WorldWideScience

Sample records for evolution ii origin

  1. Introduction: CRevolution 2: origin and evolution of the Colorado River System II

    Science.gov (United States)

    Karlstrom, Karl E.; Beard, L. Sue; House, P. Kyle; Young, Richard A.; Aslan, Andres; Billingsley, George; Pederson, Joel

    2012-01-01

    A 2010 Colorado River symposium held in Flagstaff, Arizona, in May 2010, had 70 participants who engaged in intense debate about the origin and evolution of the Colorado River system. This symposium, built on two previous decadal scientific meetings, focused on forging scientific consensus where possible, while also articulating continued controversies regarding the Cenozoic evolution of the Colorado River System and the landscapes of the Colorado Plateau–Rocky Mountain region that it drains. New developments involved hypotheses that Neogene mantle flow is driving plateau tilting and differential uplift, with consensus that multidisciplinary studies involving differential incision studies and additional geochronology and thermochronology are needed to test the relative importance of tectonic and geomorphic forcings in shaping the spectacular landscapes of the Colorado Plateau region. In addition to the scientific goals, the meeting participants emphasized the iconic status of Grand Canyon for geosciences, and the importance of good communication between the research community, the geoscience education/interpretation community, the public, and the media. Building on a century-long tradition, this region still provides a globally important natural laboratory for studies of the interactions of erosion and tectonism in the shaping landscape of elevated plateaus.

  2. Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II.

    Science.gov (United States)

    Kirschvink, Joseph L; Kopp, Robert E

    2008-08-27

    Two major geological problems regarding the origin of oxygenic photosynthesis are (i) identifying a source of oxygen pre-dating the biological oxygen production and capable of driving the evolution of oxygen tolerance, and (ii) determining when oxygenic photosynthesis evolved. One solution to the first problem is the accumulation of photochemically produced H(2)O(2) at the surface of the glaciers and its subsequent incorporation into ice. Melting at the glacier base would release H(2)O(2), which interacts with seawater to produce O(2) in an environment shielded from the lethal levels of ultraviolet radiation needed to produce H(2)O(2). Answers to the second problem are controversial and range from 3.8 to 2.2 Gyr ago. A sceptical view, based on the metals that have the redox potentials close to oxygen, argues for the late end of the range. The preponderance of geological evidence suggests little or no oxygen in the Late Archaean atmosphere (less than 1 ppm). The main piece of evidence for an earlier evolution of oxygenic photosynthesis comes from lipid biomarkers. Recent work, however, has shown that 2-methylhopanes, once thought to be unique biomarkers for cyanobacteria, are also produced anaerobically in significant quantities by at least two strains of anoxygenic phototrophs. Sterane biomarkers provide the strongest evidence for a date 2.7 Gyr ago or above, and could also be explained by the common evolutionary pattern of replacing anaerobic enzymes with oxygen-dependent ones. Although no anaerobic sterol synthesis pathway has been identified in the modern biosphere, enzymes that perform the necessary chemistry do exist. This analysis suggests that oxygenic photosynthesis could have evolved close in geological time to the Makganyene Snowball Earth Event and argues for a causal link between the two.

  3. Origins and Evolution of Life

    Science.gov (United States)

    Gargaud, Muriel; López-García, Purificación; Martin, Hervé

    2011-01-01

    Part I. What Is Life?: 1. Problems raised by a definition of life M. Morange; 2. Some remarks about uses of cosmological anthropic 'principles' D. Lambert; 3. Minimal cell: the biologist point of view C. Brochier-Armanet; 4. Minimal cell: the computer scientist point of view H. Bersini; 5. Origins of life: computing and simulation approaches B. Billoud; Part II. Astronomical and Geophysical Context of the Emergence of Life: 6. Organic molecules in interstellar medium C. Ceccarelli and C. Cernicharo; 7. Cosmochemical evolution and the origin of life: insights from meteorites S. Pizzarello; 8. Astronomical constraints on the emergence of life M. Gounelle and T. Montmerle; 9. Formation of habitable planets J. Chambers; 10. The concept of galactic habitable zone N. Prantzos; 11. The young Sun and its influence on planetary atmospheres M. Güdel and J. Kasting; 12. Climates of the Earth G. Ramstein; Part III. Role of Water in the Emergence of Life: 13. Liquid water: a necessary condition to all forms of life K. Bartik, G. Bruylants, E. Locci and J. Reisse; 14. The role of water in the formation and evolution of planets T. Encrenaz; 15. Water on Mars J. P. Bibring; Part IV. From Non-Living Systems to Life: 16. Energetic constraints on prebiotic pathways: application to the emergence of translation R. Pascal and L. Boiteau; 17. Comparative genomics and early cell evolution A. Lazcano; 18. Origin and evolution of metabolisms J. Peretó; Part V. Mechanisms for Life Evolution: 19. Molecular phylogeny: inferring the patterns of evolution E. Douzery; 20. Horizontal gene transfer: mechanisms and evolutionary consequences D. Moreira; 21. The role of symbiosis in eukaryotic evolution A. Latorre, A. Durbán, A. Moya and J. Peretó; Part VI. Life in Extreme Conditions: 22. Life in extreme conditions: Deinococcus radiodurans, an organism able to survive prolonged desiccation and high doses of ionising radiation S. Sommer and M. Toueille; 23. Molecular effects of UV and ionizing

  4. Origins of altruism diversity II: Runaway co-evolution of altruistic strategies via “reciprocal niche construction”

    Science.gov (United States)

    Van Dyken, J. David; Wade, Michael J.

    2012-01-01

    Understanding the evolution of altruism requires knowledge of both its constraints and its drivers. Here we show that, paradoxically, ecological constraints on altruism may ultimately be its strongest driver. We construct a two-trait, co-evolutionary adaptive dynamics model of social evolution in a genetically structured population with local resource competition. The intensity of local resource competition, which influences the direction and strength of social selection and which is typically treated as a static parameter, is here allowed to be an evolvable trait. Evolution of survival/fecundity altruism, which requires weak local competition, increases local competition as it evolves, creating negative environmental feedback that ultimately inhibits its further evolutionary advance. Alternatively, evolution of resource-based altruism, which requires strong local competition, weakens local competition as it evolves, also ultimately causing its own evolution to stall. When evolving independently, these altruistic strategies are intrinsically self-limiting. However, the co-existence of these two altruism types transforms the negative eco-evolutionary feedback generated by each strategy on itself into positive feedback on the other, allowing the presence of one trait to drive the evolution of the other. We call this feedback conversion “reciprocal niche construction”. In the absence of constraints, this process leads to runaway co-evolution of altruism types. We discuss applications to the origins and evolution of eusociality, division of labor, the inordinate ecological success of eusocial species, and the interaction between technology and demography in human evolution. Our theory suggests that the evolution of extreme sociality may often be an autocatalytic process. PMID:22834748

  5. Musical emotions: Functions, origins, evolution

    Science.gov (United States)

    Perlovsky, Leonid

    2010-03-01

    Theories of music origins and the role of musical emotions in the mind are reviewed. Most existing theories contradict each other, and cannot explain mechanisms or roles of musical emotions in workings of the mind, nor evolutionary reasons for music origins. Music seems to be an enigma. Nevertheless, a synthesis of cognitive science and mathematical models of the mind has been proposed describing a fundamental role of music in the functioning and evolution of the mind, consciousness, and cultures. The review considers ancient theories of music as well as contemporary theories advanced by leading authors in this field. It addresses one hypothesis that promises to unify the field and proposes a theory of musical origin based on a fundamental role of music in cognition and evolution of consciousness and culture. We consider a split in the vocalizations of proto-humans into two types: one less emotional and more concretely-semantic, evolving into language, and the other preserving emotional connections along with semantic ambiguity, evolving into music. The proposed hypothesis departs from other theories in considering specific mechanisms of the mind-brain, which required the evolution of music parallel with the evolution of cultures and languages. Arguments are reviewed that the evolution of language toward becoming the semantically powerful tool of today required emancipation from emotional encumbrances. The opposite, no less powerful mechanisms required a compensatory evolution of music toward more differentiated and refined emotionality. The need for refined music in the process of cultural evolution is grounded in fundamental mechanisms of the mind. This is why today's human mind and cultures cannot exist without today's music. The reviewed hypothesis gives a basis for future analysis of why different evolutionary paths of languages were paralleled by different evolutionary paths of music. Approaches toward experimental verification of this hypothesis in

  6. Musical emotions: functions, origins, evolution.

    Science.gov (United States)

    Perlovsky, Leonid

    2010-03-01

    Theories of music origins and the role of musical emotions in the mind are reviewed. Most existing theories contradict each other, and cannot explain mechanisms or roles of musical emotions in workings of the mind, nor evolutionary reasons for music origins. Music seems to be an enigma. Nevertheless, a synthesis of cognitive science and mathematical models of the mind has been proposed describing a fundamental role of music in the functioning and evolution of the mind, consciousness, and cultures. The review considers ancient theories of music as well as contemporary theories advanced by leading authors in this field. It addresses one hypothesis that promises to unify the field and proposes a theory of musical origin based on a fundamental role of music in cognition and evolution of consciousness and culture. We consider a split in the vocalizations of proto-humans into two types: one less emotional and more concretely-semantic, evolving into language, and the other preserving emotional connections along with semantic ambiguity, evolving into music. The proposed hypothesis departs from other theories in considering specific mechanisms of the mind-brain, which required the evolution of music parallel with the evolution of cultures and languages. Arguments are reviewed that the evolution of language toward becoming the semantically powerful tool of today required emancipation from emotional encumbrances. The opposite, no less powerful mechanisms required a compensatory evolution of music toward more differentiated and refined emotionality. The need for refined music in the process of cultural evolution is grounded in fundamental mechanisms of the mind. This is why today's human mind and cultures cannot exist without today's music. The reviewed hypothesis gives a basis for future analysis of why different evolutionary paths of languages were paralleled by different evolutionary paths of music. Approaches toward experimental verification of this hypothesis in

  7. Molecular Evolution of PvMSP3α Block II in Plasmodium vivax from Diverse Geographic Origins.

    Directory of Open Access Journals (Sweden)

    Bhavna Gupta

    Full Text Available Block II of Plasmodium vivax merozoite surface protein 3α (PvMSP3α is conserved and has been proposed as a potential candidate for a malaria vaccine. The present study aimed to compare sequence diversity in PvMSP3a block II at a local microgeographic scale in a village as well as from larger geographic regions (countries and worldwide. Blood samples were collected from asymptomatic carriers of P. vivax in a village at the western border of Thailand and PvMSP3α was amplified and sequenced. For population genetic analysis, 237 PvMSP3α block II sequences from eleven P. vivax endemic countries were analyzed. PvMSP3α sequences from 20 village-level samples revealed two length variant types with one type containing a large deletion in block I. In contrast, block II was relatively conserved; especially, some non-synonymous mutations were extensively shared among 11 parasite populations. However, the majority of the low-frequency synonymous variations were population specific. The conserved pattern of nucleotide diversity in block II sequences was probably due to functional/structural constraints, which were further supported by the tests of neutrality. Notably, a small region in block II that encodes a predicted B cell epitope was highly polymorphic and showed signs of balancing selection, signifying that this region might be influenced by the immune selection and may serve as a starting point for designing multi-antigen/stage epitope based vaccines against this parasite.

  8. Origin and evolution of spliceosomal introns

    Science.gov (United States)

    2012-01-01

    Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome

  9. Prevolutionary dynamics and the origin of evolution

    OpenAIRE

    Nowak, Martin A.; Ohtsuki, Hisashi

    2008-01-01

    Life is that which replicates and evolves. The origin of life is also the origin of evolution. A fundamental question is when do chemical kinetics become evolutionary dynamics? Here, we formulate a general mathematical theory for the origin of evolution. All known life on earth is based on biological polymers, which act as information carriers and catalysts. Therefore, any theory for the origin of life must address the emergence of such a system. We describe prelife as an alphabet of active m...

  10. Musical Emotions: Functions, Origins, Evolution

    Science.gov (United States)

    2010-01-01

    Integrated cognition and language . In: Gudwin R, Queiroz J, editors. Semiotics and intelligent systems development. Hershey, PA: Idea Group; 2006. p... language , and the other preserving emotional connections along with semantic ambiguity, evolving into music. The proposed hypothesis departs from other... languages . Arguments are reviewed that the evolution of language toward becoming the semantically powerful tool of today required emancipation from emotional

  11. Origin and Evolution of Saturn's Ring System

    OpenAIRE

    Charnoz, Sebastien; Dones, Luke; Esposito, Larry W.; Estrada, Paul R.; Hedman, Matthew M.

    2009-01-01

    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are...

  12. RETROSPECTION OF INSURANCE: ORIGIN, EVOLUTION, TOPICALITY

    Directory of Open Access Journals (Sweden)

    Cristina UNGUR

    2014-03-01

    Full Text Available Any human activity implies the existence of certain dangers for life, health or property. The need to protect them has led to insurance. In this article we present the chronological evolution of the phenomenon of insurance from its origin in antiquity to the contemporary period. We also show the interdependence of development of human civilization and the diversification and development of insurance services in various historical eras.

  13. Prevolutionary dynamics and the origin of evolution.

    Science.gov (United States)

    Nowak, Martin A; Ohtsuki, Hisashi

    2008-09-30

    Life is that which replicates and evolves. The origin of life is also the origin of evolution. A fundamental question is when do chemical kinetics become evolutionary dynamics? Here, we formulate a general mathematical theory for the origin of evolution. All known life on earth is based on biological polymers, which act as information carriers and catalysts. Therefore, any theory for the origin of life must address the emergence of such a system. We describe prelife as an alphabet of active monomers that form random polymers. Prelife is a generative system that can produce information. Prevolutionary dynamics have selection and mutation, but no replication. Life marches in with the ability of replication: Polymers act as templates for their own reproduction. Prelife is a scaffold that builds life. Yet, there is competition between life and prelife. There is a phase transition: If the effective replication rate exceeds a critical value, then life outcompetes prelife. Replication is not a prerequisite for selection, but instead, there can be selection for replication. Mutation leads to an error threshold between life and prelife.

  14. Chemical Evolution and the Origin of Life: Bibliography 1975

    Science.gov (United States)

    West, Martha W. (Compiler); Koch, Rowena A. (Compiler); Chang, Sherwood (Compiler)

    1977-01-01

    This bibliography is the sixth annual supplement to the comprehensive bibliography on the same subject which was published in Space Life Sci.We would like to draw attention to a recently published cumulative bibliography on this same subject: Biochemical Origin of Life: Chemistry and Life. Soil and Water and Its Relationship to Origin of Life. MR - Studies of Prebiotic Polypeptides. Energy, Matter, and Life. Prospects for the Future Orientation of Scientific Research. Photochemical Formation of Self Sustaining Coacervates. Photochemical Formation of Self-Sustaining Coacervates. Comparative Study of Abiogenesis of Cysteine and Other Amino Acids Catalyzed by Various Metal Ions. Protein Structure and the Molecular Evolution of Biological Energy Conversion. Origin of Life. Clues from Relations Between Chemical Compositions of Living Organisms and Natural Environments. Shock Synthesis of Amino Acids II.', Origins of Life 6(1-2). Dynamics of the Chemical Evolution of Earth's Primitive Atmosphere. The Mechanisms of Amino Acids Synthesis by High Temperature Shock-Waves. Theory of Chemical Evolution. Physical Foundations of Probability of Biogenesis.

  15. Origins fourteen billion years of cosmic evolution

    CERN Document Server

    Tyson, Neil deGrasse

    2004-01-01

    Origins explores cosmic science's stunning new insights into the formation and evolution of our universe--of the cosmos, of galaxies and galaxy clusters, of stars within galaxies, of planets that orbit those stars, and of different forms of life that take us back to the first three seconds and forward through three billion years of life on Earth to today's search for life on other planets. Drawing on the current cross-pollination of geology, biology and astrophysics, Origins explains the thrilling daily breakthroughs in our knowledge of the universe from dark energy to life on Mars to the mysteries of space and time. Distilling complex science in clear and lively prose, co-authors Neil deGrasse Tyson and Donald Goldsmith conduct a galvanising tour of the cosmos revealing what the universe has been up to while turning part of itself into us.

  16. Conceptualizing the origin of life in terms of evolution.

    Science.gov (United States)

    Takeuchi, N; Hogeweg, P; Kaneko, K

    2017-12-28

    In this opinion piece, we discuss how to place evolution in the context of origin-of-life research. Our discussion starts with a popular definition: 'life is a self-sustained chemical system capable of undergoing Darwinian evolution'. According to this definition, the origin of life is the same as the origin of evolution: evolution is the 'end' of the origin of life. This perspective, however, has a limitation, in that the ability of evolution in and of itself is insufficient to explain the origin of life as we know it, as indicated by Spiegelman's and Lincoln and Joyce's experiments. This limitation provokes a crucial question: What conditions are required for replicating systems to evolve into life? From this perspective, the origin of life includes the emergence of life through evolution: evolution is a 'means' of the origin of life. After reviewing Eigen's pioneering work on this question, we mention our ongoing work suggesting that a key condition might be conflicting multi-level evolution. Taken together, there are thus two questions regarding the origin of life: how evolution gets started, and how evolution produces life. Evolution is, therefore, at the centre of the origin of life, where the two lines of enquiry must meet.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).

  17. The origin and evolution of Homo sapiens.

    Science.gov (United States)

    Stringer, Chris

    2016-07-05

    If we restrict the use of Homo sapiens in the fossil record to specimens which share a significant number of derived features in the skeleton with extant H. sapiens, the origin of our species would be placed in the African late middle Pleistocene, based on fossils such as Omo Kibish 1, Herto 1 and 2, and the Levantine material from Skhul and Qafzeh. However, genetic data suggest that we and our sister species Homo neanderthalensis shared a last common ancestor in the middle Pleistocene approximately 400-700 ka, which is at least 200 000 years earlier than the species origin indicated from the fossils already mentioned. Thus, it is likely that the African fossil record will document early members of the sapiens lineage showing only some of the derived features of late members of the lineage. On that basis, I argue that human fossils such as those from Jebel Irhoud, Florisbad, Eliye Springs and Omo Kibish 2 do represent early members of the species, but variation across the African later middle Pleistocene/early Middle Stone Age fossils shows that there was not a simple linear progression towards later sapiens morphology, and there was chronological overlap between different 'archaic' and 'modern' morphs. Even in the late Pleistocene within and outside Africa, we find H. sapiens specimens which are clearly outside the range of Holocene members of the species, showing the complexity of recent human evolution. The impact on species recognition of late Pleistocene gene flow between the lineages of modern humans, Neanderthals and Denisovans is also discussed, and finally, I reconsider the nature of the middle Pleistocene ancestor of these lineages, based on recent morphological and genetic data.This article is part of the themed issue 'Major transitions in human evolution'. © 2016 The Author(s).

  18. Origin and evolution of cultivated cucurbits

    Directory of Open Access Journals (Sweden)

    Bisognin Dilson Antônio

    2002-01-01

    Full Text Available Cucurbits (Cucurbitaceae are among the most important plant families supplying humans with edible products and useful fibers. Plants of this family are very similar in above ground development, but they have high genetic diversity for fruit shape and other fruit characteristics, resulting in a variety of uses. The objective of this review was to discuss the origin and evolution of the most important cultivated cucurbits. Understanding the evolutionary history and domestication process increase the possibility for better exploiting the genetic diversity for cultivar development. The domestication selection in cucurbits was for shape, less bitter flesh, larger and fewer seeds, and larger fruit size, resulting in high genetic diversity within and among cultivated species. This variation can be associated with the wide range of uses that require different shape, size and a constant ratio between fruit length and fruit diameter. The discussion of the breeding history indicates how artificial selection could speed up changes in fruit characteristics to attend specific uses and increase adaptation to a variety of environmental conditions in which cucurbits are growing worldwide. Although interspecific hybridization has been employed in cucurbit breeding more than in any other family, there is still a high potential for increasing its application for germplasm and cultivar development.

  19. Quantum Darwinian Evolution Implies Tumor Origination

    Science.gov (United States)

    Cooper, W. Grant

    2011-03-01

    Quantum uncertainty limits operating on metastable amino DNA protons drive the arrangement, keto-amino ? enol-imine, which contributes to time-dependent stochastic mutations. Product enol-imine protons participate in coupled quantum oscillations at frequencies of about 1013 s-1 until ``measured by'' an evolutionarily selected quantum reader, the transcriptase. This introduces entanglement states between coherent protons and transcriptase components, which ultimately yield an ensemble of decohered, non-reequilibrated enol and imine isomers that participate in ``molecular clock'' base substitutions at G'-C' and *G-*C sites. This introduces a quantum Darwinian evolution model which (a) simulates incidence of cancer data and (b) implies insight into quantum origins of evolutionary extinction. Data identify an inherited ``genetic space,'' s, which is initially mutation-free and satisfies the inequality, 1 = s = 0.97. When accumulated stochastic mutations cause s-values to approach their evolutionarily allowed threshold limit, s 0.97 + e, age-related degenerative disease is manifested. This implies a gain in evolutionary advantage which protects the gene pool against acquiring unsafe levels of mutation. Data requiring coherent states imply that classical duplex DNA contains an embedded microphysical subset of electron lone-pairs and hydrogen bonded protons that govern time-dependent genetic specificity in terms of quantum probability laws.

  20. Origin and evolution of syphilis: drifting myth.

    Science.gov (United States)

    Sehgal, Virendra N; Verma, Prashant; Chatterjee, Kingshuk; Chaudhuri, Anita; Chatterjee, Gautam; Rasool, Farhan

    2012-01-01

    The venereal form of treponematosis, caused by the spirochete Treponema pallidum, plagued every major city in the preantibiotic era. "Civilization means syphilization," was an idea touted by Richard von Krafft-Ebing in the late 19th, and early 20th centuries that the effects of modern life make men more susceptible to syphilis and other diseases. Christopher Columbus was thought of as an importer of syphilis to Europe. Because his serendipitous voyages to the New World initiated the process of Spanish colonization, which foreshadowed general European colonization of the New World, it is difficult to rule out the cultural and political animosity created by Columbus and his men. These recent revelations are intriguing and may create dialogue that may subsequently challenge the age-old theory of "East to West" spread of venereal syphilis. This contribution warrants the continuation of study in this direction, taking into account skeletal studies that utilized radiocarbon dating technique and the phylogenetic analysis of the bacterial strains, offering a possible consensus on the origin and evolution of syphilis.

  1. Conceptualizing the origin of life in terms of evolution

    NARCIS (Netherlands)

    Takeuchi, N|info:eu-repo/dai/nl/304836966; Hogeweg, P|info:eu-repo/dai/nl/073710725; Kaneko, K

    2017-01-01

    In this opinion piece, we discuss how to place evolution in the context of origin-of-life research. Our discussion starts with a popular definition: 'life is a self-sustained chemical system capable of undergoing Darwinian evolution'. According to this definition, the origin of life is the same as

  2. Origins: The Emergence and Evolution of Our Species and its ...

    Indian Academy of Sciences (India)

    BOOK I REVIEW. Origins: The Emergence and. Evolution of Our Species and its Possible Future. Panha P Majumder. Origins: The Emergence and Evolution of Our Species and its Possible fulUre. Richard E Leakey and Roger Lewin. Penguin Books, New York.. 19n. 255 pages. US$11.95. "There is an inescapable and ...

  3. Chemical evolution and the origin of life

    Science.gov (United States)

    Oro, J.

    1983-01-01

    A review is presented of recent advances made in the understanding of the formation of carbon compounds in the universe and the occurrence of processes of chemical evolution. Topics discussed include the principle of evolutionary continuity, evolution as a fundamental principle of the physical universe, the nuclear synthesis of biogenic elements, organic cosmochemistry and interstellar molecules, the solar nebula and the solar system in chemical evolution, the giant planets and Titan in chemical evolution, and comets and their interaction with the earth. Also examined are carbonaceous chondrites, environment of the primitive earth, energy sources available on the primitive earth, the synthesis of biochemical monomers and oligomers, the abiotic transcription of nucleotides, unified prebiotic and enzymatic mechanisms, phospholipids and membranes, and protobiological evolution.

  4. Origin and Evolution of the Cometary Reservoirs

    Science.gov (United States)

    Dones, Luke; Brasser, Ramon; Kaib, Nathan; Rickman, Hans

    2015-12-01

    Comets have three known reservoirs: the roughly spherical Oort Cloud (for long-period comets), the flattened Kuiper Belt (for ecliptic comets), and, surprisingly, the asteroid belt (for main-belt comets). Comets in the Oort Cloud were thought to have formed in the region of the giant planets and then placed in quasi-stable orbits at distances of thousands or tens of thousands of AU through the gravitational effects of the planets and the Galaxy. The planets were long assumed to have formed in place. However, the giant planets may have undergone two episodes of migration. The first would have taken place in the first few million years of the Solar System, during or shortly after the formation of the giant planets, when gas was still present in the protoplanetary disk around the Sun. The Grand Tack (Walsh et al. in Nature 475:206-209, 2011) models how this stage of migration could explain the low mass of Mars and deplete, then repopulate the asteroid belt, with outer-belt asteroids originating between, and outside of, the orbits of the giant planets. The second stage of migration would have occurred later (possibly hundreds of millions of years later) due to interactions with a remnant disk of planetesimals, i.e., a massive ancestor of the Kuiper Belt. Safronov (Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets, 1969) and Fernández and Ip (Icarus 58:109-120, 1984) proposed that the giant planets would have migrated as they interacted with leftover planetesimals; Jupiter would have moved slightly inward, while Saturn and (especially) Uranus and Neptune would have moved outward from the Sun. Malhotra (Nature 365:819-821, 1993) showed that Pluto's orbit in the 3:2 resonance with Neptune was a natural outcome if Neptune captured Pluto into resonance while it migrated outward. Building on this work, Tsiganis et al. (Nature 435:459-461, 2005) proposed the Nice model, in which the giant planets formed closer together than they are now, and

  5. The origin and evolution of Homo sapiens

    National Research Council Canada - National Science Library

    Stringer, Chris

    2016-01-01

    .... sapiens, the origin of our species would be placed in the African late middle Pleistocene, based on fossils such as Omo Kibish 1, Herto 1 and 2, and the Levantine material from Skhul and Qafzeh...

  6. Origin and evolution of the peroxisomal proteome

    Directory of Open Access Journals (Sweden)

    Tabak Henk

    2006-03-01

    Full Text Available Abstract Background Peroxisomes are ubiquitous eukaryotic organelles involved in various oxidative reactions. Their enzymatic content varies between species, but the presence of common protein import and organelle biogenesis systems support a single evolutionary origin. The precise scenario for this origin remains however to be established. The ability of peroxisomes to divide and import proteins post-translationally, just like mitochondria and chloroplasts, supports an endosymbiotic origin. However, this view has been challenged by recent discoveries that mutant, peroxisome-less cells restore peroxisomes upon introduction of the wild-type gene, and that peroxisomes are formed from the Endoplasmic Reticulum. The lack of a peroxisomal genome precludes the use of classical analyses, as those performed with mitochondria or chloroplasts, to settle the debate. We therefore conducted large-scale phylogenetic analyses of the yeast and rat peroxisomal proteomes. Results Our results show that most peroxisomal proteins (39–58% are of eukaryotic origin, comprising all proteins involved in organelle biogenesis or maintenance. A significant fraction (13–18%, consisting mainly of enzymes, has an alpha-proteobacterial origin and appears to be the result of the recruitment of proteins originally targeted to mitochondria. Consistent with the findings that peroxisomes are formed in the Endoplasmic Reticulum, we find that the most universally conserved Peroxisome biogenesis and maintenance proteins are homologous to proteins from the Endoplasmic Reticulum Assisted Decay pathway. Conclusion Altogether our results indicate that the peroxisome does not have an endosymbiotic origin and that its proteins were recruited from pools existing within the primitive eukaryote. Moreover the reconstruction of primitive peroxisomal proteomes suggests that ontogenetically as well as phylogenetically, peroxisomes stem from the Endoplasmic Reticulum. Reviewers This article was

  7. The origin and evolution of atmospheric oxygen

    Science.gov (United States)

    Levine, Joel S.

    1988-01-01

    This paper discusses the chemical processes involved in the evolution of the earth's atmospheric oxygen and ozone, as well as the sources, sinks, and transfer rates of oxygen in the present atmosphere. Special attention is given the evolution of atmospheric O3 as a function of the buildup of O2, with the results of calculations presented as the vertical profiles of O3, in terms of the present atmospheric level (PAL) oxygen values. Calculations show that the total O3 column density that is approximately half of the present level was reached when atmospheric oxygen level reached 0.1 PAL. At this level of ozone, the biological shielding of the earth's surface from the UV radiation is believed to have been achieved.

  8. Origin and evolution of metabolic pathways

    Science.gov (United States)

    Fani, Renato; Fondi, Marco

    2009-03-01

    The emergence and evolution of metabolic pathways represented a crucial step in molecular and cellular evolution. In fact, the exhaustion of the prebiotic supply of amino acids and other compounds that were likely present in the ancestral environment, imposed an important selective pressure, favoring those primordial heterotrophic cells which became capable of synthesizing those molecules. Thus, the emergence of metabolic pathways allowed primitive organisms to become increasingly less-dependent on exogenous sources of organic compounds. Comparative analyses of genes and genomes from organisms belonging to Archaea, Bacteria and Eukarya revealed that, during evolution, different forces and molecular mechanisms might have driven the shaping of genomes and the arisal of new metabolic abilities. Among these gene elongations, gene and operon duplications undoubtedly played a major role since they can lead to the (immediate) appearance of new genetic material that, in turn, might undergo evolutionary divergence giving rise to new genes coding for new metabolic abilities. Gene duplication has been invoked in the different schemes proposed to explain why and how the extant metabolic pathways have arisen and shaped. Both the analysis of completely sequenced genomes and directed evolution experiments strongly support one of them, i.e. the patchwork hypothesis, according to which metabolic pathways have been assembled through the recruitment of primitive enzymes that could react with a wide range of chemically related substrates. However, the analysis of the structure and organization of genes belonging to ancient metabolic pathways, such as histidine biosynthesis and nitrogen fixation, suggested that other different hypothesis, i.e. the retrograde hypothesis or the semi-enzymatic theory, may account for the arisal of some metabolic routes.

  9. Origins and evolution of a transmissible cancer.

    Science.gov (United States)

    Rebbeck, Clare A; Thomas, Rachael; Breen, Matthew; Leroi, Armand M; Burt, Austin

    2009-09-01

    Canine transmissible venereal tumor (CTVT) is an infectious disease of dogs. Remarkably, the infectious agent is the cancerous cell itself. To investigate its origin and spread, we collected 37 tumor samples from four continents and determined their evolutionary relationships using microsatellite length differences and microarray-based comparative genomic hybridization (aCGH). The different tumors show very little microsatellite variation, and the pattern of variation that does exist is consistent with a purely asexual mode of transmission. Approximately one quarter of the loci scored by aCGH show copy number variation relative to normal dogs, again with little variation among different tumor samples. Sequence analysis of the RPPH1 gene indicates an origin from either dogs or wolves, and microsatellite analysis indicates that the tumor is more than 6000 years old, and perhaps originated when dogs were first domesticated. By contrast, the common ancestor of extant tumors lived within the last few hundred years, long after the first tumor. The genetic and genomic patterns we observe are typical of those expected of asexual pathogens, and the extended time since first origin may explain the many remarkable adaptations that have enabled this mammalian cell lineage to live as a unicellular pathogen.

  10. Origin and early evolution of photosynthesis

    Science.gov (United States)

    Blankenship, R. E.

    1992-01-01

    Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.

  11. The origin and evolution of Homo sapiens

    OpenAIRE

    Stringer, Chris

    2016-01-01

    If we restrict the use of Homo sapiens in the fossil record to specimens which share a significant number of derived features in the skeleton with extant H. sapiens, the origin of our species would be placed in the African late middle Pleistocene, based on fossils such as Omo Kibish 1, Herto 1 and 2, and the Levantine material from Skhul and Qafzeh. However, genetic data suggest that we and our sister species Homo neanderthalensis shared a last common ancestor in the middle Pleistocene approx...

  12. The origins and evolution of leadership.

    Science.gov (United States)

    King, Andrew J; Johnson, Dominic D P; Van Vugt, Mark

    2009-10-13

    How groups of individuals achieve coordination and collective action is an important topic in the natural sciences, but until recently the role of leadership in this process has been largely overlooked. In contrast, leadership is arguably one of the most important themes in the social sciences, permeating all aspects of human social affairs: the election of Barack Obama, the war in Iraq, and the collapse of the banks are all high-profile events that draw our attention to the fundamental role of leadership and followership. Converging ideas and developments in both the natural and social sciences suggest that leadership and followership share common properties across humans and other animals, pointing to ancient roots and evolutionary origins. Here, we draw upon key insights from the animal and human literature to lay the foundation for a new science of leadership inspired by an evolutionary perspective. Identifying the origins of human leadership and followership, as well as which aspects are shared with other animals and which are unique, offers ways of understanding, predicting, and improving leadership today.

  13. Sixth Symposium on Chemical Evolution and the Origin and Evolution of Life

    Science.gov (United States)

    Acevedo, Sara (Editor); DeVincenzi, Donald L. (Editor); Chang, Sherwood (Editor)

    1998-01-01

    The 6th Symposium on Chemical Evolution and the Origin and Evolution of Life was convened at NASA Ames Research Center, November 17-20, 1997. This Symposium is convened every three years under the auspices of NASA's Exobiology Program Office. All Principal Investigators funded by this Program present their most recent research accomplishments at the Symposium. Scientific papers were presented in the following areas: cosmic evolution of the biogenic elements, prebiotic evolution (both planetary and chemical), evolution of early organisms and evolution of organisms in extreme environments, solar system exploration, and star and planet formation. The Symposium was attended by over 200 scientists from NASA centers and Universities nationwide.

  14. Origin and evolution of photosynthetic reaction centers

    Science.gov (United States)

    Olson, John M.; Pierson, Beverly K.

    1987-09-01

    The prototype reaction center may have used protoporphyrin-IX associated with small peptides to transfer electrons or protons across the primitive cell membrane. The precursor of all contemporary reaction centers contained chlorophylla molecules as both primary electron donor and initial electron acceptor and an Fe-S center as secondary acceptor (RC-1 type). The biosynthetic pathway for chlorophylla evolved along with the evolution of a better organized reaction center associated with cytochromes and quinones in a primitive cyclic electron transport system. This reaction center probably functioned initially in photoassimilation, but was easily adapted to CO2 fixation using H2 and H2S as reductants. During this phase bacteriochlorophyllg may have evolved from chlorophylla in response to competition for light, and thereby initiated the gram-positive line of eubacteria. A second reaction center (RC-2) evolved from RC-1 between 3.5 and 2.5 Ga ago in response to the competition for reductants for CO2 fixation. The new organism containing RC-2 in series with RC-1 would have been able to use poor reducing agents such as the abundant aqueous ferrous ion in place of H2 and H2S. This new organism is proposed to be the common ancestor of all phototrophic eubacteria except those related to the gram-positive bacteria. All organisms containing bacteriochlorophylla lost either RC-1 or RC-2, while those organisms containing chlorophylla (ancestors of cyanobacteria) added a water-splitting enzyme to RC-2 between 3.0 and 2.5 Ga ago in order to use H2O in place of hydrated ferrous ion as electron donor for autotrophic photosynthesis.

  15. The origin and evolution of phototropins

    Directory of Open Access Journals (Sweden)

    Fay-Wei eLi

    2015-08-01

    Full Text Available Plant phototropism, the ability to bend toward or away from light, is predominantly controlled by blue-light photoreceptors, the phototropins. Although phototropins have been well-characterized in Arabidopsis thaliana, their evolutionary history is largely unknown. In this study, we complete an in-depth survey of phototropin homologs across land plants and algae using newly available transcriptomic and genomic data. We show that phototropins originated in an ancestor of Viridiplantae (land plants + green algae. Phototropins repeatedly underwent independent duplications in most major land-plant lineages (mosses, lycophytes, ferns, and seed plants, but remained single-copy genes in liverworts and hornworts—an evolutionary pattern shared with another family of photoreceptors, the phytochromes. Following each major duplication event, the phototropins differentiated in parallel, resulting in two specialized, yet partially overlapping, functional forms that primarily mediate either low- or high-light responses. Our detailed phylogeny enables us to not only uncover new phototropin lineages, but also link our understanding of phototropin function in Arabidopsis with what is known in Adiantum and Physcomitrella (the major model organisms outside of flowering plants. We propose that the convergent functional divergences of phototropin paralogs likely contributed to the success of plants through time in adapting to habitats with diverse and heterogeneous light conditions.

  16. Origin and convergent evolution of exendin genes.

    Science.gov (United States)

    Irwin, David M

    2012-01-01

    Exendins are secretin hormone-like peptides that are components of the toxins from two venomous lizards, Heloderma suspectum (Gila monster) and Heloderma horridium (Mexican bearded lizard). Exendins-1 and -2 are vasoactive intestinal peptide (VIP)-like, both in sequence and function, while exendins-3 and -4 are glucagon-like peptide-1 (GLP-1)-like. The evolutionary origin of these peptides, and the genes that encode them, has been unclear. Recently, genes orthologous to exendin have been identified in reptiles, birds and amphibians. Analysis of the orthologous sequences demonstrates that the Heloderma exendins diversified by gene duplication from a common exendin ancestor on the Heloderma lineage after divergence from other reptiles, including the anole lizard and Burmese python. In addition, the exendin toxin peptide sequences, but not their pro or signal peptides, have evolved very rapidly on the Heloderma lineage, likely as they adapted to their new function as toxins. Exendins-1 and -2 not only evolved rapidly but their sequences have evolved convergently upon that of VIP, resulting in a doubling of its identity with VIP, while exendins-3 and -4 have retained an ancestral property of being more GLP-1-like sequences. These results suggest that the ancestral role of exendin, which is potentially still retained in some species, had greater similarity with proglucagon-derived peptides or GIP. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Origin and evolution of the Perm Anomaly

    Science.gov (United States)

    Flament, N. E.; Williams, S.; Müller, D.; Gurnis, M.; Bower, D. J.

    2016-12-01

    Earth's lower mantle is characterized by two large-low-shear velocity provinces (LLSVPs, 15000 km in diameter, 500-1000 km high) located under Africa and the Pacific Ocean. In addition, a single, much smaller ( 1000 km in diameter, 500 km high) deep mantle structure named the "Perm Anomaly" was recently identified through the analysis of seismic tomography models. This discovery challenges current reconstructions of the evolution of the plate-mantle system that invoke plumes rising from the edges of the two LLSVPs, assumed spatially fixed and non-deforming in time. Here, we present mantle flow models constrained by tectonic reconstructions that reproduce the present-day structure of the lower mantle, and show a Perm-like anomaly. In the dynamic models, spanning 230 Myr, subducting slabs deform an initially uniform basal layer containing 2% of the volume of the mantle. Basal density, convective vigour, mantle viscosity, absolute plate motions, and relative plate motions are varied in a series of model cases. We use cluster analysis to classify equally-spaced points on Earth's surface into two groups with similar variations in present-day temperature between 1000-2800 km depth, for each model case. The procedure reveals a high-temperature cluster and a low-temperature cluster with respect to ambient mantle temperature below 2400 km depth. The spatial extent of the high-temperature cluster is in first-order agreement with the outlines of the LLSVPs and of the Perm Anomaly revealed by a similar cluster analysis of seven tomography models. Model success is quantified by computing the accuracy (between 0.56 and 0.76) of the temperature clusters in predicting the low-velocity cluster obtained from tomography, and qualified by the occurrence of a separate Perm-like anomaly. The anomaly formed in isolation prior to 150 Ma within a long-lived subduction network 22000 km in circumference composed of the Mongol-Okhotsk subduction along Eurasia to the west, northern Tethys

  18. [Thermodynamics of the origin of life, evolution and aging].

    Science.gov (United States)

    Gladyshev, G P

    2014-01-01

    Briefly discusses the history of the search of thermodynamic approach to explain the origin of life, evolution and aging of living beings. The origin of life is the result of requirement by the quasi-equilibrium hierarchical thermodynamics, in particular, the supramolecular thermodynamics. The evolution and aging of living beings is accompanied with changes of chemical and supramolecular compositions of living bodies, as well as with changes in the composition and structure of all hierarchies of the living world. The thermodynamic principle of substance stability predicts the existence of a single genetic code in our universe. The thermodynamic theory optimizes physiology and medicine and recommends antiaging diets and medicines. Hierarchical thermodynamics forms the design diversity of culture and art. The thermodynamic theory of origin of life, evolution and aging is the development of Clausius-Gibbs thermodynamics. Hierarchical thermodynamics is the mirror of Darwin-Wallace's-theory.

  19. General geographical distribution, origin and evolution of the Taphrinales

    Directory of Open Access Journals (Sweden)

    Bogusław Sałata

    2014-11-01

    Full Text Available General geographical distribution, origin and evolution of Taphrinales are the subject of the paper. The distribution of holarctic species has been more carefully analyzed. Range spectra of the flora of Taphrinales of several regions of Europe have also been included. The problems connected with the orgin and evolution of Taphrinales are discussed on the basis of the more important hypotheses concerning phylogenesis of Ascomycetes.

  20. The origin and early evolution of dinosaurs.

    Science.gov (United States)

    Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E

    2010-02-01

    The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and

  1. Comets and the origin and evolution of life

    CERN Document Server

    McKay, Christopher P

    2006-01-01

    Nine years after the publication of Comets and the Origin and Evolution of Life, one of the pioneering books in Astrobiology, this second edition revisits the role comets may have played in the origins and evolution of life. Recent analyses of Antarctic micrometeorites and ancient rocks in Australia and South Africa, the continuing progress in discovering complex organic macromolecules in comets, protostars and interstellar clouds, new insights into organic synthesis in comets, and numerical simulations of comet impacts on the Earth and other members of the solar system yield a spectacular wea

  2. Origins: The Emergence and Evolution of Our Species and its ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. Origins: The Emergence and Evolution of Our Species and its Possible Future. Partha P Majumder. Book Review Volume 2 Issue 4 April 1997 pp 80-81. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. Socioeconomic Renovation in Viet Nam : The Origin, Evolution, and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Socioeconomic Renovation in Viet Nam : The Origin, Evolution, and Impact of Doi Moi ... Il intéressera aussi les professionnels du développement, les étudiants et les chercheurs en études asiatiques, en sciences économiques et en développement rural, ainsi que les entreprises qui envisagent d'investir au Vietnam.

  4. Cognitive Function, Origin, and Evolution of Musical Emotions

    Directory of Open Access Journals (Sweden)

    Leonid Perlovsky

    2013-12-01

    Full Text Available Cognitive function of music, its origin, and evolution has been a mystery until recently. Here we discuss a theory of a fundamental function of music in cognition and culture. Music evolved in parallel with language. The evolution of language toward a semantically powerful tool required freeing from uncontrolled emotions. Knowledge evolved fast along with language. This created cognitive dissonances, contradictions among knowledge and instincts, which differentiated consciousness. To sustain evolution of language and culture, these contradictions had to be unified. Music was the mechanism of unification. Differentiated emotions are needed for resolving cognitive dissonances. As knowledge has been accumulated, contradictions multiplied and correspondingly more varied emotions had to evolve. While language differentiated psyche, music unified it. Thus the need for refined musical emotions in the process of cultural evolution is grounded in fundamental mechanisms of cognition. This is why today's human mind and cultures cannot exist without today's music.

  5. Origin of Evolution versus Origin of Life: A Shift of Paradigm

    Directory of Open Access Journals (Sweden)

    Marc Tessera

    2011-06-01

    Full Text Available The question of the primordial ancestor must be approached through the search for the origin of evolution, not through the search for the origin of life. There is a major issue with the concept of life because it is impossible to define, thus is not a scientific but a metaphysical concept. On the contrary, evolution may be defined by as few as three conditions. These do not necessarily involve biopolymers. However, such an approach must give clues to explain the emergence of distinct lineages to allow Darwinian natural selection. A plausible solution exists within an autotrophic lipidic vesicle-based model that is presented. The model requires the existence of hydrothermal sites such as the Lost City Hydrothermal Field leading to specific constraints. For this reason Mars and Europa may be questioned as possible cradles of evolution. If we replace the search for the origin of life by the one for the origin of evolution our priority first is to find a consensus on the minimal conditions that would allow evolution to emerge and persist anywhere in the universe.

  6. Origin of evolution versus origin of life: a shift of paradigm.

    Science.gov (United States)

    Tessera, Marc

    2011-01-01

    The question of the primordial ancestor must be approached through the search for the origin of evolution, not through the search for the origin of life. There is a major issue with the concept of life because it is impossible to define, thus is not a scientific but a metaphysical concept. On the contrary, evolution may be defined by as few as three conditions. These do not necessarily involve biopolymers. However, such an approach must give clues to explain the emergence of distinct lineages to allow Darwinian natural selection. A plausible solution exists within an autotrophic lipidic vesicle-based model that is presented. The model requires the existence of hydrothermal sites such as the Lost City Hydrothermal Field leading to specific constraints. For this reason Mars and Europa may be questioned as possible cradles of evolution. If we replace the search for the origin of life by the one for the origin of evolution our priority first is to find a consensus on the minimal conditions that would allow evolution to emerge and persist anywhere in the universe.

