necrosis virus (IHNV), Viral hemorrhagic septicemia virus (VHSV), Hirame rhabdovirus(HIRRV), and Snakehead rhabdovirus (SHRV). Viruses of these species vary in host and geographic range, and they have all been studied at the molecular and genomic level. As globally significant pathogens of cultured fish, IHNV and VHSV have been particularly well studied in terms of molecular epidemiology and evolution. Phylogenic analyses of hundreds of field isolates have defined five major genogroups of IHNV and four major genotypes of VHSV worldwide. These phylogenies are informed by the known histories of IHNV and VHSV, each involving a series of viral emergence events that are sometimes associated with host switches, most often into cultured rainbow trout. In general, IHNV has relatively low genetic diversity and a narrow host range, and has been spread from its endemic source in North American to Europe and Asia due to aquaculture activities. In contrast, VHSV has broad host range and high genetic diversity, and the source of emergence events is virus in widespread marine fish reservoirs in the northern Atlantic and Pacific Oceans. Common mechanisms of emergence and host switch events include use of raw feed, proximity to wild fish reservoirs of virus, and geographic translocations of virus or naive fish hosts associated with aquaculture.

  17. Orchid flowers: evolution and molecular development

    DEFF Research Database (Denmark)

    Johansen, Bo; Frederiksen, Signe Elisabeth

    2002-01-01

    MADS-box genes, ABS model, Orchid flower evolution, Gene expression in orchid flowers, in situ PCR......MADS-box genes, ABS model, Orchid flower evolution, Gene expression in orchid flowers, in situ PCR...

  18. Molecular musings in microbial ecology and evolution

    Directory of Open Access Journals (Sweden)

    Case Rebecca J

    2011-11-01

    Full Text Available Abstract A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology. The first question is "What has been the influence of the 'Universal Tree of Life' based on molecular markers?" For evolutionists, the tree was a tool to understand the past of known (cultured organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured organisms, without much knowledge of their physiology. The second question we ask is "What was the impact of discovering frequent lateral gene transfer among microbes?" In evolutionary microbiology, frequent lateral gene transfer (LGT made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution and in the other to achieve its goals despite that phenomenon (ecology. The third and last question we ask is "What are the implications of the unexpected extent of diversity?" The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. This issue has not overtly affected microbial ecology, as it had already abandoned species in favor of the more flexible operational taxonomic units. This field is nonetheless moving away from traditional methods to measure diversity, as they do not provide enough

  19. Molecular evolution of the AP2 subfamily.

    Science.gov (United States)

    Shigyo, Mikao; Hasebe, Mitsuyasu; Ito, Motomi

    2006-02-01

    The AP2 (APETALA2)/EREBP (Ethylene Responsive Element Binding Protein) multigene family includes developmentally and physiologically important transcription factors. AP2/EREBP genes are divided into two subfamilies: AP2 genes with two AP2 domains and EREBP genes with a single AP2/ERF (Ethylene Responsive Element Binding Factor) domain. Based on previous phylogenetic analyses, AP2 genes can be divided into two clades, AP2 and ANT groups. To clarify the molecular evolution of the AP2 subfamily, we isolated and sequenced genes with two AP2 domains from three gymnosperms, Cycas revoluta, Ginkgo biloba, and Gnetum parvifolium,as well as from the moss Physcomitrella patens. Expressions of AP2-like genes, including AP2, in Arabidopsis thaliana are regulated by the microRNA miR172. We found that the target site of miR172 is significantly conserved in gymnosperm AP2 homologs, suggesting that regulatory mechanisms of gene expression using microRNA have been conserved over the three hundred million years since the divergence of gymnosperm and flowering plant lineages. We inferred a phylogenetic relationship of these genes with the green alga Chlamydomonas reinhardtii and seed-plant genes available in public DNA databases. The phylogenetic tree showed that the AP2 subfamily diverged into the AP2 and ANT groups before the last common ancestor of land plants and after C. reinhardtii diverged from the land-plant lineage. The tree also indicated that each AP2 and ANT group further diverged into several clades through gene duplications prior to the divergence of gymnosperms and angiosperms.

  20. Evolution of the atomic and molecular gas content of galaxies

    NARCIS (Netherlands)

    Popping, Gergö; Somerville, Rachel S.; Trager, Scott C.

    We study the evolution of atomic and molecular gas in galaxies in semi-analytic models of galaxy formation that include new modelling of the partitioning of cold gas in galactic discs into atomic, molecular, and ionized phases. We adopt two scenarios for the formation of molecules: one pressure

  1. The neutral theory of molecular evolution in the genomic era.

    Science.gov (United States)

    Nei, Masatoshi; Suzuki, Yoshiyuki; Nozawa, Masafumi

    2010-01-01

    The neutral theory of molecular evolution has been widely accepted and is the guiding principle for studying evolutionary genomics and the molecular basis of phenotypic evolution. Recent data on genomic evolution are generally consistent with the neutral theory. However, many recently published papers claim the detection of positive Darwinian selection via the use of new statistical methods. Examination of these methods has shown that their theoretical bases are not well established and often result in high rates of false-positive and false-negative results. When the deficiencies of these statistical methods are rectified, the results become largely consistent with the neutral theory. At present, genome-wide analyses of natural selection consist of collections of single-locus analyses. However, because phenotypic evolution is controlled by the interaction of many genes, the study of natural selection ought to take such interactions into account. Experimental studies of evolution will also be crucial.

  2. Automatic Evolution of Molecular Nanotechnology Designs

    Science.gov (United States)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    This paper describes strategies for automatically generating designs for analog circuits at the molecular level. Software maps out the edges and vertices of potential nanotechnology systems on graphs, then selects appropriate ones through evolutionary or genetic paradigms.

  3. Molecular phylogenetics and character evolution of Cannabaceae

    NARCIS (Netherlands)

    Yang, M.Q.; Velzen, van R.; Bakker, F.T.; Sattarian, A.; Li, D.Z.; Yi, T.S.

    2013-01-01

    Cannabaceae includes ten genera that are widely distributed in tropical to temperate regions of the world. Because of limited taxon and character sampling in previous studies, intergeneric phylogenetic relationships within this family have been poorly resolved. We conducted a molecular phylogenetic

  4. Taller plants have lower rates of molecular evolution.

    Science.gov (United States)

    Lanfear, Robert; Ho, Simon Y W; Jonathan Davies, T; Moles, Angela T; Aarssen, Lonnie; Swenson, Nathan G; Warman, Laura; Zanne, Amy E; Allen, Andrew P

    2013-01-01

    Rates of molecular evolution have a central role in our understanding of many aspects of species' biology. However, the causes of variation in rates of molecular evolution remain poorly understood, particularly in plants. Here we show that height accounts for about one-fifth of the among-lineage rate variation in the chloroplast and nuclear genomes of plants. This relationship holds across 138 families of flowering plants, and when accounting for variation in species richness, temperature, ultraviolet radiation, latitude and growth form. Our observations can be explained by a link between height and rates of genome copying in plants, and we propose a mechanistic hypothesis to account for this-the 'rate of mitosis' hypothesis. This hypothesis has the potential to explain many disparate observations about rates of molecular evolution across the tree of life. Our results have implications for understanding the evolutionary history and future of plant lineages in a changing world.

  5. Molecular evolution of bat color vision genes.

    Science.gov (United States)

    Wang, Daryi; Oakley, Todd; Mower, Jeffrey; Shimmin, Lawrence C; Yim, Sokchea; Honeycutt, Rodney L; Tsao, Hsienshao; Li, Wen-Hsiung

    2004-02-01

    The two suborders of bats, Megachiroptera (megabats) and Microchiroptera (microbats), use different sensory modalities for perceiving their environment. Megabats are crepuscular and rely on a well-developed eyes and visual pathway, whereas microbats occupy a nocturnal niche and use acoustic orientation or echolocation more than vision as the major means of perceiving their environment. In view of the differences associated with their sensory systems, we decided to investigate the function and evolution of color vision (opsin genes) in these two suborders of bats. The middle/long wavelength (M/L) and short wavelength (S) opsin genes were sequenced from two frugivorous species of megabats, Haplonycteris fischeri and Pteropus dasymallus formosus, and one insectivorous species of microbat, Myotis velifer. Contrary to the situation in primates, where many nocturnal species have lost the functional S opsin gene, both crepuscular and strictly nocturnal species of bats that we examined have functional M/L and S opsin genes. Surprisingly, the S opsin in these bats may be sensitive to UV light, which is relatively more abundant at dawn and at dusk. The M/L opsin in these bats appears to be the L type, which is sensitive to red and may be helpful for identifying fruits among leaves or for other purposes. Most interestingly, H. fischeri has a recent duplication of the M/L opsin gene, representing to date the only known case of opsin gene duplication in non-primate mammals. Some of these observations are unexpected and may provide insights into the effect of nocturnal life on the evolution of opsin genes in mammals and the evolution of the life history traits of bats in general.

  6. Molecular evolution and the natural history of select virus epidemics

    DEFF Research Database (Denmark)

    Bruhn, Christian Anders Wathne

    Molecular evolution of pathogenic viruses with RNA based genomes is most often fast enough to leave an informative genomic sequence signal within a timeframe that is relevant for the study of both recent and on-­‐going epidemics (and epizootics). The true power of molecular evolutionary methodolo...... be termed a modern synthesis of infectious disease epidemiology. The present work can be seen as an advocate of moving towards such a completely integrative approach....

  7. Exploring the diversity and molecular evolution of shrews (family ...

    African Journals Online (AJOL)

    Given the life history characteristics of shrews (high metabolic rate in Soricinae, small body size, fast generation time and generally short life span), the metabolic theory predicts accelerated nucleotide turnover in this family. By examining the molecular evolution of the cytochrome b molecule, this study identifies both ...

  8. The Jukes-Cantor Model of Molecular Evolution

    Science.gov (United States)

    Erickson, Keith

    2010-01-01

    The material in this module introduces students to some of the mathematical tools used to examine molecular evolution. This topic is standard fare in many mathematical biology or bioinformatics classes, but could also be suitable for classes in linear algebra or probability. While coursework in matrix algebra, Markov processes, Monte Carlo…

  9. Evolution of egg coats: linking molecular biology and ecology.

    Science.gov (United States)

    Shu, Longfei; Suter, Marc J-F; Räsänen, Katja

    2015-08-01

    One central goal of evolutionary biology is to explain how biological diversity emerges and is maintained in nature. Given the complexity of the phenotype and the multifaceted nature of inheritance, modern evolutionary ecological studies rely heavily on the use of molecular tools. Here, we show how molecular tools help to gain insight into the role of egg coats (i.e. the extracellular structures surrounding eggs and embryos) in evolutionary diversification. Egg coats are maternally derived structures that have many biological functions from mediating fertilization to protecting the embryo from environmental hazards. They show great molecular, structural and functional diversity across species, but intraspecific variability and the role of ecology in egg coat evolution have largely been overlooked. Given that much of the variation that influences egg coat function is ultimately determined by their molecular phenotype, cutting-edge molecular tools (e.g. proteomics, glycomics and transcriptomics), combined with functional assays, are needed for rigorous inferences on their evolutionary ecology. Here, we identify key research areas and highlight emerging molecular techniques that can increase our understanding of the role of egg coats in the evolution of biological diversity, from adaptation to speciation. © 2015 John Wiley & Sons Ltd.

  10. Molecular evolution of cyclin proteins in animals and fungi

    Directory of Open Access Journals (Sweden)

    Afonnikov Dmitry A

    2011-07-01

    Full Text Available Abstract Background The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. Results We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. Conclusions The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events.

  11. Social parasitism and the molecular basis of phenotypic evolution

    Directory of Open Access Journals (Sweden)

    Alessandro eCini

    2015-02-01

    Full Text Available Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in pairs of closely related species offer an unrivalled opportunity to evaluate the extent to which genomic material is reorganised to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled organisms to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a social ancestor and are specialised to exploit the socially acquired resources of their closely-related, free-living social host. Molecular comparisons of such species pairs can reveal how genomic material is re-organised in the loss of ancestral traits (i.e. of free-living traits in the parasites and the gain of new ones (i.e. specialist traits required for a parasitic lifestyle. We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in understanding the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data for our conceptual model using the paper wasp social parasite-host system (Polistes sulcifer - Polistes dominula. This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic

  12. Molecular evolution of the primate antiviral restriction factor tetherin.

    Directory of Open Access Journals (Sweden)

    Jun Liu

    Full Text Available BACKGROUND: Tetherin is a recently identified antiviral restriction factor that restricts HIV-1 particle release in the absence of the HIV-1 viral protein U (Vpu. It is reminiscent of APOBEC3G and TRIM5a that also antagonize HIV. APOBEC3G and TRIM5a have been demonstrated to evolve under pervasive positive selection throughout primate evolution, supporting the red-queen hypothesis. Therefore, one naturally presumes that Tetherin also evolves under pervasive positive selection throughout primate evolution and supports the red-queen hypothesis. Here, we performed a detailed evolutionary analysis to address this presumption. METHODOLOGY/PRINCIPAL FINDINGS: Results of non-synonymous and synonymous substitution rates reveal that Tetherin as a whole experiences neutral evolution rather than pervasive positive selection throughout primate evolution, as well as in non-primate mammal evolution. Sliding-window analyses show that the regions of the primate Tetherin that interact with viral proteins are under positive selection or relaxed purifying selection. In particular, the sites identified under positive selection generally focus on these regions, indicating that the main selective pressure acting on the primate Tetherin comes from virus infection. The branch-site model detected positive selection acting on the ancestral branch of the New World Monkey lineage, suggesting an episodic adaptive evolution. The positive selection was also found in duplicated Tetherins in ruminants. Moreover, there is no bias in the alterations of amino acids in the evolution of the primate Tetherin, implying that the primate Tetherin may retain broad spectrum of antiviral activity by maintaining structure stability. CONCLUSIONS/SIGNIFICANCE: These results conclude that the molecular evolution of Tetherin may be attributed to the host-virus arms race, supporting the Red Queen hypothesis, and Tetherin may be in an intermediate stage in transition from neutral to pervasive

  13. Some Histories of Molecular Evolution: Amniote Phylogeny, Vertebrate Eye Lens Evolution, and the Prion Gene

    NARCIS (Netherlands)

    Rheede, T. van

    2004-01-01

    In this thesis, the principles of molecular evolution and phylogeny are introduced in Chapter 1, while the subsequent chapters deal with the three topics mentioned in the title. Part I: Birds, reptiles and mammals are Amniota, organisms that have an amnion during their embryonal development. Even

  14. Causes of molecular convergence and parallelism in protein evolution.

    Science.gov (United States)

    Storz, Jay F

    2016-04-01

    To what extent is the convergent evolution of protein function attributable to convergent or parallel changes at the amino acid level? The mutations that contribute to adaptive protein evolution may represent a biased subset of all possible beneficial mutations owing to mutation bias and/or variation in the magnitude of deleterious pleiotropy. A key finding is that the fitness effects of amino acid mutations are often conditional on genetic background. This context dependence (epistasis) can reduce the probability of convergence and parallelism because it reduces the number of possible mutations that are unconditionally acceptable in divergent genetic backgrounds. Here, I review factors that influence the probability of replicated evolution at the molecular level.

  15. Increased genome sampling reveals novel insights into vertebrate molecular evolution

    OpenAIRE

    Doherty, Aoife

    2012-01-01

    In this thesis, increased vertebrate genome sampling and recent methodological advancements were combined to address three distinct questions pertaining to vertebrate molecular evolution. Gene duplicability is the tendency to retain multiple gene copies after a duplication event. Various factors correlate with gene duplicability, such as protein function and timing of expression during development. The position of a gene’s encoded product in the protein-protein interaction n...

  16. Biogeographic, molecular evolution, and diversification patterns in Neotropical plants

    Science.gov (United States)

    Smith, S. A.; Dick, C. W.

    2014-12-01

    Neotropical plants demonstrate a phenomenal range of ecological and morphological diversity. We will explore the phylogenetic and biogeographic patterns of a group of Neotropical plants and how these patterns relate to the geological history of the area. This includes the timing and location of biological exchange between areas. Neotropical plants also demonstrate repeated examples of rapid speciation and diversification. We will examine these evolutionary patterns and how they relate to molecular evolution.

  17. Molecular evolution of cytochrome bd oxidases across proteobacterial genomes.

    Science.gov (United States)

    Degli Esposti, Mauro; Rosas-Pérez, Tania; Servín-Garcidueñas, Luis Eduardo; Bolaños, Luis Manuel; Rosenblueth, Monica; Martínez-Romero, Esperanza

    2015-02-16

    This work is aimed to resolve the complex molecular evolution of cytochrome bd ubiquinol oxidase, a nearly ubiquitous bacterial enzyme that is involved in redox balance and bioenergetics. Previous studies have created an unclear picture of bd oxidases phylogenesis without considering the existence of diverse types of bd oxidases. Integrated approaches of genomic and protein analysis focused on proteobacteria have generated a molecular classification of diverse types of bd oxidases, which produces a new scenario for interpreting their evolution. A duplication of the original gene cluster of bd oxidase might have occurred in the ancestors of extant α-proteobacteria of the Rhodospirillales order, such as Acidocella, from which the bd-I type of the oxidase might have diffused to other proteobacterial lineages. In contrast, the Cyanide-Insensitive Oxidase type may have differentiated into recognizable subtypes after another gene cluster duplication. These subtypes are widespread in the genomes of α-, β-, and γ-proteobacteria, with occasional instances of lateral gene transfer. In resolving the evolutionary pattern of proteobacterial bd oxidases, this work sheds new light on the basal taxa of α-proteobacteria from which the γ-proteobacterial lineage probably emerged. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Evolution of Star Formation in the Rosette Molecular Cloud

    Science.gov (United States)

    Lada, Elizabeth; Balog, Zoltan; Ferreira, Bruno; Gorlova, Nadya; Roman-Zuniga, Carlos; Ybarra, Jason

    2008-03-01

    We propose to combine the Spitzer archival IRAC and MIPS observations of the Rosette Molecular Cloud with our FLAMINGOS near-infared imaging and spectroscopic observations to study the star and planet forming activity in this cloud. Combining SPITZER and FLAMINGOS photometry and spectroscopy will allow us to create a complete census of the youngest stars in the cloud having masses slightly above the hydrogen burning limit. We will use the combined data base to determine the total numbers and spatial distribution of the young stars within the Rosette Molecular cloud and to determine the numbers and frequency distribution of protostars and sources with circumstellar disks. In particular we will use this information to investigate whether there is a temporal sequence of star formation in the Rosette Molecular cloud and whether there is any evidence for cluster evolution in the cloud, i.e. is the structure and distribution of the young sources related to their evolutionary state. Our combined Spitzer infrared imaging and FLAMINGOS spectroscopic survey will provide a more detailed picture of the numbers, masses, ages and locations of young embedded stars in the Rosette Molecular Cloud Complex than ever before and will provide and invaluable database for studies of star and cluster formation and early evolution.

  19. Social molecular pathways and the evolution of bee societies

    Science.gov (United States)

    Bloch, Guy; Grozinger, Christina M.

    2011-01-01

    Bees provide an excellent model with which to study the neuronal and molecular modifications associated with the evolution of sociality because relatively closely related species differ profoundly in social behaviour, from solitary to highly social. The recent development of powerful genomic tools and resources has set the stage for studying the social behaviour of bees in molecular terms. We review ‘ground plan’ and ‘genetic toolkit’ models which hypothesize that discrete pathways or sets of genes that regulate fundamental behavioural and physiological processes in solitary species have been co-opted to regulate complex social behaviours in social species. We further develop these models and propose that these conserved pathways and genes may be incorporated into ‘social pathways’, which consist of relatively independent modules involved in social signal detection, integration and processing within the nervous and endocrine systems, and subsequent behavioural outputs. Modifications within modules or in their connections result in the evolution of novel behavioural patterns. We describe how the evolution of pheromonal regulation of social pathways may lead to the expression of behaviour under new social contexts, and review plasticity in circadian rhythms as an example for a social pathway with a modular structure. PMID:21690132

  20. Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology.

    Science.gov (United States)

    Elliott, Briony; Androga, Grace O; Knight, Daniel R; Riley, Thomas V

    2017-04-01

    Over the recent decades, Clostridium difficile infection (CDI) has emerged as a global public health threat. Despite growing attention, C. difficile remains a poorly understood pathogen, however, the exquisite sensitivity offered by next generation sequencing (NGS) technology has enabled analysis of the genome of C. difficile, giving us access to massive genomic data on factors such as virulence, evolution, and genetic relatedness within C. difficile groups. NGS has also demonstrated excellence in investigations of outbreaks and disease transmission, in both small and large-scale applications. This review summarizes the molecular epidemiology, evolution, and phylogeny of C. difficile, one of the most important pathogens worldwide in the current antibiotic resistance era. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Information Theory Broadens the Spectrum of Molecular Ecology and Evolution.

    Science.gov (United States)

    Sherwin, W B; Chao, A; Jost, L; Smouse, P E

    2017-12-01

    Information or entropy analysis of diversity is used extensively in community ecology, and has recently been exploited for prediction and analysis in molecular ecology and evolution. Information measures belong to a spectrum (or q profile) of measures whose contrasting properties provide a rich summary of diversity, including allelic richness (q=0), Shannon information (q=1), and heterozygosity (q=2). We present the merits of information measures for describing and forecasting molecular variation within and among groups, comparing forecasts with data, and evaluating underlying processes such as dispersal. Importantly, information measures directly link causal processes and divergence outcomes, have straightforward relationship to allele frequency differences (including monotonicity that q=2 lacks), and show additivity across hierarchical layers such as ecology, behaviour, cellular processes, and nongenetic inheritance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The interface of protein structure, protein biophysics, and molecular evolution

    Science.gov (United States)

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  3. Hepatitis A virus: host interactions, molecular epidemiology and evolution.

    Science.gov (United States)

    Vaughan, Gilberto; Goncalves Rossi, Livia Maria; Forbi, Joseph C; de Paula, Vanessa S; Purdy, Michael A; Xia, Guoliang; Khudyakov, Yury E

    2014-01-01

    Infection with hepatitis A virus (HAV) is the commonest viral cause of liver disease and presents an important public health problem worldwide. Several unique HAV properties and molecular mechanisms of its interaction with host were recently discovered and should aid in clarifying the pathogenesis of hepatitis A. Genetic characterization of HAV strains have resulted in the identification of different genotypes and subtypes, which exhibit a characteristic worldwide distribution. Shifts in HAV endemicity occurring in different parts of the world, introduction of genetically diverse strains from geographically distant regions, genotype displacement observed in some countries and population expansion detected in the last decades of the 20th century using phylogenetic analysis are important factors contributing to the complex dynamics of HAV infections worldwide. Strong selection pressures, some of which, like usage of deoptimized codons, are unique to HAV, limit genetic variability of the virus. Analysis of subgenomic regions has been proven useful for outbreak investigations. However, sharing short sequences among epidemiologically unrelated strains indicates that specific identification of HAV strains for molecular surveillance can be achieved only using whole-genome sequences. Here, we present up-to-date information on the HAV molecular epidemiology and evolution, and highlight the most relevant features of the HAV-host interactions. Published by Elsevier B.V.

  4. DNA Re‐EvolutioN: A game for learning molecular genetics and evolution

    National Research Council Canada - National Science Library

    Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia‐Vazquez, Eva

    2013-01-01

    ... (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular evolution while playing a game that mixes up theory and entertainment...

  5. Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution.

    Science.gov (United States)

    Warnock, Rachel C M; Yang, Ziheng; Donoghue, Philip C J

    2017-06-28

    Molecular sequence data provide information about relative times only, and fossil-based age constraints are the ultimate source of information about absolute times in molecular clock dating analyses. Thus, fossil calibrations are critical to molecular clock dating, but competing methods are difficult to evaluate empirically because the true evolutionary time scale is never known. Here, we combine mechanistic models of fossil preservation and sequence evolution in simulations to evaluate different approaches to constructing fossil calibrations and their impact on Bayesian molecular clock dating, and the relative impact of fossil versus molecular sampling. We show that divergence time estimation is impacted by the model of fossil preservation, sampling intensity and tree shape. The addition of sequence data may improve molecular clock estimates, but accuracy and precision is dominated by the quality of the fossil calibrations. Posterior means and medians are poor representatives of true divergence times; posterior intervals provide a much more accurate estimate of divergence times, though they may be wide and often do not have high coverage probability. Our results highlight the importance of increased fossil sampling and improved statistical approaches to generating calibrations, which should incorporate the non-uniform nature of ecological and temporal fossil species distributions. © 2017 The Authors.

  6. Extraordinary molecular evolution in the PRDM9 fertility gene.

    Directory of Open Access Journals (Sweden)

    James H Thomas

    2009-12-01

    Full Text Available Recent work indicates that allelic incompatibility in the mouse PRDM9 (Meisetz gene can cause hybrid male sterility, contributing to genetic isolation and potentially speciation. The only phenotype of mouse PRDM9 knockouts is a meiosis I block that causes sterility in both sexes. The PRDM9 gene encodes a protein with histone H3(K4 trimethyltransferase activity, a KRAB domain, and a DNA-binding domain consisting of multiple tandem C2H2 zinc finger (ZF domains. We have analyzed human coding polymorphism and interspecies evolutionary changes in the PRDM9 gene. The ZF domains of PRDM9 are evolving very rapidly, with compelling evidence of positive selection in primates. Positively selected amino acids are predominantly those known to make nucleotide specific contacts in C2H2 zinc fingers. These results suggest that PRDM9 is subject to recurrent selection to change DNA-binding specificity. The human PRDM9 protein is highly polymorphic in its ZF domains and nearly all polymorphisms affect the same nucleotide contact residues that are subject to positive selection. ZF domain nucleotide sequences are strongly homogenized within species, indicating that interfinger recombination contributes to their evolution. PRDM9 has previously been assumed to be a transcription factor required to induce meiosis specific genes, a role that is inconsistent with its molecular evolution. We suggest instead that PRDM9 is involved in some aspect of centromere segregation conflict and that rapidly evolving centromeric DNA drives changes in PRDM9 DNA-binding domains.

  7. Molecular evolution of type VI intermediate filament proteins

    Directory of Open Access Journals (Sweden)

    Vincent Michel

    2007-09-01

    Full Text Available Abstract Background Tanabin, transitin and nestin are type VI intermediate filament (IF proteins that are developmentally regulated in frogs, birds and mammals, respectively. Tanabin is expressed in the growth cones of embryonic vertebrate neurons, whereas transitin and nestin are found in myogenic and neurogenic cells. Another type VI IF protein, synemin, is expressed in undifferentiated and mature muscle cells of birds and mammals. In addition to an IF-typical α-helical core domain, type VI IF proteins are characterized by a long C-terminal tail often containing distinct repeated motifs. The molecular evolution of type VI IF proteins remains poorly studied. Results To examine the evolutionary history of type VI IF proteins, sequence comparisons, BLAST searches, synteny studies and phylogenic analyses were performed. This study provides new evidence that tanabin, transitin and nestin are indeed orthologous type VI IF proteins. It demonstrates that tanabin, transitin and nestin genes share intron positions and sequence identities, have a similar chromosomal context and display closely related positions in phylogenic analyses. Despite this homology, fast evolution rates of their C-terminal extremity have caused the appearance of repeated motifs with distinct biological activities. In particular, our in silico and in vitro analyses of their tail domain have shown that (avian transitin, but not (mammalian nestin, contains a repeat domain displaying nucleotide hydrolysis activity. Conclusion These analyses of the evolutionary history of the IF proteins fit with a model in which type VI IFs form a branch distinct from NF proteins and are composed of two major proteins: synemin and nestin orthologs. Rapid evolution of the C-terminal extremity of nestin orthologs could be responsible for their divergent functions.

  8. The rate of DNA evolution: Effects of body size and temperature on the molecular clock

    OpenAIRE

    Gillooly, James F.; Andrew P. Allen; West, Geoffrey B.; Brown, James H.

    2004-01-01

    Observations that rates of molecular evolution vary widely within and among lineages have cast doubts on the existence of a single “molecular clock.” Differences in the timing of evolutionary events estimated from genetic and fossil evidence have raised further questions about the accuracy of molecular clocks. Here, we present a model of nucleotide substitution that combines theory on metabolic rate with the now-classic neutral theory of molecular evolution. The model quantitatively predicts ...

  9. Increase in Complexity and Information through Molecular Evolution

    Directory of Open Access Journals (Sweden)

    Peter Schuster

    2016-11-01

    Full Text Available Biological evolution progresses by essentially three different mechanisms: (I optimization of properties through natural selection in a population of competitors; (II development of new capabilities through cooperation of competitors caused by catalyzed reproduction; and (III variation of genetic information through mutation or recombination. Simplified evolutionary processes combine two out of the three mechanisms: Darwinian evolution combines competition (I and variation (III and is represented by the quasispecies model, major transitions involve cooperation (II of competitors (I, and the third combination, cooperation (II and variation (III provides new insights in the role of mutations in evolution. A minimal kinetic model based on simple molecular mechanisms for reproduction, catalyzed reproduction and mutation is introduced, cast into ordinary differential equations (ODEs, and analyzed mathematically in form of its implementation in a flow reactor. Stochastic aspects are investigated through computer simulation of trajectories of the corresponding chemical master equations. The competition-cooperation model, mechanisms (I and (II, gives rise to selection at low levels of resources and leads to symbiontic cooperation in case the material required is abundant. Accordingly, it provides a kind of minimal system that can undergo a (major transition. Stochastic effects leading to extinction of the population through self-enhancing oscillations destabilize symbioses of four or more partners. Mutations (III are not only the basis of change in phenotypic properties but can also prevent extinction provided the mutation rates are sufficiently large. Threshold phenomena are observed for all three combinations: The quasispecies model leads to an error threshold, the competition-cooperation model allows for an identification of a resource-triggered bifurcation with the transition, and for the cooperation-mutation model a kind of stochastic threshold for

  10. Dracula's children: molecular evolution of vampire bat venom.

    Science.gov (United States)

    Low, Dolyce H W; Sunagar, Kartik; Undheim, Eivind A B; Ali, Syed A; Alagon, Alejandro C; Ruder, Tim; Jackson, Timothy N W; Pineda Gonzalez, Sandy; King, Glenn F; Jones, Alun; Antunes, Agostinho; Fry, Bryan G

    2013-08-26

    While vampire bat oral secretions have been the subject of intense research, efforts have concentrated only on two components: DSPA (Desmodus rotundus salivary plasminogen activator) and Draculin. The molecular evolutionary history of DSPA has been elucidated, while conversely draculin has long been known from only a very small fragment and thus even the basic protein class was not even established. Despite the fact that vampire bat venom has a multitude of effects unaccounted by the documented bioactivities of DSPA and draculin, efforts have not been made to establish what other bioactive proteins are secreted by their submaxillary gland. In addition, it has remained unclear whether the anatomically distinct anterior and posterior lobes of the submaxillary gland are evolving on separate gene expression trajectories or if they remain under the shared genetic control. Using a combined proteomic and transcriptomic approach, we show that identical proteins are simultaneously expressed in both lobes. In addition to recovering the known structural classes of DSPA, we recovered a novel DSPA isoform as well as obtained a very large sequence stretch of draculin and thus established that it is a mutated version of the lactotransferrin scaffold. This study reveals a much more complex secretion profile than previously recognised. In addition to obtaining novel versions of scaffolds convergently recruited into other venoms (allergen-like, CRiSP, kallikrein, Kunitz, lysozyme), we also documented novel expression of small peptides related to calcitonin, PACAP, and statherin. Other overexpressed protein types included BPI-fold, lacritin, and secretoglobin. Further, we investigate the molecular evolution of various vampire bat venom-components and highlight the dominant role of positive selection in the evolution of these proteins. Conspicuously many of the proteins identified in the proteome were found to be homologous to proteins with known activities affecting vasodilation and

  11. Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers.

    Science.gov (United States)

    Greenwold, Matthew J; Sawyer, Roger H

    2011-12-15

    Feathers of today's birds are constructed of beta (β)-keratins, structural proteins of the epidermis that are found solely in reptiles and birds. Discoveries of "feathered dinosaurs" continue to stimulate interest in the evolutionary origin of feathers, but few studies have attempted to link the molecular evolution of their major structural proteins (β-keratins) to the appearance of feathers in the fossil record. Using molecular dating methods, we show that before the appearance of Anchiornis (∼155 Million years ago (Ma)) the basal β-keratins of birds began diverging from their archosaurian ancestor ∼216 Ma. However, the subfamily of feather β-keratins, as found in living birds, did not begin diverging until ∼143 Ma. Thus, the pennaceous feathers on Anchiornis, while being constructed of avian β-keratins, most likely did not contain the feather β-keratins found in the feathers of modern birds. Our results demonstrate that the evolutionary origin of feathers does not coincide with the molecular evolution of the feather β-keratins found in modern birds. More likely, during the Late Jurassic, the epidermal structures that appeared on organisms in the lineage leading to birds, including early forms of feathers, were constructed of avian β-keratins other than those found in the feathers of modern birds. Recent biophysical studies of the β-keratins in feathers support the view that the appearance of the subfamily of feather β-keratins altered the biophysical nature of the feather establishing its role in powered flight. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  12. Molecular evolution of the polyamine oxidase gene family in Metazoa

    Directory of Open Access Journals (Sweden)

    Polticelli Fabio

    2012-06-01

    monophyletic clades including, respectively, all the SMOs and APAOs from vertebrates. The two vertebrate monophyletic clades clustered strictly mirroring the organismal phylogeny of fishes, amphibians, reptiles, birds, and mammals. Evidences from comparative genomic analysis, structural evolution and functional divergence in a phylogenetic framework across Metazoa suggested an evolutionary scenario where the ancestor PAO coding sequence, present in invertebrates as an orthologous gene, has been duplicated in the vertebrate branch to originate the paralogous SMO and APAO genes. A further genome evolution event concerns the SMO gene of placental, but not marsupial and monotremate, mammals which increased its functional variation following an alternative splicing (AS mechanism. Conclusions In this study the explicit integration in a phylogenomic framework of phylogenetic tree construction, structure prediction, and biochemical function data/prediction, allowed inferring the molecular evolutionary history of the PAO gene family and to disambiguate paralogous genes related by duplication event (SMO and APAO and orthologous genes related by speciation events (PAOs, SMOs/APAOs. Further, while in vertebrates experimental data corroborate SMO and APAO molecular function predictions, in invertebrates the finding of a supported phylogenetic clusters of insect PAOs and the co-occurrence of two PAO variants in the amphioxus urgently claim the need for future structure-function studies.

  13. "Simulated molecular evolution" or computer-generated artifacts?

    Science.gov (United States)

    Darius, F; Rojas, R

    1994-11-01

    1. The authors define a function with value 1 for the positive examples and 0 for the negative ones. They fit a continuous function but do not deal at all with the error margin of the fit, which is almost as large as the function values they compute. 2. The term "quality" for the value of the fitted function gives the impression that some biological significance is associated with values of the fitted function strictly between 0 and 1, but there is no justification for this kind of interpretation and finding the point where the fit achieves its maximum does not make sense. 3. By neglecting the error margin the authors try to optimize the fitted function using differences in the second, third, fourth, and even fifth decimal place which have no statistical significance. 4. Even if such a fit could profit from more data points, the authors should first prove that the region of interest has some kind of smoothness, that is, that a continuous fit makes any sense at all. 5. "Simulated molecular evolution" is a misnomer. We are dealing here with random search. Since the margin of error is so large, the fitted function does not provide statistically significant information about the points in search space where strings with cleavage sites could be found. This implies that the method is a highly unreliable stochastic search in the space of strings, even if the neural network is capable of learning some simple correlations. 6. Classical statistical methods are for these kind of problems with so few data points clearly superior to the neural networks used as a "black box" by the authors, which in the way they are structured provide a model with an error margin as large as the numbers being computed.7. And finally, even if someone would provide us with a function which separates strings with cleavage sites from strings without them perfectly, so-called simulated molecular evolution would not be better than random selection.Since a perfect fit would only produce exactly ones or

  14. THE MOLECULAR EVOLUTION OF THE MOST DANGEROUS EMERGING VIRUS INFECTIONS

    Directory of Open Access Journals (Sweden)

    Popov NN

    2016-03-01

    Full Text Available In this paper we reviewed what is known about the emerging viruses, the hosts that they originate in, and the molecular events that drive their emergence. When a pathogen crosses over from animals to humans, or an existing human disease suddenly increases in incidence, the infectious disease is said to be ‘emerging’. Most of the emerging pathogens originate from nonhuman animal species which has been termed natural reservoirs. The number of emerging infectious diseases has increased over the last few decades, driven by both anthropogenic and environmental factors such as population growth, urbanization, global travel and trade, intensification of livestock production. Now it has been believed that the emergence process may include four steps. On the first step the exposure of the humans to a novel virus occures. On the second step the subset of the viruses overcome the cross-species barrier. Host shifts have resulted in multiple human pandemics, such as HIV from chimps the H1N1, ‘‘spanish flu’’ from birds, SARS-CoV and virus Ebola from bats. Then some viruses enables to transmit from one human to another. And on the last step the viruses that are sufficiently transmissible between humans cause outbreaks and become endemic in human populations without the requirement of a natural reservoir. This review aims to discuss the molecular mechanisms that govern virus cross-species transmission and following stage, using the emergence of HIV, SARS-CoV, virus Ebola and influenza virus A as the models.Populations of many viruses harbour abundant genetic variability due to a combination of high mutation, recombination or reassortation rates and large population sizes. Mutations and recombinations has been associated with the increases in virulence, the evasion of host immunity and the evolution of resistance to antivirals. Genetic alterations in one species may results in the acquisition of variations that allow them to overcome cross species

  15. Molecular evolution of the MAGUK family in metazoan genomes

    Directory of Open Access Journals (Sweden)

    Admiraal Jeroen F

    2007-08-01

    Full Text Available Abstract Background Development, differentiation and physiology of metazoans all depend on cell to cell communication and subsequent intracellular signal transduction. Often, these processes are orchestrated via sites of specialized cell-cell contact and involve receptors, adhesion molecules and scaffolding proteins. Several of these scaffolding proteins important for synaptic and cellular junctions belong to the large family of membrane-associated guanylate kinases (MAGUK. In order to elucidate the origin and the evolutionary history of the MAGUKs we investigated full-length cDNA, EST and genomic sequences of species in major phyla. Results Our results indicate that at least four of the seven MAGUK subfamilies were present in early metazoan lineages, such as Porifera. We employed domain sequence and structure based methods to infer a model for the evolutionary history of the MAGUKs. Notably, the phylogenetic trees for the guanylate kinase (GK-, the PDZ- and the SH3-domains all suggested a matching evolutionary model which was further supported by molecular modeling of the 3D structures of different GK domains. We found no MAGUK in plants, fungi or other unicellular organisms, which suggests that the MAGUK core structure originated early in metazoan history. Conclusion In summary, we have characterized here the molecular and structural evolution of the large MAGUK family. Using the MAGUKs as an example, our results show that it is possible to derive a highly supported evolutionary model for important multidomain families by analyzing encoded protein domains. It further suggests that larger superfamilies encoded in the different genomes can be analyzed in a similar manner.

  16. Molecular phylogeny and evolution of the genus Neoerysiphe (Erysiphaceae, Ascomycota).

    Science.gov (United States)

    Takamatsu, Susumu; Havrylenko, Maria; Wolcan, Silvia M; Matsuda, Sanae; Niinomi, Seiko

    2008-06-01

    The genus Neoerysiphe belongs to the tribe Golovinomyceteae of the Erysiphaceae together with the genera Arthrocladiella and Golovinomyces. This is a relatively small genus, comprising only six species, and having ca 300 species from six plant families as hosts. To investigate the molecular phylogeny and evolution of the genus, we determined the nucleotide sequences of the rDNA ITS regions and the divergent domains D1 and D2 of the 28S rDNA. The 30 ITS sequences from Neoerysiphe are divided into three monophyletic groups that are represented by their host families. Groups 1 and 3 consist of N. galeopsidis from Lamiaceae and N. galii from Rubiaceae, respectively, and the genetic diversity within each group is extremely low. Group 2 is represented by N. cumminsiana from Asteraceae. This group also includes Oidium baccharidis, O. maquii, and Oidium spp. from Galinsoga (Asteraceae) and Aloysia (Verbenaceae), and is further divided into four subgroups. N. galeopsidis is distributed worldwide, but is especially common in western Eurasia from Central Asia to Europe. N. galii is also common in western Eurasia. In contrast, the specimens of group 2 were all collected in the New World, except for one specimen that was collected in Japan; this may indicate a close relationship of group 2 with the New World. Molecular clock calibration demonstrated that Neoerysiphe split from other genera of the Erysiphaceae ca 35-45M years ago (Mya), and that the three groups of Neoerysiphe diverged between 10 and 15Mya, in the Miocene. Aloysia citriodora is a new host for the Erysiphaceae and the fungus on this plant is described as O. aloysiae sp. nov.

  17. Synthetic Molecular Evolution of Membrane-Active Peptides

    Science.gov (United States)

    Wimley, William

    The physical chemistry of membrane partitioning largely determines the function of membrane active peptides. Membrane-active peptides have potential utility in many areas, including in the cellular delivery of polar compounds, cancer therapy, biosensor design, and in antibacterial, antiviral and antifungal therapies. Yet, despite decades of research on thousands of known examples, useful sequence-structure-function relationships are essentially unknown. Because peptide-membrane interactions within the highly fluid bilayer are dynamic and heterogeneous, accounts of mechanism are necessarily vague and descriptive, and have little predictive power. This creates a significant roadblock to advances in the field. We are bypassing that roadblock with synthetic molecular evolution: iterative peptide library design and orthogonal high-throughput screening. We start with template sequences that have at least some useful activity, and create small, focused libraries using structural and biophysical principles to design the sequence space around the template. Orthogonal high-throughput screening is used to identify gain-of-function peptides by simultaneously selecting for several different properties (e.g. solubility, activity and toxicity). Multiple generations of iterative library design and screening have enabled the identification of membrane-active sequences with heretofore unknown properties, including clinically relevant, broad-spectrum activity against drug-resistant bacteria and enveloped viruses as well as pH-triggered macromolecular poration.

  18. Molecular evolution of the EGF-CFC protein family.

    Science.gov (United States)

    Ravisankar, V; Singh, Taran P; Manoj, Narayanan

    2011-08-15

    The epidermal growth factor-Cripto-1/FRL-1/Cryptic (EGF-CFC) proteins, characterized by the highly conserved EGF and CFC domains, are extracellular membrane associated growth factor-like glycoproteins. These proteins are essential components of the Nodal signaling pathway during early vertebrate embryogenesis. Homologs of the EGF-CFC family have also been implicated in tumorigenesis in humans. Yet, little is known about the mode of molecular evolution in this family. Here we investigate the origin, extent of conservation and evolutionary relationships of EGF-CFC proteins across the metazoa. The results suggest that the first appearance of the EGF-CFC gene occurred in the ancestor of the deuterostomes. Phylogenetic analysis supports the classification of the family into distinct subfamilies that appear to have evolved through lineage-specific duplication and divergence. Site-specific analyses of evolutionary rate shifts between the two major mammalian paralogous subfamilies, Cripto and Cryptic, reveal critical amino acid sites that may account for the observed functional divergence. Furthermore, estimates of functional divergence suggest that rapid change of evolutionary rates at sites located mainly in the CFC domain may contribute towards distinct functional properties of the two paralogs. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Microstructure evolution of polycrystalline silicon by molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2017-06-01

    Full Text Available Polycrystalline silicon is the dominant material in solar cells and plays an important role in photovoltaic industry. It is important for not only the conventional production of silicon ingots but also the direct growth of silicon wafers to control crystallization for obtaining the desired polycrystalline silicon. To the best of our knowledge, few studies have systematically reported about the effects of crystalline planes on the solidification behavior of liquid silicon and the analysis of the microstructural features of the polysilicon structure. In this study, molecular dynamics simulations were employed to investigate the solidification and microstructure evolution of polysilicon, with focus on the effects of the seed distribution and cooling rate on the growth of polycrystalline silicon. The (110, (111, and (112 planes were extruded by the (100 plane and formed the inclusion shape. The crystallization of silicon consisted of diamond-type structures is relatively high at a low cooling rate. The simulations provide substantial information regarding microstructures and serve as guidance for the growth of polycrystalline silicon.

  20. Operational Description of Microsystems Formation in Pre Biological Molecular Evolution

    Science.gov (United States)

    Matsuno, Koichiro

    1980-03-01

    A theoretical analogue of microsystems formation in prebiological molecular evolution, known, for instance, as microspheres of Fox and marigranules of Yanagawa and Egami, is presented for a model solution system of polyamino acids in which the polymerization due to peptide bond synthesis is initially not in a complete balance with the hydrolysis. The homogeneous solution of polyamino acids, which is in a nonequilibrium state in the sense that a complete balance among all the participating reactions has not yet been established, is unstable against forming microscopic compartments of locally condensed peptide bond linkages. It also follows that both the accumulation of polyamino acids and the number of peptide bond linkages inside the localized microsystems increase with time so long as the solution remains in a nonequilibrium state lacking the balance between the polymerization and the hydrolysis. The phase separation of microsystems from the homogeneous solution of polyamino acids is just a representation of the unidirectional dynamic process that any reaction system, which initially lacks a complete balance among all the participating reactions, evolves toward a goal, if any, at which an equilibrium balancing of reactions be finally established.

  1. Molecular Epidemiology and Evolution of European Bat Lyssavirus 2.

    Science.gov (United States)

    McElhinney, Lorraine M; Marston, Denise A; Wise, Emma L; Freuling, Conrad M; Bourhy, Hervé; Zanoni, Reto; Moldal, Torfinn; Kooi, Engbert A; Neubauer-Juric, Antonie; Nokireki, Tiina; Müller, Thomas; Fooks, Anthony R

    2018-01-05

    Bat rabies cases in Europe are mainly attributed to two lyssaviruses, namely European Bat Lyssavirus 1 (EBLV-1) and European Bat Lyssavirus 2 (EBLV-2). Prior to the death of a bat worker in Finland in 1985, very few bat rabies cases were reported. Enhanced surveillance in the two subsequent years (1986-1987) identified 263 cases (more than a fifth of all reported cases to date). Between 1977 and 2016, 1183 cases of bat rabies were reported, with the vast majority (>97%) being attributed to EBLV-1. In contrast, there have been only 39 suspected cases of EBLV-2, of which 34 have been confirmed by virus typing and presently restricted to just two bat species; Myotis daubentonii and Myotis dasycneme . The limited number of EBLV-2 cases in Europe prompted the establishment of a network of European reference laboratories to collate all available viruses and data. Despite the relatively low number of EBLV-2 cases, a large amount of anomalous data has been published in the scientific literature, which we have here reviewed and clarified. In this review, 29 EBLV-2 full genome sequences have been analysed to further our understanding of the diversity and molecular evolution of EBLV-2 in Europe. Analysis of the 29 complete EBLV-2 genome sequences clearly corroborated geographical relationships with all EBLV-2 sequences clustering at the country level irrespective of the gene studied. Further geographical clustering was also observed at a local level. There are high levels of homogeneity within the EBLV-2 species with nucleotide identities ranging from 95.5-100% and amino acid identities between 98.7% and 100%, despite the widespread distribution of the isolates both geographically and chronologically. The mean substitution rate for EBLV-2 across the five concatenated genes was 1.65 × 10 -5 , and evolutionary clock analysis confirms the slow evolution of EBLV-2 both between and within countries in Europe. This is further supported by the first detailed EBLV-2 intra

  2. Molecular evolution of the ependymin protein family: a necessary update

    Directory of Open Access Journals (Sweden)

    García-Arrarás José E

    2007-02-01

    Full Text Available Abstract Background Ependymin (Epd, the predominant protein in the cerebrospinal fluid of teleost fishes, was originally associated with neuroplasticity and regeneration. Ependymin-related proteins (Epdrs have been identified in other vertebrates, including amphibians and mammals. Recently, we reported the identification and characterization of an Epdr in echinoderms, showing that there are ependymin family members in non-vertebrate deuterostomes. We have now explored multiple databases to find Epdrs in different metazoan species. Using these sequences we have performed genome mapping, molecular phylogenetic analyses using Maximum Likelihood and Bayesian methods, and statistical tests of tree topologies, to ascertain the phylogenetic relationship among ependymin proteins. Results Our results demonstrate that ependymin genes are also present in protostomes. In addition, as a result of the putative fish-specific genome duplication event and posterior divergence, the ependymin family can be divided into four groups according to their amino acid composition and branching pattern in the gene tree: 1 a brain-specific group of ependymin sequences that is unique to teleost fishes and encompasses the originally described ependymin; 2 a group expressed in non-brain tissue in fishes; 3 a group expressed in several tissues that appears to be deuterostome-specific, and 4 a group found in invertebrate deuterostomes and protostomes, with a broad pattern of expression and that probably represents the evolutionary origin of the ependymins. Using codon-substitution models to statistically assess the selective pressures acting over the ependymin protein family, we found evidence of episodic positive Darwinian selection and relaxed selective constraints in each one of the postduplication branches of the gene tree. However, purifying selection (with among-site variability appears to be the main influence on the evolution of each subgroup within the family

  3. Constraints and plasticity in genome and molecular-phenome evolution

    Science.gov (United States)

    Koonin, Eugene V.; Wolf, Yuri I.

    2012-01-01

    Multiple constraints variously affect different parts of the genomes of diverse life forms. The selective pressures that shape the evolution of viral, archaeal, bacterial and eukaryotic genomes differ markedly, even among relatively closely related animal and bacterial lineages; by contrast, constraints affecting protein evolution seem to be more universal. The constraints that shape the evolution of genomes and phenomes are complemented by the plasticity and robustness of genome architecture, expression and regulation. Taken together, these findings are starting to reveal complex networks of evolutionary processes that must be integrated to attain a new synthesis of evolutionary biology. PMID:20548290

  4. A retrospective study of the orthopoxvirus molecular evolution.

    Science.gov (United States)

    Babkin, Igor V; Babkina, Irina N

    2012-12-01

    The data on the structure of conserved genes of the Old and New World orthopoxviruses and unclassified Yoka poxvirus were used for a Bayesian dating of their independent evolution. This reconstruction estimates the time when an orthopoxvirus ancestor was transferred to the North American continent as approximately 50 thousand years ago (TYA) and allows for relation of this time interval with the global climate changes (with one of the short-term warmings during the Last Ice Age). The onset of the Yoka poxvirus evolution was assessed as approximately 90TYA. Availability of a large number of genome sequences of various cowpox virus strains provided for a comprehensive analysis of the orthopoxvirus evolutionary history. Such a study is especially topical in view of the postulated role of this virus in the evolution of various orthopoxviruses, namely, as an progenitor virus. The computations have demonstrated that the orthopoxviruses diverged from the ancestor virus to form the extant species about 10TYA, while the forbear of horsepox virus separated about 3TYA. An independent evolution of taterapox, camelpox, and variola viruses commenced approximately 3.5TYA. Study of the geographic distribution areas of the hosts of these three orthopoxviruses suggests the hypothesis on the region of their origin. It is likely that these viruses first emerged in Africa, in the region of the Horn of Africa, and that the introduction of camels to East Africa induced their divergent evolution. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Accelerated molecular evolution of insect orthologues of ERG28 ...

    Indian Academy of Sciences (India)

    We have analysed the evolution of ERG28/C14orf1, a gene coding for a protein involved in sterol biosynthesis. While primary sequence of the protein is well conserved in all organisms able to synthesize sterols de novo, strong divergence is noticed in insects, which are cholesterol auxotrophs. In spite of this virtual ...

  6. A comparative study of the molecular evolution of signalling pathway ...

    Indian Academy of Sciences (India)

    ... George Washington University, 333 Lisner Hall, 2023 G St. NW, Washington, DC 20052, USA; Institute for Neuroscience, George Washington University, 636 Ross Hall, 2300 I St. NW, Washington DC 20037, USA; Department of Biology, Genome Evolution Laboratory, National University of Ireland Maynooth, Maynooth, ...

  7. A comparative study of the molecular evolution of signalling pathway ...

    Indian Academy of Sciences (India)

    2013-08-05

    Aug 5, 2013 ... 2Institute for Neuroscience, George Washington University, 636 Ross Hall, 2300 I St. NW, Washington DC 20037, USA. 3Department of Biology, Genome Evolution ..... of paralogues for each sensory modality across all phyla organized by sensory modality. (C–E) Graphs plotting correlation of the concor-.

  8. Contrasting Rates of Molecular Evolution and Patterns of Selection among Gymnosperms and Flowering Plants.

    Science.gov (United States)

    De La Torre, Amanda R; Li, Zhen; Van de Peer, Yves; Ingvarsson, Pär K

    2017-06-01

    The majority of variation in rates of molecular evolution among seed plants remains both unexplored and unexplained. Although some attention has been given to flowering plants, reports of molecular evolutionary rates for their sister plant clade (gymnosperms) are scarce, and to our knowledge differences in molecular evolution among seed plant clades have never been tested in a phylogenetic framework. Angiosperms and gymnosperms differ in a number of features, of which contrasting reproductive biology, life spans, and population sizes are the most prominent. The highly conserved morphology of gymnosperms evidenced by similarity of extant species to fossil records and the high levels of macrosynteny at the genomic level have led scientists to believe that gymnosperms are slow-evolving plants, although some studies have offered contradictory results. Here, we used 31,968 nucleotide sites obtained from orthologous genes across a wide taxonomic sampling that includes representatives of most conifers, cycads, ginkgo, and many angiosperms with a sequenced genome. Our results suggest that angiosperms and gymnosperms differ considerably in their rates of molecular evolution per unit time, with gymnosperm rates being, on average, seven times lower than angiosperm species. Longer generation times and larger genome sizes are some of the factors explaining the slow rates of molecular evolution found in gymnosperms. In contrast to their slow rates of molecular evolution, gymnosperms possess higher substitution rate ratios than angiosperm taxa. Finally, our study suggests stronger and more efficient purifying and diversifying selection in gymnosperm than in angiosperm species, probably in relation to larger effective population sizes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Primer and interviews: molecular mechanisms of morphological evolution.

    Science.gov (United States)

    Kiefer, Julie C

    2010-12-01

    The beauty of the developing embryo, and the awe that it inspires, lure many scientists into the field of developmental biology. What compels cells to divide, migrate, and morph into a being with a complex body plan? Evolutionary developmental biologists hold similar fascinations, with dynamics that take place on a grander timescale. How do phenotypic traits diverge over evolutionary time? This primer illustrates how a deep understanding of the basic principles that underlie developmental biology have changed how scientists think about the evolution of body form. The primer culminates in a conversation with David Stern, PhD, and Michael Shapiro, PhD, who discuss current topics in morphological evolution, why the field should be of interest to classic developmental biologists, and what lies ahead. © 2010 Wiley-Liss, Inc.

  10. A finite population model of molecular evolution: theory and computation.

    Science.gov (United States)

    Dixit, Narendra M; Srivastava, Piyush; Vishnoi, Nisheeth K

    2012-10-01

    This article is concerned with the evolution of haploid organisms that reproduce asexually. In a seminal piece of work, Eigen and coauthors proposed the quasispecies model in an attempt to understand such an evolutionary process. Their work has impacted antiviral treatment and vaccine design strategies. Yet, predictions of the quasispecies model are at best viewed as a guideline, primarily because it assumes an infinite population size, whereas realistic population sizes can be quite small. In this paper we consider a population genetics-based model aimed at understanding the evolution of such organisms with finite population sizes and present a rigorous study of the convergence and computational issues that arise therein. Our first result is structural and shows that, at any time during the evolution, as the population size tends to infinity, the distribution of genomes predicted by our model converges to that predicted by the quasispecies model. This justifies the continued use of the quasispecies model to derive guidelines for intervention. While the stationary state in the quasispecies model is readily obtained, due to the explosion of the state space in our model, exact computations are prohibitive. Our second set of results are computational in nature and address this issue. We derive conditions on the parameters of evolution under which our stochastic model mixes rapidly. Further, for a class of widely used fitness landscapes we give a fast deterministic algorithm which computes the stationary distribution of our model. These computational tools are expected to serve as a framework for the modeling of strategies for the deployment of mutagenic drugs.

  11. Darwinian Aspects of Molecular Evolution at Sublinear Propagation Rates

    OpenAIRE

    Davis, Brian K.

    1999-01-01

    The symmetric distribution and all other states in the symmetry sector of the frequency trajectory increase mean fitness during competitive replication at sublinear propagation rates (parabolic time course). States in the non-symmetry sector, by contrast, produce negative time variations in mean fitness. The polymorphic steady state attained in sublinear systems is destabilised by formation of a variant with above threshold fitness. Evolution in the post-steady state interval increases thresh...

  12. Molecular chaperones: The modular evolution of cellular networks

    Indian Academy of Sciences (India)

    Madhu Sudhan

    Most of the molecular interactions of our cells, like the self- association of lipids to membranes, are rather unspecific, and can be described in general terms. However, a relatively restricted number of interactions between cellular molecules have a high affinity, are unique and specific, and require a network approach for a ...

  13. Molecular chaperones: The modular evolution of cellular networks

    Indian Academy of Sciences (India)

    2007-03-22

    Mar 22, 2007 ... Molecular chaperones play a prominent role in signaling and transcriptional regulatory networks of the cell. Recent advances uncovered that chaperones act as genetic buffers stabilizing the phenotype of various cells and organisms and may serve as potential regulators of evolvability. Chaperones have ...

  14. Evolution of cell cycle control: same molecular machines, different regulation

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Brunak, Søren

    2007-01-01

    layers of regulation together control the activity of cell cycle complexes and how this regulation has evolved. The results show surprisingly poor conservation of both the transcriptional and the post-translation regulation of individual genes and proteins; however, the changes in one layer of regulation...... for assembling the same molecular machines just in time for action....

  15. The Molecular and Developmental Basis of the Evolution of the Vertebrate Auditory System

    OpenAIRE

    FRITZSCH, B.; Pauley, S.; Feng, F.; Matei, V.; Nichols, D. H.

    2006-01-01

    We review the molecular basis of the auditory system development and evolution. The auditory periphery evolved by building on the capacity of vestibular hair cells to respond to higher frequency mechanical stimulation. Evolution altered accessory structures to transform vestibular to auditory receptors. Auditory neurons are derived from vestibular neurons, possibly through the expression of the zinc finger protein GATA3. The bHLH gene Neurogenin1 is expressed in the area of the developing ves...

  16. Evolution of dust and molecular hydrogen in the Magellanic System

    Science.gov (United States)

    Yozin, C.; Bekki, K.

    2014-09-01

    We investigate the evolution of the interstellar medium (ISM) in self-consistent, chemodynamical simulations of the Magellanic Clouds (MCs) during their recent (z enrichment depends sensitively on the processing of dust within the ISM and the dynamical influence of external tides/stellar bars. The ratio of characteristic dust destruction time-scales in our Small Magellanic Cloud (SMC) and Large Magellanic Cloud (LMC) models, a governing parameter of our models' evolution, is consistent with estimates based on observed supernova (SN) rates. Our reference MC models tend to exhibit the disputed universal dust-to-metal ratio, which we argue stems from the adoption of high SNe II condensation efficiencies. Our models are the first to reproduce the one-tenth solar metallicity of the Stream/Leading Arm following tidal stripping of the SMC; the hypothesis that the LMC contributes a metal-rich filament to the Stream, as implied by recent kinematic and abundance analyses, is also appraised in this study.

  17. Molecular Phylogenetic: Organism Taxonomy Method Based on Evolution History

    Directory of Open Access Journals (Sweden)

    N.L.P Indi Dharmayanti

    2011-03-01

    Full Text Available Phylogenetic is described as taxonomy classification of an organism based on its evolution history namely its phylogeny and as a part of systematic science that has objective to determine phylogeny of organism according to its characteristic. Phylogenetic analysis from amino acid and protein usually became important area in sequence analysis. Phylogenetic analysis can be used to follow the rapid change of a species such as virus. The phylogenetic evolution tree is a two dimensional of a species graphic that shows relationship among organisms or particularly among their gene sequences. The sequence separation are referred as taxa (singular taxon that is defined as phylogenetically distinct units on the tree. The tree consists of outer branches or leaves that represents taxa and nodes and branch represent correlation among taxa. When the nucleotide sequence from two different organism are similar, they were inferred to be descended from common ancestor. There were three methods which were used in phylogenetic, namely (1 Maximum parsimony, (2 Distance, and (3 Maximum likehoood. Those methods generally are applied to construct the evolutionary tree or the best tree for determine sequence variation in group. Every method is usually used for different analysis and data.

  18. The Coevolution of Phycobilisomes: Molecular Structure Adapting to Functional Evolution

    Directory of Open Access Journals (Sweden)

    Fei Shi

    2011-01-01

    Full Text Available Phycobilisome is the major light-harvesting complex in cyanobacteria and red alga. It consists of phycobiliproteins and their associated linker peptides which play key role in absorption and unidirectional transfer of light energy and the stability of the whole complex system, respectively. Former researches on the evolution among PBPs and linker peptides had mainly focused on the phylogenetic analysis and selective evolution. Coevolution is the change that the conformation of one residue is interrupted by mutation and a compensatory change selected for in its interacting partner. Here, coevolutionary analysis of allophycocyanin, phycocyanin, and phycoerythrin and covariation analysis of linker peptides were performed. Coevolution analyses reveal that these sites are significantly correlated, showing strong evidence of the functional and structural importance of interactions among these residues. According to interprotein coevolution analysis, less interaction was found between PBPs and linker peptides. Our results also revealed the correlations between the coevolution and adaptive selection in PBS were not directly related, but probably demonstrated by the sites coupled under physical-chemical interactions.

  19. Molecular evolution of the major chemosensory gene families in insects.

    Science.gov (United States)

    Sánchez-Gracia, A; Vieira, F G; Rozas, J

    2009-09-01

    Chemoreception is a crucial biological process that is essential for the survival of animals. In insects, olfaction allows the organism to recognise volatile cues that allow the detection of food, predators and mates, whereas the sense of taste commonly allows the discrimination of soluble stimulants that elicit feeding behaviours and can also initiate innate sexual and reproductive responses. The most important proteins involved in the recognition of chemical cues comprise moderately sized multigene families. These families include odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), which are involved in peripheral olfactory processing, and the chemoreceptor superfamily formed by the olfactory receptor (OR) and gustatory receptor (GR) families. Here, we review some recent evolutionary genomic studies of chemosensory gene families using the data from fully sequenced insect genomes, especially from the 12 newly available Drosophila genomes. Overall, the results clearly support the birth-and-death model as the major mechanism of evolution in these gene families. Namely, new members arise by tandem gene duplication, progressively diverge in sequence and function, and can eventually be lost from the genome by a deletion or pseudogenisation event. Adaptive changes fostered by environmental shifts are also observed in the evolution of chemosensory families in insects and likely involve reproductive, ecological or behavioural traits. Consequently, the current size of these gene families is mainly a result of random gene gain and loss events. This dynamic process may represent a major source of genetic variation, providing opportunities for FUTURE specific adaptations.

  20. 'Molecules and monkeys': George Gaylord Simpson and the challenge of molecular evolution.

    Science.gov (United States)

    Aronson, Jay D

    2002-01-01

    In this paper, I analyze George Gaylord Simpson's response to the molecularization of evolutionary biology from his unique perspective as a paleontologist. I do so by exploring his views on early attempts to reconstruct phylogenetic relationships among primates using molecular data. Particular attention is paid to Simpson's role in the evolutionary synthesis of the 1930s and 1940s, as well as his concerns about the rise of molecular biology as a powerful discipline and world-view in the 1960s. I argue that Simpson's belief in the supremacy of natural selection as the primary driving force of evolution, as well as his view that biology was a historical science that seeks ultimate causes and highlights contingency, prevented him from acknowledging that the study of molecular evolution was an inherently valuable part of the life sciences.

  1. Application of molecular techniques in the study of Staphylococcus aureus clonal evolution - A Review

    Directory of Open Access Journals (Sweden)

    Adriana Marcos Vivoni

    2005-11-01

    Full Text Available Staphylococcus aureus is an important agent of healthcare-associated and community-acquired infections. A major characteristic of this microorganism is the ability to develop resistance to antimicrobial agents. Several molecular techniques have been applied for the characterization of S. aureus in epidemiological studies. In the present review, we discuss the application of molecular techniques for typing S. aureus strains and describe the nomenclature and evolution of epidemic clones of this important pathogen.

  2. Mammalian life histories: their evolution and molecular-genetic mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, G.A.

    1978-01-01

    Survival curves for various species of mammals are discussed and a table is presented to show recorded maximum life spans of about 30 species of mammals. The range of longevities is from one year for shrews and moles up to more than 80 years for the fin whale. The constitutional correlates of longevity are discussed with regard to body size, brain weight,metabolic rates, and body temperature. It is concluded that longevity evolved as a positive trait, associated with the evolution of large body size and brain size. Life table data for man, the thorough-bred horse, beagle dogs, and the laboratory rodents, Mus musculus and Peromyscus leucopus are discussed. The data show a pattern of exponential increase of death rate with age. A laboratory model using Mus musculus and Peromyscus leucopus for the study of the longevity-assurance mechanisms is described. (HLW)

  3. Molecular Evolution Directs Protein Translation Using Unnatural Amino Acids.

    Science.gov (United States)

    Cox, Vanessa E; Gaucher, Eric A

    2015-12-02

    Unnatural amino acids have in recent years established their importance in a wide range of fields, from pharmaceuticals to polymer science. Unnatural amino acids can increase the number of chemical groups within proteins and thus expand or enhance biological function. Our ability to utilize these important building blocks, however, has been limited by the inherent difficulty in incorporating these molecules into proteins. To address this challenge, researchers have examined how the canonical twenty amino acids are incorporated, regulated, and modified in nature. This review focuses on achievements and techniques used to engineer the ribosomal protein-translation machinery, including the introduction of orthogonal translation components, how directed evolution enhances the incorporation of unnatural amino acids, and the potential utility of ancient biomolecules for this process. Copyright © 2015 John Wiley & Sons, Inc.

  4. Gibberellin Receptor GID1: Gibberellin Recognition and Molecular Evolution

    Science.gov (United States)

    Kato, Hiroaki; Sato, Tomomi; Ueguchi-Tanaka, Miyako

    Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. We analyzed the crystal structure of a nuclear GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) from Oryza sativa. As it was proposed from the sequence similarity, the overall structure of GID1 shows an α/β-hydrolase fold similar to that of the hormone-sensitive lipases (HSLs) except for an amino-terminal lid. The GA-binding site corresponds to the substrate-binding site of HSLs. Almost residues assigned for GA binding showed very little or no activity when they were replaced with Ala. The substitution of the residues corresponding to those of the lycophyte GID1s caused an increase in the binding affinity for GA34, a 2β-hydroxylated GA4. These findings indicate that GID1 originated from HSL and was tinkered to have the specificity for bioactive GAs in the course of plant evolution.