  7. Origin and Evolution of RNA-Dependent RNA Polymerase.

    Science.gov (United States)

    de Farias, Savio T; Dos Santos Junior, Ariosvaldo P; Rêgo, Thais G; José, Marco V

    2017-01-01

    RNA-dependent RNA polymerases (RdRp) are very ancient enzymes and are essential for all viruses with RNA genomes. We reconstruct the origin and evolution of this polymerase since the initial stages of the origin of life. The origin of the RdRp was traced back from tRNA ancestors. At the origin of the RdRp the most ancient part of the protein is the cofactor-binding site that had the capacity of binding to simple molecules as magnesium, calcium, and ribonucleotides. Our results suggest that RdRp originated from junctions of proto-tRNAs that worked as the first genes at the emergence of the primitive translation system, where the RNA was the informational molecule. The initial domain, worked as a building block for the emergence of the fingers and thumb domains. From the ancestral RdRp, we could establish the evolutionary stages of viral evolution from a rooted ancestor to modern viruses. It was observed that the selective pressure under the RdRp was the organization and functioning of the genome, where RNA double-stranded and RNA single-stranded virus formed a separate group. We propose an evolutionary route to the polymerases and the results suggest an ancient scenario for the origin of RNA viruses.

  8. Origins and Evolution of the Airlift Service Industrial Fund

    Science.gov (United States)

    1987-04-01

    provider. This chapter traces the origin of both the A8IF and single managership within MAC and relates their advantages. After World War II, Congress...Prior to single managership and industrial funding, MAC provided airlift to the services based upon its own available capability

  9. Origin and evolution of the genetic code: the universal enigma.

    Science.gov (United States)

    Koonin, Eugene V; Novozhilov, Artem S

    2009-02-01

    The genetic code is nearly universal, and the arrangement of the codons in the standard codon table is highly nonrandom. The three main concepts on the origin and evolution of the code are the stereochemical theory, according to which codon assignments are dictated by physicochemical affinity between amino acids and the cognate codons (anticodons); the coevolution theory, which posits that the code structure coevolved with amino acid biosynthesis pathways; and the error minimization theory under which selection to minimize the adverse effect of point mutations and translation errors was the principal factor of the code's evolution. These theories are not mutually exclusive and are also compatible with the frozen accident hypothesis, that is, the notion that the standard code might have no special properties but was fixed simply because all extant life forms share a common ancestor, with subsequent changes to the code, mostly, precluded by the deleterious effect of codon reassignment. Mathematical analysis of the structure and possible evolutionary trajectories of the code shows that it is highly robust to translational misreading but there are numerous more robust codes, so the standard code potentially could evolve from a random code via a short sequence of codon series reassignments. Thus, much of the evolution that led to the standard code could be a combination of frozen accident with selection for error minimization although contributions from coevolution of the code with metabolic pathways and weak affinities between amino acids and nucleotide triplets cannot be ruled out. However, such scenarios for the code evolution are based on formal schemes whose relevance to the actual primordial evolution is uncertain. A real understanding of the code origin and evolution is likely to be attainable only in conjunction with a credible scenario for the evolution of the coding principle itself and the translation system.

  10. Urey Prize Lecture - Planetary evolution and the origin of life

    Science.gov (United States)

    Mckay, Christopher P.

    1991-01-01

    One of the principal questions concerning planetary evolution and life's origins relates to the early-earth organic material's origination in situ, outer solar system importation, or simple irrelevance to the emergence of organisms. Additional considerations encompass the character of interstellar organic material and its relationship to outer solar system organic compounds, and the possibility of life's emergence in the early Mars. Attention is given to the essentiality of liquid water for life-forms, in the role not only of a reaction medium among molecules but that of a basis for hydrophylic and hydrophobic groups' bonding.

  11. The ecological origins of snakes as revealed by skull evolution.

    Science.gov (United States)

    Da Silva, Filipe O; Fabre, Anne-Claire; Savriama, Yoland; Ollonen, Joni; Mahlow, Kristin; Herrel, Anthony; Müller, Johannes; Di-Poï, Nicolas

    2018-01-25

    The ecological origin of snakes remains amongst the most controversial topics in evolution, with three competing hypotheses: fossorial; marine; or terrestrial. Here we use a geometric morphometric approach integrating ecological, phylogenetic, paleontological, and developmental data for building models of skull shape and size evolution and developmental rate changes in squamates. Our large-scale data reveal that whereas the most recent common ancestor of crown snakes had a small skull with a shape undeniably adapted for fossoriality, all snakes plus their sister group derive from a surface-terrestrial form with non-fossorial behavior, thus redirecting the debate toward an underexplored evolutionary scenario. Our comprehensive heterochrony analyses further indicate that snakes later evolved novel craniofacial specializations through global acceleration of skull development. These results highlight the importance of the interplay between natural selection and developmental processes in snake origin and diversification, leading first to invasion of a new habitat and then to subsequent ecological radiations.

  12. Leishmania: origin, evolution and future since the Precambrian.

    Science.gov (United States)

    Tuon, Felipe Francisco; Neto, Vicente Amato; Amato, Valdir Sabbaga

    2008-11-01

    This brief review discusses the history of leishmaniasis, considering its origin from the Paleoartic, Neoartic or Neotropic. We reassess some of the theories of the likely origin of this protozoan since the beginning of life on Earth, passing through the Mesozoic and continuing to the appearance of humans. The relationship between this parasite or its ancestors, possible vectors and hosts with regard to ecological modifications is discussed. Recent molecular techniques have helped to elucidate some of the evolutionary questions regarding Leishmania, but have also brought doubts about the origin and evolution of this human parasite. PCR has been used for studies in the new discipline of paleoparasitology, helping to elucidate some of the remaining evolutionary questions. Understanding of this global condition is fundamental in determining the best approach to use against the parasite, specifically for the development of an efficient vaccine.

  13. ORIGIN: Metal Creation and Evolution from the Cosmic Dawn

    DEFF Research Database (Denmark)

    Herder, J. W. den; Piro, L.; Ohashi, T.

    2011-01-01

    ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z=10......, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma...

  14. Origin and evolution of carnivorism in the Ascomycota (fungi).

    Science.gov (United States)

    Yang, Ence; Xu, Lingling; Yang, Ying; Zhang, Xinyu; Xiang, Meichun; Wang, Chengshu; An, Zhiqiang; Liu, Xingzhong

    2012-07-03

    Carnivorism is one of the basic life strategies of fungi. Carnivorous fungi possess the ability to trap and digest their preys by sophisticated trapping devices. However, the origin and development of fungal carnivorism remains a gap in evolution biology. In this study, five protein-encoding genes were used to construct the phylogeny of the carnivorous fungi in the phylum Ascomycota; these fungi prey on nematodes by means of specialized trapping structures such as constricting rings and adhesive traps. Our analysis revealed a definitive pattern of evolutionary development for these trapping structures. Molecular clock calibration based on two fossil records revealed that fungal carnivorism diverged from saprophytism about 419 Mya, which was after the origin of nematodes about 550-600 Mya. Active carnivorism (fungi with constricting rings) and passive carnivorism (fungi with adhesive traps) diverged from each other around 246 Mya, shortly after the occurrence of the Permian-Triassic extinction event about 251.4 Mya. The major adhesive traps evolved around 198-208 Mya, which was within the time frame of the Triassic-Jurassic extinction event about 201.4 Mya. However, no major carnivorous ascomycetes divergence was correlated to the Cretaceous-Tertiary extinction event, which occurred more recently (about 65.5 Mya). Therefore, a causal relationship between mass extinction events and fungal carnivorism evolution is not validated in this study. More evidence including additional fossil records is needed to establish if fungal carnivorism evolution was a response to mass extinction events.

  15. Origin and evolution of life on terrestrial planets.

    Science.gov (United States)

    Brack, A; Horneck, G; Cockell, C S; Bérces, A; Belisheva, N K; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Liseau, Réne; Lammer, Helmut; Selsis, Franck; Beichman, Charles; Danchi, William; Fridlund, Malcolm; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H(2)O, have very specific properties. We discuss the origin of life from the chemical evolution of its precursors to the earliest life-forms and the biological implications of the stellar radiation and energetic particle environments. Likewise, the study of the biological evolution that has generated the various life-forms on Earth provides clues toward the understanding of the interconnectedness of life with its environment.

  16. Origin and Evolution of Planetary Atmospheres Implications for Habitability

    CERN Document Server

    Lammer, Helmut

    2013-01-01

    Based on the author’s own work and results obtained by international teams he coordinated, this SpringerBrief offers a concise discussion of the origin and early evolution of atmospheres of terrestrial planets during the active phase of their host stars, as well as of the environmental conditions which are necessary in order for planets like the Earth to obtain N_2-rich atmospheres. Possible thermal and non-thermal atmospheric escape processes are discussed in a comparative way between the planets in the Solar System and exoplanets. Lastly, a hypothesis for how to test and study the discussed atmosphere evolution theories using future UV transit observations of terrestrial exoplanets within the orbits of dwarf stars is presented.

  17. Origin and evolution of sulfadoxine resistant Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Sumiti Vinayak

    2010-03-01

    Full Text Available The Thailand-Cambodia border is the epicenter for drug-resistant falciparum malaria. Previous studies have shown that chloroquine (CQ and pyrimethamine resistance originated in this region and eventually spread to other Asian countries and Africa. However, there is a dearth in understanding the origin and evolution of dhps alleles associated with sulfadoxine resistance. The present study was designed to reveal the origin(s of sulfadoxine resistance in Cambodia and its evolutionary relationship to African and South American dhps alleles. We sequenced 234 Cambodian Plasmodium falciparum isolates for the dhps codons S436A/F, A437G, K540E, A581G and A613S/T implicated in sulfadoxine resistance. We also genotyped 10 microsatellite loci around dhps to determine the genetic backgrounds of various alleles and compared them with the backgrounds of alleles prevalent in Africa and South America. In addition to previously known highly-resistant triple mutant dhps alleles SGEGA and AGEAA (codons 436, 437, 540, 581, 613 are sequentially indicated, a large proportion of the isolates (19.3% contained a 540N mutation in association with 437G/581G yielding a previously unreported triple mutant allele, SGNGA. Microsatellite data strongly suggest the strength of selection was greater on triple mutant dhps alleles followed by the double and single mutants. We provide evidence for at least three independent origins for the double mutants, one each for the SGKGA, AGKAA and SGEAA alleles. Our data suggest that the triple mutant allele SGEGA and the novel allele SGNGA have common origin on the SGKGA background, whereas the AGEAA triple mutant was derived from AGKAA on multiple, albeit limited, genetic backgrounds. The SGEAA did not share haplotypes with any of the triple mutants. Comparative analysis of the microsatellite haplotypes flanking dhps alleles from Cambodia, Kenya, Cameroon and Venezuela revealed an independent origin of sulfadoxine resistant alleles in each

  18. Origin and Evolution of Sulfadoxine Resistant Plasmodium falciparum

    Science.gov (United States)

    Mixson-Hayden, Tonya; McCollum, Andrea M.; Sem, Rithy; Shah, Naman K.; Lim, Pharath; Muth, Sinuon; Rogers, William O.; Fandeur, Thierry; Barnwell, John W.; Escalante, Ananias A.; Wongsrichanalai, Chansuda; Ariey, Frederick; Meshnick, Steven R.; Udhayakumar, Venkatachalam

    2010-01-01

    The Thailand-Cambodia border is the epicenter for drug-resistant falciparum malaria. Previous studies have shown that chloroquine (CQ) and pyrimethamine resistance originated in this region and eventually spread to other Asian countries and Africa. However, there is a dearth in understanding the origin and evolution of dhps alleles associated with sulfadoxine resistance. The present study was designed to reveal the origin(s) of sulfadoxine resistance in Cambodia and its evolutionary relationship to African and South American dhps alleles. We sequenced 234 Cambodian Plasmodium falciparum isolates for the dhps codons S436A/F, A437G, K540E, A581G and A613S/T implicated in sulfadoxine resistance. We also genotyped 10 microsatellite loci around dhps to determine the genetic backgrounds of various alleles and compared them with the backgrounds of alleles prevalent in Africa and South America. In addition to previously known highly-resistant triple mutant dhps alleles SGEGA and AGEAA (codons 436, 437, 540, 581, 613 are sequentially indicated), a large proportion of the isolates (19.3%) contained a 540N mutation in association with 437G/581G yielding a previously unreported triple mutant allele, SGNGA. Microsatellite data strongly suggest the strength of selection was greater on triple mutant dhps alleles followed by the double and single mutants. We provide evidence for at least three independent origins for the double mutants, one each for the SGKGA, AGKAA and SGEAA alleles. Our data suggest that the triple mutant allele SGEGA and the novel allele SGNGA have common origin on the SGKGA background, whereas the AGEAA triple mutant was derived from AGKAA on multiple, albeit limited, genetic backgrounds. The SGEAA did not share haplotypes with any of the triple mutants. Comparative analysis of the microsatellite haplotypes flanking dhps alleles from Cambodia, Kenya, Cameroon and Venezuela revealed an independent origin of sulfadoxine resistant alleles in each of these regions

  19. Origin and evolution of the earth-moon system.

    Science.gov (United States)

    Alfven, H.; Arrhenius, G.

    1972-01-01

    The general problem of formation of secondary bodies around a central body is studied, and comparison is made with other satellite systems (Jupiter, Saturn, Uranus). The normal satellite systems of Neptune and the earth are reconstructed. The capture theory, the tidal evolution of the lunar orbit, destruction of a normal satellite system, asteroids and the earth-moon system, and accretion and heat structure of the moon are discussed. It is concluded that the moon originated as a planet accreted in a jet stream near the orbit of the earth, and was probably captured in a retrograde orbit.

  20. Origins and Early Evolution of the tRNA Molecule

    Directory of Open Access Journals (Sweden)

    Koji Tamura

    2015-12-01

    Full Text Available Modern transfer RNAs (tRNAs are composed of ~76 nucleotides and play an important role as “adaptor” molecules that mediate the translation of information from messenger RNAs (mRNAs. Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RNAs. A minihelix (a coaxial stack of the acceptor stem on the T-stem of tRNA can function both in aminoacylation by aminoacyl tRNA synthetases and in peptide bond formation on the ribosome, indicating that it may be a vestige of the ancestral tRNA. The universal CCA-3′ terminus of tRNA is also a typical characteristic of the molecule. “Why CCA?” is the fundamental unanswered question, but several findings give a comprehensive picture of its origin. Here, the origins and early evolution of tRNA are discussed in terms of various perspectives, including nucleotide ligation, chiral selectivity of amino acids, genetic code evolution, and the organization of the ribosomal peptidyl transferase center (PTC. The proto-tRNA molecules may have evolved not only as adaptors but also as contributors to the composition of the ribosome.

  1. Quantum Tunnelling to the Origin and Evolution of Life.

    Science.gov (United States)

    Trixler, Frank

    2013-08-01

    Quantum tunnelling is a phenomenon which becomes relevant at the nanoscale and below. It is a paradox from the classical point of view as it enables elementary particles and atoms to permeate an energetic barrier without the need for sufficient energy to overcome it. Tunnelling might seem to be an exotic process only important for special physical effects and applications such as the Tunnel Diode, Scanning Tunnelling Microscopy (electron tunnelling) or Near-field Optical Microscopy operating in photon tunnelling mode. However, this review demonstrates that tunnelling can do far more, being of vital importance for life: physical and chemical processes which are crucial in theories about the origin and evolution of life can be traced directly back to the effects of quantum tunnelling. These processes include the chemical evolution in stellar interiors and within the cold interstellar medium, prebiotic chemistry in the atmosphere and subsurface of planetary bodies, planetary habitability via insolation and geothermal heat as well as the function of biomolecular nanomachines. This review shows that quantum tunnelling has many highly important implications to the field of molecular and biological evolution, prebiotic chemistry and astrobiology.

  2. ORIGIN: Metal Creation and Evolution from the Cosmic Dawn

    CERN Document Server

    Herder, Jan-Willem den; Ohashi, Takaya; Kouveliotou, Chryssa; Hartmann, Dieter H.; Kaastra, Jelle S.; Amati, L.; Andersen, M.I.; Arnaud, M.; Attéia, J.-L.; Bandler, S.; Barbera, M.; Barcons, X.; Barthelmy, S.; Basa, S.; Basso, S.; Boer, M.; Branchini, E.; Branduardi-Raymont, G.; Borgani, S.; Boyarsky, A.; Brunetti, G.; Budtz-Jorgensen, C.; Burrows, D.; Butler, N.; Campana, S.; Caroli, E.; Ceballos, M.; Christensen, F.; Churazov, E.; Comastri, A.; Colasanti, L.; Cole, R.; Content, R.; Corsi, A.; Costantini, E.; Conconi, P.; Cusumano, G.; de Plaa, J.; De Rosa, A.; Del Santo, M.; Di Cosimo, S.; De Pasquale, M.; Doriese, R.; Ettori, S.; Evans, P.; Ezoe, Y.; Ferrari, L.; Finger, H.; Figueroa-Feliciano, T.; Friedrich, P.; Fujimoto, R.; Furuzawa, A.; Fynbo, J.; Gatti, F.; Galeazzi, M.; Gehrels, N.; Gendre, B.; Ghirlanda, G.; Ghisellini, G.; Gilfanov, M.; Giommi, P.; Girardi, M.; Grindlay, J.; Cocchi, M.; Godet, O.; Guedel, M.; Haardt, F.; den Hartog, R.; Hepburn, I.; Hermsen, W.; Hjorth, J.; Hoekstra, H.; Holland, A.; Hornstrup, A.; van der Horst, A.; Hoshino, A.; in 't Zand, J.; Irwin, K.; Ishisaki, Y.; Jonker, P.; Kitayama, T.; Kawahara, H.; Kawai, N.; Kelley, R.; Kilbourne, C.; de Korte, P.; Kusenko, A.; Kuvvetli, I.; Labanti, M.; Macculi, C.; Maiolino, R.; Hesse, M. Mas; Matsushita, K.; Mazzotta, P.; McCammon, D.; Méndez, M.; Mignani, R.; Mineo, T.; Mitsuda, K.; Mushotzky, R.; Molendi, S.; Moscardini, L.; Natalucci, L.; Nicastro, F.; O'Brien, P.; Osborne, J.; Paerels, F.; Page, M.; Paltani, S.; Pedersen, K.; Perinati, E.; Ponman, T.; Pointecouteau, E.; Predehl, P.; Porter, S.; Rasmussen, A.; Rauw, G.; Röttgering, H.; Roncarelli, M.; Rosati, P.; Quadrini, E.; Ruchayskiy, O.; Salvaterra, R.; Sasaki, S.; Sato, K.; Savaglio, S.; Schaye, J.; Sciortino, S.; Shaposhnikov, M.; Sharples, R.; Shinozaki, K.; Spiga, D.; Sunyaev, R.; Suto, Y.; Takei, Y.; Tanvir, N.; Tashiro, M.; Tamura, T.; Tawara, Y.; Troja, E.; Tsujimoto, M.; Tsuru, T.; Ubertini, P.; Ullom, J.; Ursino, E.; Verbunt, F.; van de Voort, F.; Viel, M.; Wachter, S.; Watson, D.; Weisskopf, M.; Werner, N.; White, N.; Willingale, R.; Wijers, R.; Yamasaki, N.; Yoshikawa, K.; Zane, S.

    2011-01-01

    ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z=10, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to study their local environments in their host galaxies. This requires the capability to slew the satellite in less than a minute to the GRB location. By studying the chemical composition and properties of clusters of galaxies we can extend the range of exploration to lower redshifts (z ~ 0.2). For this task we need a high-resolution spectral imaging instrument with a large field of view. Using the ...

  3. Theory of the Origin, Evolution, and Nature of Life

    Directory of Open Access Journals (Sweden)

    Erik D. Andrulis

    2011-12-01

    Full Text Available Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur, homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe.

  4. Theory of the origin, evolution, and nature of life.

    Science.gov (United States)

    Andrulis, Erik D

    2011-12-23

    Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe.

  5. Theory of the Origin, Evolution, and Nature of Life

    Science.gov (United States)

    Andrulis, Erik D.

    2011-01-01

    Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe. PMID:25382118

  6. The origin, evolution and signatures of primordial magnetic fields.

    Science.gov (United States)

    Subramanian, Kandaswamy

    2016-07-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak  ∼  10(-16) Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  7. Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase.

    Directory of Open Access Journals (Sweden)

    Adrian Reyes-Prieto

    Full Text Available The sodium -pumping NADH: ubiquinone oxidoreductase (Na+-NQR is the main ion pump and the primary entry site for electrons into the respiratory chain of many different types of pathogenic bacteria. This enzymatic complex creates a transmembrane gradient of sodium that is used by the cell to sustain ionic homeostasis, nutrient transport, ATP synthesis, flagellum rotation and other essential processes. Comparative genomics data demonstrate that the nqr operon, which encodes all Na+-NQR subunits, is found in a large variety of bacterial lineages with different habitats and metabolic strategies. Here we studied the distribution, origin and evolution of this enzymatic complex. The molecular phylogenetic analyses and the organizations of the nqr operon indicate that Na+-NQR evolved within the Chlorobi/Bacteroidetes group, after the duplication and subsequent neofunctionalization of the operon that encodes the homolog RNF complex. Subsequently, the nqr operon dispersed through multiple horizontal transfer events to other bacterial lineages such as Chlamydiae, Planctomyces and α, β, γ and δ -proteobacteria. Considering the biochemical properties of the Na+-NQR complex and its physiological role in different bacteria, we propose a detailed scenario to explain the molecular mechanisms that gave rise to its novel redox- dependent sodium -pumping activity. Our model postulates that the evolution of the Na+-NQR complex involved a functional divergence from its RNF homolog, following the duplication of the rnf operon, the loss of the rnfB gene and the recruitment of the reductase subunit of an aromatic monooxygenase.

  8. Origin and evolution of valleys on Martian volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Gulick, V.C.; Baker, V.R. (Univ. of Arizona, Tucson (USA))

    1990-08-30

    Morphological analyses of six Martian volcanoes, Ceraunius Tholus, Hecates Tholus, Alba Patera, Hadriaca Patera, Apollinaris Patera, and Tyrrhena Patera, indicate that fluvial processes were the dominant influence in the initiation and subsequent development of many dissecting valleys. Lava processes and possibly volcanic density flows were also important as valley-forming processes. Fluvial valleys are especially well developed on Alba Patera, Ceraunius Tholus, and Hecates Tholus. These valleys are inset into the surrounding landscape. They formed in regions of subdued lava flow morphology, contain tributaries, and tend to widen slightly in the downstream direction. Lava channels on Alba Patera are located on the crest of lava flows and have a discontinuous, irregular surface morphology, and distributary patterns. These channels sometimes narrow toward their termini. Possible volcanic density flow channels are located on the northern flank of Ceraunius Tholus. Valleys dissecting Apollinaris Patera, Hadriaca Patera, and Tyrrhena Patera appear to have a complex evolution, probably a mixed fluvial and lava origin. They are inset into a subdued (possibly mantled) surface, lack tributaries, and either have fairly constant widths or widen slightly downvalley. Valleys surrounding the caldera of Apollinaris appear to have formed by fluvial and possibly by volcanic density flow processes, while those on the Apollinaris fan structure may have a mixed lava and fluvial origin. Valleys on Tyrrhena have broad flat floors and theater heads, which have been extensively enlarged, probably by sapping.

  9. Origins and Evolution of Stomatal Development1[OPEN

    Science.gov (United States)

    2017-01-01

    The fossil record suggests stomata-like pores were present on the surfaces of land plants over 400 million years ago. Whether stomata arose once or whether they arose independently across newly evolving land plant lineages has long been a matter of debate. In Arabidopsis, a genetic toolbox has been identified that tightly controls stomatal development and patterning. This includes the basic helix-loop-helix (bHLH) transcription factors SPEECHLESS (SPCH), MUTE, FAMA, and ICE/SCREAMs (SCRMs), which promote stomatal formation. These factors are regulated via a signaling cascade, which includes mobile EPIDERMAL PATTERNING FACTOR (EPF) peptides to enforce stomatal spacing. Mosses and hornworts, the most ancient extant lineages to possess stomata, possess orthologs of these Arabidopsis (Arabidopsis thaliana) stomatal toolbox genes, and manipulation in the model bryophyte Physcomitrella patens has shown that the bHLH and EPF components are also required for moss stomatal development and patterning. This supports an ancient and tightly conserved genetic origin of stomata. Here, we review recent discoveries and, by interrogating newly available plant genomes, we advance the story of stomatal development and patterning across land plant evolution. Furthermore, we identify potential orthologs of the key toolbox genes in a hornwort, further supporting a single ancient genetic origin of stomata in the ancestor to all stomatous land plants. PMID:28356502

  10. The origin, dynamics, and molecular evolution of transmissible cancers

    Directory of Open Access Journals (Sweden)

    Jones EA

    2015-09-01

    Full Text Available Elizabeth A Jones, Yuanyuan Cheng, Katherine BelovFaculty of Veterinary Science, University of Sydney, NSW, AustraliaAbstract: Three transmissible cancers are known to have emerged naturally in the wild: canine transmissible venereal tumor (CTVT; Tasmanian devil facial tumor disease (DFTD; and a recently discovered leukemia-like cancer in soft-shell clams (Mya arenaria. These cancers have all acquired the ability to pass between individuals. DFTD emerged approximately 20 years ago and has decimated the Tasmanian devil population. CTVT arose over 10,000 years ago in an ancient breed of dog. The clam cancer is believed to have evolved at least 40 years ago. In this manuscript, we review CTVT and DFTD, the two transmissible mammalian cancers, and provide an overview of the leukemia-like cancer of clams. We showcase how genetics and genomics have enhanced our understanding of the unique biology, origins, and evolutionary histories of these rare cancers.Keywords: transmissible cancer, devil facial tumor disease, DFTD, canine transmissible venereal tumor, origin, evolution

  11. Prebiological evolution and the physics of the origin of life.

    Science.gov (United States)

    Delaye, Luis; Lazcano, Antonio

    2005-03-01

    The basic tenet of the heterotrophic theory of the origin of life is that the maintenance and reproduction of the first living systems depended primarily on prebiotically synthesized organic molecules. It is unlikely that any single mechanism can account for the wide range of organic compounds that may have accumulated on the primitive Earth, suggesting that the prebiotic soup was formed by contributions from endogenous syntheses in reducing environments, metal sulphide-mediated synthesis in deep-sea vents, and exogenous sources such as comets, meteorites and interplanetary dust. The wide range of experimental conditions under which amino acids and nucleobases can be synthesized suggests that the abiotic syntheses of these monomers did not take place under a narrow range defined by highly selective reaction conditions, but rather under a wide variety of settings. The robustness of this type of chemistry is supported by the occurrence of most of these biochemical compounds in the Murchison meteorite. These results lend strong credence to the hypothesis that the emergence of life was the outcome of a long, but not necessarily slow, evolutionary processes. The origin of life may be best understood in terms of the dynamics and evolution of sets of chemical replicating entities. Whether such entities were enclosed within membranes is not yet clear, but given the prebiotic availability of amphiphilic compounds this may have well been the case. This scheme is not at odds with the theoretical models of self-organized emerging systems, but what is known of biology suggest that the essential traits of living systems could have not emerged in the absence of genetic material able to store, express and, upon replication, transmit to its progeny information capable of undergoing evolutionary change. How such genetic polymer first evolved is a central issue in origin-of-life studies.

  12. Bayesian phylogeny of sucrose transporters: Ancient origins, differential expansion and convergent evolution in monocots and dicots

    Directory of Open Access Journals (Sweden)

    Duo ePeng

    2014-11-01

    Full Text Available Sucrose transporters (SUTs are essential for the export and efficient movement of sucrose from source leaves to sink organs in plants. The angiosperm SUT family was previously classified into three or four distinct groups, Types I, II (subgroup IIB and III, with dicot-specific Type I and monocot-specific Type IIB functioning in phloem loading. To shed light on the underlying drivers of SUT evolution, Bayesian phylogenetic inference was undertaken using 41 sequenced plant genomes, including seven basal lineages at key evolutionary junctures. Our analysis supports four phylogenetically and structurally distinct SUT subfamilies, originating from two ancient groups (AG1 and AG2 that diverged early during terrestrial colonization. In both AG1 and AG2, multiple intron acquisition events in the progenitor vascular plant established the gene structures of modern SUTs. Tonoplastic Type III and plasmalemmal Type II represent evolutionarily conserved descendants of AG1 and AG2, respectively. Type I and Type IIB were previously thought to evolve after the dicot-monocot split. We show, however, that divergence of Type I from Type III SUT predated basal angiosperms, likely associated with evolution of vascular cambium and phloem transport. Type I SUT was subsequently lost in monocots along with vascular cambium, and independent evolution of Type IIB coincided with modified monocot vasculature. Both Type I and Type IIB underwent lineage-specific expansion. In multiple unrelated taxa, the newly-derived SUTs exhibit biased expression in reproductive tissues, suggesting a functional link between phloem loading and reproductive fitness. Convergent evolution of Type I and Type IIB for SUT function in phloem loading and reproductive organs supports the idea that differential vascular development in dicots and monocots is a strong driver for SUT family evolution in angiosperms.

  13. Second Symposium on Chemical Evolution and the Origin of Life

    Science.gov (United States)

    Devincenzi, D. L. (Editor); model. (Editor)

    1986-01-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  14. Second Symposium on Chemical Evolution and the Origin of Life

    Energy Technology Data Exchange (ETDEWEB)

    Devincenzi, D.L.; Dufour, P.A.

    1986-05-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  15. ORIGIN: Metal Creation and Evolution from the Cosmic Dawn

    Science.gov (United States)

    Kouveliotou, C.; vanderHorst, A.; Weisskopf, M.; White, N.; denHerder, J. W.; Costantini, E.; denHartog, R.; Hermsen, W.; in'tZhand, J.; Kaastra, J.; hide

    2012-01-01

    ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z=10, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to study their local environments in their host galaxies. This requires the capability to slew the satellite in less than a minute to the GRB location. By studying the chemical composition and properties of clusters of galaxies we can extend the range of exploration to lower redshifts (z approx. 0.2). For this task we need a high-resolution spectral imaging instrument with a large field of view. Using the same instrument, we can also study the so far only partially detected baryons in the Warm-Hot Intergalactic Medium (WHIM). The less dense part of the WHIM will be studied using absorption lines at low redshift in the spectra for GRBs. The ORIGIN mission includes a Transient Event Detector (coded mask with a sensitivity of 0.4 photon/sq cm/s in 10 s in the 5-150 keV band) to identify and localize 2000 GRBs over a five year mission, of which approx.65 GRBs have a redshift >7. The Cryogenic Imaging Spectrometer, with a spectral resolution of 2.5 eV, a field of view of 30 arcmin and large effective area below 1 keV has the sensitivity to study clusters up to a significant fraction of the virial radius and to map the denser parts of the WHIM (factor 30 higher than achievable with current instruments). The payload is complemented by a Burst InfraRed Telescope to enable onboard red-shift determination of GRBs (hence securing proper follow up of high-z bursts

  16. Mg II Absorbers: Metallicity Evolution and Cloud Morphology

    Science.gov (United States)

    Lan, Ting-Wen; Fukugita, Masataka

    2017-12-01

    Metal abundance and its evolution are studied for Mg II quasar absorption line systems from their weak, unsaturated spectral lines using stacked spectra from the archived data of the Sloan Digital Sky Survey. They show an abundance pattern that resembles that of the Galactic halo or Small Magellanic Cloud, with metallicity [Z/H] showing an evolution from redshift z = 2 to 0.5: metallicity becomes approximately solar or even larger at z≈ 0. We show that the evolution of the metal abundance traces the cumulative amount of the hydrogen fuel consumed in star formation in galaxies. With the aid of a spectroscopic simulation code, we infer the median gas density of the cloud to be roughly 0.3 {{cm}}-3, with which the elemental abundance in various ionization stages, in particular C I, is consistently explained. This gas density implies that the size of the Mg II clouds is of the order of 0.03 kpc, which suggests that individual Mg II clouds around a galaxy are of a baryonic mass typically {10}3 {M}⊙ . This means that Mg II clouds are numerous and “foamy,” rather than a large entity that covers a sizable fraction of galaxies with a single cloud.

  17. Ammonia Bearing Species on Ceres: Implication on Origin and Evolution

    Science.gov (United States)

    De Sanctis, M. C.; Ammannito, E.; Raponi, A.; Marchi, S.; Ciarniello, M.; McSween, H. Y., Jr.; McCord, T. B.; Capaccioni, F.; Capria, M. T.; Carrorro, F. G.; Longobardo, A.; Tosi, F.; Fonte, S.; Giardino, M.; Palomba, E.; Magni, G.; Zambon, F.; Pieters, C. M.; McFadden, L. A.; Raymond, C. A.

    2015-12-01

    The Visible and Infrared Mapping Spectrometer (VIR) on board the Dawn spacecraft observed Ceres' surface acquiring spectra since January 2015. Here we report the average Ceres spectrum, including the spectral range previously precluded from telescopic measurements due to telluric atmospheric absorptions. The data indicate that the surface is very dark: average albedo of 0.090 ±0.006 at 0.55 µm, consistent with HST data (Li et al., 2006). Ceres' average spectrum is characterized by a prominent absorption band at 2.7 micron. Weaker absorption bands are observed between 3.05-3.1, 3.3-3.4 and 3.9-4 micron; the visible and near-IR ranges lack prominent bands. We modelled the spectra of Ceres using Hapke theory. Results of the spectral modelling indicate that extensive water ice is not present in surface spectra acquired so far. The best fit is obtained with a mixture of ammoniated phyllosilicates mixed with other clays, Mg-carbonates, and dark material, like magnetite (De Sanctis et al. 2015, submitted). The presence of ammonia bearing materials across the surface has implications for the origin of Ceres and its internal structure and evolution. Higher spatial resolution spectra are being acquired to address the small scale mineralogy across this dwarf planet. References: Li, et al., Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus 182, 143-160 (2006). De Sanctis et al., Ammoniated phyllosilicates on dwarf planet Ceres reveal an outer solar system origin, Nature submitted, (2015). This work is supported the Italian Space Agencies, NASA, and from the German Space Agency. Support of the Dawn Instrument, Operations, and Science Teams is acknowledged.

  18. The evolution of ultraconserved elements with different phylogenetic origins

    KAUST Repository

    Ryu, Tae Woo

    2012-12-05

    Background: Ultraconserved elements of DNA have been identified in vertebrate and invertebrate genomes. These elements have been found to have diverse functions, including enhancer activities in developmental processes. The evolutionary origins and functional roles of these elements in cellular systems, however, have not yet been determined. Results: Here, we identified a wide range of ultraconserved elements common to distant species, from primitive aquatic organisms to terrestrial species with complicated body systems, including some novel elements conserved in fruit fly and human. In addition to a well-known association with developmental genes, these DNA elements have a strong association with genes implicated in essential cell functions, such as epigenetic regulation, apoptosis, detoxification, innate immunity, and sensory reception. Interestingly, we observed that ultraconserved elements clustered by sequence similarity. Furthermore, species composition and flanking genes of clusters showed lineage-specific patterns. Ultraconserved elements are highly enriched with binding sites to developmental transcription factors regardless of how they cluster. Conclusion: We identified large numbers of ultraconserved elements across distant species. Specific classes of these conserved elements seem to have been generated before the divergence of taxa and fixed during the process of evolution. Our findings indicate that these ultraconserved elements are not the exclusive property of higher modern eukaryotes, but rather transmitted from their metazoan ancestors. 2012 Ryu et al.; licensee BioMed Central Ltd.

  19. Milgram's Obedience to Authority experiments: origins and early evolution.

    Science.gov (United States)

    Russell, Nestar John Charles

    2011-03-01

    Stanley Milgram's Obedience to Authority experiments remain one of the most inspired contributions in the field of social psychology. Although Milgram undertook more than 20 experimental variations, his most (in)famous result was the first official trial run - the remote condition and its 65% completion rate. Drawing on many unpublished documents from Milgram's personal archive at Yale University, this article traces the historical origins and early evolution of the obedience experiments. Part 1 presents the previous experiences that led to Milgram's conception of his rudimentary research idea and then details the role of his intuition in its refinement. Part 2 traces the conversion of Milgram's evolving idea into a reality, paying particular attention to his application of the exploratory method of discovery during several pilot studies. Both parts illuminate Milgram's ad hoc introduction of various manipulative techniques and subtle tension-resolving refinements. The procedural adjustments continued until Milgram was confident that the first official experiment would produce a high completion rate, a result contrary to expectations of people's behaviour. Showing how Milgram conceived of, then arrived at, this first official result is important because the insights gained may help others to determine theoretically why so many participants completed this experiment. ©2010 The British Psychological Society.

  20. The origin and evolution of the term "clone".

    Science.gov (United States)

    Steensma, David P

    2017-06-01

    In biology, the term "clone" is most widely used to designate genetically identical cells or organisms that are asexually descended from a common progenitor. The concept of clonality in hematology-oncology has received much attention in recent years, as the advent of next-generation sequencing platforms has provided new tools for detection of clonal populations in patients, and experiments on primary cells have provided fascinating new insights into the clonal architecture of human malignancies. The term "clone" is used more loosely by the general public to mean any close or identical copy. Cloning of humans has been a staple of science fiction films and dystopian novels since Aldous Huxley's Brave New World was published in 1932. Here I trace the origin and evolution of the word clone, from its first use as an agricultural and botanical term in 1903, to its widespread adoption in biology, adaptation by artists, and contemporary use in hematology-oncology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Can Chimpanzee Biology Highlight Human Origin and Evolution?

    Science.gov (United States)

    Roffman, Itai; Nevo, Eviatar

    2010-01-01

    The closest living relatives of humans are their chimpanzee/bonobo (Pan) sister species, members of the same subfamily “Homininae”. This classification is supported by over 50 years of research in the fields of chimpanzee cultural diversity, language competency, genomics, anatomy, high cognition, psychology, society, self-consciousness and relation to others, tool use/production, as well as Homo level emotions, symbolic competency, memory recollection, complex multifaceted problem-solving capabilities, and interspecies communication. Language competence and symbolism can be continuously bridged from chimpanzee to man. Emotions, intercommunity aggression, body language, gestures, facial expressions, and vocalization of intonations seem to parallel between the sister taxa Homo and Pan. The shared suite of traits between Pan and Homo genus demonstrated in this article integrates old and new information on human–chimpanzee evolution, bilateral informational and cross-cultural exchange, promoting the urgent need for Pan cultures in the wild to be protected, as they are part of the cultural heritage of mankind. Also, we suggest that bonobos, Pan paniscus, based on shared traits with Australopithecus, need to be included in Australopithecine’s subgenus, and may even represent living-fossil Australopithecines. Unfolding bonobo and chimpanzee biology highlights our common genetic and cultural evolutionary origins. PMID:23908781

  2. Can Chimpanzee Biology Highlight Human Origin and Evolution?

    Directory of Open Access Journals (Sweden)

    Itai Roffman

    2010-07-01

    Full Text Available The closest living relatives of humans are their chimpanzee/bonobo (Pan sister species, members of the same subfamily “Homininae”. This classification is supported by over 50 years of research in the fields of chimpanzee cultural diversity, language competency, genomics, anatomy, high cognition, psychology, society, self-consciousness and relation to others, tool use/production, as well as Homo level emotions, symbolic competency, memory recollection, complex multifaceted problem-solving capabilities, and interspecies communication. Language competence and symbolism can be continuously bridged from chimpanzee to man. Emotions, intercommunity aggression, body language, gestures, facial expressions, and vocalization of intonations seem to parallel between the sister taxa Homo and Pan. The shared suite of traits between Pan and Homo genus demonstrated in this article integrates old and new information on human–chimpanzee evolution, bilateral informational and cross-cultural exchange, promoting the urgent need for Pan cultures in the wild to be protected, as they are part of the cultural heritage of mankind. Also, we suggest that bonobos, Pan paniscus, based on shared traits with Australopithecus, need to be included in Australopithecine’s subgenus, and may even represent living-fossil Australopithecines. Unfolding bonobo and chimpanzee biology highlights our common genetic and cultural evolutionary origins.

  3. GAIA: origin and evolution of the Milky Way

    Science.gov (United States)

    Gilmore, Gerard F.; Perryman, Michael A.; Lindegren, Lennart; Favata, Fabio; Hoeg, Erik; Lattanzi, Mario; Luri, X.; Mignard, Francois; Roeser, Siegfried; de Zeeuw, P. Tim

    1998-07-01

    GAIA is a short-listed candidate for the ESA Cornerstone mission C5, meeting the ESA Survey Committee requirement for an observatory mission, dedicated to astrometry, providing 10 micro-arcsecond accuracy at 15th magnitude. The GAIA mission concept follows the dramatic success of the ESA HIPPARCOS mission, utilizing a continuously scanning spacecraft, accurately measuring 1D coordinates along great circles, in two simultaneous fields of view, separated by a known angle. These 1D relative coordinates are later converted to the five astrometric parameters of position and motions in a global analysis. GAIA will provide precise astrometry and multi-color photometry for all the one billion stars, quasars, and compact galaxies to I equals 20 on the sky. GAIA will additionally provide the sixth phase- space parameter, radial velocity, from a slitless spectroscopic survey of most stars brighter than about magnitude 17. The technical challenges are considerable, but achievable. The scientific returns are than about magnitude 17. The technical challenges are considerable, but achievable. The scientific returns are spectacular, with greatest impact in the study of stellar populations and dynamical structure of the galaxies of our local group, and in providing the first complete census of the stars and massive planets in the solar neighborhood. GAIA will revolutionize our knowledge of the origin and evolution of our Milky Way Galaxy, and of the distribution of planetary system around other stars.

  4. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    Energy Technology Data Exchange (ETDEWEB)

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 (United States); Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu [Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331 (United States); Krupovic, Mart, E-mail: krupovic@pasteur.fr [Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015 (France)

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  5. A hypothesis on the biological origins and social evolution of music and dance

    National Research Council Canada - National Science Library

    Wang, Tianyan

    2015-01-01

    The origins of music and musical emotions is still an enigma, here I propose a comprehensive hypothesis on the origins and evolution of music, dance, and speech from a biological and sociological perspective...

  6. Equations of State: Gateway to Planetary Origin and Evolution (Invited)

    Science.gov (United States)

    Melosh, J.

    2013-12-01

    Research over the past decades has shown that collisions between solid bodies govern many crucial phases of planetary origin and evolution. The accretion of the terrestrial planets was punctuated by planetary-scale impacts that generated deep magma oceans, ejected primary atmospheres and probably created the moons of Earth and Pluto. Several extrasolar planetary systems are filled with silicate vapor and condensed 'tektites', probably attesting to recent giant collisions. Even now, long after the solar system settled down from its violent birth, a large asteroid impact wiped out the dinosaurs, while other impacts may have played a role in the origin of life on Earth and perhaps Mars, while maintaining a steady exchange of small meteorites between the terrestrial planets and our moon. Most of these events are beyond the scale at which experiments are possible, so that our main research tool is computer simulation, constrained by the laws of physics and the behavior of materials during high-speed impact. Typical solar system impact velocities range from a few km/s in the outer solar system to 10s of km/s in the inner system. Extrasolar planetary systems expand that range to 100s of km/sec typical of the tightly clustered planetary systems now observed. Although computer codes themselves are currently reaching a high degree of sophistication, we still rely on experimental studies to determine the Equations of State (EoS) of materials critical for the correct simulation of impact processes. The recent expansion of the range of pressures available for study, from a few 100 GPa accessible with light gas guns up to a few TPa from current high energy accelerators now opens experimental access to the full velocity range of interest in our solar system. The results are a surprise: several groups in both the USA and Japan have found that silicates and even iron melt and vaporize much more easily in an impact than previously anticipated. The importance of these findings is

  7. On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca

    Directory of Open Access Journals (Sweden)

    Angelika Brandt

    1999-12-01

    Full Text Available The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary history of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of preadapted taxa, like for example the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopoda led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988 demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988 to conclude that the recent Antarctic crustacean fauna must be comparatively young. His arguments are scrutinized on the basis of more recent data on the phylogeny and biodiversity of crustacean taxa, namely the Ostracoda, Decapoda, Mysidacea, Cumacea, Amphipoda, and Isopoda. This analysis demonstrates that the origin of the Antarctic fauna probably has different roots: an adaptive radiation of descendants from old Gondwanian ancestors was hypothesized for the isopod families Serolidae and Arcturidae, an evolution and radiation of phylogenetically old taxa in Antarctica could also be shown for the Ostracoda and the amphipod family Iphimediidae. A recolonization via the Scotia Arc appears possible for some species, though it is

  8. Phosphotyrosine phosphatase R3 receptors: Origin, evolution and structural diversification.

    Directory of Open Access Journals (Sweden)

    Javier U Chicote

    Full Text Available Subtype R3 phosphotyrosine phosphatase receptors (R3 RPTPs are single-spanning membrane proteins characterized by a unique modular composition of extracellular fibronectin repeats and a single cytoplasmatic protein tyrosine phosphatase (PTP domain. Vertebrate R3 RPTPs consist of five members: PTPRB, PTPRJ, PTPRH and PTPRO, which dephosphorylate tyrosine residues, and PTPRQ, which dephosphorylates phophoinositides. R3 RPTPs are considered novel therapeutic targets in several pathologies such as ear diseases, nephrotic syndromes and cancer. R3 RPTP vertebrate receptors, as well as their known invertebrate counterparts from animal models: PTP52F, PTP10D and PTP4e from the fruitfly Drosophila melanogaster and F44G4.8/DEP-1 from the nematode Caenorhabditis elegans, participate in the regulation of cellular activities including cell growth and differentiation. Despite sharing structural and functional properties, the evolutionary relationships between vertebrate and invertebrate R3 RPTPs are not fully understood. Here we gathered R3 RPTPs from organisms covering a broad evolutionary distance, annotated their structure and analyzed their phylogenetic relationships. We show that R3 RPTPs (i have probably originated in the common ancestor of animals (metazoans, (ii are variants of a single ancestral gene in protostomes (arthropods, annelids and nematodes; (iii a likely duplication of this ancestral gene in invertebrate deuterostomes (echinodermes, hemichordates and tunicates generated the precursors of PTPRQ and PTPRB genes, and (iv R3 RPTP groups are monophyletic in vertebrates and have specific conserved structural characteristics. These findings could have implications for the interpretation of past studies and provide a framework for future studies and functional analysis of this important family of proteins.

  9. Origin and Evolution of the Moon: Apollo 2000 Model

    Science.gov (United States)

    Schmitt, H. H.

    1999-01-01

    A descriptive formulation of the stages of lunar evolution as an augmentation of the traditional time-stratigraphic approach [21 enables broadened multidisciplinary discussions of issues related to the Moon and planets. An update of this descriptive formulation [3], integrating Apollo and subsequently acquired data, provides additional perspectives on many of the outstanding issues in lunar science. (Stage 1): Beginning (Pre-Nectarian) - 4.57 Ga; (Stage 2): Magma Ocean (Pre-Nectarian) - 4.57-4.2(?) Ga; (Stage 3:) Cratered Highlands (Pre-Nectarian) - 4.4(?) 4.2(?) Ga (Stage 4:) Large Basins - (Pre-Nectarian - Upper Imbrium) 4.3(?)-3.8 Ga; (Stage 4A:) Old Large Basins and Crustal Strengthening (Pre Nectarian) - 4.3(?)-3.92 Ga; (Stage 4B): Young Large Basins (Nectarian - Lower Imbrium) 3.92-3.80 Ga; (Stage 5): Basaltic Maria (Upper Imbrium) - 4.3(?)- 1.0(?) Ga; (Stage 6): Mature Surface (Copernican and Eratosthenian) - 3.80 Ga to Present. Increasingly strong indications of a largely undifferentiated lower lunar mantle and increasingly constrained initial conditions for models of an Earth-impact origin for the Moon suggest that lunar origin by capture of an independently evolved planet should be investigated more vigorously. Capture appears to better explain the geochemical and geophysical details related to the lower mantle of the Moon and to the distribution of elements and their isotopes. For example, the source of the volatile components of the Apollo 17 orange glass apparently would have lain below the degassed and differentiated magma ocean (3) in a relatively undifferentiated primordial lower mantle. Also, a density reversal from 3.7 gm/cubic cm to approximately 3.3 gm/cubic cm is required at the base of the upper mantle to be consistent with the overall density of the Moon. Finally, Hf/W systematics allow only a very narrow window, if any at all for a giant impact to form the Moon. Continued accretionary impact activity during the crystallization of the magma

  10. ORIGIN: metal creation and evolution from the cosmic dawn

    NARCIS (Netherlands)

    den Herder, J.W.A.; Piro, L.; Ohashi, T.; Kouveliotou, C.; Hartmann, D.H.; Kaastra, J.S.|info:eu-repo/dai/nl/070911134; Amati, L.

    2011-01-01

    ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z = 10,

  11. ORIGIN : Metal creation and evolution from the cosmic dawn

    NARCIS (Netherlands)

    den Herder, Jan-Willem; Piro, Luigi; Ohashi, Takaya; Kouveliotou, Chryssa; Hartmann, Dieter H.; Kaastra, Jelle S.; Amati, L.; Andersen, M. I.; Arnaud, M.; Attéia, J.-L.; Bandler, S.; Barbera, M.; Barcons, X.; Barthelmy, S.; Basa, S.; Basso, S.; Boer, M.; Branchini, E.; Branduardi-Raymont, G.; Borgani, S.; Boyarsky, A.; Brunetti, G.; Budtz-Jorgensen, C.; Burrows, D.; Butler, N.; Campana, S.; Caroli, E.; Ceballos, M.; Christensen, F.; Churazov, E.; Comastri, A.; Colasanti, L.; Cole, R.; Content, R.; Corsi, A.; Costantini, E.; Conconi, P.; Cusumano, G.; de Plaa, J.; De Rosa, A.; Del Santo, M.; Di Cosimo, S.; De Pasquale, M.; Doriese, R.; Ettori, S.; Evans, P.; Ezoe, Y.; Ferrari, L.; Finger, H.; Figueroa-Feliciano, T.; Friedrich, P.; Fujimoto, R.; Furuzawa, A.; Fynbo, J.; Gatti, F.; Galeazzi, M.; Gehrels, N.; Gendre, B.; Ghirlanda, G.; Ghisellini, G.; Gilfanov, M.; Giommi, P.; Girardi, M.; Grindlay, J.; Cocchi, M.; Godet, O.; Guedel, M.; Haardt, F.; den Hartog, R.; Hepburn, I.; Hermsen, W.; Hjorth, J.; Hoekstra, H.; Holland, A.; Hornstrup, A.; van der Horst, A.; Hoshino, A.; in't Zand, J.; Irwin, K.; Ishisaki, Y.; Jonker, P.; Kitayama, T.; Kawahara, H.; Kawai, N.; Kelley, R.; Kilbourne, C.; de Korte, P.; Kusenko, A.; Kuvvetli, I.; Labanti, M.; Macculi, C.; Maiolino, R.; Hesse, M. Mas; Matsushita, K.; Mazzotta, P.; McCammon, D.; Méndez, M.; Mignani, R.; Mineo, T.; Mitsuda, K.; Mushotzky, R.; Molendi, S.; Moscardini, L.; Natalucci, L.; Nicastro, F.; O'Brien, P.; Osborne, J.; Paerels, F.; Page, M.; Paltani, S.; Pedersen, K.; Perinati, E.; Ponman, T.; Pointecouteau, E.; Predehl, P.; Porter, S.; Rasmussen, A.; Rauw, G.; Röttgering, H.; Roncarelli, M.; Rosati, P.; Quadrini, E.; Ruchayskiy, O.; Salvaterra, R.; Sasaki, S.; Sato, K.; Savaglio, S.; Schaye, J.; Sciortino, S.; Shaposhnikov, M.; Sharples, R.; Shinozaki, K.; Spiga, D.; Sunyaev, R.; Suto, Y.; Takei, Y.; Tanvir, N.; Tashiro, M.; Tamura, T.; Tawara, Y.; Troja, E.; Tsujimoto, M.; Tsuru, T.; Ubertini, P.; Ullom, J.; Ursino, E.; Verbunt, F.; van de Voort, F.; Viel, M.; Wachter, S.; Watson, D.; Weisskopf, M.; Werner, N.; White, N.; Willingale, R.; Wijers, R.; Yamasaki, N.; Yoshikawa, K.; Zane, S.

    2012-01-01

    ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z = 10,

  12. ORIGIN: metal creation and evolution from the cosmic dawn

    NARCIS (Netherlands)

    den Herder, J.W.; Piro, L.; Ohashi, T.; Kouveliotou, C.; Hartmann, D.H.; Kaastra, J.S.; Amati, L.; Andersen, M.I.; Arnaud, M.; Atteia, J.-L.; Bandler, S.; Barbera, M.; Barcons, X.; Barthelmy, S.; Basa, S.; Basso, S.; de Boer, M.; Branchini, E.; Branduardi-Raymont, G.; Borgani, S.; Boyarsky, A.; Brunetti, G.; Budtz-Jorgensen, C.; Burrows, D.; Butler, N.; Campana, S.; Caroli, E.; Ceballos, M.; Christensen, F.; Churazov, E.; Comastri, A.; Colasanti, L.; Cole, R.; Content, R.; Corsi, A.; Costantini, E.; Conconi, P.; Cusumano, G.; de Plaa, J.; De Rosa, A.; Del Santo, M.; Di Cosimo, S.; De Pasquale, M.; Doriese, R.; Ettori, S.; Evans, P.; Ezoe, Y.; Ferrari, L.; Finger, H.; Figueroa-Feliciano, T.; Friedrich, P.; Fujimoto, R.; Furuzawa, A.; Fynbo, J.; Gatti, F.; Galeazzi, M.; Gehrels, N.; Gendre, B.; Ghirlanda, G.; Ghisellini, G.; Gilfanov, M.; Giommi, P.; Girardi, M.; Grindlay, J.; Cocchi, M.; Godet, O.; Guedel, M.; Haardt, F.; Hartog, R.; Hepburn, I.; Hermsen, W.; Hjorth, J.; Hoekstra, H.; Holland, A.; Hornstrup, A.; van der Horst, A.; Hoshino, A.; in 't Zand, J.; Irwin, K.; Ishisaki, Y.; Jonker, P.; Kitayama, T.; Kawahara, H.; Kawai, N.; Kelley, R.; Kilbourne, C.; de Korte, P.; Kusenko, A.; Kuvvetli, I.; Labanti, M.; Macculi, C.; Maiolino, R.; Mas Hesse, M.; Matsushita, K.; Mazzotta, P.; McCammon, D.; Méndez, M.; Mignani, R.; Mineo, T.; Mitsuda, K.; Mushotzky, R.; Molendi, S.; Moscardini, L.; Natalucci, L.; Nicastro, F.; O'Brien, P.; Osborne, J.; Paerels, F.; Page, M.; Paltani, S.; Pedersen, K.; Perinati, E.; Ponman, T.; Pointecouteau, E.; Predehl, P.; Porter, S.; Rasmussen, A.; Rauw, G.; Röttgering, H.; Roncarelli, M.; Rosati, P.; Quadrini, E.; Ruchayskiy, O.; Salvaterra, R.; Sasaki, S.; Sato, K.; Savaglio, S.; Schaye, J.; Sciortino, S.; Shaposhnikov, M.; Sharples, R.; Shinozaki, K.; Spiga, D.; Sunyaev, R.; Suto, Y.; Takei, Y.; Tanvir, N.; Tashiro, M.; Tamura, T.; Tawara, Y.; Troja, E.; Tsujimoto, M.; Tsuru, T.; Ubertini, P.; Ullom, J.; Ursino, E.; Verbunt, F.; van de Voort, F.; Viel, M.; Wachter, S.; Watson, D.; Weisskopf, M.; Werner, N.; White, N.; Willingale, R.; Wijers, R.; Yamasaki, N.; Yoshikawa, K.; Zane, S.

    2012-01-01

    ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z = 10,

  13. What Teachers Should Know about the Evolution-Intentional Design Debate on the Origin of Life.

    Science.gov (United States)

    Brekke, Stewart E.

    This paper discusses the beginning of life on Earth, the formation of life forms, evolution, and the origin of life. The paper suggests that how life first appeared on earth is not known and may never be known. (YDS)

  14. Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life

    Science.gov (United States)

    Wharton, Robert A., Jr. (Editor); Andersen, Dale T. (Editor); Bzik, Sara E. (Editor); Rummel, John D. (Editor)

    1991-01-01

    This symposium was held at the NASA Ames Research Center, Moffett Field, California, July 24-27, 1990. The NASA exobiology investigators reported their recent research findings. Scientific papers were presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  15. Impact origin of the Sudbury structure: Evolution of a theory

    Science.gov (United States)

    Lowman, Paul D., Jr.

    1992-01-01

    This paper reviews the origin, development, and present status of the widely accepted theory, proposed by Robert S. Dietz in 1962, that the Sudbury structure was formed by meteoritic or asteroidal impact. The impact theory for the origin of the Sudbury structure seems supported by a nearly conclusive body of evidence. However, even assuming an impact origin to be correct, at least three major questions require further study: (1) the original size and shape of the crater, before tectonic deformation and erosion; (2) the source of the melt now forming the Sudbury Igneous Complex; and (3) the degree, if any, to which the Ni-Cu-platinum group elements are meteoritic. The history of the impact theory illustrates several under-appreciated aspects of scientific research: (1) the importance of cross-fertilization between space research and terrestrial geology; (2) the role of the outsider in stimulating thinking by insiders; (3) the value of small science, at least in the initial stages of an investigation, Dietz's first field work having been at his own expense; and (4) the value of analogies (here, between the Sudbury Igneous Complex and the maria), which although incorrect in major aspects, may trigger research on totally new lines. Finally, the Sudbury story illustrates the totally unpredictable and, by implication, unplannable nature of basic research, in that insight to the origin of the world's then-greatest Ni deposit came from the study of tektites and the Moon.

  16. The origin and evolution of mutations in Acute Myeloid Leukemia

    Science.gov (United States)

    Welch, John S.; Ley, Timothy J.; Link, Daniel C.; Miller, Christopher A.; Larson, David E.; Koboldt, Daniel C.; Wartman, Lukas D.; Lamprecht, Tamara L.; Liu, Fulu; Xia, Jun; Kandoth, Cyriac; Fulton, Robert S.; McLellan, Michael D.; Dooling, David J.; Wallis, John W.; Chen, Ken; Harris, Christopher C.; Schmidt, Heather K.; Kalicki-Veizer, Joelle M.; Lu, Charles; Zhang, Qunyuan; Lin, Ling; O’Laughlin, Michelle D.; McMichael, Joshua F.; Delehaunty, Kim D.; Fulton, Lucinda A.; Magrini, Vincent J.; McGrath, Sean D.; Demeter, Ryan T.; Vickery, Tammi L.; Hundal, Jasreet; Cook, Lisa L.; Swift, Gary W.; Reed, Jerry P.; Alldredge, Patricia A.; Wylie, Todd N.; Walker, Jason R.; Watson, Mark A.; Heath, Sharon E.; Shannon, William D.; Varghese, Nobish; Nagarajan, Rakesh; Payton, Jacqueline E.; Baty, Jack D.; Kulkarni, Shashikant; Klco, Jeffery M.; Tomasson, Michael H.; Westervelt, Peter; Walter, Matthew J.; Graubert, Timothy A.; DiPersio, John F.; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.

    2012-01-01

    Summary Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability, driving clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of AML samples with a known initiating event (PML-RARA) vs. normal karyotype AML samples, and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is “captured” as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse. PMID:22817890

  17. Origin, development, and evolution of eye movement desensitization and reprocessing

    Directory of Open Access Journals (Sweden)

    Carolina Marín

    2016-12-01

    Full Text Available Eye movement desensitization and reprocessing (EMDR has led to a great number of studies since its appearance in 1989. The aim of this article is to describe EMDR development and evolution to the present day. With this purpose a search was carried out on MEDLINE and PsycINFO with the entry "eye movement desensitization". After revising the resulting 797 articles, those that because of their relevance explained best the development and evolution of the technique were chosen and shaped into a lifeline graphically representing the history of EMDR. Despite the fact that during the first years the focus of research was on the validation of the technique for post-traumatic disorder (PTSD, it was soon applied to other areas. Only 14% of the articles found account for controlled studies. Up to date, in spite of the effectiveness of EMDR for the treatment of PTSD that has been proven, many different explanatory hypotheses are still up for discussion.

  18. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS.

    Science.gov (United States)

    Dehant, V; Asael, D; Baland, R M; Baludikay, B K; Beghin, J; Belza, J; Beuthe, M; Breuer, D; Chernonozhkin, S; Claeys, Ph; Cornet, Y; Cornet, L; Coyette, A; Debaille, V; Delvigne, C; Deproost, M H; De WInter, N; Duchemin, C; El Atrassi, F; François, C; De Keyser, J; Gillmann, C; Gloesener, E; Goderis, S; Hidaka, Y; Höning, D; Huber, M; Hublet, G; Javaux, E J; Karatekin, Ö; Kodolanyi, J; Revilla, L Lobo; Maes, L; Maggiolo, R; Mattielli, N; Maurice, M; McKibbin, S; Morschhauser, A; Neumann, W; Noack, L; Pham, L B S; Pittarello, L; Plesa, A C; Rivoldini, A; Robert, S; Rosenblatt, P; Spohn, T; Storme, J -Y; Tosi, N; Trinh, A; Valdes, M; Vandaele, A C; Vanhaecke, F; Van Hoolst, T; Van Roosbroek, N; Wilquet, V; Yseboodt, M

    2016-11-01

    The Interuniversity Attraction Pole (IAP) 'PLANET TOPERS' (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their Reservoirs) addresses the fundamental understanding of the thermal and compositional evolution of the different reservoirs of planetary bodies (core, mantle, crust, atmosphere, hydrosphere, cryosphere, and space) considering interactions and feedback mechanisms. Here we present the first results after 2 years of project work.

  19. The Origins of [C ii] Emission in Local Star-forming Galaxies

    Science.gov (United States)

    Croxall, K. V.; Smith, J. D.; Pellegrini, E.; Groves, B.; Bolatto, A.; Herrera-Camus, R.; Sandstrom, K. M.; Draine, B.; Wolfire, M. G.; Armus, L.; Boquien, M.; Brandl, B.; Dale, D.; Galametz, M.; Hunt, L.; Kennicutt, R., Jr.; Kreckel, K.; Rigopoulou, D.; van der Werf, P.; Wilson, C.

    2017-08-01

    The [C ii] 158 μm fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C ii] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [C ii] emission remains unclear because C+ can be found in multiple phases of the interstellar medium. Here we measure the fractions of [C ii] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [N ii] 205 μm fine-structure line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [C ii]/[N ii] 122 μm. Using the FIR [C ii] and [N ii] emission detected by the KINGFISH (Key Insights on Nearby Galaxies: a Far- Infrared Survey with Herschel) and Beyond the Peak Herschel programs, we show that 60%-80% of [C ii] emission originates from neutral gas. We find that the fraction of [C ii] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and has a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [C ii] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.

  20. Origin, evolution, and biogeography of Juglans: a phylogenetic perspective

    Science.gov (United States)

    Phylogenetic analyses of extant Juglans (Juglandaceae) using five cpDNA intergenic spacer (IGS) sequences (trnT-trnF, psbA-trnH, atpB-rbcL, trnV-16S rRNA, and trnS-trnfM) were performed to elucidate the origin, diversification, historical biogeography, and evolutionary relationships within the genus...

  1. Origins and evolution of reproductive immunology: a personal perspective.

    Science.gov (United States)

    Billington, W David

    2015-04-01

    This is a brief personal assessment of the origins and development of the field of reproductive immunology from the 19th century to the present day, with special reference to the founding of the Journal of Reproductive Immunology in 1979. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Origin and evolution of TNF and TNF receptor superfamilies

    Science.gov (United States)

    The tumor necrosis factor superfamily (TNFSF) and the TNF receptor superfamily (TNFRSF) have an ancient evolutionary origin that can be traced back to single copy genes within Arthropods. In humans, 18 TNFSF and 29 TNFRSF genes have been identified. Evolutionary models account for the increase in g...

  3. The origin and evolution of the Cretaceous Benue Trough (Nigeria)

    Science.gov (United States)

    Benkhelil, J.

    The intracontinental Benue Trough was initiated during the Lower Cretaceous in relation with the Atlantic Ocean opening. The first stage of its evolution started in the Aptian, forming isolated basins with continental sedimentation. In the Albian times, a great delta developed in the Upper Benue Trough, while the first marine transgression coming from the opening Gulf of Guinea occurred in the south and reached the Middle Benue. The widespread Turonian transgression made the Atlantic and Tethys waters communicate through the Sahara, Niger basins and the Benue Trough. The tectonic evolution of the Benue Trough was closely controlled by transcurrent faulting through an axial fault system, developing local compressional and tensional regimes and resulting in basins and basement horsts along releasing and restraining bends of the faults. Two major compressional phases occurred: in the Abakaliki area (southern Benue) during the Santonian; and at the end of the Cretaceous in the Upper Benue Trough. In Abakaliki, the sedimentary infilling was severely deformed through folding and flattening, and moderate folding and fracturing occurred in the northeast. The Cretaceous magmatism was restricted to main fault zones in most of the trough but was particularly active in the Abakaliki Trough, where it has alkaline affinities. From Albian to Santonian, the magmatism was accompanied in part of the Abakaliki Trough by a low-grade metamorphism. Geophysical data indicate a crustal thinning beneath the Benue Trough and, at a superficial level, an axial basement high flanked by two elongated deep basins including isolated sub-basins. The model of the tectonic evolution of the trough is based upon a general sinistral wrenching along the trough responsible for the structural arrangement and the geometry of the sub-basins. During the early stages of the Gulf of Guinea opening the Benue Trough was probably the expression on land of the Equatorial Fracture Zones.

  4. Pre-metazoan origins and evolution of the cadherin adhesome

    Directory of Open Access Journals (Sweden)

    Paul S. Murray

    2014-11-01

    Full Text Available Vertebrate adherens junctions mediate cell–cell adhesion via a “classical” cadherin–catenin “core” complex, which is associated with and regulated by a functional network of proteins, collectively named the cadherin adhesome (“cadhesome”. The most basal metazoans have been shown to conserve the cadherin–catenin “core”, but little is known about the evolution of the cadhesome. Using a bioinformatics approach based on both sequence and structural analysis, we have traced the evolution of this larger network in 26 organisms, from the uni-cellular ancestors of metazoans, through basal metazoans, to vertebrates. Surprisingly, we show that approximately 70% of the cadhesome, including proteins with similarity to the catenins, predate metazoans. We found that the transition to multicellularity was accompanied by the appearance of a small number of adaptor proteins, and we show how these proteins may have helped to integrate pre-metazoan sub-networks via PDZ domain–peptide interactions. Finally, we found the increase in network complexity in higher metazoans to have been driven primarily by expansion of paralogs. In summary, our analysis helps to explain how the complex protein network associated with cadherin at adherens junctions first came together in the first metazoan and how it evolved into the even more complex mammalian cadhesome.

  5. Origin and Evolution of the Universal Genetic Code.

    Science.gov (United States)

    Koonin, Eugene V; Novozhilov, Artem S

    2017-11-27

    The standard genetic code (SGC) is virtually universal among extant life forms. Although many deviations from the universal code exist, particularly in organelles and prokaryotes with small genomes, they are limited in scope and obviously secondary. The universality of the code likely results from the combination of a frozen accident, i.e., the deleterious effect of codon reassignment in the SGC, and the inhibitory effect of changes in the code on horizontal gene transfer. The structure of the SGC is nonrandom and ensures high robustness of the code to mutational and translational errors. However, this error minimization is most likely a by-product of the primordial code expansion driven by the diversification of the repertoire of protein amino acids, rather than a direct result of selection. Phylogenetic analysis of translation system components, in particular aminoacyl-tRNA synthetases, shows that, at a stage of evolution when the translation system had already attained high fidelity, the correspondence between amino acids and cognate codons was determined by recognition of amino acids by RNA molecules, i.e., proto-tRNAs. We propose an experimentally testable scenario for the evolution of the code that combines recognition of amino acids by unique sites on proto-tRNAs (distinct from the anticodons), expansion of the code via proto-tRNA duplication, and frozen accident.

  6. The evolution of milk secretion and its ancient origins.

    Science.gov (United States)

    Oftedal, O T

    2012-03-01

    Lactation represents an important element of the life history strategies of all mammals, whether monotreme, marsupial, or eutherian. Milk originated as a glandular skin secretion in synapsids (the lineage ancestral to mammals), perhaps as early as the Pennsylvanian period, that is, approximately 310 million years ago (mya). Early synapsids laid eggs with parchment-like shells intolerant of desiccation and apparently dependent on glandular skin secretions for moisture. Mammary glands probably evolved from apocrine-like glands that combined multiple modes of secretion and developed in association with hair follicles. Comparative analyses of the evolutionary origin of milk constituents support a scenario in which these secretions evolved into a nutrient-rich milk long before mammals arose. A variety of antimicrobial and secretory constituents were co-opted into novel roles related to nutrition of the young. Secretory calcium-binding phosphoproteins may originally have had a role in calcium delivery to eggs; however, by evolving into large, complex casein micelles, they took on an important role in transport of amino acids, calcium and phosphorus. Several proteins involved in immunity, including an ancestral butyrophilin and xanthine oxidoreductase, were incorporated into a novel membrane-bound lipid droplet (the milk fat globule) that became a primary mode of energy transfer. An ancestral c-lysozyme lost its lytic functions in favor of a role as α-lactalbumin, which modifies a galactosyltransferase to recognize glucose as an acceptor, leading to the synthesis of novel milk sugars, of which free oligosaccharides may have predated free lactose. An ancestral lipocalin and an ancestral whey acidic protein four-disulphide core protein apparently lost their original transport and antimicrobial functions when they became the whey proteins β-lactoglobulin and whey acidic protein, which with α-lactalbumin provide limiting sulfur amino acids to the young. By the late

  7. Clinical sequencing uncovers origins and evolution of Lassa virus

    Science.gov (United States)

    Andersen, Kristian G.; Shapiro, B. Jesse; Matranga, Christian B.; Sealfon, Rachel; Lin, Aaron E.; Moses, Lina M.; Folarin, Onikepe A.; Goba, Augustine; Odia, Ikponmwonsa; Ehiane, Philomena E.; Momoh, Mambu; England, Eleina M.; Winnicki, Sarah; Branco, Luis M.; Gire, Stephen K.; Phelan, Eric; Tariyal, Ridhi; Tewhey, Ryan; Omoniwa, Omowunmi; Fullah, Mohammed; Fonnie, Richard; Fonnie, Mbalu; Kanneh, Lansana; Jalloh, Simbirie; Gbakie, Michael; Saffa, Sidiki; Karbo, Kandeh; Gladden, Adrianne D.; Qu, James; Stremlau, Matthew; Nekoui, Mahan; Finucane, Hilary K.; Tabrizi, Shervin; Vitti, Joseph J.; Birren, Bruce; Fitzgerald, Michael; McCowan, Caryn; Ireland, Andrea; Berlin, Aaron M.; Bochicchio, James; Tazon-Vega, Barbara; Lennon, Niall J.; Ryan, Elizabeth M.; Bjornson, Zach; Milner, Danny A.; Lukens, Amanda K.; Broodie, Nisha; Rowland, Megan; Heinrich, Megan; Akdag, Marjan; Schieffelin, John S.; Levy, Danielle; Akpan, Henry; Bausch, Daniel G.; Rubins, Kathleen; McCormick, Joseph B.; Lander, Eric S.; Günther, Stephan; Hensley, Lisa; Okogbenin, Sylvanus; Schaffner, Stephen F.; Okokhere, Peter O.; Khan, S. Humarr; Grant, Donald S.; Akpede, George O.; Asogun, Danny A.; Gnirke, Andreas; Levin, Joshua Z.; Happi, Christian T.; Garry, Robert F.; Sabeti, Pardis C.

    2015-01-01

    Summary The 2013-2015 West African epidemic of Ebola virus disease (EVD) reminds us how little is known about biosafety level-4 viruses. Like Ebola virus, Lassa virus (LASV) can cause hemorrhagic fever with high case fatality rates. We generated a genomic catalog of almost 200 LASV sequences from clinical and rodent reservoir samples. We show that whereas the 2013-2015 EVD epidemic is fueled by human-to-human transmissions, LASV infections mainly result from reservoir-to-human infections. We elucidated the spread of LASV across West Africa and show that this migration was accompanied by changes in LASV genome abundance, fatality rates, codon adaptation, and translational efficiency. By investigating intrahost evolution, we found that mutations accumulate in epitopes of viral surface proteins, suggesting selection for immune escape. This catalog will serve as a foundation for the development of vaccines and diagnostics. PMID:26276630

  8. Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus.

    Science.gov (United States)

    Andersen, Kristian G; Shapiro, B Jesse; Matranga, Christian B; Sealfon, Rachel; Lin, Aaron E; Moses, Lina M; Folarin, Onikepe A; Goba, Augustine; Odia, Ikponmwonsa; Ehiane, Philomena E; Momoh, Mambu; England, Eleina M; Winnicki, Sarah; Branco, Luis M; Gire, Stephen K; Phelan, Eric; Tariyal, Ridhi; Tewhey, Ryan; Omoniwa, Omowunmi; Fullah, Mohammed; Fonnie, Richard; Fonnie, Mbalu; Kanneh, Lansana; Jalloh, Simbirie; Gbakie, Michael; Saffa, Sidiki; Karbo, Kandeh; Gladden, Adrianne D; Qu, James; Stremlau, Matthew; Nekoui, Mahan; Finucane, Hilary K; Tabrizi, Shervin; Vitti, Joseph J; Birren, Bruce; Fitzgerald, Michael; McCowan, Caryn; Ireland, Andrea; Berlin, Aaron M; Bochicchio, James; Tazon-Vega, Barbara; Lennon, Niall J; Ryan, Elizabeth M; Bjornson, Zach; Milner, Danny A; Lukens, Amanda K; Broodie, Nisha; Rowland, Megan; Heinrich, Megan; Akdag, Marjan; Schieffelin, John S; Levy, Danielle; Akpan, Henry; Bausch, Daniel G; Rubins, Kathleen; McCormick, Joseph B; Lander, Eric S; Günther, Stephan; Hensley, Lisa; Okogbenin, Sylvanus; Schaffner, Stephen F; Okokhere, Peter O; Khan, S Humarr; Grant, Donald S; Akpede, George O; Asogun, Danny A; Gnirke, Andreas; Levin, Joshua Z; Happi, Christian T; Garry, Robert F; Sabeti, Pardis C

    2015-08-13

    The 2013-2015 West African epidemic of Ebola virus disease (EVD) reminds us of how little is known about biosafety level 4 viruses. Like Ebola virus, Lassa virus (LASV) can cause hemorrhagic fever with high case fatality rates. We generated a genomic catalog of almost 200 LASV sequences from clinical and rodent reservoir samples. We show that whereas the 2013-2015 EVD epidemic is fueled by human-to-human transmissions, LASV infections mainly result from reservoir-to-human infections. We elucidated the spread of LASV across West Africa and show that this migration was accompanied by changes in LASV genome abundance, fatality rates, codon adaptation, and translational efficiency. By investigating intrahost evolution, we found that mutations accumulate in epitopes of viral surface proteins, suggesting selection for immune escape. This catalog will serve as a foundation for the development of vaccines and diagnostics. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Impact of solar system exploration on theories of chemical evolution and the origin of life

    Science.gov (United States)

    Devincenzi, D. L.

    1983-01-01

    The impact of solar system exploration on theories regarding chemical evolution and the origin of life is examined in detail. Major findings from missions to Mercury, Venus, the moon, Mars, Jupiter, Saturn, and Titan are reviewed and implications for prebiotic chemistry are discussed. Among the major conclusions are: prebiotic chemistry is widespread throughout the solar system and universe; chemical evolution and the origin of life are intimately associated with the origin and evolution of the solar system; the rate, direction, and extent of prebiotic chemistry is highly dependent upon planetary characteristics; and continued exploration will increase understanding of how life originated on earth and allow better estimates of the likelihood of similar processes occurring elsewhere.

  10. THE STRUCTURE, ORIGIN, AND EVOLUTION OF INTERSTELLAR HYDROCARBON GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Chiar, J. E.; Ricca, A. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Tielens, A. G. G. M. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Adamson, A. J., E-mail: jchiar@seti.org, E-mail: Alessandra.Ricca@1.nasa.gov, E-mail: tielens@strw.leidenuniv.nl, E-mail: aadamson@gemini.edu [Gemini Observatory, Northern Operations Center, 670 North A' ohoku Place, Hilo, HI 96729 (United States)

    2013-06-10

    Many materials have been considered for the carrier of the hydrocarbon absorption bands observed in the diffuse interstellar medium (ISM). In order to refine the model for ISM hydrocarbon grains, we analyze the observed aromatic (3.28, 6.2 {mu}m) and aliphatic (3.4 {mu}m) hydrocarbon absorption features in the diffuse ISM along the line of sight toward the Galactic center Quintuplet Cluster. Observationally, sp {sup 2} bonds can be measured in astronomical spectra using the 6.2 {mu}m CC aromatic stretch feature, whereas the 3.4 {mu}m aliphatic feature can be used to quantify the fraction of sp {sup 3} bonds. The fractional abundance of these components allows us to place the Galactic diffuse ISM hydrocarbons on a ternary phase diagram. We conclude that the Galactic hydrocarbon dust has, on average, a low H/C ratio and sp {sup 3} content and is highly aromatic. We have placed the results of our analysis within the context of the evolution of carbon dust in the ISM. We argue that interstellar carbon dust consists of a large core of aromatic carbon surrounded by a thin mantle of hydrogenated amorphous carbon (a-C:H), a structure that is a natural consequence of the processing of stardust grains in the ISM.

  11. The origins and evolution of freeze-etch electron microscopy

    Science.gov (United States)

    Heuser, John E.

    2011-01-01

    The introduction of the Balzers freeze-fracture machine by Moor in 1961 had a much greater impact on the advancement of electron microscopy than he could have imagined. Devised originally to circumvent the dangers of classical thin-section techniques, as well as to provide unique en face views of cell membranes, freeze-fracturing proved to be crucial for developing modern concepts of how biological membranes are organized and proved that membranes are bilayers of lipids within which proteins float and self-assemble. Later, when freeze-fracturing was combined with methods for freezing cells that avoided the fixation and cryoprotection steps that Moor still had to use to prepare the samples for his original invention, it became a means for capturing membrane dynamics on the millisecond time-scale, thus allowing a deeper understanding of the functions of biological membranes in living cells as well as their static ultrastructure. Finally, the realization that unfixed, non-cryoprotected samples could be deeply vacuum-etched or even freeze-dried after freeze-fracturing opened up a whole new way to image all the other molecular components of cells besides their membranes and also provided a powerful means to image the interactions of all the cytoplasmic components with the various membranes of the cell. The purpose of this review is to outline the history of these technical developments, to describe how they are being used in electron microscopy today and to suggest how they can be improved in order to further their utility for biological electron microscopy in the future. PMID:21844598

  12. Evolution in fossil lineages: paleontology and The Origin of Species.

    Science.gov (United States)

    Hunt, Gene

    2010-12-01

    Of all of the sources of evidence for evolution by natural selection, perhaps the most problematic for Darwin was the geological record of organic change. In response to the absence of species-level transformations in the fossil record, Darwin argued that the fossil record was too incomplete, too biased, and too poorly known to provide strong evidence against his theory. Here, this view of the fossil record is evaluated in light of 150 years of subsequent paleontological research. Although Darwin's assessment of the completeness and resolution of fossiliferous rocks was in several ways astute, today the fossil record is much better explored, documented, and understood than it was in 1859. In particular, a reasonably large set of studies tracing evolutionary trajectories within species can now be brought to bear on Darwin's expectation of gradual change driven by natural selection. An unusually high-resolution sequence of stickleback-bearing strata records the transformation of this lineage via natural selection. This adaptive trajectory is qualitatively consistent with Darwin's prediction, but it occurred much more rapidly than he would have guessed: almost all of the directional change was completed within 1,000 generations. In most geological sequences, this change would be too rapid to resolve. The accumulated fossil record at more typical paleontological scales (10(4)-10(6) years) reveals evolutionary changes that are rarely directional and net rates of change that are perhaps surprisingly slow, two findings that are in agreement with the punctuated-equilibrium model. Finally, Darwin's view of the broader history of life is reviewed briefly, with a focus on competition-mediated extinction and recent paleontological and phylogenetic attempts to assess diversity dependence in evolutionary dynamics.

  13. Synthetic nebular emission from massive galaxies - I: origin of the cosmic evolution of optical emission-line ratios

    Science.gov (United States)

    Hirschmann, Michaela; Charlot, Stephane; Feltre, Anna; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Somerville, Rachel S.

    2017-12-01

    Galaxies occupy different regions of the [O III]λ5007/H β-versus-[N II]λ6584/H α emission-line ratio diagram in the distant and local Universe. We investigate the origin of this intriguing result by modelling self-consistently, for the first time, nebular emission from young stars, accreting black holes (BHs) and older, post-asymptotic giant branch (post-AGB) stellar populations in galaxy formation simulations in a full cosmological context. In post-processing, we couple new-generation nebular-emission models with high-resolution, cosmological zoom-in simulations of massive galaxies to explore which galaxy physical properties drive the redshift evolution of the optical-line ratios [O III]λ5007/H β, [N II]λ6584/H α, [S II]λλ6717, 6731/H α and [O I]λ6300/H α. The line ratios of simulated galaxies agree well with observations of both star-forming and active local Sloan Digital Sky Survey galaxies. Towards higher redshifts, at fixed galaxy stellar mass, the average [O III]/H β is predicted to increase and [N II]/H α, [S II]/H α and [O I]/H α to decrease - widely consistent with observations. At fixed stellar mass, we identify star formation history, which controls nebular emission from young stars via the ionization parameter, as the primary driver of the cosmic evolution of [O III]/H β and [N II]/H α. For [S II]/H α and [O I]/H α, this applies only to redshifts greater than z = 1.5, the evolution at lower redshift being driven in roughly equal parts by nebular emission from active galactic nuclei and post-AGB stellar populations. Instead, changes in the hardness of ionizing radiation, ionized-gas density, the prevalence of BH accretion relative to star formation and the dust-to-metal mass ratio (whose impact on the gas-phase N/O ratio we model at fixed O/H) play at most a minor role in the cosmic evolution of simulated galaxy line ratios.

  14. The principle of cooperation and life's origin and evolution

    Science.gov (United States)

    Oro, J.; Armangue, G.; Mar, A.

    1986-01-01

    In simple terms a living entity is a negentropic system that replicates, mutates and evoluves. A number of suggestions have been made, such as directed panspermia, atmospheric photosynthesis, genetic overtaking from inorganic processes, etc., as alternative models to the accepted Oparin-Haldane-Urey model of the origin of life on Earth. This has probably occurred because in spite of tremendous advances in the prebiotic synthesis of biochemical compounds, the fundamental problem of the appearance of the first life--a primordial replicating cell-ancestral to all other forms of extant life, has remained elusive. This is indeed a reflection on the different fundamental nature of the problem involved. Regardless of which were the fundamental processes which occurred on the primitive Earth, it has to end up with the fundamental characteristics of an ancestral protocell. The problem of the emergence of the first ancestral cell was one of synergistic macromolecular cooperation, as it has been discussed by authors recently (COSPAR XXV Plenary Meeting). An analogous situation must have occurred at the time of the appearance of the first eucaryotic organism. Procaryotic life appeared probably during the first 600 million years of Earth history when the Earth was sufficiently cool and continually bombarded (in the late accretion period) by comets and minor bodies of the solar system, when the sea had not yet acquired its present form.

  15. Evolution of major histocompatibility complex class I and class II genes in the brown bear.

    Science.gov (United States)

    Kuduk, Katarzyna; Babik, Wiesław; Bojarska, Katarzyna; Sliwińska, Ewa B; Kindberg, Jonas; Taberlet, Pierre; Swenson, Jon E; Radwan, Jacek

    2012-10-02

    Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South-north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  16. Genome increase as a clock for the origin and evolution of life

    Directory of Open Access Journals (Sweden)

    Sharov Alexei A

    2006-06-01

    Full Text Available Abstract Background The size of non-redundant functional genome can be an indicator of biological complexity of living organisms. Several positive feedback mechanisms including gene cooperation and duplication with subsequent specialization may result in the exponential growth of biological complexity in macro-evolution. Results I propose a hypothesis that biological complexity increased exponentially during evolution. Regression of the logarithm of functional non-redundant genome size versus time of origin in major groups of organisms showed a 7.8-fold increase per 1 billion years, and hence the increase of complexity can be viewed as a clock of macro-evolution. A strong version of the exponential hypothesis is that the rate of complexity increase in early (pre-prokaryotic evolution of life was at most the same (or even slower than observed in the evolution of prokaryotes and eukaryotes. Conclusion The increase of functional non-redundant genome size in macro-evolution was consistent with the exponential hypothesis. If the strong exponential hypothesis is true, then the origin of life should be dated 10 billion years ago. Thus, the possibility of panspermia as a source of life on earth should be discussed on equal basis with alternative hypotheses of de-novo life origin. Panspermia may be proven if bacteria similar to terrestrial ones are found on other planets or satellites in the solar system. Reviewers This article was reviewed by Eugene V. Koonin, Chris Adami and Arcady Mushegian.

  17. The 1st Symposium on Chemical Evolution and the Origin and Evolution of Life

    Science.gov (United States)

    Devincenzi, D. L. (Editor); Pleasant, L. G. (Editor)

    1982-01-01

    This symposium provided an opportunity for all NASA Exobiology principal investigators to present their most recent research in a scientific meeting forum. Papers were presented in the following exobiology areas: extraterrestrial chemistry primitive earth, information transfer, solar system exploration, planetary protection, geological record, and early biological evolution.

  18. A hypothesis on the biological origins and social evolution of music and dance

    OpenAIRE

    Wang, Tianyan

    2015-01-01

    The origins of music and musical emotions is still an enigma, here I propose a comprehensive hypothesis on the origins and evolution of music, dance, and speech from a biological and sociological perspective. I suggest that every pitch interval between neighboring notes in music represents corresponding movement pattern through interpreting the Doppler effect of sound, which not only provides a possible explanation for the transposition invariance of music, but also integrates music and dance...

  19. [Human origin and evolution. A review of advances in paleoanthropology, comparative genetics, and evolutionary psychology].

    Science.gov (United States)

    Markov, A V

    2009-01-01

    In his main work, "On the origin of species", Darwin has refrained from discusion of the origin of man; be only mentioned that his theory would "throw light" on this problem. This famous Darwin's phrase turned out to be one of the most succesful scientific predictions. In the present paper some of the most important recent adavnces in paleoanthroplogy, comparative genetics and evolutionary psychology are reviewed. These three disciplines currently contribute most to our knowledge of anthropogenesis. The review demonstrates that Darwin's ideas not only "threw light" on human origin and evolution; they provided a comprehensive framework for a great variety of studies concerning different aspects of anthropogenesis.

  20. Photochemical cooperativity in photosystem II. Characterization of oxygen evolution discontinuities in the light-response curves.

    Science.gov (United States)

    Viruvuru, V; Fragata, M

    2008-11-28

    In two previous papers (Fragata et al., J. Phys. Chem. B, 2005, 109, 14707-14714; Fragata et al., J. Phys. Chem. B, 2007, 111, 3315-3320), it was shown that the variation of oxygen evolution with the light intensity (I) in photosystem II (PSII) in steady state conditions can be formulated according to the Langmuir adsorption isotherm for heterogeneous catalysis. This yielded the expression OEth = OEth(max) I/(L1/2 + I), where OEth is the theoretical oxygen evolution, OEth(max) the maximum oxygen evolution, and L1/2 the irradiance giving OEth(max)/2. In this approximation, the photons interaction with the chlorophylls in the PSII reaction center is assumed to be a heterogeneous reaction in which the light is represented as a stream of particles instead of an electromagnetic wave. That is, the chlorophyll molecules are the adsorption surfaces (or heterogeneous catalysts), and the incident (or exciting) photons are the substrate, or the reagent. Recently, the examination of new experimental data obtained with 2,6-dichloro-p-benzoquinone (DCBQ) and p-benzoquinone (pBQ) as exogenous electron acceptors, disclosed the presence of oxygen evolution discontinuities (or transitions) in the light-response curves. The new data were fitted with a mathematical summation of hyperbola of order n(i) > 1, OEth = Sigma(i) [OEth(max)]iIn(i)/[(L1/2)i(n(i)) + I(n(i))], where the n(i)'s are the number of sites used by the incident photons in their interaction with the photosynthetic pigments in each population i of PSII centers open for photochemistry. The mathematical simulations yielded only three distinct n(i)'s, that is, 1.8, 4.8, 8.5 and 1.8, 4.2, 8.4 for isolated PSII particles incubated with DCBQ and pBQ, respectively. Implicitly, this means the simultaneous excitation of each PSII reaction center with more than one photon, that is, the excitation of more than one pigment molecule. It is suggested that these transitions have their origin in the cooperative interaction of the

  1. Origins of altruism diversity II: Runaway coevolution of altruistic strategies via "reciprocal niche construction".

    Science.gov (United States)

    Van Dyken, J David; Wade, Michael J

    2012-08-01

    Understanding the evolution of altruism requires knowledge of both its constraints and its drivers. Here we show that, paradoxically, ecological constraints on altruism may ultimately be its strongest driver. We construct a two-trait, coevolutionary adaptive dynamics model of social evolution in a genetically structured population with local resource competition. The intensity of local resource competition, which influences the direction and strength of social selection and which is typically treated as a static parameter, is here allowed to be an evolvable trait. Evolution of survival/fecundity altruism, which requires weak local competition, increases local competition as it evolves, creating negative environmental feedback that ultimately inhibits its further evolutionary advance. Alternatively, evolution of resource-based altruism, which requires strong local competition, weakens local competition as it evolves, also ultimately causing its own evolution to stall. When evolving independently, these altruistic strategies are intrinsically self-limiting. However, the coexistence of these two altruism types transforms the negative ecoevolutionary feedback generated by each strategy on itself into positive feedback on the other, allowing the presence of one trait to drive the evolution of the other. We call this feedback conversion "reciprocal niche construction." In the absence of constraints, this process leads to runaway coevolution of altruism types. We discuss applications to the origins and evolution of eusociality, division of labor, the inordinate ecological success of eusocial species, and the interaction between technology and demography in human evolution. Our theory suggests that the evolution of extreme sociality may often be an autocatalytic process. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  2. Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards.