  5. Molecular evolution of synonymous codon usage in Populus

    Directory of Open Access Journals (Sweden)

    Ingvarsson Pär K

    2008-11-01

    Full Text Available Abstract Background Evolution of synonymous codon usage is thought to be determined by a balance between mutation, genetic drift and natural selection on translational efficiency. However, natural selection on codon usage is considered to be a weak evolutionary force and selection on codon usage is expected to be strongest in species with large effective population sizes. Results I examined the evolution of synonymous codons using EST data from five species of Populus. Data on relative synonymous codon usage in genes with high and low gene expression were used to identify 25 codons from 18 different amino acids that were deemed to be preferred codons across all five species. All five species show significant correlations between codon bias and gene expression, independent of base composition, thus indicating that translational selection has shaped synonymous codon usage. Using a set of 158 orthologous genes I detected an excess of unpreferred to preferred (U → P mutations in two lineages, P. tremula and P. deltoides. Maximum likelihood estimates of the strength of selection acting on synonymous codons was also significantly greater than zero in P. tremula, with the ML estimate of 4Nes = 0.720. Conclusion The data is consistent with weak selection on preferred codons in all five species. There is also evidence suggesting that selection on synonymous codons has increased in P. tremula. Although the reasons for the increase in selection on codon usage in the P. tremula lineage are not clear, one possible explanation is an increase in the effective population size in P. tremula.

  6. The rate of DNA evolution: effects of body size and temperature on the molecular clock.

    Science.gov (United States)

    Gillooly, James F; Allen, Andrew P; West, Geoffrey B; Brown, James H

    2005-01-04

    Observations that rates of molecular evolution vary widely within and among lineages have cast doubts on the existence of a single "molecular clock." Differences in the timing of evolutionary events estimated from genetic and fossil evidence have raised further questions about the accuracy of molecular clocks. Here, we present a model of nucleotide substitution that combines theory on metabolic rate with the now-classic neutral theory of molecular evolution. The model quantitatively predicts rate heterogeneity and may reconcile differences in molecular- and fossil-estimated dates of evolutionary events. Model predictions are supported by extensive data from mitochondrial and nuclear genomes. By accounting for the effects of body size and temperature on metabolic rate, this model explains heterogeneity in rates of nucleotide substitution in different genes, taxa, and thermal environments. This model also suggests that there is indeed a single molecular clock, as originally proposed by Zuckerkandl and Pauling [Zuckerkandl, E. & Pauling, L. (1965) in Evolving Genes and Proteins, eds. Bryson, V. & Vogel, H. J. (Academic, New York), pp. 97-166], but that it "ticks" at a constant substitution rate per unit of mass-specific metabolic energy rather than per unit of time. This model therefore links energy flux and genetic change. More generally, the model suggests that body size and temperature combine to control the overall rate of evolution through their effects on metabolism.

  7. The molecular evolution of the vertebrate behavioural repertoire.

    Science.gov (United States)

    Grant, Seth G N

    2016-01-05

    How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations. © 2015 The Authors.

  8. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain.

    Directory of Open Access Journals (Sweden)

    Claudia Alvarez-Carreño

    Full Text Available The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes.Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role.Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later evolution of the

  9. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain.

    Science.gov (United States)

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2016-01-01

    The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later evolution of the oxygen

  10. Molecular evolution of urea amidolyase and urea carboxylase in fungi

    Directory of Open Access Journals (Sweden)

    Harris Steven D

    2011-03-01

    Full Text Available Abstract Background Urea amidolyase breaks down urea into ammonia and carbon dioxide in a two-step process, while another enzyme, urease, does this in a one step-process. Urea amidolyase has been found only in some fungal species among eukaryotes. It contains two major domains: the amidase and urea carboxylase domains. A shorter form of urea amidolyase is known as urea carboxylase and has no amidase domain. Eukaryotic urea carboxylase has been found only in several fungal species and green algae. In order to elucidate the evolutionary origin of urea amidolyase and urea carboxylase, we studied the distribution of urea amidolyase, urea carboxylase, as well as other proteins including urease, across kingdoms. Results Among the 64 fungal species we examined, only those in two Ascomycota classes (Sordariomycetes and Saccharomycetes had the urea amidolyase sequences. Urea carboxylase was found in many but not all of the species in the phylum Basidiomycota and in the subphylum Pezizomycotina (phylum Ascomycota. It was completely absent from the class Saccharomycetes (phylum Ascomycota; subphylum Saccharomycotina. Four Sordariomycetes species we examined had both the urea carboxylase and the urea amidolyase sequences. Phylogenetic analysis showed that these two enzymes appeared to have gone through independent evolution since their bacterial origin. The amidase domain and the urea carboxylase domain sequences from fungal urea amidolyases clustered strongly together with the amidase and urea carboxylase sequences, respectively, from a small number of beta- and gammaproteobacteria. On the other hand, fungal urea carboxylase proteins clustered together with another copy of urea carboxylases distributed broadly among bacteria. The urease proteins were found in all the fungal species examined except for those of the subphylum Saccharomycotina. Conclusions We conclude that the urea amidolyase genes currently found only in fungi are the results of a horizontal

  11. Molecular Evolution of Insect Sociality: An Eco-Evo-Devo Perspective.

    Science.gov (United States)

    Toth, Amy L; Rehan, Sandra M

    2017-01-31

    The evolution of eusociality is a perennial issue in evolutionary biology, and genomic advances have fueled steadily growing interest in the genetic changes underlying social evolution. Along with a recent flurry of research on comparative and evolutionary genomics in different eusocial insect groups (bees, ants, wasps, and termites), several mechanistic explanations have emerged to describe the molecular evolution of eusociality from solitary behavior. These include solitary physiological ground plans, genetic toolkits of deeply conserved genes, evolutionary changes in protein-coding genes, cis regulation, and the structure of gene networks, epigenetics, and novel genes. Despite this proliferation of ideas, there has been little synthesis, even though these ideas are not mutually exclusive and may in fact be complementary. We review available data on molecular evolution of insect sociality and highlight key biotic and abiotic factors influencing social insect genomes. We then suggest both phylogenetic and ecological evolutionary developmental biology (eco-evo-devo) perspectives for a more synthetic view of molecular evolution in insect societies.

  12. Molecular evolution of respiratory syncytial virus fusion gene, Canada, 2006-2010.

    Science.gov (United States)

    Papenburg, Jesse; Carbonneau, Julie; Hamelin, Marie-Ève; Isabel, Sandra; Bouhy, Xavier; Ohoumanne, Najwa; Déry, Pierre; Paes, Bosco A; Corbeil, Jacques; Bergeron, Michel G; De Serres, Gaston; Boivin, Guy

    2012-01-01

    To assess molecular evolution of the respiratory syncytial virus (RSV) fusion gene, we analyzed RSV-positive specimens from 123 children in Canada who did or did not receive RSV immunoprophylaxis (palivizumab) during 2006-2010. Resistance-conferring mutations within the palivizumab binding site occurred in 8.7% of palivizumab recipients and none of the nonrecipients.

  13. DNA Re-EvolutioN: a game for learning molecular genetics and evolution.

    Science.gov (United States)

    Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva

    2013-01-01

    Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game DNA Re-EvolutioN as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular evolution while playing a game that mixes up theory and entertainment. The game can be easily adapted to different educational levels. The main goal of this play is to arrive at the end of the game with the longest protein. Students play with pawns and dices, a board containing hypothetical events (mutations, selection) that happen to molecules, "Evolution cards" with indications for DNA mutations, prototypes of a DNA and a mRNA chain with colored "nucleotides" (plasticine balls), and small pieces simulating t-RNA with aminoacids that will serve to construct a "protein" based on the DNA chain. Students will understand how changes in DNA affect the final protein product and may be subjected to positive or negative selection, using a didactic tool funnier than classical theory lectures and easier than molecular laboratory experiments: a flexible and feasible game to learn and enjoy molecular evolution at no-cost. The game was tested by majors and non-majors in genetics from 13 different countries and evaluated with pre- and post-tests obtaining very positive results. © 2013 by The International Union of Biochemistry and Molecular Biology.

  14. Immobilization of molecular cobalt electrocatalyst by hydrophobic interaction with hematite photoanode for highly stable oxygen evolution

    KAUST Repository

    Joya, Khurram

    2015-07-15

    A unique modification of a hematite photoanode with perfluorinated Co-phthalocyanine (CoFPc) by strong binding associated with hydrophobic interaction is demonstrated. The resultant molecular electrocatalyst – hematite photoanode hybrid material showed significant onset shift and high stability for photoelectrochemical oxidation evolution reaction (OER).

  15. Molecular evolution of the E8 promoter in tomato and some of its ...

    Indian Academy of Sciences (India)

    The E8 gene is related to ethylene biosynthesis in plants. To explore the effect of the expression pattern of the E8 gene on different E8 promoters, the molecular evolution of E8 promoters was investigated. A total of 16 E8 promoters were cloned from 16 accessions of seven tomato species, and were further analysed.

  16. Molecular phylogeny and evolution of the extinct bovid Myotragus balearicus.

    Science.gov (United States)

    Lalueza-Fox, Carles; Shapiro, Beth; Bover, Pere; Alcover, Josep Antoni; Bertranpetit, Jaume

    2002-12-01

    Myotragus balearicus was a dwarf artiodactyl endemic to the Eastern Balearic Islands, where it evolved in isolation for more than 5 million years before becoming extinct between 3640 and 2135 cal BC (calibrated years BC). Numerous unusual apomorphies obscure the relationship between Myotragus and the extant Caprinae. Therefore, genetic data for this species would significantly contribute to the clarification of its taxonomic position. In this study, we amplify, sequence, and clone a 338-base pair (bp) segment of the mitochondrial cytochrome b (cyt b) gene from a >9Kyr Myotragus subfossil from la Cova des Gorgs (Mallorca). Our results confirm the phylogenetic affinity of Myotragus with the sheep (Ovis) and the takin (Budorcas). In each tree, the Myotragus branch is long in comparison with the other taxa, which may be evidence of a local change in the rate of evolution in cyt b. This rate change may be due to in part to an early age of first reproduction and short generation time in Myotragus, factors that are potentially related to the extreme reduction in size of the adult Myotragus as compared to the other Caprinae.

  17. The origin, dynamics, and molecular evolution of transmissible cancers

    Directory of Open Access Journals (Sweden)

    Jones EA

    2015-09-01

    Full Text Available Elizabeth A Jones, Yuanyuan Cheng, Katherine BelovFaculty of Veterinary Science, University of Sydney, NSW, AustraliaAbstract: Three transmissible cancers are known to have emerged naturally in the wild: canine transmissible venereal tumor (CTVT; Tasmanian devil facial tumor disease (DFTD; and a recently discovered leukemia-like cancer in soft-shell clams (Mya arenaria. These cancers have all acquired the ability to pass between individuals. DFTD emerged approximately 20 years ago and has decimated the Tasmanian devil population. CTVT arose over 10,000 years ago in an ancient breed of dog. The clam cancer is believed to have evolved at least 40 years ago. In this manuscript, we review CTVT and DFTD, the two transmissible mammalian cancers, and provide an overview of the leukemia-like cancer of clams. We showcase how genetics and genomics have enhanced our understanding of the unique biology, origins, and evolutionary histories of these rare cancers.Keywords: transmissible cancer, devil facial tumor disease, DFTD, canine transmissible venereal tumor, origin, evolution

  18. [Modern evolutional developmental biology: mechanical and molecular genetic or phenotypic approaches?].

    Science.gov (United States)

    Vorob'eva, É I

    2010-01-01

    Heightened interest in the evolutionary problems of developmental biology in the 1980s was due to the success of molecular genetics and disappointment in the synthetic theory of evolution, where the chapters of embryology and developmental biology seem to have been left out. Modern evo-devo, which turned out to be antipodean to the methodology of the synthetic theory of evolution, propagandized in the development of evolutionary problems only the mechanical and molecular genetic approach to the evolution of ontogenesis, based on cellular and intercellular interactions. The phonotypical approach to the evaluation of evolutionary occurrences in ontogenesis, which aids in the joining of the genetic and epigenetic levels of research, the theory of natural selection, the nomogenetic conception, and the problem of the wholeness of the organism in onto- and phylogenesis may be against this. The phenotypic approach to ontogenesis is methodologically the most perspective for evolutionary developmental biology.

  19. Molecular evolution of a malaria resistance gene (DARC) in primates.

    Science.gov (United States)

    Oliveira, Thiago Yukio Kikuchi; Harris, Eugene E; Meyer, Diogo; Jue, Chong K; Silva, Wilson Araújo

    2012-07-01

    Genes involved in host-pathogen interactions are often strongly affected by positive natural selection. The Duffy antigen, coded by the Duffy antigen receptor for chemokines (DARC) gene, serves as a receptor for Plasmodium vivax in humans and for Plasmodium knowlesi in some nonhuman primates. In the majority of sub-Saharan Africans, a nucleic acid variant in GATA-1 of the gene promoter is responsible for the nonexpression of the Duffy antigen on red blood cells and consequently resistance to invasion by P. vivax. The Duffy antigen also acts as a receptor for chemokines and is expressed in red blood cells and many other tissues of the body. Because of this dual role, we sequenced a ~3,000-bp region encompassing the entire DARC gene as well as part of its 5' and 3' flanking regions in a phylogenetic sample of primates and used statistical methods to evaluate the nature of selection pressures acting on the gene during its evolution. We analyzed both coding and regulatory regions of the DARC gene. The regulatory analysis showed accelerated rates of substitution at several sites near known motifs. Our tests of positive selection in the coding region using maximum likelihood by branch sites and maximum likelihood by codon sites did not yield statistically significant evidence for the action of positive selection. However, the maximum likelihood test in which the gene was subdivided into different structural regions showed that the known binding region for P. vivax/P. knowlesi is under very different selective pressures than the remainder of the gene. In fact, most of the gene appears to be under strong purifying selection, but this is not evident in the binding region. We suggest that the binding region is under the influence of two opposing selective pressures, positive selection possibly exerted by the parasite and purifying selection exerted by chemokines.

  20. Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells

    Science.gov (United States)

    Pelosi, Elvira; Castelli, Germana

    2017-01-01

    Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments. PMID:29156578

  1. Molecular evolution of HR, a gene that regulates the postnatal cycle of the hair follicle.

    Science.gov (United States)

    Abbasi, Amir Ali

    2011-01-01

    Hair is a unique mammalian trait that is absent in all other animal forms. Hairlessness is rare in mammals and humans are exceptional among primates in lacking dense layer of hair covering. HR was the first gene identified to be implicated in hair-cycle regulation. Point mutations in HR lead to congenital human hair loss, which results in the complete loss of body and scalp hairs. HR functions are indispensable for initiation of postnatal hair follicular cycling. This study investigates the phylogenetic history and analyzes the protein evolutionary rate to provide useful insight into the molecular evolution of HR. The data demonstrates an acceleration of HR sequence evolution in human branch and suggests that the ability of HR protein to mediate postnatal hair-cycling has been altered in the course of human evolution. In particular those residues were pinpointed which should be regarded as target of positive Darwinian selection during human evolution.

  2. Towards open-ended evolution in self-replicating molecular systems

    Directory of Open Access Journals (Sweden)

    Herman Duim

    2017-06-01

    Full Text Available In this review we discuss systems of self-replicating molecules in the context of the origin of life and the synthesis of de novo life. One of the important aspects of life is the ability to reproduce and evolve continuously. In this review we consider some of the prerequisites for obtaining unbounded evolution of self-replicating molecules and describe some recent advances in this field. While evolution experiments involving self-replicating molecules have shown promising results, true open-ended evolution has not been realized so far. A full understanding of the requirements for open-ended evolution would provide a better understanding of how life could have emerged from molecular building blocks and what is needed to create a minimal form of life in the laboratory.

  3. Molecular evolution of ultraspiracle protein (USP/RXR in insects.

    Directory of Open Access Journals (Sweden)

    Ekaterina F Hult

    Full Text Available Ultraspiracle protein/retinoid X receptor (USP/RXR is a nuclear receptor and transcription factor which is an essential component of a heterodimeric receptor complex with the ecdysone receptor (EcR. In insects this complex binds ecdysteroids and plays an important role in the regulation of growth, development, metamorphosis and reproduction. In some holometabolous insects, including Lepidoptera and Diptera, USP/RXR is thought to have experienced several important shifts in function. These include the acquisition of novel ligand-binding properties and an expanded dimerization interface with EcR. In light of these recent hypotheses, we implemented codon-based likelihood methods to investigate if the proposed shifts in function are reflected in changes in site-specific evolutionary rates across functional and structural motifs in insect USP/RXR sequences, and if there is any evidence for positive selection at functionally important sites. Our results reveal evidence of positive selection acting on sites within the loop connecting helices H1 and H3, the ligand-binding pocket, and the dimer interface in the holometabolous lineage leading to the Lepidoptera/Diptera/Trichoptera. Similar analyses conducted using EcR sequences did not indicate positive selection. However, analyses allowing for variation across sites demonstrated elevated non-synonymous/synonymous rate ratios (d(N/d(S, suggesting relaxed constraint, within the dimerization interface of both USP/RXR and EcR as well as within the coactivator binding groove and helix H12 of USP/RXR. Since the above methods are based on the assumption that d(S is constant among sites, we also used more recent models which relax this assumption and obtained results consistent with traditional random-sites models. Overall our findings support the evolution of novel function in USP/RXR of more derived holometabolous insects, and are consistent with shifts in structure and function which may have increased USP

  4. Parasitic plants have increased rates of molecular evolution across all three genomes.

    Science.gov (United States)

    Bromham, Lindell; Cowman, Peter F; Lanfear, Robert

    2013-06-19

    Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than

  5. Molecular systematics and evolution of the Cyanocorax jays.

    Science.gov (United States)

    Bonaccorso, Elisa; Peterson, A Townsend; Navarro-Sigüenza, Adolfo G; Fleischer, Robert C

    2010-03-01

    Phylogenetic relationships were studied in the genus Cyanocorax (Aves: Corvidae) and related genera, Psilorhinus and Calocitta, a diverse group of New World jays distributed from the southern United States south to Argentina. Although the ecology and behavior of some species in the group have been studied extensively, lack of a molecular phylogeny has precluded rigorous interpretations in an evolutionary framework. Given the diverse combinations of plumage coloration, size, and morphology, the taxonomy of the group has been inconsistent and understanding of biogeographic patterns problematic. Moreover, plumage similarity between two geographically disjuct species, the Tufted jay (Cyanocorax dickeyi) from western Mexico and the White-tailed jay (C. mystacalis) from western Ecuador and Peru, has puzzled ornithologists for decades. Here, a phylogeny of all species in the three genera is presented, based on study of two mitochondrial and three nuclear genes. Phylogenetic trees revealed the non-monophyly of Cyanocorax, and the division of the whole assemblage in two groups: "Clade A" containing Psilorhinus morio, both species in Calocitta,Cyanocorax violaceus, C. caeruleus, C. cristatellus, and C. cyanomelas, and "Clade B" consisting of the remaining species in Cyanocorax. Relationships among species in Clade A were ambiguous and, in general, not well resolved. Within Clade B, analyses revealed the monophyly of the "Cissilopha" jays and showed no evidence for a sister relationship between C. mystacalis and C. dickeyi. The phylogenetic complexity of lineages in the group suggests several complications for the understanding biogeographic patterns, as well as for proposing a taxonomy that is consistent with morphological variation. Although multiple taxonomic arrangements are possible, recommendations are for recognizing only one genus, Cyanocorax, with Psilorhinus and Calocitta as synonyms. Copyright 2009 Elsevier Inc. All rights reserved.

  6. A New Take on John Maynard Smith's Concept of Protein Space for Understanding Molecular Evolution

    Science.gov (United States)

    Hartl, Daniel L.

    2016-01-01

    Much of the public lacks a proper understanding of Darwinian evolution, a problem that can be addressed with new learning and teaching approaches to be implemented both inside the classroom and in less formal settings. Few analogies have been as successful in communicating the basics of molecular evolution as John Maynard Smith’s protein space analogy (1970), in which he compared protein evolution to the transition between the terms WORD and GENE, changing one letter at a time to yield a different, meaningful word (in his example, the preferred path was WORD → WORE → GORE → GONE → GENE). Using freely available computer science tools (Google Books Ngram Viewer), we offer an update to Maynard Smith’s analogy and explain how it might be developed into an exploratory and pedagogical device for understanding the basics of molecular evolution and, more specifically, the adaptive landscape concept. We explain how the device works through several examples and provide resources that might facilitate its use in multiple settings, ranging from public engagement activities to formal instruction in evolution, population genetics, and computational biology. PMID:27736867

  7. A New Take on John Maynard Smith's Concept of Protein Space for Understanding Molecular Evolution.

    Science.gov (United States)

    Ogbunugafor, C Brandon; Hartl, Daniel L

    2016-10-01

    Much of the public lacks a proper understanding of Darwinian evolution, a problem that can be addressed with new learning and teaching approaches to be implemented both inside the classroom and in less formal settings. Few analogies have been as successful in communicating the basics of molecular evolution as John Maynard Smith's protein space analogy (1970), in which he compared protein evolution to the transition between the terms WORD and GENE, changing one letter at a time to yield a different, meaningful word (in his example, the preferred path was WORD → WORE → GORE → GONE → GENE). Using freely available computer science tools (Google Books Ngram Viewer), we offer an update to Maynard Smith's analogy and explain how it might be developed into an exploratory and pedagogical device for understanding the basics of molecular evolution and, more specifically, the adaptive landscape concept. We explain how the device works through several examples and provide resources that might facilitate its use in multiple settings, ranging from public engagement activities to formal instruction in evolution, population genetics, and computational biology.

  8. A New Take on John Maynard Smith's Concept of Protein Space for Understanding Molecular Evolution.

    Directory of Open Access Journals (Sweden)

    C Brandon Ogbunugafor

    2016-10-01

    Full Text Available Much of the public lacks a proper understanding of Darwinian evolution, a problem that can be addressed with new learning and teaching approaches to be implemented both inside the classroom and in less formal settings. Few analogies have been as successful in communicating the basics of molecular evolution as John Maynard Smith's protein space analogy (1970, in which he compared protein evolution to the transition between the terms WORD and GENE, changing one letter at a time to yield a different, meaningful word (in his example, the preferred path was WORD → WORE → GORE → GONE → GENE. Using freely available computer science tools (Google Books Ngram Viewer, we offer an update to Maynard Smith's analogy and explain how it might be developed into an exploratory and pedagogical device for understanding the basics of molecular evolution and, more specifically, the adaptive landscape concept. We explain how the device works through several examples and provide resources that might facilitate its use in multiple settings, ranging from public engagement activities to formal instruction in evolution, population genetics, and computational biology.

  9. Nuclear Architecture and Patterns of Molecular Evolution Are Correlated in the Ciliate Chilodonella uncinata.

    Science.gov (United States)

    Maurer-Alcalá, Xyrus X; Katz, Laura A

    2016-06-08

    The relationship between nuclear architecture and patterns of molecular evolution in lineages across the eukaryotic tree of life is not well understood, partly because molecular evolution is traditionally explored as changes in base pairs along a linear sequence without considering the context of nuclear position of chromosomes. The ciliate Chilodonella uncinata is an ideal system to address the relationship between nuclear architecture and patterns of molecular evolution as the somatic macronucleus of this ciliate is composed of a peripheral DNA-rich area (orthomere) and a DNA-poor central region (paramere) to form a "heteromeric" macronucleus. Moreover, because the somatic chromosomes of C. uncinata are highly processed into "gene-sized" chromosomes (i.e., nanochromosomes), we can assess fine-scale relationships between location and sequence evolution. By combining fluorescence microscopy and analyses of transcriptome data from C. uncinata, we find that highly expressed genes have the greatest codon usage bias and are enriched in DNA-poor regions. In contrast, genes with less biased sequences tend to be concentrated in DNA abundant areas, at least during vegetative growth. Our analyses are consistent with recent work in plants and animals where nuclear architecture plays a role in gene expression. At the same time, the unusual localization of nanochromosomes suggests that the highly structured nucleus in C. uncinata may create a "gene bank" that facilitates rapid changes in expression of genes required only in specific life history stages. By using "nonmodel" organisms like C. uncinata, we can explore the universality of eukaryotic features while also providing examples of novel properties (i.e., the presence of a gene bank) that build from these features. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Morphological and Molecular Evolution Are Not Linked in Lamellodiscus (Plathyhelminthes, Monogenea)

    Science.gov (United States)

    Poisot, Timothée; Verneau, Olivier; Desdevises, Yves

    2011-01-01

    Lamellodiscus Johnston & Tiegs 1922 (Monogenea, Diplectanidae) is a genus of common parasites on the gills of sparid fishes. Here we show that this genus is probably undergoing a fast molecular diversification, as reflected by the important genetic variability observed within three molecular markers (partial nuclear 18S rDNA, Internal Transcribed Spacer 1, and mitonchondrial Cytochrome Oxidase I). Using an updated phylogeny of this genus, we show that molecular and morphological evolution are weakly correlated, and that most of the morphologically defined taxonomical units are not consistent with the molecular data. We suggest that Lamellodiscus morphology is probably constrained by strong environmental (host-induced) pressure, and discuss why this result can apply to other taxa. Genetic variability within nuclear 18S and mitochondrial COI genes are compared for several monogenean genera, as this measure may reflect the level of diversification within a genus. Overall our results suggest that cryptic speciation events may occur within Lamellodiscus, and discuss the links between morphological and molecular evolution. PMID:22022582

  11. The Molecular Basis of Evolution and Disease: A Cold War Alliance.

    Science.gov (United States)

    Suárez-Díaz, Edna

    2017-03-28

    This paper extends previous arguments against the assumption that the study of variation at the molecular level was instigated with a view to solving an internal conflict between the balance and classical schools of population genetics. It does so by focusing on the intersection of basic research in protein chemistry and the molecular approach to disease with the enactment of global health campaigns during the Cold War period. The paper connects advances in research on protein structure and function as reflected in Christian Anfinsen's The molecular basis of evolution, with a political reading of Emilé Zuckerkandl and Linus Pauling's identification of molecular disease and evolution. Beyond atomic fallout, these advances constituted a rationale for the promotion of genetic surveys of human populations in the Third World, in connection with international health programs. Light is shed not only on the experimental roots of the molecular challenge but on the broader geopolitical context where the rising role of biomedicine and public health (particularly the malaria eradication campaigns) had an impact on evolutionary biology.

  12. MOLECULAR TAXONOMY AND THE EVOLUTION THEORY IN LIGHT OF EMERGING BIOINFORMATIC AND COSMOLOGICAL DATA

    Directory of Open Access Journals (Sweden)

    Sergei Y. Shchyogolev

    2016-09-01

    Full Text Available A brief review is given of recent advances in the taxonomic study of organisms and current views on biological evolution and the origin of life. A discussion is presented on how the treelike and net components contribute to the topology of phylogenetic constructs, with account taken of the prevailing role of horizontal gene transfer in prokaryote evolution and life. Approaches are described to the rational selection and practical use of phylogenetic markers (including 16S rRNA gene DNA sequences in biomedical (including metagenomic applications with traditional and nontraditional (large amounts of molecular genetic data. Emerging results from taxonomic studies of the Earth’s biota and the methods of their generation are demonstrated. It is noted that the current developments in particle physics and in cosmology have important implications for solving paradoxes associated with the vanishingly small probability of some fundamental processes of prebiological and biological evolution.

  13. Molecular Evolution of the dotA Gene in Legionella pneumophila

    OpenAIRE

    Ko, Kwan Soo; Hong, Seong Karp; Lee, Hae Kyung; Park, Mi-Yeoun; Kook, Yoon-Hoh

    2003-01-01

    The molecular evolution of dotA, which is related to the virulence of Legionella pneumophila, was investigated by comparing the sequences of 15 reference strains (serogroups 1 to 15). It was found that dotA has a complex mosaic structure. The whole dotA gene of Legionella pneumophila subsp. pneumophila serogroups 2, 6, and 12 has been transferred from Legionella pneumophila subsp. fraseri. A discrepancy was found between the trees inferred from the nucleotide and deduced amino acid sequences ...

  14. Molecular evolution of rbcL in the mycoheterotrophic coralroot orchids (Corallorhiza Gagnebin, Orchidaceae).

    Science.gov (United States)

    Barrett, Craig F; Freudenstein, John V

    2008-05-01

    The RuBisCO large subunit gene (rbcL) has been the focus of numerous plant phylogenetic studies and studies on molecular evolution in parasitic plants. However, there has been a lack of investigation of photosynthesis gene molecular evolution in fully mycoheterotrophic plants. These plants invade pre-existing mutualistic associations between ectomycorrhizal trees and fungi, from which they obtain fixed carbon and nutrients. The mycoheterotrophic orchid Corallorhiza contains both green (photosynthetic) and non-green (putatively nonphotosynthetic) species. We sequenced rbcL from 31 accessions of eight species of Corallorhiza and hypothesized that some lineages would have pseudogenes resulting from relaxation of purifying selection on RuBisCO's carboxylase function. Phylogenetic analysis of rbcL+ITS gave high jackknife support for relationships among species. We found evidence of pseudogene formation in all lineages of the Corallorhiza striata complex and in some lineages of the C. maculata complex. Evidence includes: stop codons, frameshifts, decreased d(S)/d(N) ratios, replacements not observed in photosynthetic species, rate heterogeneity, and high likelihood of neutral evolution. The evolution of rbcL in Corallorhiza may serve as an exemplary system in which to study the effects of relaxed evolutionary constraints on photosynthesis genes for >400 documented fully mycoheterotrophic plant species.

  15. MBEToolbox: a Matlab toolbox for sequence data analysis in molecular biology and evolution

    Directory of Open Access Journals (Sweden)

    Xia Xuhua

    2005-03-01

    Full Text Available Abstract Background MATLAB is a high-performance language for technical computing, integrating computation, visualization, and programming in an easy-to-use environment. It has been widely used in many areas, such as mathematics and computation, algorithm development, data acquisition, modeling, simulation, and scientific and engineering graphics. However, few functions are freely available in MATLAB to perform the sequence data analyses specifically required for molecular biology and evolution. Results We have developed a MATLAB toolbox, called MBEToolbox, aimed at filling this gap by offering efficient implementations of the most needed functions in molecular biology and evolution. It can be used to manipulate aligned sequences, calculate evolutionary distances, estimate synonymous and nonsynonymous substitution rates, and infer phylogenetic trees. Moreover, it provides an extensible, functional framework for users with more specialized requirements to explore and analyze aligned nucleotide or protein sequences from an evolutionary perspective. The full functions in the toolbox are accessible through the command-line for seasoned MATLAB users. A graphical user interface, that may be especially useful for non-specialist end users, is also provided. Conclusion MBEToolbox is a useful tool that can aid in the exploration, interpretation and visualization of data in molecular biology and evolution. The software is publicly available at http://web.hku.hk/~jamescai/mbetoolbox/ and http://bioinformatics.org/project/?group_id=454.

  16. A new model for biological effects of radiation and the driven force of molecular evolution

    Science.gov (United States)

    Wada, Takahiro; Manabe, Yuichiro; Nakajima, Hiroo; Tsunoyama, Yuichi; Bando, Masako

    We proposed a new mathematical model to estimate biological effects of radiation, which we call Whack-A-Mole (WAM) model. A special feature of WAM model is that it involves the dose rate of radiation as a key ingredient. We succeeded to reproduce the experimental data of various species concerning the radiation induced mutation frequencies. From the analysis of the mega-mouse experiments, we obtained the mutation rate per base-pair per year for mice which is consistent with the so-called molecular clock in evolution genetics, 10-9 mutation/base-pair/year. Another important quantity is the equivalent dose rate for the whole spontaneous mutation, deff. The value of deff for mice is 1.1*10-3 Gy/hour which is much larger than the dose rate of natural radiation (10- (6 - 7) Gy/hour) by several orders of magnitude. We also analyzed Drosophila data and obtained essentially the same numbers. This clearly indicates that the natural radiation is not the dominant driving force of the molecular evolution, but we should look for other factors, such as miscopy of DNA in duplication process. We believe this is the first quantitative proof of the small contribution of the natural radiation in the molecular evolution.

  17. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats

    Directory of Open Access Journals (Sweden)

    Gareth eJones

    2013-05-01

    Full Text Available Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions (e.g. olfactory receptor genes and genes identified from mutations associated with sensory deficits (e.g. blindness and deafness. For example, the FoxP2 gene, underpinning vocal behaviour and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive olfactory receptor repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a ‘birth-and death’ evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to

  18. Molecular evolution in bacteria: cell division Evolução molecular em bactérias: divisão celular

    OpenAIRE

    J.T. Trevors

    1998-01-01

    Molecular evolution in bacteria is examined with an emphasis on the self-assembly of cells capable of primitive division and growth during early molecular evolution. Also, the possibility that some type of encapsulation structure preceeded biochemical pathways and the assembly of genetic material is examined. These aspects will be considered from an evolutionary perspective.A evolução molecular em bactérias é examinada com ênfase na auto-organização de uma célula capaz de divisão primitiva e ...

  19. Hepatitis C virus molecular evolution: Transmission, disease progression and antiviral therapy

    Science.gov (United States)

    Preciado, Maria Victoria; Valva, Pamela; Escobar-Gutierrez, Alejandro; Rahal, Paula; Ruiz-Tovar, Karina; Yamasaki, Lilian; Vazquez-Chacon, Carlos; Martinez-Guarneros, Armando; Carpio-Pedroza, Juan Carlos; Fonseca-Coronado, Salvador; Cruz-Rivera, Mayra

    2014-01-01

    Hepatitis C virus (HCV) infection represents an important public health problem worldwide. Reduction of HCV morbidity and mortality is a current challenge owned to several viral and host factors. Virus molecular evolution plays an important role in HCV transmission, disease progression and therapy outcome. The high degree of genetic heterogeneity characteristic of HCV is a key element for the rapid adaptation of the intrahost viral population to different selection pressures (e.g., host immune responses and antiviral therapy). HCV molecular evolution is shaped by different mechanisms including a high mutation rate, genetic bottlenecks, genetic drift, recombination, temporal variations and compartmentalization. These evolutionary processes constantly rearrange the composition of the HCV intrahost population in a staging manner. Remarkable advances in the understanding of the molecular mechanism controlling HCV replication have facilitated the development of a plethora of direct-acting antiviral agents against HCV. As a result, superior sustained viral responses have been attained. The rapidly evolving field of anti-HCV therapy is expected to broad its landscape even further with newer, more potent antivirals, bringing us one step closer to the interferon-free era. PMID:25473152

  20. The molecular clock of neutral evolution can be accelerated or slowed by asymmetric spatial structure.

    Directory of Open Access Journals (Sweden)

    Benjamin Allen

    2015-02-01

    Full Text Available Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a "molecular clock" to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution.

  1. Molecular dynamics simulations of the structure evolutions of Cu-Zr metallic glasses under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Lin [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Tian, Zean; Xiao, Shifang [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Deng, Huiqiu, E-mail: hqdeng@hnu.edu.cn [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Ao, Bingyun [Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907 (China); Chen, Piheng, E-mail: chenpiheng@caep.cn [Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907 (China); Hu, Wangyu [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2017-02-15

    Highlights: • The structural evolution of Cu{sub 64.5}Zr{sub 35.5} MG under irradiation was studied. • The structure clusters were analyzed using the LSCA method. • Most of these radiation damages have been self-recovered quickly. - Abstract: Molecular dynamics simulations have been performed to investigate the structural evolution of Cu{sub 64.5}Zr{sub 35.5} metallic glasses under irradiation. The largest standard cluster analysis (LSCA) method was used to quantify the microstructure within the collision cascade regions. It is found that the majority of clusters within the collision cascade regions are full and defective icosahedrons. Not only the smaller structures (common neighbor subcluster) but also primary clusters greatly changed during the collision cascades; while most of these radiation damages self-recover quickly in the following quench states. These findings indicate the Cu-Zr metallic glasses have excellent irradiation-resistance properties.

  2. PAL: an object-oriented programming library for molecular evolution and phylogenetics.

    Science.gov (United States)

    Drummond, A; Strimmer, K

    2001-07-01

    Phylogenetic Analysis Library (PAL) is a collection of Java classes for use in molecular evolution and phylogenetics. PAL provides a modular environment for the rapid construction of both special-purpose and general analysis programs. PAL version 1.1 consists of 145 public classes or interfaces in 13 packages, including classes for models of character evolution, maximum-likelihood estimation, and the coalescent, with a total of more than 27000 lines of code. The PAL project is set up as a collaborative project to facilitate contributions from other researchers. AVAILIABILTY: The program is free and is available at http://www.pal-project.org. It requires Java 1.1 or later. PAL is licensed under the GNU General Public License.

  3. Water oxidation catalysis upon evolution of molecular Co(III) cubanes in aqueous media.

    Science.gov (United States)

    Genoni, Andrea; La Ganga, Giuseppina; Volpe, Andrea; Puntoriero, Fausto; Di Valentin, Marilena; Bonchio, Marcella; Natali, Mirco; Sartorel, Andrea

    2015-01-01

    The increasing global energy demand has stimulated great recent efforts in investigating new solutions for artificial photosynthesis, a potential source of clean and renewable solar fuel. In particular, according to the generally accepted modular approach aimed at optimising separately the different compartments of the entire process, many studies have focused on the development of catalytic systems for water oxidation to oxygen. While in recent years there have been many reports on new catalytic systems, the mechanism and the active intermediates operating the catalysis have been less investigated. Well-defined, molecular catalysts, constituted by transition metals stabilised by a suitable ligand pool, could help in solving this aspect. However, in some cases molecular species have been shown to evolve to active metal oxides that constitute the other side of this catalysis dichotomy. In this paper, we address the evolution of tetracobalt(III) cubanes, stabilised by a pyridine/acetate ligand pool, to active species that perform water oxidation to oxygen. Primary evolution of the cubane in aqueous solution is likely initiated by removal of an acetate bridge, opening the coordination sphere of the cobalt centres. This cobalt derivative, where the pristine ligands still impact on the reactivity, shows enhanced electron transfer rates to Ru(bpy)3(3+) (hole scavenging) within a photocatalytic cycle with Ru(bpy)3(2+) as the photosensitiser and S2O8(2-) as the electron sink. A more accentuated evolution occurs under continuous irradiation, where Electron Paramagnetic Resonance (EPR) spectroscopy reveals the formation of Co(ii) intermediates, likely contributing to the catalytic process that evolves oxygen. All together, these results confirm the relevant effect of molecular species, in particular in fostering the rate of the electron transfer processes involved in light activated cycles, pivotal in the design of a photoactive device.

  4. Contrasted patterns of molecular evolution in dominant and recessive self-incompatibility haplotypes in Arabidopsis.

    Science.gov (United States)

    Goubet, Pauline M; Bergès, Hélène; Bellec, Arnaud; Prat, Elisa; Helmstetter, Nicolas; Mangenot, Sophie; Gallina, Sophie; Holl, Anne-Catherine; Fobis-Loisy, Isabelle; Vekemans, Xavier; Castric, Vincent

    2012-01-01

    Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus) in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae.

  5. Contrasted patterns of molecular evolution in dominant and recessive self-incompatibility haplotypes in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Pauline M Goubet

    Full Text Available Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae.

  6. The study of evolution in the Crow - Kimura molecular genetics model using methods of calculus of variations

    Science.gov (United States)

    Subbotina, Nina N.; Shagalova, Lyubov G.

    2017-11-01

    The Cauchy problem for a nonlinear noncoercive Hamilton - Jacobi equation with state constraints is under consideration. Such a problem originates in molecular biology. It describes the process of evolution in molecular genetics according to the Crow - Kimura model. A generalized solution of prescribed structure is constructed and justifed via calculus of variations. The results of computer simulation are presented.

  7. Evolution of shear banding flows in metallic glasses characterized by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Li, E-mail: yltiger@sjtu.edu.cn [Shanghai Institute of Space Power-Sources, 2965 Dongchuan Rd., Shanghai 200245 (China); Luan, Yingwei [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240 (China)

    2016-06-21

    To reveal the evolution of shear banding flows, one-dimensional nanostructure metallic glass composites have been studied with molecular dynamics. The inherent size determines the initial thickness of shear bands, and the subsequent broadening can be restricted to some extent. The vortex-like flows evoke the atomic motion perpendicular to the shear plane, which accelerates the interatomic diffusion. The reduction of local strain rate causes the flow softening for monolithic Cu-Zr glass, but the participation of Cu-atoms in the shear banding flow gradually leads to the shear hardening for the composites.

  8. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

    DEFF Research Database (Denmark)

    Hou, Yidong; Abrams, Billie L.; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    -abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo3S 4) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor...... that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10% (ref. 16). The experimental observations are supported by density functional theory...

  9. Molecular anions in circumstellar envelopes, interstellar clouds and planetary atmospheres: quantum dynamics of formation and evolution

    Science.gov (United States)

    Carelli, Fabio

    2012-09-01

    For decades astronomers and astrophysicists believed that only positively charged ions were worthy of relevance in drawing the networks for possible chemical reactions in the interstellar medium, as well as in modeling the physical conditions in most of astrophysical environments. Thus, molecular negative ions received minor attention until their possible existence was observationally confirmed (discovery of the first interstellar anion, C6H-), about thirty years after the first physically reasonable proposal on their actual detection was theoretically surmised by E.Herbst. In an astrophysical context, their role should be then found in their involvement in the charge balance as well as in the chemical evolution of the considered environment: depending on their amount and on the global gas density, in fact, the possible evolutive scenario could be susceptible of marked variations on the estimated time needed for reaching the steady state, their presence having thus also important repercussions on the final chemical composition of a given environment. The main reasons that originally motivated us to undertake the present work, were at least two. First of all, we intended to demonstrate the importance of resonances in forming molecular anions in different astrophysical environments. Secondly, we were attracted by the possibility of investigating the occurrence of radiationless paths like intramolecular vibrational redistributions to account for the dissipation of the extra energy initially carried by the impinging electron. Accordingly, the present PhD represents a theoretical/computational work which deals with an area placed at the boundary between (molecular) astrophysics, quantum collision thery, and theoretical chemistry. The three molecular species whose behaviour under low-energy electron collisions will be discussed are: the ortho-benzyne, the coronene and the carbon nitride.

  10. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria

    Directory of Open Access Journals (Sweden)

    Ochman Howard

    2009-09-01

    Full Text Available Abstract Background Because bacteria do not have a robust fossil record, attempts to infer the timing of events in their evolutionary history requires comparisons of molecular sequences. This use of molecular clocks is based on the assumptions that substitution rates for homologous genes or sites are fairly constant through time and across taxa. Violation of these conditions can lead to erroneous inferences and result in estimates that are off by orders of magnitude. In this study, we examine the consistency of substitution rates among a set of conserved genes in diverse bacterial lineages, and address the questions regarding the validity of molecular dating. Results By examining the evolution of 16S rRNA gene in obligate endosymbionts, which can be calibrated by the fossil record of their hosts, we found that the rates are consistent within a clade but varied widely across different bacterial lineages. Genome-wide estimates of nonsynonymous and synonymous substitutions suggest that these two measures are highly variable in their rates across bacterial taxa. Genetic drift plays a fundamental role in determining the accumulation of substitutions in 16S rRNA genes and at nonsynonymous sites. Moreover, divergence estimates based on a set of universally conserved protein-coding genes also exhibit low correspondence to those based on 16S rRNA genes. Conclusion Our results document a wide range of substitution rates across genes and bacterial taxa. This high level of variation cautions against the assumption of a universal molecular clock for inferring divergence times in bacteria. However, by applying relative-rate tests to homologous genes, it is possible to derive reliable local clocks that can be used to calibrate bacterial evolution. Reviewers This article was reviewed by Adam Eyre-Walker, Simonetta Gribaldo and Tal Pupko (nominated by Dan Graur.

  11. Towards a molecular phylogeny of Mollusks: bivalves' early evolution as revealed by mitochondrial genes.

    Science.gov (United States)

    Plazzi, Federico; Passamonti, Marco

    2010-11-01

    Despite huge fossil, morphological and molecular data, bivalves' early evolutionary history is still a matter of debate: recently, established phylogeny has been mostly challenged by DNA studies, and little agreement has been reached in literature, because of a substantial lack of widely-accepted methodological approaches to retrieve and analyze bivalves' molecular data. Here we present a molecular phylogeny of the class based on four mitochondrial genes (12s, 16s, cox1, cytb) and a methodological pipeline that proved to be useful to obtain robust results. Actually, best-performing taxon sampling and alignment strategies were tested, and several data partitioning and molecular evolution models were analyzed, thus demonstrating the utility of Bayesian inference and the importance of molding and implementing non-trivial evolutionary models. Therefore, our analysis allowed to target many taxonomic questions of Bivalvia, and to obtain a complete time calibration of the tree depicting bivalves' earlier natural history main events, which mostly dated in the late Cambrian. Copyright © 2010. Published by Elsevier Inc.

  12. Morphology Evolution of Molecular Weight Dependent P3HT: PCBM Solar Cells

    Science.gov (United States)

    Liu, Feng; Chen, Dian; Briseno, Alejandro; Russell, Thomas

    2011-03-01

    Effective strategies to maximize the performance of bulk heterojunction (BHJ) photovoltaic devices have to be developed and understood to realize their full potential. In BHJ solar cells, the morphology of the active layer is a critical issue to improve device efficiency. In this work, we choose poly(3-hexyl-thiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) system to study the morphology evolution. Different molecular weight P3HTs were synthesized by using Grignard Metathesis (GRIM)~method. In device optimization, polymer with a molecular weight between 20k-30k shows the highest efficiency. It was observed that the as-spun P3HT: PCBM (1:1) blends do not have high order by GISAXS. Within a few seconds of thermal annealing at 150& circ; the crystallinity of P3HT increaased substantially and the polymer chains adopted an edge-on orientation. An-bicontinous morphology was also developed within this short thermal treatment. The in situ GISAXS experiment showed that P3HT of high molecular weight was more easily crystallized from a slowly evaporated chlorobenzene solution and their edge-on orientation is much more obvious than for the lower molecular weight P3HTs. DSC was used to study the thermal properties of P3HTs and P3HT: PCBM blend. The χ of P3HT-PCBM was also calculated by using melting point depression method.

  13. A new molecular evolution model for limited insertion independent of substitution.

    Science.gov (United States)

    Lèbre, Sophie; Michel, Christian J

    2013-10-01

    We recently introduced a new molecular evolution model called the IDIS model for Insertion Deletion Independent of Substitution [13,14]. In the IDIS model, the three independent processes of substitution, insertion and deletion of residues have constant rates. In order to control the genome expansion during evolution, we generalize here the IDIS model by introducing an insertion rate which decreases when the sequence grows and tends to 0 for a maximum sequence length nmax. This new model, called LIIS for Limited Insertion Independent of Substitution, defines a matrix differential equation satisfied by a vector P(t) describing the sequence content in each residue at evolution time t. An analytical solution is obtained for any diagonalizable substitution matrix M. Thus, the LIIS model gives an expression of the sequence content vector P(t) in each residue under evolution time t as a function of the eigenvalues and the eigenvectors of matrix M, the residue insertion rate vector R, the total insertion rate r, the initial and maximum sequence lengths n0 and nmax, respectively, and the sequence content vector P(t0) at initial time t0. The derivation of the analytical solution is much more technical, compared to the IDIS model, as it involves Gauss hypergeometric functions. Several propositions of the LIIS model are derived: proof that the IDIS model is a particular case of the LIIS model when the maximum sequence length nmax tends to infinity, fixed point, time scale, time step and time inversion. Using a relation between the sequence length l and the evolution time t, an expression of the LIIS model as a function of the sequence length l=n(t) is obtained. Formulas for 'insertion only', i.e. when the substitution rates are all equal to 0, are derived at evolution time t and sequence length l. Analytical solutions of the LIIS model are explicitly derived, as a function of either evolution time t or sequence length l, for two classical substitution matrices: the 3

  14. That 70s show: regulation, evolution and development beyond molecular genetics.

    Science.gov (United States)

    Suárez-Díaz Edna; García-Deister Vivette

    2015-01-01

    This paper argues that the "long 1970s" (1969-1983) is an important though often overlooked period in the development of a rich landscape in the research of metabolism, development, and evolution. The period is marked by: shrinking public funding of basic science, shifting research agendas in molecular biology, the incorporation of new phenomena and experimental tools from previous biological research at the molecular level, and the development of recombinant DNA techniques. Research was reoriented towards eukaryotic cells and development, and in particular towards "giant" RNA processing and transcription. We will here focus on three different models of developmental regulation published in that period: the two models of eukaryotic genetic regulation at the transcriptional level that were developed by Georgii P. Georgiev on the one hand, and by Roy Britten and Eric Davidson on the other; and the model of genetic sufficiency and evolution of regulatory genes proposed by Emile Zuckerkandl. These three bases illustrate the range of exploratory hypotheses that characterised the challenging landscape of gene regulation in the 1970s, a period that in hindsight can be labelled as transitional, between the biology at the laboratory bench of the preceding period, and the biology of genetic engineering and intensive data-driven research that followed.

  15. The driving of turbulence in simulations of molecular cloud formation and evolution

    Science.gov (United States)

    Körtgen, Bastian; Federrath, Christoph; Banerjee, Robi

    2017-12-01

    Molecular clouds are to a great extent influenced by turbulent motions in the gas. Numerical and observational studies indicate that the star formation rate and efficiency crucially depend on the mixture of solenoidal and compressive modes in the turbulent acceleration field, which can be quantified by the turbulent driving parameter b. For purely solenoidal (divergence-free) driving previous studies showed that b=1/3 and for entirely compressive (curl-free) driving b=1. In this study, we determine the evolution of the turbulent driving parameter b in magnetohydrodynamical simulations of molecular cloud formation and evolution. The clouds form due to the convergence of two flows of warm neutral gas. We explore different scenarios by varying the magnitude of the initial turbulent perturbations in the flows. We show that the driving mode of the turbulence within the cloud strongly fluctuates with time and exhibits no clear correlation with typical cloud properties, such as the cloud mass and the (Alfven) Mach number. We specifically find that $b$ strongly varies from b=0.3 to b=0.8 on timescales tcloud to cloud. This rapid change of b from solenoidal to compressive driving is primarily associated with global contraction of the cloud and subsequent onset of star formation. We conclude that the effective turbulence driving parameter should be treated as a free parameter that can vary from solenoidal to compressive in both time and space.

  16. Molecular Evolution of Aralkylamine N-Acetyltransferase in Fish: A Genomic Survey.

    Science.gov (United States)

    Li, Jia; You, Xinxin; Bian, Chao; Yu, Hui; Coon, Steven L; Shi, Qiong

    2015-12-31

    All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT), the blood level of melatonin increases at night and decreases during daytime. Whereas other vertebrates have a single form of AANAT, bony fishes possess various isoforms of aanat genes, though the reasons are still unclear. Here, we have taken advantage of multiple unpublished teleost aanat sequences to explore and expand our understanding of the molecular evolution of aanat in fish. Our results confirm that two rounds of whole-genome duplication (WGD) led to the existence of three fish isoforms of aanat, i.e., aanat1a, aanat1b, and aanat2; in addition, gene loss led to the absence of some forms from certain special fish species. Furthermore, we suggest the different roles of two aanat1s in amphibious mudskippers, and speculate that the loss of aanat1a, may be related to terrestrial vision change. Several important sites of AANAT proteins and regulatory elements of aanat genes were analyzed for structural comparison and functional forecasting, respectively, which provides insights into the molecular evolution of the differences between AANAT1 and AANAT2.

  17. Molecular Evolution of the Infrared Sensory Gene TRPA1 in Snakes and Implications for Functional Studies

    Science.gov (United States)

    Jiang, Ke; Zhang, Peng

    2011-01-01

    TRPA1 is a calcium ion channel protein recently identified as the infrared receptor in pit organ-containing snakes. Therefore, understanding the molecular evolution of TRPA1 may help to illuminate the origin of “heat vision” in snakes and reveal the molecular mechanism of infrared sensitivity for TRPA1. To this end, we sequenced the infrared sensory gene TRPA1 in 24 snake species, representing nine snake families and multiple non-snake outgroups. We found that TRPA1 is under strong positive selection in the pit-bearing snakes studied, but not in other non-pit snakes and non-snake vertebrates. As a comparison, TRPV1, a gene closely related to TRPA1, was found to be under strong purifying selection in all the species studied, with no difference in the strength of selection between pit-bearing snakes and non-pit snakes. This finding demonstrates that the adaptive evolution of TRPA1 specifically occurred within the pit-bearing snakes and may be related to the functional modification for detecting infrared radiation. In addition, by comparing the TRPA1 protein sequences, we identified 11 amino acid sites that were diverged in pit-bearing snakes but conserved in non-pit snakes and other vertebrates, 21 sites that were diverged only within pit-vipers but conserved in the remaining snakes. These specific amino acid substitutions may be potentially functional important for infrared sensing. PMID:22163322

  18. Molecular Evolution of Aralkylamine N-Acetyltransferase in Fish: A Genomic Survey

    Directory of Open Access Journals (Sweden)

    Jia Li

    2015-12-01

    Full Text Available All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT, the blood level of melatonin increases at night and decreases during daytime. Whereas other vertebrates have a single form of AANAT, bony fishes possess various isoforms of aanat genes, though the reasons are still unclear. Here, we have taken advantage of multiple unpublished teleost aanat sequences to explore and expand our understanding of the molecular evolution of aanat in fish. Our results confirm that two rounds of whole-genome duplication (WGD led to the existence of three fish isoforms of aanat, i.e., aanat1a, aanat1b, and aanat2; in addition, gene loss led to the absence of some forms from certain special fish species. Furthermore, we suggest the different roles of two aanat1s in amphibious mudskippers, and speculate that the loss of aanat1a, may be related to terrestrial vision change. Several important sites of AANAT proteins and regulatory elements of aanat genes were analyzed for structural comparison and functional forecasting, respectively, which provides insights into the molecular evolution of the differences between AANAT1 and AANAT2.

  19. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

    DEFF Research Database (Denmark)

    Hou, Yidong; Abrams, Billie L.; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution, earth-abundant ......The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution, earth......-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo3S 4) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor...... that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10% (ref. 16). The experimental observations are supported by density functional theory...

  20. Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life.

    Science.gov (United States)

    Pentinsaari, Mikko; Salmela, Heli; Mutanen, Marko; Roslin, Tomas

    2016-10-13

    DNA barcodes are widely used for identification and discovery of species. While such use draws on information at the DNA level, the current amassment of ca. 4.7 million COI barcodes also offers a unique resource for exploring functional constraints on DNA evolution. Here, we explore amino acid variation in a crosscut of the entire animal kingdom. Patterns of DNA variation were linked to functional constraints at the level of the amino acid sequence in functionally important parts of the enzyme. Six amino acid sites show variation with possible effects on enzyme function. Overall, patterns of amino acid variation suggest convergent or parallel evolution at the protein level connected to the transition into a parasitic life style. Denser sampling of two diverse insect taxa revealed that the beetles (Coleoptera) show more amino acid variation than the butterflies and moths (Lepidoptera), indicating fundamental difference in patterns of molecular evolution in COI. Several amino acid sites were found to be under notably strong purifying selection in Lepidoptera as compared to Coleoptera. Overall, these findings demonstrate the utility of the global DNA barcode library to extend far beyond identification and taxonomy, and will hopefully be followed by a multitude of work.

  1. Contribution of recombination and selection to molecular evolution of Citrus tristeza virus.

    Science.gov (United States)

    Martín, Susana; Sambade, Adrián; Rubio, Luis; Vives, María C; Moya, Patricia; Guerri, José; Elena, Santiago F; Moreno, Pedro

    2009-06-01

    The genetic variation of Citrus tristeza virus (CTV) was analysed by comparing the predominant sequence variants in seven genomic regions (p33, p65, p61, p18, p13, p20 and p23) of 18 pathogenically distinct isolates from seven different countries. Analyses of the selective constraints acting on each codon suggest that most regions were under purifying selection. Phylogenetic analysis shows diverse patterns of molecular evolution for different genomic regions. A first clade composed of isolates that are genetically close to the reference mild isolates T385 or T30 was inferred from all genomic regions. A second clade, mostly comprising virulent isolates, was defined from regions p33, p65, p13 and p23. For regions p65, p61, p18, p13 and p23, a third clade that mostly included South American isolates could not be related to any reference genotype. Phylogenetic relationships among isolates did not reflect their geographical origin, suggesting significant gene flow between geographically distant areas. Incongruent phylogenetic trees for different genomic regions suggested recombination events, an extreme that was supported by several recombination-detecting methods. A phylogenetic network incorporating the effect of recombination showed an explosive radiation pattern for the evolution of some isolates and also grouped isolates by virulence. Taken together, the above results suggest that negative selection, gene flow, sequence recombination and virulence may be important factors driving CTV evolution.

  2. Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system.

    Science.gov (United States)

    Woodard, S Hollis; Lozier, Jeffrey D; Goulson, David; Williams, Paul H; Strange, James P; Jha, Shalene

    2015-06-01

    Bumble bees are a longstanding model system for studies on behaviour, ecology and evolution, due to their well-studied social lifestyle, invaluable role as wild and managed pollinators, and ubiquity and diversity across temperate ecosystems. Yet despite their importance, many aspects of bumble bee biology have remained enigmatic until the rise of the genetic and, more recently, genomic eras. Here, we review and synthesize new insights into the ecology, evolution and behaviour of bumble bees that have been gained using modern genetic and genomic techniques. Special emphasis is placed on four areas of bumble bee biology: the evolution of eusociality in this group, population-level processes, large-scale evolutionary relationships and patterns, and immunity and resistance to pesticides. We close with a prospective on the future of bumble bee genomics research, as this rapidly advancing field has the potential to further revolutionize our understanding of bumble bees, particularly in regard to adaptation and resilience. Worldwide, many bumble bee populations are in decline. As such, throughout the review, connections are drawn between new molecular insights into bumble bees and our understanding of the causal factors involved in their decline. Ongoing and potential applications to bumble bee management and conservation are also included to demonstrate how genetics- and genomics-enabled research aids in the preservation of this threatened group. © 2015 John Wiley & Sons Ltd.

  3. Molecular evolution of globin genes in Gymnotiform electric fishes: relation to hypoxia tolerance.

    Science.gov (United States)

    Tian, Ran; Losilla, Mauricio; Lu, Ying; Yang, Guang; Zakon, Harold

    2017-02-13

    Nocturnally active gymnotiform weakly electric fish generate electric signals for communication and navigation, which can be energetically taxing. These fish mainly inhabit the Amazon basin, where some species prefer well-oxygenated waters and others live in oxygen-poor, stagnant habitats. The latter species show morphological, physiological, and behavioral adaptations for hypoxia-tolerance. However, there have been no studies of hypoxia tolerance on the molecular level. Globins are classic respiratory proteins. They function principally in oxygen-binding and -delivery in various tissues and organs. Here, we investigate the molecular evolution of alpha and beta hemoglobins, myoglobin, and neuroglobin in 12 gymnotiforms compared with other teleost fish. The present study identified positively selected sites (PSS) on hemoglobin (Hb) and myoglobin (Mb) genes using different maximum likelihood (ML) methods; some PSS fall in structurally important protein regions. This evidence for the positive selection of globin genes suggests that the adaptive evolution of these genes has helped to enhance the capacity for oxygen storage and transport. Interestingly, a substitution of a Cys at a key site in the obligate air-breathing electric eel (Electrophorus electricus) is predicted to enhance oxygen storage of Mb and contribute to NO delivery during hypoxia. A parallel Cys substitution was also noted in an air-breathing African electric fish (Gymnarchus niloticus). Moreover, the expected pattern under normoxic conditions of high expression of myoglobin in heart and neuroglobin in the brain in two hypoxia-tolerant species suggests that the main effect of selection on these globin genes is on their sequence rather than their basal expression patterns. Results indicate a clear signature of positive selection in the globin genes of most hypoxia-tolerant gymnotiform fishes, which are obligate or facultative air breathers. These findings highlight the critical role of globin genes in

  4. Molecular evolution in bacteria: cell division Evolução molecular em bactérias: divisão celular

    Directory of Open Access Journals (Sweden)

    J.T. Trevors

    1998-10-01

    Full Text Available Molecular evolution in bacteria is examined with an emphasis on the self-assembly of cells capable of primitive division and growth during early molecular evolution. Also, the possibility that some type of encapsulation structure preceeded biochemical pathways and the assembly of genetic material is examined. These aspects will be considered from an evolutionary perspective.A evolução molecular em bactérias é examinada com ênfase na auto-organização de uma célula capaz de divisão primitiva e multiplicação durante o princípio da evolução molecular. Também se discute a possibilidade de que algum tipo de estrutura de encapsulação tenha antecedido as vias bioquímicas e o agrupamento de material genético. Esses aspectos são considerados sob uma perspectiva evolutiva.

  5. Genes in the terminal regions of orthopoxvirus genomes experience adaptive molecular evolution.

    Science.gov (United States)

    Esteban, David J; Hutchinson, Anne P

    2011-05-23

    Orthopoxviruses are dsDNA viruses with large genomes, some encoding over 200 genes. Genes essential for viral replication are located in the center of the linear genome and genes encoding host response modifiers and other host interacting proteins are located in the terminal regions. The central portion of the genome is highly conserved, both in gene content and sequence, while the terminal regions are more diverse. In this study, we investigated the role of adaptive molecular evolution in poxvirus genes and the selective pressures that act on the different regions of the genome. The relative fixation rates of synonymous and non-synonymous mutations (the d(N)/d(S) ratio) are an indicator of the mechanism of evolution of sequences, and can be used to identify purifying, neutral, or diversifying selection acting on a gene. Like highly conserved residues, amino acids under diversifying selection may be functionally important. Many genes experiencing diversifying selection are involved in host-pathogen interactions, such as antigen-antibody interactions, or the "host-pathogen arms race." We analyzed 175 gene families from orthopoxviruses for evidence of diversifying selection. 79 genes were identified as experiencing diversifying selection, 25 with high confidence. Many of these genes are located in the terminal regions of the genome and function to modify the host response to infection or are virion-associated, indicating a greater role for diversifying selection in host-interacting genes. Of the 79 genes, 20 are of unknown function, and implicating diversifying selection as an important mechanism in their evolution may help characterize their function or identify important functional residues. We conclude that diversifying selection is an important mechanism of orthopoxvirus evolution. Diversifying selection in poxviruses may be the result of interaction with host defense mechanisms.

  6. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox family of enzymes

    Directory of Open Access Journals (Sweden)

    Lambeth J David

    2007-07-01

    Full Text Available Abstract Background NADPH-oxidases (Nox and the related Dual oxidases (Duox play varied biological and pathological roles via regulated generation of reactive oxygen species (ROS. Members of the Nox/Duox family have been identified in a wide variety of organisms, including mammals, nematodes, fruit fly, green plants, fungi, and slime molds; however, little is known about the molecular evolutionary history of these enzymes. Results We assembled and analyzed the deduced amino acid sequences of 101 Nox/Duox orthologs from 25 species, including vertebrates, urochordates, echinoderms, insects, nematodes, fungi, slime mold amoeba, alga and plants. In contrast to ROS defense enzymes, such as superoxide dismutase and catalase that are present in prokaryotes, ROS-generating Nox/Duox orthologs only appeared later in evolution. Molecular taxonomy revealed seven distinct subfamilies of Noxes and Duoxes. The calcium-regulated orthologs representing 4 subfamilies diverged early and are the most widely distributed in biology. Subunit-regulated Noxes represent a second major subdivision, and appeared first in fungi and amoeba. Nox5 was lost in rodents, and Nox3, which functions in the inner ear in gravity perception, emerged the most recently, corresponding to full-time adaptation of vertebrates to land. The sea urchin Strongylocentrotus purpuratus possesses the earliest Nox2 co-ortholog of vertebrate Nox1, 2, and 3, while Nox4 first appeared somewhat later in urochordates. Comparison of evolutionary substitution rates demonstrates that Nox2, the regulatory subunits p47phox and p67phox, and Duox are more stringently conserved in vertebrates than other Noxes and Nox regulatory subunits. Amino acid sequence comparisons identified key catalytic or regulatory regions, as 68 residues were highly conserved among all Nox/Duox orthologs, and 14 of these were identical with those mutated in Nox2 in variants of X-linked chronic granulomatous disease. In addition to

  7. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes

    Science.gov (United States)

    Kawahara, Tsukasa; Quinn, Mark T; Lambeth, J David

    2007-01-01

    Background NADPH-oxidases (Nox) and the related Dual oxidases (Duox) play varied biological and pathological roles via regulated generation of reactive oxygen species (ROS). Members of the Nox/Duox family have been identified in a wide variety of organisms, including mammals, nematodes, fruit fly, green plants, fungi, and slime molds; however, little is known about the molecular evolutionary history of these enzymes. Results We assembled and analyzed the deduced amino acid sequences of 101 Nox/Duox orthologs from 25 species, including vertebrates, urochordates, echinoderms, insects, nematodes, fungi, slime mold amoeba, alga and plants. In contrast to ROS defense enzymes, such as superoxide dismutase and catalase that are present in prokaryotes, ROS-generating Nox/Duox orthologs only appeared later in evolution. Molecular taxonomy revealed seven distinct subfamilies of Noxes and Duoxes. The calcium-regulated orthologs representing 4 subfamilies diverged early and are the most widely distributed in biology. Subunit-regulated Noxes represent a second major subdivision, and appeared first in fungi and amoeba. Nox5 was lost in rodents, and Nox3, which functions in the inner ear in gravity perception, emerged the most recently, corresponding to full-time adaptation of vertebrates to land. The sea urchin Strongylocentrotus purpuratus possesses the earliest Nox2 co-ortholog of vertebrate Nox1, 2, and 3, while Nox4 first appeared somewhat later in urochordates. Comparison of evolutionary substitution rates demonstrates that Nox2, the regulatory subunits p47phox and p67phox, and Duox are more stringently conserved in vertebrates than other Noxes and Nox regulatory subunits. Amino acid sequence comparisons identified key catalytic or regulatory regions, as 68 residues were highly conserved among all Nox/Duox orthologs, and 14 of these were identical with those mutated in Nox2 in variants of X-linked chronic granulomatous disease. In addition to canonical motifs, the B

  8. PyEvolve: a toolkit for statistical modelling of molecular evolution.

    Science.gov (United States)

    Butterfield, Andrew; Vedagiri, Vivek; Lang, Edward; Lawrence, Cath; Wakefield, Matthew J; Isaev, Alexander; Huttley, Gavin A

    2004-01-05

    Examining the distribution of variation has proven an extremely profitable technique in the effort to identify sequences of biological significance. Most approaches in the field, however, evaluate only the conserved portions of sequences - ignoring the biological significance of sequence differences. A suite of sophisticated likelihood based statistical models from the field of molecular evolution provides the basis for extracting the information from the full distribution of sequence variation. The number of different problems to which phylogeny-based maximum likelihood calculations can be applied is extensive. Available software packages that can perform likelihood calculations suffer from a lack of flexibility and scalability, or employ error-prone approaches to model parameterisation. Here we describe the implementation of PyEvolve, a toolkit for the application of existing, and development of new, statistical methods for molecular evolution. We present the object architecture and design schema of PyEvolve, which includes an adaptable multi-level parallelisation schema. The approach for defining new methods is illustrated by implementing a novel dinucleotide model of substitution that includes a parameter for mutation of methylated CpG's, which required 8 lines of standard Python code to define. Benchmarking was performed using either a dinucleotide or codon substitution model applied to an alignment of BRCA1 sequences from 20 mammals, or a 10 species subset. Up to five-fold parallel performance gains over serial were recorded. Compared to leading alternative software, PyEvolve exhibited significantly better real world performance for parameter rich models with a large data set, reducing the time required for optimisation from approximately 10 days to approximately 6 hours. PyEvolve provides flexible functionality that can be used either for statistical modelling of molecular evolution, or the development of new methods in the field. The toolkit can be used

  9. PyEvolve: a toolkit for statistical modelling of molecular evolution

    Directory of Open Access Journals (Sweden)

    Wakefield Matthew J

    2004-01-01

    Full Text Available Abstract Background Examining the distribution of variation has proven an extremely profitable technique in the effort to identify sequences of biological significance. Most approaches in the field, however, evaluate only the conserved portions of sequences – ignoring the biological significance of sequence differences. A suite of sophisticated likelihood based statistical models from the field of molecular evolution provides the basis for extracting the information from the full distribution of sequence variation. The number of different problems to which phylogeny-based maximum likelihood calculations can be applied is extensive. Available software packages that can perform likelihood calculations suffer from a lack of flexibility and scalability, or employ error-prone approaches to model parameterisation. Results Here we describe the implementation of PyEvolve, a toolkit for the application of existing, and development of new, statistical methods for molecular evolution. We present the object architecture and design schema of PyEvolve, which includes an adaptable multi-level parallelisation schema. The approach for defining new methods is illustrated by implementing a novel dinucleotide model of substitution that includes a parameter for mutation of methylated CpG's, which required 8 lines of standard Python code to define. Benchmarking was performed using either a dinucleotide or codon substitution model applied to an alignment of BRCA1 sequences from 20 mammals, or a 10 species subset. Up to five-fold parallel performance gains over serial were recorded. Compared to leading alternative software, PyEvolve exhibited significantly better real world performance for parameter rich models with a large data set, reducing the time required for optimisation from ~10 days to ~6 hours. Conclusion PyEvolve provides flexible functionality that can be used either for statistical modelling of molecular evolution, or the development of new methods in the

  10. Oxygen evolution on a SrFeO3 anode - Mechanistic considerations from molecular orbital theory

    Science.gov (United States)

    Mehandru, S. P.; Anderson, Alfred B.