    Science.gov (United States)

    Hagey, Travis J; Uyeda, Josef C; Crandell, Kristen E; Cheney, Jorn A; Autumn, Kellar; Harmon, Luke J

    2017-10-01

    Understanding macroevolutionary dynamics of trait evolution is an important endeavor in evolutionary biology. Ecological opportunity can liberate a trait as it diversifies through trait space, while genetic and selective constraints can limit diversification. While many studies have examined the dynamics of morphological traits, diverse morphological traits may yield the same or similar performance and as performance is often more proximately the target of selection, examining only morphology may give an incomplete understanding of evolutionary dynamics. Here, we ask whether convergent evolution of pad-bearing lizards has followed similar evolutionary dynamics, or whether independent origins are accompanied by unique constraints and selective pressures over macroevolutionary time. We hypothesized that geckos and anoles each have unique evolutionary tempos and modes. Using performance data from 59 species, we modified Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models to account for repeated origins estimated using Bayesian ancestral state reconstructions. We discovered that adhesive performance in geckos evolved in a fashion consistent with Brownian motion with a trend, whereas anoles evolved in bounded performance space consistent with more constrained evolution (an Ornstein-Uhlenbeck model). Our results suggest that convergent phenotypes can have quite distinctive evolutionary patterns, likely as a result of idiosyncratic constraints or ecological opportunities. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  3. The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle

    Directory of Open Access Journals (Sweden)

    Jiang Yong-Hai

    2012-10-01

    Full Text Available Abstract Background In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP and sedoheptulose-1, 7-bisphosphate (SBP are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase, while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase and sedoheptulose-1, 7-bisphosphatase (SBPase, respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario. Results Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II. Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations. Conclusions There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins

  4. Oxygen and animal evolution: did a rise of atmospheric oxygen "trigger" the origin of animals?

    Science.gov (United States)

    Mills, Daniel B; Canfield, Donald E

    2014-12-01

    Recent studies challenge the classical view that the origin of animal life was primarily controlled by atmospheric oxygen levels. For example, some modern sponges, representing early-branching animals, can live under 200 times less oxygen than currently present in the atmosphere - levels commonly thought to have been maintained prior to their origination. Furthermore, it is increasingly argued that the earliest animals, which likely lived in low oxygen environments, played an active role in constructing the well-oxygenated conditions typical of the modern oceans. Therefore, while oxygen is still relevant to understanding early animal evolution, the relationships between the two might be less straightforward than previously thought. © 2014 WILEY Periodicals, Inc.

  5. Interhemispheric interaction and beliefs on our origin: degree of handedness predicts beliefs in creationism versus evolution.

    Science.gov (United States)

    Niebauer, Christopher Lee; Christman, Stephen D; Reid, Scott A; Garvey, Kilian J

    2004-10-01

    It has been suggested that strongly handed individuals have attenuated systems for updating beliefs compared to mixed handers (Niebauer, Aselage, & Schutte, 2002). The current research extended this theory to individual differences in updating beliefs concerning our origins. Although the theory of evolution has gained overwhelming success in the sciences, a significant percentage of the population believes in biblical creationist accounts of human origins that are inconsistent with accepted, contemporary scientific views. If strongly handed individuals possess attenuated systems for updating beliefs, they might be more likely to believe in creationism. In two studies, strongly handed participants were more likely to believe in creationism while mixed-handed participants were more likely to believe in evolution. A model of how interhemispheric interaction functions in maintaining and updating beliefs is discussed. Specifically, mixed-handedness seems to be associated with a lower threshold for updating beliefs.

  6. Evolution of social learning does not explain the origin of human cumulative culture.

    Science.gov (United States)

    Enquist, Magnus; Ghirlanda, Stefano

    2007-05-07

    Because culture requires transmission of information between individuals, thinking about the origin of culture has mainly focused on the genetic evolution of abilities for social learning. Current theory considers how social learning affects the adaptiveness of a single cultural trait, yet human culture consists of the accumulation of very many traits. Here we introduce a new modeling strategy that tracks the adaptive value of many cultural traits, showing that genetic evolution favors only limited social learning owing to the accumulation of maladaptive as well as adaptive culture. We further show that culture can be adaptive, and refined social learning can evolve, if individuals can identify and discard maladaptive culture. This suggests that the evolution of such "adaptive filtering" mechanisms may have been crucial for the birth of human culture.

  7. Evolution and the origin of the visual retinoid cycle in vertebrates

    OpenAIRE

    Kusakabe, Takehiro G.; Takimoto, Noriko; Jin, Minghao; Tsuda, Motoyuki

    2009-01-01

    Absorption of a photon by visual pigments induces isomerization of 11-cis-retinaldehyde (RAL) chromophore to all-trans-RAL. Since the opsins lacking 11-cis-RAL lose light sensitivity, sustained vision requires continuous regeneration of 11-cis-RAL via the process called ‘visual cycle’. Protostomes and vertebrates use essentially different machinery of visual pigment regeneration, and the origin and early evolution of the vertebrate visual cycle is an unsolved mystery. Here we compare visual r...

  8. Quality assurance systems of higher education - The case of european institutions: origin, evolution and trends

    OpenAIRE

    Ángela Corengia; Juan Carlos Del Bello; María Pita Carranza; Cecilia Adrogué

    2014-01-01

    http://dx.doi.org/10.5007/1983-4535.2014v7n3p61 The purpose of this research is to analyze the origin, evolution, performance and trends of higher education quality assurance systems in the following European countries: Denmark, Norway, Sweden, Finland, Austria, Italy, Switzerland, Germany, Netherlands, United Kingdom and France. It also studies the performance and impact of the organizations that join the European Quality Assurance Agencies together. The main sources of data collection w...

  9. An investigation into the origin of the biased agonism associated with the urotensin II receptor activation.

    Science.gov (United States)

    Brancaccio, Diego; Merlino, Francesco; Limatola, Antonio; Yousif, Ali Munaim; Gomez-Monterrey, Isabel; Campiglia, Pietro; Novellino, Ettore; Grieco, Paolo; Carotenuto, Alfonso

    2015-05-01

    The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U-II) and urotensin II-related peptide (URP). Extensive expression of the two ligands uncovers the diversified pathophysiological effects mediated by the urotensinergic system such as cardiovascular disorders, smooth muscle cell proliferation, renal disease, diabetes, and tumour growth. As newly reported, U-II and URP have distinct effects on transcriptional activity, cell proliferation, and myocardial contractile activities supporting the idea that U-II and URP interact with UTR in a distinct manner (biased agonism). To shed light on the origin of the divergent activities of the two endogenous ligands, we performed a conformational study on URP by solution NMR in sodium dodecyl sulfate micelle solution and compared the obtained NMR structure of URP with that of hU-II previously determined. Finally, we undertook docking studies between URP, hU-II, and an UT receptor model. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  10. Rapid evolution of stability and productivity at the origin of a microbial mutualism

    Energy Technology Data Exchange (ETDEWEB)

    Hillesland, Kristina L.; Stahl, David A.

    2009-12-01

    Mutualistic interactions are taxonomically and functionally diverse. Despite their ubiquity, the basic ecological and evolutionary processes underlying their origin and maintenance are poorly understood. A major reason for this has been the lack of an experimentally tractable model system. We examine the evolution of an experimentally imposed obligate mutualism between sulfate-reducing and methanogenic microorganisms that have no known history of prior interaction. Twenty-four independent pairings (cocultures) of the bacterium Desulfovibrio vulgaris and the archaeon Methanococcus maripaludis were established and followed for 300 community doublings in two environments, one allowing for the development of a heterogeneous distribution of resources and the other not. Evolved cocultures grew up to 80percent faster and were up to 30percent more productive (biomass yield per mole substrate) than the ancestors. The evolutionary process was marked by periods of significant instability leading to extinction of two of the cocultures, but resulted in more stable, efficient, and productive mutualisms for most replicated pairings. Comparisons of evolved cocultures with those assembled from one evolved and one ancestral mutualist showed that evolution of both species contributed to improved productivity. Surprisingly, however, overall improvements in growth rate and yield were less than the sum of individual contributions, suggesting antagonistic interactions between mutations from the coevolved populations. Physical constraints on the transfer of metabolites in the evolution environment affected the evolution of M. maripaludis but not D. vulgaris. Together, these results show that challenges can imperil nascent obligate mutualisms and demonstrate the evolutionary responses that enable their persistence and future evolution.

  11. Evolutionary Origin, Gradual Accumulation and Functional Divergence of Heat Shock Factor Gene Family with Plant Evolution

    Directory of Open Access Journals (Sweden)

    Xiaoming Wang

    2018-02-01

    Full Text Available Plants, as sessile organisms, evolved a complex and functionally diverse heat shock factor (HSF gene family to cope with various environmental stresses. However, the limited evolution studies of the HSF gene family have hindered our understanding of environmental adaptations in plants. In this study, a comprehensive evolution analysis on the HSF gene family was performed in 51 representative plant species. Our results demonstrated that the HSFB group which lacks a typical AHA activation domain, was the most ancient, and is under stronger purifying selection pressure in the subsequent evolutionary processes. While, dramatic gene expansion and functional divergence occurred at evolution timescales corresponding to plant land inhabit, which contribute to the emergence and diversification of the HSFA and HSFC groups in land plants. During the plant evolution, the ancestral functions of HSFs were maintained by strong purifying pressure that acted on the DNA binding domain, while the variable oligomerization domain and motif organization of HSFs underwent functional divergence and generated novel subfamilies. At the same time, variations were further accumulated with plant evolution, and this resulted in remarkable functional diversification among higher plant lineages, including distinct HSF numbers and selection pressures of several HSF subfamilies between monocots and eudicots, highlighting the fundamental differences in different plant lineages in response to environmental stresses. Taken together, our study provides novel insights into the evolutionary origin, pattern and selection pressure of plant HSFs and delineates critical clues that aid our understanding of the adaptation processes of plants to terrestrial environments.

  12. Evolution of science II: Insights into working of Nature

    CERN Document Server

    Vahia, M N

    2016-01-01

    We attempt to provide a comprehensive model of evolution of science across millennia taking into account the contributions of other intellectual traditions, cultural value system and increasing in sophistication of humans in their study of nature. We also briefly discuss the role of technology and its interplay in the evolution of science. We identify five primary approaches to the study of nature, namely ad hoc formulations, religious approach, pragmatic approach, axiomatic approach and the logic based approach. Each of these approaches have had their prime periods and have contributed significantly to human understanding of nature and have also overlapped within a society. Each approach has had a central role over human evolution at some stage. We surmise that the currently dominant axiomatic method will reach its limits due to complexity of the system and may never be fully formalised. We suggest that the future progress of science will more be a logic based approach where experimentation and simulations r...

  13. Complexation of Cu(II) by original tartaric acid-based ligands in nonionic micellar media: thermodynamic study and applications.

    Science.gov (United States)

    Dupont-Leclercq, Laurence; Giroux, Sébastien; Parant, Stéphane; Khoudour, Leïla; Henry, Bernard; Rubini, Patrice

    2009-04-09

    The complexation of Cu(II) with original alkylamidotartaric acids (C(x)T) is investigated in homogeneous aqueous medium and in the presence of nonionic micelles of Brij 58 (C16EO20), thanks to various analytical techniques such as NMR self-diffusion experiments, CD and UV-vis spectroscopy, ESI mass spectrometry, pHmetry and micellar-enhanced ultrafiltration (MEUF). First, a complete speciation study proves the formation of dimeric complexes in water and provides their formation constants. Second, a similar study is led in the presence of nonionic micelles. It underlines a modification of the apparent equilibrium constants in micellar medium and demonstrates that the structure of the complexes is slightly modified in the presence of micelles. This thermodynamic and structural study is applied to modelize the evolution of the extraction yields of Cu(II) by the micelles as a function of pH and to identify the complexes extracted in the micelles. The effects of the chain length of the ligand (C3T vs C8T) on the solubilization properties are put into relief and discussed. Anionic species are proved to be more incorporated in the nonionic micelles than the cationic species. The extracting system constituted of octylamidotartaric acid (CsT) solubilized in nonionic micelles of Brij 58 is demonstrated to be very efficient for the extraction of Cu(II) by MEUF, this technique being an interesting green alternative to traditional solvent extraction.

  14. RESIS-II: An Updated Version of the Original Reservoir Sedimentation Survey Information System (RESIS) Database

    Science.gov (United States)

    Ackerman, Katherine V.; Mixon, David M.; Sundquist, Eric T.; Stallard, Robert F.; Schwarz, Gregory E.; Stewart, David W.

    2009-01-01

    The Reservoir Sedimentation Survey Information System (RESIS) database, originally compiled by the Soil Conservation Service (now the Natural Resources Conservation Service) in collaboration with the Texas Agricultural Experiment Station, is the most comprehensive compilation of data from reservoir sedimentation surveys throughout the conterminous United States (U.S.). The database is a cumulative historical archive that includes data from as early as 1755 and as late as 1993. The 1,823 reservoirs included in the database range in size from farm ponds to the largest U.S. reservoirs (such as Lake Mead). Results from 6,617 bathymetric surveys are available in the database. This Data Series provides an improved version of the original RESIS database, termed RESIS-II, and a report describing RESIS-II. The RESIS-II relational database is stored in Microsoft Access and includes more precise location coordinates for most of the reservoirs than the original database but excludes information on reservoir ownership. RESIS-II is anticipated to be a template for further improvements in the database.

  15. A hypothesis on the biological origins and social evolution of music and dance

    Directory of Open Access Journals (Sweden)

    Tianyan eWang

    2015-02-01

    Full Text Available The origins of music and musical emotions is still an enigma, here I propose a comprehensive hypothesis on the origins and evolution of music, dance and speech from a biological and sociological perspective. I suggest that every pitch interval between neighboring notes in music represents corresponding movement pattern through interpreting the Doppler effect of sound, which not only provides a possible explanation to the transposition invariance of music, but also integrates music and dance into a common form—rhythmic movements. Accordingly, investigating the origins of music poses the question: why do humans appreciate rhythmic movements? I suggest that human appreciation of rhythmic movements and rhythmic events developed from the natural selection of organisms adapting to the internal and external rhythmic environments. The perception and production of, as well as synchronization with external and internal rhythms are so vital for an organism’s survival and reproduction, that animals have a rhythm-related reward and emotion (RRRE system. The RRRE system enables the appreciation of rhythmic movements and events, and is integral to the origination of music, dance and speech. The first type of rewards and emotions (rhythm-related rewards and emotions, RRREs are evoked by music and dance, and have biological and social functions, which in turn, promote the evolution of music, dance and speech. These functions also evoke a second type of rewards and emotions, which I name society-related rewards and emotions (SRREs. The neural circuits of RRREs and SRREs develop in species formation and personal growth, with congenital and acquired characteristics, respectively, namely music is the combination of nature and culture. This hypothesis provides probable selection pressures and outlines the evolution of music, dance and speech. The links between the Doppler effect and the RRREs and SRREs can be empirically tested, making the current hypothesis

  16. A hypothesis on the biological origins and social evolution of music and dance.

    Science.gov (United States)

    Wang, Tianyan

    2015-01-01

    The origins of music and musical emotions is still an enigma, here I propose a comprehensive hypothesis on the origins and evolution of music, dance, and speech from a biological and sociological perspective. I suggest that every pitch interval between neighboring notes in music represents corresponding movement pattern through interpreting the Doppler effect of sound, which not only provides a possible explanation for the transposition invariance of music, but also integrates music and dance into a common form-rhythmic movements. Accordingly, investigating the origins of music poses the question: why do humans appreciate rhythmic movements? I suggest that human appreciation of rhythmic movements and rhythmic events developed from the natural selection of organisms adapting to the internal and external rhythmic environments. The perception and production of, as well as synchronization with external and internal rhythms are so vital for an organism's survival and reproduction, that animals have a rhythm-related reward and emotion (RRRE) system. The RRRE system enables the appreciation of rhythmic movements and events, and is integral to the origination of music, dance and speech. The first type of rewards and emotions (rhythm-related rewards and emotions, RRREs) are evoked by music and dance, and have biological and social functions, which in turn, promote the evolution of music, dance and speech. These functions also evoke a second type of rewards and emotions, which I name society-related rewards and emotions (SRREs). The neural circuits of RRREs and SRREs develop in species formation and personal growth, with congenital and acquired characteristics, respectively, namely music is the combination of nature and culture. This hypothesis provides probable selection pressures and outlines the evolution of music, dance, and speech. The links between the Doppler effect and the RRREs and SRREs can be empirically tested, making the current hypothesis scientifically

  17. Evolution of semilocal string networks. II. Velocity estimators

    Science.gov (United States)

    Lopez-Eiguren, A.; Urrestilla, J.; Achúcarro, A.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-07-01

    We continue a comprehensive numerical study of semilocal string networks and their cosmological evolution. These can be thought of as hybrid networks comprised of (nontopological) string segments, whose core structure is similar to that of Abelian Higgs vortices, and whose ends have long-range interactions and behavior similar to that of global monopoles. Our study provides further evidence of a linear scaling regime, already reported in previous studies, for the typical length scale and velocity of the network. We introduce a new algorithm to identify the position of the segment cores. This allows us to determine the length and velocity of each individual segment and follow their evolution in time. We study the statistical distribution of segment lengths and velocities for radiation- and matter-dominated evolution in the regime where the strings are stable. Our segment detection algorithm gives higher length values than previous studies based on indirect detection methods. The statistical distribution shows no evidence of (anti)correlation between the speed and the length of the segments.

  18. Human development x: Explanation of macroevolution--top-down evolution materializes consciousness. The origin of metamorphosis.

    Science.gov (United States)

    Hermansen, Tyge Dahl; Ventegodt, Søren; Merrick, Joav

    2006-12-15

    In this paper, we first give a short discussion of the macroevolution viewing life as information-directed, complex, dynamic systems. On this basis, we give our explanation of the origin of life and discuss the top-down evolution of molecules, proteins, and macroevolution. We discuss these subjects according to our new holistic biological paradigm. In view of this, we discuss the macroevolution of the organism, the species, the biosphere, and human society. After this, we discuss the shift in evolution from natural selection to a new proposed process of nature called the "metamorphous top-down" evolution. We discuss the capability of the evolutionary shift to govern some of the processes that lead to the formation of new species. We discuss the mechanisms we think are behind this proposed shift in evolution and conclude that this event is able to explain the huge biological diversity of nature in combination with evolutionary natural selection. We also discuss this event of nature as an isolated, but integrated, part of the universe. We propose the most important genetic and biochemical process that we think is behind the evolutionary shift as a complicated symbiosis of mechanisms leading to metamorphosis in all biological individuals, from bacteria to humans. The energetic superorbital that manifests the consciousness governs all these processes through quantum chemical activity. This is the key to evolutionary shift through the consciousness, and we propose to call this process "adult human metamorphosis".

  19. Constructive Approaches for Understanding the Origin of Self-Replication and Evolution

    Directory of Open Access Journals (Sweden)

    Norikazu Ichihashi

    2016-07-01

    Full Text Available The mystery of the origin of life can be divided into two parts. The first part is the origin of biomolecules: under what physicochemical conditions did biomolecules such as amino acids, nucleotides, and their polymers arise? The second part of the mystery is the origin of life-specific functions such as the replication of genetic information, the reproduction of cellular structures, metabolism, and evolution. These functions require the coordination of many different kinds of biological molecules. A direct strategy to approach the second part of the mystery is the constructive approach, in which life-specific functions are recreated in a test tube from specific biological molecules. Using this approach, we are able to employ design principles to reproduce life-specific functions, and the knowledge gained through the reproduction process provides clues as to their origins. In this mini-review, we introduce recent insights gained using this approach, and propose important future directions for advancing our understanding of the origins of life.

  20. Evolution of Acinetobacter baumannii In Vivo: International Clone II, More Resistance to Ceftazidime, Mutation in ptk

    Directory of Open Access Journals (Sweden)

    Xiaoting Hua

    2017-07-01

    Full Text Available Acinetobacter baumannii is an important nosocomial pathogen worldwide. A more comprehensive understanding of the within-host genomic evolution of A. baumannii would provide a molecule basis for improving treatment of A. baumannii infection. To understand the evolutionary mechanism facilitating A. baumannii survived in human body, we here reported the genomic analysis of A. baumannii isolated sampled from Chinese patients. We used whole-genome sequence of A. baumannii isolates from the same patient to determine single-nucleotide variants, insertion sequence mapping, and gene change. The MICs for 10 antimicrobial agents were determined. Motility assay and microscopy were performed on the isolated pairs harboring ptk mutations. The gene ptk encoded a putative protein tyrosine kinase involved in the production of capsular polysaccharide. Approximately half (39/86 of the strains isolated from the same patient harbored the same MLST patterns, and during the replacement of international clonal lineage II (ICL-II and non-ICL-II strains, most of the alteration was that non-ICL-II strain was replaced by ICL-II strain (10/12. A. baumannii was resistant to major antimicrobial agents, whereas the strains were more resistant to ceftazidime, azithromycin, and sulfonamides after within-host evolution. Isolates from the ICL-II lineage displayed greater resistance to antimicrobial agents than non-ICL-II isolates. Isolates from ICL-II harbored more resistance genes and mobile elements than non-ICL-II strains. Several lineages evolved a more mucoid phenotype. Genome sequencing revealed that the phenotype was achieved by genetic changes in the ptk gene. ICL-II (especially ST195 and ST208 was the terminal destination for bacteria after within-host evolution. These results indicate that the molecular basis and the treatment for ICL-II strains needed further investigation.

  1. The origin and early evolution of whales: macroevolution documented on the Indian subcontinent.

    Science.gov (United States)

    Bajpai, S; Thewissen, J G M; Sahni, A

    2009-11-01

    The origin of whales (order Cetacea) from a four-footed land animal is one of the best understood examples of macroevolutionary change. This evolutionary transition has been substantially elucidated by fossil finds from the Indian subcontinent in the past decade and a half. Here, we review the first steps of whale evolution, i.e. the transition from a land mammal to obligate marine predators, documented by the Eocene cetacean families of the Indian subcontinent: Pakicetidae, Ambulocetidae, Remingtonocetidae, Protocetidae, and Basilosauridae, as well as their artiodactyl sister group, the Raoellidae. We also discuss the influence that the excellent fossil record has on the study of the evolution of organ systems, in particular the locomotor and hearing systems.

  2. Analysis of the Origin and Evolution of the Small Satellites of Pluto

    Science.gov (United States)

    Pires Dos Santos, Pryscilla Maria; Morbidelli, A.; Nesvorny, D.; Giuliatti Winter, S. M.

    2012-10-01

    At this time the origin of the small satellites of Pluto remains elusive. In this work we envisioned an alternative scenario. Pluto-Charon was already formed and embedded into a massive planetesimal disk, then planetesimals got captured by Pluto-Charon binary from the heliocentric disk. For a dynamically "cold" disk, temporary capture in the Pluto-Charon system can occur with non-negligible probability. We conjecture that if the captured planetesimals got disrupted during their Pluto-bound phase by a collision with other planetesimals of the disk, then these events could have generated a debris disk. This disk damped under internal collisional evolution, until turning itself into an accretional disk that could form small satellites on circular orbits, co-planar with Charon. Objects large enough to carry a sufficient amount of mass to generate the small satellites of Pluto have collisional lifetimes orders of magnitude longer than the typical capture time ( 100 years). Thus, this scenario, although add new arguments to an unsolved problem, cannot also explain the origin of the small satellites of Pluto, which remains elusive. Additionality, we will also present some preliminary results on the analysis of the evolution of the Pluto system in the framework of the "new" Nice model (see, e.g. Levison et al, 2008). Their results explain very well the distribution of Plutinos, bodies trapped in 2:3 mean motion resonance with Neptune. By assuming that the bodies observed today in the Pluto system were put together before the Late Heavy Bombardment period (Gomes et al, 2005), through encounter histories of Pluto and its members during the dynamical evolution of the giant planets, we analyse if this multiple system is destroyed by such interactions. In fact, understanding the evolution of the plutinos provides hints to the understanding of the history of the outer Solar system.

  3. Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores.

    Science.gov (United States)

    Eriksson, Ove

    2016-02-01

    The origins of interactions between angiosperms and fruit-eating seed dispersers have attracted much attention following a seminal paper on this topic by Tiffney (1984). This review synthesizes evidence pertaining to key events during the evolution of angiosperm-frugivore interactions and suggests some implications of this evidence for interpretations of angiosperm-frugivore coevolution. The most important conclusions are: (i) the diversification of angiosperm seed size and fleshy fruits commenced around 80 million years ago (Mya). The diversity of seed sizes, fruit sizes and fruit types peaked in the Eocene around 55 to 50 Mya. During this first phase of the interaction, angiosperms and animals evolving frugivory expanded into niche space not previously utilized by these groups, as frugivores and previously not existing fruit traits appeared. From the Eocene until the present, angiosperm-frugivore interactions have occurred within a broad frame of existing niche space, as defined by fruit traits and frugivory, motivating a separation of the angiosperm-frugivore interactions into two phases, before and after the peak in the early Eocene. (ii) The extinct multituberculates were probably the most important frugivores during the early radiation phase of angiosperm seeds and fleshy fruits. Primates and rodents are likely to have been important in the latter part of this first phase. (iii) Flying frugivores, birds and bats, evolved during the second phase, mainly during the Oligocene and Miocene, thus exploiting an existing diversity of fleshy fruits. (iv) A drastic climate shift around the Eocene-Oligocene boundary (around 34 Mya) resulted in more semi-open woodland vegetation, creating patchily occurring food resources for frugivores. This promoted evolution of a 'flying frugivore niche' exploited by birds and bats. In particular, passerines became a dominant frugivore group worldwide. (v) Fleshy fruits evolved at numerous occasions in many angiosperm families

  4. Estimation of oxygen evolution by marine phytoplankton from measurement of the efficiency of Photosystem II electron flow.

    NARCIS (Netherlands)

    Geel, C.; Versluis, W.; Snel, J.F.H.

    1997-01-01

    The relation between photosynthetic oxygen evolution and Photosystem II electron transport was investigated for the marine algae t Phaeodactylum tricornutum, Dunaliella tertiolecta, Tetraselmis sp., t Isochrysis sp. and t Rhodomonas sp.. The rate of Photosystem II electron transport was estimated

  5. From dust to life the origin and evolution of our solar system

    CERN Document Server

    Chambers, John

    2014-01-01

    The birth and evolution of our solar system is a tantalizing mystery that may one day provide answers to the question of human origins. This book tells the remarkable story of how the celestial objects that make up the solar system arose from common beginnings billions of years ago, and how scientists and philosophers have sought to unravel this mystery down through the centuries, piecing together the clues that enabled them to deduce the solar system's layout, its age, and the most likely way it formed. Drawing on the history of astronomy and the latest findings in astrophysics and the pla

  6. Quality assurance systems of higher education - The case of european institutions: origin, evolution and trends

    Directory of Open Access Journals (Sweden)

    Ángela Corengia

    2014-09-01

    Full Text Available The purpose of this research is to analyze the origin, evolution, performance and trends of higher education quality assurance systems in the following European countries: Denmark, Norway, Sweden, Finland, Austria, Italy, Switzerland, Germany, Netherlands, United Kingdom and France. It also studies the performance and impact of the organizations that join the European Quality Assurance Agencies together. The main sources of data collection were in situ semi-structured interviews to members of these agencies. It was found that in higher education institutions there is a strong trend towards the development of ‘internal quality assurance systems' in response to the public policies known as 'quality audits'.

  7. Towards a Universal Biology: Is the Origin and Evolution of Life Predictable?

    Science.gov (United States)

    Rothschild, Lynn J.

    2017-01-01

    The origin and evolution of life seems an unpredictable oddity, based on the quirks of contingency. Celebrated by the late Stephen Jay Gould in several books, "evolution by contingency" has all the adventure of a thriller, but lacks the predictive power of the physical sciences. Not necessarily so, replied Simon Conway Morris, for convergence reassures us that certain evolutionary responses are replicable. The outcome of this debate is critical to Astrobiology. How can we understand where we came from on Earth without prophesy? Further, we cannot design a rational strategy for the search for life elsewhere - or to understand what the future will hold for life on Earth and beyond - without extrapolating from pre-biotic chemistry and evolution. There are several indirect approaches to understanding, and thus describing, what life must be. These include philosophical approaches to defining life (is there even a satisfactory definition of life?), using what we know of physics, chemistry and life to imagine alternate scenarios, using different approaches that life takes as pseudoreplicates (e.g., ribosomal vs non-ribosomal protein synthesis), and experimental approaches to understand the art of the possible. Given that: (1) Life is a process based on physical components rather than simply an object; (2). Life is likely based on organic carbon and needs a solvent for chemistry, most likely water, and (3) Looking for convergence in terrestrial evolution we can predict certain tendencies, if not quite "laws", that provide predictive power. Biological history must obey the laws of physics and chemistry, the principles of natural selection, the constraints of an evolutionary past, genetics, and developmental biology. This amalgam creates a surprising amount of predictive power in the broad outline. Critical is the apparent prevalence of organic chemistry, and uniformity in the universe of the laws of chemistry and physics. Instructive is the widespread occurrence of

  8. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States.

    Science.gov (United States)

    Huang, Yao-Wei; Dickerman, Allan W; Piñeyro, Pablo; Li, Long; Fang, Li; Kiehne, Ross; Opriessnig, Tanja; Meng, Xiang-Jin

    2013-10-15

    Coronaviruses are known to infect humans and other animals and cause respiratory and gastrointestinal diseases. Here we report the emergence of porcine epidemic diarrhea virus (PEDV) in the United States and determination of its origin, evolution, and genotypes based on temporal and geographical evidence. Histological lesions in small intestine sections of affected pigs and the complete genomic sequences of three emergent strains of PEDV isolated from outbreaks in Minnesota and Iowa were characterized. Genetic and phylogenetic analyses of the three U.S. strains revealed a close relationship with Chinese PEDV strains and their likely Chinese origin. The U.S. PEDV strains underwent evolutionary divergence, which can be classified into two sublineages. The three emergent U.S. strains are most closely related to a strain isolated in 2012 from Anhui Province in China, which might be the result of multiple recombination events between different genetic lineages or sublineages of PEDV. Molecular clock analysis of the divergent time based on the complete genomic sequences is consistent with the actual time difference, approximately 2 to 3 years, of the PED outbreaks between China (December 2010) and the United States (May 2013). The finding that the emergent U.S. PEDV strains share unique genetic features at the 5'-untranslated region with a bat coronavirus provided further support of the evolutionary origin of PEDV from bats and potential cross-species transmission. The data from this study have important implications for understanding the ongoing PEDV outbreaks in the United States and will guide future efforts to develop effective preventive and control measures against PEDV. The sudden emergence of porcine epidemic diarrhea virus (PEDV), a coronavirus, for the first time in the United States causes significant economic and public health concerns. Since its recognition in May 2013, PEDV has rapidly spread across the United States, resulting in high mortality in piglets

  9. RAiSE II: resolved spectral evolution in radio AGN

    Science.gov (United States)

    Turner, Ross J.; Rogers, Jonathan G.; Shabala, Stanislav S.; Krause, Martin G. H.

    2018-01-01

    The active galactic nuclei (AGN) lobe radio luminosities modelled in hydrodynamical simulations and most analytical models do not address the redistribution of the electron energies due to adiabatic expansion, synchrotron radiation and inverse-Compton scattering of cosmic microwave background photons. We present a synchrotron emissivity model for resolved sources that includes a full treatment of the loss mechanisms spatially across the lobe, and apply it to a dynamical radio source model with known pressure and volume expansion rates. The bulk flow and dispersion of discrete electron packets is represented by tracer fields in hydrodynamical simulations; we show that the mixing of different aged electrons strongly affects the spectrum at each point of the radio map in high-powered Fanaroff & Riley type II (FR-II) sources. The inclusion of this mixing leads to a factor of a few discrepancy between the spectral age measured using impulsive injection models (e.g. JP model) and the dynamical age. The observable properties of radio sources are predicted to be strongly frequency dependent: FR-II lobes are expected to appear more elongated at higher frequencies, while jetted FR-I sources appear less extended. The emerging FR0 class of radio sources, comprising gigahertz peaked and compact steep spectrum sources, can potentially be explained by a population of low-powered FR-Is. The extended emission from such sources is shown to be undetectable for objects within a few orders of magnitude of the survey detection limit and to not contribute to the curvature of the radio spectral energy distribution.

  10. Origins and Evolution of Hepatitis B Virus and Hepatitis D Virus.

    Science.gov (United States)

    Littlejohn, Margaret; Locarnini, Stephen; Yuen, Lilly

    2016-01-04

    Members of the family Hepadnaviridae fall into two subgroups: mammalian and avian. The detection of endogenous avian hepadnavirus DNA integrated into the genomes of zebra finches has revealed a deep evolutionary origin of hepadnaviruses that was not previously recognized, dating back at least 40 million and possibly >80 million years ago. The nonprimate mammalian members of the Hepadnaviridae include the woodchuck hepatitis virus (WHV), the ground squirrel hepatitis virus, and arctic squirrel hepatitis virus, as well as a number of members of the recently described bat hepatitis virus. The identification of hepatitis B viruses (HBVs) in higher primates, such as chimpanzee, gorilla, orangutan, and gibbons that cluster with the human HBV, as well as a number of recombinant forms between humans and primates, further implies a more complex origin of this virus. We discuss the current theories of the origin and evolution of HBV and propose a model that includes cross-species transmissions and subsequent recombination events on a genetic backbone of genotype C HBV infection. The hepatitis delta virus (HDV) is a defective RNA virus requiring the presence of the HBV for the completion of its life cycle. The origins of this virus remain unknown, although some recent studies have suggested an ancient African radiation. The age of the association between HDV and HBV is also unknown. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. The Origin and Evolution of Interstellar Dust in the Local and High-redshift Universe

    Science.gov (United States)

    Dwek, Eliahu

    2012-01-01

    In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that approx. 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of sN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history .

  12. Simulating the origins of life: The dual role of RNA replicases as an obstacle to evolution.

    Science.gov (United States)

    Szostak, Natalia; Synak, Jaroslaw; Borowski, Marcin; Wasik, Szymon; Blazewicz, Jacek

    2017-01-01

    Despite years of study, it is still not clear how life emerged from inanimate matter and evolved into the complex forms that we observe today. One of the most recognized hypotheses for the origins of life, the RNA World hypothesis, assumes that life was sparked by prebiotic replicating RNA chains. In this paper, we address the problems caused by the interplay between hypothetical prebiotic RNA replicases and RNA parasitic species. We consider the coexistence of parasite RNAs and RNA replicases as well as the impact of parasites on the further evolution of replicases. For these purposes, we used multi-agent modeling techniques that allow for realistic assumptions regarding the movement and spatial interactions of modeled species. The general model used in this study is based on work by Takeuchi and Hogeweg. Our results confirm that the coexistence of parasite RNAs and replicases is possible in a spatially extended system, even if we take into consideration more realistic assumptions than Takeuchi and Hogeweg. However, we also showed that the presence of trade-off that takes into the account an RNA folding process could still pose a serious obstacle to the evolution of replication. We conclude that this might be a cause for one of the greatest transitions in life that took place early in evolution-the separation of the function between DNA templates and protein enzymes, with a central role for RNA species.

  13. The origin and evolution of the sexes: Novel insights from a distant eukaryotic linage.

    Science.gov (United States)

    Mignerot, Laure; Coelho, Susana M

    2016-01-01

    Sexual reproduction is an extraordinarily widespread phenomenon that assures the production of new genetic combinations in nearly all eukaryotic lineages. Although the core features of sexual reproduction (meiosis and syngamy) are highly conserved, the control mechanisms that determine whether an individual is male or female are remarkably labile across eukaryotes. In genetically controlled sexual systems, gender is determined by sex chromosomes, which have emerged independently and repeatedly during evolution. Sex chromosomes have been studied in only a handful of classical model organism, and empirical knowledge on the origin and evolution of the sexes is still surprisingly incomplete. With the advent of new generation sequencing, the taxonomic breadth of model systems has been rapidly expanding, bringing new ideas and fresh views on this fundamental aspect of biology. This mini-review provides a quick state of the art of how the remarkable richness of the sexual characteristics of the brown algae is helping to increase our knowledge about the evolution of sex determination. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. CRevolution 2—Origin and evolution of the Colorado River system, workshop abstracts

    Science.gov (United States)

    Beard, L. Sue; Karlstrom, Karl E.; Young, Richard A.; Billingsley, George H.

    2011-01-01

    A 2010 Colorado River symposium, held in Flagstaff, Arizona, involved 70 participants who engaged in intense debate about the origin and evolution of the Colorado River system. This symposium, built upon two previous decadal scientific meetings, focused on forging scientific consensus, where possible, while articulating continued controversies regarding the Cenozoic evolution of the Colorado River System and the landscapes of the Colorado Plateau-Rocky Mountain region that it drains. New developments involved hypotheses that Neogene mantle flow is driving plateau tilting and differential uplift and new and controversial hypotheses for the pre-6 Ma presence and evolution of ancestral rivers that may be important in the history and birth of the present Colorado River. There is a consensus that plateau tilt and uplift models must be tested with multidisciplinary studies involving differential incision studies and additional geochronology and thermochronology to determine the relative importance of tectonic and geomorphic forces that shape the spectacular landscapes of the Colorado Plateau, Arizona and region. In addition to the scientific goals, the meeting participants emphasized the iconic status of Grand Canyon for geosciences and the importance of good communication between the research community, the geoscience education/interpretation community, the public, and the media. Building on a century-long tradition, this region still provides a globally important natural laboratory for studies of the interactions of erosion and tectonism in shaping the landscape of elevated plateaus.

  15. Simulating the origins of life: The dual role of RNA replicases as an obstacle to evolution.

    Directory of Open Access Journals (Sweden)

    Natalia Szostak

    Full Text Available Despite years of study, it is still not clear how life emerged from inanimate matter and evolved into the complex forms that we observe today. One of the most recognized hypotheses for the origins of life, the RNA World hypothesis, assumes that life was sparked by prebiotic replicating RNA chains. In this paper, we address the problems caused by the interplay between hypothetical prebiotic RNA replicases and RNA parasitic species. We consider the coexistence of parasite RNAs and RNA replicases as well as the impact of parasites on the further evolution of replicases. For these purposes, we used multi-agent modeling techniques that allow for realistic assumptions regarding the movement and spatial interactions of modeled species. The general model used in this study is based on work by Takeuchi and Hogeweg. Our results confirm that the coexistence of parasite RNAs and replicases is possible in a spatially extended system, even if we take into consideration more realistic assumptions than Takeuchi and Hogeweg. However, we also showed that the presence of trade-off that takes into the account an RNA folding process could still pose a serious obstacle to the evolution of replication. We conclude that this might be a cause for one of the greatest transitions in life that took place early in evolution-the separation of the function between DNA templates and protein enzymes, with a central role for RNA species.

  16. Independent specialisation of myosin II paralogues in muscle vs. non-muscle functions during early animal evolution: a ctenophore perspective

    Directory of Open Access Journals (Sweden)

    Dayraud Cyrielle

    2012-07-01

    Full Text Available Abstract Background Myosin II (or Myosin Heavy Chain II, MHCII is a family of molecular motors involved in the contractile activity of animal muscle cells but also in various other cellular processes in non-muscle cells. Previous phylogenetic analyses of bilaterian MHCII genes identified two main clades associated respectively with smooth/non-muscle cells (MHCIIa and striated muscle cells (MHCIIb. Muscle cells are generally thought to have originated only once in ancient animal history, and decisive insights about their early evolution are expected to come from expression studies of Myosin II genes in the two non-bilaterian phyla that possess muscles, the Cnidaria and Ctenophora. Results We have uncovered three MHCII paralogues in the ctenophore species Pleurobrachia pileus. Phylogenetic analyses indicate that the MHCIIa / MHCIIb duplication is more ancient than the divergence between extant metazoan lineages. The ctenophore MHCIIa gene (PpiMHCIIa has an expression pattern akin to that of "stem cell markers" (Piwi, Vasa… and is expressed in proliferating cells. We identified two MHCIIb genes that originated from a ctenophore-specific duplication. PpiMHCIIb1 represents the exclusively muscular form of myosin II in ctenophore, while PpiMHCIIb2 is expressed in non-muscle cells of various types. In parallel, our phalloidin staining and TEM observations highlight the structural complexity of ctenophore musculature and emphasize the experimental interest of the ctenophore tentacle root, in which myogenesis is spatially ordered and strikingly similar to striated muscle formation in vertebrates. Conclusion MHCIIa expression in putative stem cells/proliferating cells probably represents an ancestral trait, while specific involvement of some MHCIIa genes in smooth muscle fibres is a uniquely derived feature of the vertebrates. That one ctenophore MHCIIb paralogue (PpiMHCIIb2 has retained MHCIIa-like expression features furthermore suggests that muscular

  17. Independent specialisation of myosin II paralogues in muscle vs. non-muscle functions during early animal evolution: a ctenophore perspective.

    Science.gov (United States)

    Dayraud, Cyrielle; Alié, Alexandre; Jager, Muriel; Chang, Patrick; Le Guyader, Hervé; Manuel, Michaël; Quéinnec, Eric

    2012-07-02

    Myosin II (or Myosin Heavy Chain II, MHCII) is a family of molecular motors involved in the contractile activity of animal muscle cells but also in various other cellular processes in non-muscle cells. Previous phylogenetic analyses of bilaterian MHCII genes identified two main clades associated respectively with smooth/non-muscle cells (MHCIIa) and striated muscle cells (MHCIIb). Muscle cells are generally thought to have originated only once in ancient animal history, and decisive insights about their early evolution are expected to come from expression studies of Myosin II genes in the two non-bilaterian phyla that possess muscles, the Cnidaria and Ctenophora. We have uncovered three MHCII paralogues in the ctenophore species Pleurobrachia pileus. Phylogenetic analyses indicate that the MHCIIa / MHCIIb duplication is more ancient than the divergence between extant metazoan lineages. The ctenophore MHCIIa gene (PpiMHCIIa) has an expression pattern akin to that of "stem cell markers" (Piwi, Vasa…) and is expressed in proliferating cells. We identified two MHCIIb genes that originated from a ctenophore-specific duplication. PpiMHCIIb1 represents the exclusively muscular form of myosin II in ctenophore, while PpiMHCIIb2 is expressed in non-muscle cells of various types. In parallel, our phalloidin staining and TEM observations highlight the structural complexity of ctenophore musculature and emphasize the experimental interest of the ctenophore tentacle root, in which myogenesis is spatially ordered and strikingly similar to striated muscle formation in vertebrates. MHCIIa expression in putative stem cells/proliferating cells probably represents an ancestral trait, while specific involvement of some MHCIIa genes in smooth muscle fibres is a uniquely derived feature of the vertebrates. That one ctenophore MHCIIb paralogue (PpiMHCIIb2) has retained MHCIIa-like expression features furthermore suggests that muscular expression of the other paralogue, PpiMHCIIb1, was

  18. Phylogeny of Opuntia s.s. (Cactaceae): clade delineation, geographic origins, and reticulate evolution.

    Science.gov (United States)

    Majure, Lucas C; Puente, Raul; Griffith, M Patrick; Judd, Walter S; Soltis, Pamela S; Soltis, Douglas E

    2012-05-01

    The opuntias (nopales, prickly pears) are not only culturally, ecologically, economically, and medicinally important, but are renowned for their taxonomic difficulty due to interspecific hybridization, polyploidy, and morphological variability. Evolutionary relationships in these stem succulents have been insufficiently studied; thus, delimitation of Opuntia s.s. and major subclades, as well as the biogeographic history of this enigmatic group, remain unresolved. We sequenced the plastid intergenic spacers atpB-rbcL, ndhF-rpl32, psbJ-petA, and trnL-trnF, the plastid genes matK and ycf1, the nuclear gene ppc, and ITS to reconstruct the phylogeny of tribe Opuntieae, including Opuntia s.s. We used phylogenetic hypotheses to infer the biogeographic history, divergence times, and potential reticulate evolution of Opuntieae. Within Opuntieae, a clade of Tacinga, Opuntia lilae, Brasiliopuntia, and O. schickendantzii is sister to a well-supported Opuntia s.s., which includes Nopalea. Opuntia s.s. originated in southwestern South America (SA) and then expanded to the Central Andean Valleys and the desert region of western North America (NA). Two major clades evolved in NA, which subsequently diversified into eight subclades. These expanded north to Canada and south to Central America and the Caribbean, eventually returning back to SA primarily via allopolyploid taxa. Dating approaches suggest that most of the major subclades in Opuntia s.s. originated during the Pliocene. Opuntia s.s. is a well-supported clade that includes Nopalea. The clade originated in southwestern SA, but the NA radiation was the most extensive, resulting in broad morphological diversity and frequent species formation through reticulate evolution and polyploidy.

  19. Revising the taxonomic distribution, origin and evolution of ribosome inactivating protein genes.

    Directory of Open Access Journals (Sweden)

    Walter J Lapadula

    Full Text Available Ribosome inactivating proteins are enzymes that depurinate a specific adenine residue in the alpha-sarcin-ricin loop of the large ribosomal RNA, being ricin and Shiga toxins the most renowned examples. They are widely distributed in plants and their presence has also been confirmed in a few bacterial species. According to this taxonomic distribution, the current model about the origin and evolution of RIP genes postulates that an ancestral RIP domain was originated in flowering plants, and later acquired by some bacteria via horizontal gene transfer. Here, we unequivocally detected the presence of RIP genes in fungi and metazoa. These findings, along with sequence and phylogenetic analyses, led us to propose an alternative, more parsimonious, hypothesis about the origin and evolutionary history of the RIP domain, where several paralogous RIP genes were already present before the three domains of life evolved. This model is in agreement with the current idea of the Last Universal Common Ancestor (LUCA as a complex, genetically redundant organism. Differential loss of paralogous genes in descendants of LUCA, rather than multiple horizontal gene transfer events, could account for the complex pattern of RIP genes across extant species, as it has been observed for other genes.

  20. Origin of Radio Enhancements in Type II Bursts in the Outer Corona

    Science.gov (United States)

    Al-Hamadani, Firas; Pohjolainen, Silja; Valtonen, Eino

    2017-09-01

    We study interplanetary (IP) solar radio type II bursts from 2011 - 2014 in order to determine the cause of the intense enhancements in their radio emission. Type II bursts are known to be due to propagating shocks that are often associated with fast halo-type coronal mass ejections (CMEs). We analysed the radio spectral data and the white-light coronagraph data from 16 selected events to obtain directions and heights for the propagating CMEs and the type II bursts. CMEs preceding the selected events were included in the analysis to verify whether CME interaction was possible. As a result, we were able to classify the events into five different groups. 1) Events where the heights of the CMEs and type II bursts are consistent, indicating that the shock is located at the leading front of the CME. The radio enhancements are superposed on the type II lanes, and they are probably formed when the shock meets remnant material from earlier CMEs, but the shock continues to propagate at the same speed. 2) Events where the type II heights agree with the CME leading front and an earlier CME is located at a height that suggests interaction. The radio enhancements and frequency jumps could be due to the merging process of the CMEs. 3) Events where the type II heights are significantly lower than the CME heights almost from the start. Interaction with close-by streamers is probably the cause for the enhanced radio emission, which is located at the CME flank region. 4) Events where the radio enhancements are located within wide-band type II bursts and the causes for the radio enhancements are not clear. 5) Events where the radio enhancements are associated with later-accelerated particles (electron beams, observed as type III bursts) that stop at the type II burst emission lane, and no other obvious reason for the enhancement can be identified. Most of the events (38%) were due to shock-streamer interaction, while one quarter of the events was due to possible CME-CME interaction

  1. Hybridization and genome evolution II: Mechanisms of species divergence and their effects on evolution in hybrids

    Directory of Open Access Journals (Sweden)

    Richard I. BAILEY, Fabrice EROUKHMANOFF, Glenn-Peter SæTRE

    2013-10-01

    Full Text Available Recent genomic studies have highlighted the importance of hybridization and gene exchange in evolution. We ask what factors cause variation in the impact of hybridization, through adaptation in hybrids and the likelihood of hybrid speciation. During speciation, traits that diverge due to both divergent and stabilizing selection can contribute to the buildup of reproductive isolation. Divergent directional selection in parent taxa should lead to intermediate phenotypes in hybrids, whereas stabilizing selection can also produce extreme, transgressive phenotypes when hybridization occurs. By examining existing theory and empirical data, we discuss how these effects, combined with differences between modes of divergence in the chromosomal distribution of incompatibilities, affect adaptation and speciation in hybrid populations. The result is a clear and testable set of predictions that can be used to examine hybrid adaptation and speciation. Stabilizing selection in parents increases transgression in hybrids, increasing the possibility for novel adaptation. Divergent directional selection causes intermediate hybrid phenotypes and increases their ability to evolve along the direction of parental differentiation. Stabilizing selection biases incompatibilities towards autosomes, leading to reduced sexual correlations in trait values and reduced pleiotropy in hybrids, and hence increased freedom in the direction of evolution. Directional selection causes a bias towards sex-linked incompatibilities, with the opposite consequences. Divergence by directional selection leads to greater dominance effects than stabilizing selection, with major but variable impacts on hybrid evolution [Current Zoology 59 (5: 675-685, 2013].

  2. The origin of split EPR signals in the Ca2+-depleted photosystem II.

    Science.gov (United States)

    Mino, Hiroyuki; Itoh, Shigeru

    2005-06-01

    A light-driven reaction model for the Ca2+-depleted Photosystem (PS) II is proposed to explain the split signal observed in electron paramagnetic resonance (EPR) spectra based on a comparison of EPR assignments with recent x-ray structural data. The split signal has a splitting linewidth of 160 G at around g = 2 and is seen upon illumination of the Ca2+-depleted PS II in the S2 state associated with complete or partial disappearance of the S2 state multiline signal. Another g=2 broad ESR signal with a 110 G linewidth was produced by 245 K illumination for a short period in the Ca2+-depleted PS II in S1 state. At the same time a normal YZ . radical signal was also efficiently trapped. The g=2 broad signal is attributed to an intermediate S1X. state in equilibrium with the trapped YZ . radical. Comparison with x-ray structural data suggests that one of the split signals (doublet signal) is attributable to interaction between His 190 and the YZ . radical, and other signals is attributable to interaction between His 337 and the manganese cluster, providing further clues as to the mechanism of water oxidation in photosynthetic oxygen evolution.

  3. Origin of Boron and Brine Evolution in Saline Springs in the Nangqen Basin, Southern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Ji-long Han

    2018-01-01

    Full Text Available The Nangqen Basin is a typical shearing-extensional basin situated in the hinterland of the Tibetan Plateau. It contains abundant saline spring resources and abnormal trace element enrichments. The hydrochemical molar ratios (Na/Cl, B/Cl, and Br/Cl, H-O isotopes, and B isotopes of the saline spring were systematically measured to describe the evolution of brines and the origin of the boron. The sodium chloride coefficient of the water samples in this area is around 1.0 or slightly greater, which is characteristic of leached brines; the highest B/Cl value is 4.25 (greater than that of seawater. The Na/Cl, B/Cl, and Br/Cl values of the springs are clear indicators of a crustal origin. The δ18O values of the spring waters range from −12.88‰ to −16.05‰, and the δD values range from −100.91‰ to −132.98‰. Meanwhile the B content and B isotopes in the saline springs are in the ranges of 1.00 to 575.56 ppm and +3.55‰ to +29.59‰, respectively. It has been proven that the saline springs in the Nangqen Basin are a type of leached brine, suggesting that the saline springs have a terrestrial origin. The δ11B-B characteristics of the springs are similar to those observed in the Tibetan geothermal area, indicating that these two places have the same B source. Moreover, they have a crustal origin (marine carbonate rocks and volcanic rocks instead of a deep mantle source.

  4. Present State of the Coacervate-Incoacervate Theory - Origin and Evolution of Cell Structure

    Science.gov (United States)

    Novak, Vladimir J. A.

    1984-12-01

    In agreement with the views of Oparin, Fox, Dose etc., the theory assumes that coacervation of protein-like polyaminoacids began with their accumulation along the coasts of the Archaic water basins. Unlike the above authors, however, the present author views the original coacervates as a suitable “culture medium” from which the first polynucleotides orginated and their partial replication started. Their base sequence was not fortuitous, but determined by the proteinoids on the basis of their mutual affinity. The polyfunctional enzymic activity of the proteinoids catalyzed their replication as well as other activities. Around the replicating DNA molecules secondary coacervates (coacervates in coacervates) accumulated which developed gradually to the first prokaryotic cells. Their most probable evolution to the first eukaryotic organisms is discussed on the basis of the modified Studitsky's synbacteriogenesis theory.

  5. The universal relation of galactic chemical evolution: the origin of the mass-metallicity relation

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, H. Jabran; Dima, Gabriel I.; Kudritzki, Rolf-Peter [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kewley, Lisa J. [Australian National University, Research School of Astronomy and Astrophysics, Cotter Road, Weston Creek, ACT 2611 (Australia); Geller, Margaret J.; Hwang, Ho Seong [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Silverman, John D. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwanoha, Kashiwa 277-8583 (Japan); Kashino, Daichi [Division of Particle and Astrophysical Science, Nagoya University, Nagoya 464-8602 (Japan)

    2014-08-20

    We examine the mass-metallicity relation for z ≲ 1.6. The mass-metallicity relation follows a steep slope with a turnover, or 'knee', at stellar masses around 10{sup 10} M {sub ☉}. At stellar masses higher than the characteristic turnover mass, the mass-metallicity relation flattens as metallicities begin to saturate. We show that the redshift evolution of the mass-metallicity relation depends only on the evolution of the characteristic turnover mass. The relationship between metallicity and the stellar mass normalized to the characteristic turnover mass is independent of redshift. We find that the redshift-independent slope of the mass-metallicity relation is set by the slope of the relationship between gas mass and stellar mass. The turnover in the mass-metallicity relation occurs when the gas-phase oxygen abundance is high enough that the amount of oxygen locked up in low-mass stars is an appreciable fraction of the amount of oxygen produced by massive stars. The characteristic turnover mass is the stellar mass, where the stellar-to-gas mass ratio is unity. Numerical modeling suggests that the relationship between metallicity and the stellar-to-gas mass ratio is a redshift-independent, universal relationship followed by all galaxies as they evolve. The mass-metallicity relation originates from this more fundamental universal relationship between metallicity and the stellar-to-gas mass ratio. We test the validity of this universal metallicity relation in local galaxies where stellar mass, metallicity, and gas mass measurements are available. The data are consistent with a universal metallicity relation. We derive an equation for estimating the hydrogen gas mass from measurements of stellar mass and metallicity valid for z ≲ 1.6 and predict the cosmological evolution of galactic gas masses.

  6. Parent-of-origin growth effects and the evolution of hybrid inviability in dwarf hamsters.

    Science.gov (United States)

    Brekke, Thomas D; Good, Jeffrey M

    2014-11-01

    Mammalian hybrids often show abnormal growth, indicating that developmental inviability may play an important role in mammalian speciation. Yet, it is unclear if this recurrent phenotype reflects a common genetic basis. Here, we describe extreme parent-of-origin-dependent growth in hybrids from crosses between two species of dwarf hamsters, Phodopus campbelli and Phodopus sungorus. One cross type resulted in massive placental and embryonic overgrowth, severe developmental defects, and maternal death. Embryos from the reciprocal cross were viable and normal sized, but adult hybrid males were relatively small. These effects are strikingly similar to patterns from several other mammalian hybrids. Using comparative sequence data from dwarf hamsters and several other hybridizing mammals, we argue that extreme hybrid growth can contribute to reproductive isolation during the early stages of species divergence. Next, we tested if abnormal growth in hybrid hamsters was associated with disrupted genomic imprinting. We found no association between imprinting status at several candidate genes and hybrid growth, though two interacting genes involved in embryonic growth did show reduced expression in overgrown hybrids. Collectively, our study indicates that growth-related hybrid inviability may play an important role in mammalian speciation but that the genetic underpinnings of these phenotypes remain unresolved. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  7. Adaptive evolution of social traits: origin, trajectories, and correlations of altruism and mobility.

    Science.gov (United States)

    Le Galliard, Jean-François; Ferrière, Régis; Dieckmann, Ulf

    2005-02-01

    Social behavior involves "staying and helping," two individual attributes that vary considerably among organisms. Investigating the ultimate causes of such variation, this study integrates previously separate lines of research by analyzing the joint evolution of altruism and mobility. We unfold the network of selective pressures and derive how these depend on physiological costs, eco-evolutionary feedbacks, and a complex interaction between the evolving traits. Our analysis highlights habitat saturation, both around individuals (local aggregation) and around unoccupied space (local contention), as the key mediator of altruism and mobility evolution. Once altruism and mobility are allowed to evolve jointly, three general insights emerge. First, the cost of mobility affects the origin of altruism, determining whether and how quickly selfishness is overcome. Second, the cost of altruism determines which of two qualitatively different routes to sociality are taken: an evolutionary reduction of mobility, resulting in higher habitat saturation, is either preceded or followed by the adaptive rise of altruism. Third, contrary to conventional expectations, a positive correlation between evolutionarily stable levels of altruism and mobility can arise; this is expected when comparing populations that evolved under different constraints on mobility or that differ in other life-history traits.

  8. Reassortment Networks and the evolution of pandemic H1N1 swine-origin influenza.

    Science.gov (United States)

    Bokhari, Shahid H; Pomeroy, Laura W; Janies, Daniel A

    2012-01-01

    Prior research developed Reassortment Networks to reconstruct the evolution of segmented viruses under both reassortment and mutation. We report their application to the swine-origin pandemic H1N1 virus (S-OIV). A database of all influenza A viruses, for which complete genome sequences were available in Genbank by October 2009, was created and dynamic programming was used to compute distances between all corresponding segments. A reassortment network was created to obtain the minimum cost evolutionary paths from all viruses to the exemplar S-OIV A/California/04/2009. This analysis took 35 hours on the Cray Extreme Multithreading (XMT) supercomputer, which has special hardware to permit efficient parallelization. Six specific H1N1/H1N2 bottleneck viruses were identified that almost always lie on minimum cost paths to S-OIV. We conjecture that these viruses are crucial to S-OIV evolution and worthy of careful study from a molecular biology viewpoint. In phylogenetics, ancestors are typically medians that have no functional constraints. In our method, ancestors are not inferred, but rather chosen from previously observed viruses along a path of mutation and reassortment leading to the target virus. This specificity and functional constraint render our results actionable for further experiments in vitro and in vivo.

  9. Begetting machinery IIEvolutionärer Algorithmus und technische Evolution

    Directory of Open Access Journals (Sweden)

    Rothenhäusler, Andie

    2011-10-01

    Full Text Available In the 1970s and 1980s two new approaches to an evolutionary explanation of technology emerged: While a new generation of sociobiologists increasingly started to view animal and human artifacts as an ,extended phenotype’ of humankind historians and sociologists of technology found in an evolutionary genesis of technology a third way between technological determinism and a social construction of technology. This evolution of technology seemed able to explain multi-causal coherences in the genesis of technology applicably by using allegedly simple rules.

  10. Origin and evolution of tomato production Lycopersicon esculentum in México

    Directory of Open Access Journals (Sweden)

    Tarsicio Medina Saavedra

    Full Text Available ABSTRACT: Lycopersicon esculentum known as tomato, although has an Andean origin is a contribution of Mexico to the world is, being the first agricultural product to be exported. This research aimed to review the literature in relation to the origin and evolution of the production of tomato in Mexico within the historical development of the country. In ancient times, the tomato was cultivated in milpas (open field and chinampas (artificial islands for riparian agriculture using sustainable methods. Spanish colonizers showed the tomato to the rest of the world and diversified its uses. In independent Mexico, haciendas and railroads integrated the different farming regions. Production decreased during the Mexican revolution, and with land reform, the milpa returned. During the Green Revolution (1970, Sinaloa stood out, with the separation of two systems, subsistence, and modern with technology programs. Biotechnological development (1990 emerged parallel to organic production. So actually with this system, we could return to more sustainable pre-Hispanic ecological principles with less environmental impact.

  11. Geological structure and evolution of Majorca: Implications for the origin of the Western Mediterranean

    Science.gov (United States)

    Sàbat, Francesc; Gelabert, Bernadí; Rodríguez-Perea, Antonio; Giménez, Jordi

    2011-09-01

    The island of Majorca forms part of the NE-SW continental Balearic Promontory, which is surrounded by continental and oceanic extensional basins. Majorca has a basin and range physiography mainly resulting from Late Neogene extension. The basins and ranges strike NE-SW. The structure of the ranges consists of thrust faults and associated folds involving Mesozoic series. Paleogene series are also involved in the compressional structures located in the southeast, whereas a stratigraphic hiatus embracing Late Cretaceous and Paleogene is present in the rest of the island. The age of syncompressive rocks and sediments is Chattian to Aquitanian in the SE Llevant Ranges, Aquitanian to Burdigalian in the Central Ranges and Burdigalian to Langhian in the NW Tramuntana Range. Thus compressive deformation progressed from southeast to northwest. The thrust fault hangingwall displacement is to the northwest and shortening is large (44%). Seismic reflection sections reveal the presence of compressive structures in the substratum of the basins. Moreover, normal faults due to WNW-ESE extension occurred during the Serravallian and Tortonian, producing additional subsidence in the basins. Minor compression could have occurred since the onset of the Pleistocene. Majorca was shortened when the extensional basins surrounding the island originated. Available models for the origin and evolution of extensional basins of the Western Mediterranean do not consider the structure observed in Majorca.

  12. Genome wide exploration of the origin and evolution of amino acids

    Directory of Open Access Journals (Sweden)

    Ji Zhiliang

    2010-03-01

    Full Text Available Abstract Background Even after years of exploration, the terrestrial origin of bio-molecules remains unsolved and controversial. Today, observation of amino acid composition in proteins has become an alternative way for a global understanding of the mystery encoded in whole genomes and seeking clues for the origin of amino acids. Results In this study, we statistically monitored the frequencies of 20 alpha-amino acids in 549 taxa from three kingdoms of life: archaebacteria, eubacteria, and eukaryotes. We found that the amino acids evolved independently in these three kingdoms; but, conserved linkages were observed in two groups of amino acids, (A, G, H, L, P, Q, R, and W and (F, I, K, N, S, and Y. Moreover, the amino acids encoded by GC-poor codons (F, Y, N, K, I, and M were found to "lose" their usage in the development from single cell eukaryotic organisms like S. cerevisiae to H. sapiens, while the amino acids encoded by GC-rich codons (P, A, G, and W were found to gain usage. These findings further support the co-evolution hypothesis of amino acids and genetic codes. Conclusion We proposed a new chronological order of the appearance of amino acids (L, A, V/E/G, S, I, K, T, R/D, P, N, F, Q, Y, M, H, W, C. Two conserved evolutionary paths of amino acids were also suggested: A→G→R→P and K→Y.

  13. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    Science.gov (United States)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  14. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower

    OpenAIRE

    Chanderbali, André S.; Yoo, Mi-Jeong; Zahn, Laura M; Brockington, Samuel F.; Wall, P Kerr; Gitzendanner, Matthew A.; Albert, Victor A; Leebens-Mack, James; Altman, Naomi S.; Ma, Hong; dePamphilis, Claude W; Soltis, Douglas E.; Pamela S Soltis

    2010-01-01

    The origin and rapid diversification of the angiosperms (Darwin's “Abominable Mystery”) has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnospe...

  15. Origin and Evolution of Titan's Nitrogen Atmosphere - A Cassini-Huygens Perspective

    Science.gov (United States)

    Atreya, Sushil K.

    2014-05-01

    Prior to Cassini-Huygens, it was debated how Titan acquired its earth-like atmosphere of nitrogen [1]. This talk will review the history of Titan's atmosphere, models, and the unique role of Cassini-Huygens in understanding the origin and evolution of an atmosphere of nitrogen on Titan. After hydrogen and helium, nitrogen is the fourth most abundant element in the solar system. In the colder outer solar system beyond 5 AU, nitrogen is bound to hydrogen in the giant planets. Thus ammonia (NH3), not N2, is the dominant reservoir of nitrogen in these objects. The satellites that form in the relatively warm and dense subnebula of the gas giant planets, Jupiter and Saturn, may acquire nitrogen as NH3 during their accretion [2], although some models had proposed N2, not NH3, as the stable form of nitrogen in the subnebulae. The latter is reflected in the atmosphere of Triton, which almost certainly accreted nitrogen directly as N2, since N2 can be the stable form of nitrogen in the very cold environment of Neptune. Before Cassini-Huygens, it was debated whether Titan, the largest moon of Saturn, also acquired its nitrogen directly as N2, putting it in the same class as Neptune's moon Triton half its size, or the nitrogen on Titan was secondary atmosphere, produced from a nitrogen bearing molecule, putting Titan in the class with terrestrial planets. The evidence from Cassini-Huygens to be discussed in this talk leaves no doubt that Titan's nitrogen atmosphere is secondary [3]. Probable scenarios of the sustenance, evolution and reduction or demise of this atmosphere will also be explored. References: [1]Owen T. (2000), Planet. Space Sci. 48, 747-752. [2]Prinn R.G., Fegley B. (1981), Astrophys J. 249, 308-317. [3]Atreya S.K., Lorenz R.D., Waite J.H. (2009), pp 177-199, in Titan (R.H. Brown et al., eds.) Springer.

  16. Evolution and origin of HRS, a protein interacting with Merlin, the Neurofibromatosis 2 gene product.

    Science.gov (United States)

    Omelyanchuk, Leonid V; Pertseva, Julia A; Burns, Sarah S; Chang, Long-Sheng

    2009-10-08

    Hepatocyte growth factor receptor tyrosine kinase substrate (HRS) is an endosomal protein required for trafficking receptor tyrosine kinases from the early endosome to the lysosome. HRS interacts with Merlin, the Neurofibromatosis 2 (NF2) gene product, and this interaction may be important for Merlin's tumor suppressor activity. Understanding the evolution, origin, and structure of HRS may provide new insight into Merlin function. We show that HRS homologs are present across a wide range of Metazoa with the yeast Vps27 protein as their most distant ancestor. The phylogenetic tree of the HRS family coincides with species evolution and divergence, suggesting a unique function for HRS. Sequence alignment shows that various protein domains of HRS, including the VHS domain, the FYVE domain, the UIM domain, and the clathrin-binding domain, are conserved from yeast to multicellular organisms. The evolutionary transition from unicellular to multicellular organisms was accompanied by the appearance of a binding site for Merlin, which emerges in the early Metazoa after its separation from flatworms. In addition to the region responsible for growth suppression, the Merlin-binding and STAM-binding domains of HRS are conserved among multicellular organisms. The residue equivalent to tyrosine-377, which is phosphorylated in the human HRS protein, is highly conserved throughout the HRS family. Three additional conserved boxes lacking assigned functions are found in the HRS proteins of Metazoa. While boxes 1 and 3 may constitute the Eps-15-and Snx1-binding sites, respectively, box 2, containing the residue equivalent to tyrosine-377, is likely to be important for HRS phosphorylation. While several functional domains are conserved throughout the HRS family, the STAM-binding, Merlin-binding, and growth suppression domains evolved in the early Metazoa around the time the Merlin protein emerged. As these domains appear during the transition to multicellularity, their functional roles

  17. Insight Into the Origin and Evolution of the Vibrio parahaemolyticus Pandemic Strain

    Directory of Open Access Journals (Sweden)

    Romilio T. Espejo

    2017-07-01

    Full Text Available A strain of Vibrio parahaemolyticus that emerged in 1995 caused the first known pandemic involving this species. This strain comprises clonal autochthonous ocean-dwelling bacteria whose evolution has occurred in the ocean environment. The low sequence diversity in this population enabled the discovery of information on its origin and evolution that has been hidden in bacterial clones that have evolved over a long period. Multilocus sequencing and microarray analysis, together with phylogenetic analysis, of pandemic and pre-pandemic isolates has suggested that the founder clone was an O3:K6 non-pathogenic strain that initially acquired a toxRS/new region and subsequently acquired at least seven novel genomic islands. Sequencing and comparison of whole genomes later confirmed these early observations, and it confirmed that most of the genetic changes occurred via gene conversion involving horizontally transmitted DNA. The highly clonal population rapidly diversified, especially in terms of antigenicity, and 27 serotypes have already been reported. Comparisons of the core genomes derived from the founder clone indicate that there are only a few hundred single-nucleotide variations between isolates. However, when the whole genome is considered (the core plus non-core genome and from any clonal frame, the amount of DNA with a different clonal frame can reach up to 4.2% and the number of single-nucleotide variations can reach several hundred thousand. Altogether, these and previous observations based on multilocus sequence typing, microarray analysis, and whole-genome sequencing indicate the large contribution made by DNA with different clonal genealogy to genome diversification. The evidence also indicates that horizontal gene transfer (HGT caused the emergence of new pathogens. Furthermore, the extent of HGT seems to depend on the vicissitudes of the life of each bacterium, as exemplified by differences in thousands of base pairs acquired by HGT

  18. SSR marker variations in Brassica species provide insight into the origin and evolution of Brassica amphidiploids.

    Science.gov (United States)

    Thakur, Ajay Kumar; Singh, Kunwar Harendra; Singh, Lal; Nanjundan, Joghee; Khan, Yasin Jeshima; Singh, Dhiraj

    2018-01-01

    Oilseed Brassica represents an important group of oilseed crops with a long history of evolution and cultivation. To understand the origin and evolution of Brassica amphidiploids, simple sequence repeat (SSR) markers were used to unravel genetic variations in three diploids and three amphidiploid Brassica species of U's triangle along with Eruca sativa as an outlier. Of 124 Brassica-derived SSR loci assayed, 100% cross-transferability was obtained for B. juncea and three subspecies of B. rapa, while lowest cross-transferability (91.93%) was obtained for Eruca sativa. The average % age of cross-transferability across all the seven species was 98.15%. The number of alleles detected at each locus ranged from one to six with an average of 3.41 alleles per primer pair. Neighbor-Joining-based dendrogram divided all the 40 accessions into two main groups composed of B. juncea/B. nigra/B. rapa and B. carinata/B. napus/B. oleracea. C-genome of oilseed Brassica species remained relatively more conserved than A- and B-genome. A- genome present in B. juncea and B. napus seems distinct from each other and hence provides great opportunity for generating diversity through synthesizing amphidiploids from different sources of A- genome. B. juncea had least intra-specific distance indicating narrow genetic base. B. rapa appears to be more primitive species from which other two diploid species might have evolved. The SSR marker set developed in this study will assist in DNA fingerprinting of various Brassica species cultivars, evaluating the genetic diversity in Brassica germplasm, genome mapping and construction of linkage maps, gene tagging and various other genomics-related studies in Brassica species. Further, the evolutionary relationship established among various Brassica species would assist in formulating suitable breeding strategies for widening the genetic base of Brassica amphidiploids by exploiting the genetic diversity present in diploid progenitor gene pools.

  19. Origin and evolution of the metazoan non-coding regulatory genome.

    Science.gov (United States)

    Gaiti, Federico; Calcino, Andrew D; Tanurdžić, Miloš; Degnan, Bernard M

    2017-07-15

    Animals rely on genomic regulatory systems to direct the dynamic spatiotemporal and cell-type specific gene expression that is essential for the development and maintenance of a multicellular lifestyle. Although it is widely appreciated that these systems ultimately evolved from genomic regulatory mechanisms present in single-celled stem metazoans, it remains unclear how this occurred. Here, we focus on the contribution of the non-coding portion of the genome to the evolution of animal gene regulation, specifically on recent insights from non-bilaterian metazoan lineages, and unicellular and colonial holozoan sister taxa. High-throughput next-generation sequencing, largely in bilaterian model species, has led to the discovery of tens of thousands of non-coding RNA genes (ncRNAs), including short, long and circular forms, and uncovered the central roles they play in development. Based on the analysis of non-bilaterian metazoan, unicellular holozoan and fungal genomes, the evolution of some ncRNAs, such as Piwi-interacting RNAs, correlates with the emergence of metazoan multicellularity, while others, including microRNAs, long non-coding RNAs and circular RNAs, appear to be more ancient. Analysis of non-coding regulatory DNA and histone post-translational modifications have revealed that some cis-regulatory mechanisms, such as those associated with proximal promoters, are present in non-animal holozoans, while others appear to be metazoan innovations, most notably distal enhancers. In contrast, the cohesin-CTCF system for regulating higher-order chromatin structure and enhancer-promoter long-range interactions appears to be restricted to bilaterians. Taken together, most bilaterian non-coding regulatory mechanisms appear to have originated before the divergence of crown metazoans. However, differential expansion of non-coding RNA and cis-regulatory DNA repertoires in bilaterians may account for their increased regulatory and morphological complexity relative to non

  20. Evolution and Origin of HRS, a Protein Interacting with Merlin, the Neurofibromatosis 2 Gene Product

    Directory of Open Access Journals (Sweden)

    Leonid V. Omelyanchuk

    2009-10-01

    Full Text Available Hepatocyte growth factor receptor tyrosine kinase substrate (HRS is an endosomal protein required for trafficking receptor tyrosine kinases from the early endosome to the lysosome. HRS interacts with Merlin, the Neurofibromatosis 2 (NF2 gene product, and this interaction may be important for Merlin’s tumor suppressor activity. Understanding the evolution, origin, and structure of HRS may provide new insight into Merlin function. We show that HRS homologs are present across a wide range of Metazoa with the yeast Vps27 protein as their most distant ancestor. The phylogenetic tree of the HRS family coincides with species evolution and divergence, suggesting a unique function for HRS. Sequence alignment shows that various protein domains of HRS, including the VHS domain, the FYVE domain, the UIM domain, and the clathrin-binding domain, are conserved from yeast to multicellular organisms. The evolutionary transition from unicellular to multicellular organisms was accompanied by the appearance of a binding site for Merlin, which emerges in the early Metazoa after its separation from flatworms. In addition to the region responsible for growth suppression, the Merlin-binding and STAM-binding domains of HRS are conserved among multicellular organisms. The residue equivalent to tyrosine-377, which is phosphorylated in the human HRS protein, is highly conserved throughout the HRS family. Three additional conserved boxes lacking assigned functions are found in the HRS proteins of Metazoa. While boxes 1 and 3 may constitute the Eps-15- and Snx1-binding sites, respectively, box 2, containing the residue equivalent to tyrosine-377, is likely to be important for HRS phosphorylation. While several functional domains are conserved throughout the HRS family, the STAM-binding, Merlin-binding, and growth suppression domains evolved in the early Metazoa around the time the Merlin protein emerged. As these domains appear during the transition to multicellularity

  1. Origin and Evolution of The Early- Silurian Land Vascular Plants: Evidence From Biomarkers

    Science.gov (United States)

    Jin, R.

    2016-12-01

    Origin and early evolution of land vascular plants, is one of the most intriguing hotspots in the life science research. During the 1970s and 1980s,Pinnatiramosus qianensis was found in early-Silurian strata in guizhou of south China.43 years have passed. But so far, the biological characteristics and belonging of the age of this unique plant have been debated again and again, up in the air.Biomarkers have a good stability in the process of organic evolution, no more or less changed, so they have a special `function of mark'. While biomarkers can provide information about organic matter of hydrocarbon source rock (the source), the period of deposition and burial (diagenesis) environmental conditions, and many other aspects of information.This paper obtained the sedimentary environment, source of organic matter input and other relevant information, through extracting and analyzing biomarkers of the 26 samples in the late Ordovician to early Silurian strata in NorthGuizhou areas. According to the results, Pr/Ph of late Ordovician Meitan Fm-early Silurian Hanjiadian Fm is high.It manifests more pristane, characterized by reductive environment. At the bottom of the Hanjiadian Fm, Pr/Ph has a volatility.Some huge environmental changes may have taken place in the corresponding period. N-alkanes do not have parity advantage or has even carbon advantage slightly.The peak carbon is mainly in low carbon number.(C21 + C22)/(C28 + C29) is high.Aquatic organisms is a major source of organic matter during this period,C21-/C22+ is low.This may be caused by the relatively serious loss of light hydrocarbon during the separation of components. In the Hanjiadian Fm,information of C29/C27 sterane ratios and oleanane index showed a trend of rising at the same time, indicating that during this period, there was a gradual increase input in the number of higher plants.The stable carbon isotope of saturated hydrocarbon and aromatic hydrocarbon in the Hanjiadian Fm also gradually become

  2. Origins and emergent evolution of life: the colloid microsphere hypothesis revisited.

    Science.gov (United States)

    Egel, Richard

    2014-04-01

    Self-replicating molecules, in particular RNA, have long been assumed as key to origins of life on Earth. This notion, however, is not very secure since the reduction of life's complexity to self-replication alone relies on thermodynamically untenable assumptions. Alternative, earlier hypotheses about peptide-dominated colloid self-assembly should be revived. Such macromolecular conglomerates presumably existed in a dynamic equilibrium between confluent growth in sessile films and microspheres detached in turbulent suspension. The first organic syntheses may have been driven by mineral-assisted photoactivation at terrestrial geothermal fields, allowing photo-dependent heterotrophic origins of life. Inherently endowed with rudimentary catalyst activities, mineral-associated organic microstructures can have evolved adaptively toward cooperative 'protolife' communities, in which 'protoplasmic continuity' was maintained throughout a graded series of 'proto-biofilms', 'protoorganisms' and 'protocells' toward modern life. The proneness of organic microspheres to merge back into the bulk of sessile films by spontaneous fusion can have made large populations promiscuous from the beginning, which was important for the speed of collective evolution early on. In this protein-centered scenario, the emergent coevolution of uncoded peptides, metabolic cofactors and oligoribonucleotides was primarily optimized for system-supporting catalytic capabilities arising from nonribosomal peptide synthesis and nonreplicative ribonucleotide polymerization, which in turn incorporated other reactive micromolecular organics as vitamins and cofactors into composite macromolecular colloid films and microspheres. Template-dependent replication and gene-encoded protein synthesis emerged as secondary means for further optimization of overall efficieny later on. Eventually, Darwinian speciation of cell-like lineages commenced after minimal gene sets had been bundled in transmissible genomes from

  3. Origin and evolution of the c-src-transducing avian sarcoma virus PR2257.

    Science.gov (United States)

    Yatsula, B A; Geryk, J; Briestanska, J; Karakoz, I; Svoboda, J; Rynditch, A V; Calothy, G; Dezélée, P

    1994-10-01

    Avian sarcoma virus PR2257 transduced de novo the c-src gene and about 900 bp of 3' non-coding sequences belonging to the src locus. This virus contains only one mutation in the c-src coding sequence causing a reading frame shift after Pro-525. The molecular clone studied was derived from a cell line of transformed quail fibroblasts, C7. It contains endogenous virus (ev) derived sequences in the U5 and 3' non-coding regions, indicating that multiple recombination occurred with endogenous virus. Here we investigated the possible evolution of PR2257 when the original tumour was repeatedly passaged in vivo. After 16 passages a new virus, designated PR2257/16, appeared with a tenfold higher titre. The sequence of PR2257/16 was determined and showed that PR2257/16 resulted from recombination of PR2257 with the env gene of the helper virus (td daPR-C). This recombination expanded the env gene content in PR2257/16 and, in addition, five point mutations occurred in its genome. Because we thought that an endogenous virus might be involved in the mechanism of c-src transduction, we also reinvestigated the presence of ev sequences in PR2257 proviruses from several early passages of the original tumour. We found that in contrast with the first isolate from the C7 cell line, the provirus in these tumours did not contain such sequences. These results do not support the hypothesis that endogenous sequences were involved in the transduction process.

  4. Carbon and oxygen in H II regions of the Magellanic Clouds: abundance discrepancy and chemical evolution

    Science.gov (United States)

    Toribio San Cipriano, L.; Domínguez-Guzmán, G.; Esteban, C.; García-Rojas, J.; Mesa-Delgado, A.; Bresolin, F.; Rodríguez, M.; Simón-Díaz, S.

    2017-05-01

    We present C and O abundances in the Magellanic Clouds derived from deep spectra of H II regions. The data have been taken with the Ultraviolet-Visual Echelle Spectrograph at the 8.2-m Very Large Telescope. The sample comprises five H II regions in the Large Magellanic Cloud (LMC) and four in the Small Magellanic Cloud (SMC). We measure pure recombination lines (RLs) of C ii and O ii in all the objects, permitting to derive the abundance discrepancy factors (ADFs) for O2+, as well as their O/H, C/H and C/O ratios. We compare the ADFs with those of other H II regions in different galaxies. The results suggest a possible metallicity dependence of the ADF for the low-metallicity objects; but more uncertain for high-metallicity objects. We compare nebular and B-type stellar abundances and we find that the stellar abundances agree better with the nebular ones derived from collisionally excited lines (CELs). Comparing these results with other galaxies we observe that stellar abundances seem to agree better with the nebular ones derived from CELs in low-metallicity environments and from RLs in high-metallicity environments. The C/H, O/H and C/O ratios show almost flat radial gradients, in contrast with the spiral galaxies where such gradients are negative. We explore the chemical evolution analysing C/O versus O/H and comparing with the results of H II regions in other galaxies. The LMC seems to show a similar chemical evolution to the external zones of small spiral galaxies and the SMC behaves as a typical star-forming dwarf galaxy.

  5. Origins and Evolution of WUSCHEL-Related Homeobox Protein Family in Plant Kingdom

    Directory of Open Access Journals (Sweden)

    Gaibin Lian

    2014-01-01

    Full Text Available WUSCHEL-related homeobox (WOX is a large group of transcription factors specifically found in plants. WOX members contain the conserved homeodomain essential for plant development by regulating cell division and differentiation. However, the evolutionary relationship of WOX members in plant kingdom remains to be elucidated. In this study, we searched 350 WOX members from 50 species in plant kingdom. Linkage analysis of WOX protein sequences demonstrated that amino acid residues 141–145 and 153–160 located in the homeodomain are possibly associated with the function of WOXs during the evolution. These 350 members were grouped into 3 clades: the first clade represents the conservative WOXs from the lower plant algae to higher plants; the second clade has the members from vascular plant species; the third clade has the members only from spermatophyte species. Furthermore, among the members of Arabidopsis thaliana and Oryza sativa, we observed ubiquitous expression of genes in the first clade and the diversified expression pattern of WOX genes in distinct organs in the second clade and the third clade. This work provides insight into the origin and evolutionary process of WOXs, facilitating their functional investigations in the future.

  6. Origin and evolution of the northern hemisphere disjunction in the moss genus Homalothecium (Brachytheciaceae).

    Science.gov (United States)

    Huttunen, Sanna; Hedenäs, Lars; Ignatov, Michael S; Devos, Nicolas; Vanderpoorten, Alain

    2008-06-01

    Competing hypotheses that rely either on a stepping-stone dispersal via the North Atlantic or the Bering land bridges, or more recent transoceanic dispersal, have been proposed to explain the disjunct distribution of Mediterranean flora in southern Europe and western North America. These hypotheses were tested with molecular dating using a phylogeny of the moss genus Homalothecium based on ITS, atpB-rbcL, and rpl16 sequence data. The monophyly of two main lineages in Western Palearctic (Europe, central Asia and north Africa) and North America is consistent with the ancient vicariance hypothesis. The monophyly of Madeiran H. sericeum accessions supports the recognition of the Macaronesian endemic H. mandonii. A range of absolute rates of molecular evolution documented in land plants was used as probabilistic calibration prior by a Bayesian inference implementing a relaxed-clock model to derive ages for the nodes of interest. Our age estimates for the divergence of the American and Western Palearctic Homalothecium clade (5.7 Ma, IC 3.52-8.26) and the origin of H. mandonii (2.52 Myr IC 0.86-8.25) are not compatible with the ancient vicariance hypothesis. Age estimates suggests that species distributions result from rare instances of dispersal and subsequent sympatric diversification. The calibrated phylogeny indicates that Homalothecium has undergone a fast radiation during the last 4 Myr, which is consistent with the low levels of morphological divergence among sibling species.

  7. NASA Strategic Roadmap: Origin, Evolution, Structure, and Destiny of the Universe

    Science.gov (United States)

    White, Nicholas E.

    2005-01-01

    The NASA strategic roadmap on the Origin, Evolution, Structure and Destiny of the Universe is one of 13 roadmaps that outline NASA s approach to implement the vision for space exploration. The roadmap outlines a program to address the questions: What powered the Big Bang? What happens close to a Black Hole? What is Dark Energy? How did the infant universe grow into the galaxies, stars and planets, and set the stage for life? The roadmap builds upon the currently operating and successful missions such as HST, Chandra and Spitzer. The program contains two elements, Beyond Einstein and Pathways to Life, performed in three phases (2005-2015, 2015-2025 and >2025) with priorities set by inputs received from reviews undertaken by the National Academy of Sciences and technology readiness. The program includes the following missions: 2005-2015 GLAST, JWST and LISA; 2015-2025 Constellation-X and a series of Einstein Probes; and >2025 a number of ambitious vision missions which will be prioritized by results from the previous two phases.

  8. Quality assurance systems of higher education - The case of european institutions: origin, evolution and trends

    Directory of Open Access Journals (Sweden)

    Ángela Corengia

    2014-11-01

    Full Text Available http://dx.doi.org/10.5007/1983-4535.2014v7n3p61 The purpose of this research is to analyze the origin, evolution, performance and trends of higher education quality assurance systems in the following European countries: Denmark, Norway, Sweden, Finland, Austria, Italy, Switzerland, Germany, Netherlands, United Kingdom and France. It also studies the performance and impact of the organizations that join the European Quality Assurance Agencies together. The main sources of data collection were in situ semi-structured interviews to members of these agencies. It was found that in higher education institutions there is a strong trend towards the development of ‘internal quality assurance systems' in response to the public policies known as 'quality audits'. This overview about what is taking place in Europe may provide innovative instruments that could be considered for higher education quality evaluation and accreditation in Latin-American countries: quality audits, disciplinary agencies, evaluation of the quality assurance agencies, among others.

  9. Evolution of a CAM anatomy predates the origins of Crassulacean acid metabolism in the Agavoideae (Asparagaceae).

    Science.gov (United States)

    Heyduk, Karolina; McKain, Michael R; Lalani, Falak; Leebens-Mack, James

    2016-12-01

    Crassulacean acid metabolism (CAM) is a modified form of photosynthesis that has arisen independently at least 35 times in flowering plants. The occurrence of CAM is often correlated with shifts to arid, semiarid, or epiphytic habits, as well as transitions in leaf morphology (e.g. increased leaf thickness) and anatomy (e.g. increased cell size and packing). We assess shifts between C3 and CAM photosynthesis in the subfamily Agavoideae (Asparagaceae) through phylogenetic analysis of targeted loci captured from the nuclear and chloroplast genomes of over 60 species. Carbon isotope data was used as a proxy for mode of photosynthesis in extant species and ancestral states were estimated on the phylogeny. Ancestral character state mapping suggests three independent origins of CAM in the Agavoideae. CAM species differ from C3 species in climate space and are found to have thicker leaves with densely packed cells. C3 ancestors of CAM species show a predisposition toward CAM-like morphology. Leaf characteristics in the ancestral C3 species may have enabled the repeated evolution of CAM in the Agavoideae subfamily. Anatomical changes, including a tendency toward 3D venation, may have initially arisen in C3 ancestors in response to aridity as a way to increase leaf succulence for water storage. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus.

    Science.gov (United States)

    Dunn, Barbara; Sherlock, Gavin

    2008-10-01

    Inter-specific hybridization leading to abrupt speciation is a well-known, common mechanism in angiosperm evolution; only recently, however, have similar hybridization and speciation mechanisms been documented to occur frequently among the closely related group of sensu stricto Saccharomyces yeasts. The economically important lager beer yeast Saccharomyces pastorianus is such a hybrid, formed by the union of Saccharomyces cerevisiae and Saccharomyces bayanus-related yeasts; efforts to understand its complex genome, searching for both biological and brewing-related insights, have been underway since its hybrid nature was first discovered. It had been generally thought that a single hybridization event resulted in a unique S. pastorianus species, but it has been recently postulated that there have been two or more hybridization events. Here, we show that there may have been two independent origins of S. pastorianus strains, and that each independent group--defined by characteristic genome rearrangements, copy number variations, ploidy differences, and DNA sequence polymorphisms--is correlated with specific breweries and/or geographic locations. Finally, by reconstructing common ancestral genomes via array-CGH data analysis and by comparing representative DNA sequences of the S. pastorianus strains with those of many different S. cerevisiae isolates, we have determined that the most likely S. cerevisiae ancestral parent for each of the independent S. pastorianus groups was an ale yeast, with different, but closely related ale strains contributing to each group's parentage.

  11. Elsevier Trophoblast Research Award Lecture: origin, evolution and future of placenta miRNAs.

    Science.gov (United States)

    Morales-Prieto, D M; Ospina-Prieto, S; Schmidt, A; Chaiwangyen, W; Markert, U R

    2014-02-01

    MicroRNAs (miRNAs) regulate the expression of a large number of genes in plants and animals. Placental miRNAs appeared late in evolution and can be found only in mammals. Nevertheless, these miRNAs are constantly under evolutionary pressure. As a consequence, miRNA sequences and their mRNA targets may differ between species, and some miRNAs can only be found in humans. Their expression can be tissue- or cell-specific and can vary time-dependently. Human placenta tissue exhibits a specific miRNA expression pattern that dynamically changes during pregnancy and is reflected in the maternal plasma. Some placental miRNAs are involved in or associated with major pregnancy disorders, such as preeclampsia, intrauterine growth restriction or preterm delivery and, therefore, have a strong potential for usage as sensitive and specific biomarkers. In this review we summarize current knowledge on the origin of placental miRNAs, their expression in humans with special regard to trophoblast cells, interspecies differences, and their future as biomarkers. It can be concluded that animal models for human reproduction have a different panel of miRNAs and targets, and can only partly reflect or predict the situation in humans. Copyright © 2013. Published by Elsevier Ltd.