    1989-01-01

    Various pathways proposed in the literature for the evolution of O2 in electrochemical oxidations are explored using the atom superposition and electron delocalization molecular orbital (ASED-MO) theory and the cluster models of the SrFeO3 surface as a prototype material. Calculations indicate that oxygen atoms can be easily formed on the (100) surface as well as on the edge cation sites of a SrFeO3 anode by the discharge of OH(-), followed by its deprotonation and electron transfer to the electrode. The O atoms can form O2 on the edge and corner sites, where the Fe(4+) is coordinated to four and three bulk oxygen anions, respectively. The calculations strongly disfavor mechanisms involving coupling of oxygen atoms adsorbed on different cations as well as a mechanism featuring an ozone intermediate.

  11. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    Science.gov (United States)

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-10-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA./TFA-, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts.

  12. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili

    2014-08-19

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Compact structure and proteins of pasta retard in vitro digestive evolution of branched starch molecular structure.

    Science.gov (United States)

    Zou, Wei; Sissons, Mike; Warren, Frederick J; Gidley, Michael J; Gilbert, Robert G

    2016-11-05

    The roles that the compact structure and proteins in pasta play in retarding evolution of starch molecular structure during in vitro digestion are explored, using four types of cooked samples: whole pasta, pasta powder, semolina (with proteins) and extracted starch without proteins. These were subjected to in vitro digestion with porcine α-amylase, collecting samples at different times and characterizing the weight distribution of branched starch molecules using size-exclusion chromatography. Measurement of α-amylase activity showed that a protein (or proteins) from semolina or pasta powder interacted with α-amylase, causing reduced enzymatic activity and retarding digestion of branched starch molecules with hydrodynamic radius (Rh)100nm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Substantial Molecular Evolution In Prolonged Latent Mycobacterium Tuberculosis Infections In Humans

    DEFF Research Database (Denmark)

    Lillebaek, Troels; Norman, Anders; Rasmussen, Erik Michael

    2015-01-01

    Introduction: Despite its central role as a reservoir for active tuberculosis disease (TB), latent Mycobacterium tuberculosis (Mtb) infections and the underlying persistence mechanisms are poorly understood. The Mtb genome in latently infected individuals may hold the key to understanding...... the processes that lead to reactivation and progression to clinical disease. Methods: We studied genomic relationships among 14 isolates of Mtb from historical and recent Danish clinical strain collections, spanning more than three decades, to investigate 6 putative cases of Mtb reactivation, inferred from IS......, as well as evidence for distinct processes such as oxidative damage or natural selection having contributed to mutation accumulation. Conclusions: Our study shows that distinct processes can shape Mtb genomes during latent infection. Most importantly, we document substantial molecular evolution of Mtb...

  15. Molecular Evolution and Functional Divergence of Trace Amine-Associated Receptors.

    Directory of Open Access Journals (Sweden)

    Seong-Il Eyun

    Full Text Available Trace amine-associated receptors (TAARs are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4 have emerged earlier, generally have single-copy orthologs (very few duplication or loss, and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9 have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors.

  16. The mind of primitive anthropologists: hemoglobin and HLA, patterns of molecular evolution.

    Science.gov (United States)

    Williams, Robert C

    2003-08-01

    Frank Livingstone played a central role in defining the population genetics of the sickle cell mutation at position 6 of the human beta globin gene, the most famous amino acid substitution in evolutionary biology. Its discovery occurred at a time when traditional, 19th-century principles of natural selection were being joined with the newly discovered mechanics of DNA structure and protein synthesis to produce Neo-Darwinian theory. When combined with the epidemiology of malaria in Africa, differential mortality for both homozygotes, and the resulting advantage of the heterozygote, sickle cell became the classic balanced polymorphism. Human HLA-A has 237 molecular alleles. The histocompatibility system has as its primary function the presentation of peptides to T-cell receptors and plays an essential role in the immune system. Nearly all of the alleles are codominant and fully functional. Despite almost 30 years of disease-association studies with HLA-A, no convincing evidence has been found for differential fertility or mortality at this locus. Yet the dogma in the histocompatibility field is that this extensive human polymorphism is maintained by "balancing selection." Explaining HLA-A polymorphism is what one might call the sickle-cell-effect. This one mutation, coming as it did at the historical convergence of Darwinian theory and modern genetics, and carrying with it the strong relationship between mutation, disease, and allele frequency, has conditioned our discussion of human genetic variation and population genetics. Has the strength of this early idea made evolutionary biologists uncritical of systems like HLA-A and retarded the search for new mechanisms of molecular evolution? Is it now time to move away from a focus on mutation and polymorphism in evolutionary genetics and toward a systems theory that would explain the origin and evolution of hemoglobin and HLA-A and the biochemical pathways that surround them?

  17. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang.

    Science.gov (United States)

    Amaro, Adriana; Chiara, Silvana; Pfeffer, Ulrich

    2016-03-01

    Colorectal cancer is characterized by exquisite genomic instability either in the form of microsatellite instability or chromosomal instability. Microsatellite instability is the result of mutation of mismatch repair genes or their silencing through promoter methylation as a consequence of the CpG island methylator phenotype. The molecular causes of chromosomal instability are less well characterized. Genomic instability and field cancerization lead to a high degree of intratumoral heterogeneity and determine the formation of cancer stem cells and epithelial-mesenchymal transition mediated by the TGF-β and APC pathways. Recent analyses using integrated genomics reveal different phases of colorectal cancer evolution. An initial phase of genomic instability that yields many clones with different mutations (big bang) is followed by an important, previously not detected phase of cancer evolution that consists in the stabilization of several clones and a relatively flat outgrowth. The big bang model can best explain the coexistence of several stable clones and is compatible with the fact that the analysis of the bulk of the primary tumor yields prognostic information.

  18. Bioinspired Molecular Co-Catalysts Bonded to a Silicon Photocathode for Solar Hydrogen Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yidong

    2011-11-08

    The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution earth-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo{sub 3}S{sub 4}) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10% (ref. 16). The experimental observations are supported by density functional theory calculations of the Mo{sub 3}S{sub 4} clusters adsorbed on the hydrogen-terminated Si(100) surface, providing insights into the nature of the active site.

  19. Comparative transcriptomics of Entelegyne spiders (Araneae, Entelegynae, with emphasis on molecular evolution of orphan genes.

    Directory of Open Access Journals (Sweden)

    David E Carlson

    Full Text Available Next-generation sequencing technology is rapidly transforming the landscape of evolutionary biology, and has become a cost-effective and efficient means of collecting exome information for non-model organisms. Due to their taxonomic diversity, production of interesting venom and silk proteins, and the relative scarcity of existing genomic resources, spiders in particular are excellent targets for next-generation sequencing (NGS methods. In this study, the transcriptomes of six entelegyne spider species from three genera (Cicurina travisae, C. vibora, Habronattus signatus, H. ustulatus, Nesticus bishopi, and N. cooperi were sequenced and de novo assembled. Each assembly was assessed for quality and completeness and functionally annotated using gene ontology information. Approximately 100 transcripts with evidence of homology to venom proteins were discovered. After identifying more than 3,000 putatively orthologous genes across all six taxa, we used comparative analyses to identify 24 instances of positively selected genes. In addition, between ~ 550 and 1,100 unique orphan genes were found in each genus. These unique, uncharacterized genes exhibited elevated rates of amino acid substitution, potentially consistent with lineage-specific adaptive evolution. The data generated for this study represent a valuable resource for future phylogenetic and molecular evolutionary research, and our results provide new insight into the forces driving genome evolution in taxa that span the root of entelegyne spider phylogeny.

  20. Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants

    Energy Technology Data Exchange (ETDEWEB)

    Schenck, Craig A.; Holland, Cynthia K.; Schneider, Matthew R.; Men, Yusen; Lee, Soon Goo; Jez, Joseph M.; Maeda , Hiroshi A. (UW); (WU)

    2017-06-26

    L-Tyrosine (Tyr) is essential for protein synthesis and is a precursor of numerous specialized metabolites crucial for plant and human health. Tyr can be synthesized via two alternative routes by different key regulatory TyrA family enzymes, prephenate dehydrogenase (PDH, also known as TyrAp) or arogenate dehydrogenase (ADH, also known as TyrAa), representing a unique divergence of primary metabolic pathways. The molecular foundation underlying the evolution of these alternative Tyr pathways is currently unknown. Here we characterized recently diverged plant PDH and ADH enzymes, obtained the X-ray crystal structure of soybean PDH, and identified a single amino acid residue that defines TyrA substrate specificity and regulation. Structures of mutated PDHs co-crystallized with Tyr indicate that substitutions of Asn222 confer ADH activity and Tyr sensitivity. Reciprocal mutagenesis of the corresponding residue in divergent plant ADHs further introduced PDH activity and relaxed Tyr sensitivity, highlighting the critical role of this residue in TyrA substrate specificity that underlies the evolution of alternative Tyr biosynthetic pathways in plants.

  1. Molecular evolution of plant haemoglobin: two haemoglobin genes in Nymphaeaceae Euryale ferox.

    Science.gov (United States)

    Guldner, E; Desmarais, E; Galtier, N; Godelle, B

    2004-01-01

    We isolated and sequenced two haemoglobin genes from the early-branching angiosperm Euryale ferox (Nymphaeaceae). The two genes belong to the two known classes of plant haemoglobin. Their existence in Nymphaeaceae supports the theory that class 1 haemoglobin was ancestrally present in all angiosperms, and is evidence for class 2 haemoglobin being widely distributed. These sequences allowed us to unambiguously root the angiosperm haemoglobin phylogeny, and to corroborate the hypothesis that the class 1/class 2 duplication event occurred before the divergence between monocots and eudicots. We addressed the molecular evolution of plant haemoglobin by comparing the synonymous and nonsynonymous substitution rates in various groups of genes. Class 2 haemoglobin genes of legumes (functionally involved in a symbiosis with nitrogen-fixing bacteria) show a higher nonsynonymous substitution rate than class 1 (nonsymbiotic) haemoglobin genes. This suggests that a change in the selective forces applying to plant haemoglobins has occurred during the evolutionary history of this gene family, potentially in relation with the evolution of symbiosis.

  2. Molecular Evolution of the Yersinia Major Outer Membrane Protein C (OmpC).

    Science.gov (United States)

    Stenkova, Anna M; Bystritskaya, Evgeniya P; Guzev, Konstantin V; Rakin, Alexander V; Isaeva, Marina P

    2016-01-01

    The genus Yersinia includes species with a wide range of eukaryotic hosts (from fish, insects, and plants to mammals and humans). One of the major outer membrane proteins, the porin OmpC, is preferentially expressed in the host gut, where osmotic pressure, temperature, and the concentrations of nutrients and toxic products are relatively high. We consider here the molecular evolution and phylogeny of Yersinia ompC. The maximum likelihood gene tree reflects the macroevolution processes occurring within the genus Yersinia. Positive selection and horizontal gene transfer are the key factors of ompC diversification, and intraspecies recombination was revealed in two Yersinia species. The impact of recombination on ompC evolution was different from that of another major porin gene, ompF, possibly due to the emergence of additional functions and conservation of the basic transport function. The predicted antigenic determinants of OmpC were located in rapidly evolving regions, which may indicate the evolutionary mechanisms of Yersinia adaptation to the host immune system.

  3. Molecular evolution constraints in the floral organ specification gene regulatory network module across 18 angiosperm genomes.

    Science.gov (United States)

    Davila-Velderrain, Jose; Servin-Marquez, Andres; Alvarez-Buylla, Elena R

    2014-03-01

    The gene regulatory network of floral organ cell fate specification of Arabidopsis thaliana is a robust developmental regulatory module. Although such finding was proposed to explain the overall conservation of floral organ types and organization among angiosperms, it has not been confirmed that the network components are conserved at the molecular level among flowering plants. Using the genomic data that have accumulated, we address the conservation of the genes involved in this network and the forces that have shaped its evolution during the divergence of angiosperms. We recovered the network gene homologs for 18 species of flowering plants spanning nine families. We found that all the genes are highly conserved with no evidence of positive selection. We studied the sequence conservation features of the genes in the context of their known biological function and the strength of the purifying selection acting upon them in relation to their placement within the network. Our results suggest an association between protein length and sequence conservation, evolutionary rates, and functional category. On the other hand, we found no significant correlation between the strength of purifying selection and gene placement. Our results confirm that the studied robust developmental regulatory module has been subjected to strong functional constraints. However, unlike previous studies, our results do not support the notion that network topology plays a major role in constraining evolutionary rates. We speculate that the dynamical functional role of genes within the network and not just its connectivity could play an important role in constraining evolution.

  4. Population genetics and molecular evolution of DNA sequences in transposable elements. I. A simulation framework.

    Science.gov (United States)

    Kijima, T E; Innan, Hideki

    2013-11-01

    A population genetic simulation framework is developed to understand the behavior and molecular evolution of DNA sequences of transposable elements. Our model incorporates random transposition and excision of transposable element (TE) copies, two modes of selection against TEs, and degeneration of transpositional activity by point mutations. We first investigated the relationships between the behavior of the copy number of TEs and these parameters. Our results show that when selection is weak, the genome can maintain a relatively large number of TEs, but most of them are less active. In contrast, with strong selection, the genome can maintain only a limited number of TEs but the proportion of active copies is large. In such a case, there could be substantial fluctuations of the copy number over generations. We also explored how DNA sequences of TEs evolve through the simulations. In general, active copies form clusters around the original sequence, while less active copies have long branches specific to themselves, exhibiting a star-shaped phylogeny. It is demonstrated that the phylogeny of TE sequences could be informative to understand the dynamics of TE evolution.

  5. Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants.

    Science.gov (United States)

    Schenck, Craig A; Holland, Cynthia K; Schneider, Matthew R; Men, Yusen; Lee, Soon Goo; Jez, Joseph M; Maeda, Hiroshi A

    2017-09-01

    L-Tyrosine (Tyr) is essential for protein synthesis and is a precursor of numerous specialized metabolites crucial for plant and human health. Tyr can be synthesized via two alternative routes by different key regulatory TyrA family enzymes, prephenate dehydrogenase (PDH, also known as TyrAp) or arogenate dehydrogenase (ADH, also known as TyrAa), representing a unique divergence of primary metabolic pathways. The molecular foundation underlying the evolution of these alternative Tyr pathways is currently unknown. Here we characterized recently diverged plant PDH and ADH enzymes, obtained the X-ray crystal structure of soybean PDH, and identified a single amino acid residue that defines TyrA substrate specificity and regulation. Structures of mutated PDHs co-crystallized with Tyr indicate that substitutions of Asn222 confer ADH activity and Tyr sensitivity. Reciprocal mutagenesis of the corresponding residue in divergent plant ADHs further introduced PDH activity and relaxed Tyr sensitivity, highlighting the critical role of this residue in TyrA substrate specificity that underlies the evolution of alternative Tyr biosynthetic pathways in plants.

  6. Molecular Diversity and Gene Evolution of the Venom Arsenal of Terebridae Predatory Marine Snails.

    Science.gov (United States)

    Gorson, Juliette; Ramrattan, Girish; Verdes, Aida; Wright, Elizabeth M; Kantor, Yuri; Rajaram Srinivasan, Ramakrishnan; Musunuri, Raj; Packer, Daniel; Albano, Gabriel; Qiu, Wei-Gang; Holford, Mandë

    2015-05-28

    Venom peptides from predatory organisms are a resource for investigating evolutionary processes such as adaptive radiation or diversification, and exemplify promising targets for biomedical drug development. Terebridae are an understudied lineage of conoidean snails, which also includes cone snails and turrids. Characterization of cone snail venom peptides, conotoxins, has revealed a cocktail of bioactive compounds used to investigate physiological cellular function, predator-prey interactions, and to develop novel therapeutics. However, venom diversity of other conoidean snails remains poorly understood. The present research applies a venomics approach to characterize novel terebrid venom peptides, teretoxins, from the venom gland transcriptomes of Triplostephanus anilis and Terebra subulata. Next-generation sequencing and de novo assembly identified 139 putative teretoxins that were analyzed for the presence of canonical peptide features as identified in conotoxins. To meet the challenges of de novo assembly, multiple approaches for cross validation of findings were performed to achieve reliable assemblies of venom duct transcriptomes and to obtain a robust portrait of Terebridae venom. Phylogenetic methodology was used to identify 14 teretoxin gene superfamilies for the first time, 13 of which are unique to the Terebridae. Additionally, basic local algorithm search tool homology-based searches to venom-related genes and posttranslational modification enzymes identified a convergence of certain venom proteins, such as actinoporin, commonly found in venoms. This research provides novel insights into venom evolution and recruitment in Conoidean predatory marine snails and identifies a plethora of terebrid venom peptides that can be used to investigate fundamental questions pertaining to gene evolution. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Molecular evolution of a chordate specific family of G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Leese Florian

    2011-08-01

    Full Text Available Abstract Background Chordate evolution is a history of innovations that is marked by physical and behavioral specializations, which led to the development of a variety of forms from a single ancestral group. Among other important characteristics, vertebrates obtained a well developed brain, anterior sensory structures, a closed circulatory system and gills or lungs as blood oxygenation systems. The duplication of pre-existing genes had profound evolutionary implications for the developmental complexity in vertebrates, since mutations modifying the function of a duplicated protein can lead to novel functions, improving the evolutionary success. Results We analyzed here the evolution of the GPRC5 family of G protein-coupled receptors by comprehensive similarity searches and found that the receptors are only present in chordates and that the size of the receptor family expanded, likely due to genome duplication events in the early history of vertebrate evolution. We propose that a single GPRC5 receptor coding gene originated in a stem chordate ancestor and gave rise by duplication events to a gene family comprising three receptor types (GPRC5A-C in vertebrates, and a fourth homologue present only in mammals (GPRC5D. Additional duplications of GPRC5B and GPRC5C sequences occurred in teleost fishes. The finding that the expression patterns of the receptors are evolutionarily conserved indicates an important biological function of these receptors. Moreover, we found that expression of GPRC5B is regulated by vitamin A in vivo, confirming previous findings that linked receptor expression to retinoic acid levels in tumor cell lines and strengthening the link between the receptor expression and the development of a complex nervous system in chordates, known to be dependent on retinoic acid signaling. Conclusions GPRC5 receptors, a class of G protein-coupled receptors with unique sequence characteristics, may represent a molecular novelty that helped non

  8. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster.

    Science.gov (United States)

    Robertson, Hugh M; Warr, Coral G; Carlson, John R

    2003-11-25

    The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods.

  9. Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution.

    Science.gov (United States)

    Steiper, Michael E; Seiffert, Erik R

    2012-04-17

    A long-standing problem in primate evolution is the discord between paleontological and molecular clock estimates for the time of crown primate origins: the earliest crown primate fossils are ~56 million y (Ma) old, whereas molecular estimates for the haplorhine-strepsirrhine split are often deep in the Late Cretaceous. One explanation for this phenomenon is that crown primates existed in the Cretaceous but that their fossil remains have not yet been found. Here we provide strong evidence that this discordance is better-explained by a convergent molecular rate slowdown in early primate evolution. We show that molecular rates in primates are strongly and inversely related to three life-history correlates: body size (BS), absolute endocranial volume (EV), and relative endocranial volume (REV). Critically, these traits can be reconstructed from fossils, allowing molecular rates to be predicted for extinct primates. To this end, we modeled the evolutionary history of BS, EV, and REV using data from both extinct and extant primates. We show that the primate last common ancestor had a very small BS, EV, and REV. There has been a subsequent convergent increase in BS, EV, and REV, indicating that there has also been a convergent molecular rate slowdown over primate evolution. We generated a unique timescale for primates by predicting molecular rates from the reconstructed phenotypic values for a large phylogeny of living and extinct primates. This analysis suggests that crown primates originated close to the K-Pg boundary and possibly in the Paleocene, largely reconciling the molecular and fossil timescales of primate evolution.

  10. Tracing Star Formation and Molecular Cloud Evolution with Pre-main Sequence Stars in the SMC

    Science.gov (United States)

    Johnson, L. Clifton; SMIDGE Team

    2018-01-01

    The Southwest Bar region in the Small Magellanic Cloud (SMC) contains star-forming molecular clouds sampling a wide range of evolutionary states: from quiescent pre-star-forming regions to evolved HII region hosts. We use deep, panchromatic, high spatial resolution Hubble Space Telescope imaging obtained as part of the SMIDGE survey (PI: K. Sandstrom) to identify young, pre-main sequence stars that trace recent and ongoing star formation within these clouds. We characterize a color-selected sample (and Hα line-emitting subsample) of pre-main sequence stars via SED fitting and analyze their association with the local ISM, inferred from observations of CO and dust emission. These low-mass stars serve as robust star formation tracers not tied to massive stars (e.g., Hα-based star formation rate estimates) in SMC star-forming regions, where low dust-to-gas ratios allow optical detections even in gas-rich embedded regions. We demonstrate pre-main sequence stars' ability to trace molecular cloud evolution within the Southwest Bar and across the SMC, and discuss future synergies between optical Hubble Space Telescope observations and near/mid-IR James Webb Space Telescope observations.

  11. Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments.

    Science.gov (United States)

    Pizzarello, Sandra; Davidowski, Stephen K; Holland, Gregory P; Williams, Lynda B

    2013-09-24

    The composition of the Sutter's Mill meteorite insoluble organic material was studied both in toto by solid-state NMR spectroscopy of the powders and by gas chromatography-mass spectrometry analyses of compounds released upon their hydrothermal treatment. Results were compared with those obtained for other meteorites of diverse classifications (Murray, GRA 95229, Murchison, Orgueil, and Tagish Lake) and found to be so far unique in regard to the molecular species released. These include, in addition to O-containing aromatic compounds, complex polyether- and ester-containing alkyl molecules of prebiotic appeal and never detected in meteorites before. The Sutter's Mill fragments we analyzed had likely been altered by heat, and the hydrothermal conditions of the experiments realistically mimic early Earth settings, such as near volcanic activity or impact craters. On this basis, the data suggest a far larger availability of meteoritic organic materials for planetary environments than previously assumed and that molecular evolution on the early Earth could have benefited from accretion of carbonaceous meteorites both directly with soluble compounds and, for a more protracted time, through alteration, processing, and release from their insoluble organic materials.

  12. Rates and patterns of molecular evolution in freshwater versus terrestrial insects.

    Science.gov (United States)

    Mitterboeck, T Fatima; Fu, Jinzhong; Adamowicz, Sarah J

    2016-11-01

    Insect lineages have crossed between terrestrial and aquatic habitats many times, for both immature and adult life stages. We explore patterns in molecular evolutionary rates between 42 sister pairs of related terrestrial and freshwater insect clades using publicly available protein-coding DNA sequence data from the orders Coleoptera, Diptera, Lepidoptera, Hemiptera, Mecoptera, Trichoptera, and Neuroptera. We furthermore test for habitat-associated convergent molecular evolution in the cytochrome c oxidase subunit I (COI) gene in general and at a particular amino acid site previously reported to exhibit habitat-linked convergence within an aquatic beetle group. While ratios of nonsynonymous-to-synonymous substitutions across available loci were higher in terrestrial than freshwater-associated taxa in 26 of 42 lineage pairs, a stronger trend was observed (20 of 31, pbinomial = 0.15, pWilcoxon = 0.017) when examining only terrestrial-aquatic pairs including fully aquatic taxa. We did not observe any widespread changes at particular amino acid sites in COI associated with habitat shifts, although there may be general differences in selection regime linked to habitat.

  13. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws.

    Science.gov (United States)

    Smajs, David; Norris, Steven J; Weinstock, George M

    2012-03-01

    Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum, include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws, bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among these bacteria and also a high degree of similarity to the rabbit pathogen, Treponema paraluiscuniculi, a treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum treponemes revealed genes with potential involvement in human infectivity, whereas comparisons between pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular epidemiology with potential to detect more virulent strains, whereas genetic variability within a single strain is related to its ability to elude the immune system of the host. Genome analyses also shed light on treponemal evolution and on chromosomal targets for molecular diagnostics of treponemal infections. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown

    Science.gov (United States)

    McGowen, Michael R.; Grossman, Lawrence I.; Wildman, Derek E.

    2012-01-01

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10 000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains. PMID:22740643

  15. Molecular evolution of the Li/li chemical defence polymorphism in white clover (Trifolium repens L.).

    Science.gov (United States)

    Olsen, K M; Sutherland, B L; Small, L L

    2007-10-01

    White clover (Trifolium repens) is naturally polymorphic for cyanogenesis (hydrogen cyanide release following tissue damage). The ecological factors favouring cyanogenic and acyanogenic plants have been examined in numerous studies over the last half century, making this one of the best-documented examples of an adaptive polymorphism in plants. White clover cyanogenesis is controlled by two, independently segregating Mendelian genes: Ac/ac controls the presence/absence of cyanogenic glucosides; and Li/li controls the presence/absence of their hydrolysing enzyme, linamarase. In this study, we examine the molecular evolution and population genetics of Li as it relates to the cyanogenesis polymorphism. We report here that Li exists as a single-copy gene in plants possessing linamarase activity, and that the absence of enzyme activity in li/li plants is correlated with the absence of much or all of the gene from the white clover genome. Consistent with this finding, we confirm by reverse transcription-polymerase chain reaction that Li gene expression is absent in plants lacking enzyme activity. In a molecular population genetic analysis of Li and three unlinked genes using a worldwide sample of clover plants, we find an absence of nucleotide variation and statistically significant deviations from neutrality at Li; these findings are consistent with recent positive directional selection at this cyanogenesis locus.

  16. Starch digestion mechanistic information from the time evolution of molecular size distributions.

    Science.gov (United States)

    Witt, Torsten; Gidley, Michael J; Gilbert, Robert G

    2010-07-28

    Size-exclusion chromatography [SEC, also termed gel permeation chromatography (GPC)] is used to measure the time evolution of the distributions of molecular size and of branch length as starch is subjected to in vitro digestion, including studying the development of enzyme-resistant starch. The method is applied to maize starches with varying amylose contents; the starches were extruded so as to provide an analogue for processed food. The initial rates of digestion of amylose and amylopectin components were found to be the same for high-amylose starches. A small starch species, not present in the original starting material, was formed during the digestion process; this new species has a slower digestion rate and is probably formed by retrogradation of longer branches of amylose and amylopectin as they are partially or wholly liberated from their parent starch molecule during the digestion process. The data suggest that the well-known connection between high amylose content and resistant starch arises from the greater number of longer branches, which can form the small retrograded species. The method is useful for the purpose of comparisons between different starches undergoing the process of digestion, by observing the changes in their molecular structures, as an adjunct to detailed studies of the enzyme-resistant fraction.

  17. The molecular evolution of the pif family proteins in various species of mollusks.

    Science.gov (United States)

    Suzuki, Michio; Iwashima, Ai; Kimura, Mariko; Kogure, Toshihiro; Nagasawa, Hiromichi

    2013-04-01

    Various novel proteins have been identified from many kinds of mollusk shells. Although such matrix proteins are believed to play important roles in the calcium carbonate crystal formation of shells, no common proteins that interact with calcium carbonate or that are involved in the molecular mechanisms behind shell formation have been identified. Pif consists of two proteins, Pif 80 and Pif 97, which are encoded by a single mRNA. Pif 80 was identified as a key acidic protein that regulates the formation of the nacreous layer in Pinctada fucata, while Pif 97 has von Willebrand factor type A (VWA) and chitin-binding domains. In this study, we identified Pif homologues from Pinctada margaritifera, Pinctada maxima, Pteria penguin, Mytilus galloprovincialis, and in the genome database of Lottia gigantea in order to compare their primary protein sequences. The VWA and chitin-binding domains are conserved in all Pif 97 homologues, whereas the amino acid sequences of the Pif 80 regions differ markedly among the species. Sequence alignment revealed the presence of a novel significantly conserved sequence between the chitin-binding domain and the C-terminus of Pif 97. Further examination of the Pif 80 regions suggested that they share a sequence that is similar to the laminin G domain. These results indicate that all Pif molecules in bivalves and gastropods may be derived from a common ancestral gene. These comparisons may shed light on the correlation between molecular evolution and morphology in mollusk shell microstructure.

  18. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown.

    Science.gov (United States)

    McGowen, Michael R; Grossman, Lawrence I; Wildman, Derek E

    2012-09-22

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10,000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains.

  19. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    Science.gov (United States)

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; Strydom, Gerhard; Windes, William E.

    2017-09-01

    For the next generation of nuclear reactors, HTGRs specifically, an unlikely air ingress warrants inclusion in the license applications of many international regulators. Much research on oxidation rates of various graphite grades under a number of conditions has been undertaken to address such an event. However, consequences to the reactor result from the microstructural changes to the graphite rather than directly from oxidation. The microstructure is inherent to a graphite's properties and ultimately degradation to the graphite's performance must be determined to establish the safety of reactor design. To understand the oxidation induced microstructural change and its corresponding impact on performance, a thorough understanding of the reaction system is needed. This article provides a thorough review of the graphite-molecular oxygen reaction in terms of kinetics, mass and energy transport, and structural evolution: all three play a significant role in the observed rate of graphite oxidation. These provide the foundations of a microstructurally informed model for the graphite-molecular oxygen reaction system, a model kinetically independent of graphite grade, and capable of describing both the observed and local oxidation rates under a wide range of conditions applicable to air-ingress.

  20. Evolution of Density Perturbations in a Cylindrical Molecular Cloud Using Smoothed Particle Hydrodynamics

    Directory of Open Access Journals (Sweden)

    Nejad-Asghar, M.

    2009-12-01

    Full Text Available Molecular clouds have a hierarchical structure from few tens of parsecs for giants to few tenth of a parsec for proto-stellar cores. Nowadays, our observational techniques are so advanced that it has become possible to detect the small-scale substructures inside the molecular cores. The question that arises is how these small condensations are formed. In the present research, we study the effect of ambipolar diffusion heating on the ubiquitous perturbations in a molecular cloud and investigate the possibility of converting them to dense substructures. For this purpose, a small azimuthal perturbation is implemented on the density of an axisymmetric two-dimensional cylindrical cloud, and its evolution is simulated bythe technique of two-fluid smoothed particle hydrodynamics. Theself-gravity is not included and the initial state has uniformdensity, temperature and magnetic field, parallel to theaxis of cylinder. In addition, all perturbed quantities are assumed todepend onlyon azimuth angle and time. Computer experiments show that if theambipolar diffusion heating is ignored, the perturbation willbe dispersed over the time. Including the heating due to ambipolardiffusion heats the matter in regions adjacent to the perturbation, thus,leading to the transfer of matter into the perturbed area. In this case, the density of perturbations can be increased. Also, the results ofsimulations show that an increase of the initial magnetic pressureleads to the intensification of difference between density ofperturbations and their surroundings (i.e. increasing of density contrast. This effect is due to the direct relationship of the drift velocity to the intensity of the magnetic field and its gradient. Simulations with different initial uniform densities show that the growth of relative density contrast is more clear with a special density. This result can be explained by the intensification of thermal instability in this special density.

  1. Evolution of density perturbations in a cylindrical molecular cloud using smoothed particle hydrodynamics

    Directory of Open Access Journals (Sweden)

    Nejad-Asghar M.

    2009-01-01

    Full Text Available Molecular clouds have a hierarchical structure from few tens of parsecs for giants to few tenth of a parsec for proto-stellar cores. Nowadays, our observational techniques are so advanced that it has become possible to detect the small-scale substructures inside the molecular cores. The question that arises is how these small condensations are formed. In the present research, we study the effect of ambipolar diffusion heating on the ubiquitous perturbations in a molecular cloud and investigate the possibility of converting them to dense substructures. For this purpose, a small azimuthal perturbation is implemented on the density of an axisymmetric two-dimensional cylindrical cloud, and its evolution is simulated by the technique of two-fluid smoothed particle hydrodynamics. The self-gravity is not included and the initial state has uniform density, temperature and magnetic field, parallel to the axis of cylinder. In addition, all perturbed quantities are assumed to depend only on azimuth angle and time. Computer experiments show that if the ambipolar diffusion heating is ignored, the perturbation will be dispersed over the time. Including the heating due to ambipolar diffusion heats the matter in regions adjacent to the perturbation, thus, leading to the transfer of matter into the perturbed area. In this case, the density of perturbations can be increased. Also, the results of simulations show that an increase of the initial magnetic pressure leads to the intensification of difference between density of perturbations and their surroundings (i.e. increasing of density contrast. This effect is due to the direct relationship of the drift velocity to the intensity of the magnetic field and its gradient. Simulations with different initial uniform densities show that the growth of relative density contrast is more clear with a special density. This result can be explained by the intensification of thermal instability in this special density.

  2. The role of macromolecular crowding in the evolution of lens crystallins with high molecular refractive index

    Science.gov (United States)

    Zhao, Huaying; Magone, M. Teresa; Schuck, Peter

    2011-08-01

    Crystallins are present in the lens at extremely high concentrations in order to provide transparency and generate a high refractive power of the lens. The crystallin families prevalent in the highest density lens tissues are γ-crystallins in vertebrates and S-crystallins in cephalopods. As shown elsewhere, in parallel evolution, both have evolved molecular refractive index increments 5-10% above those of most proteins. Although this is a small increase, it is statistically very significant and can be achieved only by very unusual amino acid compositions. In contrast, such a molecular adaptation to aid in the refractive function of the lens did not occur in crystallins that are preferentially located in lower density lens tissues, such as vertebrate α-crystallin and taxon-specific crystallins. In the current work, we apply a model of non-interacting hard spheres to examine the thermodynamic contributions of volume exclusion at lenticular protein concentrations. We show that the small concentration decrease afforded by the higher molecular refractive index increment of crystallins can amplify nonlinearly to produce order of magnitude differences in chemical activities, and lead to reduced osmotic pressure and the reduced propensity for protein aggregation. Quantitatively, this amplification sets in only at protein concentrations as high as those found in hard lenses or the nucleus of soft lenses, in good correspondence to the observed crystallin properties in different tissues and different species. This suggests that volume exclusion effects provide the evolutionary driving force for the unusual refractive properties and the unusual amino acid compositions of γ-crystallins and S-crystallins.

  3. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-03-01

    Full Text Available The formation and aging of organic aerosols (OA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the saturation mass concentration of organic compounds containing oxygen, nitrogen, and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less-oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle-phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  4. Deceptive desmas: molecular phylogenetics suggests a new classification and uncovers convergent evolution of lithistid demosponges.

    Directory of Open Access Journals (Sweden)

    Astrid Schuster

    Full Text Available Reconciling the fossil record with molecular phylogenies to enhance the understanding of animal evolution is a challenging task, especially for taxa with a mostly poor fossil record, such as sponges (Porifera. 'Lithistida', a polyphyletic group of recent and fossil sponges, are an exception as they provide the richest fossil record among demosponges. Lithistids, currently encompassing 13 families, 41 genera and >300 recent species, are defined by the common possession of peculiar siliceous spicules (desmas that characteristically form rigid articulated skeletons. Their phylogenetic relationships are to a large extent unresolved and there has been no (taxonomically comprehensive analysis to formally reallocate lithistid taxa to their closest relatives. This study, based on the most comprehensive molecular and morphological investigation of 'lithistid' demosponges to date, corroborates some previous weakly-supported hypotheses, and provides novel insights into the evolutionary relationships of the previous 'order Lithistida'. Based on molecular data (partial mtDNA CO1 and 28S rDNA sequences, we show that 8 out of 13 'Lithistida' families belong to the order Astrophorida, whereas Scleritodermidae and Siphonidiidae form a separate monophyletic clade within Tetractinellida. Most lithistid astrophorids are dispersed between different clades of the Astrophorida and we propose to formally reallocate them, respectively. Corallistidae, Theonellidae and Phymatellidae are monophyletic, whereas the families Pleromidae and Scleritodermidae are polyphyletic. Family Desmanthidae is polyphyletic and groups within Halichondriidae--we formally propose a reallocation. The sister group relationship of the family Vetulinidae to Spongillida is confirmed and we propose here for the first time to include Vetulina into a new Order Sphaerocladina. Megascleres and microscleres possibly evolved and/or were lost several times independently in different 'lithistid' taxa, and

  5. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation

    Directory of Open Access Journals (Sweden)

    Li Honglin

    2009-03-01

    Full Text Available Abstract Background Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. Results The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105–112. Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 Å to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 ± 0.18 seconds per molecule renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. Conclusion On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms

  6. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

    LENUS (Irish Health Repository)

    Sen, Lin

    2011-06-03

    mutations put forward the conclusion that this evolutionary scenario has been possible through a complex interplay between adaptive mutations, often structurally destabilizing, and compensatory mutations. Our results unearth patterns of evolution that have likely optimized the Rubisco activity and uncover mutational dynamics useful in the molecular engineering of enzymatic activities. Reviewers This article was reviewed by Prof. Christian Blouin (nominated by Dr W Ford Doolittle), Dr Endre Barta (nominated by Dr Sandor Pongor), and Dr Nicolas Galtier.

  7. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns.

    Science.gov (United States)

    Sen, Lin; Fares, Mario A; Liang, Bo; Gao, Lei; Wang, Bo; Wang, Ting; Su, Ying-Juan

    2011-06-03

    this evolutionary scenario has been possible through a complex interplay between adaptive mutations, often structurally destabilizing, and compensatory mutations. Our results unearth patterns of evolution that have likely optimized the Rubisco activity and uncover mutational dynamics useful in the molecular engineering of enzymatic activities. This article was reviewed by Prof. Christian Blouin (nominated by Dr W Ford Doolittle), Dr Endre Barta (nominated by Dr Sandor Pongor), and Dr Nicolas Galtier.

  8. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

    Directory of Open Access Journals (Sweden)

    Gao Lei

    2011-06-01

    implications of such mutations put forward the conclusion that this evolutionary scenario has been possible through a complex interplay between adaptive mutations, often structurally destabilizing, and compensatory mutations. Our results unearth patterns of evolution that have likely optimized the Rubisco activity and uncover mutational dynamics useful in the molecular engineering of enzymatic activities. Reviewers This article was reviewed by Prof. Christian Blouin (nominated by Dr W Ford Doolittle, Dr Endre Barta (nominated by Dr Sandor Pongor, and Dr Nicolas Galtier.

  9. The evolution of the protoplanetary disk with mass influx from a molecular cloud core and the photoevaporation winds

    Science.gov (United States)

    Liu, Chunjian; Yao, Zhen; Li, Hongna; Wang, Haosen

    2018-01-01

    We investigate the formation, evolution, and dispersal processes of protoplanetary disks with mass influx from the gravitational collapse of a molecular cloud core and the photoevaporation winds. Due to the initial angular momentum of the molecular cloud core, the gravitational collapse of the molecular cloud core forms a protostar+protoplanetary disk system. We calculate the evolution of the protoplanetary disk from the gravitational collapse of the molecular cloud core to the dispersal stage. In our calculation, we include the mass influx from a molecular cloud core, the irradiation from the central star, the viscosity due to the magnetohydrodynamic (MHD) turbulence driven by the magnetorotational instability (MRI) and the gravitational instability, and the effect of photoevaporation. We find that the protoplanetary disk has some interesting properties, which are different from the previous studies. Firstly, with particular values of parameters of the molecular cloud core, the gravitational instability does not occur during the whole evolution of the resultant protoplanetary disk. With some other parameters of the molecular cloud core, the gravitational instability occurs all the time of the lifetime of the resultant protoplanetary disk. Secondly, the radial distribution of the α parameter exhibits a nearly ladder-like shape, which is different from the three regions' shape in previous studies. Thirdly, the value of the surface density is increased significantly (about a factor of 8.0) compared with that in the Minimum Mass Solar Nebula (MMSN) model. We suggest that this increased surface density can provide enough material for the formation of giant planets within the lifetime of the protoplanetary disk, and may provide a routine for reducing the timescale of the formation of giant planets. We also discuss the influence of the photoevaporation winds on the evolution of the protoplanetary disk.

  10. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses.

    Science.gov (United States)

    Lanfear, Robert; Frandsen, Paul B; Wright, April M; Senfeld, Tereza; Calcott, Brett

    2017-03-01

    PartitionFinder 2 is a program for automatically selecting best-fit partitioning schemes and models of evolution for phylogenetic analyses. PartitionFinder 2 is substantially faster and more efficient than version 1, and incorporates many new methods and features. These include the ability to analyze morphological datasets, new methods to analyze genome-scale datasets, new output formats to facilitate interoperability with downstream software, and many new models of molecular evolution. PartitionFinder 2 is freely available under an open source license and works on Windows, OSX, and Linux operating systems. It can be downloaded from www.robertlanfear.com/partitionfinder. The source code is available at https://github.com/brettc/partitionfinder. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. An insight into the molecular basis for convergent evolution in fish antifreeze Proteins.

    Science.gov (United States)

    Nath, Abhigyan; Chaube, Radha; Subbiah, Karthikeyan

    2013-08-01

    Antifreeze proteins (AFPs) prevent the growth of ice-crystals in order to enable certain organisms to survive under sub-zero temperature surroundings. These AFPs have evolved from different types of proteins without having any significant structural and sequence similarities among them. However, all the AFPs perform the same function of anti-freeze activity and are a classical example of convergent evolution. We have analyzed fish AFPs at the sequence level, the residue level and the physicochemical property group composition to discover molecular basis for this convergent evolution. Our study on amino acid distribution does not reveal any distinctive feature among AFPs, but comparative study of the AFPs with their close non-AFP homologs based on the physicochemical property group residues revealed some useful information. In particular (a) there is a similar pattern of avoidance and preference of amino acids in Fish AFP subtypes II, III and IV-Aromatic residues are avoided whereas small residues are preferred, (b) like other psychrophilic proteins, AFPs have a similar pattern of preference/avoidance for most of the residues except for Ile, Leu and Arg, and (c) most of the computed amino acids in preferred list are the key functional residues as obtained in previous predicted model of Doxey et al. For the first time this study revealed common patterns of avoidance/preference in fish AFP subtypes II, III and IV. These avoidance/preference lists can further facilitate the identification of key functional residues and can shed more light into the mechanism of antifreeze function. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Genetic diversity and molecular evolution of the major human metapneumovirus surface glycoproteins over a decade.

    Science.gov (United States)

    Papenburg, Jesse; Carbonneau, Julie; Isabel, Sandra; Bergeron, Michel G; Williams, John V; De Serres, Gaston; Hamelin, Marie-Ève; Boivin, Guy

    2013-11-01

    Human metapneumovirus (HMPV) is a recently discovered paramyxovirus that is a major cause of respiratory infections worldwide. We aim to describe the molecular evolution of the HMPV F (fusion) and G (attachment) surface glycoproteins because they are targets for vaccines, monoclonal antibodies and antivirals currently in development. Nasopharyngeal aspirates were collected in children <3 years old with acute respiratory infection in Quebec City during 2001-2010. HMPV-positive samples (n = 163) underwent HMPV-F and -G gene sequencing. Furthermore, HMPV-F (n = 124) and -G (n = 217) sequences were obtained from GenBank and other studies. Evolutionary analyses (phylogenetic reconstruction, sequence identity, detection of recombination and adaptive evolution) were computed. Sequences clustered into 5 genetic lineages (A1, A2a, A2b, B1 and B2). Multiple lineages circulated each year in Quebec City. With the exception of B1, each of the 5 subgroups was the predominant lineage during ≥1 season. The A1 lineage was not detected since 2002-2003 in our local cohort. There was no evidence of inter- or intragenic recombination. HMPV-F was highly conserved, whereas HMPV-G exhibited greater diversity. HMPV-F demonstrated strong evidence of purifying selection, both overall and in an abundance of negatively selected amino acid sites. In contrast, sites under diversifying selection were detected in all HMPV-G lineages (range, 4-15), all of which were located in the ectodomain. Predominant circulating HMPV lineages vary by year. HMPV-F is highly constrained and undergoes significant purifying selection. Given its high genetic variability, we found a modest number of positively selected sites in HMPV-G. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Molecular evolution of the fusion protein (F) gene in human respiratory syncytial virus subgroup B.

    Science.gov (United States)

    Kimura, Hirokazu; Nagasawa, Koo; Kimura, Ryusuke; Tsukagoshi, Hiroyuki; Matsushima, Yuki; Fujita, Kiyotaka; Hirano, Eiko; Ishiwada, Naruhiko; Misaki, Takako; Oishi, Kazunori; Kuroda, Makoto; Ryo, Akihide

    2017-08-01

    In this study, we examined the molecular evolution of the fusion protein (F) gene in human respiratory syncytial virus subgroup B (HRSV-B). First, we performed time-scale evolution analyses using the Bayesian Markov chain Monte Carlo (MCMC) method. Next, we performed genetic distance, linear B-cell epitope prediction, N-glycosylation, positive/negative selection site, and Bayesian skyline plot analyses. We also constructed a structural model of the F protein and mapped the amino acid substitutions and the predicted B-cell epitopes. The MCMC-constructed phylogenetic tree indicated that the HRSV F gene diverged from the bovine respiratory syncytial virus gene approximately 580years ago and had a relatively low evolutionary rate (7.14×10(-4)substitutions/site/year). Furthermore, a common ancestor of HRSV-A and -B diverged approximately 290years ago, while HRSV-B diverged into three clusters for approximately 60years. The genetic similarity of the present strains was very high. Although a maximum of 11 amino acid substitutions were observed in the structural model of the F protein, only one strain possessed an amino acid substitution located within the palivizumab epitope. Four epitopes were predicted, although these did not correspond to the neutralization sites of the F protein including the palivizumab epitope. In addition, five N-glycosylation sites of the present HRSV-B strains were inferred. No positive selection sites were identified; however, many sites were found to be under negative selection. The effective population size of the gene has remained almost constant. On the basis of these results, it can be concluded that the HRSV-B F gene is highly conserved, as is the F protein of HRSV-A. Moreover, our prediction of B-cell epitopes does not show that the palivizumab reaction site may be recognized as an epitope during naturally occurring infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Molecular systematics of eastern North American Phalangodidae (Arachnida: Opiliones: Laniatores), demonstrating convergent morphological evolution in caves.

    Science.gov (United States)

    Hedin, Marshal; Thomas, Steven M

    2010-01-01

    The phalangodid harvestmen (Opiliones: Laniatores) fauna of the southeastern United States has remained obscure since original descriptions of many genera and species over 60 years ago. The obscurity of this interesting group is pervasive, with uncertainty regarding basic systematic information such as generic limits, species limits, and geographic distributions. This situation is unfortunate, as the fauna includes several cave-obligate forms of interest from both conservation and evolutionary perspectives, and the group likely exhibits interesting biogeographic patterns because of their low dispersal ability. Here, we use DNA sequence data from two genes to reconstruct phylogenetic relationships of southeastern phalangodid taxa, for a sample of all described genera from the region. Our results demonstrate that the southeastern fauna is likely monophyletic, and is most-closely related to western North American phalangodids with a similar penis morphology. Within the southeastern clade, trends in the evolution of penis morphology correspond broadly to molecular phylogenetic patterns, although penis evolution is overall relatively conservative in the group. Biogeographically, it appears that western taxa in the southeast (i.e., from west of the Appalachian Valley) are early diverging, with later diversification in the montane southern Blue Ridge, and subsequent diversification back towards the west. This W>E>W pattern has been observed in other groups from the southeast. The multiple cave-modified species in the region are genetically divergent and appear phylogenetically isolated; explicit topological hypothesis testing suggests that troglomorphism has evolved convergently in at least three independent lineages. The total number of species in the region remains uncertain-mitochondrial COI data reveal many highly divergent, geographically coherent groups that might represent undescribed species, but these divergent mitochondrial lineages do not always exhibit

  15. Molecular phylogenetic evaluation of classification and scenarios of character evolution in calcareous sponges (Porifera, Class Calcarea.

    Directory of Open Access Journals (Sweden)

    Oliver Voigt

    Full Text Available Calcareous sponges (Phylum Porifera, Class Calcarea are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU rDNA and the almost complete large subunit (LSU rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute. Our phylogeny also provided support for the vaguely suspected close relationship of several members of Grantiidae with giantortical diactines to members of Heteropiidae. Similarly, our analyses revealed several unexpected affinities, such as a sister group relationship between Leucettusa (Leucaltidae and Leucettidae and between Leucascandra (Jenkinidae and Sycon carteri (Sycettidae. According to our results, the taxonomy of Calcarea is in

  16. Regional and accelerated molecular evolution in group I snake venom gland phospholipase A2 isozymes.

    Science.gov (United States)

    Chuman, Y; Nobuhisa, I; Ogawa, T; Deshimaru, M; Chijiwa, T; Tan, N H; Fukumaki, Y; Shimohigashi, Y; Ducancel, F; Boulain, J C; Ménez, A; Ohno, M

    2000-03-01

    In accordance with detection of a few phospholipase A2 (PLA2) isozyme genes by Southern blot analysis, only two cDNAs, named NnkPLA-I , and NnkPLA-II, encoding group I PLA2s, NnkPLA-I and NnkPLA-II, respectively, were isolated from the venom gland cDNA library of Elapinae Naja naja kaouthia of Malaysia. NnkPLA-I and NnkPLA-II showed four amino acid substitutions, all of which were brought about by single nucleotide substitution. No existence of clones encoding CM-II and CM-III, PLA2 isozymes which had been isolated from the venom of N. naja kaouthia of Thailand, in Malaysian N. naja kaouthia venom gland cDNA library was verified by dot blot hybridization analysis with particular probes. NnkPLA-I and NnkPLA-II differed from CM-II and CM-III with four and two amino acid substitutions, respectively, suggesting that their molecular evolution is regional. The comparison of NnkPLA-I, NnkPLA-II and cDNAs encoding other group I snake venom gland PLA2s indicated that the 5'- and 3'-untranslated regions are more conserved than the mature protein-coding region and that the number of nucleotide substitutions per nonsynonymous site is almost equal to that per synonymous site in the protein-coding region, suggesting that accelerated evolution has occurred in group I venom gland PLA2s possibly to acquire new physiological functions.

  17. Molecular phylogenetic evaluation of classification and scenarios of character evolution in calcareous sponges (Porifera, Class Calcarea).

    Science.gov (United States)

    Voigt, Oliver; Wülfing, Eilika; Wörheide, Gert

    2012-01-01

    Calcareous sponges (Phylum Porifera, Class Calcarea) are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU) rDNA and the almost complete large subunit (LSU) rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute. Our phylogeny also provided support for the vaguely suspected close relationship of several members of Grantiidae with giantortical diactines to members of Heteropiidae. Similarly, our analyses revealed several unexpected affinities, such as a sister group relationship between Leucettusa (Leucaltidae) and Leucettidae and between Leucascandra (Jenkinidae) and Sycon carteri (Sycettidae). According to our results, the taxonomy of Calcarea is in desperate need of a

  18. Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae.

    Science.gov (United States)

    Duchene, David; Bromham, Lindell

    2013-03-13

    Many factors have been identified as correlates of the rate of molecular evolution, such as body size and generation length. Analysis of many molecular phylogenies has also revealed correlations between substitution rates and clade size, suggesting a link between rates of molecular evolution and the process of diversification. However, it is not known whether this relationship applies to all lineages and all sequences. Here, in order to investigate how widespread this phenomenon is, we investigate patterns of substitution in chloroplast genomes of the diverse angiosperm family Proteaceae. We used DNA sequences from six chloroplast genes (6278bp alignment with 62 taxa) to test for a correlation between diversification and the rate of substitutions. Using phylogenetically-independent sister pairs, we show that species-rich lineages of Proteaceae tend to have significantly higher chloroplast substitution rates, for both synonymous and non-synonymous substitutions. We show that the rate of molecular evolution in chloroplast genomes is correlated with net diversification rates in this large plant family. We discuss the possible causes of this relationship, including molecular evolution driving diversification, speciation increasing the rate of substitutions, or a third factor causing an indirect link between molecular and diversification rates. The link between the synonymous substitution rate and clade size is consistent with a role for the mutation rate of chloroplasts driving the speed of reproductive isolation. We find no significant differences in the ratio of non-synonymous to synonymous substitutions between lineages differing in net diversification rate, therefore we detect no signal of population size changes or alteration in selection pressures that might be causing this relationship.

  19. The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex

    Directory of Open Access Journals (Sweden)

    Simard Frederic

    2008-03-01

    Full Text Available Abstract Background If the insect innate immune system is to be used as a potential blocking step in transmission of malaria, then it will require targeting one or a few genes with highest relevance and ease of manipulation. The problem is to identify and manipulate those of most importance to malaria infection without the risk of decreasing the mosquito's ability to stave off infections by microbes in general. Molecular evolution methodologies and concepts can help identify such genes. Within the setting of a comparative molecular population genetic and phylogenetic framework, involving six species of the Anopheles gambiae complex, we investigated whether a set of four pre-selected immunity genes (gambicin, NOS, Rel2 and FBN9 might have evolved under selection pressure imposed by the malaria parasite. Results We document varying levels of polymorphism within and divergence between the species, in all four genes. Introgression and the sharing of ancestral polymorphisms, two processes that have been documented in the past, were verified in this study in all four studied genes. These processes appear to affect each gene in different ways and to different degrees. However, there is no evidence of positive selection acting on these genes. Conclusion Considering the results presented here in concert with previous studies, genes that interact directly with the Plasmodium parasite, and play little or no role in defense against other microbes, are probably the most likely candidates for a specific adaptive response against P. falciparum. Furthermore, since it is hard to establish direct evidence linking the adaptation of any candidate gene to P. falciparum infection, a comparative framework allowing at least an indirect link should be provided. Such a framework could be achieved, if a similar approach like the one involved here, was applied to all other anopheline complexes that transmit P. falciparum malaria.

  20. Molecular evolution of a-kinase anchoring protein (AKAP-7: implications in comparative PKA compartmentalization

    Directory of Open Access Journals (Sweden)

    Johnson Keven R

    2012-07-01

    Full Text Available Abstract Background A-Kinase Anchoring Proteins (AKAPs are molecular scaffolding proteins mediating the assembly of multi-protein complexes containing cAMP-dependent protein kinase A (PKA, directing the kinase in discrete subcellular locations. Splice variants from the AKAP7 gene (AKAP15/18 are vital components of neuronal and cardiac phosphatase complexes, ion channels, cardiac Ca2+ handling and renal water transport. Results Shown in evolutionary analyses, the formation of the AKAP7-RI/RII binding domain (required for AKAP/PKA-R interaction corresponds to vertebrate-specific gene duplication events in the PKA-RI/RII subunits. Species analyses of AKAP7 splice variants shows the ancestral AKAP7 splice variant is AKAP7α, while the ancestral long form AKAP7 splice variant is AKAP7γ. Multi-species AKAP7 gene alignments, show the recent formation of AKAP7δ occurs with the loss of native AKAP7γ in rats and basal primates. AKAP7 gene alignments and two dimensional Western analyses indicate that AKAP7γ is produced from an internal translation-start site that is present in the AKAP7δ cDNA of mice and humans but absent in rats. Immunofluorescence analysis of AKAP7 protein localization in both rat and mouse heart suggests AKAP7γ replaces AKAP7δ at the cardiac sarcoplasmic reticulum in species other than rat. DNA sequencing identified Human AKAP7δ insertion-deletions (indels that promote the production of AKAP7γ instead of AKAP7δ. Conclusions This AKAP7 molecular evolution study shows that these vital scaffolding proteins developed in ancestral vertebrates and that independent mutations in the AKAP7 genes of rodents and early primates has resulted in the recent formation of AKAP7δ, a splice variant of likely lesser importance in humans than currently described.

  1. Comparative molecular phylogeny and evolution of sex chromosome DNA sequences in the family Canidae (Mammalia: Carnivora).

    Science.gov (United States)

    Tsubouchi, Ayako; Fukui, Daisuke; Ueda, Miya; Tada, Kazumi; Toyoshima, Shouji; Takami, Kazutoshi; Tsujimoto, Tsunenori; Uraguchi, Kohji; Raichev, Evgeniy; Kaneko, Yayoi; Tsunoda, Hiroshi; Masuda, Ryuichi

    2012-03-01

    To investigate the molecular phylogeny and evolution of the family Canidae, nucleotide sequences of the zinc-finger-protein gene on the Y chromosome (ZFY, 924-1146 bp) and its homologous gene on the X chromosome (ZFX, 834-839 bp) for twelve canid species were determined. The phylogenetic relationships among species reconstructed by the paternal ZFY sequences closely agreed with those by mtDNA and autosomal DNA trees in previous reports, and strongly supported the phylogenetic affinity between the wolf-like canids clade and the South American canids clade. However, the branching order of some species differed between phylogenies of ZFY and ZFX genes: Cuon alpinus and Canis mesomelas were included in the wolf-like canid clades in the ZFY tree, whereas both species were clustered in a group of Chrysocyon brachyurus and Speothos venaticus in the ZFX tree. The topology difference between ZFY and ZFX trees may have resulted from the two-times higher substitution rate of the former than the latter, which was clarified in the present study. In addition, two types of transposable element sequence (SINE-I and SINE-II) were found to occur in the ZFY final intron of the twelve canid species examined. Because the SINE-I sequences were shared by all the species, they may have been inserted into the ZFY of the common ancestor before species radiation in Canidae. By contract, SINE-II found in only Canis aureus could have been inserted into ZFY independently after the speciation. The molecular diversity of SINE sequences of Canidae reflects evolutionary history of the species radiation.

  2. Molecular evidence for the evolution of ichnoviruses from ascoviruses by symbiogenesis

    Directory of Open Access Journals (Sweden)

    Augé-Gouillou Corinne

    2008-09-01

    Full Text Available Abstract Background Female endoparasitic ichneumonid wasps inject virus-like particles into their caterpillar hosts to suppress immunity. These particles are classified as ichnovirus virions and resemble ascovirus virions, which are also transmitted by parasitic wasps and attack caterpillars. Ascoviruses replicate DNA and produce virions. Polydnavirus DNA consists of wasp DNA replicated by the wasp from its genome, which also directs particle synthesis. Structural similarities between ascovirus and ichnovirus particles and the biology of their transmission suggest that ichnoviruses evolved from ascoviruses, although molecular evidence for this hypothesis is lacking. Results Here we show that a family of unique pox-D5 NTPase proteins in the Glypta fumiferanae ichnovirus are related to three Diadromus pulchellus ascovirus proteins encoded by ORFs 90, 91 and 93. A new alignment technique also shows that two proteins from a related ichnovirus are orthologs of other ascovirus virion proteins. Conclusion Our results provide molecular evidence supporting the origin of ichnoviruses from ascoviruses by lateral transfer of ascoviral genes into ichneumonid wasp genomes, perhaps the first example of symbiogenesis between large DNA viruses and eukaryotic organisms. We also discuss the limits of this evidence through complementary studies, which revealed that passive lateral transfer of viral genes among polydnaviral, bacterial, and wasp genomes may have occurred repeatedly through an intimate coupling of both recombination and replication of viral genomes during evolution. The impact of passive lateral transfers on evolutionary relationships between polydnaviruses and viruses with large double-stranded genomes is considered in the context of the theory of symbiogenesis.

  3. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life

    Directory of Open Access Journals (Sweden)

    Reusch Thorsten BH

    2011-01-01

    Full Text Available Abstract Background Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L. Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  4. Molecular evolution of a pervasive natural amino-acid substitution in Drosophila cryptochrome.

    Directory of Open Access Journals (Sweden)

    Mirko Pegoraro

    Full Text Available Genetic variations in circadian clock genes may serve as molecular adaptations, allowing populations to adapt to local environments. Here, we carried out a survey of genetic variation in Drosophila cryptochrome (cry, the fly's dedicated circadian photoreceptor. An initial screen of 10 European cry alleles revealed substantial variation, including seven non-synonymous changes. The SNP frequency spectra and the excessive linkage disequilibrium in this locus suggested that this variation is maintained by natural selection. We focused on a non-conservative SNP involving a leucine-histidine replacement (L232H and found that this polymorphism is common, with both alleles at intermediate frequencies across 27 populations surveyed in Europe, irrespective of latitude. Remarkably, we were able to reproduce this natural observation in the laboratory using replicate population cages where the minor allele frequency was initially set to 10%. Within 20 generations, the two allelic variants converged to approximately equal frequencies. Further experiments using congenic strains, showed that this SNP has a phenotypic impact, with variants showing significantly different eclosion profiles. At the long term, these phase differences in eclosion may contribute to genetic differentiation among individuals, and shape the evolution of wild populations.

  5. Molecular evolution of a pervasive natural amino-acid substitution in Drosophila cryptochrome.

    Science.gov (United States)

    Pegoraro, Mirko; Noreen, Shumaila; Bhutani, Supriya; Tsolou, Avgi; Schmid, Ralf; Kyriacou, Charalambos P; Tauber, Eran

    2014-01-01

    Genetic variations in circadian clock genes may serve as molecular adaptations, allowing populations to adapt to local environments. Here, we carried out a survey of genetic variation in Drosophila cryptochrome (cry), the fly's dedicated circadian photoreceptor. An initial screen of 10 European cry alleles revealed substantial variation, including seven non-synonymous changes. The SNP frequency spectra and the excessive linkage disequilibrium in this locus suggested that this variation is maintained by natural selection. We focused on a non-conservative SNP involving a leucine-histidine replacement (L232H) and found that this polymorphism is common, with both alleles at intermediate frequencies across 27 populations surveyed in Europe, irrespective of latitude. Remarkably, we were able to reproduce this natural observation in the laboratory using replicate population cages where the minor allele frequency was initially set to 10%. Within 20 generations, the two allelic variants converged to approximately equal frequencies. Further experiments using congenic strains, showed that this SNP has a phenotypic impact, with variants showing significantly different eclosion profiles. At the long term, these phase differences in eclosion may contribute to genetic differentiation among individuals, and shape the evolution of wild populations.

  6. Molecular phylogeny, systematics and morphological evolution of the acorn barnacles (Thoracica: Sessilia: Balanomorpha).

    Science.gov (United States)

    Pérez-Losada, Marcos; Høeg, Jens T; Simon-Blecher, Noa; Achituv, Yair; Jones, Diana; Crandall, Keith A

    2014-12-01

    The Balanomorpha are the largest group of barnacles and rank among the most diverse, commonly encountered and ecologically important marine crustaceans in the world. Paradoxically, despite their relevance and extensive study for over 150years, their evolutionary relationships are still unresolved. Classical morphological systematics was often based on non-cladistic approaches, while modern phylogenetic studies suffer from severe undersampling of taxa and characters (both molecular and morphological). Here we present a phylogenetic analysis of the familial relationships within the Balanomorpha. We estimate divergence times and examine morphological diversity based on five genes, 156 specimens, 10 fossil calibrations, and six key morphological characters. Two balanomorphan superfamilies, eight families and twelve genera were identified as polyphyletic. Chthamaloids, chionelasmatoid and pachylasmatoids split first from the pedunculated ancestors followed by a clade of tetraclitoids and coronuloids, and most of the balanoids. The Balanomorpha split from the Verrucidae (outgroup) in the Lower Cretaceous (139.6 Mya) with all the main lineages, except Pachylasmatoidea, having emerged by the Paleocene (60.9 Mya). Various degrees of convergence were observed in all the assessed morphological characters except the maxillipeds, which suggests that classical interpretations of balanomorphan morphological evolution need to be revised and reinterpreted. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Reproductive mode evolution in nematodes: insights from molecular phylogenies and recently discovered species.

    Science.gov (United States)

    Denver, D R; Clark, K A; Raboin, M J

    2011-11-01

    The Phylum Nematoda has long been known to contain a great diversity of species that vary in reproductive mode, though our understanding of the evolutionary origins, causes and consequences of nematode reproductive mode change have only recently started to mature. Here we bring together and analyze recent progress on reproductive mode evolution throughout the phylum, resulting from the application of molecular phylogenetic approaches and newly discovered nematode species. Reproductive mode variation is reviewed in multiple free-living, animal-parasitic and plant-parasitic nematode groups. Discussion ranges from the model nematode Caenorhabditis elegans and its close relatives, to the plant-parasitic nematodes of the Meloidogyne genus where there is extreme variation in reproductive mode between and even within species, to the vertebrate-parasitic genus Strongyloides and related genera where reproductive mode varies across generations (heterogony). Multiple evolutionary transitions from dioecous (obligately outcrossing) to hermaphroditism and parthenogenesis in the phylum are discussed, along with one case of an evolutionary transition from hermaphroditism to doioecy in the Oscheius genus. We consider the roles of underlying genetic mechanisms in promoting reproductive plasticity in this phylum, as well as the potential evolutionary forces promoting transitions in reproductive mode. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics

    Directory of Open Access Journals (Sweden)

    Galtier Nicolas

    2006-04-01

    Full Text Available Abstract Background A large number of bioinformatics applications in the fields of bio-sequence analysis, molecular evolution and population genetics typically share input/ouput methods, data storage requirements and data analysis algorithms. Such common features may be conveniently bundled into re-usable libraries, which enable the rapid development of new methods and robust applications. Results We present Bio++, a set of Object Oriented libraries written in C++. Available components include classes for data storage and handling (nucleotide/amino-acid/codon sequences, trees, distance matrices, population genetics datasets, various input/output formats, basic sequence manipulation (concatenation, transcription, translation, etc., phylogenetic analysis (maximum parsimony, markov models, distance methods, likelihood computation and maximization, population genetics/genomics (diversity statistics, neutrality tests, various multi-locus analyses and various algorithms for numerical calculus. Conclusion Implementation of methods aims at being both efficient and user-friendly. A special concern was given to the library design to enable easy extension and new methods development. We defined a general hierarchy of classes that allow the developer to implement its own algorithms while remaining compatible with the rest of the libraries. Bio++ source code is distributed free of charge under the CeCILL general public licence from its website http://kimura.univ-montp2.fr/BioPP.