  12. Cultural Diversity as a Concept of Global Law: Origins, Evolution and Prospects

    Directory of Open Access Journals (Sweden)

    Mira Burri

    2010-08-01

    Full Text Available “Cultural diversity” has become one of the latest buzzwords on the international policymaking scene. It is employed in various contexts—sometimes as a term close to “biological diversity”, at other times as correlated to the “exception culturelle” and most often, as a generic concept that is mobilised to counter the perceived negative effects of economic globalisation. While no one has yet provided a precise definition of what cultural diversity is, what we can observe is the emergence of the notion of cultural diversity as incorporating a distinct set of policy objectives and choices at the global level. These decisions are not confined, as one might have expected, to cultural policymaking, but rather spill over to multiple governance domains because of the complex linkages inherent to the simultaneous pursuit of economic and other societal goals that cultural diversity encompasses and has effects on. Accounting for these intricate interdependencies, the present article clarifies the origins of the concept of cultural diversity as understood in global law and traces its evolution over time. Observing the dynamics of the concept and the surrounding political and legal developments in particular in the context of trade and culture, the article explores its justification and overall impact on the global legal regime, as well as its discrete effects on different domains of policymaking, such as media and intellectual property. While the analysis is legal in essence, the article is also meant to speak to a broader transdisciplinary public.

  13. Mycorrhizal diversity in Apostasia (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza.

    Science.gov (United States)

    Yukawa, Tomohisa; Ogura-Tsujita, Yuki; Shefferson, Richard P; Yokoyama, Jun

    2009-11-01

    We demonstrated that "orchid mycorrhiza," a specialized mycorrhizal type, appeared in the common ancestor of the largest plant family Orchidaceae and that the fungal partner shifted from Glomeromycota to a particular clade of Basidiomycota in association with this character evolution. Several unique mycorrhizal characteristics may have contributed to the diversification of the family. However, the origin of orchid mycorrhiza and the diversity of mycobionts across orchid lineages still remain obscure. In this study, we investigated the mycorrhizae of five Apostasia taxa, members of the earliest-diverging clade of Orchidaceae. The results of molecular identification using nrDNA ITS and LSU regions showed that Apostasia mycorrhizal fungi belong to families Botryobasidiaceae and Ceratobasidiaceae, which fall within the order Cantharellales of Basidiomycota. Most major clades in Orchidaceae also form mycorrhizae with members of Cantharellales, while the sister group and other closely related groups to Orchidaceae (i.e., Asparagales except for orchids and the "commelinid" families) ubiquitously form symbioses with Glomeromycota to form arbuscular mycorrhizae. This pattern of symbiosis indicates that a major shift in fungal partner occurred in the common ancestor of the Orchidaceae.

  14. PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS

    Science.gov (United States)

    Dehant, Veronique; Breuer, Doris; Claeys, Philippe; Debaille, Vinciane; De Keyser, Johan; Javaux, Emmanuelle; Goderis, Steven; Karatekin, Ozgur; Mattielli, Nadine; Noack, Lena; Spohn, Tilman; Carine Vandaele, Ann; Vanhaecke, Frank; Van Hoolst, Tim; Wilquet, Valerie

    2013-04-01

    The PLANET TOPERS (Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS) group is an Inter-university attraction pole (IAP) addressing the question of habitability in our Solar System. Habitability is commonly understood as "the potential of an environment (past or present) to support life of any kind" (Steele et al., 2005, http://mepag.jpl.nasa.gov/reports/archive.html). Based on the only known example of Earth, the concept refers to whether environmental conditions are available that could eventually support life, even if life does not currently exist (Javaux and Dehant, 2010, Astron. Astrophys. Rev., 18, 383-416, DOI: 10.1007/s00159-010-0030-4). Life includes properties such as consuming nutrients and producing waste, the ability to reproduce and grow, pass on genetic information, evolve, and adapt to the varying conditions on a planet (Sagan, 1970, Encyclopedia Britannica, 22, 964-981). Terrestrial life requires liquid water. The stability of liquid water at the surface of a planet defines a habitable zone (HZ) around a star. In the Solar System, it stretches between Venus and Mars, but excludes these two planets. If the greenhouse effect is taken into account, the habitable zone may have included early Mars while the case for Venus is still debated. Important geodynamic processes affect the habitability conditions of a planet. As envisaged by the group, this IAP develops and closely integrates the geophysical, geological, and biological aspects of habitability with a particular focus on Earth neighboring planets, Mars and Venus. It works in an interdisciplinary approach to understand habitability and in close collaboration with another group, the Helmholtz Alliance "Life and Planet Evolution", which has similar objectives. The dynamic processes, e.g. internal dynamo, magnetic field, atmosphere, plate tectonics, mantle convection, volcanism, thermo-tectonic evolution, meteorite impacts, and erosion, modify the planetary surface

  15. Evolution of protoplanetary disks from their taxonomy in scattered light: Group I vs. Group II

    Science.gov (United States)

    Garufi, A.; Meeus, G.; Benisty, M.; Quanz, S. P.; Banzatti, A.; Kama, M.; Canovas, H.; Eiroa, C.; Schmid, H. M.; Stolker, T.; Pohl, A.; Rigliaco, E.; Ménard, F.; Meyer, M. R.; van Boekel, R.; Dominik, C.

    2017-07-01

    Context. High-resolution imaging reveals a large morphological variety of protoplanetary disks. To date, no constraints on their global evolution have been found from this census. An evolutionary classification of disks was proposed based on their IR spectral energy distribution, with the Group I sources showing a prominent cold component ascribed to an earlier stage of evolution than Group II. Aims: Disk evolution can be constrained from the comparison of disks with different properties. A first attempt at disk taxonomy is now possible thanks to the increasing number of high-resolution images of Herbig Ae/Be stars becoming available. Methods: Near-IR images of six Group II disks in scattered light were obtained with VLT/NACO in polarimetric differential imaging, which is the most efficient technique for imaging the light scattered by the disk material close to the stars. We compare the stellar/disk properties of this sample with those of well-studied Group I sources available from the literature. Results: Three Group II disks are detected. The brightness distribution in the disk of HD 163296 indicates the presence of a persistent ring-like structure with a possible connection with the CO snowline. A rather compact (compact). HD 163296 could be the primordial version of a typical Group I disk. Other Group II disks, like AK Sco and HD 142666, could be smaller counterparts of Group I unable to open cavities as large as those of Group I. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program number 095.C-0658(A).

  16. Inevitable evolution: back to the origin and beyond the 20th century paradigm of contingent evolution by historical natural selection.

    Science.gov (United States)

    Witting, Lars

    2008-08-01

    Since neo-Darwinism arose from the work of Darwin and Mendel evolution by natural selection has been seen as contingent and historical being defined by an a posteriori selection process with no a priori laws that explain why evolution on Earth has taken the direction of the major evolutionary trends and transitions instead of any other direction. Recently, however, major life-history trends and transitions have been explained as inevitable because of a deterministic selection that unfolds from the energetic state of the organism and the density-dependent competitive interactions that arise from self-replication in limited environments. I describe differences and similarities between the historical and deterministic selection processes, illustrate concepts using life-history models on large body masses and limited reproductive rates, review life-history evolution with a wider focus on major evolutionary transitions, and propose that biotic evolution is driven by a universal natural selection where the long-term evolution of fitness-related traits is determined mainly by deterministic selection, while contingency is important predominately for neutral traits. Given suitable environmental conditions, it is shown that selection by energetic state and density-dependent competitive interactions unfolds to higher level selection for life-history transitions from simple asexually reproducing self-replicators to large bodied organisms with senescence and sexual reproduction between males and females, and in some cases, to the fully evolved eusocial colony with thousands of offspring workers. This defines an evolutionary arrow of time for open thermodynamic systems with a constant inflow of energy, predicting similar routes for long-term evolution on similar planets.

  17. The developmental origin of zygodactyl feet and its possible loss in the evolution of Passeriformes

    Science.gov (United States)

    Botelho, João Francisco; Smith-Paredes, Daniel; Nuñez-Leon, Daniel; Soto-Acuña, Sergio; Vargas, Alexander O.

    2014-01-01

    The zygodactyl orientation of toes (digits II and III pointing forwards, digits I and IV pointing backwards) evolved independently in different extant bird taxa. To understand the origin of this trait in modern birds, we investigated the development of the zygodactyl foot of the budgerigar (Psittaciformes). We compared its muscular development with that of the anisodactyl quail (Galliformes) and show that while the musculus abductor digiti IV (ABDIV) becomes strongly developed at HH36 in both species, the musculus extensor brevis digiti IV (EBDIV) degenerates and almost disappears only in the budgerigar. The asymmetric action of those muscles early in the development of the budgerigar foot causes retroversion of digit IV (dIV). Paralysed budgerigar embryos do not revert dIV and are anisodactyl. Both molecular phylogenetic analysis and palaeontological information suggest that the ancestor of passerines could have been zygodactyl. We followed the development of the zebra finch (Passeriformes) foot muscles and found that in this species, both the primordia of the ABDIV and of the EBDIV fail to develop. These data suggest that loss of asymmetric forces of muscular activity exerted on dIV, caused by the absence of the ABDIV, could have resulted in secondary anisodactyly in Passeriformes. PMID:24966313

  18. Evolution Stings: The Origin and Diversification of Scorpion Toxin Peptide Scaffolds

    Directory of Open Access Journals (Sweden)

    Kartik Sunagar

    2013-12-01

    Full Text Available The episodic nature of natural selection and the accumulation of extreme sequence divergence in venom-encoding genes over long periods of evolutionary time can obscure the signature of positive Darwinian selection. Recognition of the true biocomplexity is further hampered by the limited taxon selection, with easy to obtain or medically important species typically being the subject of intense venom research, relative to the actual taxonomical diversity in nature. This holds true for scorpions, which are one of the most ancient terrestrial venomous animal lineages. The family Buthidae that includes all the medically significant species has been intensely investigated around the globe, while almost completely ignoring the remaining non-buthid families. Australian scorpion lineages, for instance, have been completely neglected, with only a single scorpion species (Urodacus yaschenkoi having its venom transcriptome sequenced. Hence, the lack of venom composition and toxin sequence information from an entire continent’s worth of scorpions has impeded our understanding of the molecular evolution of scorpion venom. The molecular origin, phylogenetic relationships and evolutionary histories of most scorpion toxin scaffolds remain enigmatic. In this study, we have sequenced venom gland transcriptomes of a wide taxonomical diversity of scorpions from Australia, including buthid and non-buthid representatives. Using state-of-art molecular evolutionary analyses, we show that a majority of CSα/β toxin scaffolds have experienced episodic influence of positive selection, while most non-CSα/β linear toxins evolve under the extreme influence of negative selection. For the first time, we have unraveled the molecular origin of the major scorpion toxin scaffolds, such as scorpion venom single von Willebrand factor C-domain peptides (SV-SVC, inhibitor cystine knot (ICK, disulphide-directed beta-hairpin (DDH, bradykinin potentiating peptides (BPP, linear non

  19. Fluctuating helical asymmetry and morphology of snails (Gastropoda in divergent microhabitats at 'Evolution Canyons I and II,' Israel.

    Directory of Open Access Journals (Sweden)

    Shmuel Raz

    Full Text Available BACKGROUND: Developmental instability of shelled gastropods is measured as deviations from a perfect equiangular (logarithmic spiral. We studied six species of gastropods at 'Evolution Canyons I and II' in Carmel and the Galilee Mountains, Israel, respectively. The xeric, south-facing, 'African' slopes and the mesic, north-facing, 'European' slopes have dramatically different microclimates and plant communities. Moreover, 'Evolution Canyon II' receives more rainfall than 'Evolution Canyon I.' METHODOLOGY/PRINCIPAL FINDINGS: We examined fluctuating asymmetry, rate of whorl expansion, shell height, and number of rotations of the body suture in six species of terrestrial snails from the two 'Evolution Canyons.' The xeric 'African' slope should be more stressful to land snails than the 'European' slope, and 'Evolution Canyon I' should be more stressful than 'Evolution Canyon II.' Only Eopolita protensa jebusitica showed marginally significant differences in fluctuating helical asymmetry between the two slopes. Contrary to expectations, asymmetry was marginally greater on the 'European' slope. Shells of Levantina spiriplana caesareana at 'Evolution Canyon I,' were smaller and more asymmetric than those at 'Evolution Canyon II.' Moreover, shell height and number of rotations of the suture were greater on the north-facing slopes of both canyons. CONCLUSIONS/SIGNIFICANCE: Our data is consistent with a trade-off between drought resistance and thermoregulation in snails; Levantina was significantly smaller on the 'African' slope, for increasing surface area and thermoregulation, while Eopolita was larger on the 'African' slope, for reducing water evaporation. In addition, 'Evolution Canyon I' was more stressful than Evolution Canyon II' for Levantina.

  20. DIFFERENT ORIGINS OR DIFFERENT EVOLUTIONS? DECODING THE SPECTRAL DIVERSITY AMONG C-TYPE ASTEROIDS

    Energy Technology Data Exchange (ETDEWEB)

    Vernazza, P.; Marsset, M.; Groussin, O.; Lamy, P.; Jorda, L.; Mousis, O.; Delsanti, A. [Aix Marseille Univ, CNRS, LAM, Laboratoire d’Astrophysique de Marseille, Marseille (France); Castillo-Rogez, J. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Beck, P. [UJF-Grenoble 1, CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), UMR 5274, Grenoble F-38041 (France); Emery, J. [Department of Earth and Planetary Sciences and Planetary Geosciences Institute, University of Tennessee, Knoxville, TN 37996-1410 (United States); Brunetto, R.; Djouadi, Z.; Dionnet, Z. [Institut d’Astrophysique Spatiale, CNRS, UMR-8617, Université Paris-Sud, bâtiment 121, F-91405 Orsay Cedex (France); Delbo, M.; Carry, B. [Laboratoire Lagrange, UNS-CNRS, Observatoire de la Cote d’Azur, Boulevard de l’Observatoire-CS 34229, F-06304 Nice Cedex 4 (France); Marchis, F. [Carl Sagan Center at the SETI Institute, Mountain View, CA 94043 (United States); Zanda, B. [IMCCE, Observatoire de Paris, 77 avenue Denfert-Rochereau, F-75014 Paris Cedex (France); Borondics, F., E-mail: pierre.vernazza@lam.fr [SMIS Beamline, Soleil Synchrotron, BP48, L’Orme des Merisiers, F-91192 Gif sur Yvette Cedex (France)

    2017-02-01

    Anhydrous pyroxene-rich interplanetary dust particles (IDPs) have been proposed as surface analogs for about two-thirds of all C-complex asteroids. However, this suggestion appears to be inconsistent with the presence of hydrated silicates on the surfaces of some of these asteroids, including Ceres. Here, we report the presence of enstatite (pyroxene) on the surface of two C-type asteroids (Ceres and Eugenia) based on their spectral properties in the mid-infrared range. The presence of this component is particularly unexpected in the case of Ceres, because most thermal evolution models predict a surface consisting of hydrated compounds only. The most plausible scenario is that Ceres’ surface has been partially contaminated by exogenous enstatite-rich material, possibly coming from the Beagle asteroid family. This scenario questions a similar origin for Ceres and the remaining C-types, and it possibly supports recent results obtained by the Dawn mission (NASA) that Ceres may have formed in the very outer solar system. Concerning the smaller D  ∼ 200 km C-types such as Eugenia, both their derived surface composition (enstatite and amorphous silicates) and low density (<1.5 g cm{sup −3}) suggest that these bodies accreted from the same building blocks, namely chondritic porous, pyroxene-rich IDPs and volatiles (mostly water ice), and that a significant volume fraction of these bodies has remained unaffected by hydrothermal activity likely implying a late accretion. In addition, their current heliocentric distance may best explain the presence or absence of water ice at their surfaces. Finally, we raise the possibility that CI chondrites, Tagish-Lake-like material, or hydrated IDPs may be representative samples of the cores of these bodies.

  1. Origin and evolution of the panarthropod head - A palaeobiological and developmental perspective.

    Science.gov (United States)

    Ortega-Hernández, Javier; Janssen, Ralf; Budd, Graham E

    2017-05-01

    The panarthropod head represents a complex body region that has evolved through the integration and functional specialization of the anterior appendage-bearing segments. Advances in the developmental biology of diverse extant organisms have led to a substantial clarity regarding the relationships of segmental homology between Onychophora (velvet worms), Tardigrada (water bears), and Euarthropoda (e.g. arachnids, myriapods, crustaceans, hexapods). The improved understanding of the segmental organization in panarthropods offers a novel perspective for interpreting the ubiquitous Cambrian fossil record of these successful animals. A combined palaeobiological and developmental approach to the study of the panarthropod head through deep time leads us to propose a consensus hypothesis for the intricate evolutionary history of this important tagma. The contribution of exceptionally preserved brains in Cambrian fossils - together with the recognition of segmentally informative morphological characters - illuminate the polarity for major anatomical features. The euarthropod stem-lineage provides a detailed view of the step-wise acquisition of critical characters, including the origin of a multiappendicular head formed by the fusion of several segments, and the transformation of the ancestral protocerebral limb pair into the labrum, following the postero-ventral migration of the mouth opening. Stem-group onychophorans demonstrate an independent ventral migration of the mouth and development of a multisegmented head, as well as the differentiation of the deutocerebral limbs as expressed in extant representatives. The anterior organization of crown-group Tardigrada retains several ancestral features, such as an anterior-facing mouth and one-segmented head. The proposed model aims to clarify contentious issues on the evolution of the panarthropod head, and lays the foundation from which to further address this complex subject in the future. Copyright © 2016 Elsevier Ltd. All

  2. Origin and evolution of candidate mental retardation genes on the human X chromosome (MRX

    Directory of Open Access Journals (Sweden)

    Deakin Janine E

    2008-02-01

    Full Text Available Abstract Background The human X chromosome has a biased gene content. One group of genes that is over-represented on the human X are those expressed in the brain, explaining the large number of sex-linked mental retardation (MRX syndromes. Results To determine if MRX genes were recruited to the X, or whether their brain-specific functions were acquired after relocation to the mammalian X chromosome, we examined the location and expression of their orthologues in marsupials, which diverged from human approximately 180 million years ago. We isolated and mapped nine tammar wallaby MRX homologues, finding that six were located on the tammar wallaby X (which represents the ancient conserved mammal X and three on chromosome 5, representing the recently added region of the human X chromosome. The location of MRX genes within the same synteny groups in human and wallaby does not support the hypothesis that genes with an important function in the brain were recruited in multiple independent events from autosomes to the mammalian X chromosome. Most of the tammar wallaby MRX homologues were more widely expressed in tammar wallaby than in human. Only one, the tammar wallaby ARX homologue (located on tammar chromosome 5p, has a restricted expression pattern comparable to its pattern in human. The retention of the brain-specific expression of ARX over 180 million years suggests that this gene plays a fundamental role in mammalian brain development and function. Conclusion Our results suggest all the genes in this study may have originally had more general functions that became more specialised and important in brain function during evolution of humans and other placental mammals.

  3. Developmental origin and evolution of bacteriocytes in the aphid-Buchnera symbiosis.

    Directory of Open Access Journals (Sweden)

    Christian Braendle

    2003-10-01

    Full Text Available Symbiotic relationships between bacteria and insect hosts are common. Although the bacterial endosymbionts have been subjected to intense investigation, little is known of the host cells in which they reside, the bacteriocytes. We have studied the development and evolution of aphid bacteriocytes, the host cells that contain the endosymbiotic bacteria Buchnera aphidicola. We show that bacteriocytes of Acyrthosiphon pisum express several gene products (or their paralogues: Distal-less, Ultrabithorax/Abdominal-A, and Engrailed. Using these markers, we find that a subpopulation of the bacteriocytes is specified prior to the transmission of maternal bacteria to the embryo. In addition, we discovered that a second population of cells is recruited to the bacteriocyte fate later in development. We experimentally demonstrate that bacteriocyte induction and proliferation occur independently of B. aphidicola. Major features of bacteriocyte development, including the two-step recruitment of bacteriocytes, have been conserved in aphids for 80-150 million years. Furthermore, we have investigated two cases of evolutionary loss of bacterial symbionts: in one case, where novel extracellular, eukaryotic symbionts replaced the bacteria, the bacteriocyte is maintained; in another case, where symbionts are absent, the bacteriocytes are initiated but not maintained. The bacteriocyte represents an evolutionarily novel cell fate, which is developmentally determined independently of the bacteria. Three of five transcription factors we examined show novel expression patterns in bacteriocytes, suggesting that bacteriocytes may have evolved to express many additional transcription factors. The evolutionary transition to a symbiosis in which bacteria and an aphid cell form a functional unit, similar to the origin of plastids, has apparently involved extensive molecular adaptations on the part of the host cell.

  4. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction.

    Directory of Open Access Journals (Sweden)

    Vincent Croset

    2010-08-01

    Full Text Available Ionotropic glutamate receptors (iGluRs are a highly conserved family of ligand-gated ion channels present in animals, plants, and bacteria, which are best characterized for their roles in synaptic communication in vertebrate nervous systems. A variant subfamily of iGluRs, the Ionotropic Receptors (IRs, was recently identified as a new class of olfactory receptors in the fruit fly, Drosophila melanogaster, hinting at a broader function of this ion channel family in detection of environmental, as well as intercellular, chemical signals. Here, we investigate the origin and evolution of IRs by comprehensive evolutionary genomics and in situ expression analysis. In marked contrast to the insect-specific Odorant Receptor family, we show that IRs are expressed in olfactory organs across Protostomia--a major branch of the animal kingdom that encompasses arthropods, nematodes, and molluscs--indicating that they represent an ancestral protostome chemosensory receptor family. Two subfamilies of IRs are distinguished: conserved "antennal IRs," which likely define the first olfactory receptor family of insects, and species-specific "divergent IRs," which are expressed in peripheral and internal gustatory neurons, implicating this family in taste and food assessment. Comparative analysis of drosophilid IRs reveals the selective forces that have shaped the repertoires in flies with distinct chemosensory preferences. Examination of IR gene structure and genomic distribution suggests both non-allelic homologous recombination and retroposition contributed to the expansion of this multigene family. Together, these findings lay a foundation for functional analysis of these receptors in both neurobiological and evolutionary studies. Furthermore, this work identifies novel targets for manipulating chemosensory-driven behaviours of agricultural pests and disease vectors.

  5. A Conference on the Origin (and Evolution of Baryonic Galaxy Halos

    Directory of Open Access Journals (Sweden)

    Duncan Forbes

    2017-05-01

    Full Text Available A conference was held in March 2017 in the Galapagos Islands on the topic of The Origin (and Evolution of Baryonic Galaxy Halos. It attracted some 120 researchers from around the world. They presented 68 talks (nine of which were invited and 30 posters over five days. A novel element of the talk schedule was that participants were asked which talks they wanted to hear and the schedule was made up based on their votes and those of the Scientific Organizing Committee SOC . The final talk schedule had 34% of the talks given by women. An emphasis was given to discussion time directly after each talk. Combined with limited/no access to the internet, this resulted in high level of engagement and lively discussions. A prize was given to the poster voted the best by participants. A free afternoon included organized excursions to see the local scenery and wildlife of the Galapagos (e.g., the giant tortoises. Four public talks were given, in Spanish, for the local residents of the town. A post-conference survey was conducted, with most participants agreeing that the conference met their scientific needs and helped to initiate new research directions. Although it was challenging to organize such a large international meeting in such an isolated location as the Galapagos Islands (and much credit goes to the Local Organizing Committee LOC and staff of Quito Astronomical Observatory for their logistical efforts, organizing the meeting for over a year, it was very much a successful conference. We hope it will play a small part in further developing astronomy in Ecuador.

  6. The evolution of body size, Cope's rule and the origin of amniotes.

    Science.gov (United States)

    Laurin, Michel

    2004-08-01

    The evolution of body size in tetrapods is assessed using a database that includes 107 early stegocephalian species ranging in time from the Frasnian (Upper Devonian) to the Tatarian (Upper Permian). All analyses use methods that incorporate phylogenetic information (topology and branch lengths). In all tests, the impact of alternative topologies and branch lengths are assessed. Previous reports that raised doubts about the accuracy of squared-change parsimony assessment of ancestral character value appear to have used datasets in which there was no phylogenetic signal. Hence, squared-change parsimony may be more reliable than suggested in recent studies, at least when a phylogenetic signal is present in the datasets of interest. Analysis using random taxon reshuffling on three reference phylogenies shows that cranial and presacral length include a strong phylogenetic signal. Character optimization of body size in stegocephalians using squared-change parsimony on a time-calibrated phylogeny incorporating branch length information is used to test a previously published scenario on the origin of amniotes and of the amniotic egg that implies that the ancestors of amniotes were small (no more than 10 cm in snout-vent length), and that their size increased subsequent to the appearance of the amniotic egg. The optimization suggests that first amniotes were somewhat larger than previously hypothesized; the estimated snout-vent length is about 24 cm, and the lower end of the 95% confidence interval of the phylogeny that yields the smallest inferred size suggests that no ancestor of amniotes measured less than 12 cm in snout-vent length. Character optimization, permutational multiple linear regressions, and independent contrast analyses show that Cope's rule of phyletic size increase applies to early reptiliomorphs but that it does not apply to early stegocephalians globally.

  7. Geochemical and isotopic perspectives on the origin and evolution of the Siletzia Terrane.

    Science.gov (United States)

    Phillips, B. A.; Weis, D.; Mullen, E.; Kerr, A. C.

    2015-12-01

    The Siletzia terrane, located in the Cascadia forearc region of Oregon, Washington and Vancouver Island, consists of a series of accreted basaltic pillow lavas, massive flows and intrusive sheets. It represents a late Paleocene-Eocene oceanic large igneous province (LIP), previously proposed to represent an accreted oceanic plateau, hotspot island chain, backarc basin, island arc, or a sequence of slab window volcanics formed by ridge subduction. A province-wide geochemical reassessment of the terrane, including new high precision Sr-Pb-Nd-Hf isotope data on basaltic samples, has been used to assess the validity of the proposed tectonomagmatic models for Siletzia. The trace element data show REE patterns that are flat to LREE enriched with an absence of any arc signatures. These features are comparable to other oceanic plateaus such as the Ontong Java and the Caribbean and so therefore support a mantle plume origin. Initial isotope ratios range from 206Pb/204Pb = 18.869 - 19.673, 207Pb/204Pb = 15.527 - 15.609, 208Pb/204Pb = 38.551 - 39.220, ɛHf = +9.0 - 14.8, ɛNd = +5.0 - 8.0 and 87Sr/86Sr = 0.70304 - 0.70397. The isotope signatures become more varied southward across the terrane and reveal two trends: i) HIMU-DMM and ii) another extending from DMM towards the Imnaha component, thought to represent the mantle plume source of the Columbia River Basalts and Yellowstone 1,2. The data may support the previously proposed idea that the volcanism of the Siletzia terrane represents initial melting of the mantle plume head of the Yellowstone hotspot 3,4,5. Other evidence indicating a LIP origin includes the relatively rapid eruption/intrusion of an estimated magma volume of 2.6 x 106 km3 6 between ~56-49 Ma 5, which, in conjunction with our new elemental and isotopic data, indicates that the Siletzia terrane most likely represents an accreted oceanic plateau. 1. Wolff et al., (2008) Nature Geoscience 1, 177-180. 2. Jean et al., (2014) EPSL 389, 119-131 3. Duncan (1982

  8. Accelerated evolution of the pituitary adenylate cyclase-activating polypeptide precursor gene during human origin

    DEFF Research Database (Denmark)

    Wang, Yin-Qiu; Qian, Ya-Ping; Yang, Su

    2005-01-01

    a strong functional constraint during the course of evolution. However, through comparative sequence analysis, we demonstrated that the PACAP precursor gene underwent an accelerated evolution in the human lineage since the divergence from chimpanzees, and the amino acid substitution rate in humans...

  9. Spectroscopic characterization of the competitive binding of Eu(III), Ca(II), and Cu(II) to a sedimentary originated humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Marang, L.; Reiller, P.E. [CEA Saclay, Nucl Energy Div, DPC SECR, Lab Speciat Radionucleides and Mol, 91 - Gif sur Yvette (France); Marang, L.; Benedetti, M.F. [Univ Paris 07, Lab Geochim Eaux, IPGP UMR CNRS 7154, F-75205 Paris 13 (France); Eidner, S.; Kumke, M.U. [Univ Potsdam, Inst Chem, D-14476 Potsdam (Germany)

    2009-06-15

    The competition between REE, alkaline earth and d-transition metals for organic matter binding sites is still an open field of research; particularly, the mechanisms governing these phenomena need to be characterized in more detail. In this study, we examine spectroscopically the mechanisms of competitive binding of Eu(III)/Cu(II) and Eu(III)/Ca(II) pair to Gorleben humic acid (HA), as previously proposed in the framework of the NICA-Donnan model. The evolution of time-resolved laser induced luminescence spectra of humic-complexed Eu(Ill) showed two strikingly different environments for a comparable bound proportion for Cu(II) and Ca(II). Cu(II) seems to compete more effectively with Eu(III) inducing its release into the Donnan phase, and into the bulk solution as free Eu{sup 3+}. This is evidenced both by the shapes of the spectra and by the decrease in the luminescence decay times. In contrast with that, Ca(II) induces a modification of the HA structure, which enhances the luminescence of humic-bound Eu(III), and causes a minor modification of the chemical environment of the complexed rare earth ion. (authors)

  10. Human Development X: Explanation of Macroevolution — Top-Down Evolution Materializes Consciousness. The Origin of Metamorphosis

    OpenAIRE

    Hermansen, Tyge Dahl; Ventegodt, Søren; Merrick, Joav

    2006-01-01

    In this paper, we first give a short discussion of the macroevolution viewing life as information-directed, complex, dynamic systems. On this basis, we give our explanation of the origin of life and discuss the top-down evolution of molecules, proteins, and macroevolution. We discuss these subjects according to our new holistic biological paradigm. In view of this, we discuss the macroevolution of the organism, the species, the biosphere, and human society. After this, we discuss the shift in...

  11. Trace elements in Gem-Quality Diamonds - Origin and evolution of diamond-forming fluid inclusions

    Science.gov (United States)

    Pearson, Graham; Krebs, Mandy; Stachel, Thomas; Woodland, Sarah; Chinn, Ingrid; Kong, Julie

    2017-04-01

    In the same way that melt inclusions in phenocrysts have expanded our idea of melt formation and evolution in basalts, studying fluids trapped in diamonds is providing important new constraints on the nature of diamond-forming fluids. Fibrous and cloudy diamonds trap a high but variable density of fluid inclusions and so have been extensively studied using major and trace element compositions. In contrast, constraining the nature of the diamond-forming fluid for high purity gem-quality diamonds has been restricted by the rarity of available high quality trace element data. This is due to the extremely low concentrations of impurities that gem diamonds contain - often in the ppt range. The recent discovery of fluids in gem diamonds showing similar major element chemistry to fluid-rich diamonds suggest that many diamonds may share a common spectrum of parental fluids. Here we test this idea further. Recent advances in analytical techniques, in particular the development of the "off-line" laser ablation pre-concentration approach, have allowed fully quantitative trace element data to be recovered from "fluid-poor", high quality gem diamonds. We present trace element data for gem diamonds from a variety of locations from Canada, S. Africa and Russia, containing either silicate or sulphide inclusions to examine possible paragenetic or genetic differences between fluids. REE abundance in the "gem" diamonds vary from 0.1 to 0.0001 x chondrite. To a first order, we observe the same spectrum of trace element compositions in the gem diamonds as that seen in fluid-rich "fibrous" diamonds, supporting a common origin for the fluids. REE patterns range from extremely flat (Ce/Yb)n 2.5 to 5 (commonly in sulphide-bearing diamonds) to >70, the latter having significantly greater inter-element HFSE/LILE fractionation. In general, the fluids from the sulphide-bearing diamonds are less REE-enriched than the silicate-bearing diamonds, but the ranges overlap significantly. The very

  12. Proponents of Creationism but not Proponents of Evolution Frame the Origins Debate in Terms of Proof

    Science.gov (United States)

    Barnes, Ralph M.; Church, Rebecca A.

    2013-03-01

    In Study 1, 72 internet documents containing creationism, ID (intelligent design), or evolution content were selected for analysis. All instances of proof cognates (the word "proof" and related terms such as "proven", "disproof", etc.) contained within these documents were identified and labeled in terms of the manner in which the terms were used. In Study 2, frequency counts for six terms (proof, evidence, establish, experiment, test, trial) were conducted on a sample of peer-reviewed research articles in the journal Science and the 72 internet documents included in Study 1. Quantitative and qualitative analyses revealed that proponents of creationism were much more likely than proponents of evolution to frame the creationism/evolution issue in terms of proof (ID proponents fell partway between the other two). Proponents of creationism frequently described empirical data favoring their position as proof of their position. Even more frequently, proponents of creationism described evolutionary scientists as being engaged in failed attempts to prove the truth of the evolutionary position. Evolution documents included fewer proof cognates than creationism or ID documents and the few proof cognates found in evolution documents were rarely used to describe the status of the theory of evolution. Qualitative data analysis indicated that proof cognates were often used to indicate certainty. The asymmetry between evolution and creationism documents was limited primarily to proof cognates; there were no major asymmetries for the terms evidence, establish, experiment, test, and trial. The results may reveal differences in the epistemological commitments of the involved parties.

  13. Origin and evolution of Sariñena Lake (central Ebro Basin): A piping-based model

    Science.gov (United States)

    Castañeda, Carmen; Javier Gracia, F.; Rodríguez-Ochoa, Rafael; Zarroca, Mario; Roqué, Carles; Linares, Rogelio; Desir, Gloria

    2017-08-01

    The origin and nature of the numerous lakes in the central Ebro Basin have been interpreted according to the prevailing arid or semiarid conditions, the easily-eroded materials and the solubility of the gypsum- and/or carbonate-rich Tertiary/Cenozoic substratum, involving important dissolution (karstic) and/or aeolian deflation. However, the origin of Sariñena Lake, the largest in the central Ebro Basin, remains unknown since the typical lake-generating processes in the region are not applicable. This work provides significant clues to the genesis and evolution of Sariñena Lake in a regional context. The combination of geomorphological mapping and high resolution LiDAR data together with sedimentological observations, the characterisation of soils and sediments around the lake, and the application of high-resolution geophysical techniques suggest that piping is the major genetic process driving the evolution of the Sariñena depression and lake. Field evidence demonstrates that piping is, at present, the most important erosive process in the region, generating significant collapse and surface lowering. Sariñena Lake is located within a deep endorheic depression excavated from Na-rich Tertiary materials. This work hypothesises that once an early, fluvially-originated palustrine area had developed, the progressive lowering of the regional water table linked to regional fluvial incision favoured the establishment of a hydrological gradient high enough to trigger piping processes within the claystones and siltstones underlying the original palustrine area. The Quaternary evolution of the Sariñena lacustrine basin was then controlled by successive water table fluctuations, linked to different phases of incision and alluvial deposition in the surrounding fluvial systems. All the evidence supporting a piping-related origin for this lake, together with examples of lakes generated by similar processes in different contexts, is used to propose a new genetic type of

  14. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles.

    Science.gov (United States)

    Jékely, Gáspár

    2014-09-02

    The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Functional divergence of the brain-size regulating gene MCPH1 during primate evolution and the origin of humans

    Science.gov (United States)

    2013-01-01

    Background One of the key genes that regulate human brain size, MCPH1 has evolved under strong Darwinian positive selection during the evolution of primates. During this evolution, the divergence of MCPH1 protein sequences among primates may have caused functional changes that contribute to brain enlargement. Results To test this hypothesis, we used co-immunoprecipitation and reporter gene assays to examine the activating and repressing effects of MCPH1 on a set of its down-stream genes and then compared the functional outcomes of a series of mutant MCPH1 proteins that carry mutations at the human- and great-ape-specific sites. The results demonstrate that the regulatory effects of human MCPH1 and rhesus macaque MCPH1 are different in three of eight down-stream genes tested (p73, cyclinE1 and p14ARF), suggesting a functional divergence of MCPH1 between human and non-human primates. Further analyses of the mutant MCPH1 proteins indicated that most of the human-specific mutations could change the regulatory effects on the down-stream genes. A similar result was also observed for one of the four great-ape-specific mutations. Conclusions Collectively, we propose that during primate evolution in general and human evolution in particular, the divergence of MCPH1 protein sequences under Darwinian positive selection led to functional modifications, providing a possible molecular mechanism of how MCPH1 contributed to brain enlargement during primate evolution and human origin. PMID:23697381

  16. Type II Supernova Spectral Diversity. I. Observations, Sample Characterization, and Spectral Line Evolution

    Science.gov (United States)

    Gutiérrez, Claudia P.; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; González-Gaitan, Santiago; Stritzinger, Maximilian D.; Phillips, Mark M.; Galbany, Lluis; Folatelli, Gastón; Dessart, Luc; Contreras, Carlos; Della Valle, Massimo; Freedman, Wendy L.; Hsiao, Eric Y.; Krisciunas, Kevin; Madore, Barry F.; Maza, José; Suntzeff, Nicholas B.; Prieto, Jose Luis; González, Luis; Cappellaro, Enrico; Navarrete, Mauricio; Pizzella, Alessandro; Ruiz, Maria T.; Smith, R. Chris; Turatto, Massimo

    2017-11-01

    We present 888 visual-wavelength spectra of 122 nearby type II supernovae (SNe II) obtained between 1986 and 2009, and ranging between 3 and 363 days post-explosion. In this first paper, we outline our observations and data reduction techniques, together with a characterization based on the spectral diversity of SNe II. A statistical analysis of the spectral matching technique is discussed as an alternative to nondetection constraints for estimating SN explosion epochs. The time evolution of spectral lines is presented and analyzed in terms of how this differs for SNe of different photometric, spectral, and environmental properties: velocities, pseudo-equivalent widths, decline rates, magnitudes, time durations, and environment metallicity. Our sample displays a large range in ejecta expansion velocities, from ˜9600 to ˜1500 km s-1 at 50 days post-explosion with a median {{{H}}}α value of 7300 km s-1. This is most likely explained through differing explosion energies. Significant diversity is also observed in the absolute strength of spectral lines, characterized through their pseudo-equivalent widths. This implies significant diversity in both temperature evolution (linked to progenitor radius) and progenitor metallicity between different SNe II. Around 60% of our sample shows an extra absorption component on the blue side of the {{{H}}}α P-Cygni profile (“Cachito” feature) between 7 and 120 days since explosion. Studying the nature of Cachito, we conclude that these features at early times (before ˜35 days) are associated with Si II λ 6355, while past the middle of the plateau phase they are related to high velocity (HV) features of hydrogen lines. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2008B-Q-56). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere

  17. The puzzle of Italian rice origin and evolution: determining genetic divergence and affinity of rice germplasm from Italy and Asia.

    Directory of Open Access Journals (Sweden)

    Xingxing Cai

    Full Text Available The characterization of genetic divergence and relationships of a set of germplasm is essential for its efficient applications in crop breeding and understanding of the origin/evolution of crop varieties from a given geographical region. As the largest rice producing country in Europe, Italy holds rice germplasm with abundant genetic diversity. Although Italian rice varieties and the traditional ones in particular have played important roles in rice production and breeding, knowledge concerning the origin and evolution of Italian traditional varieties is still limited. To solve the puzzle of Italian rice origin, we characterized genetic divergence and relationships of 348 rice varieties from Italy and Asia based on the polymorphisms of microsatellite fingerprints. We also included common wild rice O. rufipogon as a reference in the characterization. Results indicated relatively rich genetic diversity (H(e = 0.63-0.65 in Italian rice varieties. Further analyses revealed a close genetic relationship of the Italian traditional varieties with those from northern China, which provides strong genetic evidence for tracing the possible origin of early established rice varieties in Italy. These findings have significant implications for the rice breeding programs, in which appropriate germplasm can be selected from a given region and utilized for transferring unique genetic traits based on its genetic diversity and evolutionary relationships.

  18. The Evolution of Swift/BAT blazars and the origin of the MeV background

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M.; /SLAC /KIPAC, Menlo Park; Costamante, L.; /Stanford U., HEPL /KIPAC, Menlo Park; Sambruna, R.M.; Gehrels, N.; /NASA, Goddard; Chiang, J.; /SLAC /KIPAC, Menlo Park; Rau, A.; /Caltech; Escala, A.; /SLAC /KIPAC, Menlo Park /Cerro Calan Observ.; Greiner, J.; /Garching, Max Planck Inst., MPE; Tueller, J.; /NASA, Goddard; Wall, J.V.; /British Columbia U.; Mushotzky, R.F.; /NASA, Goddard

    2009-10-17

    We use 3 years of data from the Swift/BAT survey to select a complete sample of X-ray blazars above 15 keV. This sample comprises 26 Flat-Spectrum Radio Quasars (FSRQs) and 12 BL Lac objects detected over a redshift range of 0.03 < z < 4.0. We use this sample to determine, for the first time in the 15-55 keV band, the evolution of blazars. We find that, contrary to the Seyfert-like AGNs detected by BAT, the population of blazars shows strong positive evolution. This evolution is comparable to the evolution of luminous optical QSOs and luminous X-ray selected AGNs. We also find evidence for an epoch-dependence of the evolution as determined previously for radio-quiet AGNs. We interpret both these findings as a strong link between accretion and jet activity. In our sample, the FSRQs evolve strongly, while our best-fit shows that BL Lacs might not evolve at all. The blazar population accounts for 10-20% (depending on the evolution of the BL Lacs) of the Cosmic X-ray background (CXB) in the 15-55 keV band. We find that FSRQs can explain the entire CXB emission for energies above 500 keV solving the mystery of the generation of the MeV background. The evolution of luminous FSRQs shows a peak in redshift (z{sub c} = 4.3 {+-} 0.5) which is larger than the one observed in QSOs and X-ray selected AGNs. We argue that FSRQs can be used as tracers of massive elliptical galaxies in the early Universe.

  19. Evidence for transitional stages in the evolution of euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome.

    Directory of Open Access Journals (Sweden)

    Jean-François Pombert

    Full Text Available BACKGROUND: Photosynthetic euglenids acquired their plastid by secondary endosymbiosis of a prasinophyte-like green alga. But unlike its prasinophyte counterparts, the plastid genome of the euglenid Euglena gracilis is riddled with introns that interrupt almost every protein-encoding gene. The atypical group II introns and twintrons (introns-within-introns found in the E. gracilis plastid have been hypothesized to have been acquired late in the evolution of euglenids, implying that massive numbers of introns may be lacking in other taxa. This late emergence was recently corroborated by the plastid genome sequences of the two basal euglenids, Eutreptiella gymnastica and Eutreptia viridis, which were found to contain fewer introns. METHODOLOGY/PRINCIPAL FINDINGS: To gain further insights into the proliferation of introns in euglenid plastids, we have characterized the complete plastid genome sequence of Monomorphina aenigmatica, a freshwater species occupying an intermediate phylogenetic position between early and late branching euglenids. The M. aenigmatica UTEX 1284 plastid genome (74,746 bp, 70.6% A+T, 87 genes contains 53 intron insertion sites, of which 41 were found to be shared with other euglenids including 12 of the 15 twintron insertion sites reported in E. gracilis. CONCLUSIONS: The pattern of insertion sites suggests an ongoing but uneven process of intron gain in the lineage, with perhaps a minimum of two bursts of rapid intron proliferation. We also identified several sites that represent intermediates in the process of twintron evolution, where the external intron is in place, but not the internal one, offering a glimpse into how these convoluted molecular contraptions originate.

  20. Granitoids of different geodynamic settings of Baikal region (Russia) their geochemical evolution and origin

    Science.gov (United States)

    Antipin, Viktor; Sheptyakova, Natalia

    2016-04-01

    In the southern folded framing of the Siberian craton the granitoid magmatism of different ages involves batholiths, small low-depth intrusions and intrusion-dyke belts with diverse mineral and geochemical characteristics of rocks. Granitoid formation could be related to the Early Paleozoic collision stage and intra-plate magmatism of the Late Paleozoic age of the geologic development of Baikal area. The Early Paleozoic granitoids of Khamar-Daban Ridge and Olkhon region revealed their closeness in age and composition. They were referred to syncollision S-type formations derived from gneiss-schistose substratum of metamorphic sequences. The magmatic rocks were classified into various geochemical types comprising formations of normal Na-alkalinity (migmatites and plagiogranites), calc-alkaline and subalkaline (K-Na granitoids, granosyenites and quartz syenites) series. It is significant, that plagiomigmatites and plagiogranites in all elements repeat the shape of the chart of normalized contents marked for trend of K-Na granitoids, but at considerably lower level of concentrations of all elements. This general pattern of element distribution might indicate similar anatectic origin of both granitoid types, but from crustal substrata distinguished by composition and geochemical features. Comparative geochemical analysis pointed out that the source of melts of the Early Paleozoic granitoids of the Olkhon (505-477 Ma) and Khamar-Daban (516-490 Ma) complexes of the Baikal region could be the crustal substratum, which is obviously the criterion for their formation in the collisional geodynamic setting. Using the Late Paleozoic subalkaline magmatism proceeding at the Khamar-Daban Range (Khonzurtay pluton, 331 Ma) as an example, it was found that the formation of monzodiorite-syenite-leucogranite series was considerably contributed by the processes of hybridism and assimilation through mixing of the upper mantle basaltoid magma derived melts of granitic composition. The

  1. Research program for a search of the origin of Darwinian evolution : Research program for a vesicle-based model of the origin of Darwinian evolution on prebiotic early Earth.

    Science.gov (United States)

    Tessera, Marc

    2017-03-01

    The search for origin of 'life' is made even more complicated by differing definitions of the subject matter, although a general consensus is that an appropriate definition should center on Darwinian evolution (Cleland and Chyba 2002). Within a physical approach which has been defined as a level-4 evolution (Tessera and Hoelzer 2013), one mechanism could be described showing that only three conditions are required to allow natural selection to apply to populations of different system lineages. This approach leads to a vesicle- based model with the necessary properties. Of course such a model has to be tested. Thus, after a brief presentation of the model an experimental program is proposed that implements the different steps able to show whether this new direction of the research in the field is valid and workable.

  2. Research program for a search of the origin of Darwinian evolution. Research program for a vesicle-based model of the origin of Darwinian evolution on prebiotic early Earth

    Science.gov (United States)

    Tessera, Marc

    2017-03-01

    The search for origin of `life' is made even more complicated by differing definitions of the subject matter, although a general consensus is that an appropriate definition should center on Darwinian evolution (Cleland and Chyba 2002). Within a physical approach which has been defined as a level-4 evolution (Tessera and Hoelzer 2013), one mechanism could be described showing that only three conditions are required to allow natural selection to apply to populations of different system lineages. This approach leads to a vesicle- based model with the necessary properties. Of course such a model has to be tested. Thus, after a brief presentation of the model an experimental program is proposed that implements the different steps able to show whether this new direction of the research in the field is valid and workable.

  3. The Origins of [C II] Emission in Local Star-forming Galaxies

    NARCIS (Netherlands)

    Croxall, K. V.; Smith, J. D T; Pellegrini, E.; Groves, Brent; Bolatto, Alberto; Herrera-Camus, Rodrigo; Sandstrom, K. M.; Draine, Bruce; Wolfire, M. G.; Armus, Lee; Boquien, Mederic; Brandl, B.R.; Dale, Daniel A.; Galametz, Maud; Hunt, L. K.; Kennicutt, R. C.; Kreckel, K.; Rigopoulou, D.; van der werf, p; Wilson, C

    2017-01-01

    The [C ii] 158 μm fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C ii] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect.

  4. Evolutionary dynamics of cytoplasmic segregation and fusion: Mitochondrial mixing facilitated the evolution of sex at the origin of eukaryotes.

    Science.gov (United States)

    Radzvilavicius, Arunas L

    2016-09-07

    Sexual reproduction is a trait shared by all complex life, but the complete account of its origin is missing. Virtually all theoretical work on the evolution of sex has been centered around the benefits of reciprocal recombination among nuclear genes, paying little attention to the evolutionary dynamics of multi-copy mitochondrial genomes. Here I develop a mathematical model to study the evolution of nuclear alleles inducing cell fusion in an ancestral population of clonal proto-eukaryotes. Segregational drift maintains high mitochondrial variance between clonally reproducing hosts, but the effect of segregation is opposed by cytoplasmic mixing which tends to reduce variation between cells in favor of higher heterogeneity within the cell. Despite the reduced long-term population fitness, alleles responsible for sexual cell fusion can spread to fixation. The evolution of sex requires negative epistatic interactions between mitochondrial mutations under strong purifying selection, low mutation load and weak mitochondrial-nuclear associations. I argue that similar conditions could have been maintained during the late stages of eukaryogenesis, facilitating the evolution of sexual cell fusion and meiotic recombination without compromising the stability of the emerging complex cell. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Human Development X: Explanation of Macroevolution — Top-Down Evolution Materializes Consciousness. The Origin of Metamorphosis

    Directory of Open Access Journals (Sweden)

    Tyge Dahl Hermansen

    2006-01-01

    Full Text Available In this paper, we first give a short discussion of the macroevolution viewing life as information-directed, complex, dynamic systems. On this basis, we give our explanation of the origin of life and discuss the top-down evolution of molecules, proteins, and macroevolution. We discuss these subjects according to our new holistic biological paradigm. In view of this, we discuss the macroevolution of the organism, the species, the biosphere, and human society. After this, we discuss the shift in evolution from natural selection to a new proposed process of nature called the “metamorphous top-down” evolution. We discuss the capability of the evolutionary shift to govern some of the processes that lead to the formation of new species. We discuss the mechanisms we think are behind this proposed shift in evolution and conclude that this event is able to explain the huge biological diversity of nature in combination with evolutionary natural selection. We also discuss this event of nature as an isolated, but integrated, part of the universe. We propose the most important genetic and biochemical process that we think is behind the evolutionary shift as a complicated symbiosis of mechanisms leading to metamorphosis in all biological individuals, from bacteria to humans. The energetic superorbital that manifests the consciousness governs all these processes through quantum chemical activity. This is the key to evolutionary shift through the consciousness, and we propose to call this process “adult human metamorphosis”.

  6. The search for life's origins: Progress and future directions in planetary biology and chemical evolution

    Science.gov (United States)

    1990-01-01

    The current state is reviewed of the study of chemical evolution and planetary biology and the probable future is discussed of the field, at least for the near term. To this end, the report lists the goals and objectives of future research and makes detailed, comprehensive recommendations for accomplishing them, emphasizing those issues that were inadequately discussed in earlier Space Studies Board reports.

  7. Phylogenetic Origins of Biological Cognition : Convergent Patterns in the Early Evolution of Learning

    NARCIS (Netherlands)

    van Duijn, Marc

    2017-01-01

    Various forms of elementary learning have recently been discovered in organisms lacking a nervous system, such as protists, fungi and plants. This finding has fundamental implications for how we view the role of convergent evolution in biological cognition. In this article, I first review the

  8. Proponents of Creationism but Not Proponents of Evolution Frame the Origins Debate in Terms of Proof

    Science.gov (United States)

    Barnes, Ralph M.; Church, Rebecca A.

    2013-01-01

    In Study 1, 72 internet documents containing creationism, ID (intelligent design), or evolution content were selected for analysis. All instances of proof cognates (the word "proof" and related terms such as "proven", "disproof", etc.) contained within these documents were identified and labeled in terms of the manner in which the terms were used.…

  9. The evolution of temperature and bolometric luminosity in Type II supernovae

    Science.gov (United States)

    Faran, T.; Nakar, E.; Poznanski, D.

    2018-01-01

    In this work, we present a uniform analysis of the temperature evolution and bolometric luminosity of a sample of 29 Type II supernovae (SNe), by fitting a blackbody model to their multiband photometry. Our sample includes only SNe with high quality multiband data and relatively well-sampled time coverage. Most of the SNe in our sample were detected less than a week after explosion so their light curves cover the evolution both before and after recombination starts playing a role. We use this sample to study the signature of hydrogen recombination, which is expected to appear once the observed temperature drops to ≈7000 K. Theory predicts that before recombination starts affecting the light curve, both the luminosity and the temperature should drop relatively fast, following a power law in time. Once the recombination front reaches inner parts of the outflow, it sets the observed temperature to be nearly constant, and slows the decline of the luminosity (or even leads to a re-brightening). We compare our data to analytic studies and find strong evidence for the signature of recombination. We also find that the onset of the optical plateau in a given filter, is effectively the time at which the blackbody peak reaches the central wavelength of the filter, as it cools, and it does not correspond to the time at which recombination starts affecting the emission.

  10. Mitogenomic perspectives into sciaenid fishes' phylogeny and evolution origin in the New World.

    Science.gov (United States)

    Xu, Tianjun; Tang, Da; Cheng, Yuanzhi; Wang, Rixin

    2014-04-10

    Sciaenid fishes are widely distributed throughout the coastal waters and estuaries of the world. A total of 23 genera of this family are endemic to the Old World. However, evolutionary relationships among Old World sciaenid fishes and their origin have remained unresolved despite their diversity and importance. Besides, hypotheses that explain the origin and biogeographical distribution of sciaenid fishes are controversial. In this study, the complete mitochondrial genome sequences of seven representative sciaenid species were determined and a well-resolved tree was recovered. This new timescale demonstrated that the sciaenid originated during the late Jurassic to early Cretaceous Period. The estimated origin time of sciaenid fish is 208 Mya, and the origin of Old World sciaenid is estimated at 126 Mya. Reconstruction of ancestral distributions indicated a plesiomorphic distribution and center of origin in the New World, with at least one lineage subsequently dispersed to the Old World. Moreover, we conclude that the common ancestors of Old World sciaenid fishes were derived from species of New World. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The origins and evolution of weak low ionization quasar absorption line systems

    Science.gov (United States)

    Narayanan, Anand

    This thesis examines the physical nature of the gaseous structures selected by weak MgII quasar absorption line systems. The classic quasar absorption systems such as damped Lyman-a absorbers (DLAs), sub-DLAs and other Lyman Limit systems are widely studied because of their established association with galaxies of a wide range of morphology and luminosity. In contrast, weak MgII absorbers represent a population(s) that does not appear to be directly associated with luminous galaxies. Nonetheless, at z ~ 1, they outnumber the strong MgII absorbers by a factor of 3:1, and also account for a large fraction (> 25%) of the high column density regime of the Ly a forest. Moreover, a significant fraction of the weak MgII gas clouds have metallicities that are 0.5-2 dex higher than the average metallicity of DLA absorbers. In spite of such unique properties, the astrophysical structures and processes associated with weak MgII systems remain unidentified. In this thesis, I present results from UV and optical spectroscopic surveys, of ~ 100 quasars, offering a full census of weak MgII absorbers over the last 10 Gyr cosmological history of the universe, corresponding to 0 z z factor of ~ 8 from z = 1 to z = 0, the estimated dN/dz , at z = 0, for a static population of absorbers is a factor of ~ 2 larger than the observed dN/dz . This suggests that the gaseous structures that produce weak MgII absorbers are evolving from z = 1 to z = 0, and are regenerated at a rate that is consistent with the observed dN/dz . Towards, high- z ( z > 1), the dN/dz evolves with the number density reaching a peak at z = 1.2, thereafter declining such that there may not be a large separate population of weak absorbers at z > 2. I hypothesize this observed trend is indicative of the weak MgII clouds, at high- z , being kinematically connected to galaxies that produce strong MgII absorption. Photoionization models have suggested the weak MgII absorbing structures are unstable over astronomical

  12. Enthalpy-Based Thermal Evolution of Loops: II. Improvements to the Model

    Science.gov (United States)

    Cargill, P. J.; Bradshaw, S. J.; Klimchuk, J. A.

    2011-01-01

    This paper further develops the zero-dimensional (0D) hydrodynamic coronal loop model "Enthalpy-based Thermal Evolution of Loops" (EBTEL) originally proposed by Klimchuk et al (2008), which studies the plasma response to evolving coronal heating. It has typically been applied to impulsive heating events. The basis of EBTEL is the modelling of mass exchange between the corona and transition region and chromosphere in response to heating variations, with the key parameter being the ratio of transition region to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. It is found that while the evolution of the loop temperature is rather insensitive to the details of the model, accurate tracking of the density requires the inclusion of our new features. In particular, we are able to now obtain highly over-dense loops in the late cooling phase and decreases to the coronal density arising due to stratification. The 0D results are compared to a 1D hydro code (Hydrad). The agreement is acceptable, with the exception of the flare case where some versions of Hydrad can give significantly lower densities. This is attributed to the method used to model the chromosphere in a flare. EBTEL is suitable for general use as a tool for (a) quick-look results of loop evolution in response to a given heating function and (b) situations where the modelling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.

  13. Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny

    Science.gov (United States)

    Liu, Yajuan J.; Hall, Benjamin D.

    2004-01-01

    The mode of evolution of the biologically diverse forms of ascomycetes is not well understood, largely because the descent relationships remain unresolved. By using sequences of the nuclear gene RPB2, we have inferred with considerable resolution the phylogenetic relationships between major groups within the phylum Ascomycota. These relationships allow us to deduce a historical pattern of body plan evolution. Within Taphrinomycotina, the most basal group, two simple body plans exist: uncovered asci with unicellular growth, or rudimentary ascoma with hyphal growth. Ancestral ascomycetes were filamentous; hyphal growth was lost independently in the yeast forms of Taphrinomycotina and Saccharomycotina. Pezizomycotina, the sister group to Saccharomycotina, retained mycelial growth while elaborating two basic ontogenetic pathways for ascoma formation and centrum development. The RPB2 phylogeny shows with significant statistical support that taxa in Pezizomycotina with ascohymenial ontogeny (ascoma generally forms after nuclear pairing) are ancestral and paraphyletic, whereas ascolocular fungi with fissitunicate asci are a clade derived from them. Ascolocular lichens are polyphyletic, whereas ascohymenial lichens comprise a monophyletic group that includes the Lecanorales. Our data are not consistent with a derived origin of Eurotiomycetes including Aspergillus and Trichophyton from within a lichen-forming ancestral group. For these reasons, the results of this study are considerably at variance with the conclusion that major fungal lineages are derived from lichensymbiotic ancestors. Interpretation of our results in the context of early work suggests that ascoma ontogeny and centrum characters are not in conflict with the molecular data. PMID:15070748

  14. A prescription and fast code for the long-term evolution of star clusters - II. Unbalanced and core evolution

    NARCIS (Netherlands)

    Gieles, M.; Alexander, P.E.R.; Lamers, H.J.G.L.M.; Baumgardt, H.

    2014-01-01

    We introduce version two of the fast star cluster evolution code Evolve Me A Cluster of StarS (emacss). The first version (Alexander and Gieles) assumed that cluster evolution is balanced for the majority of the life cycle, meaning that the rate of energy generation in the core of the cluster equals

  15. The Origins and Evolution of the p53 Family of Genes

    Science.gov (United States)

    Belyi, Vladimir A.; Ak, Prashanth; Markert, Elke; Wang, Haijian; Hu, Wenwei; Puzio-Kuter, Anna; Levine, Arnold J.

    2010-01-01

    A common ancestor to the three p53 family members of human genes p53, p63, and p73 is first detected in the evolution of modern‐day sea anemones, in which both structurally and functionally it acts to protect the germ line from genomic instabilities in response to stresses. This p63/p73 common ancestor gene is found in almost all invertebrates and first duplicates to produce a p53 gene and a p63/p73 ancestor in cartilaginous fish. Bony fish contain all three genes, p53, p63, and p73, and the functions of these three transcription factors diversify in the higher vertebrates. Thus, this gene family has preserved its structural features and functional activities for over one billion years of evolution. PMID:20516129

  16. Adaptive Evolution of Social Traits: Origin, Trajectories, and Correlations of Altruism and Mobility

    OpenAIRE

    Le Galliard, J.-F.; Ferriere, R.; Dieckmann, U

    2005-01-01

    Social behavior involves "staying and helping", two individual attributes that vary considerably among organisms. Investigating the ultimate causes of such variation, this study integrtes previously separate lines of research by analyzing the joint evolution of altruism and mobility. We unfold the network of selective pressures and derive how these depend on physiological costs, eco-evolutionary feedbacks, and a complex interaction between the evolving traits. Our analysis highlights habitat ...

  17. Symbiosis between hydra and chlorella: molecular phylogenetic analysis and experimental study provide insight into its origin and evolution.

    Science.gov (United States)

    Kawaida, Hitomi; Ohba, Kohki; Koutake, Yuhki; Shimizu, Hiroshi; Tachida, Hidenori; Kobayakawa, Yoshitaka

    2013-03-01

    Although many physiological studies have been reported on the symbiosis between hydra and green algae, very little information from a molecular phylogenetic aspect of symbiosis is available. In order to understand the origin and evolution of symbiosis between the two organisms, we compared the phylogenetic relationships among symbiotic green algae with the phylogenetic relationships among host hydra strains. To do so, we reconstructed molecular phylogenetic trees of several strains of symbiotic chlorella harbored in the endodermal epithelial cells of viridissima group hydra strains and investigated their congruence with the molecular phylogenetic trees of the host hydra strains. To examine the species specificity between the host and the symbiont with respect to the genetic distance, we also tried to introduce chlorella strains into two aposymbiotic strains of viridissima group hydra in which symbiotic chlorella had been eliminated in advance. We discussed the origin and history of symbiosis between hydra and green algae based on the analysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Convergent evolution of RFX transcription factors and ciliary genes predated the origin of metazoans

    Directory of Open Access Journals (Sweden)

    Chen Nansheng

    2010-05-01

    Full Text Available Abstract Background Intraflagellar transport (IFT genes, which are critical for the development and function of cilia and flagella in metazoans, are tightly regulated by the Regulatory Factor X (RFX transcription factors (TFs. However, how and when their evolutionary relationship was established remains unknown. Results We have identified evidence suggesting that RFX TFs and IFT genes evolved independently and their evolution converged before the first appearance of metazoans. Both ciliary genes and RFX TFs exist in all metazoans as well as some unicellular eukaryotes. However, while RFX TFs and IFT genes are found simultaneously in all sequenced metazoan genomes, RFX TFs do not co-exist with IFT genes in most pre-metazoans and thus do not regulate them in these organisms. For example, neither the budding yeast nor the fission yeast possesses cilia although both have well-defined RFX TFs. Conversely, most unicellular eukaryotes, including the green alga Chlamydomonas reinhardtii, have typical cilia and well conserved IFT genes but lack RFX TFs. Outside of metazoans, RFX TFs and IFT genes co-exist only in choanoflagellates including M. brevicollis, and only one fungus Allomyces macrogynus of the 51 sequenced fungus genomes. M. brevicollis has two putative RFX genes and a full complement of ciliary genes. Conclusions The evolution of RFX TFs and IFT genes were independent in pre-metazoans. We propose that their convergence in evolution, or the acquired transcriptional regulation of IFT genes by RFX TFs, played a pivotal role in the establishment of metazoan.

  19. Oxygen and animal evolution: Did a rise of atmospheric oxygen trigger the origin of animals?

    DEFF Research Database (Denmark)

    Mills, Daniel Brady; Canfield, Donald Eugene

    2014-01-01

    Recent studies challenge the classical view that the origin of animal life was primarily controlled by atmospheric oxygen levels. For example, some modern sponges, representing early-branching animals, can live under 200 times less oxygen than currently present in the atmosphere - levels commonly...... thought to have been maintained prior to their origination. Furthermore, it is increasingly argued that the earliest animals, which likely lived in low oxygen environments, played an active role in constructing the well-oxygenated conditions typical of the modern oceans. Therefore, while oxygen is still...

  20. Astrobiology: exploring the origins, evolution, and distribution of life in the Universe

    Science.gov (United States)

    Des Marais, D. J.; Walter, M. R.

    1999-01-01

    The search for the origins of life and its presence beyond Earth is strengthened by new technology and by evidence that life tolerates extreme conditions and that planets are widespread. Astrobiologists learn how planets develop and maintain habitable conditions. They combine biological and information sciences to decipher the origins of life. They examine how biota, particularly microorganisms, evolve, at scales from the molecular to the biosphere level, including interactions with long-term planetary changes. Astrobiologists learn how to recognize the morphological, chemical, and spectroscopic signatures of life in order to explore both extraterrestrial samples and electromagnetic spectra reflected from extrasolar planets.

  1. The origin of the animals and a 'Savannah' hypothesis for early bilaterian evolution.

    Science.gov (United States)

    Budd, Graham E; Jensen, Sören

    2017-02-01

    The earliest evolution of the animals remains a taxing biological problem, as all extant clades are highly derived and the fossil record is not usually considered to be helpful. The rise of the bilaterian animals recorded in the fossil record, commonly known as the 'Cambrian explosion', is one of the most significant moments in evolutionary history, and was an event that transformed first marine and then terrestrial environments. We review the phylogeny of early animals and other opisthokonts, and the affinities of the earliest large complex fossils, the so-called 'Ediacaran' taxa. We conclude, based on a variety of lines of evidence, that their affinities most likely lie in various stem groups to large metazoan groupings; a new grouping, the Apoikozoa, is erected to encompass Metazoa and Choanoflagellata. The earliest reasonable fossil evidence for total-group bilaterians comes from undisputed complex trace fossils that are younger than about 560 Ma, and these diversify greatly as the Ediacaran-Cambrian boundary is crossed a few million years later. It is generally considered that as the bilaterians diversified after this time, their burrowing behaviour destroyed the cyanobacterial mat-dominated substrates that the enigmatic Ediacaran taxa were associated with, the so-called 'Cambrian substrate revolution', leading to the loss of almost all Ediacara-aspect diversity in the Cambrian. Why, though, did the energetically expensive and functionally complex burrowing mode of life so typical of later bilaterians arise? Here we propose a much more positive relationship between late-Ediacaran ecologies and the rise of the bilaterians, with the largely static Ediacaran taxa acting as points of concentration of organic matter both above and below the sediment surface. The breaking of the uniformity of organic carbon availability would have signalled a decisive shift away from the essentially static and monotonous earlier Ediacaran world into the dynamic and burrowing world

  2. The origin of digital species: The evolution of autonomous agents and lineages in a simulated ecosystem

    Science.gov (United States)

    Earon, Ernest J. P.

    As mobile robotics technology continues to advance, the manual development of algorithms and controllers for these systems will become less feasible, if possible at all. As such, it will become increasingly necessary to turn to techniques that allow the automatic design of such systems, both in software and indeed in hardware. Evolutionary methods can provide powerful tools for automatic design as is evidenced by the abundance of diverse natural systems from the simple to the massively sophisticated and coupled. One of the fundamental features, and one of the lesser understood phenomena, in biology is that of speciation. In order to better understand the development and creation of species, and their role in evolution, a method for tracking speciation in simulation is presented. While there is much dispute in the field of biology as to the precise definition of the term species, there is little debate that the natural world is full of distinct subpopulations. Each of these populations has developed unique features for, and solutions to, the problem of surviving in an incredibly complex world. The power of investigating species over individual agents arises from improved robustness of a grouping of like individuals as opposed to single entities more sensitive to very local conditions and interactions. In essence, a species is a more complete view of the fitness and survivability of a genome than a single agent. A simulation engine is presented which allows the study of evolution from a species point of view. Results from simulations offer insight into the role of genetic neutrality in evolution as well as the effect of this neutrality on mechanisms such as mutation pressure. Several results are presented which provide insight into these features which can serve as analogs for similar biological effects as well as features such as genetic cross drift (or convergent evolution of species). Some insight into the such as solution bloating are also detailed. The

  3. Origin and evolution of transporter substrate specificity within the NPF family

    DEFF Research Database (Denmark)

    Jørgensen, Morten Egevang; Xu, Deyang; Crocoll, Christoph

    2017-01-01

    across more than 2500 species outside of the Brassicales. Biochemical characterization of orthologs along the phylogenetic lineage from cassava to A. thaliana, suggests that alterations in the electrogenicity of the transporters accompanied changes in substrate specificity. Linking the evolutionary path...... of transporter substrate specificities to that of the biosynthetic pathways, exemplify how transporter substrate specificities originate and evolve as new biosynthesis pathways emerge....

  4. Laurentian origin for the North Slope of Alaska: Implications for the tectonic evolution of the Arctic

    Science.gov (United States)

    Strauss, J. V.; Macdonald, F. A.; Taylor, J. F.; Repetski, John E.; McClelland, W. C.

    2013-01-01

    The composite Arctic Alaska–Chukotka terrane plays a central role in tectonic reconstructions of the Arctic. An exotic, non-Laurentian origin of Arctic Alaska–Chukotka has been proposed based on paleobiogeographic faunal affinities and various geochronological constraints from the southwestern portions of the terrane. Here, we report early Paleozoic trilobite and conodont taxa that support a Laurentian origin for the North Slope subterrane of Arctic Alaska, as well as new Neoproterozoic–Cambrian detrital zircon geochronological data, which are both consistent with a Laurentian origin and profoundly different from those derived from similar-aged strata in the southwestern subterranes of Arctic Alaska–Chukotka. The North Slope subterrane is accordingly interpreted as allochthonous with respect to northwestern Laurentia, but it most likely originated farther east along the Canadian Arctic or Atlantic margins. These data demonstrate that construction of the composite Arctic Alaska–Chukotka terrane resulted from juxtaposition of the exotic southwestern fragments of the terrane against the northern margin of Laurentia during protracted Devonian(?)–Carboniferous tectonism.

  5. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land

    Science.gov (United States)

    Battistuzzi, Fabia U.; Feijao, Andreia; Hedges, S. Blair

    2004-01-01

    BACKGROUND: The timescale of prokaryote evolution has been difficult to reconstruct because of a limited fossil record and complexities associated with molecular clocks and deep divergences. However, the relatively large number of genome sequences currently available has provided a better opportunity to control for potential biases such as horizontal gene transfer and rate differences among lineages. We assembled a data set of sequences from 32 proteins (approximately 7600 amino acids) common to 72 species and estimated phylogenetic relationships and divergence times with a local clock method. RESULTS: Our phylogenetic results support most of the currently recognized higher-level groupings of prokaryotes. Of particular interest is a well-supported group of three major lineages of eubacteria (Actinobacteria, Deinococcus, and Cyanobacteria) that we call Terrabacteria and associate with an early colonization of land. Divergence time estimates for the major groups of eubacteria are between 2.5-3.2 billion years ago (Ga) while those for archaebacteria are mostly between 3.1-4.1 Ga. The time estimates suggest a Hadean origin of life (prior to 4.1 Ga), an early origin of methanogenesis (3.8-4.1 Ga), an origin of anaerobic methanotrophy after 3.1 Ga, an origin of phototrophy prior to 3.2 Ga, an early colonization of land 2.8-3.1 Ga, and an origin of aerobic methanotrophy 2.5-2.8 Ga. CONCLUSIONS: Our early time estimates for methanogenesis support the consideration of methane, in addition to carbon dioxide, as a greenhouse gas responsible for the early warming of the Earths' surface. Our divergence times for the origin of anaerobic methanotrophy are compatible with highly depleted carbon isotopic values found in rocks dated 2.8-2.6 Ga. An early origin of phototrophy is consistent with the earliest bacterial mats and structures identified as stromatolites, but a 2.6 Ga origin of cyanobacteria suggests that those Archean structures, if biologically produced, were made by

  6. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land

    Directory of Open Access Journals (Sweden)

    Hedges S Blair

    2004-11-01

    Full Text Available Abstract Background The timescale of prokaryote evolution has been difficult to reconstruct because of a limited fossil record and complexities associated with molecular clocks and deep divergences. However, the relatively large number of genome sequences currently available has provided a better opportunity to control for potential biases such as horizontal gene transfer and rate differences among lineages. We assembled a data set of sequences from 32 proteins (~7600 amino acids common to 72 species and estimated phylogenetic relationships and divergence times with a local clock method. Results Our phylogenetic results support most of the currently recognized higher-level groupings of prokaryotes. Of particular interest is a well-supported group of three major lineages of eubacteria (Actinobacteria, Deinococcus, and Cyanobacteria that we call Terrabacteria and associate with an early colonization of land. Divergence time estimates for the major groups of eubacteria are between 2.5–3.2 billion years ago (Ga while those for archaebacteria are mostly between 3.1–4.1 Ga. The time estimates suggest a Hadean origin of life (prior to 4.1 Ga, an early origin of methanogenesis (3.8–4.1 Ga, an origin of anaerobic methanotrophy after 3.1 Ga, an origin of phototrophy prior to 3.2 Ga, an early colonization of land 2.8–3.1 Ga, and an origin of aerobic methanotrophy 2.5–2.8 Ga. Conclusions Our early time estimates for methanogenesis support the consideration of methane, in addition to carbon dioxide, as a greenhouse gas responsible for the early warming of the Earths' surface. Our divergence times for the origin of anaerobic methanotrophy are compatible with highly depleted carbon isotopic values found in rocks dated 2.8–2.6 Ga. An early origin of phototrophy is consistent with the earliest bacterial mats and structures identified as stromatolites, but a 2.6 Ga origin of cyanobacteria suggests that those Archean structures, if biologically

  7. Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes

    Science.gov (United States)

    Emeriau-Viard, Constance; Brun, Allan Sacha

    2017-09-01

    During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing a seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.

  8. The origins of language and the evolution of music: A comparative perspective

    Science.gov (United States)

    Masataka, Nobuo

    2009-03-01

    According to Darwin [Darwin, CR. The descent of man, and selection in relation to sex. London: John Murray; 1871], the human musical faculty ‘must be ranked amongst the most mysterious with which he is endowed’. Music is a human cultural universal that serves no obvious adaptive purpose, making its evolution a puzzle for evolutionary biologists. This review examines Darwin's hypothesis of similarities between language and music indicating a shared evolutionary history. In particular, the fact that both are human universals, have phrase structure, and entail learning and cultural transmission, suggests that any theory of the evolution of language will have implications for the evolution of music, and vice versa. The argument starts by describing variable predispositional musical capabilities and the ontogeny of prosodic communication in human infants and young children, presenting comparative data regarding communication systems commonly present in living nonhuman primate species. Like language, the human music faculty is based on a suite of abilities, some of which are shared with other primates and some of which appear to be uniquely human. Each of these subcomponents may have a different evolutionary history, and should be discussed separately. After briefly considering possible functions of human music for language acquisition, the review ends by discussing the phylogenetic history of music. It concludes that many strands of evidence support Darwin's hypothesis of an intermediate stage of human evolutionary history, characterized by a communication system that resembled music more closely than language, but was identical to neither. This pre-linguistic system, which could probably referred to as “prosodic protolanguage”, provided a precursor for both modern language and music.

  9. The Paramyxea Levine 1979: An original example of evolution towards multicellularity

    Science.gov (United States)

    Desportes, Isabelle

    1984-03-01

    The Paramyxea are parasitic in marine invertebrates. Their development is a sporulation involving the differentiation within a stem cell of several sporonts which produce spores made of cells enclosed inside each other. Three genera are recognized according to the number of spores and sporal cells, and the taxonomic position of the host (Polychaeta, Mollusca, Crustacea). The Paramyxea exhibit both protistan and metazoan characters. Their nine singlets centrioles are observed in different Protoctists whereas the fact that their sporal cells acquire distinctive cytological features may be interpreted as an evolution towards multicellularity.

  10. The naked planet Earth: Most essential pre-requisite for the origin and evolution of life

    OpenAIRE

    Maruyama, S; Ikoma, M.; Genda, H.; Hirose, K.; YOKOYAMA, T; M. Santosh

    2013-01-01

    Our blue planet Earth has long been regarded to carry full of nutrients for hosting life since the birth of the planet. Here we speculate the processes that led to the birth of early life on Earth and its aftermath, finally leading to the evolution of metazoans. We evaluate: (1) the source of nutrients, (2) the chemistry of primordial ocean, (3) the initial mass of ocean, and (4) the size of planet. Among the life-building nutrients, phosphorus and potassium play a key role. Only three types ...

  11. Ancestor–descendant relationships in evolution: origin of the extant pygmy right whale, Caperea marginata

    Science.gov (United States)

    Tsai, Cheng-Hsiu; Fordyce, R. Ewan

    2015-01-01

    Ancestor–descendant relationships (ADRs), involving descent with modification, are the fundamental concept in evolution, but are usually difficult to recognize. We examined the cladistic relationship between the only reported fossil pygmy right whale, †Miocaperea pulchra, and its sole living relative, the enigmatic pygmy right whale Caperea marginata, the latter represented by both adult and juvenile specimens. †Miocaperea is phylogenetically bracketed between juvenile and adult Caperea marginata in morphologically based analyses, thus suggesting a possible ADR—the first so far identified within baleen whales (Cetacea: Mysticeti). The †Miocaperea–Caperea lineage may show long-term morphological stasis and, in turn, punctuated equilibrium. PMID:25589485

  12. Molecular recognition of the environment and mechanisms of the origin of species in quantum-like modeling of evolution.

    Science.gov (United States)

    Melkikh, Alexey V; Khrennikov, Andrei

    2017-11-01

    A review of the mechanisms of speciation is performed. The mechanisms of the evolution of species, taking into account the feedback of the state of the environment and mechanisms of the emergence of complexity, are considered. It is shown that these mechanisms, at the molecular level, cannot work steadily in terms of classical mechanics. Quantum mechanisms of changes in the genome, based on the long-range interaction potential between biologically important molecules, are proposed as one of possible explanation. Different variants of interactions of the organism and environment based on molecular recognition and leading to new species origins are considered. Experiments to verify the model are proposed. This bio-physical study is completed by the general operational model of based on quantum information theory. The latter is applied to model of epigenetic evolution. We briefly present the basics of the quantum-like approach to modeling of bio-informational processes. This approach is illustrated by the quantum-like model of epigenetic evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    Science.gov (United States)

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.

  14. Molecular evolution of key genes for type II secretion in Legionella pneumophila.

    Science.gov (United States)

    Costa, Joana; d'Avó, Ana Filipa; da Costa, Milton S; Veríssimo, António

    2012-08-01

    Given the role of type II protein secretion system (T2S) in the ecology and pathogenesis of Legionella pneumophila, it is possible that this system is a target for adaptive evolution. The population genetic structure of L.pneumophila was inferred from the partial sequences of rpoB and from the complete sequence of three T2S structural components (lspD, lspE and pilD) and from two T2S effectors critical for intracellular infection of protozoa (proA and srnA) of 37 strains isolated from natural and man-made environments and disease-related from worldwide sources. A phylogenetic analysis was obtained for the concatenated alignment and for each individual locus. Seven main groups were identified containing the same L.pneumophila strains, suggesting an ancient divergence for each cluster and indicating that the operating selective pressures have equally affected the evolution of the five genes. Although linkage disequilibrium analysis indicate a clonal nature for population structure in this sample, our results indicate that recombination is a common phenomenon among T2S-related genes on this species, as 24 of the 37 L.pneumophila isolates contained at least one locus in which recombination was identified. Furthermore, neutral selection acting on the analysed T2S-related genes emerged as a clear result, namely on T2S effectors, ProA and SrnA, indicating that they are probably implicated in conserved virulence mechanisms through legionellae hosts. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. On the origin and evolution of isotopes of carbon, nitrogen, and oxygen

    Science.gov (United States)

    Dearborn, D.; Schramm, D. N.; Tinsley, B. M.

    1978-01-01

    Calculations of CNO processing in stellar envelopes, based on theoretical nucleosynthesis rather than empirical abundances in evolving stars, are presented and used in two models for the chemical evolution of the solar neighborhood. Seven stable isotopes are considered: C-12, C-13, N-14, N-15, O-16, O-17, and O-18. The two models ('infall' and 'initial-burst') represent extremes of types consistent with general constraints and include theoretical estimates of other nucleosynthesis sites and yields for CNO isotopes. The results obtained are found to predict that all CNO isotopes are produced mainly by stars with lifetimes much less than the age of the Galaxy (even at the present time when low-mass stars have the greatest death rate), so that isotopic ratios evolve very slowly after the first few billion years. Consequences of these slow changes are that the isotopic ratios cannot be employed to test between alternative hypotheses and that galactic evolution does not seem to be able to account for the apparent difference between the C-13/C-12 ratio in the solar system and in molecular clouds. The predicted envelope processing is shown to lead to approximately the solar-system values for the C-13/C-12 and O-17/O-16 abundance ratios but to a N-14/C-12 ratio that is too small by at least a factor of 2.

  16. An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae.

    Science.gov (United States)

    Maeda, K; Benetti, S; Stritzinger, M; Röpke, F K; Folatelli, G; Sollerman, J; Taubenberger, S; Nomoto, K; Leloudas, G; Hamuy, M; Tanaka, M; Mazzali, P A; Elias-Rosa, N

    2010-07-01

    Type Ia supernovae form an observationally uniform class of stellar explosions, in that more luminous objects have smaller decline-rates. This one-parameter behaviour allows type Ia supernovae to be calibrated as cosmological 'standard candles', and led to the discovery of an accelerating Universe. Recent investigations, however, have revealed that the true nature of type Ia supernovae is more complicated. Theoretically, it has been suggested that the initial thermonuclear sparks are ignited at an offset from the centre of the white-dwarf progenitor, possibly as a result of convection before the explosion. Observationally, the diversity seen in the spectral evolution of type Ia supernovae beyond the luminosity-decline-rate relation is an unresolved issue. Here we report that the spectral diversity is a consequence of random directions from which an asymmetric explosion is viewed. Our findings suggest that the spectral evolution diversity is no longer a concern when using type Ia supernovae as cosmological standard candles. Furthermore, this indicates that ignition at an offset from the centre is a generic feature of type Ia supernovae.

  17. Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future

    Science.gov (United States)

    Unemo, Magnus; Shafer, William M.

    2015-01-01

    The strict human pathogen Neisseria gonorrhoeae has caused gonorrhea for thousands of years, and currently gonorrhea is the second most prevalent bacterial sexually transmitted infection worldwide. Given the ancient nature of N. gonorrhoeae and its unique obligate relationship with humankind over the millennia, its remarkable ability to adapt to the host immune system and cause repeated infections, and its propensity to develop resistance to all clinically useful antibiotics, the gonococcus is an ideal pathogen on which to study the evolution of bacterial pathogenesis, including antimicrobial resistance, over the long term and within the host during infection. Recently, the first gonococcus displaying high-level resistance to ceftriaxone, identified in Japan, was characterized in detail. Ceftriaxone is the last remaining option for empirical first-line treatment, and N. gonorrhoeae now seems to be evolving into a true “superbug.” In the near future, gonorrhea may become untreatable in certain circumstances. Herein, the history of antibiotics used for treatment of gonorrhea, the evolution of resistance emergence in N. gonorrhoeae, the linkage between resistance and biological fitness of N. gonorrhoeae, lessons learned, and future perspectives are reviewed and discussed. PMID:22239555

  18. Respiratory Evolution Facilitated the Origin of Pterosaur Flight and Aerial Gigantism

    Science.gov (United States)

    Claessens, Leon P. A. M.; O'Connor, Patrick M.; Unwin, David M.

    2009-01-01

    Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation. PMID:19223979

  19. Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism.

    Science.gov (United States)

    Claessens, Leon P A M; O'Connor, Patrick M; Unwin, David M

    2009-01-01

    Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT) scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film) studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation.

  20. Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism.

    Directory of Open Access Journals (Sweden)

    Leon P A M Claessens

    Full Text Available Pterosaurs, enigmatic extinct Mesozoic reptiles, were the first vertebrates to achieve true flapping flight. Various lines of evidence provide strong support for highly efficient wing design, control, and flight capabilities. However, little is known of the pulmonary system that powered flight in pterosaurs. We investigated the structure and function of the pterosaurian breathing apparatus through a broad scale comparative study of respiratory structure and function in living and extinct archosaurs, using computer-assisted tomographic (CT scanning of pterosaur and bird skeletal remains, cineradiographic (X-ray film studies of the skeletal breathing pump in extant birds and alligators, and study of skeletal structure in historic fossil specimens. In this report we present various lines of skeletal evidence that indicate that pterosaurs had a highly effective flow-through respiratory system, capable of sustaining powered flight, predating the appearance of an analogous breathing system in birds by approximately seventy million years. Convergent evolution of gigantism in several Cretaceous pterosaur lineages was made possible through body density reduction by expansion of the pulmonary air sac system throughout the trunk and the distal limb girdle skeleton, highlighting the importance of respiratory adaptations in pterosaur evolution, and the dramatic effect of the release of physical constraints on morphological diversification and evolutionary radiation.

  1. Origin of dental occlusion in tetrapods: signal for terrestrial vertebrate evolution?

    Science.gov (United States)

    Reisz, Robert R

    2006-05-15

    Evolutionary changes of the dentition in tetrapods can be associated with major events in the history of terrestrial vertebrates. Dental occlusion, the process by which teeth from the upper jaw come in contact with those in the lower jaw, appears first in the fossil record in amniotes and their close relatives near the Permo-Carboniferous boundary approximately 300 million years ago. This evolutionary innovation permitted a dramatic increase in the level of oral processing of food in these early tetrapods, and has been generally associated with herbivory. Whereas herbivory in extinct vertebrates is based on circumstantial evidence, dental occlusion provides direct evidence about feeding strategies because jaw movements can be reconstructed from the wear patterns of the teeth. Examination of the evolution of dental occlusion in Paleozoic tetrapods within a phylogenetic framework reveals that this innovation developed independently in several lineages of amniotes, and is represented by a wide range of dental and mandibular morphologies. Dental occlusion also developed within diadectomorphs, the sister taxon of amniotes. The independent, multiple acquisition of this feeding strategy represents an important signal in the evolution of complex terrestrial vertebrate communities, and the first steps in the profound changes in the pattern of trophic interactions in terrestrial ecosystems. (c) 2006 Wiley-Liss, Inc.

  2. The chemical origins of life and its early evolution: an introduction.

    Science.gov (United States)

    Lilley, David M J; Sutherland, John

    2011-10-27

    Can we look at contemporary biology and couple this with chemical insight to propose some plausible mechanisms for the origin of life on the planet? In what follows, we examine some promising chemical reactions by which the building blocks for nucleic acids might have been created about a billion years after the Earth formed. This could have led to self-assembling systems that were based on an all-RNA metabolism, where RNA is both catalytic and informational. We consider the breadth of RNA enzymes presently existing in biology, and to what extent these might have covered a wider range of chemistry in the RNA world. Ultimately, the RNA world would probably have given way to protein-based life quite quickly, and the origins of peptidyl transferase activity are discussed below.

  3. The role of recombination in the origin and evolution of Alu subfamilies.

    Directory of Open Access Journals (Sweden)

    Ana Teixeira-Silva

    Full Text Available Alus are the most abundant and successful short interspersed nuclear elements found in primate genomes. In humans, they represent about 10% of the genome, although few are retrotransposition-competent and are clustered into subfamilies according to the source gene from which they evolved. Recombination between them can lead to genomic rearrangements of clinical and evolutionary significance. In this study, we have addressed the role of recombination in the origin of chimeric Alu source genes by the analysis of all known consensus sequences of human Alus. From the allelic diversity of Alu consensus sequences, validated in extant elements resulting from whole genome searches, distinct events of recombination were detected in the origin of particular subfamilies of AluS and AluY source genes. These results demonstrate that at least two subfamilies are likely to have emerged from ectopic Alu-Alu recombination, which stimulates further research regarding the potential of chimeric active Alus to punctuate the genome.

  4. Nuclear glutamine synthetase evolution in Nicotiana: phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids.

    Science.gov (United States)

    Clarkson, James J; Kelly, Laura J; Leitch, Andrew R; Knapp, Sandra; Chase, Mark W

    2010-04-01

    Interspecies relationships in Nicotiana (Solanaceae) are complex because 40 species are diploid (two sets of chromosomes) and 35 species are allotetraploid (four sets of chromosomes, two from each progenitor diploid species). We sequenced a fragment (containing four introns) of the nuclear gene 'chloroplast-expressed glutamine synthetase' (ncpGS) in 65 species of Nicotiana. Here we present the first phylogenetic analysis based on a low-copy nuclear gene for this well studied and important genus. Diploid species have a single-copy of ncpGS, and allotetraploids as expected have two homeologous copies, each derived from their progenitor diploid. Results were particularly useful for determining the paternal lineage of previously enigmatic taxa (for which our previous analyses had revealed only the maternal progenitors). In particular, we were able to shed light on the origins of the two oldest and largest allotetraploid sections, N. sects. Suaveolentes and Repandae. All homeologues have an intact reading frame and apparently similar rates of divergence, suggesting both remain functional. Difficulties in fitting certain diploid species into the sectional classification of Nicotiana on morphological grounds, coupled with discordance between the ncpGS data and previous trees (i.e. plastid, nuclear ribosomal DNA), indicate a number of homoploid (diploid) hybrids in the genus. We have evidence for Nicotiana glutinosa and Nicotiana linearis being of hybrid origin and patterns of intra-allelic recombination also indicate the possibility of reticulate origins for other diploid species. (c) 2009 Elsevier Inc. All rights reserved.

  5. The origin of life: a problem of history, chemistry, and evolution.

    Science.gov (United States)

    Ma, Wentao

    2014-12-01

    The origin of life is a field full of controversies, not only because of our vague understanding concerning the relevant issues, but also, perhaps more often, owing to our dim conceptual framework throughout the whole field. To improve this situation, an in-depth conceptual dissection is presented here. It is elucidated that, at its core, the origin of life has three aspects. The facts involved in the process are taken as the historical aspect, which is destined to be uncertain and often irrelevant to debate regarding details. The rules involved include two distinct aspects: chemical mechanisms operated in the whole process, while evolutionary mechanisms joined in only after the emergence of the first Darwinian entities - and then accounted for the subsequent buildup of complexity (this cannot be explained solely by natural selection). Basically, we can ask about the possibility of any assumed event in the origin of life: 'Is it evolutionarily plausible, chemically feasible, and historically likely?' Clues from any of the three aspects may be quite valuable in directing our explorations on the other two. This conceptual dissection provides a clearer context for the field, which may even be more useful than any sort of specific research. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  6. The evolution of abdominal reduction and the recent origin of distinct Abdominal-B transcript classes in Diptera.