  9. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life.

    Science.gov (United States)

    Wissler, Lothar; Codoñer, Francisco M; Gu, Jenny; Reusch, Thorsten B H; Olsen, Jeanine L; Procaccini, Gabriele; Bornberg-Bauer, Erich

    2011-01-12

    Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  10. Molecular Evolution and Expansion Analysis of the NAC Transcription Factor in Zea mays

    Science.gov (United States)

    Fan, Kai; Wang, Ming; Miao, Ying; Ni, Mi; Bibi, Noreen; Yuan, Shuna; Li, Feng; Wang, Xuede

    2014-01-01

    NAC (NAM, ATAF1, 2 and CUC2) family is a plant-specific transcription factor and it controls various plant developmental processes. In the current study, 124 NAC members were identified in Zea mays and were phylogenetically clustered into 13 distinct subfamilies. The whole genome duplication (WGD), especially an additional WGD event, may lead to expanding ZmNAC members. Different subfamily has different expansion rate, and NAC subfamily preference was found during the expansion in maize. Moreover, the duplication events might occur after the divergence of the lineages of Z. mays and S. italica, and segmental duplication seemed to be the dominant pattern for the gene duplication in maize. Furthermore, the expansion of ZmNAC members may be also related to gain and loss of introns. Besides, the restriction of functional divergence was discovered after most of the gene duplication events. These results could provide novel insights into molecular evolution and expansion analysis of NAC family in maize, and advance the NAC researches in other plants, especially polyploid plants. PMID:25369196

  11. Molecular evolution of candidate genes for crop-related traits in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Mandel, Jennifer R; McAssey, Edward V; Nambeesan, Savithri; Garcia-Navarro, Elena; Burke, John M

    2014-01-01

    Evolutionary analyses aimed at detecting the molecular signature of selection during crop domestication and/or improvement can be used to identify genes or genomic regions of likely agronomic importance. Here, we describe the DNA sequence-based characterization of a pool of candidate genes for crop-related traits in sunflower. These genes, which were identified based on homology to genes of known effect in other study systems, were initially sequenced from a panel of improved lines. All genes that exhibited a paucity of sequence diversity, consistent with the possible effects of selection during the evolution of cultivated sunflower, were then sequenced from a panel of wild sunflower accessions an outgroup. These data enabled formal tests for the effects of selection in shaping sequence diversity at these loci. When selection was detected, we further sequenced these genes from a panel of primitive landraces, thereby allowing us to investigate the likely timing of selection (i.e., domestication vs. improvement). We ultimately identified seven genes that exhibited the signature of positive selection during either domestication or improvement. Genetic mapping of a subset of these genes revealed co-localization between candidates for genes involved in the determination of flowering time, seed germination, plant growth/development, and branching and QTL that were previously identified for these traits in cultivated × wild sunflower mapping populations.

  12. Molecular and morphological evolution of the amphipod radiation of Lake Baikal.

    Science.gov (United States)

    MacDonald, Kenneth S; Yampolsky, Lev; Duffy, J Emmett

    2005-05-01

    Lake Baikal, in Siberia, Russia, contains the highest biodiversity of any extant lake, including an impressive radiation of gammaroidean amphipods that are often cited as a classic case of adaptive radiation. However, relationships among Baikal's amphipods remain poorly understood. The phylogenetic history of 32 Lake Baikal amphipod species, representing most major lineages of the endemic fauna, was examined using three genes (COI, 16S rRNA, and 18S rRNA), and 152 morphological characters. Results support monophyly of the largest and most diverse of the Baikalian families, the Acanthogammaridae. Analyses suggest that a second Baikalian family, the fossorial Micruropodidae, is paraphyletic and composed of two divergent clades, one of which includes Macrohectopus branickii, a morphologically specialized pelagic planktivore traditionally assigned its own family. The extreme morphological and ecological divergence of Macrohectopus from its close genetic relatives, and conversely, the large genetic distances among other morphologically similar micruropodids, suggest that morphological and molecular evolution have often been uncoupled during the radiation of Baikal's amphipods. This study suggests that the amphipod fauna of Lake Baikal is polyphyletic; originating from two independent invasions of the lake.

  13. Evolution

    Science.gov (United States)

    Peter, Ulmschneider

    When we are looking for intelligent life outside the Earth, there is a fundamental question: Assuming that life has formed on an extraterrestrial planet, will it also develop toward intelligence? As this is hotly debated, we will now describe the development of life on Earth in more detail in order to show that there are good reasons why evolution should culminate in intelligent beings.

  14. Analysis of the complement and molecular evolution of tRNA genes in cow

    Directory of Open Access Journals (Sweden)

    Barris Wesley C

    2009-04-01

    set of cow tRNA genes that will facilitate further studies in understanding the molecular evolution of cow tRNA genes.

  15. Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae

    Directory of Open Access Journals (Sweden)

    Cao Jiashu

    2011-09-01

    Full Text Available Abstract Background The genus Pyrus belongs to the tribe Pyreae (the former subfamily Maloideae of the family Rosaceae, and includes one of the most important commercial fruit crops, pear. The phylogeny of Pyrus has not been definitively reconstructed. In our previous efforts, the internal transcribed spacer region (ITS revealed a poorly resolved phylogeny due to non-concerted evolution of nrDNA arrays. Therefore, introns of low copy nuclear genes (LCNG are explored here for improved resolution. However, paralogs and lineage sorting are still two challenges for applying LCNGs in phylogenetic studies, and at least two independent nuclear loci should be compared. In this work the second intron of LEAFY and the alcohol dehydrogenase gene (Adh were selected to investigate their molecular evolution and phylogenetic utility. Results DNA sequence analyses revealed a complex ortholog and paralog structure of Adh genes in Pyrus and Malus, the pears and apples. Comparisons between sequences from RT-PCR and genomic PCR indicate that some Adh homologs are putatively nonfunctional. A partial region of Adh1 was sequenced for 18 Pyrus species and three subparalogs representing Adh1-1 were identified. These led to poorly resolved phylogenies due to low sequence divergence and the inclusion of putative recombinants. For the second intron of LEAFY, multiple inparalogs were discovered for both LFY1int2 and LFY2int2. LFY1int2 is inadequate for phylogenetic analysis due to lineage sorting of two inparalogs. LFY2int2-N, however, showed a relatively high sequence divergence and led to the best-resolved phylogeny. This study documents the coexistence of outparalogs and inparalogs, and lineage sorting of these paralogs and orthologous copies. It reveals putative recombinants that can lead to incorrect phylogenetic inferences, and presents an improved phylogenetic resolution of Pyrus using LFY2int2-N. Conclusions Our study represents the first phylogenetic analyses based

  16. Dynamical Collapse of Nonrotating Magnetic Molecular Cloud Cores: Evolution through Point-Mass Formation

    Science.gov (United States)

    Ciolek, Glenn E.; Königl, Arieh

    1998-09-01

    We present a numerical simulation of the dynamical collapse of a nonrotating, magnetic molecular cloud core and follow the core's evolution through the formation of a central point mass and its subsequent growth into a 1 M⊙ protostar. The epoch of point-mass formation (PMF) is investigated by a self-consistent extension of previously presented models of core formation and contraction in axisymmetric, self-gravitating, isothermal, magnetically supported interstellar molecular clouds. Prior to PMF, the core is dynamically contracting and is not well approximated by a quasi-static equilibrium model. Ambipolar diffusion, which plays a key role in the early evolution of the core, is unimportant during the dynamical pre-PMF collapse phase. However, the appearance of a central mass, through its effect on the gravitational field in the inner core regions, leads to a ``revitalization'' of ambipolar diffusion in the weakly ionized gas surrounding the central protostar. This process is so efficient that it leads to a decoupling of the field from the matter and results in an outward-propagating hydromagnetic C-type shock. The existence of an ambipolar diffusion-mediated shock of this type was predicted by Li & McKee, and we find that the basic shock structure given by their analytic model is well reproduced by our more accurate numerical results. Our calculation also demonstrates that ambipolar diffusion, rather than Ohmic diffusivity operating in the innermost core region, is the main field-decoupling mechanism responsible for driving the shock after PMF. The passage of the shock leads to a substantial redistribution, by ambipolar diffusion but possibly also by magnetic interchange, of the mass contained within the magnetic flux tubes in the inner core. In particular, ambipolar diffusion reduces the flux initially threading a collapsing ~1 M⊙ core by a factor >~103 by the time this mass accumulates within the inner radius (~=7.3 AU) of our computational grid. This

  17. Molecular Mixed-Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts.

    Science.gov (United States)

    Suseno, Sandy; McCrory, Charles C L; Tran, Rosalie; Gul, Sheraz; Yano, Junko; Agapie, Theodor

    2015-09-14

    Well-defined mixed-metal [CoMn3 O4 ] and [NiMn3 O4 ] cubane complexes were synthesized and used as precursors for heterogeneous oxygen evolution reaction (OER) electrocatalysts. The discrete clusters were dropcasted onto glassy carbon (GC) and indium tin oxide (ITO) electrodes, and the OER activities of the resulting films were evaluated. The catalytic surfaces were analyzed by various techniques to gain insight into the structure-function relationships of the electrocatalysts' heterometallic composition. Depending on preparation conditions, the Co-Mn oxide was found to change metal composition during catalysis, while the Ni-Mn oxides maintained the NiMn3 ratio. XAS studies provided structural insights indicating that the electrocatalysts are different from the molecular precursors, but that the original NiMn3 O4 cubane-like geometry was maintained in the absence of thermal treatment (2-Ni). In contrast, the thermally generated 3-Ni develops an oxide-like extended structure. Both 2-Ni and 3-Ni undergo structural changes upon electrolysis, but they do not convert into the same material. The observed structural motifs in these heterogeneous electrocatalysts are reminiscent of the biological oxygen-evolving complex in Photosystem II, including the MMn3 O4 cubane moiety. The reported studies demonstrate the use of discrete heterometallic oxide clusters as precursors for heterogeneous water oxidation catalysts of novel composition and the distinct behavior of two sets of mixed metal oxides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Molecular evolution of multiple forms of kisspeptins and GPR54 receptors in vertebrates.

    Science.gov (United States)

    Lee, Yeo Reum; Tsunekawa, Kenta; Moon, Mi Jin; Um, Haet Nim; Hwang, Jong-Ik; Osugi, Tomohiro; Otaki, Naohito; Sunakawa, Yuya; Kim, Kyungjin; Vaudry, Hubert; Kwon, Hyuk Bang; Seong, Jae Young; Tsutsui, Kazuyoshi

    2009-06-01

    Kisspeptin and its receptor GPR54 play important roles in mammalian reproduction and cancer metastasis. Because the KiSS and GPR54 genes have been identified in a limited number of vertebrate species, mainly in mammals, the evolutionary history of these genes is poorly understood. In the present study, we have cloned multiple forms of kisspeptin and GPR54 cDNAs from a variety of vertebrate species. We found that fish have two forms of kisspeptin genes, KiSS-1 and KiSS-2, whereas Xenopus possesses three forms of kisspeptin genes, KiSS-1a, KiSS-1b, and KiSS-2. The nonmammalian KiSS-1 gene was found to be the ortholog of the mammalian KiSS-1 gene, whereas the KiSS-2 gene is a novel form, encoding a C-terminally amidated dodecapeptide in the Xenopus brain. This study is the first to identify a mature form of KiSS-2 product in the brain of any vertebrate. Likewise, fish possess two receptors, GPR54-1 and GPR54-2, whereas Xenopus carry three receptors, GPR54-1a, GPR54-1b, and GPR54-2. Sequence identity and genome synteny analyses indicate that Xenopus GPR54-1a is a human GPR54 ortholog, whereas Xenopus GPR54-1b is a fish GPR54-1 ortholog. Both kisspeptins and GPR54s were abundantly expressed in the Xenopus brain, notably in the hypothalamus, suggesting that these ligand-receptor pairs have neuroendocrine and neuromodulatory roles. Synthetic KiSS-1 and KiSS-2 peptides activated GPR54s expressed in CV-1 cells with different potencies, indicating differential ligand selectivity. These data shed new light on the molecular evolution of the kisspeptin-GPR54 system in vertebrates.

  19. SILCC-Zoom: the dynamic and chemical evolution of molecular clouds

    Science.gov (United States)

    Seifried, D.; Walch, S.; Girichidis, P.; Naab, T.; Wünsch, R.; Klessen, R. S.; Glover, S. C. O.; Peters, T.; Clark, P.

    2017-12-01

    We present 3D `zoom-in' simulations of the formation of two molecular clouds out of the galactic interstellar medium. We model the clouds - identified from the SILCC simulations - with a resolution of up to 0.06 pc using adaptive mesh refinement in combination with a chemical network to follow heating, cooling and the formation of H2 and CO including (self-) shielding. The two clouds are assembled within a few million years with mass growth rates of up to ˜10-2 M⊙ yr-1 and final masses of ˜50 000 M⊙. A spatial resolution of ≲0.1 pc is required for convergence with respect to the mass, velocity dispersion and chemical abundances of the clouds, although these properties also depend on the cloud definition such as based on density thresholds, H2 or CO mass fraction. To avoid grid artefacts, the progressive increase of resolution has to occur within the free-fall time of the densest structures (1-1.5 Myr) and ≳200 time-steps should be spent on each refinement level before the resolution is progressively increased further. This avoids the formation of spurious, large-scale, rotating clumps from unresolved turbulent flows. While CO is a good tracer for the evolution of dense gas with number densities n ≥ 300 cm-3, H2 is also found for n ≲ 30 cm-3 due to turbulent mixing and becomes dominant at column densities around 30-50 M⊙ pc-2. The CO-to-H2 ratio steadily increases within the first 2 Myr, whereas XCO ≃ 1-4 × 1020 cm-2 (K km s-1)-1 is approximately constant since the CO(1-0) line quickly becomes optically thick.

  20. Molecular phylogenetics of the siphonophora (Cnidaria), with implications for the evolution of functional specialization.

    Science.gov (United States)

    Dunn, Casey W; Pugh, Philip R; Haddock, Steven H D

    2005-12-01

    Siphonophores are a group of pelagic colonial hydrozoans (Cnidaria) that have long been of general interest because of the division of labor between the polyps and medusae that make up these "superorganisms." These polyps and medusae are each homologous to free living animals but are generated by an incomplete asexual budding process that leaves them physiologically integrated. They are functionally specialized for different tasks and are precisely organized within each colony. The number of functional types of polyps and medusae varies across taxa, and different authors have used this character to construct phylogenies polarized in opposite directions, depending on whether they thought siphonophore evolution proceeded by a reduction or an increase in functional specialization. We have collected taxa across all major groups of siphonophores, many of which are found exclusively in the deep sea, using remotely operated underwater vehicles (ROVs) and by SCUBA diving from ships in the open ocean. We have used 52 siphonophores and four outgroup taxa to estimate the siphonophore phylogeny with molecular data from the nuclear small subunit ribosomal RNA gene (18S) and the mitochondrial large subunit ribosomal RNA gene (16S). Parsimony reconstructions indicate that functionally specialized polyps and medusae have been gained and lost across the phylogeny. Maximum likelihood and Bayesian analyses of morphological data suggest that the transition rate for decreased functional specialization is greater than the transition rate for increased functional specialization for three out of the four investigated categories of polyps and medusae. The present analysis also bears on several long-standing questions about siphonophore systematics. It indicates that the cystonects are sister to all other siphonophores, a group that we call the Codonophora. We also find that the Calycophorae are nested within the Physonectae, and that the Brachystelia, a historically recognized grouping of

  1. Is ultra-violet radiation the main force shaping molecular evolution of varicella-zoster virus?

    Directory of Open Access Journals (Sweden)

    Escobar-Gutiérrez Alejandro

    2011-07-01

    Full Text Available Abstract Background Varicella (chickenpox exhibits a characteristic epidemiological pattern which is associated with climate. In general, primary infections in tropical regions are comparatively less frequent among children than in temperate regions. This peculiarity regarding varicella-zoster virus (VZV infection among certain age groups in tropical regions results in increased susceptibility during adulthood in these regions. Moreover, this disease shows a cyclic behavior in which the number of cases increases significantly during winter and spring. This observation further supports the participation of environmental factors in global epidemiology of chickenpox. However, the underlying mechanisms responsible for this distinctive disease behavior are not understood completely. In a recent publication, Philip S. Rice has put forward an interesting hypothesis suggesting that ultra-violet (UV radiation is the major environmental factor driving the molecular evolution of VZV. Discussion While we welcomed the attempt to explain the mechanisms controlling VZV transmission and distribution, we argue that Rice's hypothesis takes lightly the circulation of the so called "temperate VZV genotypes" in tropical regions and, to certain degree, overlooks the predominance of such lineages in certain non-temperate areas. Here, we further discuss and present new information about the overwhelming dominance of temperate VZV genotypes in Mexico regardless of geographical location and climate. Summary UV radiation does not satisfactorily explain the distribution of VZV genotypes in different tropical and temperate regions of Mexico. Additionally, the cyclic behavior of varicella does not shown significant differences between regions with different climates in the country. More studies should be conducted to identify the factors directly involved in viral spreading. A better understanding of the modes of transmissions exploited by VZV and their effect on viral

  2. Molecular evolution of calcification genes in morphologically similar but phylogenetically unrelated scleractinian corals.

    Science.gov (United States)

    Wirshing, Herman H; Baker, Andrew C

    2014-08-01

    cases, these taxa shared aspects of their skeletal morphology (i.e., convergence or diversification relative to the "non-calcification" loci), but in other cases they did not. For example, the "non-calcification" loci recovered Atlantic and Pacific mussids as separate evolutionary lineages, whereas with CIII-MBSα-CA, clones of two species of Atlantic mussids (Isophyllia sinuosa and Mycetophyllia sp.) and two species of Pacific mussids (Acanthastrea echinata and Lobophyllia hemprichii) were united in a distinct clade (except for one individual of Mycetophyllia). However, this clade also contained other taxa which were not unambiguously correlated with morphological features. BMP2/4 also contained clones that likely represent different gene copies. However, many of the sequences showed no significant deviation from neutrality, and reconstructed phylogenies were similar to the "non-calcification" tree topologies with a few exceptions. Although individual calcification genes are unlikely to precisely explain the diverse morphological features exhibited by scleractinian corals, this study demonstrates an approach for identifying cases where morphological taxonomy may have been misled by convergent and/or divergent molecular evolutionary processes in corals. Studies such as this may help illuminate our understanding of the likely complex evolution of genes involved in the calcification process, and enhance our knowledge of the natural history and biodiversity within this central ecological group. Published by Elsevier Inc.

  3. Molecular evolution and expression divergence of the Populus polygalacturonase supergene family shed light on the evolution of increasingly complex organs in plants.

    Science.gov (United States)

    Yang, Zhi-Ling; Liu, Hai-Jing; Wang, Xiao-Ru; Zeng, Qing-Yin

    2013-03-01

    Plant polygalacturonases (PGs) are involved in cell separation processes during many stages of plant development. Investigation into the diversification of this large gene family in land plants could shed light on the evolution of structural development. We conducted whole-genome annotation, molecular evolution and gene expression analyses of PG genes in five species of land plant: Populus, Arabidopsis, rice, Selaginella and Physcomitrella. We identified 75, 44, 16 and 11 PG genes from Populus, rice, Selaginella and Physcomitrella genomes, respectively, which were divided into three classes. We inferred rapid expansion of class I PG genes in Populus, Arabidopsis and rice, while copy numbers of classes II and III PG genes were relatively conserved in all five species. Populus, Arabidopsis and rice class I PG genes were under more relaxed selection constraints than class II PG genes, while this selective pressure divergence was not observed in Selaginella and Physcomitrella PG families. In addition, class I PG genes underwent marked expression divergence in Populus, rice and Selaginella. Our results suggest that PG gene expansion occurred after the divergence of the lycophytes and euphyllophytes, and this expansion was likely paralleled by the evolution of increasingly complex organs in land plants. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Symbiosis between hydra and chlorella: molecular phylogenetic analysis and experimental study provide insight into its origin and evolution.

    Science.gov (United States)

    Kawaida, Hitomi; Ohba, Kohki; Koutake, Yuhki; Shimizu, Hiroshi; Tachida, Hidenori; Kobayakawa, Yoshitaka

    2013-03-01

    Although many physiological studies have been reported on the symbiosis between hydra and green algae, very little information from a molecular phylogenetic aspect of symbiosis is available. In order to understand the origin and evolution of symbiosis between the two organisms, we compared the phylogenetic relationships among symbiotic green algae with the phylogenetic relationships among host hydra strains. To do so, we reconstructed molecular phylogenetic trees of several strains of symbiotic chlorella harbored in the endodermal epithelial cells of viridissima group hydra strains and investigated their congruence with the molecular phylogenetic trees of the host hydra strains. To examine the species specificity between the host and the symbiont with respect to the genetic distance, we also tried to introduce chlorella strains into two aposymbiotic strains of viridissima group hydra in which symbiotic chlorella had been eliminated in advance. We discussed the origin and history of symbiosis between hydra and green algae based on the analysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Molecular evolution of virulence in natural field strains of Xanthomonas campestris pv. vesicatoria.

    Science.gov (United States)

    Gassmann, W; Dahlbeck, D; Chesnokova, O; Minsavage, G V; Jones, J B; Staskawicz, B J

    2000-12-01

    The avrBs2 avirulence gene of the bacterial plant pathogen Xanthomonas campestris pv. vesicatoria triggers disease resistance in pepper plants containing the Bs2 resistance gene and contributes to bacterial virulence on susceptible host plants. We studied the effects of the pepper Bs2 gene on the evolution of avrBs2 by characterizing the molecular basis for virulence of 20 X. campestris pv. vesicatoria field strains that were isolated from disease spots on previously resistant Bs2 pepper plants. All field strains tested were complemented by a wild-type copy of avrBs2 in their ability to trigger disease resistance on Bs2 plants. DNA sequencing revealed four mutant alleles of avrBs2, two of which consisted of insertions or deletions of 5 nucleotides in a repetitive region of avrBs2. The other two avrBs2 alleles were characterized by point mutations with resulting single amino acid changes (R403P or A410D). We generated isogenic X. campestris pv. vesicatoria strains by chromosomal avrBs2 gene exchange to study the effects of these mutations on the dual functions of avrBs2 in enhancing bacterial virulence and inducing plant resistance by in planta bacterial growth experiments. The deletion of 5 nucleotides led to loss of avrBs2-induced resistance on Bs2 pepper plants and abolition of avrBs2-mediated enhancement of fitness on susceptible plants. Significantly, the point mutations led to minimal reduction in virulence function of avrBs2 on susceptible pepper plants, with either minimal (R403P allele) or an intermediate level of (A410D allele) triggering of resistance on Bs2 plants. Consistent with the divergent selection pressures on avrBs2 exerted by the Bs2 resistance gene, our results show that avrBs2 is evolving to decrease detection by the Bs2 gene while at the same time maintaining its virulence function.

  6. Molecular evolution of mitochondrial coding genes in the oxidative phosphorylation pathway in malacostraca: purifying selection or accelerated evolution?

    Science.gov (United States)

    Zhang, Daizhen; Ding, Ge; Ge, Baoming; Zhang, Huabin; Tang, Boping

    2017-07-01

    The mitochondrion is the energy-producing factory of eukaryotic cells, in which oxidative phosphorylation (OXPHOS) is the main pathway for the production of adenosine triphosphate (ATP) by cellular respiration. Because of their vital role in metabolism, mitochondrial proteins are predicted to evolve primarily under constant purifying selection. However, all mitochondrial coding genes of malacostraca had a significantly higher synonymous nt divergence (Ks) in this study. Complex I (NADH dehydrogenase) and complex V (ATP synthase) had a much higher ratio of non-synonymous to synonymous nt divergence (Ka/Ks) and non-synonymous diversity (πNS), whereas complex III (cytochrome bc 1 complex) and complex IV (cytochrome c oxidase) had a significantly lower Ka/Ks and non-synonymous diversity (πNS). The Ka/Ks, πNS, πS, and Ka results revealed that two types of mitochondrial genes, NADH dehydrogenase and ATP synthase, in malacostraca were consistent with accelerated evolution. Furthermore, two other types of mitochondrial genes, cytochrome bc 1 complex and cytochrome c oxidase, were consistent with purifying selection. Generally, the evolutionary pattern of all mitochondrial proteins of the OXPHOS pathway in malacostraca was not entirely consistent with purifying selection.

  7. Molecular evolution of type 2 porcine reproductive and respiratory syndrome viruses circulating in Vietnam from 2007 to 2015.

    Science.gov (United States)

    Do, Hai Quynh; Trinh, Dinh Thau; Nguyen, Thi Lan; Vu, Thi Thu Hang; Than, Duc Duong; Van Lo, Thi; Yeom, Minjoo; Song, Daesub; Choe, SeEun; An, Dong-Jun; Le, Van Phan

    2016-11-17

    Porcine respiratory and reproductive syndrome (PRRS) virus is one of the most economically significant pathogens in the Vietnamese swine industry. ORF5, which participates in many functional processes, including virion assembly, entry of the virus into the host cell, and viral adaptation to the host immune response, has been widely used in molecular evolution and phylogeny studies. Knowing of molecular evolution of PRRSV fields strains might contribute to PRRS control in Vietnam. The results showed that phylogenetic analysis indicated that all strains belonged to sub-lineages 8.7 and 5.1. The nucleotide and amino acid identities between strains were 84.5-100% and 82-100%, respectively. Furthermore, the results revealed differences in nucleotide and amino acid identities between the 2 sub-lineage groups. N-glycosylation prediction identified 7 potential N-glycosylation sites and 11 glycotypes. Analyses of the GP5 sequences, revealed 7 sites under positive selective pressure and 25 under negative selective pressure. Phylogenetic analysis based on ORF5 sequence indicated the diversity of PRRSV in Vietnam. Furthermore, the variance of N-glycosylation sites and position under selective pressure were demonstrated. This study expands existing knowledge on the genetic diversity and evolution of PRRSV in Vietnam and assists the effective strategies for PRRS vaccine development in Vietnam.

  8. Molecular recognition of the environment and mechanisms of the origin of species in quantum-like modeling of evolution.

    Science.gov (United States)

    Melkikh, Alexey V; Khrennikov, Andrei

    2017-11-01

    A review of the mechanisms of speciation is performed. The mechanisms of the evolution of species, taking into account the feedback of the state of the environment and mechanisms of the emergence of complexity, are considered. It is shown that these mechanisms, at the molecular level, cannot work steadily in terms of classical mechanics. Quantum mechanisms of changes in the genome, based on the long-range interaction potential between biologically important molecules, are proposed as one of possible explanation. Different variants of interactions of the organism and environment based on molecular recognition and leading to new species origins are considered. Experiments to verify the model are proposed. This bio-physical study is completed by the general operational model of based on quantum information theory. The latter is applied to model of epigenetic evolution. We briefly present the basics of the quantum-like approach to modeling of bio-informational processes. This approach is illustrated by the quantum-like model of epigenetic evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Chromosomal Context Affects the Molecular Evolution of Sex-linked Genes and Their Autosomal Counterparts in Turtles and Other Vertebrates.

    Science.gov (United States)

    Radhakrishnan, Srihari; Valenzuela, Nicole

    2017-10-30

    Sex chromosomes evolve differently from autosomes because natural selection acts distinctly on them given their reduced recombination and smaller population size. Various studies of sex-linked genes compared with different autosomal genes within species support these predictions. Here, we take a novel alternative approach by comparing the rate of evolution between subsets of genes that are sex-linked in selected reptiles/vertebrates and the same genes located in autosomes in other amniotes. We report for the first time the faster evolution of Z-linked genes in a turtle (the Chinese softshell turtle Pelodiscus sinensis) relative to autosomal orthologs in other taxa, including turtles with temperature-dependent sex determination (TSD). This faster rate was absent in its close relative, the spiny softshell turtle (Apalone spinifera), thus revealing important lineage effects, and was only surpassed by mammalian-X linked genes. In contrast, we found slower evolution of X-linked genes in the musk turtle Staurotypus triporcatus (XX/XY) and homologous Z-linked chicken genes. TSD lineages displayed overall faster sequence evolution than taxa with genotypic sex determination (GSD), ruling out global effects of GSD on molecular evolution beyond those by sex-linkage. Notably, results revealed a putative selective sweep around two turtle genes involved in vertebrate gonadogenesis (Pelodiscus-Z-linked Nf2 and Chrysemys-autosomal Tspan7). Our observations reveal important evolutionary changes at the gene level mediated by chromosomal context in turtles despite their low overall evolutionary rate and illuminate sex chromosome evolution by empirically testing expectations from theoretical models. Genome-wide analyses are warranted to test the generality and prevalence of the observed patterns. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution.

    Science.gov (United States)

    Ereskovsky, Alexander V; Renard, Emmanuelle; Borchiellini, Carole

    2013-03-01

    The emergence of multicellularity is regarded as one of the major evolutionary events of life. This transition unicellularity/pluricellularity was acquired independently several times (King 2004). The acquisition of multicellularity implies the emergence of cellular cohesion and means of communication, as well as molecular mechanisms enabling the control of morphogenesis and body plan patterning. Some of these molecular tools seem to have predated the acquisition of multicellularity while others are regarded as the acquisition of specific lineages. Morphogenesis consists in the spatial migration of cells or cell layers during embryonic development, metamorphosis, asexual reproduction, growth, and regeneration, resulting in the formation and patterning of a body. In this paper, our aim is to review what is currently known concerning basal metazoans--sponges' morphogenesis from the tissular, cellular, and molecular points of view--and what remains to elucidate. Our review attempts to show that morphogenetic processes found in sponges are as diverse and complex as those found in other animals. In true epithelial sponges (Homoscleromorpha), as well as in others, we find similar cell/layer movements, cellular shape changes involved in major morphogenetic processes such as embryogenesis or larval metamorphosis. Thus, sponges can provide information enabling us to better understand early animal evolution at the molecular level but also at the cell/cell layer level. Indeed, comparison of molecular tools will only be of value if accompanied by functional data and expression studies during morphogenetic processes.

  11. Molecular phylogeny, population genetics, and evolution of heterocystous cyanobacteria using nifH gene sequences

    Czech Academy of Sciences Publication Activity Database

    Singh, P.; Singh, S. S.; Elster, Josef; Mishra, A. K.

    2013-01-01

    Roč. 250, č. 3 (2013), s. 751-764 ISSN 0033-183X Institutional support: RVO:67985939 Keywords : evolution * heterocystous cyanobacteria * nifH gene Subject RIV: EH - Ecology, Behaviour Impact factor: 3.171, year: 2013

  12. Molecular evolution modeled as a fractal renewal point process in agreement with the dispersion of substitutions in mammalian genes.

    Science.gov (United States)

    Bickel, D R; West, B J

    1998-11-01

    A fractal renewal point process (FRPP) is used to model molecular evolution in agreement with the relationship between the variance and the mean numbers of nonsynonymous and synonymous substitutions in mammals. Like other episodic models such as the doubly stochastic Poisson process, this model accounts for the large variances observed in amino acid substitution rates, but unlike certain other episodic models, it also accounts for the increase in the index of dispersion with the mean number of substitutions in Ohta's (1995) data. We find that this correlation is significant for nonsynonymous substitutions at the 1% level and for synonymous substitutions at the 10% level, even after removing lineage effects and when using Bulmer's (1989) unbiased estimator of the index of dispersion. This model is simpler than most other overdispersed models of evolution in the sense that it is fully specified by a single interevent probability distribution. Interpretations in terms of chaotic dynamics and in terms of chance and selection are discussed.

  13. The Survey of Water and Ammonia in the Galactic Center (SWAG): Molecular Cloud Evolution in the Central Molecular Zone

    Science.gov (United States)

    Krieger, Nico; Ott, Jürgen; Beuther, Henrik; Walter, Fabian; Kruijssen, J. M. Diederik; Meier, David S.; Mills, Elisabeth A. C.; Contreras, Yanett; Edwards, Phil; Ginsburg, Adam; Henkel, Christian; Henshaw, Jonathan; Jackson, James; Kauffmann, Jens; Longmore, Steven; Martín, Sergio; Morris, Mark R.; Pillai, Thushara; Rickert, Matthew; Rosolowsky, Erik; Shinnaga, Hiroko; Walsh, Andrew; Yusef-Zadeh, Farhad; Zhang, Qizhou

    2017-11-01

    The Survey of Water and Ammonia in the Galactic Center (SWAG) covers the Central Molecular Zone (CMZ) of the Milky Way at frequencies between 21.2 and 25.4 GHz obtained at the Australia Telescope Compact Array at ˜0.9 pc spatial and ˜2.0 km s-1 spectral resolution. In this paper, we present data on the inner ˜250 pc (1.°4) between Sgr C and Sgr B2. We focus on the hyperfine structure of the metastable ammonia inversion lines (J, K) = (1, 1)-(6, 6) to derive column density, kinematics, opacity, and kinetic gas temperature. In the CMZ molecular clouds, we find typical line widths of 8-16 km s-1 and extended regions of optically thick (τ > 1) emission. Two components in kinetic temperature are detected at 25-50 K and 60-100 K, both being significantly hotter than the dust temperatures throughout the CMZ. We discuss the physical state of the CMZ gas as traced by ammonia in the context of the orbital model by Kruijssen et al. that interprets the observed distribution as a stream of molecular clouds following an open eccentric orbit. This allows us to statistically investigate the time dependencies of gas temperature, column density, and line width. We find heating rates between ˜50 and ˜100 K Myr-1 along the stream orbit. No strong signs of time dependence are found for column density or line width. These quantities are likely dominated by cloud-to-cloud variations. Our results qualitatively match the predictions of the current model of tidal triggering of cloud collapse, orbital kinematics, and the observation of an evolutionary sequence of increasing star formation activity with orbital phase.

  14. The evolution of the atomic and molecular interstellar medium in star-forming galaxies

    NARCIS (Netherlands)

    Popping, Gergö

    2014-01-01

    In this thesis I developed models to make predictions for the atomic and molecular gas content of galaxies. Main results of my thesis include that the atomic hydrogen content of galaxies remained relatively constant with over the last 10 Billion years, whereas the molecular hydrogen content

  15. Molecular evolution of glutamine synthetase II: Phylogenetic evidence of a non-endosymbiotic gene transfer event early in plant evolution

    Directory of Open Access Journals (Sweden)

    Tartar Aurélien

    2010-06-01

    Full Text Available Abstract Background Glutamine synthetase (GS is essential for ammonium assimilation and the biosynthesis of glutamine. The three GS gene families (GSI, GSII, and GSIII are represented in both prokaryotic and eukaryotic organisms. In this study, we examined the evolutionary relationship of GSII from eubacterial and eukaryotic lineages and present robust phylogenetic evidence that GSII was transferred from γ-Proteobacteria (Eubacteria to the Chloroplastida. Results GSII sequences were isolated from four species of green algae (Trebouxiophyceae, and additional green algal (Chlorophyceae and Prasinophytae and streptophyte (Charales, Desmidiales, Bryophyta, Marchantiophyta, Lycopodiophyta and Tracheophyta sequences were obtained from public databases. In Bayesian and maximum likelihood analyses, eubacterial (GSIIB and eukaryotic (GSIIE GSII sequences formed distinct clades. Both GSIIB and GSIIE were found in chlorophytes and early-diverging streptophytes. The GSIIB enzymes from these groups formed a well-supported sister clade with the γ-Proteobacteria, providing evidence that GSIIB in the Chloroplastida arose by horizontal gene transfer (HGT. Bayesian relaxed molecular clock analyses suggest that GSIIB and GSIIE coexisted for an extended period of time but it is unclear whether the proposed HGT happened prior to or after the divergence of the primary endosymbiotic lineages (the Archaeplastida. However, GSIIB genes have not been identified in glaucophytes or red algae, favoring the hypothesis that GSIIB was gained after the divergence of the primary endosymbiotic lineages. Duplicate copies of the GSIIB gene were present in Chlamydomonas reinhardtii, Volvox carteri f. nagariensis, and Physcomitrella patens. Both GSIIB proteins in C. reinhardtii and V. carteri f. nagariensis had N-terminal transit sequences, indicating they are targeted to the chloroplast or mitochondrion. In contrast, GSIIB proteins of P. patens lacked transit sequences, suggesting

  16. Molecular phylogenetic analysis of Commiphora (Burseraceae) yields insight on the evolution and historical biogeography of an "impossible" genus.

    Science.gov (United States)

    Weeks, Andrea; Simpson, Beryl B

    2007-01-01

    Expansion of the arid zone of sub-Saharan tropical Africa during the Miocene is posited as a significant contributing factor in the evolution of contemporary African flora. Nevertheless, few molecular phylogenetic studies have tested this hypothesis using reconstructed historical biogeographies of plants within this zone. Here, we present a molecular phylogeny of Commiphora, a predominantly tropical African, arid-adapted tree genus, in order to test the monophyly of its taxonomic sections and identify clades that will help direct future study of this species-rich and geographically widespread taxon. We then use multiple fossil calibrations of Commiphora phylogeny to determine the timing of well-supported diversification events within the genus and interpret these age estimates to determine the relative contribution of vicariance and dispersal in the expansion of Commiphora's geographic range. We find that Commiphora is sister to Vietnamese Bursera tonkinensis and that its crown group radiation corresponds with the onset of the Miocene.

  17. Merging molecular mechanism and evolution: theory and computation at the interface of biophysics and evolutionary population genetics.

    Science.gov (United States)

    Serohijos, Adrian W R; Shakhnovich, Eugene I

    2014-06-01

    The variation among sequences and structures in nature is both determined by physical laws and by evolutionary history. However, these two factors are traditionally investigated by disciplines with different emphasis and philosophy-molecular biophysics on one hand and evolutionary population genetics in another. Here, we review recent theoretical and computational approaches that address the crucial need to integrate these two disciplines. We first articulate the elements of these approaches. Then, we survey their contribution to our mechanistic understanding of molecular evolution, the polymorphisms in coding region, the distribution of fitness effects (DFE) of mutations, the observed folding stability of proteins in nature, and the distribution of protein folds in genomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing.

    Science.gov (United States)

    Sánchez, Rubén; Serra, François; Tárraga, Joaquín; Medina, Ignacio; Carbonell, José; Pulido, Luis; de María, Alejandro; Capella-Gutíerrez, Salvador; Huerta-Cepas, Jaime; Gabaldón, Toni; Dopazo, Joaquín; Dopazo, Hernán

    2011-07-01

    Phylemon 2.0 is a new release of the suite of web tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. It has been designed as a response to the increasing demand of molecular sequence analyses for experts and non-expert users. Phylemon 2.0 has several unique features that differentiates it from other similar web resources: (i) it offers an integrated environment that enables evolutionary analyses, format conversion, file storage and edition of results; (ii) it suggests further analyses, thereby guiding the users through the web server; and (iii) it allows users to design and save phylogenetic pipelines to be used over multiple genes (phylogenomics). Altogether, Phylemon 2.0 integrates a suite of 30 tools covering sequence alignment reconstruction and trimming; tree reconstruction, visualization and manipulation; and evolutionary hypotheses testing.

  19. From molecular engineering to process engineering: development of high-throughput screening methods in enzyme directed evolution.

    Science.gov (United States)

    Ye, Lidan; Yang, Chengcheng; Yu, Hongwei

    2018-01-01

    With increasing concerns in sustainable development, biocatalysis has been recognized as a competitive alternative to traditional chemical routes in the past decades. As nature's biocatalysts, enzymes are able to catalyze a broad range of chemical transformations, not only with mild reaction conditions but also with high activity and selectivity. However, the insufficient activity or enantioselectivity of natural enzymes toward non-natural substrates limits their industrial application, while directed evolution provides a potent solution to this problem, thanks to its independence on detailed knowledge about the relationship between sequence, structure, and mechanism/function of the enzymes. A proper high-throughput screening (HTS) method is the key to successful and efficient directed evolution. In recent years, huge varieties of HTS methods have been developed for rapid evaluation of mutant libraries, ranging from in vitro screening to in vivo selection, from indicator addition to multi-enzyme system construction, and from plate screening to computation- or machine-assisted screening. Recently, there is a tendency to integrate directed evolution with metabolic engineering in biosynthesis, using metabolites as HTS indicators, which implies that directed evolution has transformed from molecular engineering to process engineering. This paper aims to provide an overview of HTS methods categorized based on the reaction principles or types by summarizing related studies published in recent years including the work from our group, to discuss assay design strategies and typical examples of HTS methods, and to share our understanding on HTS method development for directed evolution of enzymes involved in specific catalytic reactions or metabolic pathways.

  20. Molecular Evidence for Convergence and Parallelism in Evolution of Complex Brains of Cephalopod Molluscs: Insights from Visual Systems.

    Science.gov (United States)

    Yoshida, M A; Ogura, A; Ikeo, K; Shigeno, S; Moritaki, T; Winters, G C; Kohn, A B; Moroz, L L

    2015-12-01

    Coleoid cephalopods show remarkable evolutionary convergence with vertebrates in their neural organization, including (1) eyes and visual system with optic lobes, (2) specialized parts of the brain controlling learning and memory, such as vertical lobes, and (3) unique vasculature supporting such complexity of the central nervous system. We performed deep sequencing of eye transcriptomes of pygmy squids (Idiosepius paradoxus) and chambered nautiluses (Nautilus pompilius) to decipher the molecular basis of convergent evolution in cephalopods. RNA-seq was complemented by in situ hybridization to localize the expression of selected genes. We found three types of genomic innovations in the evolution of complex brains: (1) recruitment of novel genes into morphogenetic pathways, (2) recombination of various coding and regulatory regions of different genes, often called "evolutionary tinkering" or "co-option", and (3) duplication and divergence of genes. Massive recruitment of novel genes occurred in the evolution of the "camera" eye from nautilus' "pinhole" eye. We also showed that the type-2 co-option of transcription factors played important roles in the evolution of the lens and visual neurons. In summary, the cephalopod convergent morphological evolution of the camera eyes was driven by a mosaic of all types of gene recruitments. In addition, our analysis revealed unexpected variations of squids' opsins, retinochromes, and arrestins, providing more detailed information, valuable for further research on intra-ocular and extra-ocular photoreception of the cephalopods. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Transforming the vestibular system one molecule at a time: the molecular and developmental basis of vertebrate auditory evolution.

    Science.gov (United States)

    Duncan, Jeremy S; Fritzsch, Bernd

    2012-01-01

    We review the molecular basis of auditory development and evolution. We propose that the auditory periphery (basilar papilla, organ of Corti) evolved by transforming a newly created and redundant vestibular (gravistatic) endorgan into a sensory epithelium that could respond to sound instead of gravity. Evolution altered this new epithelia's mechanoreceptive properties through changes of hair cells, positioned the epithelium in a unique position near perilymphatic space to extract sound moving between the round and the oval window, and transformed its otolith covering into a tympanic membrane. Another important step in the evolution of an auditory system was the evolution of a unique set of "auditory neurons" that apparently evolved from vestibular neurons. Evolution of mammalian auditory (spiral ganglion) neurons coincides with GATA3 being a transcription factor found selectively in the auditory afferents. For the auditory information to be processed, the CNS required a dedicated center for auditory processing, the auditory nuclei. It is not known whether the auditory nucleus is ontogenetically related to the vestibular or electroreceptive nuclei, two sensory systems found in aquatic but not in amniotic vertebrates, or a de-novo formation of the rhombic lip in line with other novel hindbrain structures such as pontine nuclei. Like other novel hindbrain structures, the auditory nuclei express exclusively the bHLH gene Atoh1, and loss of Atoh1 results in loss of most of this nucleus in mice. Only after the basilar papilla, organ of Corti evolved could efferent neurons begin to modulate their activity. These auditory efferents most likely evolved from vestibular efferent neurons already present. The most simplistic interpretation of available data suggest that the ear, sensory neurons, auditory nucleus, and efferent neurons have been transformed by altering the developmental genetic modules necessary for their development into a novel direction conducive for sound

  2. Molecular phylogeny and character evolution of the chthamaloid barnacles (Cirripedia:Thoracica)

    DEFF Research Database (Denmark)

    Pérez-Losada, Marcos; Høeg, Jens Thorvald; Crandall, Keith A.

    2012-01-01

    of the Chthamaloidea has been debated since Darwin's seminal monographs. Theories of morphological and ontogenetic evolution suggest that the group could have evolved multiple times from pedunculated relatives and that shell plate number diminished gradually (8¿6¿4) from an ancestral state with eight wall plates......The Chthamaloidea (Balanomorpha) present the most plesiomorphic characters in shell plates and cirri, mouthparts, and oral cone within the acorn barnacles (Thoracica: Sessilia). Due to their importance in understanding both the origin and diversification of the Balanomorpha, the evolution...... surrounded by whorls of small imbricating plates; but this hypothesis has never been subjected to a rigorous phylogenetic test. Here we used multilocus sequence data and extensive taxon sampling to build a comprehensive phylogeny of the Chthamaloidea as a basis for understanding their morphological evolution...

  3. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment

    Directory of Open Access Journals (Sweden)

    Hikaru eSuenaga

    2015-09-01

    Full Text Available Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and therefore enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose.

  4. Molecular phylogeny and evolution of the proteins encoded by coleoid (cuttlefish, octopus, and squid) posterior venom glands.

    Science.gov (United States)

    Ruder, Tim; Sunagar, Kartik; Undheim, Eivind A B; Ali, Syed A; Wai, Tak-Cheung; Low, Dolyce H W; Jackson, Timothy N W; King, Glenn F; Antunes, Agostinho; Fry, Bryan G

    2013-04-01

    In this study, we report for the first time a detailed evaluation of the phylogenetic history and molecular evolution of the major coleoid toxins: CAP, carboxypeptidase, chitinase, metalloprotease GON-domain, hyaluronidase, pacifastin, PLA2, SE-cephalotoxin and serine proteases, with the carboxypeptidase and GON-domain documented for the first time in the coleoid venom arsenal. We show that although a majority of sites in these coleoid venom-encoding genes have evolved under the regime of negative selection, a very small proportion of sites are influenced by the transient selection pressures. Moreover, nearly 70 % of these episodically adapted sites are confined to the molecular surface, highlighting the importance of variation of the toxin surface chemistry. Coleoid venoms were revealed to be as complex as other venoms that have traditionally been the recipient of the bulk of research efforts. The presence of multiple peptide/protein types in coleoids similar to those present in other animal venoms identifies a convergent strategy, revealing new information as to what characteristics make a peptide/protein type amenable for recruitment into chemical arsenals. Coleoid venoms have significant potential not only for understanding fundamental aspects of venom evolution but also as an untapped source of novel toxins for use in drug design and discovery.

  5. In Situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries.

    Science.gov (United States)

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Rama Sesha; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R; Wang, Chong-Min

    2015-09-09

    Dynamic structural and chemical evolution at solid-liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe a solid-liquid interface under reaction conditions. We describe the creation and usage of in situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid-liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to be depleted of the salt anions and with reduced concentration of Li(+) ions, essentially leading to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributing to the overpotential of the cell. This observation provides unprecedented molecular level dynamic information on the initial formation of the solid electrolyte interphase (SEI) layer. The present work also ultimately opens new avenues for implanting the in situ liquid SIMS concept to probe the chemical reaction process that intimately involves solid-liquid interface, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization.

  6. Molecular evolution of the VP1, VP2, and VP3 genes in human rhinovirus species C.

    Science.gov (United States)

    Kuroda, Makoto; Niwa, Shoichi; Sekizuka, Tsuyoshi; Tsukagoshi, Hiroyuki; Yokoyama, Masaru; Ryo, Akihide; Sato, Hironori; Kiyota, Naoko; Noda, Masahiro; Kozawa, Kunihisa; Shirabe, Komei; Kusaka, Takashi; Shimojo, Naoki; Hasegawa, Shunji; Sugai, Kazuko; Obuchi, Masatsugu; Tashiro, Masato; Oishi, Kazunori; Ishii, Haruyuki; Kimura, Hirokazu

    2015-02-02

    Human rhinovirus species C (HRV-C) was recently discovered, and this virus has been associated with various acute respiratory illnesses (ARI). However, the molecular evolution of the major antigens of this virus, including VP1, VP2, and VP3, is unknown. Thus, we performed complete VP1, VP2, and VP3 gene analyses of 139 clinical HRV-C strains using RT-PCR with newly designed primer sets and next-generation sequencing. We assessed the time-scale evolution and evolutionary rate of these genes using the Bayesian Markov chain Monte Carlo method. In addition, we calculated the pairwise distance and confirmed the positive/negative selection sites in these genes. The phylogenetic trees showed that the HRV-C strains analyzed using these genes could be dated back approximately 400 to 900 years, and these strains exhibited high evolutionary rates (1.35 to 3.74 × 10(-3) substitutions/site/year). Many genotypes (>40) were confirmed in the phylogenetic trees. Furthermore, no positively selected site was found in the VP1, VP2, and VP3 protein. Molecular modeling analysis combined with variation analysis suggested that the exterior surfaces of the VP1, VP2 and VP3 proteins are rich in loops and are highly variable. These results suggested that HRV-C may have an old history and unique antigenicity as an agent of various ARI.

  7. The evolution and molecular mechanism of the function of the cytokine system in vertebrates

    DEFF Research Database (Denmark)

    Siupka, Piotr

    Cytokines are small signaling molecules involved in many processes in vertebrates. The most prominent role of class I and II cytokines is connected with vertebrate immunology. Piotr studied the evolution of the class II cytokine system. By resolving the crystal structure of interleukin-22 from...

  8. "DNA Re-EvolutioN": A Game for Learning Molecular Genetics and Evolution

    Science.gov (United States)

    Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva

    2013-01-01

    Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game "DNA Re-EvolutioN" as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular…

  9. Molecular and morphological systematics of the Ellisellidae (Coelenterata: Octocorallia): parallel evolution in a globally distributed family of octocorals.

    Science.gov (United States)

    Bilewitch, Jaret P; Ekins, Merrick; Hooper, John; Degnan, Sandie M

    2014-04-01

    The octocorals of the Ellisellidae constitute a diverse and widely distributed family with subdivisions into genera based on colonial growth forms. Branching patterns are repeated in several genera and congeners often display region-specific variations in a given growth form. We examined the systematic patterns of ellisellid genera and the evolution of branching form diversity using molecular phylogenetic and ancestral morphological reconstructions. Six of eight included genera were found to be polyphyletic due to biogeographical incompatibility with current taxonomic assignments and the creation of at least six new genera plus several reassignments among existing genera is necessary. Phylogenetic patterns of diversification of colony branching morphology displayed a similar transformation order in each of the two primary ellisellid clades, with a sea fan form estimated as the most-probable common ancestor with likely origins in the Indo-Pacific region. The observed parallelism in evolution indicates the existence of a constraint on the genetic elements determining ellisellid colonial morphology. However, the lack of correspondence between levels of genetic divergence and morphological diversity among genera suggests that future octocoral studies should focus on the role of changes in gene regulation in the evolution of branching patterns. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Molecular and morphological systematics of the Ellisellidae (Coelenterata: Octocorallia): Parallel evolution in a globally distributed family of octocorals

    KAUST Repository

    Bilewitch, Jaret P.

    2014-04-01

    The octocorals of the Ellisellidae constitute a diverse and widely distributed family with subdivisions into genera based on colonial growth forms. Branching patterns are repeated in several genera and congeners often display region-specific variations in a given growth form. We examined the systematic patterns of ellisellid genera and the evolution of branching form diversity using molecular phylogenetic and ancestral morphological reconstructions. Six of eight included genera were found to be polyphyletic due to biogeographical incompatibility with current taxonomic assignments and the creation of at least six new genera plus several reassignments among existing genera is necessary. Phylogenetic patterns of diversification of colony branching morphology displayed a similar transformation order in each of the two primary ellisellid clades, with a sea fan form estimated as the most-probable common ancestor with likely origins in the Indo-Pacific region. The observed parallelism in evolution indicates the existence of a constraint on the genetic elements determining ellisellid colonial morphology. However, the lack of correspondence between levels of genetic divergence and morphological diversity among genera suggests that future octocoral studies should focus on the role of changes in gene regulation in the evolution of branching patterns. © 2014 Elsevier Inc.

  11. Two-step relaxation mode analysis with multiple evolution times applied to all-atom molecular dynamics protein simulation

    Science.gov (United States)

    Karasawa, N.; Mitsutake, A.; Takano, H.

    2017-12-01

    Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n ] polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μ s molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.

  12. The evolution of viviparity: molecular and genomic data from squamate reptiles advance understanding of live birth in amniotes.

    Science.gov (United States)

    Van Dyke, James U; Brandley, Matthew C; Thompson, Michael B

    2014-01-01

    Squamate reptiles (lizards and snakes) are an ideal model system for testing hypotheses regarding the evolution of viviparity (live birth) in amniote vertebrates. Viviparity has evolved over 100 times in squamates, resulting in major changes in reproductive physiology. At a minimum, all viviparous squamates exhibit placentae formed by the appositions of maternal and embryonic tissues, which are homologous in origin with the tissues that form the placenta in therian mammals. These placentae facilitate adhesion of the conceptus to the uterus as well as exchange of oxygen, carbon dioxide, water, sodium, and calcium. However, most viviparous squamates continue to rely on yolk for nearly all of their organic nutrition. In contrast, some species, which rely on the placenta for at least a portion of organic nutrition, exhibit complex placental specializations associated with the transport of amino acids and fatty acids. Some viviparous squamates also exhibit reduced immunocompetence during pregnancy, which could be the result of immunosuppression to protect developing embryos. Recent molecular studies using both candidate-gene and next-generation sequencing approaches have suggested that at least some of the genes and gene families underlying these phenomena play similar roles in the uterus and placenta of viviparous mammals and squamates. Therefore, studies of the evolution of viviparity in squamates should inform hypotheses of the evolution of viviparity in all amniotes, including mammals.

  13. Molecular Changes During Acute Myeloid Leukemia (AML) Evolution and Identification of Novel Treatment Strategies Through Molecular Stratification.

    Science.gov (United States)

    Karjalainen, E; Repasky, G A

    2016-01-01

    Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by impaired differentiation and uncontrollable proliferation of myeloid progenitor cells. Due to high relapse rates, overall survival for this rapidly progressing disease is poor. The significant challenge in AML treatment is disease heterogeneity stemming from variability in maturation state of leukemic cells of origin, genetic aberrations among patients, and existence of multiple disease clones within a single patient. Disease heterogeneity and the lack of biomarkers for drug sensitivity lie at the root of treatment failure as well as selective efficacy of AML chemotherapies and the emergence of drug resistance. Furthermore, standard-of-care treatment is aggressive, presenting significant tolerability concerns to the commonly advanced-age AML patient. In this review, we examine the concept and potential of molecular stratification, particularly with biologically relevant drug responses, in identifying low-toxicity precision therapeutic combinations and clinically relevant biomarkers for AML patient care as a way to overcome these challenges in AML treatment. © 2016 Elsevier Inc. All rights reserved.

  14. Explaining the luminosity spread in young clusters: proto and pre-main sequence stellar evolution in a molecular cloud environment

    Science.gov (United States)

    Jensen, Sigurd S.; Haugbølle, Troels

    2018-02-01

    Hertzsprung-Russell diagrams of star-forming regions show a large luminosity spread. This is incompatible with well-defined isochrones based on classic non-accreting protostellar evolution models. Protostars do not evolve in isolation of their environment, but grow through accretion of gas. In addition, while an age can be defined for a star-forming region, the ages of individual stars in the region will vary. We show how the combined effect of a protostellar age spread, a consequence of sustained star formation in the molecular cloud, and time-varying protostellar accretion for individual protostars can explain the observed luminosity spread. We use a global magnetohydrodynamic simulation including a sub-scale sink particle model of a star-forming region to follow the accretion process of each star. The accretion profiles are used to compute stellar evolution models for each star, incorporating a model of how the accretion energy is distributed to the disc, radiated away at the accretion shock, or incorporated into the outer layers of the protostar. Using a modelled cluster age of 5 Myr, we naturally reproduce the luminosity spread and find good agreement with observations of the Collinder 69 cluster, and the Orion Nebular Cluster. It is shown how stars in binary and multiple systems can be externally forced creating recurrent episodic accretion events. We find that in a realistic global molecular cloud model massive stars build up mass over relatively long time-scales. This leads to an important conceptual change compared to the classic picture of non-accreting stellar evolution segmented into low-mass Hayashi tracks and high-mass Henyey tracks.

  15. Recent insertion/deletion (reINDEL) mutations: increasing awareness to boost molecular-based research in ecology and evolution.

    Science.gov (United States)

    Schlick-Steiner, Birgit C; Arthofer, Wolfgang; Moder, Karl; Steiner, Florian M

    2015-01-01

    Today, the comparative analysis of DNA molecules mainly uses information inferred from nucleotide substitutions. Insertion/deletion (INDEL) mutations, in contrast, are largely considered uninformative and discarded, due to our lacking knowledge on their evolution. However, including rather than discarding INDELs would be relevant to any research area in ecology and evolution that uses molecular data. As a practical approach to better understanding INDEL evolution in general, we propose the study of recent INDEL (reINDEL) mutations - mutations where both ancestral and derived state are seen in the sample. The precondition for reINDEL identification is knowledge about the pedigree of the individuals sampled. Sound reINDEL knowledge will allow the improved modeling needed for including INDELs in the downstream analysis of molecular data. Both microsatellites, currently still the predominant marker system in the analysis of populations, and sequences generated by next-generation sequencing, a promising and rapidly developing range of technologies, offer the opportunity for reINDEL identification. However, a 2013 sample of animal microsatellite studies contained unexpectedly few reINDELs identified. As most likely explanation, we hypothesize that reINDELs are underreported rather than absent and that this underreporting stems from common reINDEL unawareness. If our hypothesis applies, increased reINDEL awareness should allow gathering data rapidly. We recommend the routine reporting of either the absence or presence of reINDELs together with standardized key information on the nature of mutations when they are detected and the use of the keyword "reINDEL" to increase visibility in both instances of successful and unsuccessful search.

  16. Protein Based Molecular Markers Provide Reliable Means to Understand Prokaryotic Phylogeny and Support Darwinian Mode of Evolution

    Directory of Open Access Journals (Sweden)

    Vaibhav eBhandari

    2012-07-01

    Full Text Available The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning whether the Darwinian model of evolution is applicable to the prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs and conserved signature proteins (CSPs for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical

  17. Molecular population genetics of Xdh and the evolution of base composition in Drosophila.

    Science.gov (United States)

    Begun, David J; Whitley, Penn

    2002-12-01

    Few loci have been measured for DNA polymorphism and divergence in several species. Here we report such data from the protein-coding region of xanthine dehydrogenase (Xdh) in 22 species of Drosophila. Many of our samples were from closely related species, allowing us to confidently assign substitutions to individual lineages. Surprisingly, Xdh appears to be fixing more A/T mutations than G/C mutations in most lineages, leading to evolution of higher A/T content in the recent past. We found no compelling evidence for selection on protein variation, though some aspects of the data support the notion that a significant fraction of amino acid polymorphisms are slightly deleterious. Finally, we found no convincing evidence that levels of silent heterozygosity are associated with rates of protein evolution.

  18. Spatiotemporal evolution of Reaumuria (Tamaricaceae) in Central Asia: insights from molecular biogeography

    Science.gov (United States)

    Mingli Zhang; Xiaoli Hao; Stewart C. Sanderson; Byalt V. Vyacheslav; Alexander P. Sukhorukov; Xia Zhang

    2014-01-01

    Reaumuria is an arid adapted genus with a distribution center in Central Asia; its evolution and dispersal is investigated in this paper. Eighteen species of Reaumuria and nine species of two other genera in the Tamaricaceae, Tamarix and Myricaria, were sampled, and four markers ITS, rps16, psbB-psbH, and trnL-trnF were sequenced. The reconstructed phylogenetic tree is...

  19. Molecular Evolution of Human PON to Design Enhanced Catalytic Efficiency for Hydrolysis of Nerve Agents

    Science.gov (United States)

    2011-12-01

    transformed with the plasmid library were compartmentalized in water-in- oil emulsion droplets. The fluorogenic substrate was added, and the primary...Tawfik, D.S. Progress in evolution of catalytic bioscavengers for OP nerve agents: Towards a broad spectrum detoxifying variant, CBD S&T Conference...Nerve agent stereoisomers: analysis , isolation, and toxicology. Acc. Chem. Res. 21, 368-374 (1988). 6. Benschop, H.P., Konings, C.A.G., Van Genderen

  20. Molecular evolution and expression profile of the chemerine encoding gene RARRES2 in baboon and chimpanzee

    OpenAIRE

    González Alvarez, Rafael; Garza Rodríguez, María; DELGADO ENCISO, IVÁN; Treviño Alvarado, Víctor M.; Canales del Castillo, Ricardo.; Martínez De Villarreal, Laura E.; Lugo Trampe, Ángel; Tejero, María E.; Schlabritz Loutsevitch, Natalia E.; Rocha Pizaña, María; Cole, Shelley A.; Reséndez Pérez, Diana; Moises Alvarez, Mario; Comuzzie, Anthony G.; Barrera Saldaña, Hugo A.

    2015-01-01

    Abstract Background Chemerin, encoded by the retinoic acid receptor responder 2 (RARRES2) gene is an adipocytesecreted protein with autocrine/paracrine functions in adipose tissue, metabolism and inflammation with a recently described function in vascular tone regulation, liver, steatosis, etc. This molecule is believed to represent a critical endocrine signal linking obesity to diabetes. There are no data available regarding evolution of RARRES2 in non-human primates and great apes. Expressi...

  1. [Human immunodeficiency virus and AIDS in terms of reverse transcriptase and molecular evolution].

    Science.gov (United States)

    Doi, H

    1998-03-01

    Human immunodeficiency virus type 1 (HIV-1) evolves rapidly in the host. The computer analysis of the HIV-1 genome has shown that the mutation manner is dependent on oligonucleotide sequences (in particular, six bases long); thus HIV-1 adaptively evolves. The six-base-long interaction between template-primer oligonucleotide and the reverse transcriptase (RT) has been revealed by the crystal structure of RT, in vitro termination assay of plymerization, and hydroxyl radical footprint analysis. It has been thought that AIDS is caused by the large numbers of HIV-1 quasispecies yielded by the adaptive and rapid evolution in the host. However, the slow evolution and the high levels of viral RNA in the progressive HIV-1 infected individuals (progressives) were recently reported; in contrast, the adaptive and rapid evolution and the low viral-RNA levels were reported in the non-progressives. This suggests that the physiological environment, e.g. pH and dNTP balance, in which RT works in the progressives is different from that in the non-progressives.

  2. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-02-16

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  3. Molecular evolution of peptide ligands with custom-tailored characteristics for targeting of glycostructures.

    Directory of Open Access Journals (Sweden)

    Niels Röckendorf

    Full Text Available As an advanced approach to identify suitable targeting molecules required for various diagnostic and therapeutic interventions, we developed a procedure to devise peptides with customizable features by an iterative computer-assisted optimization strategy. An evolutionary algorithm was utilized to breed peptides in silico and the "fitness" of peptides was determined in an appropriate laboratory in vitro assay. The influence of different evolutional parameters and mechanisms such as mutation rate, crossover probability, gaussian variation and fitness value scaling on the course of this artificial evolutional process was investigated. As a proof of concept peptidic ligands for a model target molecule, the cell surface glycolipid ganglioside G(M1, were identified. Consensus sequences describing local fitness optima were reached from diverse sets of L- and proteolytically stable D lead peptides. Ten rounds of evolutional optimization encompassing a total of just 4400 peptides lead to an increase in affinity of the peptides towards fluorescently labeled ganglioside G(M1 by a factor of 100 for L- and 400 for D-peptides.

  4. Dissecting the complex molecular evolution and expression of polygalacturonase gene family in Brassica rapa ssp. chinensis.

    Science.gov (United States)

    Liang, Ying; Yu, Youjian; Shen, Xiuping; Dong, Heng; Lyu, Meiling; Xu, Liai; Ma, Zhiming; Liu, Tingting; Cao, Jiashu

    2015-12-01

    Polygalacturonases (PGs) participate in pectin disassembly of cell wall and belong to one of the largest hydrolase families in plants. In this study, we identified 99 PG genes in Brassica rapa. Comprehensive analysis of phylogeny, gene structures, physico-chemical properties and coding sequence evolution demonstrated that plant PGs should be classified into seven divergent clades and each clade's members had specific sequence and structure characteristics, and/or were under specific selection pressures. Genomic distribution and retention rate analysis implied duplication events and biased retention contributed to PG family's expansion. Promoter divergence analysis using "shared motif method" revealed a significant correlation between regulatory and coding sequence evolution of PGs, and proved Clades A and E were of ancient origin. Quantitative real-time PCR analysis showed that expression patterns of PGs displayed group specificities in B. rapa. Particularly, nearly half of PG family members, especially those of Clades C, D and F, closely relates to reproductive development. Most duplicates showed similar expression profiles, suggesting dosage constraints accounted for preservation after duplication. Promoter-GUS assay further indicated PGs' extensive roles and possible redundancy during reproductive development. This work can provide a scientific classification of plant PGs, dissect the internal relationships between their evolution and expressions, and promote functional researches.

  5. Feedback and Feeding in the Context of Galaxy Evolution with SPICA: Direct Characterisation of Molecular Outflows and Inflows

    Science.gov (United States)

    González-Alfonso, E.; Armus, L.; Carrera, F. J.; Charmandaris, V.; Efstathiou, A.; Egami, E.; Fernández-Ontiveros, J. A.; Fischer, J.; Granato, G. L.; Gruppioni, C.; Hatziminaoglou, E.; Imanishi, M.; Isobe, N.; Kaneda, H.; Koziel-Wierzbowska, D.; Malkan, M. A.; Martín-Pintado, J.; Mateos, S.; Matsuhara, H.; Miniutti, G.; Nakagawa, T.; Pozzi, F.; Rico-Villas, F.; Rodighiero, G.; Roelfsema, P.; Spinoglio, L.; Spoon, H. W. W.; Sturm, E.; van der Tak, F.; Vignali, C.; Wang, L.

    2017-11-01

    A far-infrared observatory such as the SPace Infrared telescope for Cosmology and Astrophysics, with its unprecedented spectroscopic sensitivity, would unveil the role of feedback in galaxy evolution during the last 10 Gyr of the Universe (z = 1.5-2), through the use of far- and mid-infrared molecular and ionic fine structure lines that trace outflowing and infalling gas. Outflowing gas is identified in the far-infrared through P-Cygni line shapes and absorption blueshifted wings in molecular lines with high dipolar moments, and through emission line wings of fine-structure lines of ionised gas. We quantify the detectability of galaxy-scale massive molecular and ionised outflows as a function of redshift in AGN-dominated, starburst-dominated, and main-sequence galaxies, explore the detectability of metal-rich inflows in the local Universe, and describe the most significant synergies with other current and future observatories that will measure feedback in galaxies via complementary tracers at other wavelengths.

  6. The molecular evolution of the p120-catenin subfamily and its functional associations.

    Directory of Open Access Journals (Sweden)

    Robert H Carnahan

    Full Text Available BACKGROUND: p120-catenin (p120 is the prototypical member of a subclass of armadillo-related proteins that includes δ-catenin/NPRAP, ARVCF, p0071, and the more distantly related plakophilins 1-3. In vertebrates, p120 is essential in regulating surface expression and stability of all classical cadherins, and directly interacts with Kaiso, a BTB/ZF family transcription factor. METHODOLOGY/PRINCIPAL FINDINGS: To clarify functional relationships between these proteins and how they relate to the classical cadherins, we have examined the proteomes of 14 diverse vertebrate and metazoan species. The data reveal a single ancient δ-catenin-like p120 family member present in the earliest metazoans and conserved throughout metazoan evolution. This single p120 family protein is present in all protostomes, and in certain early-branching chordate lineages. Phylogenetic analyses suggest that gene duplication and functional diversification into "p120-like" and "δ-catenin-like" proteins occurred in the urochordate-vertebrate ancestor. Additional gene duplications during early vertebrate evolution gave rise to the seven vertebrate p120 family members. Kaiso family members (i.e., Kaiso, ZBTB38 and ZBTB4 are found only in vertebrates, their origin following that of the p120-like gene lineage and coinciding with the evolution of vertebrate-specific mechanisms of epigenetic gene regulation by CpG island methylation. CONCLUSIONS/SIGNIFICANCE: The p120 protein family evolved from a common δ-catenin-like ancestor present in all metazoans. Through several rounds of gene duplication and diversification, however, p120 evolved in vertebrates into an essential, ubiquitously expressed protein, whereas loss of the more selectively expressed δ-catenin, p0071 and ARVCF are tolerated in most species. Together with phylogenetic studies of the vertebrate cadherins, our data suggest that the p120-like and δ-catenin-like genes co-evolved separately with non-neural (E- and P

  7. Nucleotide sequences of immunoglobulin eta genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution

    Energy Technology Data Exchange (ETDEWEB)

    Sakoyama, Y.; Hong, K.J.; Byun, S.M.; Hisajima, H.; Ueda, S.; Yaoita, Y.; Hayashida, H.; Miyata, T.; Honjo, T.

    1987-02-01

    To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin eta-chain (C/sub eta1/) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human eta-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regions, was introduced for the present study. From the comparison of nucleotide sequences of ..cap alpha../sub 1/-antitrypsin and ..beta..- and delta-globulin genes between humans and Old World monkeys, the silent molecular clock was calibrated: the mean evolutionary rate of silent substitution was determined to be 1.56 x 10/sup -9/ substitutions per site per year. Using the silent molecular clock, the mean divergence dates of chimpanzee and orangutan from the human lineage were estimated as 6.4 +/- 2.6 million years and 17.3 +/- 4.5 million years, respectively. It was also shown that the evolutionary rate of primate genes is considerably slower than those of other mammalian genes.

  8. Structural and chemical evolution of single-wall carbon nanotubes under atomic and molecular deuterium interaction

    NARCIS (Netherlands)

    Lisowski, W.F.; Keim, Enrico G.; van den Berg, A.H.J.; Smithers, M.A.; Smithers, Mark A.

    2005-01-01

    The interaction of atomic (D) and molecular (D2) deuterium, as present in a (D + D2) gas mixture, with single-wall carbon nanotubes (SWNTs) has been studied by means of a combination of scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The SWNT

  9. Molecular evolution of the E8 promoter in tomato and some of its ...

    Indian Academy of Sciences (India)

    Prakash

    Broglie K E, Gaynort J J and Broglie R M 1986 Ethylene-regulated gene expression: molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris; Proc. Natl. Acad. Sci. USA 83 6820–6824. Clamp M, Cuff J, Searle S M and Barton G J 2004 The jalview java alignment editor; Bioinformatics 20 426–427.

  10. Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches.

    Science.gov (United States)

    Lukoschek, Vimoksalehi; Scott Keogh, J; Avise, John C

    2012-01-01

    Evolutionary and biogeographic studies increasingly rely on calibrated molecular clocks to date key events. Although there has been significant recent progress in development of the techniques used for molecular dating, many issues remain. In particular, controversies abound over the appropriate use and placement of fossils for calibrating molecular clocks. Several methods have been proposed for evaluating candidate fossils; however, few studies have compared the results obtained by different approaches. Moreover, no previous study has incorporated the effects of nucleotide saturation from different data types in the evaluation of candidate fossils. In order to address these issues, we compared three approaches for evaluating fossil calibrations: the single-fossil cross-validation method of Near, Meylan, and Shaffer (2005. Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. Am. Nat. 165:137-146), the empirical fossil coverage method of Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171:726-742), and the Bayesian multicalibration method of Sanders and Lee (2007. Evaluating molecular clock calibrations using Bayesian analyses with soft and hard bounds. Biol. Lett. 3:275-279) and explicitly incorporate the effects of data type (nuclear vs. mitochondrial DNA) for identifying the most reliable or congruent fossil calibrations. We used advanced (Caenophidian) snakes as a case study; however, our results are applicable to any taxonomic group with multiple candidate fossils, provided appropriate taxon sampling and sufficient molecular sequence data are available. We found that data type strongly influenced which fossil calibrations were identified as outliers, regardless of which method was used. Despite the use of complex partitioned models of sequence evolution and multiple calibrations throughout the tree, saturation

  11. Observational Approach to Molecular Cloud Evolution with the Submillimeter CI Lines

    Science.gov (United States)

    Oka, T.; Yamamoto, S.; Mt. Fuji Submillimeter-Wave Telescope Group

    Neutral carbon atoms (CI) play important role both in chemistry and cooling processes of interstellar molecular clouds. It is thus crucial to explore its large area distribution to investigate formation processes and thermal balance of molecular clouds. We have constructed a 1.2 m submillimeter-wave telescope at the summit of Mt.Fuji. The telescope was designed for the exclusive use of surveying molecular clouds in two submillimeter CI lines, 3P1--3P0 (492 GHz) and 3P2--3P1 (809 GHz), of atomic carbon. It has been operated successfully during 4 observing seasons since July 1998 in a remote way from the Hongo campus of the University of Tokyo. We have already revealed large-scale CI 492 GHz distributions of many giant molecular clouds, including Orion MC, Taurus MC, DR15, DR21, NGC2264, M17, W3, W44, W51, Rosette MC, covering more than 40 square degrees of the sky. The distribution of CI 492 GHz emission is found to be different from those of the 13CO or C18O emission in some clouds. We found the spatial order of C+/CO/C from UV sources. This is the general property of the cloud illuminated by intense UV radiation, whereas it is apparently inconsistent with the standard photodissociation region (PDR) picture. We also found CI-rich areas (C/CO˜1) in several dark clouds without strong UV sources. These results are discussed in relation to formation processes of molecular clouds and dense cloud cores.

  12. Autonomous Agents: The Origins and Co-Evolution of Reproducing Molecular Systems

    Science.gov (United States)

    Kauffman, Stuart

    1999-01-01

    The central aim of this award concerned an investigation into, and adequate formulation of, the concept of an "autonomous agent." If we consider a bacterium swimming upstream in a glucose gradient, we are willing to say of the bacterium that it is going to get food. That is, we are willing, and do, describe the bacterium as acting on its own behalf in an environment. All free living cells are, in this sense, autonomous agents. But the bacterium is "just" a set of molecules. We define an autonomous agent as a physical system able to act on its own behalf in an environment, then ask, "What must a physical system be to be an autonomous agent?" The tentative definition for a molecular autonomous agent is that it must be self-reproducing and carry out at least one thermodynamic work cycle. The work carried out in this grant involved, among other features, the development of a detailed model of a molecular autonomous agent, and study of the kinetics of this system. In particular, a molecular autonomous agent must, by the above tentative definition, not only reproduce, but must carry out at least one work cycle. I took, as a simple example of a self-reproducing molecular system, the single-stranded DNA hexamer 3'CCGCGG5' which can line up and ligate its two complementary trimers, 5'CCG3' and 5'CGG3'. But the two ligated trimers constitute the same molecular sequence in the 3' to 5' direction as the initial hexamer, hence this system is autocatalytic. On the other hand the above system is not yet an autonomous agent. At the minimum, autonomous agents, as I have defined them, are a new class of chemical reaction network. At a maximum, they may constitute a proper definition of life itself.

  13. Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life.

    Directory of Open Access Journals (Sweden)

    A Faddeeva

    Full Text Available Collembola (springtails represent a soil-living lineage of hexapods in between insects and crustaceans. Consequently, their genomes may hold key information on the early processes leading to evolution of Hexapoda from a crustacean ancestor.We assembled and annotated transcriptomes of the Collembola Folsomia candida and Orchesella cincta, and performed comparative analysis with protein-coding gene sequences of three crustaceans and three insects to identify adaptive signatures associated with the evolution of hexapods within the pancrustacean clade.Assembly of the springtail transcriptomes resulted in 37,730 transcripts with predicted open reading frames for F. candida and 32,154 for O. cincta, of which 34.2% were functionally annotated for F. candida and 38.4% for O. cincta. Subsequently, we predicted orthologous clusters among eight species and applied the branch-site test to detect episodic positive selection in the Hexapoda and Collembola lineages. A subset of 250 genes showed significant positive selection along the Hexapoda branch and 57 in the Collembola lineage. Gene Ontology categories enriched in these genes include metabolism, stress response (i.e. DNA repair, immune response, ion transport, ATP metabolism, regulation and development-related processes (i.e. eye development, neurological development.We suggest that the identified gene families represent processes that have played a key role in the divergence of hexapods within the pancrustacean clade that eventually evolved into the most species-rich group of all animals, the hexapods. Furthermore, some adaptive signatures in collembolans may provide valuable clues to understand evolution of hexapods on land.

  14. Molecular evolution of the cytochrome c oxidase subunit 5A gene in primates

    Directory of Open Access Journals (Sweden)

    Wildman Derek E

    2008-01-01

    Full Text Available Abstract Background Many electron transport chain (ETC genes show accelerated rates of nonsynonymous nucleotide substitutions in anthropoid primate lineages, yet in non-anthropoid lineages the ETC proteins are typically highly conserved. Here, we test the hypothesis that COX5A, the ETC gene that encodes cytochrome c oxidase subunit 5A, shows a pattern of anthropoid-specific adaptive evolution, and investigate the distribution of this protein in catarrhine brains. Results In a dataset comprising 29 vertebrate taxa, including representatives from all major groups of primates, there is nearly 100% conservation of the COX5A amino acid sequence among extant, non-anthropoid placental mammals. The most recent common ancestor of these species lived about 100 million years (MY ago. In contrast, anthropoid primates show markedly elevated rates of nonsynonymous evolution. In particular, branch site tests identify five positively selected codons in anthropoids, and ancestral reconstructions infer that substitutions in these codons occurred predominantly on stem lineages (anthropoid, ape and New World monkey and on the human terminal branch. Examination of catarrhine brain samples by immunohistochemistry characterizes for the first time COX5A protein distribution in the primate neocortex, and suggests that the protein is most abundant in the mitochondria of large-size projection neurons. Real time quantitative PCR supports previous microarray results showing COX5A is expressed in cerebral cortical tissue at a higher level in human than in chimpanzee or gorilla. Conclusion Taken together, these results suggest that both protein structural and gene regulatory changes contributed to COX5A evolution during humankind's ancestry. Furthermore, these findings are consistent with the hypothesis that adaptations in ETC genes contributed to the emergence of the energetically expensive anthropoid neocortex.

  15. Molecular epidemiology, evolution and phylogeny of foot-and-mouth disease virus

    DEFF Research Database (Denmark)

    Jamal, Syed Muhammad; Belsham, Graham J

    2018-01-01

    frequently arise (e.g. with modified antigenicity). Using nucleotide sequencing technologies, this rapid evolution of the viral genome can be followed. This allows the tracing of virus transmission pathways within an outbreak of disease if (near) full-length genome sequences can be generated. Furthermore......, which comprise a single topotype), genotypes, lineages and sub-lineages, which are usually restricted to specific geographical regions. However, sometimes, trans-regional spread of some strains occurs. Due to the error-prone replication of the RNA genome, the virus continuously evolves and new strains...

  16. Tracking the molecular evolution of photosynthesis through characterization of atomic contents of the photosynthetic units.

    Science.gov (United States)

    Chen, Min; Zhang, Yinan

    2008-09-01

    Oxygen molecules have a great impact on protein evolution. We have performed a comparative study of key photosynthetic proteins in order to seek the answer to the question; did the evolutionary substitution of oxygen- and nitrogen-containing residues in the photosynthetic proteins correspond to nutrient constraints and metabolic optimization? The D1 peptide in RC II complexes has higher oxygen-containing amino acid residues and PufL/PufM have lower oxygen content in their peptides. In this article, we also discuss the possible influences of micro-environment and the available nutrients on the protein structure and their atomic distribution.

  17. Cognitive neuroepigenetics: the next evolution in our understanding of the molecular mechanisms underlying learning and memory?

    Science.gov (United States)

    Marshall, Paul; Bredy, Timothy W.

    2016-07-01

    A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. So far, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here, we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory. This neuroepigenetic view suggests that DNA, RNA and protein each influence one another to produce a holistic cellular state that contributes to the formation and maintenance of memory, and predicts a parallel and distributed system for the consolidation, storage and retrieval of the engram.

  18. Pteros 2.0: Evolution of the fast parallel molecular analysis library for C++ and python.

    Science.gov (United States)

    Yesylevskyy, Semen O

    2015-07-15

    Pteros is the high-performance open-source library for molecular modeling and analysis of molecular dynamics trajectories. Starting from version 2.0 Pteros is available for C++ and Python programming languages with very similar interfaces. This makes it suitable for writing complex reusable programs in C++ and simple interactive scripts in Python alike. New version improves the facilities for asynchronous trajectory reading and parallel execution of analysis tasks by introducing analysis plugins which could be written in either C++ or Python in completely uniform way. The high level of abstraction provided by analysis plugins greatly simplifies prototyping and implementation of complex analysis algorithms. Pteros is available for free under Artistic License from http://sourceforge.net/projects/pteros/. © 2015 Wiley Periodicals, Inc.

  19. Observational Approach to Molecular Cloud Evolutation with the Submillimeter-Wave CI Lines

    Science.gov (United States)

    Oka, T.; Yamamoto, S.

    Neutral carbon atoms (CI) play important roles both in chemistry and cooling processes of interstellar molecular clouds. It is thus crucial to explore its large area distribution to obtain information on formation processes and thermal balance of molecular clouds. However, observations of the submillimeter-wave CI lines have been limited to small areas around some representative objects. We have constructed a 1.2 m submillimeter-wave telescope at the summit of Mt.Fuji. The telescope was designed for the exclusive use of surveying molecular clouds in two submillimeter-wave CI lines, 3 P1 -3 P0 (492GHz) and 3 P2 -3 P1 (809 GHz), of atomic carbon. A superconductor-insulator-superconductor (SIS) mixer receiver was equipped on the Nasmyth focus of the telescope. The receiver noise temperatures [Trx(DSB)] are 300 K and 1000 K for the 492 GHz and the 809 GHz mixers, respectively. The intermediate frequency is centered at 2 GHz, having a 700 MHz bandwidth. An acousto-optical spectrometer (AOS) with 1024 channel outputs is used as a receiver backend. The telescope was installed at Nishi-yasugawara (alt. 3725 m), which is 200 m north of the highest peak, Kengamine (3776 m), in July 1998. It has b en operatede successfully during 4 observing seasons in a remote way from the Hongo campus of the University of Tokyo. We have already observed more than 40 square degrees of the sky with the CI 492 GHz line. The distribution of CI emission is found to be different from those of the 13 CO or C1 8 O emission in some clouds. These differences are discussed in relation to formation processes of molecular clouds.

  20. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown

    OpenAIRE

    McGowen, Michael R.; Grossman, Lawrence I.; Wildman, Derek E.

    2012-01-01

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10 000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in ...

  1. Evolutions of Molecular Oxygen Formation and Sodium Migration in Xe Ion Irradiated Borosilicate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang; Zhang, Duofei F.; Lv, Peng; Zhang, Jiandong; Du, Xing; Yuan, Wei; Nan, Shuai; Zhu, Zihua; Wang, Tieshan

    2016-07-23

    The modifications of a commercial borosilicate glass induced by Xe ion irradiation have been studied by Raman spectroscopy and ToF-SIMS depth profiling. A decrease in the average Si–O–Si angle, an increase in the population of three-membered rings and an increase of the glass polymerization are evidenced. The molecular oxygen appears in the irradiated glasses after the irradiation fluence reaches approximately 1015 ions/cm2. The O2 concentration decreaseswith the depth of irradiated glass at the ion fluence of 2 × 1016 ions/cm2. A sodiumdepleted layer at the surface and a depleted zone at around the penetration depth of 5 MeV Xe ions are observed. The thickness of the sodium depleted layer increases with the irradiation fluence. Moreover, comparing with previous results after electron and Ar ion irradiation, it can be concluded that the nuclear energy deposition can partially inhibit the formation of molecular oxygen and increase the threshold value of electron energy deposition for the molecular oxygen formation.

  2. A generation-time effect on the rate of molecular evolution in bacteria.

    Science.gov (United States)

    Weller, Cory; Wu, Martin

    2015-03-01

    Molecular evolutionary rate varies significantly among species and a strict global molecular clock has been rejected across the tree of life. Generation time is one primary life-history trait that influences the molecular evolutionary rate. Theory predicts that organisms with shorter generation times evolve faster because of the accumulation of more DNA replication errors per unit time. Although the generation-time effect has been demonstrated consistently in plants and animals, the evidence of its existence in bacteria is lacking. The bacterial phylum Firmicutes offers an excellent system for testing generation-time effect because some of its members can enter a dormant, nonreproductive endospore state in response to harsh environmental conditions. It follows that spore-forming bacteria would--with their longer generation times--evolve more slowly than their nonspore-forming relatives. It is therefore surprising that a previous study found no generation-time effect in Firmicutes. Using a phylogenetic comparative approach and leveraging on a large number of Firmicutes genomes, we found sporulation significantly reduces the genome-wide spontaneous DNA mutation rate and protein evolutionary rate. Contrary to the previous study, our results provide strong evidence that the evolutionary rates of bacteria, like those of plants and animals, are influenced by generation time. © 2015 The Author(s).

  3. Comparative Genomic Analysis of the Streptococcus dysgalactiae Species Group: Gene Content, Molecular Adaptation, and Promoter Evolution

    Science.gov (United States)

    Suzuki, Haruo; Lefébure, Tristan; Hubisz, Melissa Jane; Pavinski Bitar, Paulina; Lang, Ping; Siepel, Adam; Stanhope, Michael J.

    2011-01-01

    Comparative genomics of closely related bacterial species with different pathogenesis and host preference can provide a means of identifying the specifics of adaptive differences. Streptococcus dysgalactiae (SD) is comprised of two subspecies: S. dysgalactiae subsp. equisimilis is both a human commensal organism and a human pathogen, and S. dysgalactiae subsp. dysgalactiae is strictly an animal pathogen. Here, we present complete genome sequences for both taxa, with analyses involving other species of Streptococcus but focusing on adaptation in the SD species group. We found little evidence for enrichment in biochemical categories of genes carried by each SD strain, however, differences in the virulence gene repertoire were apparent. Some of the differences could be ascribed to prophage and integrative conjugative elements. We identified approximately 9% of the nonrecombinant core genome to be under positive selection, some of which involved known virulence factors in other bacteria. Analyses of proteomes by pooling data across genes, by biochemical category, clade, or branch, provided evidence for increased rates of evolution in several gene categories, as well as external branches of the tree. Promoters were primarily evolving under purifying selection but with certain categories of genes evolving faster. Many of these fast-evolving categories were the same as those associated with rapid evolution in proteins. Overall, these results suggest that adaptation to changing environments and new hosts in the SD species group has involved the acquisition of key virulence genes along with selection of orthologous protein-coding loci and operon promoters. PMID:21282711

  4. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.

    Science.gov (United States)

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F Alex; Lemke, Cornelia; Tong, Eric J; Chen, Cuixia; Wai, Ching Man; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-08-21

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Y(h)). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Y(h) chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution.

  5. Slow molecular evolution in 18S rDNA, rbcL and nad5 genes of mosses compared with higher plants.

    Science.gov (United States)

    Stenøien, H K

    2008-03-01

    The evolutionary potential of bryophytes (mosses, liverworts and hornworts) has been debated for decades. Fossil record and biogeographical distribution patterns suggest very slow morphological evolution and the retainment of several ancient traits since the split with vascular plants some 450 million years ago. Many have argued that bryophytes may evolve as rapidly as higher plants on the molecular level, but this hypothesis has not been tested so far. Here, it is shown that mosses have experienced significantly lower rates of molecular evolution than higher plants within 18S rDNA (nuclear), rbcL (chloroplast) and nad5 (mitochondrial) genes. Mosses are on an average evolving 2-3 times slower than ferns, gymnosperms and angiosperms; and also green algae seem to be evolving faster than nonvascular plants. These results support the observation of a general correlation between morphological and molecular evolutionary rates in plants and also show that mosses are 'evolutionary sphinxes' regarding both morphological and molecular evolutionary potential.

  6. Staminal Evolution in the Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence for Multiple Origins of the Staminal Lever

    Science.gov (United States)

    Walker, Jay B.; Sytsma, Kenneth J.

    2007-01-01

    Background and Aims The genus Salvia has traditionally included any member of the tribe Mentheae (Lamiaceae) with only two stamens and with each stamen expressing an elongate connective. The recent demonstration of the non-monophyly of the genus presents interesting implications for staminal evolution in the tribe Mentheae. In the context of a molecular phylogeny, the staminal morphology of the various lineages of Salvia and related genera is characterized and an evolutionary interpretation of staminal variation within the tribe Mentheae is presented. Methods Two molecular analyses are presented in order to investigate phylogenetic relationships in the tribe Mentheae and the genus Salvia. The first presents a tribal survey of the Mentheae and the second concentrates on Salvia and related genera. Schematic sketches are presented for the staminal morphology of each major lineage of Salvia and related genera. Key Results These analyses suggest an independent origin of the staminal elongate connective on at least three different occasions within the tribe Mentheae, each time with a distinct morphology. Each independent origin of the lever mechanism shows a similar progression of staminal change from slight elongation of the connective tissue separating two fertile thecae to abortion of the posterior thecae and fusion of adjacent posterior thecae. A monophyletic lineage within the Mentheae is characterized consisting of the genera Lepechinia, Melissa, Salvia, Dorystaechas, Meriandra, Zhumeria, Perovskia and Rosmarinus. Conclusions Based on these results the following are characterized: (1) the independent origin of the staminal lever mechanism on at least three different occasions in Salvia, (2) that Salvia is clearly polyphyletic, with five other genera intercalated within it, and (3) staminal evolution has proceeded in different ways in each of the three lineages of Salvia but has resulted in remarkably similar staminal morphologies. PMID:16926227

  7. Molecular systematics and evolution of the "Apollo" butterflies of the genus Parnassius (Lepidoptera: Papilionidae) based on mitochondrial DNA sequence data.

    Science.gov (United States)

    Omoto, Keiichi; Katoh, Toru; Chichvarkhin, Anton; Yagi, Takashi

    2004-02-04

    Sequences of 777 bp of mtDNA-ND5 locus were determined in order to shed light on the molecular systematics and evolution of the "Apollo" butterflies. Examined were nearly all of about 50 species of the genus Parnassius, together with seven species of the allied genera in the subfamily Parnassiinae (Papilionidae). The NJ and the MP phylogenetic trees show that the "Apollos" constitute a monophyletic group, comprising a number of cluster groups probably reflecting a relatively rapid radiation in evolution. The clusters of species-groups denoted I-VIII correspond to those species-groups recognized on the basis of morphological characters. Our findings will also help understand the biological relationships among several species or subspecies on which the classical taxonomy is in dispute. The unexpected finding is that among the samples of allied genera compared, Hypermnestra helios appears to be the most closely related to the "Apollos", despite morphological and behavioral dissimilarity. Furthermore, in contrast to the previous higher taxonomy, Archon apollinus which is classified in the tribe Parnassiini was found genetically closer to the tribe Zerynthiini, raising a taxonomic controversy.

  8. Phylogeography of the sand dollar genus Encope: implications regarding the Central American Isthmus and rates of molecular evolution.

    Science.gov (United States)

    Coppard, Simon E; Lessios, H A

    2017-09-14

    Vicariant events have been widely used to calibrate rates of molecular evolution, the completion of the Central American Isthmus more extensively than any other. Recent studies have claimed that rather than the generally accepted date of ~3 million years ago (Ma), the Isthmus was effectively complete by the middle Miocene, 13 Ma. We present a fossil calibrated phylogeny of the new world sand dollar genus Encope, based on one nuclear and four mitochondrial genes, calibrated with fossils at multiple nodes. Present day distributions of Encope are likely the result of multiple range contractions and extinction events. Most species are now endemic to a single region, but one widely distributed species in each ocean is composed of morphotypes previously described as separate species. The most recent separation between eastern Pacific and Caribbean extant clades occurred at 4.90 Ma, indicating that the Isthmus of Panama allowed genetic exchange until the Pliocene. The rate of evolution of mitochondrial genes in Encope has been ten times slower than in the closely related genera Mellita and Lanthonia. This large difference in rates suggests that splits between eastern Pacific and Caribbean biota, dated on the assumption of a "universal" mitochondrial DNA clock are not valid.

  9. A reappraisal of the evolution of Asian snakehead fishes (Pisces, Channidae) using molecular data from multiple genes and fossil calibration.

    Science.gov (United States)

    Adamson, Eleanor A S; Hurwood, David A; Mather, Peter B

    2010-08-01

    Freshwater snakehead fishes (Channidae) provide an interesting target for phylogenetic analysis for the following reasons, their unusual biology, potential for cryptic diversity and availability of a good fossil record. Here, a multi-locus molecular phylogeny was constructed and calibrated using two fossil dates to estimate divergence times within the family. Sampling aimed to explore interspecific divergence of Channa species across Southeast Asia and intra-specific variation where species possessed natural geographical ranges that were extensive. Results contradict divergence times estimated previously independently from single locus mitochondrial data or the fossil record and suggest that after divergence from African taxa 40-50 Ma, evolution of Asian snakeheads has been heavily influenced by multiple broad scale dispersal events across India and Southeast Asia. A similar pattern of divergence within multiple clades suggests that west-east dispersal was limited for many taxa during the Miocene. Deep intra-specific divergence was inferred for C. striata, indicating that long historical periods of isolation ( approximately 8Ma) have not resulted in the evolution of reproductive isolation within this species. Results support suggestions that C. marulia like fishes in northern Cambodia may constitute an undescribed species, and that Indian C. diplogramma warrants taxonomic recognition as being distinct from Southeast Asian C. micropeltes, with the two taxa last sharing a common ancestor in the mid- to late-Miocene. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Molecular characterization and evolution of a gene family encoding both female- and male-specific reproductive proteins in Drosophila.

    Science.gov (United States)

    Sirot, Laura K; Findlay, Geoffrey D; Sitnik, Jessica L; Frasheri, Dorina; Avila, Frank W; Wolfner, Mariana F

    2014-06-01

    Gene duplication is an important mechanism for the evolution of new reproductive proteins. However, in most cases, each resulting paralog continues to function within the same sex. To investigate the possibility that seminal fluid proteins arise through duplicates of female reproductive genes that become "co-opted" by males, we screened female reproductive genes in Drosophila melanogaster for cases of duplication in which one of the resulting paralogs produces a protein in males that is transferred to females during mating. We identified a set of three tandemly duplicated genes that encode secreted serine-type endopeptidase homologs, two of which are expressed primarily in the female reproductive tract (RT), whereas the third is expressed specifically in the male RT and encodes a seminal fluid protein. Evolutionary and gene expression analyses across Drosophila species suggest that this family arose from a single-copy gene that was female-specific; after duplication, one paralog evolved male-specific expression. Functional tests of knockdowns of each gene in D. melanogaster show that one female-expressed gene is essential for full fecundity, and both female-expressed genes contribute singly or in combination to a female's propensity to remate. In contrast, knockdown of the male-expressed paralog had no significant effect on female fecundity or remating. These data are consistent with a model in which members of this gene family exert effects on females by acting on a common, female-expressed target. After duplication and male co-option of one paralog, the evolution of the interacting proteins could have resulted in differential strengths or effects of each paralog. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Identification, distribution and molecular evolution of the pacifastin gene family in Metazoa

    Directory of Open Access Journals (Sweden)

    Van Soest Sofie

    2009-05-01

    Full Text Available Abstract Background Members of the pacifastin family are serine peptidase inhibitors, most of which are produced as multi domain precursor proteins. Structural and biochemical characteristics of insect pacifastin-like peptides have been studied intensively, but only one inhibitor has been functionally characterised. Recent sequencing projects of metazoan genomes have created an unprecedented opportunity to explore the distribution, evolution and functional diversification of pacifastin genes in the animal kingdom. Results A large scale in silico data mining search led to the identification of 83 pacifastin members with 284 inhibitor domains, distributed over 55 species from three metazoan phyla. In contrast to previous assumptions, members of this family were also found in other phyla than Arthropoda, including the sister phylum Onychophora and the 'primitive', non-bilaterian Placozoa. In Arthropoda, pacifastin members were found to be distributed among insect families of nearly all insect orders and for the first time also among crustacean species other than crayfish and the Chinese mitten crab. Contrary to precursors from Crustacea, the majority of insect pacifastin members contain dibasic cleavage sites, indicative for posttranslational processing into numerous inhibitor peptides. Whereas some insect species have lost the pacifastin gene, others were found to have several (often clustered paralogous genes. Amino acids corresponding to the reactive site or involved in the folding of the inhibitor domain were analysed as a basis for the biochemical properties. Conclusion The absence of the pacifastin gene in some insect genomes and the extensive gene expansion in other insects are indicative for the rapid (adaptive evolution of this gene family. In addition, differential processing mechanisms and a high variability in the reactive site residues and the inner core interactions contribute to a broad functional diversification of inhibitor

  12. Molecular mechanisms for the evolution of bacterial morphologies and growth modes

    Directory of Open Access Journals (Sweden)

    Amelia M Randich

    2015-06-01

    Full Text Available Bacteria exhibit a rich diversity of morphologies. Within this diversity, there is a uniformity of shape for each species that is replicated faithfully each generation, suggesting that bacterial shape is as selectable as any other biochemical adaptation. We describe the spatiotemporal mechanisms that target peptidoglycan synthesis to different subcellular zones to generate the rod-shape of model organisms Escherichia coli and Bacillus subtilis. We then demonstrate, using the related genera Caulobacter and Asticcacaulis as examples, how the modularity of the core components of the peptidoglycan synthesis machinery permits repositioning of the machinery to achieve different growth modes and morphologies. Finally, we highlight cases in which the mechanisms that underlie morphological evolution are beginning to be understood, and how they depend upon the expansion and diversification of the core components of the peptidoglycan synthesis machinery.

  13. FGF21 as an Endocrine Regulator in Lipid Metabolism: From Molecular Evolution to Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Yusuke Murata

    2011-01-01

    Full Text Available The FGF family comprises twenty-two structurally related proteins with functions in development and metabolism. The Fgf21 gene was generated early in vertebrate evolution. FGF21 acts as an endocrine regulator in lipid metabolism. Hepatic Fgf21 expression is markedly induced in mice by fasting or a ketogenic diet. Experiments with Fgf21 transgenic mice and cultured cells indicate that FGF21 exerts pharmacological effects on glucose and lipid metabolism in hepatocytes and adipocytes via cell surface FGF receptors. However, experiments with Fgf21 knockout mice indicate that FGF21 inhibits lipolysis in adipocytes during fasting and attenuates torpor induced by a ketogenic diet but maybe not a physiological regulator for these hepatic functions. These findings suggest the pharmacological effects to be distinct from the physiological roles. Serum FGF21 levels are increased in patients with metabolic diseases having insulin resistance, indicating that FGF21 is a metabolic regulator and a biomarker for these diseases.

  14. Molecular Epidemiology and Evolution of West Nile Virus in North America

    Directory of Open Access Journals (Sweden)

    Alan D. T. Barrett

    2013-10-01

    Full Text Available West Nile virus (WNV was introduced to New York in 1999 and rapidly spread throughout North America and into parts of Central and South America. Displacement of the original New York (NY99 genotype by the North America/West Nile 2002 (NA/WN02 genotype occurred in 2002 with subsequent identification of a novel genotype in 2003 in isolates collected from the southwestern Unites States region (SW/WN03 genotype. Both genotypes co-circulate to date. Subsequent WNV surveillance studies have confirmed additional genotypes in the United States that have become extinct due to lack of a selective advantage or stochastic effect; however, the dynamic emergence, displacement, and extinction of multiple WNV genotypes in the US from 1999–2012 indicates the continued evolution of WNV in North America.

  15. Molecular evolution of key genes for type II secretion in Legionella pneumophila.

    Science.gov (United States)

    Costa, Joana; d'Avó, Ana Filipa; da Costa, Milton S; Veríssimo, António

    2012-08-01

    Given the role of type II protein secretion system (T2S) in the ecology and pathogenesis of Legionella pneumophila, it is possible that this system is a target for adaptive evolution. The population genetic structure of L.pneumophila was inferred from the partial sequences of rpoB and from the complete sequence of three T2S structural components (lspD, lspE and pilD) and from two T2S effectors critical for intracellular infection of protozoa (proA and srnA) of 37 strains isolated from natural and man-made environments and disease-related from worldwide sources. A phylogenetic analysis was obtained for the concatenated alignment and for each individual locus. Seven main groups were identified containing the same L.pneumophila strains, suggesting an ancient divergence for each cluster and indicating that the operating selective pressures have equally affected the evolution of the five genes. Although linkage disequilibrium analysis indicate a clonal nature for population structure in this sample, our results indicate that recombination is a common phenomenon among T2S-related genes on this species, as 24 of the 37 L.pneumophila isolates contained at least one locus in which recombination was identified. Furthermore, neutral selection acting on the analysed T2S-related genes emerged as a clear result, namely on T2S effectors, ProA and SrnA, indicating that they are probably implicated in conserved virulence mechanisms through legionellae hosts. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Genome-wide and molecular evolution analysis of the subtilase gene family in Vitis vinifera.

    Science.gov (United States)

    Cao, Jun; Han, Xi; Zhang, Ticao; Yang, Yongping; Huang, Jinling; Hu, Xiangyang

    2014-12-16

    Vitis vinifera (grape) is one of the most economically significant fruit crops in the world. The availability of the recently released grape genome sequence offers an opportunity to identify and analyze some important gene families in this species. Subtilases are a group of subtilisin-like serine proteases that are involved in many biological processes in plants. However, no comprehensive study incorporating phylogeny, chromosomal location and gene duplication, gene organization, functional divergence, selective pressure and expression profiling has been reported so far for the grape. In the present study, a comprehensive analysis of the subtilase gene family in V. vinifera was performed. Eighty subtilase genes were identified. Phylogenetic analyses indicated that these subtilase genes comprised eight groups. The gene organization is considerably conserved among the groups. Distribution of the subtilase genes is non-random across the chromosomes. A high proportion of these genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the subtilase gene family. Analyses of divergence and adaptive evolution show that while purifying selection may have been the main force driving the evolution of grape subtilases, some of the critical sites responsible for the divergence may have been under positive selection. Further analyses of real-time PCR data suggested that many subtilase genes might be important in the stress response and functional development of plants. Tandem duplications as well as purifying and positive selections have contributed to the functional divergence of subtilase genes in V. vinifera. The data may contribute to a better understanding of the grape subtilase gene family.

  17. Atomic structure evolution during solidification of liquid niobium from ab initio molecular dynamics simulations.

    Science.gov (United States)

    Debela, T T; Wang, X D; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z

    2014-02-05

    Atomic structure transitions of liquid niobium during solidification, at different temperatures from 3200 to 1500 K, were studied by using ab initio molecular dynamics simulations. The local atomic structure variations with temperature are investigated by using the pair-correlation function, the structure factor, the bond-angle distribution function, the Honeycutt-Anderson index, Voronoi tessellation and the cluster alignment methods. Our results clearly show that, upon quenching, the icosahedral short-range order dominates in the stable liquid and supercooled liquid states before the system transforms to crystalline body-center cubic phase at a temperature of about 1830 K.

  18. Molecular evolution of the human SRPX2 gene that causes brain disorders of the Rolandic and Sylvian speech areas

    Directory of Open Access Journals (Sweden)

    Levasseur Anthony

    2007-10-01

    Full Text Available Abstract Background The X-linked SRPX2 gene encodes a Sushi Repeat-containing Protein of unknown function and is mutated in two disorders of the Rolandic/Sylvian speech areas. Since it is linked to defects in the functioning and the development of brain areas for speech production, SRPX2 may thus have participated in the adaptive organization of such brain regions. To address this issue, we have examined the recent molecular evolution of the SRPX2 gene. Results The complete coding region was sequenced in 24 human X chromosomes from worldwide populations and in six representative nonhuman primate species. One single, fixed amino acid change (R75K has been specifically incorporated in human SRPX2 since the human-chimpanzee split. The R75K substitution occurred in the first sushi domain of SRPX2, only three amino acid residues away from a previously reported disease-causing mutation (Y72S. Three-dimensional structural modeling of the first sushi domain revealed that Y72 and K75 are both situated in the hypervariable loop that is usually implicated in protein-protein interactions. The side-chain of residue 75 is exposed, and is located within an unusual and SRPX-specific protruding extension to the hypervariable loop. The analysis of non-synonymous/synonymous substitution rate (Ka/Ks ratio in primates was performed in order to test for positive selection during recent evolution. Using the branch models, the Ka/Ks ratio for the human branch was significantly different (p = 0.027 from that of the other branches. In contrast, the branch-site tests did not reach significance. Genetic analysis was also performed by sequencing 9,908 kilobases (kb of intronic SRPX2 sequences. Despite low nucleotide diversity, neither the HKA (Hudson-Kreitman-Aguadé test nor the Tajima's D test reached significance. Conclusion The R75K human-specific variation occurred in an important functional loop of the first sushi domain of SRPX2, indicating that this evolutionary

  19. Sandokanid phylogeny based on eight molecular markers--the evolution of a southeast Asian endemic family of Laniatores (Arachnida, Opiliones).

    Science.gov (United States)

    Sharma, Prashant; Giribet, Gonzalo

    2009-08-01

    Little is known about the familial and generic level phylogeny of Laniatores, the most diverse suborder of Opiliones. We investigated the internal phylogeny of the family Sandokanidae (formerly Oncopodidae), the putative sister group of the other families of the highly diverse infraorder Grassatores (Opiliones: Laniatores), on the basis of sequence data from eight molecular loci: 18S rRNA, 28S rRNA, 12S rRNA, 16S rRNA, cytochrome c oxidase subunit I (COI), histones H3, H4, and U2 snRNA. Exemplars of all recognized sandokanid genera, as well as a putative new genus from Thailand, were included. Data analyses were based on a direct optimization approach using parsimony, as well as maximum likelihood and Bayesian approaches on static alignments. The results obtained include the monophyly of Sandokanidae and its stability under a variety of parameter sets and methods. The internal phylogeny is relatively robust to parameter choice and demonstrates the monophyly of nearly all described genera, corroborating previous morphological observations. However, conflict among data sets exists with respect to the monophyly of the largest genus Gnomulus. Morphological character evolution, particularly of characters used to define genera, such as tarsal count and male genitalia, is reexamined and the performance of the eight molecular markers in phylogenetic estimation is evaluated.

  20. Inferring Diversity and Evolution in Fish by Means of Integrative Molecular Cytogenetics

    Directory of Open Access Journals (Sweden)

    Roberto Ferreira Artoni

    2015-01-01

    Full Text Available Fish constitute a paraphyletic and profusely diversified group that has historically puzzled ichthyologists. Hard efforts are necessary to better understand this group, due to its extensive diversity. New species are often identified and it leads to questions about their phylogenetic aspects. Cytogenetics is becoming an important biodiversity-detection tool also used to measure biodiversity evolutionary aspects. Molecular cytogenetics by fluorescence in situ hybridization (FISH allowed integrating quantitative and qualitative data from DNA sequences and their physical location in chromosomes and genomes. Although there is no intention on presenting a broader review, the current study presents some evidences on the need of integrating molecular cytogenetic data to other evolutionary biology tools to more precisely infer cryptic species detection, population structuring in marine environments, intra- and interspecific karyoevolutionary aspects of freshwater groups, evolutionary dynamics of marine fish chromosomes, and the origin and differentiation of sexual and B chromosomes. The new cytogenetic field, called cytogenomics, is spreading due to its capacity to give resolute answers to countless questions that cannot be answered by traditional methodologies. Indeed, the association between chromosomal markers and DNA sequencing as well as between biological diversity analysis methodologies and phylogenetics triggers the will to search for answers about fish evolutionary, taxonomic, and structural features.

  1. Morphological Evolution of Self-Assembled Structures Induced by the Molecular Architecture of Supra-Amphiphiles.

    Science.gov (United States)

    Wang, Juan; Li, Boxuan; Wang, Xing; Yang, Fei; Shen, Hong; Wu, Decheng

    2016-12-27

    A series of telechelic supramolecular amphiphiles [POSS-Azo 8 @(β-CD-PDMAEMA) 1→8 ] was accomplished by orthogonally coupling the multiarm host polymer β-cyclodextrin-poly(dimethylaminoethyl methacrylate) (β-CD-PDMAEMA) with an octatelechelic guest molecule azobenzene modified-polyhedral oligomeric silsesquioxanes (POSS-Azo 8 ) under different host-guest ratios. These telechelic supramolecular amphiphiles possess a rigid core and flexible corona. Increasing the multiarm host polymer coupled onto the rigid POSS core made the molecular architecture tend to be symmetrical and spherical. POSS-Azo 8 @[β-CD-PDMAEMA] 1→8 could self-assemble into diverse morphologies evolving from spherical micelles, wormlike micelles, and branched aggregates to bowl-shaped vesicles. Distinct from the traditional linear amphiphilic polymers, we discovered that the self-assembly of POSS-Azo 8 @[β-CD-PDMAEMA] 1→8 was dominantly regulated by their molecular architectures instead of hydrophilicity, which has also been verified using computer simulation results.

  2. Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida) reveals dynamic evolution of symbiotic lifestyle and interphylum host switching.

    Science.gov (United States)

    Goto, Ryutaro; Kawakita, Atsushi; Ishikawa, Hiroshi; Hamamura, Yoichi; Kato, Makoto

    2012-09-06

    Galeommatoidea is a superfamily of bivalves that exhibits remarkably diverse lifestyles. Many members of this group live attached to the body surface or inside the burrows of other marine invertebrates, including crustaceans, holothurians, echinoids, cnidarians, sipunculans and echiurans. These symbiotic species exhibit high host specificity, commensal interactions with hosts, and extreme morphological and behavioral adaptations to symbiotic life. Host specialization to various animal groups has likely played an important role in the evolution and diversification of this bivalve group. However, the evolutionary pathway that led to their ecological diversity is not well understood, in part because of their reduced and/or highly modified morphologies that have confounded traditional taxonomy. This study elucidates the taxonomy of the Galeommatoidea and their evolutionary history of symbiotic lifestyle based on a molecular phylogenic analysis of 33 galeommatoidean and five putative galeommatoidean species belonging to 27 genera and three families using two nuclear ribosomal genes (18S and 28S ribosomal DNA) and a nuclear (histone H3) and mitochondrial (cytochrome oxidase subunit I) protein-coding genes. Molecular phylogeny recovered six well-supported major clades within Galeommatoidea. Symbiotic species were found in all major clades, whereas free-living species were grouped into two major clades. Species symbiotic with crustaceans, holothurians, sipunculans, and echiurans were each found in multiple major clades, suggesting that host specialization to these animal groups occurred repeatedly in Galeommatoidea. Our results suggest that the evolutionary history of host association in Galeommatoidea has been remarkably dynamic, involving frequent host switches between different animal phyla. Such an unusual pattern of dynamic host switching is considered to have resulted from their commensalistic lifestyle, in which they maintain filter-feeding habits even in symbiotic

  3. Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida reveals dynamic evolution of symbiotic lifestyle and interphylum host switching

    Directory of Open Access Journals (Sweden)

    Goto Ryutaro

    2012-09-01

    Full Text Available Abstract Background Galeommatoidea is a superfamily of bivalves that exhibits remarkably diverse lifestyles. Many members of this group live attached to the body surface or inside the burrows of other marine invertebrates, including crustaceans, holothurians, echinoids, cnidarians, sipunculans and echiurans. These symbiotic species exhibit high host specificity, commensal interactions with hosts, and extreme morphological and behavioral adaptations to symbiotic life. Host specialization to various animal groups has likely played an important role in the evolution and diversification of this bivalve group. However, the evolutionary pathway that led to their ecological diversity is not well understood, in part because of their reduced and/or highly modified morphologies that have confounded traditional taxonomy. This study elucidates the taxonomy of the Galeommatoidea and their evolutionary history of symbiotic lifestyle based on a molecular phylogenic analysis of 33 galeommatoidean and five putative galeommatoidean species belonging to 27 genera and three families using two nuclear ribosomal genes (18S and 28S ribosomal DNA and a nuclear (histone H3 and mitochondrial (cytochrome oxidase subunit I protein-coding genes. Results Molecular phylogeny recovered six well-supported major clades within Galeommatoidea. Symbiotic species were found in all major clades, whereas free-living species were grouped into two major clades. Species symbiotic with crustaceans, holothurians, sipunculans, and echiurans were each found in multiple major clades, suggesting that host specialization to these animal groups occurred repeatedly in Galeommatoidea. Conclusions Our results suggest that the evolutionary history of host association in Galeommatoidea has been remarkably dynamic, involving frequent host switches between different animal phyla. Such an unusual pattern of dynamic host switching is considered to have resulted from their commensalistic lifestyle, in

  4. Molecular evolution of versatile derivatives from a GFP-like protein in the marine copepod Chiridius poppei.

    Directory of Open Access Journals (Sweden)

    Akihisa Shimizu

    Full Text Available Fluorescent proteins are now indispensable tools in molecular research. They have also been adapted for a wide variety of uses in cases involving creative applications, including textiles, aquarium fish, and ornamental plants. Our colleagues have previously cloned a yellow GFP-like protein derived from the marine copepod Chiridius poppei (YGFP, and moreover, succeeded in generating transgenic flowers with clearly visible fluorescence, without the need for high-sensitivity imaging equipment. However, due to the low Stokes shift of YGFP (10 nm, it is difficult to separate emitted light of a labeled object from the light used for excitation; hence, limitations for various applications remain. In this study, which was aimed at developing YGFP mutants with increased Stokes shifts, we conducted stepwise molecular evolution experiments on YGFP by screening random mutations at three key amino acids, based on their fluorescent characteristics and structural stabilities, followed by optimization of their fluorescence output by DNA shuffling of the entire coding sequence. We successfully identified an eYGFPuv that had an excitation maximum in UV wavelengths and a 24-fold increase in fluorescence intensity compared to the previously reported YGFP mutant (H52D. In addition, eYGFPuv exhibited almost 9-fold higher fluorescence intensity compared to the commercially available GFPuv when expressed in human colon carcinoma HCT116 cells and without any differences in cytotoxicity. Thus, this novel mutant with the desirable characteristics of bright fluorescence, long Stokes shift, and low cytotoxity, may be particularly well suited to a variety of molecular and biological applications.

  5. Molecular evolution of the Bovini tribe (Bovidae, Bovinae: Is there evidence of rapid evolution or reduced selective constraint in Domestic cattle?

    Directory of Open Access Journals (Sweden)

    McCulloch Alan

    2009-04-01

    Full Text Available Abstract Background If mutation within the coding region of the genome is largely not adaptive, the ratio of nonsynonymous (dN to synonymous substitutions (dS per site (dN/dS should be approximately equal among closely related species. Furthermore, dN/dS in divergence between species should be equivalent to dN/dS in polymorphisms. This hypothesis is of particular interest in closely related members of the Bovini tribe, because domestication has promoted rapid phenotypic divergence through strong artificial selection of some species while others remain undomesticated. We examined a number of genes that may be involved in milk production in Domestic cattle and a number of their wild relatives for evidence that domestication had affected molecular evolution. Elevated rates of dN/dS were further queried to determine if they were the result of positive selection, low effective population size (Ne or reduced selective constraint. Results We have found that the domestication process has contributed to higher dN/dS ratios in cattle, especially in the lineages leading to the Domestic cow (Bos taurus and Mithan (Bos frontalis and within some breeds of Domestic cow. However, the high rates of dN/dS polymorphism within B. taurus when compared to species divergence suggest that positive selection has not elevated evolutionary rates in these genes. Likewise, the low rate of dN/dS in Bison, which has undergone a recent population bottleneck, indicates a reduction in population size alone is not responsible for these observations. Conclusion The effect of selection depends on effective population size and the selection coefficient (Nes. Typically under domestication both selection pressure for traits important in fitness in the wild and Ne are reduced. Therefore, reduced selective constraint could be responsible for the observed elevated evolutionary ratios in domesticated species, especially in B. taurus and B. frontalis, which have the highest dN/dS in the

  6. Molecular evolution of the duplicated TFIIAγ genes in Oryzeae and its relatives

    Directory of Open Access Journals (Sweden)

    Sun Hong-Zheng

    2010-05-01

    Full Text Available Abstract Background Gene duplication provides raw genetic materials for evolutionary novelty and adaptation. The evolutionary fate of duplicated transcription factor genes is less studied although transcription factor gene plays important roles in many biological processes. TFIIAγ is a small subunit of TFIIA that is one of general transcription factors required by RNA polymerase II. Previous studies identified two TFIIAγ-like genes in rice genome and found that these genes either conferred resistance to rice bacterial blight or could be induced by pathogen invasion, raising the question as to their functional divergence and evolutionary fates after gene duplication. Results We reconstructed the evolutionary history of the TFIIAγ genes from main lineages of angiosperms and demonstrated that two TFIIAγ genes (TFIIAγ1 and TFIIAγ5 arose from a whole genome duplication that happened in the common ancestor of grasses. Likelihood-based analyses with branch, codon, and branch-site models showed no evidence of positive selection but a signature of relaxed selective constraint after the TFIIAγ duplication. In particular, we found that the nonsynonymous/synonymous rate ratio (ω = dN/dS of the TFIIAγ1 sequences was two times higher than that of TFIIAγ5 sequences, indicating highly asymmetric rates of protein evolution in rice tribe and its relatives, with an accelerated rate of TFIIAγ1 gene. Our expression data and EST database search further indicated that after whole genome duplication, the expression of TFIIAγ1 gene was significantly reduced while TFIIAγ5 remained constitutively expressed and maintained the ancestral role as a subunit of the TFIIA complex. Conclusion The evolutionary fate of TFIIAγ duplicates is not consistent with the neofunctionalization model that predicts that one of the duplicated genes acquires a new function because of positive Darwinian selection. Instead, we suggest that subfunctionalization might be involved in

  7. Phylogeny and molecular evolution analysis of PIN-FORMED 1 in angiosperm.

    Science.gov (United States)

    Wang, Pengkai; Cheng, Tielong; Wu, Shuang; Zhao, Fangfang; Wang, Guangping; Yang, Liming; Lu, Mengzhu; Chen, Jinhui; Shi, Jisen

    2014-01-01

    PIN-FORMED 1 (PIN1) is an important secondary transporter and determines the direction of intercellular auxin flow. As PIN1 performs the conserved function of auxin transport, it is expected that the sequence and structure of PIN1 is conserved. Therefore, we hypothesized that PIN1 evolve under pervasive purifying selection in the protein-coding sequences in angiosperm. To test this hypothesis, we performed detailed evolutionary analyses of 67 PIN1 sequences from 35 angiosperm species. We found that the PIN1 sequences are highly conserved within their transmembrane regions, part of their hydrophilic regions. We also found that there are two or more PIN1 copies in some of these angiosperm species. PIN1 sequences from Poaceae and Brassicaceae are representative of the modern clade. We identified 12 highly conserved motifs and a significant number of family-specific sites within these motifs. One family-specific site within Motif 11 shows a different residue between monocots and dicots, and is functionally critical for the polarity of PIN1. Likewise, the function of PIN1 appears to be different between monocots and dicots since the phenotype associated with PIN1 overexpression is opposite between Arabidopsis and rice. The evolution of angiosperm PIN1 protein-coding sequences appears to have been primarily driven by purifying selection, but traces of positive selection associated with sequences from certain families also seem to be present. We verified this observation by calculating the numbers of non-synonymous and synonymous changes on each branch of a phylogenetic tree. Our results indicate that the evolution of angiosperm PIN1 sequences involve strong purifying selection. In addition, our results suggest that the conserved sequences of PIN1 derive from a combination of the family-specific site variations and conserved motifs during their unique evolutionary processes, which is critical for the functional integrity and stability of these auxin transporters

  8. How discordant morphological and molecular evolution among microorganisms can revise our notions of biodiversity on earth

    Science.gov (United States)

    Lahr, Daniel J. G.; Laughinghouse, H. Dail; Oliverio, Angela; Gao, Feng; Katz, Laura A.

    2014-01-01

    Microscopy has revealed a tremendous diversity of bacterial and eukaryotic forms. More recent molecular analyses show discordance in estimates of biodiversity based on morphological analyses. Moreover, phylogenetic analyses of the diversity of microbial forms have revealed evidence of convergence at scales as large as interdomain – i.e. convergent forms shared between bacteria and eukaryotes. Here, we highlight examples of such discordance, focusing on exemplary lineages such as testate amoebae, ciliates and cyanobacteria, which have long histories of morphological study. We discuss examples in two categories: 1) morphologically identical (or highly similar) individuals that are genetically distinct and 2) morphologically distinct individuals that are genetically distinct. We argue that hypotheses about discordance can be tested using the concept of neutral morphologies, or more broadly neutral phenotypes, as a null hypothesis. PMID:25156897

  9. Elucidating the Molecular Factors Implicated in the Persistence and Evolution of Transferable Antibiotic Resistance

    DEFF Research Database (Denmark)

    Porse, Andreas

    , the same adaptive mechanisms constantly threaten human health. Less than a century ago, infectious disease was among the most common causes of mortality, but luckily this situation was drastically improved with the introduction of vaccination and effective antimicrobial drugs. Unfortunately, this situation...... deleterious, we show that plasmids encoding resistance and virulence factors may indeed be stably maintained in the gut despite imposing a measurable fitness cost to their bacterial hosts in vitro. In two studies investigating the stability of genetic elements, we zoom in on the molecular mechanisms enabling...... and in situ. The conclusions shed light on fundamental evolutionary questions of genome dynamics and bacterial adaptation, which may ultimately improve our ability to predict and prevent the spread of antibiotic resistance and guide the engineering of robust biological systems....

  10. Evolution and origins of the Mazatec hallucinogenic sage, Salvia divinorum (Lamiaceae): a molecular phylogenetic approach.

    Science.gov (United States)

    Jenks, Aaron A; Walker, Jay B; Kim, Seung-Chul

    2011-09-01

    Salvia divinorum Epl. & Játiva-M. (Lamiaceae) is a potent hallucinogenic plant that is classified within Salvia subgenus Calosphace, section Dusenostachys, and hypothesized to be an interspecific hybrid. It is of ethnobotanical significance due to its employment in traditional healing ceremonies by the Mazatecs of Oaxaca, Mexico, and due to its unique pharmacology-a highly selective, non-nitrogenous, κ-opioid receptor agonist. In order to test its phylogenetic position and putative hybridity, we sequenced multiple DNA regions (ITS, trnL-trnF, and psbA-trnH) of 52 species-representing the major lineages of subgenus Calosphace-and six accessions of S. divinorum. Our molecular phylogenetic results suggest that S. divinorum should not be classified within Dusenostachys and that it is not a hybrid. Additionally, we determine that the closest known relative of this psychoactive Mexican sage is S. venulosa, a rare endemic of Colombia.

  11. Spatial Temporal Dynamics and Molecular Evolution of Re-Emerging Rabies Virus in Taiwan

    Directory of Open Access Journals (Sweden)

    Yung-Cheng Lin

    2016-03-01

    Full Text Available Taiwan has been recognized by the World Organization for Animal Health as rabies-free since 1961. Surprisingly, rabies virus (RABV was identified in a dead Formosan ferret badger in July 2013. Later, more infected ferret badgers were reported from different geographic regions of Taiwan. In order to know its evolutionary history and spatial temporal dynamics of this virus, phylogeny was reconstructed by maximum likelihood and Bayesian methods based on the full-length of glycoprotein (G, matrix protein (M, and nucleoprotein (N genes. The evolutionary rates and phylogeographic were determined using Beast and SPREAD software. Phylogenetic trees showed a monophyletic group containing all of RABV isolates from Taiwan and it further separated into three sub-groups. The estimated nucleotide substitution rates of G, M, and N genes were between 2.49 × 10−4–4.75 × 10−4 substitutions/site/year, and the mean ratio of dN/dS was significantly low. The time of the most recent common ancestor was estimated around 75, 89, and 170 years, respectively. Phylogeographic analysis suggested the origin of the epidemic could be in Eastern Taiwan, then the Formosan ferret badger moved across the Central Range of Taiwan to western regions and separated into two branches. In this study, we illustrated the evolution history and phylogeographic of RABV in Formosan ferret badgers.

  12. Molecular evolution of adeno-associated virus for enhanced glial gene delivery.

    Science.gov (United States)

    Koerber, James T; Klimczak, Ryan; Jang, Jae-Hyung; Dalkara, Deniz; Flannery, John G; Schaffer, David V

    2009-12-01

    The natural tropism of most viral vectors, including adeno-associated viral (AAV) vectors, leads to predominant transduction of neurons and epithelia within the central nervous system (CNS) and retina. Despite the clinical relevance of glia for homeostasis in neural tissue, and as causal contributors in genetic disorders such as Alzheimer's and amyotrophic lateral sclerosis, efforts to develop more efficient gene delivery vectors for glia have met with limited success. Recently, viral vector engineering involving high-throughput random diversification and selection has enabled the rapid creation of AAV vectors with valuable new gene delivery properties. We have engineered novel AAV variants capable of efficient glia transduction by employing directed evolution with a panel of four distinct AAV libraries, including a new semi-random peptide replacement strategy. These variants transduced both human and rat astrocytes in vitro up to 15-fold higher than their parent serotypes, and injection into the rat striatum yielded astrocyte transduction levels up to 16% of the total transduced cell population, despite the human astrocyte selection platform. Furthermore, one variant exhibited a substantial shift in tropism toward Müller glia within the retina, further highlighting the general utility of these variants for efficient glia transduction in multiple species within the CNS and retina.

  13. Molecular evolution of shattering loci in U.S. weedy rice

    Science.gov (United States)

    Thurber, Carrie S.; Reagon, Michael; Gross, Briana L.; Olsen, Kenneth M.; Jia, Yulin; Caicedo, Ana L.

    2010-01-01

    Cultivated rice fields worldwide are plagued with weedy rice, a conspecific weed of cultivated rice (Oryza sativa L.). The persistence of weedy rice has been attributed, in part, to its ability to shatter (disperse) seed prior to crop harvesting. In the United States, separately evolved weedy rice groups have been shown to share genomic identity with exotic domesticated cultivars. Here, we investigate the shattering phenotype in a collection of U.S. weedy rice accessions, as well as wild and cultivated relatives. We find that all U.S. weedy rice groups shatter seeds easily, despite multiple origins, and in contrast to a decrease in shattering ability seen in cultivated groups. We assessed allelic identity and diversity at the major shattering locus, sh4, in weedy rice; we find that all cultivated and weedy rice, regardless of population, share similar haplotypes at sh4, and all contain a single derived mutation associated with decreased seed shattering. Our data constitute the strongest evidence to date of an evolution of weeds from domesticated backgrounds. The combination of a shared cultivar sh4 allele and a highly shattering phenotype, suggests that U.S. weedy rice have re-acquired the shattering trait after divergence from their progenitors through alternative genetic mechanisms. PMID:20584132

  14. Evolution of feeding specialization in Tanganyikan scale-eating cichlids: a molecular phylogenetic approach

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2007-10-01

    Full Text Available Abstract Background Cichlid fishes in Lake Tanganyika exhibit remarkable diversity in their feeding habits. Among them, seven species in the genus Perissodus are known for their unique feeding habit of scale eating with specialized feeding morphology and behaviour. Although the origin of the scale-eating habit has long been questioned, its evolutionary process is still unknown. In the present study, we conducted interspecific phylogenetic analyses for all nine known species in the tribe Perissodini (seven Perissodus and two Haplotaxodon species using amplified fragment length polymorphism (AFLP analyses of the nuclear DNA. On the basis of the resultant phylogenetic frameworks, the evolution of their feeding habits was traced using data from analyses of stomach contents, habitat depths, and observations of oral jaw tooth morphology. Results AFLP analyses resolved the phylogenetic relationships of the Perissodini, strongly supporting monophyly for each species. The character reconstruction of feeding ecology based on the AFLP tree suggested that scale eating evolved from general carnivorous feeding to highly specialized scale eating. Furthermore, scale eating is suggested to have evolved in deepwater habitats in the lake. Oral jaw tooth shape was also estimated to have diverged in step with specialization for scale eating. Conclusion The present evolutionary analyses of feeding ecology and morphology based on the obtained phylogenetic tree demonstrate for the first time the evolutionary process leading from generalised to highly specialized scale eating, with diversification in feeding morphology and behaviour among species.

  15. Molecular and functional evolution of class I chitinases for plant carnivory in the caryophyllales.

    Science.gov (United States)

    Renner, Tanya; Specht, Chelsea D

    2012-10-01

    Proteins produced by the large and diverse chitinase gene family are involved in the hydrolyzation of glycosidic bonds in chitin, a polymer of N-acetylglucosamines. In flowering plants, class I chitinases are important pathogenesis-related proteins, functioning in the determent of herbivory and pathogen attack by acting on insect exoskeletons and fungal cell walls. Within the carnivorous plants, two subclasses of class I chitinases have been identified to play a role in the digestion of prey. Members of these two subclasses, depending on the presence or absence of a C-terminal extension, can be secreted from specialized digestive glands found within the morphologically diverse traps that develop from carnivorous plant leaves. The degree of homology among carnivorous plant class I chitinases and the method by which these enzymes have been adapted for the carnivorous habit has yet to be elucidated. This study focuses on understanding the evolution of carnivory and chitinase genes in one of the major groups of plants that has evolved the carnivorous habit: the Caryophyllales. We recover novel class I chitinase homologs from species of genera Ancistrocladus, Dionaea, Drosera, Nepenthes, and Triphyophyllum, while also confirming the presence of two subclasses of class I chitinases based upon sequence homology and phylogenetic affinity to class I chitinases available from sequenced angiosperm genomes. We further detect residues under positive selection and reveal substitutions specific to carnivorous plant class I chitinases. These substitutions may confer functional differences as indicated by protein structure homology modeling.

  16. Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence.

    Science.gov (United States)

    Liu, Qingpo; Zhu, Huiqin

    2008-02-15

    The present study identified 12 MLO genes in rice that were located on chromosomes 1, 2, 3, 4, 5, 6, 10, and 11 respectively without any obvious clustering. On a genome scale we showed that the expansion of rice MLO gene family was primarily attributed to segmental duplication produced by polyploidy, rather than through tandem amplification. Gene conversion events should also play important roles in the evolution of MLO genes. The results of relative rate ratio test and maximum likelihood analysis suggested that positive selection should have occurred after gene duplication and/or speciation, prompting the formation of distinct MLO subfamilies. Functional divergence analysis provided statistical evidence for shifted evolutionary rate after gene duplication. Compared to extracellular loop 3 and Ca(2+)-binding domain, much stronger functional constraints should impose on intracellular loop 2, although all of the three regions might be under purifying selection. The sliding window analysis of d(N)/d(S) ratio values identified one sequence region where strong functional constraints must impose on, and consequently should be crucial for functionality of MLO genes.

  17. Introduction: Eric Davidson and the molecular biology of evolution and development.

    Science.gov (United States)

    Morange, Michel; Deichmann, Ute

    2017-10-13

    Between November 30th and December 2nd, 2015, the Jacques Loeb Centre for the History and Philosophy of the Life Sciences at Ben-Gurion University of the Negev in Beer Sheva (Israel) held its Eighth International Workshop under the title "From Genome to Gene: Causality, Synthesis and Evolution". Eric Davidson, the founder of the concept of developmental Gene Regulatory Networks, had regularly attended the previous meetings, and his participation in this one was expected, but he suddenly passed away 3 months before. In this paper, we provide an introduction and overview on five papers that were presented at the workshop and examine the importance of genomes and gene regulatory networks in extant biology, developmental biology, evolutionary biology and medicine, as well as a collection of remembrances of Eric Davidson, of his personality as well as of his scientific contributions. Historical perspectives are provided, and the ethical issues raised by the new tools developed to modify the genome are also discussed.

  18. Molecular Characterization of a Chromosomal Rearrangement Involved in the Adaptive Evolution of Yeast Strains

    Science.gov (United States)

    Pérez-Ortín, José E.; Querol, Amparo; Puig, Sergi; Barrio, Eladio

    2002-01-01

    Wine yeast strains show a high level of chromosome length polymorphism. This polymorphism is mainly generated by illegitimate recombination mediated by Ty transposons or subtelomeric repeated sequences. We have found, however, that the SSU1-R allele, which confers sulfite resistance to yeast cells, is the product of a reciprocal translocation between chromosomes VIII and XVI due to unequal crossing-over mediated by microhomology between very short sequences on the 5′ upstream regions of the SSU1 and ECM34 genes. We also show that this translocation is only present in wine yeast strains, suggesting that the use for millennia of sulfite as a preservative in wine production could have favored its selection. This is the first time that a gross chromosomal rearrangement is shown to be involved in the adaptive evolution of Saccharomyces cerevisiae. [The sequence data from this study have been submitted to EMBL under accession nos. AF239757, AF239758, and AJ458340–AJ458367. The following individual kindly provided reagents, samples, or unpublished information as indicated in the paper: N. Goto-Yamamoto.] PMID:12368245

  19. Functional and molecular evolution of olfactory neurons and receptors for aliphatic esters across the Drosophila genus.

    Science.gov (United States)

    de Bruyne, Marien; Smart, Renee; Zammit, Elizabeth; Warr, Coral G

    2010-02-01

    Insect olfactory receptor (Or) genes are large, rapidly evolving gene families of considerable interest for evolutionary studies. They determine the responses of sensory neurons which mediate critical behaviours and ecological adaptations. We investigated the evolution across the genus Drosophila of a subfamily of Or genes largely responsible for the perception of ecologically relevant aliphatic esters; products of yeast fermentation and fruits. Odour responses were recorded from eight classes of olfactory receptor neurons known to express this Or subfamily in D. melanogaster and from homologous sensilla in seven other species. Despite the fact that these species have diverged over an estimated 40 million years, we find that odour specificity is largely maintained in seven of the eight species. In contrast, we observe extensive changes in most neurons of the outgroup species D. virilis, and in two neurons across the entire genus. Some neurons show small shifts in specificity, whilst some dramatic changes correlate with gene duplication or loss. An olfactory receptor neuron response similarity tree did not match an Or sequence similarity tree, but by aligning Or proteins of likely functional equivalence we identify residues that may be relevant for odour specificity. This will inform future structure-function studies of Drosophila Ors.

  20. Molecular evolution of hepatitis A virus: a new classification based on the complete VP1 protein.

    Science.gov (United States)

    Costa-Mattioli, Mauro; Cristina, Juan; Romero, Héctor; Perez-Bercof, Raoul; Casane, Didier; Colina, Rodney; Garcia, Laura; Vega, Ines; Glikman, Graciela; Romanowsky, Victor; Castello, Alejandro; Nicand, Elisabeth; Gassin, Michelle; Billaudel, Sylviane; Ferré, Virginie

    2002-09-01

    Hepatitis A virus (HAV) is a positive-stranded RNA virus in the genus Hepatovirus in the family Picornaviridae So far, analysis of the genetic variability of HAV has been based on two discrete regions, the VP1/2A junction and the VP1 N terminus. In this report, we determined the nucleotide and deduced amino acid sequences of the complete VP1 gene of 81 strains from France, Kosovo, Mexico, Argentina, Chile, and Uruguay and compared them with the sequences of seven strains of HAV isolated elsewhere. Overall strain variation in the complete VP1 gene was found to be as high as 23.7% at the nucleotide level and 10.5% at the amino acid level. Different phylogenetic methods revealed that HAV sequences form five distinct and well-supported genetic lineages. Within these lineages, HAV sequences clustered by geographical origin only for European strains. The analysis of the complete VP1 gene allowed insight into the mode of evolution of HAV and revealed the emergence of a novel variant with a 15-amino-acid deletion located on the VP1 region where neutralization escape mutations were found. This could be the first antigenic variant of HAV so far identified.

  1. Evolution, systematics, and phylogeography of pleistocene horses in the new world: a molecular perspective.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The rich fossil record of horses has made them a classic example of evolutionary processes. However, while the overall picture of equid evolution is well known, the details are surprisingly poorly understood, especially for the later Pliocene and Pleistocene, c. 3 million to 0.01 million years (Ma ago, and nowhere more so than in the Americas. There is no consensus on the number of equid species or even the number of lineages that existed in these continents. Likewise, the origin of the endemic South American genus Hippidion is unresolved, as is the phylogenetic position of the "stilt-legged" horses of North America. Using ancient DNA sequences, we show that, in contrast to current models based on morphology and a recent genetic study, Hippidion was phylogenetically close to the caballine (true horses, with origins considerably more recent than the currently accepted date of c. 10 Ma. Furthermore, we show that stilt-legged horses, commonly regarded as Old World migrants related to the hemionid asses of Asia, were in fact an endemic North American lineage. Finally, our data suggest that there were fewer horse species in late Pleistocene North America than have been named on morphological grounds. Both caballine and stilt-legged lineages may each have comprised a single, wide-ranging species.

  2. Diversification and molecular evolution of ATOH8, a gene encoding a bHLH transcription factor.

    Directory of Open Access Journals (Sweden)

    Jingchen Chen

    Full Text Available ATOH8 is a bHLH domain transcription factor implicated in the development of the nervous system, kidney, pancreas, retina and muscle. In the present study, we collected sequence of ATOH8 orthologues from 18 vertebrate species and 24 invertebrate species. The reconstruction of ATOH8 phylogeny and sequence analysis showed that this gene underwent notable divergences during evolution. For those vertebrate species investigated, we analyzed the gene structure and regulatory elements of ATOH8. We found that the bHLH domain of vertebrate ATOH8 was highly conserved. Mammals retained some specific amino acids in contrast to the non-mammalian orthologues. Mammals also developed another potential isoform, verified by a human expressed sequence tag (EST. Comparative genomic analyses of the regulatory elements revealed a replacement of the ancestral TATA box by CpG-islands in the eutherian mammals and an evolutionary tendency for TATA box reduction in vertebrates in general. We furthermore identified the region of the effective promoter of human ATOH8 which could drive the expression of EGFP reporter in the chicken embryo. In the opossum, both the coding region and regulatory elements of ATOH8 have some special features, such as the unique extended C-terminus encoded by the third exon and absence of both CpG islands and TATA elements in the regulatory region. Our gene mapping data showed that in human, ATOH8 was hosted in one chromosome which is a fusion product of two orthologous chromosomes in non-human primates. This unique chromosomal environment of human ATOH8 probably subjects its expression to the regulation at chromosomal level. We deduce that the great interspecific differences found in both ATOH8 gene sequence and its regulatory elements might be significant for the fine regulation of its spatiotemporal expression and roles of ATOH8, thus orchestrating its function in different tissues and organisms.

  3. Molecular Evolution of Trehalose-6-Phosphate Synthase (TPS) Gene Family in Populus, Arabidopsis and Rice

    Science.gov (United States)

    Yang, Hai-Ling; Liu, Yan-Jing; Wang, Cai-Ling; Zeng, Qing-Yin

    2012-01-01

    Trehalose-6-phosphate synthase (TPS) plays important roles in trehalose metabolism and signaling. Plant TPS proteins contain both a TPS and a trehalose-6-phosphate phosphatase (TPP) domain, which are coded by a multi-gene family. The plant TPS gene family has been divided into class I and class II. A previous study showed that the Populus, Arabidopsis, and rice genomes have seven class I and 27 class II TPS genes. In this study, we found that all class I TPS genes had 16 introns within the protein-coding region, whereas class II TPS genes had two introns. A significant sequence difference between the two classes of TPS proteins was observed by pairwise sequence comparisons of the 34 TPS proteins. A phylogenetic analysis revealed that at least seven TPS genes were present in the monocot–dicot common ancestor. Segmental duplications contributed significantly to the expansion of this gene family. At least five and three TPS genes were created by segmental duplication events in the Populus and rice genomes, respectively. Both the TPS and TPP domains of 34 TPS genes have evolved under purifying selection, but the selective constraint on the TPP domain was more relaxed than that on the TPS domain. Among 34 TPS genes from Populus, Arabidopsis, and rice, four class I TPS genes (AtTPS1, OsTPS1, PtTPS1, and PtTPS2) were under stronger purifying selection, whereas three Arabidopsis class I TPS genes (AtTPS2, 3, and 4) apparently evolved under relaxed selective constraint. Additionally, a reverse transcription polymerase chain reaction analysis showed the expression divergence of the TPS gene family in Populus, Arabidopsis, and rice under normal growth conditions and in response to stressors. Our findings provide new insights into the mechanisms of gene family expansion and functional evolution. PMID:22905132

  4. Molecular evolution and functional characterization of Drosophila insulin-like peptides.

    Directory of Open Access Journals (Sweden)

    Sebastian Grönke

    2010-02-01

    Full Text Available Multicellular animals match costly activities, such as growth and reproduction, to the environment through nutrient-sensing pathways. The insulin/IGF signaling (IIS pathway plays key roles in growth, metabolism, stress resistance, reproduction, and longevity in diverse organisms including mammals. Invertebrate genomes often contain multiple genes encoding insulin-like ligands, including seven Drosophila insulin-like peptides (DILPs. We investigated the evolution, diversification, redundancy, and functions of the DILPs, combining evolutionary analysis, based on the completed genome sequences of 12 Drosophila species, and functional analysis, based on newly-generated knock-out mutations for all 7 dilp genes in D. melanogaster. Diversification of the 7 DILPs preceded diversification of Drosophila species, with stable gene diversification and family membership, suggesting stabilising selection for gene function. Gene knock-outs demonstrated both synergy and compensation of expression between different DILPs, notably with DILP3 required for normal expression of DILPs 2 and 5 in brain neurosecretory cells and expression of DILP6 in the fat body compensating for loss of brain DILPs. Loss of DILP2 increased lifespan and loss of DILP6 reduced growth, while loss of DILP7 did not affect fertility, contrary to its proposed role as a Drosophila relaxin. Importantly, loss of DILPs produced in the brain greatly extended lifespan but only in the presence of the endosymbiontic bacterium Wolbachia, demonstrating a specific interaction between IIS and Wolbachia in lifespan regulation. Furthermore, loss of brain DILPs blocked the responses of lifespan and fecundity to dietary restriction (DR and the DR response of these mutants suggests that IIS extends lifespan through mechanisms that both overlap with those of DR and through additional mechanisms that are independent of those at work in DR. Evolutionary conservation has thus been accompanied by synergy

  5. Sinapate esters in brassicaceous plants: biochemistry, molecular biology, evolution and metabolic engineering.

    Science.gov (United States)

    Milkowski, Carsten; Strack, Dieter

    2010-06-01

    Brassicaceous plants are characterized by a pronounced metabolic flux toward sinapate, produced by the shikimate/phenylpropanoid pathway, which is converted into a broad spectrum of O-ester conjugates. The abundant sinapate esters in Brassica napus and Arabidopsis thaliana reflect a well-known metabolic network, including UDP-glucose:sinapate glucosyltransferase (SGT), sinapoylglucose:choline sinapoyltransferase (SCT), sinapoylglucose:L-malate sinapoyltransferase (SMT) and sinapoylcholine (sinapine) esterase (SCE). 1-O-Sinapoylglucose, produced by SGT during seed development, is converted to sinapine by SCT and hydrolyzed by SCE in germinating seeds. The released sinapate feeds via sinapoylglucose into the biosynthesis of sinapoylmalate in the seedlings catalyzed by SMT. Sinapoylmalate is involved in protecting the leaves against the deleterious effects of UV-B radiation. Sinapine might function as storage vehicle for ready supply of choline for phosphatidylcholine biosynthesis in young seedlings. The antinutritive character of sinapine and related sinapate esters hamper the use of the valuable seed protein of the oilseed crop B. napus for animal feed and human nutrition. Due to limited variation in seed sinapine content within the assortment of B. napus cultivars, low sinapine lines cannot be generated by conventional breeding giving rise to genetic engineering of sinapate ester metabolism as a promising means. In this article we review the progress made throughout the last decade in identification of genes involved in sinapate ester metabolism and characterization of the encoded enzymes. Based on gene structures and enzyme recruitment, evolution of sinapate ester metabolism is discussed. Strategies of targeted metabolic engineering, designed to generate low-sinapate ester lines of B. napus, are evaluated.

  6. Phylodynamics and molecular evolution of influenza A virus nucleoprotein genes in Taiwan between 1979 and 2009.

    Directory of Open Access Journals (Sweden)

    Jih-Hui Lin

    Full Text Available BACKGROUND: Many studies concentrate on variation in the hemagglutinin glycoprotein (HA because of its significance in host immune response, the evolution of this virus is even more complex when other genome segments are considered. Recently, it was found that cytotoxic T lymphocytes (CTL play an important role in immunity against influenza and most CTL epitopes of human influenza viruses were remarkably conserved. The NP gene has evolved independently in human and avian hosts after 1918 flu pandemic and it has been assigned a putative role as a determinant of host range. METHODS AND FINDINGS: Phylodynamic patterns of the genes encoding nucleoprotein (NP of influenza A viruses isolated from 1979-2009 were analyzed by applying the Bayesian Markov Chain Monte Carlo framework to better understand the evolutionary mechanisms of these Taiwanese isolates. Phylogenetic analysis of the NP gene showed that all available H3 worldwide isolates collected so far were genetically similar and divided into two major clades after the year 2004. We compared the deduced amino acid sequences of the NP sequences from human, avian and swine hosts to investigate the emergence of potential adaptive mutations. Overall, selective pressure on the NP gene of human influenza A viruses appeared to be dominated by purifying selection with a mean d(N/d(S ratio of 0.105. Site-selection analysis of 488 codons, however, also revealed 3 positively selected sites in addition to 139 negatively selected ones. CONCLUSIONS: The demographic history inferred by Bayesian skyline plot showed that the effective number of infections underwent a period of smooth and steady growth from 1998 to 2001, followed by a more recent rise in the rate of spread. Further understanding the correlates of interspecies transmission of influenza A virus genes from other host reservoirs to the human population may help to elucidate the mechanisms of variability among influenza A virus.

  7. A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    Directory of Open Access Journals (Sweden)

    Venturi Maria L

    2004-01-01

    Full Text Available Abstract Background The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. Results Our phylogenetic analyses revealed that (i animals are more closely related to fungi than to plants, (ii red algae are closer to plants than to animals or fungi, (iii choanoflagellates are closer to animals than to fungi or plants, (iv diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v diplomonads are basal to other eukaryotes (including alveolates and euglenozoans. Divergence times were estimated from global and local clock methods using 20–188 proteins per node, with data treated separately (multigene and concatenated (supergene. Different time estimation methods yielded similar results (within 5%: vertebrate-arthropod (964 million years ago, Ma, Cnidaria-Bilateria (1,298 Ma, Porifera-Eumetozoa (1,351 Ma, Pyrenomycetes-Plectomycetes (551 Ma, Candida-Saccharomyces (723 Ma, Hemiascomycetes-filamentous Ascomycota (982 Ma, Basidiomycota-Ascomycota (968 Ma, Mucorales-Basidiomycota (947 Ma, Fungi-Animalia (1,513 Ma, mosses-vascular plants (707 Ma, Chlorophyta-Tracheophyta (968 Ma, Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma, Plantae-Animalia (1,609 Ma, Alveolata-plants+animals+fungi (1,973 Ma, Euglenozoa-plants+animals+fungi (1,961 Ma, and Giardia-plants+animals+fungi (2,309 Ma. By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to ~10

  8. A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    Science.gov (United States)

    Hedges, S. Blair; Blair, Jaime E.; Venturi, Maria L.; Shoe, Jason L.

    2004-01-01

    BACKGROUND: The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. RESULTS: Our phylogenetic analyses revealed that (i) animals are more closely related to fungi than to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and euglenozoans). Divergence times were estimated from global and local clock methods using 20-188 proteins per node, with data treated separately (multigene) and concatenated (supergene). Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964 million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma), Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia (1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961 Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to

  9. Molecular evolution of the toll-like receptor multigene family in birds.

    Science.gov (United States)

    Alcaide, Miguel; Edwards, Scott V

    2011-05-01

    Toll-like receptors (TLR) are membrane-bound sensors of the innate immune system that recognize invariant and distinctive molecular features of invading microbes and are also essential for initiating adaptive immunity in vertebrates. The genetic variation at TLR genes has been directly related to differential pathogen outcomes in humans and livestock. Nonetheless, new insights about the impact of TLRs polymorphism on the evolutionary ecology of infectious diseases can be gained through the investigation of additional vertebrate groups not yet investigated in detail. In this study, we have conducted the first characterization of the entire TLR multigene family (N = 10 genes) in non-model avian species. Using primers targeting conserved coding regions, we aimed at amplifying large segments of the extracellular domains (275-435 aa) involved in pathogen recognition across seven phylogenetically diverse bird species. Our analyses suggest avian TLRs are dominated by stabilizing selection, suggesting that slow rates of nonsynonymous substitution help preserve biological function. Overall, mean values of ω (= d(n)/d(s)) at each TLR locus ranged from 0.196 to 0.517. However, we also found patterns of positive selection acting on specific amino acid sites that could be linked to species-specific differences in pathogen-associated molecular pattern recognition. Only 39 of 2,875 (∼1.35%) of the codons analyzed exhibited significant patterns of positive selection. At least one half of these positively selected codons can be mapped to putative ligand-binding regions, as suggested by crystallographic structures of TLRs and their ligands and mutagenic analyses. We also surveyed TLR polymorphism in wild populations of two bird species, the Lesser Kestrel Falco naumanni and the House Finch Carpodacus mexicanus. In general, avian TLRs displayed low to moderate single nucleotide polymorphism levels and an excess of silent nucleotide substitutions, but also conspicuous instances of

  10. Molecular and cellular changes associated with the evolution of novel jaw muscles in parrots.

    Science.gov (United States)

    Tokita, Masayoshi; Nakayama, Tomoki; Schneider, Richard A; Agata, Kiyokazu

    2013-02-07

    Vertebrates have achieved great evolutionary success due in large part to the anatomical diversification of their jaw complex, which allows them to inhabit almost every ecological niche. While many studies have focused on mechanisms that pattern the jaw skeleton, much remains to be understood about the origins of novelty and diversity in the closely associated musculature. To address this issue, we focused on parrots, which have acquired two anatomically unique jaw muscles: the ethmomandibular and the pseudomasseter. In parrot embryos, we observe distinct and highly derived expression patterns for Scx, Bmp4, Tgfβ2 and Six2 in neural crest-derived mesenchyme destined to form jaw muscle connective tissues. Furthermore, immunohistochemical analysis reveals that cell proliferation is more active in the cells within the jaw muscle than in surrounding connective tissue cells. This biased and differentially regulated mode of cell proliferation in cranial musculoskeletal tissues may allow these unusual jaw muscles to extend towards their new attachment sites. We conclude that the alteration of neural crest-derived connective tissue distribution during development may underlie the spatial changes in jaw musculoskeletal architecture found only in parrots. Thus, parrots provide valuable insights into molecular and cellular mechanisms that may generate evolutionary novelties with functionally adaptive significance.

  11. Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome evolution between two wheat cultivars

    KAUST Repository

    Thind, Anupriya Kaur

    2018-02-08

    Background: Recent improvements in DNA sequencing and genome scaffolding have paved the way to generate high-quality de novo assemblies of pseudomolecules representing complete chromosomes of wheat and its wild relatives. These assemblies form the basis to compare the evolutionary dynamics of wheat genomes on a megabase-scale. Results: Here, we provide a comparative sequence analysis of the 700-megabase chromosome 2D between two bread wheat genotypes, the old landrace Chinese Spring and the elite Swiss spring wheat line CH Campala Lr22a. There was a high degree of sequence conservation between the two chromosomes. Analysis of large structural variations revealed four large insertions/deletions (InDels) of >100 kb. Based on the molecular signatures at the breakpoints, unequal crossing over and double-strand break repair were identified as the evolutionary mechanisms that caused these InDels. Three of the large InDels affected copy number of NLRs, a gene family involved in plant immunity. Analysis of single nucleotide polymorphism (SNP) density revealed three haploblocks of 8 Mb, 9 Mb and 48 Mb with a 35-fold increased SNP density compared to the rest of the chromosome. Conclusions: This comparative analysis of two high-quality chromosome assemblies enabled a comprehensive assessment of large structural variations. The insight obtained from this analysis will form the basis of future wheat pan-genome studies.

  12. Evolution of the structure of near-surface ultrahigh molecular weight polyethylene nanolayers during orientational drawing

    Science.gov (United States)

    Lebedev, D. V.; Ivan'kova, E. M.; Marikhin, V. A.; Myasnikova, L. P.; Radovanova, E. I.; Boiko, Yu. M.; Shtil'man, M. V.

    2014-06-01

    A comparative investigation of the surface structure of ultrahigh molecular weight polyethylene film filaments obtained with different draw ratios from xerogels prepared from 1.5 wt % polymer solutions in decaline and mineral oil has been performed using a SUPRA-55V scanning electron microscope and a nanoluminograph for recording thermoluminescence of ultrathin near-surface layers of solids. It has been found that, with an increase in the draw ratio, the luminescence intensity decreases, and the peaks responsible for the segmental mobility are shifted toward higher temperatures. It has been assumed that this is associated with the improvement of the structure of near-surface layers of the polymer (with a decrease in the number of microcavities and segments of molecules with a high degree of coiling). It has also been revealed that the peaks observed in glow curves of the oriented gel samples from polymer solutions in decaline are shifted more significantly than those of the gel samples from polymer solutions in mineral oil, and the extremely oriented films are characterized by a large discretization of kinetic units of motion.

  13. Atractaspis aterrima Toxins: The First Insight into the Molecular Evolution of Venom in Side-Stabbers

    Science.gov (United States)

    Terrat, Yves; Sunagar, Kartik; Fry, Bryan G.; Jackson, Timothy N. W.; Scheib, Holger; Fourmy, Rudy; Verdenaud, Marion; Blanchet, Guillaume; Antunes, Agostinho; Ducancel, Frederic

    2013-01-01

    Although snake venoms have been the subject of intense research, primarily because of their tremendous potential as a bioresource for design and development of therapeutic compounds, some specific groups of snakes, such as the genus Atractaspis, have been completely neglected. To date only limited number of toxins, such as sarafotoxins have been well characterized from this lineage. In order to investigate the molecular diversity of venom from Atractaspis aterrima—the slender burrowing asp, we utilized a high-throughput transcriptomic approach completed with an original bioinformatics analysis pipeline. Surprisingly, we found that Sarafotoxins do not constitute the major ingredient of the transcriptomic cocktail; rather a large number of previously well-characterized snake venom-components were identified. Notably, we recovered a large diversity of three-finger toxins (3FTxs), which were found to have evolved under the significant influence of positive selection. From the normalized and non-normalized transcriptome libraries, we were able to evaluate the relative abundance of the different toxin groups, uncover rare transcripts, and gain new insight into the transcriptomic machinery. In addition to previously characterized toxin families, we were able to detect numerous highly-transcribed compounds that possess all the key features of venom-components and may constitute new classes of toxins. PMID:24169588

  14. Multi-granularity Parallel Computing in a Genome-Scale Molecular Evolution Application.

    Science.gov (United States)

    Walters, Jesse D; Bair, Thomas B; Braun, Terry A; Scheetz, Todd E; Robinson, John P; Casavant, Thomas L

    2009-01-01

    Previously [1], we reported a coarse-grained parallel computational approach to identifying rare molecular evolutionary events often referred to as horizontal gene transfers. Very high degrees of parallelism (up to 65x speedup on 4,096 processors) were reported, yet the overall execution time for a realistic problem size was still on the order of 12 days. With the availability of large numbers of compute clusters, as well as genomic sequence from more than 2,000 species containing as many as 35,000 genes each, and trillions of sequence nucleotides in all, we demonstrated the computational feasibility of a method to examine "clusters" of genes using phylogenetic tree similarity as a distance metric. A full serial solution to this problem requires years of CPU time, yet only makes modest IPC and memory demands; thus, it is an ideal candidate for a grid computing approach involving low-cost compute nodes. This paper now describes a multiple granularity parallelism solution that includes exploitation of multi-core shared memory nodes to address fine-grained aspects in the tree-clustering phase of our previous deployment of XenoCluster 1.0. In addition to benchmarking results that show up to 80% speedup efficiency on 8 CPU cores, we report on the biological accuracy and relevance of our results compared to a reported set of known xenologs in yeast.

  15. Molecular evolution of Zika virus during its emergence in the 20(th) century.

    Science.gov (United States)

    Faye, Oumar; Freire, Caio C M; Iamarino, Atila; Faye, Ousmane; de Oliveira, Juliana Velasco C; Diallo, Mawlouth; Zanotto, Paolo M A; Sall, Amadou Alpha

    2014-01-01

    Zika virus (ZIKV) is a mosquito-borne flavivirus first isolated in Uganda in 1947. Although entomological and virologic surveillance have reported ZIKV enzootic activity in diverse countries of Africa and Asia, few human cases were reported until 2007, when a Zika fever epidemic took place in Micronesia. In the context of West Africa, the WHO Collaborating Centre for Arboviruses and Hemorrhagic Fever at Institut Pasteur of Dakar (http://www.pasteur.fr/recherche/banques/CRORA/) reports the periodic circulation of ZIKV since 1968. Despite several reports on ZIKV, the genetic relationships among viral strains from West Africa remain poorly understood. To evaluate the viral spread and its molecular epidemiology, we investigated 37 ZIKV isolates collected from 1968 to 2002 in six localities in Senegal and Côte d'Ivoire. In addition, we included strains from six other countries. Our results suggested that these two countries in West Africa experienced at least two independent introductions of ZIKV during the 20(th) century, and that apparently these viral lineages were not restricted by mosquito vector species. Moreover, we present evidence that ZIKV has possibly undergone recombination in nature and that a loss of the N154 glycosylation site in the envelope protein was a possible adaptive response to the Aedes dalzieli vector.

  16. Molecular evolution of Zika virus during its emergence in the 20(th century.

    Directory of Open Access Journals (Sweden)

    Oumar Faye

    Full Text Available Zika virus (ZIKV is a mosquito-borne flavivirus first isolated in Uganda in 1947. Although entomological and virologic surveillance have reported ZIKV enzootic activity in diverse countries of Africa and Asia, few human cases were reported until 2007, when a Zika fever epidemic took place in Micronesia. In the context of West Africa, the WHO Collaborating Centre for Arboviruses and Hemorrhagic Fever at Institut Pasteur of Dakar (http://www.pasteur.fr/recherche/banques/CRORA/ reports the periodic circulation of ZIKV since 1968. Despite several reports on ZIKV, the genetic relationships among viral strains from West Africa remain poorly understood. To evaluate the viral spread and its molecular epidemiology, we investigated 37 ZIKV isolates collected from 1968 to 2002 in six localities in Senegal and Côte d'Ivoire. In addition, we included strains from six other countries. Our results suggested that these two countries in West Africa experienced at least two independent introductions of ZIKV during the 20(th century, and that apparently these viral lineages were not restricted by mosquito vector species. Moreover, we present evidence that ZIKV has possibly undergone recombination in nature and that a loss of the N154 glycosylation site in the envelope protein was a possible adaptive response to the Aedes dalzieli vector.

  17. Molecular Evolution of Multiple Arylalkylamine N-Acetyltransferase (AANAT in Fish

    Directory of Open Access Journals (Sweden)

    Bina Zilberman-Peled

    2011-05-01

    Full Text Available Arylalkylamine N-acetyltransferase (AANAT catalyzes the transfer of an acetyl group from acetyl coenzyme A (AcCoA to arylalkylamines, including indolethylamines and phenylethylamines. Multiple aanats are present in teleost fish as a result of whole genome and gene duplications. Fish aanat1a and aanat2 paralogs display different patterns of tissue expression and encode proteins with different substrate preference: AANAT1a is expressed in the retina, and acetylates both indolethylamines and phenylethylamines; while AANAT2 is expressed in the pineal gland, and preferentially acetylates indolethylamines. The two enzymes are therefore thought to serve different roles. Here, the molecular changes that led to their specialization were studied by investigating the structure-function relationships of AANATs in the gilthead seabream (sb, Sperus aurata. Acetylation activity of reciprocal mutated enzymes pointed to specific residues that contribute to substrate specificity of the enzymes. Inhibition tests followed by complementary analyses of the predicted three-dimensional models of the enzymes, suggested that both phenylethylamines and indolethylamines bind to the catalytic pocket of both enzymes. These results suggest that substrate selectivity of AANAT1a and AANAT2 is determined by the positioning of the substrate within the catalytic pocket, and its accessibility to catalysis. This illustrates the evolutionary process by which enzymes encoded by duplicated genes acquire different activities and play different biological roles.

  18. Molecular Mechanism and Evolution of Guanylate Kinase Regulation by (p)ppGpp

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kuanqing; Myers, Angela R.; Pisithkul, Tippapha; Claas, Kathy R.; Satyshur, Kenneth A.; Amador-Noguez, Daniel; Keck, James L.; Wang, Jue D. (UW); (Baylor)

    2015-02-01

    The nucleotide (p)ppGpp mediates bacterial stress responses, but its targets and underlying mechanisms of action vary among bacterial species and remain incompletely understood. Here, we characterize the molecular interaction between (p)ppGpp and guanylate kinase (GMK), revealing the importance of this interaction in adaptation to starvation. Combining structural and kinetic analyses, we show that (p)ppGpp binds the GMK active site and competitively inhibits the enzyme. The (p)ppGpp-GMK interaction prevents the conversion of GMP to GDP, resulting in GMP accumulation upon amino acid downshift. Abolishing this interaction leads to excess (p)ppGpp and defective adaptation to amino acid starvation. A survey of GMKs from phylogenetically diverse bacteria shows that the (p)ppGpp-GMK interaction is conserved in members of Firmicutes, Actinobacteria, and Deinococcus-Thermus, but not in Proteobacteria, where (p)ppGpp regulates RNA polymerase (RNAP). We propose that GMK is an ancestral (p)ppGpp target and RNAP evolved more recently as a direct target in Proteobacteria.

  19. Molecular evolution of broadly neutralizing Llama antibodies to the CD4-binding site of HIV-1.

    Directory of Open Access Journals (Sweden)

    Laura E McCoy

    2014-12-01

    Full Text Available To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols.

  20. Insights into the molecular evolution of the PDZ/LIM family and identification of a novel conserved protein motif.

    Directory of Open Access Journals (Sweden)

    Aartjan J W Te Velthuis

    Full Text Available The PDZ and LIM domain-containing protein family is encoded by a diverse group of genes whose phylogeny has currently not been analyzed. In mammals, ten genes are found that encode both a PDZ- and one or several LIM-domains. These genes are: ALP, RIL, Elfin (CLP36, Mystique, Enigma (LMP-1, Enigma homologue (ENH, ZASP (Cypher, Oracle, LMO7 and the two LIM domain kinases (LIMK1 and LIMK2. As conventional alignment and phylogenetic procedures of full-length sequences fell short of elucidating the evolutionary history of these genes, we started to analyze the PDZ and LIM domain sequences themselves. Using information from most sequenced eukaryotic lineages, our phylogenetic analysis is based on full-length cDNA-, EST-derived- and genomic- PDZ and LIM domain sequences of over 25 species, ranging from yeast to humans. Plant and protozoan homologs were not found. Our phylogenetic analysis identifies a number of domain duplication and rearrangement events, and shows a single convergent event during evolution of the PDZ/LIM family. Further, we describe the separation of the ALP and Enigma subfamilies in lower vertebrates and identify a novel consensus motif, which we call 'ALP-like motif' (AM. This motif is highly-conserved between ALP subfamily proteins of diverse organisms. We used here a combinatorial approach to define the relation of the PDZ and LIM domain encoding genes and to reconstruct their phylogeny. This analysis allowed us to classify the PDZ/LIM family and to suggest a meaningful model for the molecular evolution of the diverse gene architectures found in this multi-domain family.

  1. Spinning gland transcriptomics from two main clades of spiders (order: Araneae--insights on their molecular, anatomical and behavioral evolution.

    Directory of Open Access Journals (Sweden)

    Francisco Prosdocimi

    Full Text Available Characterized by distinctive evolutionary adaptations, spiders provide a comprehensive system for evolutionary and developmental studies of anatomical organs, including silk and venom production. Here we performed cDNA sequencing using massively parallel sequencers (454 GS-FLX Titanium to generate ∼80,000 reads from the spinning gland of Actinopus spp. (infraorder: Mygalomorphae and Gasteracantha cancriformis (infraorder: Araneomorphae, Orbiculariae clade. Actinopus spp. retains primitive characteristics on web usage and presents a single undifferentiated spinning gland while the orbiculariae spiders have seven differentiated spinning glands and complex patterns of web usage. MIRA, Celera Assembler and CAP3 software were used to cluster NGS reads for each spider. CAP3 unigenes passed through a pipeline for automatic annotation, classification by biological function, and comparative transcriptomics. Genes related to spider silks were manually curated and analyzed. Although a single spidroin gene family was found in Actinopus spp., a vast repertoire of specialized spider silk proteins was encountered in orbiculariae. Astacin-like metalloproteases (meprin subfamily were shown to be some of the most sampled unigenes and duplicated gene families in G. cancriformis since its evolutionary split from mygalomorphs. Our results confirm that the evolution of the molecular repertoire of silk proteins was accompanied by the (i anatomical differentiation of spinning glands and (ii behavioral complexification in the web usage. Finally, a phylogenetic tree was constructed to cluster most of the known spidroins in gene clades. This is the first large-scale, multi-organism transcriptome for spider spinning glands and a first step into a broad understanding of spider web systems biology and evolution.

  2. Characterization of small HSPs from Anemonia viridis reveals insights into molecular evolution of alpha crystallin genes among cnidarians.

    Directory of Open Access Journals (Sweden)

    Aldo Nicosia

    Full Text Available Gene family encoding small Heat-Shock Proteins (sHSPs containing α-crystallin domain are found both in prokaryotic and eukaryotic organisms; however, there is limited knowledge of their evolution. In this study, two small HSP genes termed AvHSP28.6 and AvHSP27, both organized in one intron and two exons, were characterised in the Mediterranean snakelocks anemone Anemonia viridis. The release of the genome sequence of Hydra magnipapillata and Nematostella vectensis enabled a comprehensive study of the molecular evolution of α-crystallin gene family among cnidarians. Most of the H. magnipapillata sHSP genes share the same gene organization described for AvHSP28.6 and AvHSP27, differing from the sHSP genes of N. vectensis which mainly show an intronless architecture. The different genomic organization of sHSPs, the phylogenetic analyses based on protein sequences, and the relationships among Cnidarians, suggest that the A.viridis sHSPs represent the common ancestor from which H. magnipapillata genes directly evolved through segmental genome duplication. Additionally retroposition events may be considered responsible for the divergence of sHSP genes of N. vectensis from A. viridis. Analyses of transcriptional expression profile showed that AvHSP28.6 was constitutively expressed among different tissues from both ectodermal and endodermal layers of the adult sea anemones, under normal physiological conditions and also under different stress condition. Specifically, we profiled the transcriptional activation of AvHSP28.6 after challenges with different abiotic/biotic stresses showing induction by extreme temperatures, heavy metals exposure and immune stimulation. Conversely, no AvHSP27 transcript was detected in such dissected tissues, in adult whole body cDNA library or under stress conditions. Hence, the involvement of AvHSP28.6 gene in the sea anemone defensome is strongly suggested.

  3. Molecular phylogeny reveals food plasticity in the evolution of true ladybird beetles (Coleoptera: Coccinellidae: Coccinellini).

    Science.gov (United States)

    Escalona, Hermes E; Zwick, Andreas; Li, Hao-Sen; Li, Jiahui; Wang, Xingmin; Pang, Hong; Hartley, Diana; Jermiin, Lars S; Nedvěd, Oldřich; Misof, Bernhard; Niehuis, Oliver; Ślipiński, Adam; Tomaszewska, Wioletta

    2017-06-26

    The tribe Coccinellini is a group of relatively large ladybird beetles that exhibits remarkable morphological and biological diversity. Many species are aphidophagous, feeding as larvae and adults on aphids, but some species also feed on other hemipterous insects (i.e., heteropterans, psyllids, whiteflies), beetle and moth larvae, pollen, fungal spores, and even plant tissue. Several species are biological control agents or widespread invasive species (e.g., Harmonia axyridis (Pallas)). Despite the ecological importance of this tribe, relatively little is known about the phylogenetic relationships within it. The generic concepts within the tribe Coccinellini are unstable and do not reflect a natural classification, being largely based on regional revisions. This impedes the phylogenetic study of important traits of Coccinellidae at a global scale (e.g. the evolution of food preferences and biogeography). We present the most comprehensive phylogenetic analysis of Coccinellini to date, based on three nuclear and one mitochondrial gene sequences of 38 taxa, which represent all major Coccinellini lineages. The phylogenetic reconstruction supports the monophyly of Coccinellini and its sister group relationship to Chilocorini. Within Coccinellini, three major clades were recovered that do not correspond to any previously recognised divisions, questioning the traditional differentiation between Halyziini, Discotomini, Tytthaspidini, and Singhikaliini. Ancestral state reconstructions of food preferences and morphological characters support the idea of aphidophagy being the ancestral state in Coccinellini. This indicates a transition from putative obligate scale feeders, as seen in the closely related Chilocorini, to more agile general predators. Our results suggest that the classification of Coccinellini has been misled by convergence in morphological traits. The evolutionary history of Coccinellini has been very dynamic in respect to changes in host preferences, involving

  4. Molecular, mesoscopic and microscopic structure evolution during amylase digestion of maize starch granules.

    Science.gov (United States)

    Shrestha, Ashok K; Blazek, Jaroslav; Flanagan, Bernadine M; Dhital, Sushil; Larroque, Oscar; Morell, Matthew K; Gilbert, Elliot P; Gidley, Michael J

    2012-09-01

    Cereal starch granules with high (>50%) amylose content are a promising source of nutritionally desirable resistant starch, i.e. starch that escapes digestion in the small intestine, but the structural features responsible are not fully understood. We report the effects of partial enzyme digestion of maize starch granules on amylopectin branch length profiles, double and single helix contents, gelatinisation properties, crystallinity and lamellar periodicity. Comparing results for three maize starches (27, 57, and 84% amylose) that differ in both structural features and amylase-sensitivity allows conclusions to be drawn concerning the rate-determining features operating under the digestion conditions used. All starches are found to be digested by a side-by-side mechanism in which there is no major preference during enzyme attack for amylopectin branch lengths, helix form, crystallinity or lamellar organisation. We conclude that the major factor controlling enzyme susceptibility is granule architecture, with shorter length scales not playing a major role as inferred from the largely invariant nature of numerous structural measures during the digestion process (XRD, NMR, SAXS, DSC, FACE). Results are consistent with digestion rates being controlled by restricted diffusion of enzymes within densely packed granular structures, with an effective surface area for enzyme attack determined by external dimensions (57 or 84% amylose - relatively slow) or internal channels and pores (27% amylose - relatively fast). Although the process of granule digestion is to a first approximation non-discriminatory with respect to structure at molecular and mesoscopic length scales, secondary effects noted include (i) partial crystallisation of V-type helices during digestion of 27% amylose starch, (ii) preferential hydrolysis of long amylopectin branches during the early stage hydrolysis of 27% and 57% but not 84% amylose starches, linked with disruption of lamellar repeating structure

  5. Molecular evolution of the nicotinic acid requirement within the Shigella/EIEC pathotype.

    Science.gov (United States)

    Di Martino, Maria Letizia; Fioravanti, Rosa; Barbabella, Giada; Prosseda, Gianni; Colonna, Bianca; Casalino, Mariassunta

    2013-12-01

    Nicotinamide adenine dinucleotide (NAD) is a crucial cofactor in several anabolic and catabolic reactions. NAD derives from quinolinic acid (QUIN) which in Escherichia coli is obtained through a pyridine salvage pathway or a de novo synthesis pathway. In the latter case, two enzymes, L-aspartate oxidase (NadB) and quinolinate synthase (NadA), are required for the synthesis of QUIN. In contrast to its E. coli ancestor, Shigella spp., the causative agent of bacillary dissentery, lacks the de novo pathway and strictly requires nicotinic acid for growth (Nic⁻ phenotype). This phenotype depends on the silencing of the nadB and nadA genes and its pathoadaptive nature is suggested by the observation that QUIN attenuates the Shigella invasive process. Shigella shares the pathogenicity mechanism with enteronvasive E. coli (EIEC), a group of pathogenic E. coli. On the basis of this similarity EIEC and Shigella have been grouped into a single E. coli pathotype. However EIEC strains do not constitute a homogeneous group and do not possess the complete set of characters that define Shigella strains. In this work we have analysed thirteen EIEC strains belonging to different serotypes and originating from different geographic areas. We show that, in contrast to Shigella, only some EIEC strains require nicotinic acid for growth in minimal medium. Moreover, by studying the emergence of the Nic⁻ phenotype in all serotypes of S. flexneri, as well as in S. sonnei and S. dysenteriae, we describe which molecular rearrangements occurred and which mutations are responsible for the inactivation of the nadA and nadB genes. Our data confirm that the genome of Shigella is extremely dynamic and support the hypothesis that EIEC might reflect an earlier stage of the pathoadaptation process undergone by Shigella. Copyright © 2013. Published by Elsevier GmbH.

  6. Structural evolution and atomic dynamics in Ni-Nb metallic glasses: A molecular dynamics study

    Science.gov (United States)

    Xu, T. D.; Wang, X. D.; Zhang, H.; Cao, Q. P.; Zhang, D. X.; Jiang, J. Z.

    2017-10-01

    The composition and temperature dependence of static and dynamic structures in NixNb1-x (x = 50-70 at. %) were systematically studied using molecular dynamics with a new-released semi-empirical embedded atom method potential by Mendelev. The calculated pair correlation functions and the structure factor match well with the experimental data, demonstrating the reliability of the potential within relatively wide composition and temperature ranges. The local atomic structures were then characterized by bond angle distributions and Voronoi tessellation methods, demonstrating that the icosahedral ⟨0,0,12,0⟩ is only a small fraction in the liquid state but increases significantly during cooling and becomes dominant at 300 K. The most abundant clusters are identified as ⟨0,0,12,0⟩ and distorted icosahedron ⟨0,2,8,2⟩. The large fraction of these two clusters hints that the relatively good glass forming ability is near the eutectic point. Unlike Cu-Zr alloys, both the self-diffusion coefficient and shear viscosity are insensitive to compositions upon cooling in Ni-Nb alloys. The breakdown of the Stokes-Einstein relation happens at around 1.6Tg (Tg: glass transition temperature). In the amorphous state, the solid and liquid-like atoms can be distinguished based on the Debye-Waller factor ⟨u2⟩. The insensitivity of the dynamic properties of Ni-Nb alloys to compositions may result from the relatively simple solidification process in the phase diagram, in which only one eutectic point exists in the studied composition range.

  7. Molecular epidemiology and evolution of human respiratory syncytial virus and human metapneumovirus.

    Directory of Open Access Journals (Sweden)

    Eleanor R Gaunt

    2011-03-01

    Full Text Available Human respiratory syncytial virus (HRSV and human metapneumovirus (HMPV are ubiquitous respiratory pathogens of the Pneumovirinae subfamily of the Paramyxoviridae. Two major surface antigens are expressed by both viruses; the highly conserved fusion (F protein, and the extremely diverse attachment (G glycoprotein. Both viruses comprise two genetic groups, A and B. Circulation frequencies of the two genetic groups fluctuate for both viruses, giving rise to frequently observed switching of the predominantly circulating group. Nucleotide sequence data for the F and G gene regions of HRSV and HMPV variants from the UK, The Netherlands, Bangkok and data available from Genbank were used to identify clades of both viruses. Several contemporary circulating clades of HRSV and HMPV were identified by phylogenetic reconstructions. The molecular epidemiology and evolutionary dynamics of clades were modelled in parallel. Times of origin were determined and positively selected sites were identified. Sustained circulation of contemporary clades of both viruses for decades and their global dissemination demonstrated that switching of the predominant genetic group did not arise through the emergence of novel lineages each respiratory season, but through the fluctuating circulation frequencies of pre-existing lineages which undergo proliferative and eclipse phases. An abundance of sites were identified as positively selected within the G protein but not the F protein of both viruses. For HRSV, these were discordant with previously identified residues under selection, suggesting the virus can evade immune responses by generating diversity at multiple sites within linear epitopes. For both viruses, different sites were identified as positively selected between genetic groups.

  8. Molecular variation in AVP and AVPR1a in New World monkeys (Primates, Platyrrhini: evolution and implications for social monogamy.

    Directory of Open Access Journals (Sweden)

    Dongren Ren

    Full Text Available The neurohypophysial hormone arginine vasopressin (AVP plays important roles in fluid regulation and vascular resistance. Differences in AVP receptor expression, particularly mediated through variation in the noncoding promoter region of the primary receptor for AVP (AVPR1a, may play a role in social phenotypes, particularly social monogamy, in rodents and humans. Among primates, social monogamy is rare, but is common among New World monkeys (NWM. AVP is a nonapeptide and generally conserved among eutherian mammals, although a recent paper demonstrated that some NWM species possess a novel form of the related neuropeptide hormone, oxytocin. We therefore characterized variation in the AVP and AVPR1a genes in 22 species representing every genus in the three major platyrrhine families (Cebidae, Atelidae and Pitheciidae. For AVP, a total of 16 synonymous substitutions were detected in 15 NWM species. No non-synonymous substitutions were noted, hence, AVP is conserved in NWM. By contrast, relative to the human AVPR1a, 66 predicted amino acids (AA substitutions were identified in NWM. The AVPR1a N-terminus (ligand binding domain, third intracellular (G-protein binding domain, and C-terminus were variable among species. Complex evolution of AVPR1a is also apparent in NWM. A molecular phylogenetic tree inferred from AVPR1a coding sequences revealed some consensus taxonomic separation by families, but also a mixed group composed of genera from all three families. The overall dN/dS ratio of AVPR1a was 0.11, but signals of positive selection in distinct AVPR1a regions were observed, including the N-terminus, in which we identified six potential positive selection sites. AA substitutions at positions 241, 319, 399 and 409 occurred uniquely in marmosets and tamarins. Our results enhance the appreciation of genetic diversity in the mammalian AVP/AVPR1a system, and set the stage for molecular modeling of the neurohypophyseal hormones and social behavior in

  9. Convergent Evolution of Hemoglobin Function in High-Altitude Andean Waterfowl Involves Limited Parallelism at the Molecular Sequence Level.

    Science.gov (United States)

    Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Muñoz-Fuentes, Violeta; Green, Andy J; Kopuchian, Cecilia; Tubaro, Pablo L; Alza, Luis; Bulgarella, Mariana; Smith, Matthew M; Wilson, Robert E; Fago, Angela; McCracken, Kevin G; Storz, Jay F

    2015-12-01

    A fundamental question in evolutionary genetics concerns the extent to which adaptive phenotypic convergence is attributable to convergent or parallel changes at the molecular sequence level. Here we report a comparative analysis of hemoglobin (Hb) function in eight phylogenetically replicated pairs of high- and low-altitude waterfowl taxa to test for convergence in the oxygenation properties of Hb, and to assess the extent to which convergence in biochemical phenotype is attributable to repeated amino acid replacements. Functional experiments on native Hb variants and protein engineering experiments based on site-directed mutagenesis revealed the phenotypic effects of specific amino acid replacements that were responsible for convergent increases in Hb-O2 affinity in multiple high-altitude taxa. In six of the eight taxon pairs, high-altitude taxa evolved derived increases in Hb-O2 affinity that were caused by a combination of unique replacements, parallel replacements (involving identical-by-state variants with independent mutational origins in different lineages), and collateral replacements (involving shared, identical-by-descent variants derived via introgressive hybridization). In genome scans of nucleotide differentiation involving high- and low-altitude populations of three separate species, function-altering amino acid polymorphisms in the globin genes emerged as highly significant outliers, providing independent evidence for adaptive divergence in Hb function. The experimental results demonstrate that convergent changes in protein function can occur through multiple historical paths, and can involve multiple possible mutations. Most cases of convergence in Hb function did not involve parallel substitutions and most parallel substitutions did not affect Hb-O2 affinity, indicating that the repeatability of phenotypic evolution does not require parallelism at the molecular level.

  10. Diversity and evolution of methods and practices for the molecular diagnosis of congenital toxoplasmosis in France: a 4-year survey.

    Science.gov (United States)

    Sterkers, Y; Varlet-Marie, E; Marty, P; Bastien, P

    2010-10-01

    The prenatal diagnosis of congenital toxoplasmosis is currently based upon molecular biology using a sample of amniotic fluid. The vast majority of centres globally (and all centres in France) performing this diagnosis use 'in house' or laboratory-developed PCR assays. This may be the source of considerable inter-laboratory variation in the performances of the assays, hampering any valuable comparison of data among different centres. The present study was based upon questionnaires that were sent to 21-25 centres between 2002 and 2005 enquiring about methods and practices of the PCR-based prenatal diagnosis of congenital toxoplasmosis. An extreme diversity of PCR methods and practices was observed. Thus, in 2005, 35 PCR methods, differing in one of the main steps of the whole process, were reported as being in use for routine diagnosis, with nine centres using two or three methods. We provide comprehensive information on the extraction methods, DNA targets, primer pairs and detection methods used for this diagnosis, as well as their evolution, during the period of study. Interestingly, in this period (2002-2005), a rapid progression of the number of laboratories using real-time PCR technology, which increased from four to 19, was observed. We also studied general PCR practices concerning, for example, the number of reaction tubes used for each biological sample and the inclusion of controls. The return of information in a yearly report provided the opportunity for writing proposals aiming to improve laboratory practices for this diagnosis at the national level. The high diversity of methods and practices currently used emphasizes the need for external quality assessment of the performances of the molecular diagnostic methods. © 2010 The Authors. Journal Compilation © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  11. Molecular evolution of the Asian francolins (Francolinus, Galliformes): a modern reappraisal of a classic study in speciation.

    Science.gov (United States)

    Forcina, G; Panayides, P; Guerrini, M; Nardi, F; Gupta, B K; Mori, E; Al-Sheikhly, O F; Mansoori, J; Khaliq, I; Rank, D N; Parasharya, B M; Khan, A A; Hadjigerou, P; Barbanera, F

    2012-11-01

    We investigated the evolution of the Asian francolins, five little known species in the genus Francolinus (Phasianidae). Evolutionary affinities of two of these species, F. gularis (swamp francolin) and F. pondicerianus (grey francolin), has long remained unclear. In contrast, the other three species, F. pintadeanus (Chinese francolin), F. pictus (painted francolin) and F. francolinus (black francolin) have been cast among the "spotted francolins" on a morphological and ecological basis. Previous molecular DNA investigations including Asian francolins mostly relied upon partial gene sequencing of one specimen per species (no more than three species and with the exclusion of F. pictus). Therefore, fundamental questions do persist. What relationship exists among the spotted and the other Asian francolins? What is the geographic origin of the black francolin, the species with the largest distribution range? How did the geological history influence the diversification of francolins across Asia? We sequenced the entire Control Region of the mitochondrial DNA in 228 samples of all five Asian francolin species, which were collected in 16 countries (from East Europe to East Asia). We constructed a molecular phylogeny according to four different procedures. We showed the monophyly of each of the Asian francolins and the spotted group, while that of the entire Asian group was presumed according to a biogeographical model we proposed. The splitting of the genus Francolinus occurred ~17.4 Ma (95% HPD: 13.4-22.1) while the spotted francolins diverged ~10.5 Ma (7.0-14.9). We resolved the most recent common ancestor to painted and black francolin as being in the Indian sub-continent, thus suggesting a westwards adaptive radiation of the latter. In Pakistan, we identified F. f. asiae representatives in the Northern Areas and in the Sindh. The latter represents a relict population of Indian fauna within the Pakistani range of the Great Rann of Kachchh. Copyright © 2012 Elsevier

  12. Miscanthus plants used as an alternative biofuel material. The basic studies on ecology and molecular evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chang-Hung [Graduate Institute of Ecology and Evolutionary Biology, College of Life Sciences, China Medical University, Taichung 404 (China)

    2009-08-15

    Miscanthus Anderss, widely distributed in Asia and Pacific Islands, possesses 20 species. Of which 8 species and 1 variety were recorded in Chinese Mainland; 6 species and 1 variety found in Japan; 5 species and 3 varieties distributed in Taiwan; 3 species documented in the Philippines; and rest of species have been recorded in Jawa, eastern Himalaya, and Sikkim. The plant is a C{sub 4} perennial grass with high productivity of biomass. In the 19th and early 20th centuries in Taiwan, Miscanthus was a very important crop used for forage grass, clothing, and shelter, etc. The relatively high germination, and high yield of biomass made the plant available for people of Taiwan including aboriginal. The taxonomic study of Miscanthus plants was much done by several scientists, and its ecological study has been only taken by the present author since 1972. Chou and his associates paid a great attention to elucidate the mechanism of dominance of Miscanthus vegetation and found that allelopathy plays an important role. In addition, the population biology of Miscanthus taxa by using polyacrylamide gel electrophoreses technique to examine the patterns of peroxidase and esterase among populations (over 100) of Miscanthus in Taiwan were conducted. They also elucidated the phylogenetic relationship among species and varieties in Taiwan. Chou and Ueng proposed an evolutionary trend of Miscanthus species, indicating that the Miscanthus sinensis was assumed to be the origin of Miscanthus Anderss, which evolved to M. sinensis var. formosana, and M. sinensis var. flavidus, and M. sinensis var. transmorrisonensis, and Miscanthus floridulus was thought to be an out group of M. sinensis complex. Moreover, molecular phylogeny was attempted to clarify the population heterogeneity of M. sinensis complex, resulting in a substantial information. It would be available for making hybridization between Miscanthus species and its related species, such as Saccharum (sugar cane) spp. which is a

  13. Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions.

    Science.gov (United States)

    Geuten, Koen; Irish, Vivian

    2010-08-01

    B-class MADS box genes specify petal and stamen identities in several core eudicot species. Members of the Solanaceae possess duplicate copies of these genes, allowing for diversification of function. To examine the changing roles of such duplicate orthologs, we assessed the functions of B-class genes in Nicotiana benthamiana and tomato (Solanum lycopersicum) using virus-induced gene silencing and RNA interference approaches. Loss of function of individual duplicates can have distinct phenotypes, yet complete loss of B-class gene function results in extreme homeotic transformations of petal and stamen identities. We also show that these duplicate gene products have qualitatively different protein-protein interaction capabilities and different regulatory roles. Thus, compensatory changes in B-class MADS box gene duplicate function have occurred in the Solanaceae, in that individual gene roles are distinct, but their combined functions are equivalent. Furthermore, we show that species-specific differences in the stamen regulatory network are associated with differences in the expression of the microRNA miR169. Whereas there is considerable plasticity in individual B-class MADS box transcription factor function, there is overall conservation in the roles of the multimeric MADS box B-class protein complexes, providing robustness in the specification of petal and stamen identities. Such hidden variability in gene function as we observe for individual B-class genes can provide a molecular basis for the evolution of regulatory functions that result in novel morphologies.

  14. Molecular systematics and evolution of the recently discovered "Parnassian" butterfly (Parnassius davydovi Churkin, 2006) and its allied species (Lepidoptera, Papilionidae).

    Science.gov (United States)

    Omoto, Keiichi; Yonezawa, Takahiro; Shinkawa, Tsutomu

    2009-07-15

    The nucleotide sequence of 807 bp of the mtDNA-ND5 locus of Parnassius davydovi (Churkin, S. 2006. A new species of Parnassius Latreille, 1804, from Kyrgyzstan (Lepidoptera, Papilionidae). Helios (Moskow) 7,142-158), was determined. This butterfly was unexpectedly discovered recently in Kyrgyzstan, and we wished to shed light on its molecular phylogenetic relationship to other Parnassian butterflies, as well as to the related taxa in the subfamily Parnassiinae of the family Papilionidae. Using the ML method with the GTR+I+Gamma model, we inferred the phylogenetic tree for 60 Parnassius individuals together with materials of the related genera in the subfamily Parnassiinae (Hypermnestra, Archon, Luehdorfia, Bhutanitis, Allancastria, Zerynthia and Sericinus) with Papilio machaon as an out-group. It was found that P. davydovi is a distinct species most closely related to P. loxias in clade VI among the eight clades, or species groups of Parnassius. The morphological diversity in the form of sphragis, the attachment to the female abdomen formed by the male during copulation, is characteristic to this clade, and we inferred the order of emergence of the different sphragis forms during evolution. Attempts to estimate the divergence times between related taxa were also made. It was inferred that the relatively rapid radiation of Parnassian butterflies started at about 24 MYA BP, while P. davydovi diverged from P. loxias at about 10 MYA BP.

  15. Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huan [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Tang, Xiaobin, E-mail: tangxiaobin@nuaa.edu.cn [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing (China); Chen, Feida; Huang, Hai; Liu, Jian [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Chen, Da [Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing (China)

    2016-07-01

    Highlights: • Various incident sites of CNTs are classified into three types for the first time. • Different ion energies and fluences are considered to study the radiation damage. • CNTs have ability to heal the radiation-induced damage at higher temperature. • Stability of a large-diameter tube excels in a slim one under the same conditions. - Abstract: The radiation damage and microstructure evolution of different zigzag single-walled carbon nanotubes (SWCNTs) were investigated under incident carbon ion by molecular dynamics (MD) simulations. The radiation damage of SWCNTs under incident carbon ion with energy ranging from 25 eV to 1 keV at 300 K showed many differences at different incident sites, and the defect production increased to the maximum value with the increase in incident ion energy, and slightly decreased but stayed fairly stable within the majority of the energy range. The maximum damage of SWCNTs appeared when the incident ion energy reached 200 eV and the level of damage was directly proportional to incident ion fluence. The radiation damage was also studied at 100 K and 700 K and the defect production decreased distinctly with rising temperature because radiation-induced defects would anneal and recombine by saturating dangling bonds and reconstructing carbon network at the higher temperature. Furthermore, the stability of a large-diameter tube surpassed that of a thin one under the same radiation environments.

  16. Molecular evolution of vertebrate VIP receptors and functional characterization of a VIP receptor from goldfish Carassius auratus.

    Science.gov (United States)

    Chow, B K; Yuen, T T; Chan, K W

    1997-02-01

    Vasoactive intestinal polypeptide (VIP) is a neuropeptide that has numerous physiological actions and is widely distributed in the body. However, as yet, there is no sequence information about VIP receptors in lower vertebrates. Partial cDNA fragments spanning transmembrane domains 2 to 6 of VIP receptors were isolated from six nonmammalian vertebrate species, including chicken, pigeon, frog, lizard, salmon, and goldfish. Sequence comparison of these receptors revealed essential structural motifs responsible for receptor function. In addition, the first nonmammalian full-length VIP receptor cDNA was obtained by screening a goldfish brain and pituitary cDNA library. Functional expression of this receptor in mammalian COS-7 cells showed that it is coupled to cAMP production in a VIP and PACAP concentration-dependent manner; the EC50 of VIP was determined to be 1 nM. At 100 nM peptide, the relative potency of various peptides in stimulating cAMP in the transfected cells was VIP > PACAP > GHRH = secretin > PHM > PTH > glucagon > GLP-1 > GIP. Characterization of the VIP receptors in lower vertebrates should enhance our understanding of the molecular evolution and physiology of VIP in vertebrates.

  17. Genotype diversity and molecular evolution of noroviruses: A 30-year (1982-2011 comprehensive study with children from Northern Brazil.

    Directory of Open Access Journals (Sweden)

    Jones Anderson Monteiro Siqueira

    Full Text Available A chronologically comprehensive 30-year study was conducted that involved children living in Belém, in the Amazon region of Northern Brazil, who participated in eight different studies from October 1982 to April 2011. The children were followed either in the community or in health units and hospitals in order to identify the norovirus genotypes involved in infections during this time. A total of 2,520 fecal specimens were obtained and subjected to RT-PCR and nucleotide sequencing for regions A, B, C, D and P2 of the viral genome. An overall positivity of 16.9% (n = 426 was observed, and 49% of the positive samples were genotyped (208/426, evidencing the presence of several genotypes as follows: Polymerase gene (GI.P4, GII.Pa, GII.Pc, GII.Pe, GII.Pg, GII.Pj, GII.P3, GII.P4, GII.P6, GII.P7, GII.P8, GII.P12, GII.P13, GII.P14, GII.P21, GII.P22, and VP1 gene (GI.3, GI.7, GII.1, GII.2, GII.3, GII.4, GII.6, GII.7, GII.8, GII.10, GII.12, GII.14, GII.17, GII.23. The GII.P4/GII.4 genotype determined by both open reading frames (ORFs (partial polymerase and VP1 genes was found for 83 samples, and analyses of the subdomain P2 region showed 10 different variants: CHDC (1970s, Tokyo (1980s, Bristol_1993, US_95/96, Kaiso_2003, Asia_2003, Hunter_2004, Yerseke_2006a, Den Haag_2006b (subcluster "O" and New Orleans_2009. Recombination events were confirmed in 47.6% (n = 20 of the 42 samples with divergent genotyping by ORF1 and ORF2 and with probable different breakpoints within the viral genome. The evolutionary analyses estimated a rate of evolution of 1.02 x 10-2 and 9.05 x 10-3 subs./site/year using regions C and D from the VP1 gene, respectively. The present research shows the broad genetic diversity of the norovirus that infected children for 30 years in Belém. These findings contribute to our understanding of noroviruses molecular epidemiology and viral evolution and provide a baseline for vaccine design.

  18. Molecular phylogeny based on mitochondrial genes and evolution of host plant use in the long-horned beetle tribe Lamiini (Coleoptera: Cerambycidae) in Japan.

    Science.gov (United States)

    Toki, W; Kubota, K

    2010-08-01

    The molecular phylogeny of the long-horned beetle tribe Lamiini Mulsant (Coleoptera: Cerambycidae) in Japan (12 genera, 25 species, 3 additional subspecies) was determined based on mitochondrial 16S rRNA and cytochrome oxydase subunit I. The monophyly of the tribe Lamiini was supported, whereas that of the genus Acalolepta Pascoe was unclear. Evolution of host plant use in Lamiini was estimated using the molecular phylogeny. For adult and larval host plant kind-and-condition, the most ancestral state was for weakened to dead broad-leaved trees, whereas derived states favored conifers, healthy broad-leaved trees, and herbs. For adult and larval host range, the most ancestral state was polyphagy, whereas oligophagy and monophagy were derived. Evolution of hosts' idiosyncrasy and that of the insects' host range were related in many lineages. Our results partly support the hypothesis that habitation in living trees requires dietary specialization in phytophagous insects.

  19. Molecular evolution of the two-component system BvgAS involved in virulence regulation in Bordetella.

    Directory of Open Access Journals (Sweden)

    Julien Herrou

    Full Text Available The whooping cough agent Bordetella pertussis is closely related to Bordetella bronchiseptica, which is responsible for chronic respiratory infections in various mammals and is occasionally found in humans, and to Bordetella parapertussis, one lineage of which causes mild whooping cough in humans and the other ovine respiratory infections. All three species produce similar sets of virulence factors that are co-regulated by the two-component system BvgAS. We characterized the molecular diversity of BvgAS in Bordetella by sequencing the two genes from a large number of diverse isolates. The response regulator BvgA is virtually invariant, indicating strong functional constraints. In contrast, the multi-domain sensor kinase BvgS has evolved into two different types. The pertussis type is found in B. pertussis and in a lineage of essentially human-associated B. bronchiseptica, while the bronchiseptica type is associated with the majority of B. bronchiseptica and both ovine and human B. parapertussis. BvgS is monomorphic in B. pertussis, suggesting optimal adaptation or a recent population bottleneck. The degree of diversity of the bronchiseptica type BvgS is markedly different between domains, indicating distinct evolutionary pressures. Thus, absolute conservation of the putative solute-binding cavities of the two periplasmic Venus Fly Trap (VFT domains suggests that common signals are perceived in all three species, while the external surfaces of these domains vary more extensively. Co-evolution of the surfaces of the two VFT domains in each type and domain swapping experiments indicate that signal transduction in the periplasmic region may be type-specific. The two distinct evolutionary solutions for BvgS confirm that B. pertussis has emerged from a specific B. bronchiseptica lineage. The invariant regions of BvgS point to essential parts for its molecular mechanism, while the variable regions may indicate adaptations to different lifestyles. The

  20. Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms.

    Science.gov (United States)

    Löhne, Cornelia; Borsch, Thomas

    2005-02-01

    Sequences of spacers and group I introns in plant chloroplast genomes have recently been shown to be very effective in phylogenetic reconstruction at higher taxonomic levels and not only for inferring relationships among species. Group II introns, being more frequent in those genomes than group I introns, may be further promising markers. Because group II introns are structurally constrained, we assumed that sequences of a group II intron should be alignable across seed plants. We designed universal amplification primers for the petD intron and sequenced this intron in a representative selection of 47 angiosperms and three gymnosperms. Our sampling of taxa is the most representative of major seed plant lineages to date for group II introns. Through differential analysis of structural partitions, we studied patterns of molecular evolution and their contribution to phylogenetic signal. Nonpairing stretches (loops, bulges, and interhelical nucleotides) were considerably more variable in both substitutions and indels than in helical elements. Differences among the domains are basically a function of their structural composition. After the exclusion of four mutational hotspots accounting for less than 18% of sequence length, which are located in loops of domains I and IV, all sequences could be aligned unambiguously across seed plants. Microstructural changes predominantly occurred in loop regions and are mostly simple sequence repeats. An indel matrix comprising 241 characters revealed microstructural changes to be of lower homoplasy than are substitutions. In showing Amborella first branching and providing support for a magnoliid clade through a synapomorphic indel, the petD data set proved effective in testing between alternative hypotheses on the basal nodes of the angiosperm tree. Within angiosperms, group II introns offer phylogenetic signal that is intermediate in information content between that of spacers and group I introns on the one hand and coding sequences

  1. Insights into the evolution of the snail superfamily from metazoan wide molecular phylogenies and expression data in annelids

    Directory of Open Access Journals (Sweden)

    Le Gouar Martine

    2009-05-01

    Full Text Available Abstract Background An important issue concerning the evolution of duplicated genes is to understand why paralogous genes are retained in a genome even though the most likely fate for a redundant duplicated gene is nonfunctionalization and thereby its elimination. Here we study a complex superfamily generated by gene duplications, the snail related genes that play key roles during animal development. We investigate the evolutionary history of these genes by genomic, phylogenetic, and expression data studies. Results We systematically retrieved the full complement of snail related genes in several sequenced genomes. Through phylogenetic analysis, we found that the snail superfamily is composed of three ancestral families, snail, scratchA and scratchB. Analyses of the organization of the encoded proteins point out specific molecular signatures, indicative of functional specificities for Snail, ScratchA and ScratchB proteins. We also report the presence of two snail genes in the annelid Platynereis dumerilii, which have distinct expression patterns in the developing mesoderm, nervous system, and foregut. The combined expression of these two genes is identical to that of two independently duplicated snail genes in another annelid, Capitella spI, but different aspects of the expression patterns are differentially shared among paralogs of Platynereis and Capitella. Conclusion Our study indicates that the snail and scratchB families have expanded through multiple independent gene duplications in the different bilaterian lineages, and highlights potential functional diversifications of Snail and ScratchB proteins following duplications, as, in several instances, paralogous proteins in a given species show different domain organizations. Comparisons of the expression pattern domains of the two Platynereis and Capitella snail paralogs provide evidence for independent subfunctionalization events which have occurred in these two species. We propose that the

  2. Influence of the Electrostatic Interaction between a Molecular Catalyst and Semiconductor on Photocatalytic Hydrogen Evolution Activity in Cobaloxime/CdS Hybrid Systems.

    Science.gov (United States)

    Xu, Yuxing; Chen, Ruotian; Li, Zhen; Li, Ailong; Han, Hongxian; Li, Can

    2017-07-12

    The influence of the electrostatic interaction on photocatalytic H 2 evolution activity in cobaloxime/cadmium sulfide (CdS) hybrid systems was studied by measuring the charges of the cobaloximes and the zeta potentials of CdS under different pH conditions (pHs 4-7). Cobaloxime/CdS hybrid systems may have potential as a valid model for the investigation of the electrostatic interaction between a molecular catalyst and semiconductor because the kinetics of methanol oxidation and the driving force of electron transfer from photoirradiated CdS to cobaloxime have little effect on the pH-dependent photocatalytic H 2 evolution activity. Our experimental results suggest that electrostatic repulsion between cobaloxime and CdS disfavors the electron transfer from CdS to cobaloxime and hence lowers the photocatalytic H 2 evolution activity. Whereas, electrostatic attraction favors the electron transfer process and enhances the photocatalytic H 2 evolution activity. However, an electrostatic attraction interaction that is too strong may accelerate both forward and backward electron transfer processes, which would reduce charge separation efficiency and lower photocatalytic H 2 evolution activity.

  3. Using chromosomal data in the phylogenetic and molecular dating framework: karyotype evolution and diversification in Nierembergia (Solanaceae) influenced by historical changes in sea level.

    Science.gov (United States)

    Acosta, M C; Moscone, E A; Cocucci, A A

    2016-05-01

    Karyotype data within a phylogenetic framework and molecular dating were used to examine chromosome evolution in Nierembergia and to infer how geological or climatic processes have influenced in the diversification of this solanaceous genus native to South America and Mexico. Despite the numerous studies comparing karyotype features across species, including the use of molecular phylogenies, to date relatively few studies have used formal comparative methods to elucidate chromosomal evolution, especially to reconstruct the whole ancestral karyotypes. Here, we mapped on the Nierembergia phylogeny one complete set of chromosomal data obtained by conventional staining, AgNOR-, C- and fluorescent chromosome banding, and fluorescent in situ hybridisation. In addition, we used a Bayesian molecular relaxed clock to estimate divergence times between species. Nierembergia showed two major divergent clades: a mountainous species group with symmetrical karyotypes, large chromosomes, only one nucleolar organising region (NOR) and without centromeric heterochromatin, and a lowland species group with asymmetrical karyotypes, small chromosomes, two chromosomes pairs with NORs and centromeric heterochromatin bands. Molecular dating on the DNA phylogeny revealed that both groups diverged during Late Miocene, when Atlantic marine ingressions, called the 'Paranense Sea', probably forced the ancestors of these species to find refuge in unflooded areas for about 2 Myr. This split agrees with an increased asymmetry and heterochromatin amount, and decrease in karyotype length and chromosome size. Thus, when the two Nierembergia ancestral lineages were isolated, major divergences occurred in chromosomal evolution, and then each lineage underwent speciation separately, with relatively minor changes in chromosomal characteristics. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Retention, Molecular Evolution, and Expression Divergence of the Auxin/Indole Acetic Acid and Auxin Response Factor Gene Families in Brassica Rapa Shed Light on Their Evolution Patterns in Plants.

    Science.gov (United States)

    Huang, Zhinan; Duan, Weike; Song, Xiaoming; Tang, Jun; Wu, Peng; Zhang, Bei; Hou, Xilin

    2015-12-31

    Auxin/indole acetic acids (Aux/IAAs) and auxin response factors (ARFs), major components of the Aux signaling network, are involved in many developmental processes in plants. Investigating their evolution will provide new sight on the relationship between the molecular evolution of these genes and the increasing morphotypes of plants. We constructed comparative analyses of the retention, structure, expansion, and expression patterns of Aux/IAAs and ARFs in Brassica rapa and their evolution in eight other plant species, including algae, bryophytes, lycophytes, and angiosperms. All 33 of the ARFs, including 1 ARF-like (AL) (a type of ARF-like protein) and 53 Aux/IAAs, were identified in the B. rapa genome. The genes mainly diverged approximately 13 Ma. After the split, no Aux/IAA was completely lost, and they were more preferentially retained than ARFs. In land plants, compared with ARFs, which increased in stability, Aux/IAAs expanded more rapidly and were under more relaxed selective pressure. Moreover, BraIAAs were expressed in a more tissue-specific fashion than BraARFs and demonstrated functional diversification during gene duplication under different treatments, which enhanced the cooperative interaction of homologs to help plants adapt to complex environments. In addition, ALs existed widely and had a closer relationship with ARFs, suggesting that ALs might be the initial structure of ARFs. Our results suggest that the rapid expansion and preferential retention of Aux/IAAs are likely paralleled by the increasingly complex morphotypes in Brassicas and even in land plants. Meanwhile, the data support the hypothesis that the PB1 domain plays a key role in the origin of both Aux/IAAs and ARFs. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Chloroplast DNA analysis of Tunisian cork oak populations (Quercus suber L.): sequence variations and molecular evolution of the trnL (UAA)-trnF (GAA) region.

    Science.gov (United States)

    Abdessamad, A; Baraket, G; Sakka, H; Ammari, Y; Ksontini, M; Hannachi, A Salhi

    2016-10-24

    Sequences of the trnL-trnF spacer and combined trnL-trnF region in chloroplast DNA of cork oak (Quercus suber L.) were analyzed to detect polymorphisms and to elucidate molecular evolution and demographic history. The aligned sequences varied in length and nucleotide composition. The overall ratio of transition/transversion (ti/tv) of 0.724 for the intergenic spacer and 0.258 for the pooled sequences were estimated, and indicated that transversions are more frequent than transitions. The molecular evolution and demographic history of Q. suber were investigated. Neutrality tests (Tajima's D and Fu and Li) ruled out the null hypothesis of a strictly neutral model, and Fu's Fs and Ramos-Onsins and Rozas' R2 confirmed the recent expansion of cork oak trees, validating its persistency in North Africa since the last glaciation during the Quaternary. The observed uni-modal mismatch distribution and the Harpending's raggedness index confirmed the demographic history model for cork oak. A phylogenetic dendrogram showed that the distribution of Q. suber trees occurs independently of geographical origin, the relief of the population site, and the bioclimatic stages. The molecular history and cytoplasmic diversity suggest that in situ and ex situ conservation strategies can be recommended for preserving landscape value and facing predictable future climatic changes.

  6. An example of molecular co-evolution: reactive oxygen species (ROS) and ROS scavenger levels in Schistosoma mansoni/Biomphalaria glabrata interactions.

    Science.gov (United States)

    Moné, Yves; Ribou, Anne-Cécile; Cosseau, Céline; Duval, David; Théron, André; Mitta, Guillaume; Gourbal, Benjamin

    2011-06-01

    The co-evolution between hosts and parasites involves huge reciprocal selective pressures on both protagonists. However, relatively few reports have evaluated the impact of these reciprocal pressures on the molecular determinants at the core of the relevant interaction, such as the factors influencing parasitic virulence and host resistance. Here, we address this question in a host-parasite model that allows co-evolution to be monitored in the field: the interaction between the mollusc, Biomphalaria glabrata, and its trematode parasite, Schistosoma mansoni. Reactive oxygen species (ROS) produced by the haemocytes of B. glabrata are known to play a crucial role in killing S. mansoni. Therefore, the parasite must defend itself against oxidative damage caused by ROS using ROS scavengers in order to survive. In this context, ROS and ROS scavengers are involved in a co-evolutionary arms race, and their respective production levels by sympatric host and parasite could be expected to be closely related. Here, we test this hypothesis by comparing host oxidant and parasite antioxidant capabilities between two S. mansoni/B. glabrata populations that have co-evolved independently. As expected, our findings show a clear link between the oxidant and antioxidant levels, presumably resulting from sympatric co-evolution. We believe this work provides the first supporting evidence of the Red Queen Hypothesis of reciprocal evolution for functional traits at the field-level in a model involving a host and a eukaryotic parasite. Copyright © 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  7. Organization and molecular evolution of CENP-A--associated satellite DNA families in a basal primate genome

    National Research Council Canada - National Science Library

    Lee, Hye-Ran; Hayden, Karen E; Willard, Huntington F

    2011-01-01

    ... satellite is found in old and new world monkey genomes, little is known about the organization, function, and evolution of centromeric sequences in more distant primates, including lemurs. Aye-Aye...

  8. The Insect Chemoreceptor Superfamily in Drosophila pseudoobscura: Molecular Evolution of Ecologically-Relevant Genes Over 25 Million Years

    OpenAIRE

    Robertson, Hugh M.

    2009-01-01

    The insect chemoreceptor superfamily, consisting of the odorant receptor (Or) and gustatory receptor (Gr) families, exhibits patterns of evolution ranging from highly conserved proteins to lineage-specific gene subfamily expansions when compared across insect suborders and orders. Here their evolution across the timespan of 25 million years is examined which yield orthologous divergences ranging from 5–50%. They also reveal the beginnings of lineage-specific gene subfamilies as multiple dupli...

  9. Surface Functionalization of g-C 3 N 4 : Molecular-Level Design of Noble-Metal-Free Hydrogen Evolution Photocatalysts

    KAUST Repository

    Chen, Yin

    2015-06-12

    A stable noble-metal-free hydrogen evolution photocatalyst based on graphite carbon nitride (g-C3N4) was developed by a molecular-level design strategy. Surface functionalization was successfully conducted to introduce a single nickel active site onto the surface of the semiconducting g-C3N4. This catalyst family (with less than 0.1 wt% of Ni) has been found to produce hydrogen with a rate near to the value obtained by using 3 wt% platinum as co-catalyst. This new catalyst also exhibits very good stability under hydrogen evolution conditions, without any evidence of deactivation after 24h. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Putting the brakes on snake venom evolution: the unique molecular evolutionary patterns of Aipysurus eydouxii (Marbled sea snake) phospholipase A2 toxins.

    Science.gov (United States)

    Li, Min; Fry, Bryan G; Kini, R Manjunatha

    2005-04-01

    Accelerated evolution of toxins is a unique feature of venoms, with the toxins evolving via the birth-and-death mode of molecular evolution. The venoms of sea snakes, however, are remarkably simple in comparison to those of land snakes, which contain highly complex venoms. Aipysurus eydouxii (Marbled sea snake) is a particularly unique sea snake, feeding exclusively upon fish eggs. Secondary to this ecological change, the fangs have been lost and the venom glands greatly atrophied. We recently showed that the only neurotoxin (a three-finger toxin) gene found in the sea snake A. eydouxii has a dinucleotide deletion, resulting in the loss of neurotoxic activity. During these studies, we isolated and identified a number of cDNA clones encoding isozymes of phospholipase A(2) (PLA(2)) toxins from its venom gland. Sixteen unique PLA(2) clones were sequenced from the cDNA library and TA cloning of reverse transcription-polymerase chain reaction products. Phylogenetic analysis of these clones revealed that less diversification of the PLA(2) toxins has occurred in the A. eydouxii venom gland in comparison to equivalent terrestrial and other marine snakes. As there is no longer a positive selection pressure acting upon the venom, mutations have accumulated in the toxin-coding regions that would have otherwise had a deleterious effect upon the ability to use the venom for prey capture. Such mutations include substitutions of highly conserved residues; in one clone, the active site His(48) is replaced by Arg, and in two other clones, highly conserved cysteine residues are replaced. These mutations significantly affect the functional and structural properties of these PLA(2) enzymes, respectively. Thus, in A. eydouxii, the loss of the main neurotoxin is accompanied by a much slower rate of molecular evolution of the PLA(2) toxins as a consequence of the snake's shift in ecological niche. This is the first case of decelerated evolution of toxins in snake venom.

  11. ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CO LUMINOSITY FUNCTIONS AND THE EVOLUTION OF THE COSMIC DENSITY OF MOLECULAR GAS

    Energy Technology Data Exchange (ETDEWEB)

    Decarli, Roberto; Walter, Fabian [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Aravena, Manuel; Assef, Roberto J. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Carilli, Chris [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Bouwens, Rychard [Leiden Observatory, Leiden University, P.O. Box 9513, NL2300 RA Leiden (Netherlands); Da Cunha, Elisabete [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Daddi, Emanuele [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette cedex (France); Ivison, R. J.; Popping, Gergö [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching (Germany); Riechers, Dominik [Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Smail, Ian R. [6 Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Swinbank, Mark [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-053121 Bonn (Germany); Weiss, Axel; Anguita, Timo, E-mail: decarli@mpia.de [Departamento de Ciencias Físicas, Universidad Andres Bello, Fernandez Concha 700, Las Condes, Santiago (Chile); and others

    2016-12-10

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z  ∼ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 10{sup 9} K km s{sup −1} pc{sup 2}). We find clear evidence of an evolution in the CO luminosity function with respect to z  ∼ 0, with more CO-luminous galaxies present at z  ∼ 2. The observed galaxies at z  ∼ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3–10 from z  ∼ 2 to z  ∼ 0 (with significant error bars), and possibly a decline at z  > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation ( z  ∼ 2).

  12. Viral sequence analysis from HIV-infected mothers and infants: molecular evolution, diversity, and risk factors for mother-to-child transmission.

    Science.gov (United States)

    Bulterys, Philip L; Dalai, Sudeb C; Katzenstein, David A

    2010-12-01

    Great progress has been made in understanding the pathogenesis, treatment, and transmission of HIV and the factors influencing the risk of mother-to-child transmission (MTCT). Many questions regarding the molecular evolution and genetic diversity of HIV in the context of MTCT remain unanswered. Further research to identify the selective factors governing which variants are transmitted, how the compartmentalization of HIV in different cells and tissues contributes to transmission, and the influence of host immunity, viral diversity, and recombination on MTCT may provide insight into new prevention strategies and the development of an effective HIV vaccine. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Dimeric [Mo₂S₁₂]²⁻ Cluster: A Molecular Analogue of MoS₂ Edges for Superior Hydrogen-Evolution Electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhongjie; Luo, Wenjia; Ma, Lu; Yu, Mingzhe; Ren, Xiaodi; He, Mingfu; Polen, Shan; Click, Kevin; Garrett, Benjamin R.; Lu, Jun; Amine, Khalil

    2015-12-07

    Proton reduction is one of the most fundamental and important reactions in nature. MoS2 edges have been identified as the active sites for hydrogen evolution reaction (HER) electrocatalysis. Designing molecular mimics of MoS2 edge sites is an attractive strategy to understand the underlying catalytic mechanism of different edge sites and improve their activities. Herein we report a dimeric molecular analogue [Mo₂S₁₂]²⁻, as the smallest unit possessing both the terminal and bridging disulfide ligands. Our electrochemical tests show that [Mo₂S₁₂]²⁻ is a superior heterogeneous HER catalyst under acidic conditions. Computations suggest that the bridging disulfide ligand of [Mo₂S₁₂]²⁻ exhibits a hydrogen adsorption free energy near zero (-0.05eV). This work helps shed light on the rational design of HER catalysts and biomimetics of hydrogen-evolving enzymes.

  14. Organic carbon isotope and molecular fossil records of vegetation evolution in central Loess Plateau since 450 kyr

    NARCIS (Netherlands)

    Zhou, Bin; Wali, Guzalnur; Peterse, Francien; Bird, Michael I.

    Significant uncertainties remain regarding the temporal evolution of natural vegetation during the Quaternary, and drivers of past vegetation change, on the Chinese Loess Plateau (CLP). This study presents analyses of total organic carbon isotopic composition (TOC) and n-alkane ratios (C31/C27) from

  15. Directed Molecular Evolution Improves the Immunogenicity and Protective Efficacy of a Venezuelan Equine Encephalitis Virus DNA Vaccine

    Science.gov (United States)

    2009-05-01

    Rapid evolution of a protein in vitro by DNA shuffling. Nature 1994;370(6488):389–91. 15] Locher CP, Soong NW, Whalen RG, Punnonen J. Development of...novel vac- cines using DNA shuffling and screening strategies. Curr Opin Mol Ther 2004;6(1):34–9. 16] Whalen RG, Kaiwar R, Soong NW, Punnonen J. DNA

  16. Directed evolution and in silico analysis of reaction centre proteins reveal molecular signatures of photosynthesis adaptation to radiation pressure.

    Directory of Open Access Journals (Sweden)

    Giuseppina Rea

    Full Text Available Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues

  17. Molecular Evolution of the CYP2D Subfamily in Primates: Purifying Selection on Substrate Recognition Sites without the Frequent or Long-Tract Gene Conversion

    Science.gov (United States)

    Yasukochi, Yoshiki; Satta, Yoko

    2015-01-01

    The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. PMID:25808902

  18. The complete plastome of macaw palm [Acrocomia aculeata (Jacq.) Lodd. ex Mart.] and extensive molecular analyses of the evolution of plastid genes in Arecaceae.

    Science.gov (United States)

    de Santana Lopes, Amanda; Gomes Pacheco, Túlio; Nimz, Tabea; do Nascimento Vieira, Leila; Guerra, Miguel P; Nodari, Rubens O; de Souza, Emanuel Maltempi; de Oliveira Pedrosa, Fábio; Rogalski, Marcelo

    2018-01-16

    The plastome of macaw palm was sequenced allowing analyses of evolution and molecular markers. Additionally, we demonstrated that more than half of plastid protein-coding genes in Arecaceae underwent positive selection. Macaw palm is a native species from tropical and subtropical Americas. It shows high production of oil per hectare reaching up to 70% of oil content in fruits and an interesting plasticity to grow in different ecosystems. Its domestication and breeding are still in the beginning, which makes the development of molecular markers essential to assess natural populations and germplasm collections. Therefore, we sequenced and characterized in detail the plastome of macaw palm. A total of 221 SSR loci were identified in the plastome of macaw palm. Additionally, eight polymorphism hotspots were characterized at level of subfamily and tribe. Moreover, several events of gain and loss of RNA editing sites were found within the subfamily Arecoideae. Aiming to uncover evolutionary events in Arecaceae, we also analyzed extensively the evolution of plastid genes. The analyses show that highly divergent genes seem to evolve in a species-specific manner, suggesting that gene degeneration events may be occurring within Arecaceae at the level of genus or species. Unexpectedly, we found that more than half of plastid protein-coding genes are under positive selection, including genes for photosynthesis, gene expression machinery and other essential plastid functions. Furthermore, we performed a phylogenomic analysis using whole plastomes of 40 taxa, representing all subfamilies of Arecaceae, which placed the macaw palm within the tribe Cocoseae. Finally, the data showed here are important for genetic studies in macaw palm and provide new insights into the evolution of plastid genes and environmental adaptation in Arecaceae.

  19. Genomic organization and molecular phylogenies of the beta (β keratin multigene family in the chicken (Gallus gallus and zebra finch (Taeniopygia guttata: implications for feather evolution

    Directory of Open Access Journals (Sweden)

    Sawyer Roger H

    2010-05-01

    Full Text Available Abstract Background The epidermal appendages of reptiles and birds are constructed of beta (β keratins. The molecular phylogeny of these keratins is important to understanding the evolutionary origin of these appendages, especially feathers. Knowing that the crocodilian β-keratin genes are closely related to those of birds, the published genomes of the chicken and zebra finch provide an opportunity not only to compare the genomic organization of their β-keratins, but to study their molecular evolution in archosaurians. Results The subfamilies (claw, feather, feather-like, and scale of β-keratin genes are clustered in the same 5' to 3' order on microchromosome 25 in chicken and zebra finch, although the number of claw and feather genes differs between the species. Molecular phylogenies show that the monophyletic scale genes are the basal group within birds and that the monophyletic avian claw genes form the basal group to all feather and feather-like genes. Both species have a number of feather clades on microchromosome 27 that form monophyletic groups. An additional monophyletic cluster of feather genes exist on macrochromosome 2 for each species. Expression sequence tag analysis for the chicken demonstrates that all feather β-keratin clades are expressed. Conclusions Similarity in the overall genomic organization of β-keratins in Galliformes and Passeriformes suggests similar organization in all Neognathae birds, and perhaps in the ancestral lineages leading to modern birds, such as the paravian Anchiornis huxleyi. Phylogenetic analyses demonstrate that evolution of archosaurian epidermal appendages in the lineage leading to birds was accompanied by duplication and divergence of an ancestral β-keratin gene cluster. As morphological diversification of epidermal appendages occurred and the β-keratin multigene family expanded, novel β-keratin genes were selected for novel functions within appendages such as feathers.

  20. Genomic organization and molecular phylogenies of the beta (β) keratin multigene family in the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata): implications for feather evolution

    Science.gov (United States)

    2010-01-01

    Background The epidermal appendages of reptiles and birds are constructed of beta (β) keratins. The molecular phylogeny of these keratins is important to understanding the evolutionary origin of these appendages, especially feathers. Knowing that the crocodilian β-keratin genes are closely related to those of birds, the published genomes of the chicken and zebra finch provide an opportunity not only to compare the genomic organization of their β-keratins, but to study their molecular evolution in archosaurians. Results The subfamilies (claw, feather, feather-like, and scale) of β-keratin genes are clustered in the same 5' to 3' order on microchromosome 25 in chicken and zebra finch, although the number of claw and feather genes differs between the species. Molecular phylogenies show that the monophyletic scale genes are the basal group within birds and that the monophyletic avian claw genes form the basal group to all feather and feather-like genes. Both species have a number of feather clades on microchromosome 27 that form monophyletic groups. An additional monophyletic cluster of feather genes exist on macrochromosome 2 for each species. Expression sequence tag analysis for the chicken demonstrates that all feather β-keratin clades are expressed. Conclusions Similarity in the overall genomic organization of β-keratins in Galliformes and Passeriformes suggests similar organization in all Neognathae birds, and perhaps in the ancestral lineages leading to modern birds, such as the paravian Anchiornis huxleyi. Phylogenetic analyses demonstrate that evolution of archosaurian epidermal appendages in the lineage leading to birds was accompanied by duplication and divergence of an ancestral β-keratin gene cluster. As morphological diversification of epidermal appendages occurred and the β-keratin multigene family expanded, novel β-keratin genes were selected for novel functions within appendages such as feathers. PMID:20482795

  1. Molecular organization and phylogenetic analysis of 5S rDNA in crustaceans of the genus Pollicipes reveal birth-and-death evolution and strong purifying selection.

    Science.gov (United States)

    Perina, Alejandra; Seoane, David; González-Tizón, Ana M; Rodríguez-Fariña, Fernanda; Martínez-Lage, Andrés

    2011-10-17

    The 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units that consist of a transcribing region (5S) and a variable nontranscribed spacer (NTS), in higher eukaryotes. Until recently the 5S rDNA was thought to be subject to concerted evolution, however, in several taxa, sequence divergence levels between the 5S and the NTS were found higher than expected under this model. So, many studies have shown that birth-and-death processes and selection can drive the evolution of 5S rDNA. In analyses of 5S rDNA evolution is found several 5S rDNA types in the genome, with low levels of nucleotide variation in the 5S and a spacer region highly divergent. Molecular organization and nucleotide sequence of the 5S ribosomal DNA multigene family (5S rDNA) were investigated in three Pollicipes species in an evolutionary context. The nucleotide sequence variation revealed that several 5S rDNA variants occur in Pollicipes genomes. They are clustered in up to seven different types based on differences in their nontranscribed spacers (NTS). Five different units of 5S rDNA were characterized in P. pollicipes and two different units in P. elegans and P. polymerus. Analysis of these sequences showed that identical types were shared among species and that two pseudogenes were present. We predicted the secondary structure and characterized the upstream and downstream conserved elements. Phylogenetic analysis showed an among-species clustering pattern of 5S rDNA types. These results suggest that the evolution of Pollicipes 5S rDNA is driven by birth-and-death processes with strong purifying selection.

  2. Sequence Comparisons of Odorant Receptors among Tortricid Moths Reveal Different Rates of Molecular Evolution among Family Members

    Science.gov (United States)

    Carraher, Colm; Authier, Astrid; Steinwender, Bernd; Newcomb, Richard D.

    2012-01-01

    In insects, odorant receptors detect volatile cues involved in behaviours such as mate recognition, food location and oviposition. We have investigated the evolution of three odorant receptors from five species within the moth genera Ctenopseustis and Planotrotrix, family Tortricidae, which fall into distinct clades within the odorant receptor multigene family. One receptor is the orthologue of the co-receptor Or83b, now known as Orco (OR2), and encodes the obligate ion channel subunit of the receptor complex. In comparison, the other two receptors, OR1 and OR3, are ligand-binding receptor subunits, activated by volatile compounds produced by plants - methyl salicylate and citral, respectively. Rates of sequence evolution at non-synonymous sites were significantly higher in OR1 compared with OR2 and OR3. Within the dataset OR1 contains 109 variable amino acid positions that are distributed evenly across the entire protein including transmembrane helices, loop regions and termini, while OR2 and OR3 contain 18 and 16 variable sites, respectively. OR2 shows a high level of amino acid conservation as expected due to its essential role in odour detection; however we found unexpected differences in the rate of evolution between two ligand-binding odorant receptors, OR1 and OR3. OR3 shows high sequence conservation suggestive of a conserved role in odour reception, whereas the higher rate of evolution observed in OR1, particularly at non-synonymous sites, may be suggestive of relaxed constraint, perhaps associated with the loss of an ancestral role in sex pheromone reception. PMID:22701634

  3. Sequence comparisons of odorant receptors among tortricid moths reveal different rates of molecular evolution among family members.

    Directory of Open Access Journals (Sweden)

    Colm Carraher

    Full Text Available In insects, odorant receptors detect volatile cues involved in behaviours such as mate recognition, food location and oviposition. We have investigated the evolution of three odorant receptors from five species within the moth genera Ctenopseustis and Planotrotrix, family Tortricidae, which fall into distinct clades within the odorant receptor multigene family. One receptor is the orthologue of the co-receptor Or83b, now known as Orco (OR2, and encodes the obligate ion channel subunit of the receptor complex. In comparison, the other two receptors, OR1 and OR3, are ligand-binding receptor subunits, activated by volatile compounds produced by plants--methyl salicylate and citral, respectively. Rates of sequence evolution at non-synonymous sites were significantly higher in OR1 compared with OR2 and OR3. Within the dataset OR1 contains 109 variable amino acid positions that are distributed evenly across the entire protein including transmembrane helices, loop regions and termini, while OR2 and OR3 contain 18 and 16 variable sites, respectively. OR2 shows a high level of amino acid conservation as expected due to its essential role in odour detection; however we found unexpected differences in the rate of evolution between two ligand-binding odorant receptors, OR1 and OR3. OR3 shows high sequence conservation suggestive of a conserved role in odour reception, whereas the higher rate of evolution observed in OR1, particularly at non-synonymous sites, may be suggestive of relaxed constraint, perhaps associated with the loss of an ancestral role in sex pheromone reception.

  4. Evolution of heavy ions (He{sup 2+}, H{sup +}) radiolytic yield of molecular hydrogen vs. ''Track-Segment'' LET values

    Energy Technology Data Exchange (ETDEWEB)

    Crumiere, Francis; Vandenborre, Johan; Blain, Guillaume; Fattahi, Massoud [Nantes Univ., CNRS/IN2P3 (France). SUBATECH Unite Mixte de Recherche 6457; Haddad, Ferid [Nantes Univ., CNRS/IN2P3 (France). SUBATECH Unite Mixte de Recherche 6457; Cyclotron Arronax, Saint Herblain (France)

    2017-08-01

    Ionizing radiation's effects onto water molecules lead to the ionization and/or the excitation of them. Then, these phenomena are followed by the formation of radicals and molecular products. The linear energy transfer (LET), which defines the energy deposition density along the radiation length, is different according to the nature of ionizing particles. Thus, the values of radiolytic yields, defined as the number of radical and molecular products formed or consumed by unit of deposited energy, evolve according to this parameter. This work consists in following the evolution of radiolytic yield of molecular hydrogen and ferric ions according to the ''Track-Segment'' LET of ionizing particles (protons, helions). Concerning G(Fe{sup 3+}) values, it seems that the energy deposited into the Bragg peak does not play the main role for the Fe{sup 3+} radiolytic formation, whereas for the G(H{sub 2}) it is the case with a component around 40% of the Bragg peak in the dihydrogen production. Therefore, as main results of this work, for high energetic Helion and Proton beams, the G(Fe{sup 3+}) values, which can be used for further dosimetry studies for example during the α radiolysis experiments, and the primary g(H{sub 2}) values for the Track-Segment LET, which can be used to determine the dihydrogen production by α-emitters, are published.

  5. The Hawaiian bobtail squid (Euprymna scolopes): a model to study the molecular basis of eukaryote-prokaryote mutualism and the development and evolution of morphological novelties in cephalopods.

    Science.gov (United States)

    Lee, Patricia N; McFall-Ngai, Margaret J; Callaerts, Patrick; de Couet, H Gert

    2009-11-01

    The Hawaiian bobtail squid, Euprymna scolopes, is a cephalopod whose small size, short lifespan, rapid growth, and year-round availability make it suitable as a model organism. E. scolopes is studied in three principal contexts: (1) as a model of cephalopod development; (2) as a model of animal-bacterial symbioses; and (3) as a system for studying adaptations of tissues that interact with light. E. scolopes embryos can be obtained continually and can be reared in the laboratory over an entire generation. The embryos and protective chorions are optically clear, facilitating in situ developmental observations, and can be manipulated experimentally. Many molecular protocols have been developed for studying E. scolopes development. This species is best known, however, for its symbiosis with the luminous marine bacterium Vibrio fischeri and has been used to study determinants of symbiont specificity, the influence of symbiosis on development of the squid light organ, and the mechanisms by which a stable association is achieved. Both partners can be grown independently under laboratory conditions, a feature that offers the unusual opportunity to manipulate the symbiosis experimentally. Molecular and genetic tools have been developed for V. fischeri, and a large expressed sequence tag (EST) database is available for the host symbiotic tissues. Additionally, comparisons between light organ form and function to those of the eye can be made. Both types of tissue interact with light, but have divergent embryonic development. As such, they offer an opportunity to study the molecular basis for the evolution of morphological novelties.

  6. Pholcid spider molecular systematics revisited, with new insights into the biogeography and the evolution of the group

    DEFF Research Database (Denmark)

    Dimitrov, Dimitar Stefanov; Astrin, Jonas J.; Huber, Bernhard A.

    2013-01-01

    We analysed seven genetic markers sampled from 165 pholcids and 34 outgroups in order to test and improve the recently revised classification of the family. Our results are based on the largest and most comprehensive set of molecular data so far to study pholcid relationships. The data were analy...

  7. Organic carbon isotope and molecular fossil records of vegetation evolution in central Loess Plateau since 450 kyr

    OpenAIRE

    Zhou, Bin; Wali, Guzalnur; Peterse, Francien; Bird, Michael I.

    2016-01-01

    Significant uncertainties remain regarding the temporal evolution of natural vegetation during the Quaternary, and drivers of past vegetation change, on the Chinese Loess Plateau (CLP). This study presents analyses of total organic carbon isotopic composition (TOC) and n-alkane ratios (C31/C27) from the Lingtai loess-palaeosol sequence on the central CLP over the last 450 kyr. The results demonstrate that the vegetation in this region comprised a mix of C3 and C4 plants of herb and woody grow...

  8. Molecular Evolution of Vertebrate Neurotrophins: Co-Option of the Highly Conserved Nerve Growth Factor Gene into the Advanced Snake Venom Arsenalf

    Science.gov (United States)

    Sunagar, Kartik; Fry, Bryan Grieg; Jackson, Timothy N. W.; Casewell, Nicholas R.; Undheim, Eivind A. B.; Vidal, Nicolas; Ali, Syed A.; King, Glenn F.; Vasudevan, Karthikeyan; Vasconcelos, Vitor; Antunes, Agostinho

    2013-01-01

    Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation. PMID:24312363

  9. Molecular evolution of vertebrate neurotrophins: co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenalf.

    Directory of Open Access Journals (Sweden)

    Kartik Sunagar

    Full Text Available Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF, brain-derived neurotrophic factors (BDNF and neurotrophin-3 (NT-3, which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74% and on the molecular surface of the protein (92%, while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation.

  10. Molecular evolution of rDNA in early diverging Metazoa: First comparative analysis and phylogenetic application of complete SSU rRNA secondary structures in Porifera

    Directory of Open Access Journals (Sweden)

    Wörheide Gert

    2008-02-01

    Full Text Available Abstract Background The cytoplasmic ribosomal small subunit (SSU, 18S ribosomal RNA (rRNA is the most frequently-used gene for molecular phylogenetic studies. However, information regarding its secondary structure is neglected in most phylogenetic analyses. Incorporation of this information is essential in order to apply specific rRNA evolutionary models to overcome the problem of co-evolution of paired sites, which violates the basic assumption of the independent evolution of sites made by most phylogenetic methods. Information about secondary structure also supports the process of aligning rRNA sequences across taxa. Both aspects have been shown to increase the accuracy of phylogenetic reconstructions within various taxa. Here, we explore SSU rRNA secondary structures from the three extant classes of Phylum Porifera (Grant, 1836, a pivotal, but largely unresolved taxon of early branching Metazoa. This is the first phylogenetic study of poriferan SSU rRNA data to date that includes detailed comparative secondary structure information for all three sponge classes. Results We found base compositional and structural differences in SSU rRNA among Demospongiae, Hexactinellida (glass sponges and Calcarea (calcareous sponges. We showed that analyses of primary rRNA sequences, including secondary structure-specific evolutionary models, in combination with reconstruction of the evolution of unusual structural features, reveal a substantial amount of additional information. Of special note was the finding that the gene tree topologies of marine haplosclerid demosponges, which are inconsistent with the current morphology-based classification, are supported by our reconstructed evolution of secondary structure features. Therefore, these features can provide alternative support for sequence-based topologies and give insights into the evolution of the molecule itself. To encourage and facilitate the application of rRNA models in phylogenetics of early

  11. A logic-based dynamic modeling approach to explicate the evolution of the central dogma of molecular biology.

    Science.gov (United States)

    Jafari, Mohieddin; Ansari-Pour, Naser; Azimzadeh, Sadegh; Mirzaie, Mehdi

    It is nearly half a century past the age of the introduction of the Central Dogma (CD) of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.

  12. Influence of free surfaces on microstructure evolution of radiation damage in Fe from molecular dynamics and object kinetic Monte Carlo calculations

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, Maria J.; Caturla, Maria J. [Facultad de Ciencias, Department Fisica Aplicada, Fase II, Universidad de Alicante, 03690, Alicante (Spain); Dopico, Ignacio; Martin-Bragado, Ignacio [IMDEA Materials Institute, C/Eric Kandel 2, 28906, Getafe, Madrid (Spain)

    2016-11-15

    The influence of surfaces on the evolution of damage of irradiated Fe is studied using object kinetic Monte Carlo with input from molecular dynamics simulations and ab initio calculations. Two effects are analysed: the influence of traps and the initial distribution of damage in the cascade. These simulations show that for a trap concentration of around 100 appm, there are no significant differences between defect concentrations in bulk and thin films. However, the initial distribution of defects plays an important role not only on total defect concentration but also on defect type, for the model used in this study. Damage produced by a 100 keV Fe ion impinging a Fe thin film. Blue (dark) spheres are self-interstitials, red (light) spheres are vacancies. (copyright 2016 The Authors/Employers. Phys. Status Solidi A published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Fossils and a large molecular phylogeny show that the evolution of species richness, generic diversity, and turnover rates are disconnected.

    Science.gov (United States)

    Xing, Yaowu; Onstein, Renske E; Carter, Richard J; Stadler, Tanja; Peter Linder, H

    2014-10-01

    The magnitude and extent of global change during the Cenozoic is remarkable, yet the impacts of these global changes on the biodiversity and evolutionary dynamics of species diversification remain poorly understood. To investigate this question, we combine paleontological and neontological data for the angiosperm order Fagales, an ecologically important clade of about 1370 species of trees with an exceptional fossil record. We show differences in patterns of accumulation of generic diversity, species richness, and turnover rates for Fagales. Generic diversity evolved rapidly since the Late Cretaceous and peaked during the Eocene or Oligocene. Turnover rates were high during periods of extreme global climate change, but relatively low when the climate remained stable. Species richness accumulated gradually throughout the Cenozoic, possibly at an accelerated pace after the Middle Miocene. Species diversification occurred in new environments: Quercoids radiating in Oligocene subtropical seasonally arid habitats, Casuarinaceae in Australian pyrophytic biomes, and Betula in Late Neogene holarctic habitats. These radiations were counterbalanced by regional extinctions in Late Neogene mesic warm-temperate forests. Thus, the overall diversification at species level is linked to regional radiations of clades with appropriate ecologies exploiting newly available habitats. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  14. Differing courses of genetic evolution of Bradyrhizobium inoculants as revealed by long-term molecular tracing in Acacia mangium plantations.

    Science.gov (United States)

    Perrineau, M M; Le Roux, C; Galiana, A; Faye, A; Duponnois, R; Goh, D; Prin, Y; Béna, G

    2014-09-01

    Introducing nitrogen-fixing bacteria as an inoculum in association with legume crops is a common practice in agriculture. However, the question of the evolution of these introduced microorganisms remains crucial, both in terms of microbial ecology and agronomy. We explored this question by analyzing the genetic and symbiotic evolution of two Bradyrhizobium strains inoculated on Acacia mangium in Malaysia and Senegal 15 and 5 years, respectively, after their introduction. Based on typing of several loci, we showed that these two strains, although closely related and originally sampled in Australia, evolved differently. One strain was recovered in soil with the same five loci as the original isolate, whereas the symbiotic cluster of the other strain was detected with no trace of the three housekeeping genes of the original inoculum. Moreover, the nitrogen fixation efficiency was variable among these isolates (either recombinant or not), with significantly high, low, or similar efficiencies compared to the two original strains and no significant difference between recombinant and nonrecombinant isolates. These data suggested that 15 years after their introduction, nitrogen-fixing bacteria remain in the soil but that closely related inoculant strains may not evolve in the same way, either genetically or symbiotically. In a context of increasing agronomical use of microbial inoculants (for biological control, nitrogen fixation, or plant growth promotion), this result feeds the debate on the consequences associated with such practices. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Molecular evolution of GB virus B hepatitis virus during acute resolving and persistent infections in experimentally infected tamarins

    DEFF Research Database (Denmark)

    Takikawa, Shingo; Engle, Ronald E; Faulk, Kristina N

    2010-01-01

    GB virus B (GBV-B) causes acute hepatitis in experimentally infected tamarins. We compared evolutionary features in acute resolving and persistent GBV-B infection. We detected no evidence of evolution in four animals with clearance during weeks 9-12, whereas three animals with clearance during......(-3) substitutions per site year(-1) during weeks 1-52 and 53-104, respectively. Thus, there was a significant decrease in evolution over time, as found for hepatitis C virus. The rate of non-synonymous substitution per non-synonymous site compared with that of synonymous substitution per synonymous site decreased...... weeks 13-26 had several substitutions in their polyprotein sequence. A single tamarin had long-term GBV-B viraemia; analysis of virus recovered at weeks 2, 5, 12, 20, 26, 52 and 104 demonstrated that mutations accumulated over time. Overall, the amino acid substitution rate was 3.5x10(-3) and 1.1x10...

  16. The Insect Chemoreceptor Superfamily in Drosophila pseudoobscura: Molecular Evolution of Ecologically-Relevant Genes Over 25 Million Years

    Science.gov (United States)

    Robertson, Hugh M.

    2009-01-01

    The insect chemoreceptor superfamily, consisting of the odorant receptor (Or) and gustatory receptor (Gr) families, exhibits patterns of evolution ranging from highly conserved proteins to lineage-specific gene subfamily expansions when compared across insect suborders and orders. Here their evolution across the timespan of 25 million years is examined which yield orthologous divergences ranging from 5–50%. They also reveal the beginnings of lineage-specific gene subfamilies as multiple duplications of particular gene lineages in either or both Drosophila melanogaster and D. pseudoobscura (Frolova and Astaurov) (Diptera: Drosophilidae). Gene losses and pseudogenes are similarly evident in both lineages, and even in closer comparisons of D. melanogaster with D. yakuba, leaving these species with roughly similar numbers of chemoreceptors despite considerable gene turnover. The large range of divergences and gene duplications provide abundant raw material for studies of structure and function in this novel superfamily, which contains proteins that evolved to bind specific ligands that mediate much of the ecology and mating behavior of insects. PMID:19613461

  17. Molecular evolution, characterization and expression profiling of uterine aldoketoreductase 1B5 gene in endometrium of goat (Capra hircus).

    Science.gov (United States)

    Kumar, Rohit; Ramteke, P W; Sharma, Sanjeev Kumar; Mitra, Abhijit

    2015-01-01

    Aldoketoreductase 1B5 (AKR1B5), a member of the Aldoketoreductase family, is involved in the production of Prostaglandin F2α (PGF2α) as one of vital prostaglandin F synthase (PGFS). PGs (Prostaglandins) play a crucial role in female reproductive system. In the present study, we cloned and characterized the full-length open reading frame of AKR1B5 gene in Black Bengal (BB) goat. The complete coding sequence of AKR1B5 comprises an entire open reading frame of 951 bp, encoding 316 amino acid (AA) residues. BB AKR1B5 showed >82.9% identity with that of cattle, rabbit, human, and rat at nucleotide and amino acid levels, respectively. Further, a systematic study of AKR1B5 sequence evolution was also conducted using Phylogenetic Analysis by Maximum Likelihood (PAML), entropy plot, and Blossum 62 in a phylogenetic context. Analysis of nonsynonymous to synonymous nucleotide substitution rate ratios (Ka/Ks) revealed that negative selection may have been operating on this gene during evolution in goat, cattle, rabbit, human, and rat, which showed its conservation across species. Further, expression of AKR1B5 was determined by quantitative real-time PCR in goat endometrial tissues at different stages of the estrous cycle and early pregnancy. Our results indicated its high expression at luteolytic phase (stage III; day 16-21) during the estrous cycle. However, during early (day ∼30-40) pregnancy the expression was highest as compared to estrous cycle.

  18. Disparate molecular evolution of two types of repetitive DNAs in the genome of the grasshopper Eyprepocnemis plorans.

    Science.gov (United States)

    Teruel, M; Ruíz-Ruano, F J; Marchal, J A; Sánchez, A; Cabrero, J; Camacho, J Pm; Perfectti, F

    2014-05-01

    Wide arrays of repetitive DNA sequences form an important part of eukaryotic genomes. These repeats appear to evolve as coherent families, where repeats within a family are more similar to each other than to other orthologous representatives in related species. The continuous homogenization of repeats, through selective and non-selective processes, is termed concerted evolution. Ascertaining the level of variation between repeats is crucial to determining which evolutionary model best explains the homogenization observed for these sequences. Here, for the grasshopper Eyprepocnemis plorans, we present the analysis of intragenomic diversity for two repetitive DNA sequences (a satellite DNA (satDNA) and the 45S rDNA) resulting from the independent microdissection of several chromosomes. Our results show different homogenization patterns for these two kinds of paralogous DNA sequences, with a high between-chromosome structure for rDNA but no structure at all for the satDNA. This difference is puzzling, considering the adjacent localization of the two repetitive DNAs on paracentromeric regions in most chromosomes. The disparate homogenization patterns detected for these two repetitive DNA sequences suggest that several processes participate in the concerted evolution in E. plorans, and that these mechanisms might not work as genome-wide processes but rather as sequence-specific ones.

  19. Monocot and dicot MLO powdery mildew susceptibility factors are functionally conserved in spite of the evolution of class-specific molecular features.

    Science.gov (United States)

    Appiano, Michela; Catalano, Domenico; Santillán Martínez, Miguel; Lotti, Concetta; Zheng, Zheng; Visser, Richard G F; Ricciardi, Luigi; Bai, Yuling; Pavan, Stefano

    2015-10-26

    Specific members of the plant Mildew Locus O (MLO) protein family act as susceptibility factors towards powdery mildew (PM), a worldwide-spread fungal disease threatening many cultivated species. Previous studies indicated that monocot and dicot MLO susceptibility proteins are phylogenetically divergent. A bioinformatic approach was followed to study the type of evolution of Angiosperm MLO susceptibility proteins. Transgenic complementation tests were performed for functional analysis. Our results show that monocot and dicot MLO susceptibility proteins evolved class-specific conservation patterns. Many of them appear to be the result of negative selection and thus are likely to provide an adaptive value. We also tested whether different molecular features between monocot and dicot MLO proteins are specifically required by PM fungal species to cause pathogenesis. To this aim, we transformed a tomato mutant impaired for the endogenous SlMLO1 gene, and therefore resistant to the tomato PM species Oidium neolycopersici, with heterologous MLO susceptibility genes from the monocot barley and the dicot pea. In both cases, we observed restoration of PM symptoms. Finally, through histological observations, we demonstrate that both monocot and dicot susceptibility alleles of the MLO genes predispose to penetration of a non-adapted PM fungal species in plant epidermal cells. With this study, we provide insights on the evolution and function of MLO genes involved in the interaction with PM fungi. With respect to breeding research, we show that transgenic complementation assays involving phylogenetically distant plant species can be used for the characterization of novel MLO susceptibility genes. Moreover, we provide an overview of MLO protein molecular features predicted to play a major role in PM susceptibility. These represent ideal targets for future approaches of reverse genetics, addressed to the selection of loss-of-function resistant mutants in cultivated species.

  20. The Molecular Epidemiology and Evolution of Murray Valley Encephalitis Virus: Recent Emergence of Distinct Sub-lineages of the Dominant Genotype 1.

    Directory of Open Access Journals (Sweden)

    David T Williams

    2015-11-01

    Full Text Available Recent increased activity of the mosquito-borne Murray Valley encephalitis virus (MVEV in Australia has renewed concerns regarding its potential to spread and cause disease.To better understand the genetic relationships between earlier and more recent circulating strains, patterns of virus movement, as well as the molecular basis of MVEV evolution, complete pre-membrane (prM and Envelope (Env genes were sequenced from sixty-six MVEV strains from different regions of the Australasian region, isolated over a sixty year period (1951-2011. Phylogenetic analyses indicated that, of the four recognized genotypes, only G1 and G2 are contemporary. G1 viruses were dominant over the sampling period and found across the known geographic range of MVEV. Two distinct sub-lineages of G1 were observed (1A and 1B. Although G1B strains have been isolated from across mainland Australia, Australian G1A strains have not been detected outside northwest Australia. Similarly, G2 is comprised of only Western Australian isolates from mosquitoes, suggesting G1B and G2 viruses have geographic or ecological restrictions. No evidence of recombination was found and a single amino acid substitution in the Env protein (S332G was found to be under positive selection, while several others were found to be under directional evolution. Evolutionary analyses indicated that extant genotypes of MVEV began to diverge from a common ancestor approximately 200 years ago. G2 was the first genotype to diverge, followed by G3 and G4, and finally G1, from which subtypes G1A and G1B diverged between 1964 and 1994.The results of this study provides new insights into the genetic diversity and evolution of MVEV. The demonstration of co-circulation of all contemporary genetic lineages of MVEV in northwestern Australia, supports the contention that this region is the enzootic focus for this virus.

  1. Molecular pharmacognosy.

    Science.gov (United States)

    Huang, LuQi; Xiao, PeiGen; Guo, LanPing; Gao, WenYuan

    2010-06-01

    This article analyzes the background and significance of molecular pharmacognosy, including the molecular identification of medicinal raw materials, phylogenetic evolution of medicinal plants and animals, evaluation and preservation of germplasm resources for medicinal plants and animals, etiology of endangerment and protection of endangered medicinal plants and animals, biosynthesis and bioregulation of active components in medicinal plants, and characteristics and the molecular bases of top-geoherbs.

  2. The IGS-ETS in Bacillus (Insecta Phasmida: molecular characterization and the relevance of sex in ribosomal DNA evolution

    Directory of Open Access Journals (Sweden)

    Passamonti Marco

    2008-10-01

    Full Text Available Abstract Background DNA encoding for ribosomal RNA (rDNA is arranged in tandemly-repeated subunits, each containing ribosomal genes and non-coding spacers. Because tandemly-repeated, rDNA evolves under a balanced influence of selection and "concerted evolution", which homogenizes rDNA variants over the genome (through genomic turnover mechanisms and the population (through sexuality. Results In this paper we analyzed the IGS-ETS of the automictic parthenogen Bacillus atticus and the bisexual B. grandii, two closely related stick-insect species. Both species share the same IGS-ETS structure and sequence, including a peculiar head-to-tail array of putative transcription enhancers, here named Bag530. Sequence variability of both IGS-ETS and Bag530 evidenced a neat geographic and subspecific clustering in B. grandii, while B. atticus shows a little but evident geographic structure. This was an unexpected result, since the parthenogen B. atticus should lack sequence fixation through sexuality. In B. atticus a new variant might spread in a given geographic area through colonization by an all-female clone, but we cannot discard the hypothesis that B. atticus was actually a bisexual taxon in that area at the time the new variant appeared. Moreover, a gene conversion event between two Bag530 variants of B. grandii benazzii and B. grandii maretimi suggested that rRNA might evolve according to the so-called "library hypothesis" model, through differential amplification of rDNA variants in different taxa. Conclusion On the whole, Bacillus rDNA evolution appears to be under a complex array of interacting mechanisms: homogenization may be achieved through genomic turnover that stabilizes DNA-binding protein interactions but, simultaneously, new sequence variants can be adopted, either by direct appearance of newly mutated repeats, or by competition among repeats, so that both DNA-binding proteins and repeat variants drive each other's evolution. All this

  3. Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis.

    Science.gov (United States)

    Wang, Pengkai; Cheng, Tielong; Lu, Mengzhu; Liu, Guangxin; Li, Meiping; Shi, Jisen; Lu, Ye; Laux, Thomas; Chen, Jinhui

    2016-01-01

    The APETALA2 (AP2) genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade) inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group.

  4. Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status.

    Science.gov (United States)

    Schmidt, M; Rinke, J; Schäfer, V; Schnittger, S; Kohlmann, A; Obstfelder, E; Kunert, C; Ziermann, J; Winkelmann, N; Eigendorff, E; Haferlach, T; Haferlach, C; Hochhaus, A; Ernst, T

    2014-12-01

    To study clonal evolution in chronic myeloid leukemia (CML), we searched for BCR-ABL-independent gene mutations in both Philadelphia chromosome (Ph)-negative and Ph-positive clones in 29 chronic-phase CML patients by targeted deep sequencing of 25 genes frequently mutated in myeloid disorders. Ph-negative clones were analyzed in 14 patients who developed clonal cytogenetic abnormalities in Ph-negative cells during treatment with tyrosine kinase inhibitors (TKI). Mutations were detected in 6/14 patients (43%) affecting the genes DNMT3A, EZH2, RUNX1, TET2, TP53, U2AF1 and ZRSR2. In two patients, the mutations were also found in corresponding Ph-positive diagnostic samples. To further investigate Ph-positive clones, 15 randomly selected CML patients at diagnosis were analyzed. Somatic mutations additional to BCR-ABL were found in 5/15 patients (33%) affecting ASXL1, DNMT3A, RUNX1 and TET2. Analysis of individual hematopoietic colonies at diagnosis revealed that most mutations were part of the Ph-positive clone. In contrast, deep sequencing of subsequent samples during TKI treatment revealed one DNMT3A mutation in Ph-negative cells that was also present in Ph-positive cells at diagnosis, implying that the mutation preceded the BCR-ABL rearrangement. In summary, BCR-ABL-independent gene mutations were frequently found in Ph-negative and Ph-positive clones of CML patients and may be considered as important cofactors in the clonal evolution of CML.

  5. Gene genealogies, cryptic species, and molecular evolution in the human pathogen Coccidioides immitis and relatives (Ascomycota, Onygenales).

    Science.gov (United States)

    Koufopanou, V; Burt, A; Szaro, T; Taylor, J W

    2001-07-01

    Previous genealogical analyses of population structure in Coccidioides immitis revealed the presence of two cryptic and sexual species in this pathogenic fungus but did not clarify their origin and relationships with respect to other taxa. By combining the C. immitis data with those of two of its closest relatives, the free-living saprophytes Auxarthron zuffianum and Uncinocarpus reesii, we show that the C. immitis species complex is monophyletic, indicating a single origin of pathogenicity. Cryptic species also were found in both A. zuffianum and U. reesii, indicating that they can be found in both pathogenic and free-living fungi. Our study, together with a few others, indicates that the current list of known fungal species might be augmented by a factor of at least two. However, at least in the C. immitis, A. zuffianum, and U. reesii complexes, cryptic species represent subdivisions at the tips of deep monophyletic clades and thus well within the existing framework of generic classification. An analysis of silent and expressed divergence and polymorphism values between and within the taxa identified by genealogical concordance did not reveal faster evolution in C. immitis as a consequence of adaptation to the pathogenic habit, nor did it show positive Darwinian evolution in a region of a dioxygenase gene (tcrP gene coding for 4-HPPD) known to cause antigenic responses in humans. Instead, the data suggested relative stasis, indicative of purifying selection against mostly deleterious mutations. Two introns in the same gene fragment were considerably more divergent than exons and were unalignable between species complexes but had very low polymorphism within taxa.

  6. The role of the molecular-metallic transition of hydrogen in the evolution of Jupiter, Saturn, and brown dwarfs

    Science.gov (United States)

    Saumon, Didier; Hubbard, William B.; Chabrier, Gilles; Van Horn, Hugh M.

    1992-01-01

    An equation of state for hydrogen which predicts a molecular-metallic phase transition at finite temperatures has become available recently. The effect of this phase transition on the cooling histories of these two giant planets and of substellar brown dwarfs is studied. The phase transition alters the present age of Jupiter and of Saturn by a few percent. Interestingly, the cooling of brown dwarfs is most strongly affected at the time when the interior adiabat crosses the critical point of the phase transition.

  7. Molecular evolution of B6 enzymes: binding of pyridoxal-5'-phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme.

    Science.gov (United States)

    Vacca, Rosa A; Giannattasio, Sergio; Capitani, Guido; Marra, Ersilia; Christen, Philipp

    2008-06-19

    The pyridoxal-5'-phosphate (PLP)-dependent or vitamin B6-dependent enzymes that catalyze manifold reactions in the metabolism of amino acids belong to no fewer than four evolutionarily independent protein families. The multiple evolutionary origin and the essential mechanistic role of PLP in these enzymes argue for the cofactor having arrived on the evolutionary scene before the emergence of the respective apoenzymes and having played a dominant role in the molecular evolution of the B6 enzyme families. Here we report on an attempt to re-enact the emergence of a PLP-dependent protoenzyme. The starting protein was pancreatic ribonuclease A (RNase), in which active-site Lys41 or Lys7 readily form a covalent adduct with PLP. We screened the PLP adduct of wild-type RNase and two variant RNases (K7R and K41R) for catalytic effects toward L- and D-amino acids. RNase(K41R)-PLP, in which the cofactor is bound through an imine linkage to Lys7, qualifies for a model proto-B6 enzyme by the following criteria: (1) covalent linkage of PLP (internal aldimine); (2) catalytic activity toward amino acids that depends on formation of an imine linkage with the substrate (external aldimine); (3) adjoining binding sites for the cofactor and amino acid moiety that facilitate the transimination reaction of the internal to the external aldimine and stabilize the resulting noncovalent complex of the coenzyme-substrate adduct with the protein; (4) reaction specificity, the only detectable reactions being racemization of diverse amino acids and beta-decarboxylation of L-aspartate; (5) acceleration factors for racemization and beta-decarboxylation of >103 over and above that of PLP alone; (6) ribonuclease activity that is 103-fold lower than that of wild-type RNase, attenuation of a pre-existing biological activity being indispensable for the further evolution as a PLP-dependent protoenzyme. A single amino acid substitution (Lys41Arg) and covalent binding of PLP to active-site Lys7 suffice to

  8. Molecular evolution of B6 enzymes: Binding of pyridoxal-5'-phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme

    Directory of Open Access Journals (Sweden)

    Marra Ersilia

    2008-06-01

    Full Text Available Abstract Background The pyridoxal-5'-phosphate (PLP-dependent or vitamin B6-dependent enzymes that catalyze manifold reactions in the metabolism of amino acids belong to no fewer than four evolutionarily independent protein families. The multiple evolutionary origin and the essential mechanistic role of PLP in these enzymes argue for the cofactor having arrived on the evolutionary scene before the emergence of the respective apoenzymes and having played a dominant role in the molecular evolution of the B6 enzyme families. Here we report on an attempt to re-enact the emergence of a PLP-dependent protoenzyme. The starting protein was pancreatic ribonuclease A (RNase, in which active-site Lys41 or Lys7 readily form a covalent adduct with PLP. Results We screened the PLP adduct of wild-type RNase and two variant RNases (K7R and K41R for catalytic effects toward L- and D-amino acids. RNase(K41R-PLP, in which the cofactor is bound through an imine linkage to Lys7, qualifies for a model proto-B6 enzyme by the following criteria: (1 covalent linkage of PLP (internal aldimine; (2 catalytic activity toward amino acids that depends on formation of an imine linkage with the substrate (external aldimine; (3 adjoining binding sites for the cofactor and amino acid moiety that facilitate the transimination reaction of the internal to the external aldimine and stabilize the resulting noncovalent complex of the coenzyme-substrate adduct with the protein; (4 reaction specificity, the only detectable reactions being racemization of diverse amino acids and β-decarboxylation of L-aspartate; (5 acceleration factors for racemization and β-decarboxylation of >103 over and above that of PLP alone; (6 ribonuclease activity that is 103-fold lower than that of wild-type RNase, attenuation of a pre-existing biological activity being indispensable for the further evolution as a PLP-dependent protoenzyme. Conclusion A single amino acid substitution (Lys41Arg and covalent

  9. Karyotype Evolution and Phylogenetic Relationships of Cricetulus sokolovi Orlov et Malygin 1988 (Cricetidae, Rodentia) Inferred from Chromosomal Painting and Molecular Data.

    Science.gov (United States)

    Poplavskaya, Natalia S; Romanenko, Svetlana A; Serdyukova, Natalia A; Trifonov, Vladimir A; Yang, Fengtang; Nie, Wenhui; Wang, Jinghuan; Bannikova, Anna A; Surov, Alexey V; Lebedev, Vladimir S

    2017-01-01

    Sokolov's dwarf hamster (Cricetulus sokolovi) is the least studied representative of the striped hamsters (Cricetulus barabensis species group), the taxonomy of which remains controversial. The species was described based on chromosome morphology, but neither the details of the karyotype nor the phylogenetic relationships with other Cricetulus are known. In the present study, the karyotype of C. sokolovi was examined using cross-species chromosome painting. Molecular and cytogenetic data were employed to determine the phylogenetic position of Sokolov's hamster and to analyze the potential pathways of chromosome evolution in Cricetulus. Both the chromosome and molecular data support the species status of Sokolov's hamster. Phylogenetic analysis of the CYTB data placed C. sokolovi as sister to all other striped hamsters (sequence divergence of 8.1%). FISH data revealed that the karyotype of C. sokolovi is highly rearranged, with the most parsimonious scenario of its origin implying at least 4 robertsonian events and a centromere shift. Comparative cytogenetic data on Cricetinae suggest that their evolutionary history includes both periods of chromosomal conservatism and episodes of rapid chromosomal change. © 2017 S. Karger AG, Basel.

  10. Dynamical Timescale of Pre-collapse Evolution Inferred from Chemical Distribution in the Taurus Molecular Cloud-1 (TMC-1) Filament

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yunhee; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 (Korea, Republic of); Bourke, Tyler L. [Square Kilometre Array Organisation, Jodrell Bank Observatory, Lower Withington, Cheshire SK11 9DL (United Kingdom); II, Neal J. Evans, E-mail: yunhee.choi@khu.ac.kr, E-mail: jeongeun.lee@khu.ac.kr [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States)

    2017-04-01

    We present observations and analyses of the low-mass star-forming region, Taurus Molecular Cloud-1 (TMC-1). CS ( J = 2–1)/N{sub 2}H{sup +} ( J = 1–0) and C{sup 17}O ( J = 2–1)/C{sup 18}O ( J = 2–1) were observed with the Five College Radio Astronomy Observatory and the Seoul Radio Astronomy Observatory, respectively. In addition, Spitzer infrared data and 1.2 mm continuum data observed with Max-Planck Millimetre Bolometer are used. We also perform chemical modeling to investigate the relative molecular distributions of the TMC-1 filament. Based on Spitzer observations, there is no young stellar object along the TMC-1 filament, while five Class II and one Class I young stellar objects are identified outside the filament. The comparison between column densities calculated from dust continuum and C{sup 17}O 2–1 line emission shows that CO is depleted much more significantly in the ammonia peak than in the cyanopolyyne peak, while the column densities calculated from the dust continuum are similar at the two peaks. N{sub 2}H{sup +} is not depleted much in either peak. According to our chemical calculation, the differential chemical distribution in the two peaks can be explained by different timescales required to reach the same density, i.e., by different dynamical processes.

  11. Molecular analysis of six Rhynchospio Hartman, 1936 species (Annelida: Spionidae) with comments on the evolution of brooding within the group.

    Science.gov (United States)

    Radashevsky, Vasily I; Malyar, Vasily V; Pankova, Victoria V; Nuzhdin, Sergey V

    2016-06-24

    Rhynchospio Hartman, 1936 is a small group of spionid polychaetes currently comprising ten described species distributed mainly in the Pacific. Five species examined to date are hermaphrodites producing spermatozoa with long nuclei, oocytes with thin and smooth envelopes, and dorsally brooding their offspring. Since our first molecular analysis of four Rhynchospio species, we have collected additional material from Northern Territory, Australia, and Oregon, USA. Herein, we describe the gamete and adult morphology of the newly collected material and use molecular analyses to provide new insight on the phylogenetic relationships of six Rhynchospio species. Adults of R. cf. foliosa from Oregon are hermaphrodites, but in contrast to other Rhynchospio, they produce spermatozoa with short nuclei (ect-aquasperm), oocytes with thick vesiculate envelopes, and likely have a holopelagic larval development. Analysis of four gene fragments, comprising mitochondrial 16S rDNA, and nuclear 18S, 28S rDNA, and Histone 3 (2516 bp in total) showed Rhynchospio to be a monophyletic group, with R. cf. foliosa being a distant sister to the five other species. Rhynchospio cf. foliosa was closer to M. arctia having ect-aquasperm and vesiculate thick-envelop oocytes (p = 14.40%) than to Spioninae members B. proboscidea and P. elegans, having introsperm and oocytes with thin and smooth envelopes (p = 15.39 and 16.54%, respectively). We hypothesize that brooding might have evolved from free-spawning inside the Rhynchospio clade, but this hypothesis should be tested in a future analysis.

  12. Mitochondrial genomes reveal slow rates of molecular evolution and the timing of speciation in beavers (Castor, one of the largest rodent species.

    Directory of Open Access Journals (Sweden)

    Susanne Horn

    Full Text Available BACKGROUND: Beavers are one of the largest and ecologically most distinct rodent species. Little is known about their evolution and even their closest phylogenetic relatives have not yet been identified with certainty. Similarly, little is known about the timing of divergence events within the genus Castor. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced complete mitochondrial genomes from both extant beaver species and used these sequences to place beavers in the phylogenetic tree of rodents and date their divergence from other rodents as well as the divergence events within the genus Castor. Our analyses support the phylogenetic position of beavers as a sister lineage to the scaly tailed squirrel Anomalurus within the mouse related clade. Molecular dating places the divergence time of the lineages leading to beavers and Anomalurus as early as around 54 million years ago (mya. The living beaver species, Castor canadensis from North America and Castor fiber from Eurasia, although similar in appearance, appear to have diverged from a common ancestor more than seven mya. This result is consistent with the hypothesis that a migration of Castor from Eurasia to North America as early as 7.5 mya could have initiated their speciation. We date the common ancestor of the extant Eurasian beaver relict populations to around 210,000 years ago, much earlier than previously thought. Finally, the substitution rate of Castor mitochondrial DNA is considerably lower than that of other rodents. We found evidence that this is correlated with the longer life span of beavers compared to other rodents. CONCLUSIONS/SIGNIFICANCE: A phylogenetic analysis of mitochondrial genome sequences suggests a sister-group relationship between Castor and Anomalurus, and allows molecular dating of species divergence in congruence with paleontological data. The implementation of a relaxed molecular clock enabled us to estimate mitochondrial substitution rates and to evaluate the effect

  13. Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense.

    Science.gov (United States)

    Arya, Preeti; Acharya, Vishal

    2017-09-12

    STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.

  14. xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies

    Science.gov (United States)

    Saintonge, Amélie; Catinella, Barbara; Tacconi, Linda J.; Kauffmann, Guinevere; Genzel, Reinhard; Cortese, Luca; Davé, Romeel; Fletcher, Thomas J.; Graciá-Carpio, Javier; Kramer, Carsten; Heckman, Timothy M.; Janowiecki, Steven; Lutz, Katharina; Rosario, David; Schiminovich, David; Schuster, Karl; Wang, Jing; Wuyts, Stijn; Borthakur, Sanchayeeta; Lamperti, Isabella; Roberts-Borsani, Guido W.

    2017-12-01

    We introduce xCOLD GASS, a legacy survey providing a census of molecular gas in the local universe. Building on the original COLD GASS survey, we present here the full sample of 532 galaxies with CO (1–0) measurements from the IRAM 30 m telescope. The sample is mass-selected in the redshift interval 0.01 {10}9 {M}ȯ . The CO (1–0) flux measurements are complemented by observations of the CO (2–1) line with both the IRAM 30 m and APEX telescopes, H I observations from Arecibo, and photometry from SDSS, WISE, and GALEX. Combining the IRAM and APEX data, we find that the ratio of CO (2–1) to CO (1–0) luminosity for integrated measurements is {r}21=0.79+/- 0.03, with no systematic variations across the sample. The CO (1–0) luminosity function is constructed and best fit with a Schechter function with parameters {L}{CO}* =(7.77+/- 2.11)× {10}9 {{K}} {km} {{{s}}}-1 {{pc}}2, {φ }* =(9.84+/- 5.41)× {10}-4 {{Mpc}}-3, and α =-1.19+/- 0.05. With the sample now complete down to stellar masses of 109 {M}ȯ , we are able to extend our study of gas scaling relations and confirm that both molecular gas fractions ({f}{{{H}}2}) and depletion timescale ({t}{dep}({{{H}}}2)) vary with specific star formation rate (or offset from the star formation main sequence) much more strongly than they depend on stellar mass. Comparing the xCOLD GASS results with outputs from hydrodynamic and semianalytic models, we highlight the constraining power of cold gas scaling relations on models of galaxy formation.

  15. Impact of gene molecular evolution on phylogenetic reconstruction: a case study in the rosids (Superorder Rosanae, Angiosperms.

    Directory of Open Access Journals (Sweden)

    Khidir W Hilu

    Full Text Available Rate of substitution of genomic regions is among the most debated intrinsic features that impact phylogenetic informativeness. However, this variable is also coupled with rates of nonsynonymous substitutions that underscore the nature and degree of selection on the selected genes. To empirically address these variables, we constructed four completely overlapping data sets of plastid matK, atpB, rbcL, and mitochondrial matR genes and used the rosid lineage (angiosperms as a working platform. The genes differ in combinations of overall rates of nucleotide and amino acid substitutions. Tree robustness, homoplasy, accuracy in contrast to a reference tree, and phylogenetic informativeness are evaluated. The rapidly evolving/unconstrained matK faired best, whereas remaining genes varied in degrees of contribution to rosid phylogenetics across the lineage's 108 million years evolutionary history. Phylogenetic accuracy was low with the slowly evolving/unconstrained matR despite least amount of homoplasy. Third codon positions contributed the highest amount of parsimony informative sites, resolution and informativeness, but magnitude varied with gene mode of evolution. These findings are in clear contrast with the views that rapidly evolving regions and the 3rd codon position have inevitable negative impact on phylogenetic reconstruction at deep historic level due to accumulation of multiple hits and subsequent elevation in homoplasy and saturation. Relaxed evolutionary constraint in rapidly evolving genes distributes substitutions across codon positions, an evolutionary mode expected to reduce the frequency of multiple hits. These findings should be tested at deeper evolutionary histories.

  16. Inferences from protein and nucleic acid sequences - Early molecular evolution, divergence of kingdoms and rates of change

    Science.gov (United States)

    Dayhoff, M. O.; Barker, W. C.; Mclaughlin, P. J.

    1974-01-01

    Description of new sensitive, objective methods for establishing the probable common ancestry of very distantly related sequences and the quantitative evolutionary change which has taken place. These methods are applied to four families of proteins and nucleic acids and evolutionary trees will be derived where possible. Of the three families containing duplications of genetic material, two are nucleic acids: transfer RNA and 5S ribosomal RNA. Both of these structures are functional in the synthesis of coded proteins, and prototypes must have been present in the cell at the inception of the fundamental coding process that all living things share. There are many types of tRNA which recognize the various nucleotide triplets and the 20 amino acids. These types are thought to have arisen as a result of many gene duplications. Relationships among these types are discussed. The 5S ribosomal RNA, presently functional in both eukaryotes and prokaryotes, is very likely descended from an early form incorporating almost a complete duplication of genetic material. The amount of evolution in the various lines can again be compared. The other two families containing duplications are proteins; ferredoxin and cytochrome c.

  17. Molecular evolution of the petal and stamen identity genes, APETALA3 and PISTILLATA, after petal loss in the Piperales.

    Science.gov (United States)

    Jaramillo, M Alejandra; Kramer, Elena M

    2007-08-01

    Organ loss is an evolutionary phenomenon commonly observed in all kinds of multicellular organisms. Across the angiosperms, petals have been lost several times over the course of their diversification. We examined the evolution of petal and stamen identity genes in the Piperales, a basal lineage of angiosperms that includes the perianthless (with no petals or sepals) families Piperaceae and Saururaceae as well as the Aristolochiaceae, which exhibit a well-developed perianth. Here, we provide evidence for relaxation of selection on the putative petal and stamen identity genes, homologs of APETALA3 and PISTILLATA, following the loss of petals in the Piperales. Our results are particularly interesting as the B-class genes are not only responsible for the production of petals but are also central to stamen identity, the male reproductive organs that show no modification in these plants. Relaxed purifying selection after the loss of only one of these organs suggests that there has been dissociation of the functional roles of these genes in the Piperales.

  18. Adaptive molecular evolution of MC1R gene reveals the evidence for positive diversifying selection in indigenous goat populations.

    Science.gov (United States)

    Ahmad, Hafiz Ishfaq; Liu, Guiqiong; Jiang, Xunping; Liu, Chenhui; Chong, Yuqing; Huarong, Huang

    2017-07-01

    Detecting signatures of selection can provide a new insight into the mechanism of contemporary breeding and artificial selection and further reveal the causal genes associated to the phenotypic variation. However, the signatures of selection on genes entailing for profitable traits between Chinese commercial and indigenous goats have been poorly interpreted. We noticed footprints of positive selection at MC1R gene containing SNPs genotyped in five Chinese native goat breeds. An experimental distribution of FST was built based on approximations of FST for each SNP across five breeds. We identified selection using the high FST outlier method and found that MC1R candidate gene show evidence of positive selection. Furthermore, adaptive selection pressure on specific codons was determined using different codon based on maximum-likelihood methods; signature of positive selection in mammalian MC1R was explored in individual codons. Evolutionary analyses were inferred under maximum likelihood models, the HyPhy package implemented in the DATAMONKEY Web Server. The results of codon selection displayed positive diversifying selection at the sites were mainly involved in development of genetic variations in coat color in various mammalian species. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat MC1R provides new insights that the gene evolution may have been modulated by domestication events in goats.

  19. Retroviral oligonucleotide distributions correlate with biased nucleotide compositions of retrovirus sequences, suggesting a duplicative stepwise molecular evolution.

    Science.gov (United States)

    Laprevotte, I; Brouillet, S; Terzian, C; Hénaut, A

    1997-02-01

    A computer-assisted analysis was made of 24 complete nucleotide sequences selected from the vertebrate retroviruses to represent the ten viral groups. The conclusions of this analysis extend and strengthen the previously made hypothesis on the Moloney murine leukemia virus: The evolution of the nucleotide sequence appears to have occurred mainly through at least three overlapping levels of duplication: (1) The distributions of overrepresented (3-6)-mers are consistent with the universal rule of a trend toward TG/CT excess and with the persistence of a certain degree of symmetry between the two strands of DNA. This suggests one or several original tandemly repeated sequences and some inverted duplications. (2) The existence of two general core consensuses at the level of these (3-6)-mers supports the hypothesis of a common evolutionary origin of vertebrate retroviruses. Consensuses more specific to certain sequences are compatible with phylogenetic trees established independently. The consensuses could correspond to intermediary evolutionary stages. (3) Most of the (3-6)-mers with a significantly higher than average frequency appear to be internally repeated (with monomeric or oligomeric internal iterations) and seem to be at least partly the cause of the bias observed by other researchers at the level of retroviral nucleotide composition. They suggest a third evolutionary stage by slippage-like stepwise local duplications.

  20. Mo-MuLV nucleotide sequence exhibits three levels of oligomeric repetitions, suggesting a stepwise molecular evolution.

    Science.gov (United States)

    Laprevotte, I

    1992-11-01

    An exhaustive computer-assisted analysis of the Moloney murine leukemia virus nucleotide sequence shows numerous deviations in the oligomeric distribution, suggesting three overlapping levels of a stepwise duplicative evolution. (1) The sequence fits the universal rule of TG/CT excess which has been proposed as the construction principle of all sequences, and maintains some degree of symmetry between the two complementary strands. (2) Oligomeric repeating units share a core consensus regularly scattered throughout the sequence. This consensus is not merely predictable from the doublet frequencies and codon usage, but could correspond to an intermediary stage in a so-called periodic-to-chaotic transition. (3) Probable stepwise local duplications could be accounted for by slippagelike mechanisms. Comparison with the human spumaretrovirus (HSRV) shows similar segments in the overrepresented oligomers of the two sequences. The intermediary stage of transition oligomeric repeating units is not so clearly suggested in HSRV, perhaps because of numerous stepwise local duplications. In any case, a common evolutionary origin for the two viruses is not ruled out.

  1. Molecular characterization and evolution of carnivorous sundew (Drosera rotundifolia L.) class V β-1,3-glucanase.

    Science.gov (United States)

    Michalko, Jaroslav; Renner, Tanya; Mészáros, Patrik; Socha, Peter; Moravčíková, Jana; Blehová, Alžbeta; Libantová, Jana; Polóniová, Zuzana; Matušíková, Ildikó

    2017-01-01

    A gene for β-1,3-glucanase was isolated from carnivorous sundew. It is active in leaves and roots, but not in digestive glands. Analyses in transgenic tobacco suggest its function in germination. Ancestral plant β-1,3-glucanases (EC 3.2.1.39) played a role in cell division and cell wall remodelling, but divergent evolution has extended their roles in plant defense against stresses to decomposition of prey in carnivorous plants. As available gene sequences from carnivorous plants are rare, we isolated a glucanase gene from roundleaf sundew (Drosera rotundifolia L.) by a genome walking approach. Computational predictions recognized typical gene features and protein motifs described for other plant β-1,3-glucanases. Phylogenetic reconstructions suggest strong support for evolutionary relatedness to class V β-1,3-glucanases, including homologs that are active in the traps of related carnivorous species. The gene is expressed in sundew vegetative tissues but not in flowers and digestive glands, and encodes for a functional enzyme when expressed in transgenic tobacco. Detailed analyses of the supposed promoter both in silico and in transgenic tobacco suggest that this glucanase plays a role in development. Specific spatiotemporal activity was observed during transgenic seed germination. Later during growth, the sundew promoter was active in marginal and sub-marginal areas of apical true leaf meristems of young tobacco plants. These results suggest that the isolated glucanase gene is regulated endogenously, possibly by auxin. This is the first report on a nuclear gene study from sundew.

  2. The evolution of menstruation: a new model for genetic assimilation: explaining molecular origins of maternal responses to fetal invasiveness.

    Science.gov (United States)

    Emera, Deena; Romero, Roberto; Wagner, Günter

    2012-01-01

    Why do humans menstruate while most mammals do not? Here, we present our answer to this long-debated question, arguing that (i) menstruation occurs as a mechanistic consequence of hormone-induced differentiation of the endometrium (referred to as spontaneous decidualization, or SD); (ii) SD evolved because of maternal-fetal conflict; and (iii) SD evolved by genetic assimilation of the decidualization reaction, which is induced by the fetus in non-menstruating species. The idea that menstruation occurs as a consequence of SD has been proposed in the past, but here we present a novel hypothesis on how SD evolved. We argue that decidualization became genetically stabilized in menstruating lineages, allowing females to prepare for pregnancy without any signal from the fetus. We present three models for the evolution of SD by genetic assimilation, based on recent advances in our understanding of the mechanisms of endometrial differentiation and implantation. Testing these models will ultimately shed light on the evolutionary significance of menstruation, as well as on the etiology of human reproductive disorders like endometriosis and recurrent pregnancy loss. Copyright © 2012 WILEY Periodicals, Inc.

  3. Temporal analysis of reassortment and molecular evolution of Cucumber mosaic virus: Extra clues from its segmented genome

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Kazusato, E-mail: ohshimak@cc.saga-u.ac.jp [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima (Japan); Matsumoto, Kosuke [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); Yasaka, Ryosuke [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima (Japan); Nishiyama, Mai; Soejima, Kenta [Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga (Japan); Korkmaz, Savas [Department of Plant Protection, Faculty of Agriculture, University of Canakkale Onsekiz Mart, Canakkale (Turkey); Ho, Simon Y.W. [School of Biological Sciences, University of Sydney, Sydney, New South Wales (Australia); Gibbs, Adrian J. [Emeritus Faculty, Australian National University, Canberra (Australia); Takeshita, Minoru [Laboratory of Plant Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki (Japan)

    2016-01-15

    Cucumber mosaic virus (CMV) is a damaging pathogen of over 200 mono- and dicotyledonous crop species worldwide. It has the broadest known host range of any virus, but the timescale of its evolution is unknown. To investigate the evolutionary history of this virus, we obtained the genomic sequences of 40 CMV isolates from brassicas sampled in Iran, Turkey and Japan, and combined them with published sequences. Our synonymous ('silent') site analyses revealed that the present CMV population is the progeny of a single ancestor existing 1550–2600 years ago, but that the population mostly radiated 295–545 years ago. We found that the major CMV lineages are not phylogeographically confined, but that recombination and reassortment is restricted to local populations and that no reassortant lineage is more than 251 years old. Our results highlight the different evolutionary patterns seen among viral pathogens of brassica crops across the world. - Highlights: • Present-day CMV lineages had a most recent common ancestor 1550–2600 years ago. • The CMV population mostly radiated less than 295–545 years ago. • No reassortant found in the present populations is more than 251 years old. • The open-reading frames evolve at around 2.3–4.7×10{sup −4} substitutions/site/year. • Synonymous codons of CMV seem to have a more precise temporal signal than all codons.

  4. Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing.

    Directory of Open Access Journals (Sweden)

    Shih-Shun Lin

    2009-02-01

    Full Text Available Plant microRNAs (miRNA guide cleavage of target mRNAs by DICER-like proteins, thereby reducing mRNA abundance. Native precursor miRNAs can be redesigned to target RNAs of interest, and one application of such artificial microRNA (amiRNA technology is to generate plants resistant to pathogenic viruses. Transgenic Arabidopsis plants expressing amiRNAs designed to target the genome of two unrelated viruses were resistant, in a highly specific manner, to the appropriate virus. Here, we pursued two different goals. First, we confirmed that the 21-nt target site of viral RNAs is both necessary and sufficient for resistance. Second, we studied the evolutionary stability of amiRNA-mediated resistance against a genetically plastic RNA virus, TuMV. To dissociate selective pressures acting upon protein function from those acting at the RNA level, we constructed a chimeric TuMV harboring a 21-nt, amiRNA target site in a non-essential region. In the first set of experiments designed to assess the likelihood of resistance breakdown, we explored the effect of single nucleotide mutation within the target 21-nt on the ability of mutant viruses to successfully infect amiRNA-expressing plants. We found non-equivalency of the target nucleotides, which can be divided into three categories depending on their impact in virus pathogenicity. In the second set of experiments, we investigated the evolution of the virus mutants in amiRNA-expressing plants. The most common outcome was the deletion of the target. However, when the 21-nt target was retained, viruses accumulated additional substitutions on it, further reducing the binding/cleavage ability of the amiRNA. The pattern of substitutions within the viral target was largely dominated by G to A and C to U transitions.

  5. Molecular evolution of the insect Halloween family of cytochrome P450s: phylogeny, gene organization and functional conservation.

    Science.gov (United States)

    Rewitz, Kim F; O'Connor, Michael B; Gilbert, Lawrence I

    2007-08-01

    The insect molting hormone, 20-hydroxyecdysone (20E), is a major modulator of the developmental processes resulting in molting and metamorphosis. During evolution selective forces have preserved the Halloween genes encoding cytochrome P450 (P450) enzymes that mediate the biosynthesis of 20E. In the present study, we examine the phylogenetic relationships of these P450 genes in holometabolous insects belonging to the orders Hymenoptera, Coleoptera, Lepidoptera and Diptera. The analyzed insect genomes each contains single orthologs of Phantom (CYP306A1), Disembodied (CYP302A1), Shadow (CYP315A1) and Shade (CYP314A1), the terminal hydroxylases. In Drosophila melanogaster, the Halloween gene spook (Cyp307a1) is required for the biosynthesis of 20E, although a function has not yet been identified. Unlike the other Halloween genes, the ancestor of this gene evolved into three paralogs, all in the CYP307 family, through gene duplication. The genomic stability of these paralogs varies among species. Intron-exon structures indicate that D. melanogaster Cyp307a1 is a mRNA-derived paralog of spookier (Cyp307a2), which is the ancestral gene and the closest ortholog of the coleopteran, lepidopteran and mosquito CYP307A subfamily genes. Evolutionary links between the insect Halloween genes and vertebrate steroidogenic P450s suggest that they originated from common ancestors, perhaps destined for steroidogenesis, before the deuterostome-arthropod split. Conservation of putative substrate recognition sites of orthologous Halloween genes indicates selective constraint on these residues to prevent functional divergence. The results suggest that duplications of ancestral P450 genes that acquired novel functions may have been an important mechanism for evolving the ecdysteroidogenic pathway.

  6. Molecular evolution of human immunodeficiency virus type 1 upon transmission between human leukocyte antigen disparate donor-recipient pairs.

    Directory of Open Access Journals (Sweden)

    Marjon Navis

    Full Text Available BACKGROUND: To address evolution of HIV-1 after transmission, we studied sequence dynamics in and outside predicted epitopes of cytotoxic T lymphocytes (CTL in subtype B HIV-1 variants that were isolated from 5 therapy-naive horizontal HLA-disparate donor-recipient pairs from the Amsterdam Cohort Studies on HIV-1 infection and AIDS. METHODOLOGY/PRINCIPAL FINDINGS: In the first weeks after transmission, the majority of donor-derived mutations in and outside donor-HLA-restricted epitopes in Gag, Env, and Nef, were preserved in the recipient. Reversion to the HIV-1 subtype B consensus sequence of mutations in- and outside donor-HLA-restricted CTL epitopes, and new mutations away from the consensus B sequence mostly within recipient-HLA-restricted epitopes, contributed equally to the early sequence changes. In the subsequent period (1-2 years after transmission, still only a low number of both reverting and forward mutations had occurred. During subsequent long-term follow-up, sequence dynamics were dominated by forward mutations, mostly (50-85% in recipient-HLA-restricted CTL epitopes. At the end of long-term follow-up, on average 43% of the transmitted CTL escape mutations in donor-HLA-restricted epitopes had reverted to the subtype B consensus sequence. CONCLUSIONS/SIGNIFICANCE: The relatively high proportion of long-term preserved mutations after transmission points to a lack of back selection even in the absence of CTL pressure, which may lead to an accumulating loss of critical CTL epitopes. Our data are supportive for a continuous adaptation of HIV-1 to host immune pressures which may have implications for vaccine design.

  7. Begomovirus 'melting pot' in the south-west Indian Ocean islands: molecular diversity and evolution through recombination.

    Science.gov (United States)

    Lefeuvre, P; Martin, D P; Hoareau, M; Naze, F; Delatte, H; Thierry, M; Varsani, A; Becker, N; Reynaud, B; Lett, J-M

    2007-12-01

    During the last few decades, many virus species have emerged, often forming dynamic complexes within which viruses share common hosts and rampantly exchange genetic material through recombination. Begomovirus species complexes are common and represent serious agricultural threats. Characterization of species complex diversity has substantially contributed to our understanding of both begomovirus evolution, and the ecological and epidemiological processes involved in the emergence of new viral pathogens. To date, the only extensively studied emergent African begomovirus species complex is that responsible for cassava mosaic disease. Here we present a study of another emerging begomovirus species complex which is associated with serious disease outbreaks in bean, tobacco and tomato on the south-west Indian Ocean (SWIO) islands off the coast of Africa. On the basis of 14 new complete DNA-A sequences, we describe seven new island monopartite begomovirus species, suggesting the presence of an extraordinary diversity of begomovirus in the SWIO islands. Phylogenetic analyses of these sequences reveal a close relationship between monopartite and bipartite African begomoviruses, supporting the hypothesis that either bipartite African begomoviruses have captured B components from other bipartite viruses, or there have been multiple B-component losses amongst SWIO virus progenitors. Moreover, we present evidence that detectable recombination events amongst African, Mediterranean and SWIO begomoviruses, while substantially contributing to their diversity, have not occurred randomly throughout their genomes. We provide the first statistical support for three recombination hot-spots (V1/C3 interface, C1 centre and the entire IR) and two recombination cold-spots (the V2 and the third quarter of V1) in the genomes of begomoviruses.

  8. Redundancy and molecular evolution: the rapid Induction of bone formation by the mammalian transforming growth factor-β3 isoform

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2016-09-01

    Full Text Available The soluble osteogenic molecular signals of the transforming growth factor-β (TGF-β supergene family are the molecular bases of the induction of bone formation and postnatal bone tissue morphogenesis with translation into clinical contexts. The mammalian TGF-β3 isoform, a pleiotropic member of the family, controls a vast array of biological processes including the induction of bone formation. Recombinant hTGF-β3 induces substantial bone formation when implanted with either collagenous bone matrices or coral-derived macroporous bioreactors in the rectus abdominis muscle of the non-human primate Papio ursinus. In marked contrast, the three mammalian TGF-βs do not initiate the induction of bone formation in rodents and lagomorphs. The induction of bone by hTGF-β3/preloaded bioreactors is orchestrated by inducing fibrin-fibronectin rings that structurally organize tissue patterning and morphogenesis within the macroporous spaces. Induced advancing extracellular matrix rings provide the structural anchorage for hyper chromatic cells, interpreted as differentiating osteoblasts re-programmed by hTGF-β3 from invading myoblastic and/or pericytic differentiated cells. Runx2 and Osteocalcin expression are significantly up-regulated correlating to multiple invading cells differentiating into the osteoblastic phenotype. Bioreactors pre-loaded with recombinant human Noggin (hNoggin, a BMPs antagonist, show down-regulation of BMP-2 and other profiled osteogenic proteins’ genes resulting in minimal bone formation. Coral-derived macroporous constructs preloaded with binary applications of hTGF-β3 and hNoggin also show down-regulation of BMP-2 with the induction of limited bone formation. The induction of bone formation by hTGF-β3 is via the BMPs pathway and it is thus blocked by hNoggin. Our systematic studies in Papio ursinus with translational hTGF-β3 in large cranio-mandibulo-facial defects in humans are now requesting the re-evaluation of Bone

  9. Phylogeny, classification and evolution of ladybird beetles (Coleoptera: Coccinellidae) based on simultaneous analysis of molecular and morphological data.

    Science.gov (United States)

    Seago, Ainsley E; Giorgi, Jose Adriano; Li, Jiahui; Slipiński, Adam

    2011-07-01

    Ladybird beetles (family Coccinellidae) are a species-rich, ecologically diverse group of substantial agricultural significance, yet have been consistently problematic to classify, with evolutionary relationships poorly understood. In order to identify major clades within Coccinellidae, evaluate the current classification system, and identify likely drivers of diversification in this polyphagous group, we conducted the first simultaneous Bayesian analysis of morphological and multi-locus molecular data for any beetle family. Addition of morphological data significantly improved phylogenetic resolution and support for early diverging lineages, thereby better resolving evolutionary relationships than either data type alone. On the basis of these results, we formally recognize the subfamilies Microweisinae and Coccinellinae sensuŚlipiński (2007). No significant support was found for the subfamilies Coccidulinae, Scymninae, Sticholotidinae, or Ortaliinae. Our phylogenetic results suggest that the evolutionary success of Coccinellidae is in large part attributable to the exploitation of ant-tended sternorrhynchan insects as a food source, enabled by the key innovation of unusual defense mechanisms in larvae. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Morphological and molecular evolution of the ultimobranchial gland of nonmammalian vertebrates, with special reference to the chicken C cells.

    Science.gov (United States)

    Kameda, Yoko

    2017-10-01

    This review summarizes the current understanding of the nonmammalian ultimobranchial gland from morphological and molecular perspectives. Ultimobranchial anlage of all animal species develops from the last pharyngeal pouch. The genes involved in the development of pharyngeal pouches are well conserved across vertebrates. The ultimobranchial anlage of nonmammalian vertebrates and monotremes does not merge with the thyroid, remaining as an independent organ throughout adulthood. Although C cells of all animal species secrete calcitonin, the shape, cellular components and location of the ultimobranchial gland vary from species to species. Avian ultimobranchial gland is unique in several phylogenic aspects; the organ is located between the vagus and recurrent laryngeal nerves at the upper thorax and is densely innervated by branches emanating from them. In chick embryos, TuJ1-, HNK-1-, and PGP 9.5-immunoreactive cells that originate from the distal vagal (nodose) ganglion, colonize the ultimobranchial anlage and differentiate into C cells; neuronal cells give rise to C cells. Like C cells of mammals, the cells of fishes, amphibians, reptiles, and also a subset of C cells of birds, appear to be derived from the endodermal epithelium forming ultimobranchial anlage. Thus, the avian ultimobranchial C cells may have dual origins, neural progenitors and endodermal epithelium. Developmental Dynamics 246:719-739, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. The evolution of endometrial carcinoma classification through application of immunohistochemistry and molecular diagnostics: past, present and future.

    Science.gov (United States)

    Goebel, Emily A; Vidal, August; Matias-Guiu, Xavier; Blake Gilks, C

    2017-12-12

    Uterine cancer was first subclassified based on anatomic site, separating those tumours arising from the endometrium from cervical cancers. There was then further subclassification of endometrial cancers based on cell type, and this correlated with the Type I and Type II categories identified through the epidemiological studies of Bokhman, with endometrioid carcinoma corresponding (approximately) to Type I and serous carcinoma to Type II. These histotypes are not clearly separable in practice, however, with considerable interobserver variability in histotype diagnosis, especially for high-grade tumours. There followed studies of immunomarkers and then mutational studies of single genes, in attempts to improve subclassification. While these have revealed significant differences in protein expression and mutation profiles between endometrioid and serous carcinomas, there is also considerable overlap, so that there remain challenges in subclassification of endometrial carcinoma. Gene panel testing, using next-generation sequencing, was applied to endometrial cancers and highlighted that there are tumours that show genetic alterations intermediate between classic Type I/endometrioid and Type II/serous carcinomas. The Cancer Genome Atlas studies of endometrioid and serous carcinoma offered revolutionary insight into the subclassification of endometrial carcinoma, i.e. that there are four distinct categories of endometrial carcinoma, rather than two, based on genomic architecture. In this review, we provide an overview of immunohistochemical and molecular markers in endometrial carcinoma and comment on the important future directions in endometrial carcinoma subclassification arising from The Cancer Genome Atlas results.

  12. Molecular characterization, origin, and evolution of teleost p68 gene family: Insights from Japanese flounder, Paralichthys olivaceus.

    Science.gov (United States)

    Wang, Zhongkai; Liu, Wei; Zhou, Nayu; Wang, Huizhen; Li, Peizhen; Wang, Mengxun; Zhang, Quanqi

    2015-12-01

    Two rounds of whole-genome duplication occurred in the common ancestor of vertebrates. Later, a third round genome duplication occurred in the teleost fishes. As a prototype member of DEAD-box RNA helicases, the function of p68 helicase in development has been well investigated in human, however, limited information is available regarding the regulatory function of this gene in the development of teleosts. In this study, being an important farmed fish in North China, Japanese flounder (Paralichthys olivaceus) was used as model fish to investigate the role of p68 gene in teleost development. Two p68 genes were first identified from Japanese flounder. Molecular characterization of them was performed by analyzing the exon-intron boundaries. Then, we confirmed that such two teleost p68 genes originated from teleost-specific genome duplication through phylogenetic and synteny analyses. Additionally, comparative analyses of amino acid sequences, variation in selective pressure, and expression profiles of p68 genes revealed probable sub-functionalization fate of teleost p68 genes after the duplication. Therefore, this study supplements the evolutionary properties of teleost p68 gene family and provides the groundwork for further studying the regulatory function of p68 genes in the development of teleosts. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Solar H2 evolution in water with modified diketopyrrolopyrrole dyes immobilised on molecular Co and Ni catalyst-TiO2 hybrids.

    Science.gov (United States)

    Warnan, Julien; Willkomm, Janina; Ng, Jamues N; Godin, Robert; Prantl, Sebastian; Durrant, James R; Reisner, Erwin

    2017-04-01

    A series of diketopyrrolopyrrole (DPP) dyes with a terminal phosphonic acid group for attachment to metal oxide surfaces were synthesised and the effect of side chain modification on their properties investigated. The organic photosensitisers feature strong visible light absorption (λ = 400 to 575 nm) and electrochemical and fluorescence studies revealed that the excited state of all dyes provides sufficient driving force for electron injection into the TiO2 conduction band. The performance of the DPP chromophores attached to TiO2 nanoparticles for photocatalytic H2 evolution with co-immobilised molecular Co and Ni catalysts was subsequently studied, resulting in solar fuel generation with a dye-sensitised semiconductor nanoparticle system suspended in water without precious metal components. The performance of the DPP dyes in photocatalysis did not only depend on electronic parameters, but also on properties of the side chain such as polarity, steric hinderance and hydrophobicity as well as the specific experimental conditions and the nature of the sacrificial electron donor. In an aqueous pH 4.5 ascorbic acid solution with a phosphonated DuBois-type Ni catalyst, a DPP-based turnover number (TONDPP) of up to 205 was obtained during UV-free simulated solar light irradiation (100 mW cm-2, AM 1.5G, λ > 420 nm) after 1 day. DPP-sensitised TiO2 nanoparticles were also successfully used in combination with a hydrogenase or platinum instead of the synthetic H2 evolution catalysts and the platinum-based system achieved a TONDPP of up to 2660, which significantly outperforms an analogous system using a phosphonated Ru tris(bipyridine) dye (TONRu = 431). Finally, transient absorption spectroscopy was performed to study interfacial recombination and dye regeneration kinetics revealing that the different performances of the DPP dyes are most likely dictated by the different regeneration efficiencies of the oxidised chromophores.

  14. A molecular phylogeny for yponomeutoidea (insecta, Lepidoptera, ditrysia) and its implications for classification, biogeography and the evolution of host plant use.

    Science.gov (United States)

    Sohn, Jae-Cheon; Regier, Jerome C; Mitter, Charles; Davis, Donald; Landry, Jean-François; Zwick, Andreas; Cummings, Michael P

    2013-01-01

    characterizations of yponomeutoids as predominantly Holarctic were based on insufficient sampling. We provide the first robust molecular phylogeny for Yponomeutoidea, together with a revised classification and new insights into their life history evolution and biogeography.

  15. Inversion of allosteric effect of arginine on N-acetylglutamate synthase, a molecular marker for evolution of tetrapods

    Directory of Open Access Journals (Sweden)

    Cabrera-Luque Juan

    2008-09-01

    Full Text Available Abstract Background The efficient conversion of ammonia, a potent neurotoxin, into non-toxic metabolites was an essential adaptation that allowed animals to move from the aquatic to terrestrial biosphere. The urea cycle converts ammonia into urea in mammals, amphibians, turtles, snails, worms and many aquatic animals and requires N-acetylglutamate (NAG, an essential allosteric activator of carbamylphosphate synthetase I (CPSI in mammals and amphibians, and carbamylphosphate synthetase III (CPSIII in fish and invertebrates. NAG-dependent CPSI and CPSIII catalyze the formation of carbamylphosphate in the first and rate limiting step of ureagenesis. NAG is produced enzymatically by N-acetylglutamate synthase (NAGS, which is also found in bacteria and plants as the first enzyme of arginine biosynthesis. Arginine is an allosteric inhibitor of microbial and plant NAGS, and allosteric activator of mammalian NAGS. Results Information from mutagenesis studies of E. coli and P. aeruginosa NAGS was combined with structural information from the related bacterial N-acetylglutamate kinases to identify four residues in mammalian NAGS that interact with arginine. Substitutions of these four residues were engineered in mouse NAGS and into the vertebrate-like N-acetylglutamate synthase-kinase (NAGS-K of Xanthomonas campestris, which is inhibited by arginine. All mutations resulted in arginine losing the ability to activate mouse NAGS, and inhibit X. campestris NAGS-K. To examine at what point in evolution inversion of arginine effect on NAGS occur, we cloned NAGS from fish and frogs and examined the arginine response of their corresponding proteins. Fish NAGS were partially inhibited by arginine and frog NAGS were activated by arginine. Conclusion Difference in arginine effect on bacterial and mammalian NAGS most likely stems from the difference in the type of conformational change triggered by arginine binding to these proteins. The change from arginine

  16. Molecular Evolution of the Rice Blast Resistance Gene Pi-ta in Invasive Weedy Rice in the USA

    Science.gov (United States)

    Lee, Seonghee; Jia, Yulin; Jia, Melissa; Gealy, David R.; Olsen, Kenneth M.; Caicedo, Ana L.

    2011-01-01

    The Pi-ta gene in rice has been effectively used to control rice blast disease caused by Magnaporthe oryzae worldwide. Despite a number of studies that reported the Pi-ta gene in domesticated rice and wild species, little is known about how the Pi-ta gene has evolved in US weedy rice, a major weed of rice. To investigate the genome organization of the Pi-ta gene in weedy rice and its relationship to gene flow between cultivated and weedy rice in the US, we analyzed nucleotide sequence variation at the Pi-ta gene and its surrounding 2 Mb region in 156 weedy, domesticated and wild rice relatives. We found that the region at and around the Pi-ta gene shows very low genetic diversity in US weedy rice. The patterns of molecular diversity in weeds are more similar to cultivated rice (indica and aus), which have never been cultivated in the US, rather than the wild rice species, Oryza rufipogon. In addition, the resistant Pi-ta allele (Pi-ta) found in the majority of US weedy rice belongs to the weedy group strawhull awnless (SH), suggesting a single source of origin for Pi-ta. Weeds with Pi-ta were resistant to two M. oryzae races, IC17 and IB49, except for three accessions, suggesting that component(s) required for the Pi-ta mediated resistance may be missing in these accessions. Signatures of flanking sequences of the Pi-ta gene and SSR markers on chromosome 12 suggest that the susceptible pi-ta allele (pi-ta), not Pi-ta, has been introgressed from cultivated to weedy rice by out-crossing. PMID:22043312

  17. A Molecular Phylogeny for the Leaf-Roller Moths (Lepidoptera: Tortricidae) and Its Implications for Classification and Life History Evolution

    Science.gov (United States)

    Regier, Jerome C.; Brown, John W.; Mitter, Charles; Baixeras, Joaquín; Cho, Soowon; Cummings, Michael P.; Zwick, Andreas

    2012-01-01

    Background Tortricidae, one of the largest families of microlepidopterans, comprise about 10,000 described species worldwide, including important pests, biological control agents and experimental models. Understanding of tortricid phylogeny, the basis for a predictive classification, is currently provisional. We present the first detailed molecular estimate of relationships across the tribes and subfamilies of Tortricidae, assess its concordance with previous morphological evidence, and re-examine postulated evolutionary trends in host plant use and biogeography. Methodology/Principal Findings We sequenced up to five nuclear genes (6,633 bp) in each of 52 tortricids spanning all three subfamilies and 19 of the 22 tribes, plus up to 14 additional genes, for a total of 14,826 bp, in 29 of those taxa plus all 14 outgroup taxa. Maximum likelihood analyses yield trees that, within Tortricidae, differ little among data sets and character treatments and are nearly always strongly supported at all levels of divergence. Support for several nodes was greatly increased by the additional 14 genes sequenced in just 29 of 52 tortricids, with no evidence of phylogenetic artifacts from deliberately incomplete gene sampling. There is strong support for the monophyly of Tortricinae and of Olethreutinae, and for grouping of these to the exclusion of Chlidanotinae. Relationships among tribes are robustly resolved in Tortricinae and mostly so in Olethreutinae. Feeding habit (internal versus external) is strongly conserved on the phylogeny. Within Tortricinae, a clade characterized by eggs being deposited in large clusters, in contrast to singly or in small batches, has markedly elevated incidence of polyphagous species. The five earliest-branching tortricid lineages are all species-poor tribes with mainly southern/tropical distributions, consistent with a hypothesized Gondwanan origin for the family. Conclusions/Significance We present the first robustly supported phylogeny for

  18. Molecular evolution of the rice blast resistance gene Pi-ta in invasive weedy rice in the USA.

    Directory of Open Access Journals (Sweden)

    Seonghee Lee

    Full Text Available The Pi-ta gene in rice has been effectively used to control rice blast disease caused by Magnaporthe oryzae worldwide. Despite a number of studies that reported the Pi-ta gene in domesticated rice and wild species, little is known about how the Pi-ta gene has evolved in US weedy rice, a major weed of rice. To investigate the genome organization of the Pi-ta gene in weedy rice and its relationship to gene flow between cultivated and weedy rice in the US, we analyzed nucleotide sequence variation at the Pi-ta gene and its surrounding 2 Mb region in 156 weedy, domesticated and wild rice relatives. We found that the region at and around the Pi-ta gene shows very low genetic diversity in US weedy rice. The patterns of molecular diversity in weeds are more similar to cultivated rice (indica and aus, which have never been cultivated in the US, rather than the wild rice species, Oryza rufipogon. In addition, the resistant Pi-ta allele (Pi-ta found in the majority of US weedy rice belongs to the weedy group strawhull awnless (SH, suggesting a single source of origin for Pi-ta. Weeds with Pi-ta were resistant to two M. oryzae races, IC17 and IB49, except for three accessions, suggesting that component(s required for the Pi-ta mediated resistance may be missing in these accessions. Signatures of flanking sequences of the Pi-ta gene and SSR markers on chromosome 12 suggest that the susceptible pi-ta allele (pi-ta, not Pi-ta, has been introgressed from cultivated to weedy rice by out-crossing.

  19. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Matthias Kretschmer

    2009-12-01

    Full Text Available The grey mould fungus Botrytis cinerea causes losses of commercially important fruits, vegetables and ornamentals worldwide. Fungicide treatments are effective for disease control, but bear the risk of resistance development. The major resistance mechanism in fungi is target protein modification resulting in reduced drug binding. Multiple drug resistance (MDR caused by increased efflux activity is common in human pathogenic microbes, but rarely described for plant pathogens. Annual monitoring for fungicide resistance in field isolates from fungicide-treated vineyards in France and Germany revealed a rapidly increasing appearance of B. cinerea field populations with three distinct MDR phenotypes. All MDR strains showed increased fungicide efflux activity and overexpression of efflux transporter genes. Similar to clinical MDR isolates of Candida yeasts that are due to transcription factor mutations, all MDR1 strains were shown to harbor activating mutations in a transcription factor (Mrr1 that controls the gene encoding ABC transporter AtrB. MDR2 strains had undergone a unique rearrangement in the promoter region of the major facilitator superfamily transporter gene mfsM2, induced by insertion of a retrotransposon-derived sequence. MDR2 strains carrying the same rearranged mfsM2 allele have probably migrated from French to German wine-growing regions. The roles of atrB, mrr1 and mfsM2 were proven by the phenotypes of knock-out and overexpression mutants. As confirmed by sexual crosses, combinations of mrr1 and mfsM2 mutations lead to MDR3 strains with higher broad-spectrum resistance. An MDR3 strain was shown in field experiments to be selected against sensitive strains by fungicide treatments. Our data document for the first time the rising prevalence, spread and molecular basis of MDR populations in a major plant pathogen in agricultural environments. These populations will increase the risk of grey mould rot and hamper the effectiveness of

  20. Comparative chloroplast genomes of photosynthetic orchids: insights into evolution of the Orchidaceae and development of molecular markers for phylogenetic applications.

    Science.gov (United States)

    Luo, Jing; Hou, Bei-Wei; Niu, Zhi-Tao; Liu, Wei; Xue, Qing-Yun; Ding, Xiao-Yu

    2014-01-01

    The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale and the ornamental orchid Cypripedium macranthos, demonstrating their gene content and order and potential RNA editing sites. The chloroplast genomes of the above two species and five known photosynthetic orchids showed similarities in structure as well as gene order and content, but differences in the organization of the inverted repeat/small single-copy junction and ndh genes. The organization of the inverted repeat/small single-copy junctions in the chloroplast genomes of these orchids was classified into four types; we propose that inverted repeats flanking the small single-copy region underwent expansion or contraction among Orchidaceae. The AT-rich regions of the ycf1 gene in orchids could be linked to the recombination of inverted repeat/small single-copy junctions. Relative species in orchids displayed similar patterns of variation in ndh gene contents. Furthermore, fifteen highly divergent protein-coding genes were identified, which are useful for phylogenetic analyses in orchids. To test the efficiency of these genes serving as markers in phylogenetic analyses, coding regions of four genes (accD, ccsA, matK, and ycf1) were used as a case study to construct phylogenetic trees in the subfamily Epidendroideae. High support was obtained for placement of previously unlocated subtribes Collabiinae and Dendrobiinae in the subfamily Epidendroideae. Our findings expand understanding of the diversity of orchid chloroplast genomes and provide a reference for study of the molecular systematics of this family.

  1. A molecular phylogeny of rose chafers (Coleoptera: Scarabaeidae: Cetoniinae) reveals a complex and concerted morphological evolution related to their flight mode.

    Science.gov (United States)

    Šípek, Petr; Fabrizi, Silvia; Eberle, Jonas; Ahrens, Dirk

    2016-08-01

    Rose chafers (Cetoniinae) are a large group of flower visitors within the pleurostict Scarabaeidae that are characterized by their distinctive flight mode with nearly closed forewings. Despite their popularity, this is the first study to use molecular data to infer their phylogenetic relationships. We used partial gene sequences for 28S rRNA, cytochrome oxidase I (cox1) and 16S rRNA (rrnL) for 299 species, representing most recognized subfamilies of Scarabaeidae, including 125 species of Cetoniinae. Combined analyses using maximum parsimony, maximum likelihood and Bayesian inferences recovered Cetoniinae as monophyletic in all analyses, with the sister clade composed of Rutelinae and Dynastinae. Rutelinae was always recovered as paraphyletic with respect to Dynastinae. Trichiini sensu lato (s.l.) was recovered as a polyphyletic clade, while Cetoniini s.l. was recovered as paraphyletic. The inferred topologies were also supported by site bootstrapping of the ML trees. With the exception of Cremastochelini, most tribes of Cetoniinae were poly- or paraphyletic, indicating the critical need for a careful revision of rose chafer classification. Analysis of elytral base structure (including 11 scored characters) in the context of phylogeny, revealed a complex, concerted and rapid transformation of the single trait elements linked to a modified flight mode with closed elytra. This appears to be unlinked to the lateral sinuation of the elytra, which originated independently several times at later stages in the evolution of the group. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Molecular phylogeny and evolution of the order Tribonematales (Heterokonta, Xanthophyceae) based on analysis of plastidial genes rbcL and psaA.

    Science.gov (United States)

    Maistro, Silvia; Broady, Paul A; Andreoli, Carlo; Negrisolo, Enrico

    2007-05-01

    Tribonematales is an order of filamentous algae in the class Xanthophyceae (Heterokonta). Few molecular studies, all with a limited taxon sampling, have previously investigated its evolutionary history and phylogenetic relationships. We sequenced the chloroplast-encoded rbcL and psaA genes of several tribonematalean species and of several coccoid and siphonous forms that previous studies revealed to be strictly related to Tribonematales. Multiple alignments included mostly new sequences obtained from 42 taxa. Phylogenetic reconstructions were performed using the maximum likelihood method. The rbcL and psaA data sets were analyzed independently and combined in a single multiple alignment. Neither rbcL nor psaA genes showed intraspecific sequence variation. The former proved to be a better diagnostic marker than the latter for characterization of species. We explored effects produced on phylogenetic outcomes by selected genes. Congruent results were obtained from analyses performed on single gene multiple alignments as well as on the combined data set. There is strong statistical support for trees that show several currently recognized taxonomic groups to be polyphyletic. The siphonous orders Botrydiales and Vaucheriales do not form a clade. Botrydiales and Tribonematales are polyphyletic as are the families Botrydiaceae, Centritractaceae and Tribonemataceae and the genera Xanthonema and Bumilleriopsis. We tentatively define new boundaries of the Tribonematales to include both coccoid and filamentous species having a bipartite cell wall and also the siphonous members of the genus Botrydium. Also, our results support morphological convergence at all taxonomic ranks in the evolution of the Xanthophyceae.

  3. Hidden Variability of Floral Homeotic B Genes in Solanaceae Provides a Molecular Basis for the Evolution of Novel Functions[C][W

    Science.gov (United States)

    Geuten, Koen; Irish, Vivian

    2010-01-01

    B-class MADS box genes specify petal and stamen identities in several core eudicot species. Members of the Solanaceae possess duplicate copies of these genes, allowing for diversification of function. To examine the changing roles of such duplicate orthologs, we assessed the functions of B-class genes in Nicotiana benthamiana and tomato (Solanum lycopersicum) using virus-induced gene silencing and RNA interference approaches. Loss of function of individual duplicates can have distinct phenotypes, yet complete loss of B-class gene function results in extreme homeotic transformations of petal and stamen identities. We also show that these duplicate gene products have qualitatively different protein–protein interaction capabilities and different regulatory roles. Thus, compensatory changes in B-class MADS box gene duplicate function have occurred in the Solanaceae, in that individual gene roles are distinct, but their combined functions are equivalent. Furthermore, we show that species-specific differences in the stamen regulatory network are associated with differences in the expression of the microRNA miR169. Whereas there is considerable plasticity in individual B-class MADS box transcription factor function, there is overall conservation in the roles of the multimeric MADS box B-class protein complexes, providing robustness in the specification of petal and stamen identities. Such hidden variability in gene function as we observe for individual B-class genes can provide a molecular basis for the evolution of regulatory functions that result in novel morphologies. PMID:20807882

  4. Molecular archaeology of Flaviviridae untranslated regions: duplicated RNA structures in the replication enhancer of flaviviruses and pestiviruses emerged via convergent evolution.

    Science.gov (United States)

    Gritsun, Dmitri J; Jones, Ian M; Gould, Ernest A; Gritsun, Tamara S

    2014-01-01

    RNA secondary structures in the 3'untranslated regions (3'UTR) of the viruses of the family Flaviviridae, previously identified as essential (promoters) or beneficial (enhancers) for replication, have been analysed. Duplicated enhancer elements are revealed as a global feature in the evolution of the 3'UTR of distantly related viruses within the genera Flavivirus and Pestivirus. For the flaviviruses, duplicated structures occur in the 3'UTR of all four distantly related ecological virus subgroups (tick-borne, mosquito-borne, no known vector and insect-specific flaviviruses (ISFV). RNA structural differences distinguish tick-borne flaviviruses with discrete pathogenetic characteristics. For Aedes- and Culex-associated ISFV, secondary RNA structures with different conformations display numerous short ssRNA direct repeats, exposed as loops and bulges. Long quadruplicate regions comprise almost the entire 3'UTR of Culex-associated ISFV. Extended duplicated sequence and associated RNA structures were also discovered in the 3'UTR of pestiviruses. In both the Flavivirus and Pestivirus genera, duplicated RNA structures were localized to the enhancer regions of the 3'UTR suggesting an adaptive role predominantly in wild-type viruses. We propose sequence reiteration might act as a scaffold for dimerization of proteins involved in assembly of viral replicase complexes. Numerous nucleotide repeats exposed as loops/bulges might also interfere with host immune responses acting as a molecular sponge to sequester key host proteins or microRNAs.

  5. The Uneven Rate of the Molecular Evolution of Gene Sequences of DNA-Dependent RNA Polymerase I of the Genus Lamium L

    Science.gov (United States)

    Krawczyk, Katarzyna; Sawicki, Jakub

    2013-01-01

    RNA polymerase type I (plastid-encoded polymerase, PEP) is one of the key chloroplast enzymes. However, the rpo genes that encode its subunits (rpoA, rpoB, rpoC1 and rpoC2) are relatively rapidly evolving sequences. The aim of this study was to investigate the rate of the molecular evolution of rpo genes and to evaluate them as phylogenetic markers on the example of the genus Lamium L. (Lamiaceae). The analyzed genes were shown to differ in the level of variation, rate of intragenic mutations, phylogenetic informativeness, and in the impact of these mutations on the properties of encoded peptides. Destabilizing effects of the positive pressure were observed in all genes examined coding for PEP enzyme. We have demonstrated the relationship between mutations fixed by positive selection and the separation of phylogenetic lines within the genus Lamium. The study showed also that the rpo genes were reliable phylogenetic markers, useful in the reconstruction of interconnections of species belonging to the same genus. Of the four tested genes, the most promising phylogenetic marker was rpoA gene, while the least useful gene appeared to be rpoC1. PMID:23759988

  6. The role of the humoral immune response in the molecular evolution of the envelope C2, V3 and C3 regions in chronically HIV-2 infected patients

    Directory of Open Access Journals (Sweden)

    Novo Carlos

    2008-09-01

    Full Text Available Abstract Background This study was designed to investigate, for the first time, the short-term molecular evolution of the HIV-2 C2, V3 and C3 envelope regions and its association with the immune response. Clonal sequences of the env C2V3C3 region were obtained from a cohort of eighteen HIV-2 chronically infected patients followed prospectively during 2–4 years. Genetic diversity, divergence, positive selection and glycosylation in the C2V3C3 region were analysed as a function of the number of CD4+ T cells and the anti-C2V3C3 IgG and IgA antibody reactivity Results The mean intra-host nucleotide diversity was 2.1% (SD, 1.1%, increasing along the course of infection in most patients. Diversity at the amino acid level was significantly lower for the V3 region and higher for the C2 region. The average divergence rate was 0.014 substitutions/site/year, which is similar to that reported in chronic HIV-1 infection. The number and position of positively selected sites was highly variable, except for codons 267 and 270 in C2 that were under strong and persistent positive selection in most patients. N-glycosylation sites located in C2 and V3 were conserved in all patients along the course of infection. Intra-host variation of C2V3C3-specific IgG response over time was inversely associated with the variation in nucleotide and amino acid diversity of the C2V3C3 region. Variation of the C2V3C3-specific IgA response was inversely associated with variation in the number of N-glycosylation sites. Conclusion The evolutionary dynamics of HIV-2 envelope during chronic aviremic infection is similar to HIV-1 implying that the virus should be actively replicating in cellular compartments. Convergent evolution of N-glycosylation in C2 and V3, and the limited diversification of V3, indicates that there are important functional constraints to the potential diversity of the HIV-2 envelope. C2V3C3-specific IgG antibodies are effective at reducing viral population size

  7. On the outside looking in: rethinking the molecular mechanism of 1,3-dipolar cycloadditions from the perspective of bonding evolution theory. The reaction between cyclic nitrones and ethyl acrylate

    OpenAIRE

    Abel idrice, ADJIEUFACK; MBOUOMBOUO NDASSA, Ibrahim; Patouossa, I.; Joseph, KETCHA MBADCAM; Safont Villarreal, Vicent Sixte; Oliva, Mónica; Andrés, Juan

    2017-01-01

    In this work we report on the progress that has been made towards gaining an understanding of the molecular mechanism of 1,3-dipolar cycloadditions using the bonding evolution theory (BET). A detailed analysis of the flow of electron density along the reaction pathway of the formal 1,3-dipolar cycloaddition reaction between cyclic nitrones (pyrroline-1-oxide and 2,3,4,5-tetrahydropyridine-1-oxide) and ethyl acrylate, as a case study, allowed the nature of the molecular mechanisms to be charac...

  8. Estimating the timing of mother-to-child transmission of the human immunodeficiency virus type 1 using a viral molecular evolution model.

    Directory of Open Access Journals (Sweden)

    Antoine Chaillon

    Full Text Available Mother-to-child transmission (MTCT is responsible for most pediatric HIV-1 infections worldwide. It can occur during pregnancy, labor, or breastfeeding. Numerous studies have used coalescent and molecular clock methods to understand the epidemic history of HIV-1, but the timing of vertical transmission has not been studied using these methods. Taking advantage of the constant accumulation of HIV genetic variation over time and using longitudinally sampled viral sequences, we used a coalescent approach to investigate the timing of MTCT.Six-hundred and twenty-two clonal env sequences from the RNA and DNA viral population were longitudinally sampled from nine HIV-1 infected mother-and-child pairs [range: 277-1034 days]. For each transmission pair, timing of MTCT was determined using a coalescent-based model within a Bayesian statistical framework. Results were compared with available estimates of MTCT timing obtained with the classic biomedical approach based on serial HIV DNA detection by PCR assays.Four children were infected during pregnancy, whereas the remaining five children were infected at time of delivery. For eight out of nine pairs, results were consistent with the transmission periods assessed by standard PCR-based assay. The discordance in the remaining case was likely confused by co-infection, with simultaneous introduction of multiple maternal viral variants at the time of delivery.The study provided the opportunity to validate the Bayesian coalescent approach that determines the timing of MTCT of HIV-1. It illustrates the power of population genetics approaches to reliably estimate the timing of transmission events and deepens our knowledge about the dynamics of viral evolution in HIV-infected children, accounting for the complexity of multiple transmission events.

  9. Evolution of life history traits in Asian freshwater prawns of the genus Macrobrachium (Crustacea: Decapoda: Palaemonidae) based on multilocus molecular phylogenetic analysis.

    Science.gov (United States)

    Wowor, Daisy; Muthu, Victor; Meier, Rudolf; Balke, Michael; Cai, Yixiong; Ng, Peter K L

    2009-08-01

    Freshwater prawns of the genus Macrobrachium are free-living decapod crustaceans that are commonly encountered in tropical streams and lakes. We present a molecular phylogenetic analysis of the diverse Southeast and East Asian fauna based on >3 kb sequence data from three nuclear and two mitochondrial markers for almost 50% of the described fauna. We reconstruct the phylogenetic relationships and track the evolution of key life history traits. Our tree suggests that the last common ancestor of the Asian Macrobrachium laid numerous small eggs and had prolonged larval development ("PLD") in saline coastal waters after which the adults matured in freshwater habitats. We also argue for five independent losses of the marine larval phase to yield five clades of species that develop entirely in freshwater and have fewer and larger eggs than the species with PLD. These species have either semi-abbreviated (two origins) with at least one free-swimming stage or abbreviated larval development ("ALD": three origins) which lack free-swimming larvae. A Shimodaira-Hasegawa test rejects all trees that would imply a single loss of the marine larval phase, but alternative and equally parsimonious optimizations exist that imply a smaller number of losses. However, these scenarios would require the re-acquisition of free-swimming larvae. A concentrated-change test supports Pereira and Garcia's [Pereira, G.A., Garcia, J.V., 1995. Larval development of Macrobrachium reyesi Pereira (Decapoda, Palaemonidae), with a discussion on the origin of abbreviated development in palaemonids. J. Crust. Biol. 15, 117-133] hypothesis of a significant correlation between living in freshwater and the origin of semi-abbreviated and abbreviated larval development. Our phylogenetic tree also reveals that Asian Macrobrachium have independently become cavernicolous at least twice, and invaded the highly acidic waters of freshwater and peat swamps two or three times.

  10. Evolution of molecular weight and fluorescence of effluent organic matter (EfOM) during oxidation processes revealed by advanced spectrographic and chromatographic tools.

    Science.gov (United States)

    Chen, Zhiqiang; Li, Mo; Wen, Qinxue; Ren, Nanqi

    2017-11-01

    Effluent organic matter (EfOM) is an emerging concern to receiving aquatic environment due to its refractory property. The degradation of EfOM in ozonation and other two advanced oxidation processes (AOPs), UV/H2O2 and UV/persulfate (PS), was investigated in this study. Fluorescence spectra coupled with parallel factor analysis (PARAFAC) and two-dimensional correlation gel permeation chromatography (2D-GPC) were used to track the evolution of EfOM during each oxidation process. Results showed that the degradation of EfOM indicated by dissolved organic carbon (DOC), UV254 and fluorescence components, fitted well with pseudo-first-order kinetic model during the oxidation processes. Ozonation showed higher degradation efficiency than AOPs, while UV/PS was more effective than UV/H2O2 with equimolar oxidants dosage. Ozone and SO·4- were more reactive with terrestrial humic-like substances, while hydroxyl radical preferentially reacted with protein-like substances. Organic molecules with higher molecular weight (MW) were susceptible to ozone or radicals. Ozonation could transform higher MW (MW of 3510 and 575) organic matters into lower MW organic matters (MW of 294), while reductions of all the organics were observed in both AOPs. Due to the higher reaction rates between ozone and EfOM, ozonation maybe serve as a pre-treatment for AOPs to reduce the radical and energy consumption and improve mineralization of EfOM by AOPs. The decline in DOC, UV254, fluorescence and reduction in oxidants increased with the increase of oxidants dosage, and linear correlations among them were found during the ozonation and AOPs. Copyright © 2017. Published by Elsevier Ltd.

  11. Multicentric comparative assessment of the bio-evolution Toxoplasma gondii detection kit with eight laboratory-developed PCR assays for molecular diagnosis of congenital toxoplasmosis.

    Science.gov (United States)

    Filisetti, Denis; Sterkers, Yvon; Brenier-Pinchart, Marie-Pierre; Cassaing, Sophie; Dalle, Frédéric; Delhaes, Laurence; Pelloux, Hervé; Touafek, Fériel; Varlet-Marie, Emmanuelle; Yera, Hélène; Candolfi, Ermano; Bastien, Patrick

    2015-01-01

    The detection of Toxoplasma gondii in amniotic fluid is an essential tool for the prenatal diagnosis of congenital toxoplasmosis and is currently essentially based on the use of PCR. Although some consensus is emerging, this molecular diagnosis suffers from a lack of standardization and an extreme diversity of laboratory-developed methods. Commercial kits for the detection of T. gondii by PCR were recently developed and offer certain advantages; however, they must be assessed in comparison with optimized reference PCR assays. The present multicentric study aimed to compare the performances of the Bio-Evolution T. gondii detection kit and laboratory-developed PCR assays set up in eight proficient centers in France. The study compared 157 amniotic fluid samples and found concordances of 99% and 100% using 76 T. gondii-infected samples and 81 uninfected samples, respectively. Moreover, taking into account the classification of the European Research Network on Congenital Toxoplasmosis, the overall diagnostic sensitivity of all assays was identical and calculated to be 86% (54/63); specificity was 100% for all assays. Finally, the relative quantification results were in good agreement between the kit and the laboratory-developed assays. The good performances of this commercial kit are probably in part linked to the use of a number of good practices: detection in multiplicate, amplification of the repetitive DNA target rep529, and the use of an internal control for the detection of PCR inhibitors. The only drawbacks noted at the time of the study were the absence of uracil-N-glycosylase and small defects in the reliability of the production of different reagents. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. The modern molecular clock.

    Science.gov (United States)

    Bromham, Lindell; Penny, David

    2003-03-01

    The discovery of the molecular clock--a relatively constant rate of molecular evolution--provided an insight into the mechanisms of molecular evolution, and created one of the most useful new tools in biology. The unexpected constancy of rate was explained by assuming that most changes to genes are effectively neutral. Theory predicts several sources of variation in the rate of molecular evolution. However, even an approximate clock allows time estimates of events in evolutionary history, which provides a method for testing a wide range of biological hypotheses ranging from the origins of the animal kingdom to the emergence of new viral epidemics.

  13. Genetic recombination and molecular evolution.

    Science.gov (United States)

    Charlesworth, B; Betancourt, A J; Kaiser, V B; Gordo, I

    2009-01-01

    Reduced rates of genetic recombination are often associated with reduced genetic variability and levels of adaptation. Several different evolutionary processes, collectively known as Hill-Robertson (HR) effects, have been proposed as causes of these correlates of recombination. Here, we use DNA sequence polymorphism and divergence data from the noncrossing over dot chromosome of Drosophila to discriminate between two of the major forms of HR effects: selective sweeps and background selection. This chromosome shows reduced levels of silent variability and reduced effectiveness of selection. We show that neither model fits the data on variability. We propose that, in large genomic regions with restricted recombination, HR effects among nonsynonymous mutations undermine the effective strength of selection, so that their background selection effects are weakened. This modified model fits the data on variability and also explains why variability in very large nonrecombining genomes is not completely wiped out. We also show that HR effects of this type can produce an individual selection advantage to recombination, as well as greatly reduce the mean fitness of nonrecombining genomes and genomic regions.

  14. Molecular evolution and phylogenetic analysis of biocontrol genes acquired from SCoT polymorphism of mycoparasitic Trichoderma koningii inhibiting phytopathogen Rhizoctonia solani Kuhn.

    Science.gov (United States)

    Gajera, H P; Hirpara, Darshna G; Katakpara, Zinkal A; Patel, S V; Golakiya, B A

    2016-11-01

    The biocontrol agent Trichoderma (T. harzianum, T. viride, T. virens, T. hamantum, T. koningii, T. pseudokoningii and Trichoderma species) inhibited variably (15.32 - 88.12%) the in vitro growth of Rhizoctonia solani causing root rot in cotton. The T. koningii MTCC 796 evidenced highest (88.12%) growth inhibition of test pathogen followed by T. viride NBAII Tv23 (85.34%). Scanning electron microscopic study confirmed mycoparasitism for MTCC 796 and Tv23 which were capable of completely overgrowing on R. solani by degrading mycelia, coiling around the hyphae with hook-like structures. The antagonists T. harzianum NBAII Th1 and, T. virens NBAII Tvs12 exhibited strong antibiosis and formed 2-4 mm zone of inhibition for 70.28% and 46.62%, respectively growth inhibition of test pathogen. Mycoparasitism is a strong mode of action for biocontrol activity compared with antibiosis. The antagonists Trichoderma strains were performed for start codon targeted (SCoT) polymorphism to acquire biocontrol genes from potent antagonist. The six unique SCoT fragments amplified by genomic DNA of best mycoparasitic antagonist MTCC 796 strain are subjected to DNA sequencing resulted to confirm two functional sequences for activity related to biocontrol genes. The phylogenetic and molecular evolution of functional 824 bp of SCoT-3 (920) and 776 bp of SCoT-6 (806) fragments signify sequence homology with biocontrol genes endochitinase (partial cds of 203 amino acids) and novel hmgR genes (partial cds of 239 amino acids), respectively and the same were annotated and deposited in NCBI GenBank database. The hmgR gene is liable to be express hmg - CoA reductase which is a key enzyme for regulation of terpene biosynthesis and mycoparasitic strains produced triterpenes during antagonism to inhibit growth of fungal pathogen as evidenced with GC-MS profile. The biocontrol genes are found in best antagonist T. koningii MTCC 796 for mycoparasitic activity to restrain the growth of test pathogen R

  15. Population genetics and evolution

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, G.

    1988-01-01

    This volume reevaluates the position of population genetics in evolutionary biology by using population genetics as the tool to study the role of development and adaptation in evolution. The emphasis is on the organismic process of selection, and on how the study of selection means connecting variation at the molecular, biochemical, and phenotypic levels of organization with the resulting variation in fitness. This book illustrates that the tendency to view single locus differences in isolation as the building blocks of evolution is disappearing.

  16. On the evolution of InAs thin films grown by molecular beam epitaxy on the GaAs(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, Jan

    2010-12-14

    Semiconductor nanostructures are currently of high interest for a wide variety of electronic and optoelectronic applications. A large number of devices, in particular for the optical data transmission in the long-wavelength range, essential in modern communication, are based on InAs/GaAs quantum dot (QD) structures. Though the properties of the InAs/GaAs QDs have been extensively studied, only little is known about the formation and structure of the wetting layer (WL) yet. In the present work, the pathway of the InAs WL evolution is studied in detail. For this purpose, InAs thin films in the range of one monolayer (ML) are deposited on the GaAs(001) surface by molecular beam epitaxy (MBE) and studied by reflection high energy electron diffraction (RHEED) and in particular by scanning tunneling microscopy (STM). The InAs thin films are grown in both typical growth regimes, on the GaAs-c(4 x 4) and the GaAs-{beta}2(2 x 4) reconstructed surface, in a variety of thicknesses starting from submonolayers with 0.09 ML of InAs up to 1.65 ML of InAs exceeding the critical thickness for QD growth. In principle, three growth stages are found. At low InAs coverages, the indium adsorbs in agglomerations of typically eight In atoms at energetically preferable surface sites. In the STM images, the signatures of these In agglomerations appear with a clear bright contrast. A structural model for the initial formation of these signatures is presented, and its electronic and strain related properties are discussed. At an InAs coverage of about 0.67ML the initial surface transforms into a (4 x 3) reconstructed In{sub 2/3}Ga{sub 1/3}As ML and the detailed structure and strain properties of this surface are unraveled. On top of the InGaAs ML further deposited InAs forms a second layer, characterized by a typical zig-zag alignment of (2 x 4) reconstructed unit cells, with an alternating {alpha}2/{alpha}2-m configuration. In contrast to the previous surface reconstructions, where

  17. Appendix II. Molecular Analysis

    Science.gov (United States)

    The study of crop evolution, origins, and conservation entails the assessment of genetic variability with and between populations and species at different genetic, evolutionary, and taxonomic hierarchical levels. Molecular biology has greatly increased the amount of data and computational intensity...

  18. Applying neutral drift to the directed molecular evolution of a β-glucuronidase into a β-galactosidase: Two different evolutionary pathways lead to the same variant

    Directory of Open Access Journals (Sweden)

    Hale Jennifer R

    2011-05-01

    Full Text Available Abstract Background Directed protein evolution has been used to modify protein activity and research has been carried out to enhance the production of high quality mutant libraries. Many theoretical approaches suggest that allowing a population to undergo neutral selection may be valuable in directed evolution experiments. Findings Here we report on an investigation into the value of neutral selection in a classical model system for directed evolution, the conversion of the E. coli β-glucuronidase to a β-galactosidase activity. We find that neutral selection, i.e. selection for retaining glucuronidase activity, can efficiently identify the majority of sites of mutation that have been identified as beneficial for galactosidase activity in previous experiments. Each variant demonstrating increased galactosidase activity identified by our neutral drift experiments contained a mutation at one of four sites, T509, S557, N566 or W529. All of these sites have previously been identified using direct selection for beta galactosidase activity. Conclusions Our results are consistent with others that show that a neutral selection approach can be effective in selecting improved variants. However, we interpret our results to show that neutral selection is, in this case, not a more efficient approach than conventional directed evolution approaches. However, the neutral approach is likely to be beneficial when the resulting library can be screened for a range of related activities. More detailed statistical studies to resolve the apparent differences between this system and others are likely to be a fruitful avenue for future research.

  19. Detection of "punctuated equilibrium" by bayesian estimation of speciation and extinction rates, ancestral character states, and rates of anagenetic and cladogenetic evolution on a molecular phylogeny.

    Science.gov (United States)

    Bokma, Folmer

    2008-11-01

    Algorithms are presented to simultaneously estimate probabilities of speciation and extinction, rates of anagenetic and cladogenetic phenotypic evolution, as well as ancestral character states, from a complete ultrametric species-level phylogeny with dates assigned to all bifurcations and one or more phenotypes in three or more extant species, using Metropolis-Hastings Markov Chain Monte Carlo sampling. The algorithms also estimate missing phenotypes of extant species and numbers of speciation events that occurred on all branches of the phylogeny. The algorithms are discussed and their performance is evaluated using simulated data. That evaluation shows that precise estimation of rates of evolution of one or a few phenotypes requires large phylogenies. Estimation accuracy improves with the number of species on the phylogeny.

  20. Evolution: Understanding Life on Earth.

    Science.gov (United States)

    Dybas, Cheryl Lyn

    2002-01-01

    Reports on presentations representing evolution at the 53rd annual meeting of the American Institute of Biological Sciences (AIBS) which was held March 22-24, 2002. Explains evolutionary patterns, phylogenetic pageantry, molecular clocks, speciation and biogeography, speciation and macroevolution, and human-induced evolution of drugs-resistant…

  1. The Evolution of Darwinism.

    Science.gov (United States)

    Stebbins, G. Ledyard; Ayala, Francisco J.

    1985-01-01

    Recent developments in molecular biology and new interpretations of the fossil record are gradually altering and adding to Charles Darwin's theory, which has been the standard view of the process of evolution for 40 years. Several of these developments and interpretations are identified and discussed. (JN)

  2. Early cellular evolution.

    Science.gov (United States)

    Margulis, L.

    1972-01-01

    Study of the evolutionary developments that occurred subsequent to the origin of ancestral cells. Microbial physiology and ecology are potential sharp tools for shaping concepts of microbial evolution. Some popular unjustified assumptions are discussed. It is considered that certain principles derived mainly from the advances of molecular biology can be used to order the natural groups (genera) of extant prokaryotes and their patterns phylogenetically.

  3. Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification.

    Science.gov (United States)

    Yockteng, Roxana; Almeida, Ana M R; Morioka, Kelsie; Alvarez-Buylla, Elena R; Specht, Chelsea D

    2013-11-01

    The diversity of floral forms in the plant order Zingiberales has evolved through alterations in floral organ morphology. One striking alteration is the shift from fertile, filamentous stamens to sterile, laminar (petaloid) organs in the stamen whorls, attributed to specific pollination syndromes. Here, we examine the role of the SEPALLATA (SEP) genes, known to be important in regulatory networks underlying floral development and organ identity, in the evolution of development of the diverse floral organs phenotypes in the Zingiberales. Phylogenetic analyses show that the SEP-like genes have undergone several duplication events giving rise to multiple copies. Selection tests on the SEP-like genes indicate that the two copies of SEP3 have mostly evolved under balancing selection, probably due to strong functional restrictions as a result of their critical role in floral organ specification. In contrast, the two LOFSEP copies have undergone differential positive selection, indicating neofunctionalization. Reverse transcriptase-polymerase chain reaction, gene expression from RNA-seq data, and in situ hybridization analyses show that the recovered genes have differential expression patterns across the various whorls and organ types found in the Zingiberales. Our data also suggest that AGL6, sister to the SEP-like genes, may play an important role in stamen morphology in the Zingiberales. Thus, the SEP-like genes are likely to be involved in some of the unique morphogenetic patterns of floral organ development found among this diverse order of tropical monocots. This work contributes to a growing body of knowledge focused on understanding the role of gene duplications and the evolution of entire gene networks in the evolution of flower development.

  4. Theoretical Modeling and Computer Simulations for the Origins and Evolution of Reproducing Molecular Systems and Complex Systems with Many Interactive Parts

    Science.gov (United States)

    Liang, Shoudan

    2000-01-01

    Our research effort has produced nine publications in peer-reviewed journals listed at the end of this report. The work reported here are in the following areas: (1) genetic network modeling; (2) autocatalytic model of pre-biotic evolution; (3) theoretical and computational studies of strongly correlated electron systems; (4) reducing thermal oscillations in atomic force micro