    Science.gov (United States)

    Yoder, John H; Carroll, Sean B

    2006-01-01

    In insects, the Hox gene Abdominal-B (Abd-B) governs the development of the posterior-most segments, the number and fate of which differ within and between orders. A striking feature of insect evolution is a trend toward the reduction of posterior abdominal segments which is most pronounced in higher Diptera. In Drosophila melanogaster, two distinct Abd-B transcript classes and protein isoforms are expressed in non-overlapping domains and have discrete functions in patterning the posterior abdomen. It has been proposed that evolutionary changes in Abd-B structure and expression are responsible for the reduction of the dipteran abdomen. We have investigated the relationship between the evolution of the Abd-B gene and abdominal reduction by analyzing the structure and expression of homologs from four additional dipterans representing distinct clades within the order. The lower dipteran mosquito Anopheles gambiae expresses a single Abd-B transcript class, as do two species phylogenetically intermediate to mosquitoes and drosophilids. These results delimit the evolution of distinct functional Abd-B isoforms to within the dipteran radiation after the origin of the reduced abdominal morphology. Furthermore, we found that the spatial distribution of Abd-B transcripts in non-drosophilid Diptera is identical to the combined domains of the two D. melanogaster Abd-B transcripts. Therefore, neither the structural evolution nor changes in the spatial regulation of Abd-B account for the derived abdomen of higher Diptera. The recent subfunctionalization of this Hox gene has occurred without any apparent morphological correlate. We conclude that regulatory modifications to developmental programs downstream of or parallel to Abd-B are responsible for the evolutionary reduction of the higher dipteran postabdomen.

  7. Elastic, not plastic species: frozen plasticity theory and the origin of adaptive evolution in sexually reproducing organisms.

    Science.gov (United States)

    Flegr, Jaroslav

    2010-01-13

    Darwin's evolutionary theory could easily explain the evolution of adaptive traits (organs and behavioral patterns) in asexual but not in sexual organisms. Two models, the selfish gene theory and frozen plasticity theory were suggested to explain evolution of adaptive traits in sexual organisms in past 30 years. The frozen plasticity theory suggests that sexual species can evolve new adaptations only when their members are genetically uniform, i.e. only after a portion of the population of the original species had split off, balanced on the edge of extinction for several generations, and then undergone rapid expansion. After a short period of time, estimated on the basis of paleontological data to correspond to 1-2% of the duration of the species, polymorphism accumulates in the gene pool due to frequency-dependent selection; and thus, in each generation, new mutations occur in the presence of different alleles and therefore change their selection coefficients from generation to generation. The species ceases to behave in an evolutionarily plastic manner and becomes evolutionarily elastic on a microevolutionary time-scale and evolutionarily frozen on a macroevolutionary time-scale. It then exists in this state until such changes accumulate in the environment that the species becomes extinct. Frozen plasticity theory, which includes the Darwinian model of evolution as a special case--the evolution of species in a plastic state, not only offers plenty of new predictions to be tested, but also provides explanations for a much broader spectrum of known biological phenomena than classic evolutionary theories. This article was reviewed by Rob Knight, Fyodor Kondrashov and Massimo Di Giulio (nominated by David H. Ardell).

  8. On the origin of DNA genomes: evolution of the division of labor between template and catalyst in model replicator systems.

    Directory of Open Access Journals (Sweden)

    Nobuto Takeuchi

    2011-03-01

    Full Text Available The division of labor between template and catalyst is a fundamental property of all living systems: DNA stores genetic information whereas proteins function as catalysts. The RNA world hypothesis, however, posits that, at the earlier stages of evolution, RNA acted as both template and catalyst. Why would such division of labor evolve in the RNA world? We investigated the evolution of DNA-like molecules, i.e. molecules that can function only as template, in minimal computational models of RNA replicator systems. In the models, RNA can function as both template-directed polymerase and template, whereas DNA can function only as template. Two classes of models were explored. In the surface models, replicators are attached to surfaces with finite diffusion. In the compartment models, replicators are compartmentalized by vesicle-like boundaries. Both models displayed the evolution of DNA and the ensuing division of labor between templates and catalysts. In the surface model, DNA provides the advantage of greater resistance against parasitic templates. However, this advantage is at least partially offset by the disadvantage of slower multiplication due to the increased complexity of the replication cycle. In the compartment model, DNA can significantly delay the intra-compartment evolution of RNA towards catalytic deterioration. These results are explained in terms of the trade-off between template and catalyst that is inherent in RNA-only replication cycles: DNA releases RNA from this trade-off by making it unnecessary for RNA to serve as template and so rendering the system more resistant against evolving parasitism. Our analysis of these simple models suggests that the lack of catalytic activity in DNA by itself can generate a sufficient selective advantage for RNA replicator systems to produce DNA. Given the widespread notion that DNA evolved owing to its superior chemical properties as a template, this study offers a novel insight into the

  9. Elastic, not plastic species: Frozen plasticity theory and the origin of adaptive evolution in sexually reproducing organisms

    Directory of Open Access Journals (Sweden)

    Flegr Jaroslav

    2010-01-01

    Full Text Available Abstract Background Darwin's evolutionary theory could easily explain the evolution of adaptive traits (organs and behavioral patterns in asexual but not in sexual organisms. Two models, the selfish gene theory and frozen plasticity theory were suggested to explain evolution of adaptive traits in sexual organisms in past 30 years. Results The frozen plasticity theory suggests that sexual species can evolve new adaptations only when their members are genetically uniform, i.e. only after a portion of the population of the original species had split off, balanced on the edge of extinction for several generations, and then undergone rapid expansion. After a short period of time, estimated on the basis of paleontological data to correspond to 1-2% of the duration of the species, polymorphism accumulates in the gene pool due to frequency-dependent selection; and thus, in each generation, new mutations occur in the presence of different alleles and therefore change their selection coefficients from generation to generation. The species ceases to behave in an evolutionarily plastic manner and becomes evolutionarily elastic on a microevolutionary time-scale and evolutionarily frozen on a macroevolutionary time-scale. It then exists in this state until such changes accumulate in the environment that the species becomes extinct. Conclusion Frozen plasticity theory, which includes the Darwinian model of evolution as a special case - the evolution of species in a plastic state, not only offers plenty of new predictions to be tested, but also provides explanations for a much broader spectrum of known biological phenomena than classic evolutionary theories. Reviewers This article was reviewed by Rob Knight, Fyodor Kondrashov and Massimo Di Giulio (nominated by David H. Ardell.

  10. Homeotic evolution in the mammalia: diversification of therian axial seriation and the morphogenetic basis of human origins.

    Directory of Open Access Journals (Sweden)

    Aaron G Filler

    2007-10-01

    Full Text Available Despite the rising interest in homeotic genes, little has been known about the course and pattern of evolution of homeotic traits across the mammalian radiation. An array of emerging and diversifying homeotic gradients revealed by this study appear to generate new body plans and drive evolution at a large scale.This study identifies and evaluates a set of homeotic gradients across 250 extant and fossil mammalian species and their antecedents over a period of 220 million years. These traits are generally expressed as co-linear gradients along the body axis rather than as distinct segmental identities. Relative position or occurrence sequence vary independently and are subject to polarity reversal and mirroring. Five major gradient modification sets are identified: (1--quantitative changes of primary segmental identity pattern that appeared at the origin of the tetrapods ; (2--frame shift relation of costal and vertebral identity which diversifies from the time of amniote origins; (3--duplication, mirroring, splitting and diversification of the neomorphic laminar process first commencing at the dawn of mammals; (4--emergence of homologically variable lumbar lateral processes upon commencement of the radiation of therian mammals and ; (5--inflexions and transpositions of the relative position of the horizontal septum of the body and the neuraxis at the emergence of various orders of therian mammals. Convergent functional changes under homeotic control include laminar articular engagement with septo-neural transposition and ventrally arrayed lumbar transverse process support systems.Clusters of homeotic transformations mark the emergence point of mammals in the Triassic and the radiation of therians in the Cretaceous. A cluster of homeotic changes in the Miocene hominoid Morotopithecus that are still seen in humans supports establishment of a new "hominiform" clade and suggests a homeotic origin for the human upright body plan.

  11. Origin and evolution of B chromosomes in the cichlid fish Astatotilapia latifasciata based on integrated genomic analyses.

    Science.gov (United States)

    Valente, Guilherme T; Conte, Matthew A; Fantinatti, Bruno E A; Cabral-de-Mello, Diogo C; Carvalho, Robson F; Vicari, Marcelo R; Kocher, Thomas D; Martins, Cesar

    2014-08-01

    Approximately 15% of eukaryotes contain supernumerary B chromosomes. When present, B chromosomes frequently represent as much as 5% of the genome. Despite thousands of reports describing the distribution of supernumeraries in various taxa, a comprehensive theory for the origin, maintenance, and evolution of B chromosomes has not emerged. Here, we sequence the complete genomes of individual cichlid fish (Astatotilapia latifasciata) with and without B chromosomes, as well as microdissected B chromosomes, to identify DNA sequences on the B. B sequences were further analyzed through quantitative polymerase chain reaction and in situ hybridization. We find that the B chromosome contains thousands of sequences duplicated from essentially every chromosome in the ancestral karyotype. Although most genes on the B chromosome are fragmented, a few are largely intact, and we detect evidence that at least three of them are transcriptionally active. We propose a model in which the B chromosome originated early in the evolutionary history of Lake Victoria cichlids from a small fragment of one autosome. DNA sequences originating from several autosomes, including protein-coding genes and transposable elements, subsequently inserted into this proto-B. We propose that intact B chromosome genes involved with microtubule organization, kinetochore structure, recombination and progression through the cell cycle may play a role in driving the transmission of the B chromosome. Furthermore, our work suggests that karyotyping is an essential step prior to genome sequencing to avoid problems in genome assembly and analytical biases created by the presence of high copy number sequences on the B chromosome. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Staminal Evolution in the Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence for Multiple Origins of the Staminal Lever

    Science.gov (United States)

    Walker, Jay B.; Sytsma, Kenneth J.

    2007-01-01

    Background and Aims The genus Salvia has traditionally included any member of the tribe Mentheae (Lamiaceae) with only two stamens and with each stamen expressing an elongate connective. The recent demonstration of the non-monophyly of the genus presents interesting implications for staminal evolution in the tribe Mentheae. In the context of a molecular phylogeny, the staminal morphology of the various lineages of Salvia and related genera is characterized and an evolutionary interpretation of staminal variation within the tribe Mentheae is presented. Methods Two molecular analyses are presented in order to investigate phylogenetic relationships in the tribe Mentheae and the genus Salvia. The first presents a tribal survey of the Mentheae and the second concentrates on Salvia and related genera. Schematic sketches are presented for the staminal morphology of each major lineage of Salvia and related genera. Key Results These analyses suggest an independent origin of the staminal elongate connective on at least three different occasions within the tribe Mentheae, each time with a distinct morphology. Each independent origin of the lever mechanism shows a similar progression of staminal change from slight elongation of the connective tissue separating two fertile thecae to abortion of the posterior thecae and fusion of adjacent posterior thecae. A monophyletic lineage within the Mentheae is characterized consisting of the genera Lepechinia, Melissa, Salvia, Dorystaechas, Meriandra, Zhumeria, Perovskia and Rosmarinus. Conclusions Based on these results the following are characterized: (1) the independent origin of the staminal lever mechanism on at least three different occasions in Salvia, (2) that Salvia is clearly polyphyletic, with five other genera intercalated within it, and (3) staminal evolution has proceeded in different ways in each of the three lineages of Salvia but has resulted in remarkably similar staminal morphologies. PMID:16926227

  13. The Origin of Stellar Species: constraining stellar evolution scenarios with Local Group galaxy surveys

    Science.gov (United States)

    Sarbadhicary, Sumit; Badenes, Carles; Chomiuk, Laura; Maldonado, Jessica; Caprioli, Damiano; Heger, Mairead; Huizenga, Daniel

    2018-01-01

    Our understanding of the progenitors of many stellar species, such as supernovae, massive and low-mass He-burning stars, is limited because of many poorly constrained aspects of stellar evolution theory. For my dissertation, I have focused on using Local Group galaxy surveys to constrain stellar evolution scenarios by measuring delay-time distributions (DTD). The DTD is the hypothetical occurrence rate of a stellar object per elapsed time after a brief burst of star formation. It is the measured distribution of timescales on which stars evolve, and therefore serves as a powerful observational constraint on theoretical progenitor models. The DTD can be measured from a survey of stellar objects and a set of star-formation histories of the host galaxy, and is particularly effective in the Local Group, where high-quality star-formation histories are available from resolved stellar populations. I am currently calculating a SN DTD with supernova remnants (SNRs) in order to provide the strongest constraints on the progenitors of thermonuclear and core-collapse supernovae. However, most SNRs do not have reliable age measurements and their evolution depends on the ambient environment. For this reason, I wrote a radio light curve model of an SNR population to extract the visibility times and rates of supernovae - crucial ingredients for the DTD - from an SNR survey. The model uses observational constraints on the local environments from multi-wavelength surveys, accounts for missing SNRs and employs the latest models of shock-driven particle acceleration. The final calculation of the SN DTD in the Local Group is awaiting completion of a systematic SNR catalog from deep radio-continuum images, now in preparation by a group led by Dr. Laura Chomiuk. I have also calculated DTDs for the LMC population of RR Lyrae and Cepheid variables, which serve as important distance calibrators and stellar population tracers. We find that Cepheids can have delay-times between 10 Myrs - 1 Gyr

  14. Evolution of cooperative cross-feeding could be less challenging than originally thought.

    Directory of Open Access Journals (Sweden)

    Sylvie Estrela

    Full Text Available The act of cross-feeding whereby unrelated species exchange nutrients is a common feature of microbial interactions and could be considered a form of reciprocal altruism or reciprocal cooperation. Past theoretical work suggests that the evolution of cooperative cross-feeding in nature may be more challenging than for other types of cooperation. Here we re-evaluate a mathematical model used previously to study persistence of cross-feeding and conclude that the maintenance of cross-feeding interactions could be favoured for a larger parameter ranges than formerly observed. Strikingly, we also find that large populations of cross-feeders are not necessarily vulnerable to extinction from an initially small number of cheats who receive the benefit of cross-feeding but do not reciprocate in this cooperative interaction. This could explain the widespread cooperative cross-feeding observed in natural populations.

  15. Low-mass X-ray binary evolution and the origin of millisecond pulsars

    Science.gov (United States)

    Frank, Juhan; King, Andrew R.; Lasota, Jean-Pierre

    1992-01-01

    The evolution of low-mass X-ray binaries (LMXBs) is considered. It is shown that X-ray irradiation of the companion stars causes these systems to undergo episodes of rapid mass transfer followed by detached phases. The systems are visible as bright X-ray binaries only for a short part of each cycle, so that their space density must be considerably larger than previously estimated. This removes the difficulty in regarding LMXBs as the progenitors of low-mass binary pulsars. The low-accretion-rate phase of the cycle with the soft X-ray transients is identified. It is shown that 3 hr is likely to be the minimum orbital period for LMXBs with main-sequence companions and it is suggested that the evolutionary endpoint for many LMXBs may be systems which are the sites of gamma-ray bursts.

  16. The naked planet Earth: Most essential pre-requisite for the origin and evolution of life

    Directory of Open Access Journals (Sweden)

    S. Maruyama

    2013-03-01

    To satisfy the tight conditions to make the Earth habitable, the formation mechanism of primordial Earth is an important factor. At first, a ‘dry Earth’ must be made through giant impact, followed by magma ocean to float nutrient-enriched primordial continents (anorthosite + KREEP. Late bombardment from asteroid belt supplied water to make 3–5 km thick ocean, and not from icy meteorites from Kuiper belt beyond cool Jupiter. It was essential to meet the above conditions that enabled the Earth as a habitable planet with evolved life forms. The tight constraints that we evaluate for birth and evolution of life on Earth would provide important guidelines for planetary scientists hunting for life in the exo-solar planets.

  17. The Origin and Evolution of the Galaxy Star Formation Rate-Stellar Mass Correlation

    Science.gov (United States)

    Gawiser, Eric; Iyer, Kartheik

    2018-01-01

    The existence of a tight correlation between galaxies’ star formation rates and stellar masses is far more surprising than usually noted. However, a simple analytical calculation illustrates that the evolution of the normalization of this correlation is driven primarily by the inverse age of the universe, and that the underlying correlation is one between galaxies’ instantaneous star formation rates and their average star formation rates since the Big Bang.Our new Dense Basis method of SED fitting (Iyer & Gawiser 2017, ApJ 838, 127) allows star formation histories (SFHs) to be reconstructed, along with uncertainties, for >10,000 galaxies in the CANDELS and 3D-HST catalogs at 0.5

  18. Ancestor-descendant relationships in evolution: origin of the extant pygmy right whale, Caperea marginata.

    Science.gov (United States)

    Tsai, Cheng-Hsiu; Fordyce, R Ewan

    2015-01-01

    Ancestor-descendant relationships (ADRs), involving descent with modification, are the fundamental concept in evolution, but are usually difficult to recognize. We examined the cladistic relationship between the only reported fossil pygmy right whale, †Miocaperea pulchra, and its sole living relative, the enigmatic pygmy right whale Caperea marginata, the latter represented by both adult and juvenile specimens. †Miocaperea is phylogenetically bracketed between juvenile and adult Caperea marginata in morphologically based analyses, thus suggesting a possible ADR-the first so far identified within baleen whales (Cetacea: Mysticeti). The †Miocaperea-Caperea lineage may show long-term morphological stasis and, in turn, punctuated equilibrium. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Theory for the Origin and Evolution of Stars and Planets, Including Earth

    Science.gov (United States)

    Cimorelli, S. A.; Samuels, C.

    2001-05-01

    In this paper we present a novel hypothesis for the formation and evolution of galaxies, stars (including black holes (BHs), giant, mid-size, dwarf, dying and dead stars), planets (including earth), and moons. Present day phenomenon will be used to substantiate the validity of this hypothesis. Every `body' is a multiple type of star, generated from pieces called particle proliferators, of a dislodged/expanded BH which explodes due to a collision with another expanded BH. This includes the sun, and the planet earth, which is a type of dead star. Such that, if we remove layers of the earth, starting with the crust, we will find evidence of each preceding star formation, such as a brown star, a red star, a white star, a blue star, and the remains of the particle proliferator as the innermost core is reached. We intend to show that the hypothesis is consistent with both the available astronomical data regarding stellar evolution and planetary formation; as well as the evolution of the earth itself, by considerations of the available geophysical data. Where data is not available, reasonably simple experiments will be suggested to demonstrate further the consistency and viability of the hypothesis. Theories are presented to help define and explain phenomenon such as how two (or more) BHs expand and collide to form a small `big bang' (it is postulated that there was a small big bang to form each galaxy). This in turn afforded the material/matter to form all the galactic bodies, including the dark matter. The start and development of the planet earth, initially as an emergent piece from the colliding BHs, is given special attention to explain the continuing expansion/growth that takes place in all stars and planets. Also, to explain the formation of the land, the growing/expanding earth (proportional to the ocean bed growth), the division of the continents, and the formation of the ocean beds (possibly long before the oceans existed). Attempts will be made to explain the

  20. Giant buried sediment mounds on the Western Saharan margin (NW Africa): Origin, evolution and paleoceanographic implications

    Science.gov (United States)

    Li, Wei; Krastel, Sebastian; Alves, Tiago M.; Rebesco, Michele; Georgiopoulou, Aggeliki; Gross, Felix

    2017-04-01

    Newly acquired 2D multi-channel seismic profiles along the Western Sahara margin, offshore NW Africa, reveal three giant, buried sediment mounds separated by broad troughs. These sediment mounds are at least 24 to 37 km-long, 12 to 17 km-wide and up to 1 km in height, showing an elongated geometry with a SE-NW orientation perpendicular to the continental margin. The evolution of the sediment mounds can be divided into three different stages: a) initial growth stage during Middle Eocene, b) main growth stage during Early Miocene and, c) maintenance stage during Middle Miocene. The sediment mounds were initiated on a Middle Eocene regional unconformity documenting a widespread canyon incision. After the Oligocene erosional events, the formation of the sediment mounds was intensified in the Early Miocene under the interaction of turbidity and contour currents. They halted at the Middle/Late Miocene boundary, at a widespread erosional event. Slope failures occurred frequently on the flanks of the sediments mounds and the upper slope, and resulting mass-transport deposits (MTDs) filled the troughs and deposited further downslope. Our analysis is important because the termination of the sediment mounds at the Middle-Late Miocene boundary marked a time interval when major palaeoceanographic changes occurred, and new depositional patterns were established along NW Africa. The identification of the sediment mounds are also ideal recorders for the initiation, intensification and evolution of bottom currents along the Western Saharan margin and further suggest that bottom currents have been capable of affecting slope deposition since the Middle Eocene.

  1. Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization.

    Science.gov (United States)

    Winter, Kai-Uwe; Weiser, Christof; Kaufmann, Kerstin; Bohne, Arend; Kirchner, Charlotte; Kanno, Akira; Saedler, Heinz; Theissen, Günter

    2002-05-01

    The class B floral homeotic genes from the higher eudicot model systems Arabidopsis and Antirrhinum are involved in specifying the identity of petals and stamens during flower development. These genes exist in two different types termed DEF- and GLO-like genes. The proteins encoded by the class B genes are stable and functional in the cell only as heterodimeric complexes of a DEF- and a GLO-like protein. In line with this, heterodimerization is obligate for DNA binding in vitro. The genes whose products have to heterodimerize to be stable and functional are each other's closest relatives within their genomes. This suggests that the respective genes originated by gene duplication, and that heterodimerization is of relative recent origin and evolved from homodimerization. To test this hypothesis we have investigated the dimerization behavior of putative B proteins from phylogenetic informative taxa, employing electrophoretic mobility shift assays and the yeast two-hybrid system. We find that an ancestral B protein from the gymnosperm Gnetum gnemon binds DNA in a sequence-specific manner as a homodimer. Of the two types of B proteins from the monocot Lilium regale, the GLO-like protein is still able to homodimerize, whereas the DEF-like protein binds to DNA only as a heterodimeric complex with the GLO-like protein. These data suggest that heterodimerization evolved in two steps after a gene duplication that gave rise to DEF- and GLO-like genes. Heterodimerization may have originated after the gymnosperm-angiosperm split about 300 MYA but before the monocot-eudicot split 140-200 MYA. Heterodimerization may have become obligate for both types of flowering plant B proteins in the eudicot lineage after the monocot-eudicot split.

  2. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution.

    Directory of Open Access Journals (Sweden)

    Cheong Xin Chan

    Full Text Available Membrane transporters (MTs facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT. Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%. Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely

  3. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower

    Science.gov (United States)

    Chanderbali, André S.; Yoo, Mi-Jeong; Zahn, Laura M.; Brockington, Samuel F.; Wall, P. Kerr; Gitzendanner, Matthew A.; Albert, Victor A.; Leebens-Mack, James; Altman, Naomi S.; Ma, Hong; dePamphilis, Claude W.; Soltis, Douglas E.; Soltis, Pamela S.

    2010-01-01

    The origin and rapid diversification of the angiosperms (Darwin's “Abominable Mystery”) has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants. PMID:21149731

  4. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower.

    Science.gov (United States)

    Chanderbali, André S; Yoo, Mi-Jeong; Zahn, Laura M; Brockington, Samuel F; Wall, P Kerr; Gitzendanner, Matthew A; Albert, Victor A; Leebens-Mack, James; Altman, Naomi S; Ma, Hong; dePamphilis, Claude W; Soltis, Douglas E; Soltis, Pamela S

    2010-12-28

    The origin and rapid diversification of the angiosperms (Darwin's "Abominable Mystery") has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants.

  5. Type II shell evolution in A=70 isobars from the N≥40 island of inversion

    Directory of Open Access Journals (Sweden)

    A.I. Morales

    2017-02-01

    Full Text Available The level structures of 70Co and 70Ni, populated from the β decay of 70Fe, have been investigated using β-delayed γ-ray spectroscopy following in-flight fission of a 238U beam. The experimental results are compared to Monte-Carlo Shell-Model calculations including the pf+g9/2+d5/2 orbitals. The strong population of a (1+ state at 274 keV in 70Co is at variance with the expected excitation energy of ∼1 MeV from near spherical single-particle estimates. This observation indicates a dominance of prolate-deformed intruder configurations in the low-lying levels, which coexist with the normal near spherical states. It is shown that the β decay of the neutron-rich A=70 isobars from the new island of inversion to the Z=28 closed-shell regime progresses in accordance with a newly reported type of shell evolution, the so-called Type II, which involves many particle-hole excitations across energy gaps.

  6. The House of Infanta of Spain in the Monarchy of Philip II: Some Questions about its Origin, Development and Influence

    Directory of Open Access Journals (Sweden)

    María ALBALADEJO MARTÍNEZ

    2014-12-01

    Full Text Available During the sixteenth century there were many attempts to regulate and establish a conduct code for space management and the staff serving the monarchs and their children, creating the structure of the Infanta of Spain’s House. Isabel Clara Eugenia and Catalina Micaela, daughters of Philip II and Isabel of valois were the first to own staff governed by their own ordinances, creating a very useful pattern, from 1579 to the House of the princesses later in their lineage. Accordingly, and throughout the documents found at the National Library of Madrid and in the General Archives of Simancas Palace, this article discusses the origin, the formation and the structure of the House of the daughters of Philip II and his influence on the princesses of the dynasty of Habsburg.

  7. Pelvis of gargoyleosaurus (Dinosauria: Ankylosauria and the origin and evolution of the ankylosaur pelvis.

    Directory of Open Access Journals (Sweden)

    Kenneth Carpenter

    Full Text Available Discovery of a pelvis attributed to the Late Jurassic armor-plated dinosaur Gargoyleosaurus sheds new light on the origin of the peculiar non-vertical, broad, flaring pelvis of ankylosaurs. It further substantiates separation of the two ankylosaurs from the Morrison Formation of the western United States, Gargoyleosaurus and Mymoorapelta. Although horizontally oriented and lacking the medial curve of the preacetabular process seen in Mymoorapelta, the new ilium shows little of the lateral flaring seen in the pelvis of Cretaceous ankylosaurs. Comparison with the basal thyreophoran Scelidosaurus demonstrates that the ilium in ankylosaurs did not develop entirely by lateral rotation as is commonly believed. Rather, the preacetabular process rotated medially and ventrally and the postacetabular process rotated in opposition, i.e., lateral and ventrally. Thus, the dorsal surfaces of the preacetabular and postacetabular processes are not homologous. In contrast, a series of juvenile Stegosaurus ilia show that the postacetabular process rotated dorsally ontogenetically. Thus, the pelvis of the two major types of Thyreophora most likely developed independently. Examination of other ornithischians show that a non-vertical ilium had developed independently in several different lineages, including ceratopsids, pachycephalosaurs, and iguanodonts. Therefore, a separate origin for the non-vertical ilium in stegosaurs and ankylosaurs does have precedent.

  8. Evolution in situ: hybrid origin and establishment of willows (Salix L.) on alpine glacier forefields.

    Science.gov (United States)

    Gramlich, S; Sagmeister, P; Dullinger, S; Hadacek, F; Hörandl, E

    2016-06-01

    Little attention has been paid to the evolutionary consequences of the colonizing dynamics and succession processes following glacier retreat. Here we studied hybrid populations that have recently formed and established on glacier forefields of the European Alps owing to secondary contact of a lowland colonizer with a subalpine species. We analyzed the composition of two hybrid populations between Salix purpurea and Salix helvetica with nine microsatellite markers by using Bayesian methods (structure and NewHybrids), and simulations. We also studied niche differentiation between the hybrids and the parental species based on indicator values, soil pH and water retention potential measurements. Allelic structure of hybrids confirms the assumed parentage and in situ origin of the crosses on two independent sites within the last decades. Both hybrid populations comprised F1 and later generation hybrids (F2 and backcrosses), confirming hybrid fertility. The parental species showed significant differences in niche characteristics for temperature, soil pH, nutrients and moisture. Remarkably, the hybrids exhibited a higher tolerance to cold temperatures, nutrient-poor and acidic soils than either parent. Our results show that willow hybrids originated after glacier retreat and have established persistent populations within a few decades. One factor contributing to hybrid establishment in sympatry with their parents is their ability to occupy more extreme niches than either parental species within a mosaic-like pattern of microhabitats on the forefield. Introgression and/or transgressive segregation may have resulted in novel genotypes that are able to expand the ecological spectrum of either parent.

  9. The origin and evolution of coral species richness in a marine biodiversity hotspot.

    Science.gov (United States)

    Huang, Danwei; Goldberg, Emma E; Chou, Loke Ming; Roy, Kaustuv

    2017-11-27

    The Coral Triangle region of the Indo-Pacific realm harbors an extraordinary number of species, with richness decreasing away from this biodiversity hotspot. Despite multiple competing hypotheses, the dynamics underlying this regional diversity pattern remain poorly understood. Here we use a time-calibrated evolutionary tree of living reef coral species, their current geographic ranges, and model-based estimates of regional rates of speciation, extinction, and geographic range shifts to show that origination rates within the Coral Triangle are lower than in surrounding regions, a result inconsistent with the long-standing center of origin hypothesis. Furthermore, endemism of coral species in the Coral Triangle is low, and the Coral Triangle endemics are older than relatives found outside this region. Overall, our model results suggest that the high diversity of reef corals in the Coral Triangle is largely due to range expansions into this region of species that evolved elsewhere. These findings strongly support the notion that geographic range shifts play a critical role in generating species diversity gradients. They also show that preserving the processes that gave rise to the striking diversity of corals in the Coral Triangle requires protecting not just reefs within the hotspot, but also those in the surrounding areas. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Pelvis of gargoyleosaurus (Dinosauria: Ankylosauria) and the origin and evolution of the ankylosaur pelvis.

    Science.gov (United States)

    Carpenter, Kenneth; DiCroce, Tony; Kinneer, Billy; Simon, Robert

    2013-01-01

    Discovery of a pelvis attributed to the Late Jurassic armor-plated dinosaur Gargoyleosaurus sheds new light on the origin of the peculiar non-vertical, broad, flaring pelvis of ankylosaurs. It further substantiates separation of the two ankylosaurs from the Morrison Formation of the western United States, Gargoyleosaurus and Mymoorapelta. Although horizontally oriented and lacking the medial curve of the preacetabular process seen in Mymoorapelta, the new ilium shows little of the lateral flaring seen in the pelvis of Cretaceous ankylosaurs. Comparison with the basal thyreophoran Scelidosaurus demonstrates that the ilium in ankylosaurs did not develop entirely by lateral rotation as is commonly believed. Rather, the preacetabular process rotated medially and ventrally and the postacetabular process rotated in opposition, i.e., lateral and ventrally. Thus, the dorsal surfaces of the preacetabular and postacetabular processes are not homologous. In contrast, a series of juvenile Stegosaurus ilia show that the postacetabular process rotated dorsally ontogenetically. Thus, the pelvis of the two major types of Thyreophora most likely developed independently. Examination of other ornithischians show that a non-vertical ilium had developed independently in several different lineages, including ceratopsids, pachycephalosaurs, and iguanodonts. Therefore, a separate origin for the non-vertical ilium in stegosaurs and ankylosaurs does have precedent.

  11. Uniparental genetic systems: a male and a female perspective in the domestic cattle origin and evolution

    Directory of Open Access Journals (Sweden)

    Piera Di Lorenzo

    2016-09-01

    Full Text Available Over the last 20 years, the two uniparentally inherited marker systems, namely mitochondrial DNA and Y chromosome have been widely employed to solve questions about origin and prehistorical range expansions, demographic processes, both in humans and domestic animals. The mtDNA and the Y chromosome, with their unique patterns of inheritance, continue to be extremely important source of information. These markers played significant roles in farm animals in the evaluation of the genetic variation within- and among-breed strains and lines and have widely applied in the fields of linkage mapping, paternity tests, prediction of breeding values in genome-assisted selection, analysis of genetic diversity within breeds detection of population admixture, assessment of inbreeding and relationships between breeds, and assignment of individuals to their breed of origin. This approach offers a unique opportunity to save genetic resources and achieving improved productivity. In the past years, significant progress was achieved in reconstructing detailed cattle phylogenies; many studies indicated multiple parental sources and several levels of phylogeographic structuring. More detailed researches are still in progress in order to provide a more comprehensive picture of such extant variability. This paper is focused on reviewing the use of the two uniparental markers as valuable tool for the characterization of cattle genetic diversity. Furthermore, their implications in animal breeding, management and genetic resources conservation are also reported.

  12. Ardipithecus ramidus and the evolution of language and singing: An early origin for hominin vocal capability.

    Science.gov (United States)

    Clark, Gary; Henneberg, Maciej

    2017-03-01

    In this paper we analyse the possibility that the early hominin Ardipithecus ramidus had vocal capabilities far exceeding those of any extant non-human primate. We argue that erect posture combined with changes in craniofacial morphology, such as reduced facial and jaw length, not only provide evidence for increased levels of pro-sociality, but also increased vocal ability. Reduced length of the face and jaw, combined with a flexed cranial base, suggests the larynx in this species was situated deeper in the neck than in chimpanzees, a trait which may have facilitated increased vocal ability. We also provide evidence that Ar. ramidus, by virtue of its erect posture, possessed a degree of cervical lordosis significantly greater than chimpanzees. This is indicative of increased mobility of the larynx within the neck and hence increased capacity to modulate vocalisations. In the paleoanthropological literature, these changes in early hominin skull morphology have to date been analysed in terms of a shift in mating and social behaviour, with little consideration given to vocally mediated sociality. Similarly, in the literature on language evolution there is a distinct lacuna regarding links between craniofacial correlates of social and mating systems and vocal ability. These are surprising oversights given that pro-sociality and vocal capability require identical alterations to the common ancestral skull and skeletal configuration. We therefore propose a model which integrates data on whole organism morphogenesis with evidence for a potential early emergence of hominin socio-vocal adaptations. Consequently, we suggest vocal capability may have evolved much earlier than has been traditionally proposed. Instead of emerging in the Homo genus, we suggest the palaeoecological context of late Miocene and early Pliocene forests and woodlands facilitated the evolution of hominin socio-vocal capability. We also propose that paedomorphic morphogenesis of the skull via the process

  13. Origin and Ion Charge State Evolution of Solar Wind Transients 4 - 7 August 2011

    Science.gov (United States)

    Rodkin, Denis; Goryaev, Farid; Pagano, Paolo; Gibb, Gordon; Slemzin, Vladimir; Shugay, Yulia; Veselovsky, Igor; Mackay, Duncan

    2017-04-01

    Identification of transients and their origins on the Sun is one of the most important problems of the space weather forecasting. In our work, we present a case study of the complex event consisting of several solar wind transients detected by ACE on 4 - 7 August 2011, that caused a geomagnetic storm with Dst= - 110 nT. The supposed coronal sources - three flares and coronal mass ejections (CMEs) occurred on 2 - 4 August 2011 in the active region AR 11261. To investigate the solar origins and formation of these transients, we studied kinematic and thermodynamic properties of expanding coronal structures using the SDO/AIA EUV images and the differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic field maps were used as the input data for the 3D numerical model to describe the flux rope ejection. We characterize the early phase of the flux rope ejection in the corona, where the usual three-component CME structure formed. The flux rope ejected with the speed about 200 km/s to the height of 0.25 Rsun. The kinematics of the modeled CME front well agrees with the STEREO EUV measurements. Using the results of the plasma diagnostics and MHD modeling, we calculated the ion charge ratios of carbon and oxygen as well as the mean charge state of iron ions of the 2 August 2011 CME taking into account the processes of heating, cooling, expansion, ionization and recombination of the moving plasma in the corona up to the freeze-in region. We estimated a probable heating rate of the CME plasma in the low corona by matching the calculated ion composition parameters of the CME with that measured in-situ parameters of the solar wind transients. We also consider the similarities and discrepancies between the results of the MHD simulation and the observation of the event. Our results show that analysis of the ion composition of CMEs enables to disclose a relationship between parameters of the solar wind transients and properties of their

  14. Evolution and distribution of RNA polymerase II regulatory sites from RNA polymerase III dependant mobile Alu elements

    Directory of Open Access Journals (Sweden)

    Brahmachari Samir K

    2004-10-01

    Full Text Available Abstract Background The primate-specific Alu elements, which originated 65 million years ago, exist in over a million copies in the human genome. These elements have been involved in genome shuffling and various diseases not only through retrotransposition but also through large scale Alu-Alu mediated recombination. Only a few subfamilies of Alus are currently retropositionally active and show insertion/deletion polymorphisms with associated phenotypes. Retroposition occurs by means of RNA intermediates synthesised by a RNA polymerase III promoter residing in the A-Box and B-Box in these elements. Alus have also been shown to harbour a number of transcription factor binding sites, as well as hormone responsive elements. The distribution of Alus has been shown to be non-random in the human genome and these elements are increasingly being implicated in diverse functions such as transcription, translation, response to stress, nucleosome positioning and imprinting. Results We conducted a retrospective analysis of putative functional sites, such as the RNA pol III promoter elements, pol II regulatory elements like hormone responsive elements and ligand-activated receptor binding sites, in Alus of various evolutionary ages. We observe a progressive loss of the RNA pol III transcriptional potential with concomitant accumulation of RNA pol II regulatory sites. We also observe a significant over-representation of Alus harboring these sites in promoter regions of signaling and metabolism genes of chromosome 22, when compared to genes of information pathway components, structural and transport proteins. This difference is not so significant between functional categories in the intronic regions of the same genes. Conclusions Our study clearly suggests that Alu elements, through retrotransposition, could distribute functional and regulatable promoter elements, which in the course of subsequent selection might be stabilized in the genome. Exaptation of

  15. Evolution and creation in the arena of scientific communication (Italian original version

    Directory of Open Access Journals (Sweden)

    Telmo Pievani

    2006-06-01

    Full Text Available The debate on Darwin’s theory of evolution is a unique case for observing some particular ways in which science is perceived and experienced in society. It is a dispute which is really not very scientific at all, since it ultimately derives from the attempt to discredit a corroborated scientific explanation (and to limit its teaching by fundamentalist fringe groups of religious and political movements of various extraction. However, it is undeniable that the clash between creationists and evolutionists must also involve, in a critical and self-reflective way, the communicative weaknesses of science and its inability to assert itself as a widespread and fully shared culture, as was also stressed by the Nature magazine in April 2005. With an international viewpoint, ranging from the United States to Europe, from Australia to Italy, in this dossier we try to make a summary investigation of the current state of the debate, with a particularly attentive eye on the communicative strategies that contend in the two fields.

  16. Life history evolution, reproduction, and the origins of sex-dependent aging and longevity.

    Science.gov (United States)

    Brooks, Robert C; Garratt, Michael G

    2017-02-01

    Males and females in many species differ in how they age and how long they live. These differences have motivated much research, concerning both their evolution and the underlying mechanisms that cause them. We review how differences in male and female life histories have evolved to shape patterns of aging and some of the mechanisms and pathways involved. We pay particular attention to three areas where considerable potential for synergy between mechanistic and evolutionary research exists: (1) the role of estrogens, androgens, the growth hormone/insulin-like growth factor 1 pathway, and the mechanistic target of rapamycin signaling pathway in sex-dependent growth and reproduction; (2) sexual conflict over mating rate and fertility, and how mate presence or mating can become an avenue for males and females to directly affect each other's life span; and (3) the link between dietary restriction and aging, and the emerging understanding that only the restriction of certain nutrients is involved and that this is linked to reproduction. We suggest that ideas about life histories, sex-dependent selection, and sexual conflict can inform and be informed by the ever more refined and complex understanding of the mechanisms that cause aging. © 2016 New York Academy of Sciences.

  17. Chromosome evolution with naked eye: palindromic context of the life origin.

    Science.gov (United States)

    Larionov, Sergei; Loskutov, Alexander; Ryadchenko, Eugeny

    2008-03-01

    Based on the representation of the DNA sequence as a two-dimensional (2D) plane walk, we consider the problem of identification and comparison of functional and structural organizations of chromosomes of different organisms. According to the characteristic design of 2D walks we identify telomere sites, palindromes of various sizes and complexity, areas of ribosomal RNA, transposons, as well as diverse satellite sequences. As an interesting result of the application of the 2D walk method, a new duplicated gigantic palindrome in the X human chromosome is detected. A schematic mechanism leading to the formation of such a duplicated palindrome is proposed. Analysis of a large number of the different genomes shows that some chromosomes (or their fragments) of various species appear as imperfect gigantic palindromes, which are disintegrated by many inversions and the mutation drift on different scales. A spread occurrence of these types of sequences in the numerous chromosomes allows us to develop a new insight of some accepted points of the genome evolution in the prebiotic phase.

  18. Kinematic evolution of the southwestern Arabian continental margin: implications for the origin of the Red Sea

    Science.gov (United States)

    Voggenreiter, W.; Hötzl, H.

    The tectonic and magnetic evolution of the Jizan coastal plain (Tihama Asir) in southwest Arabia was dominated by SW-NE lithospheric extension related to the development of the Red Sea Rift. A well-exposed, isotopically-dated succession of magmatic rocks (Jizan Group volcanics, Tihama Asir Magmatic Complex) allows a kinematic analysis for this part of the Arabian Red Sea margin. A mafic dyke swarm and several generations of roughly NW-trending normal faults characterized the continental rift stage from Oligocene to early Miocene time. Major uplift of the Arabian graben shoulder probably began about 14 Ma ago. By this time, extension and magmatism ceased in the Jizan area and were followed by an approximately 10 Ma interval of tectonic and magmatic quiescence. A second phase of extension began in the Pliocene and facilitated a vast outpouring of alkaliolivine basalts on the coastal plain. The geometry of faulting in the Jizan area supports a Wernicke-type simple-shear mechanism of continental rifting for the southern Arabian continental margin of the Red Sea.

  19. Origin, dynamics and evolution of ocean garbage patches from observed surface drifters

    Science.gov (United States)

    van Sebille, Erik; England, Matthew H.; Froyland, Gary

    2012-12-01

    Much of the debris in the near-surface ocean collects in so-called garbage patches where, due to convergence of the surface flow, the debris is trapped for decades to millennia. Until now, studies modelling the pathways of surface marine debris have not included release from coasts or factored in the possibilities that release concentrations vary with region or that pathways may include seasonal cycles. Here, we use observational data from the Global Drifter Program in a particle-trajectory tracer approach that includes the seasonal cycle to study the fate of marine debris in the open ocean from coastal regions around the world on interannual to centennial timescales. We find that six major garbage patches emerge, one in each of the five subtropical basins and one previously unreported patch in the Barents Sea. The evolution of each of the six patches is markedly different. With the exception of the North Pacific, all patches are much more dispersive than expected from linear ocean circulation theory, suggesting that on centennial timescales the different basins are much better connected than previously thought and that inter-ocean exchanges play a large role in the spreading of marine debris. This study suggests that, over multi-millennial timescales, a significant amount of the debris released outside of the North Atlantic will eventually end up in the North Pacific patch, the main attractor of global marine debris.

  20. The asparagus genome sheds light on the origin and evolution of a young Y chromosome.

    Science.gov (United States)

    Harkess, Alex; Zhou, Jinsong; Xu, Chunyan; Bowers, John E; Van der Hulst, Ron; Ayyampalayam, Saravanaraj; Mercati, Francesco; Riccardi, Paolo; McKain, Michael R; Kakrana, Atul; Tang, Haibao; Ray, Jeremy; Groenendijk, John; Arikit, Siwaret; Mathioni, Sandra M; Nakano, Mayumi; Shan, Hongyan; Telgmann-Rauber, Alexa; Kanno, Akira; Yue, Zhen; Chen, Haixin; Li, Wenqi; Chen, Yanling; Xu, Xiangyang; Zhang, Yueping; Luo, Shaochun; Chen, Helong; Gao, Jianming; Mao, Zichao; Pires, J Chris; Luo, Meizhong; Kudrna, Dave; Wing, Rod A; Meyers, Blake C; Yi, Kexian; Kong, Hongzhi; Lavrijsen, Pierre; Sunseri, Francesco; Falavigna, Agostino; Ye, Yin; Leebens-Mack, James H; Chen, Guangyu

    2017-11-02

    Sex chromosomes evolved from autosomes many times across the eukaryote phylogeny. Several models have been proposed to explain this transition, some involving male and female sterility mutations linked in a region of suppressed recombination between X and Y (or Z/W, U/V) chromosomes. Comparative and experimental analysis of a reference genome assembly for a double haploid YY male garden asparagus (Asparagus officinalis L.) individual implicates separate but linked genes as responsible for sex determination. Dioecy has evolved recently within Asparagus and sex chromosomes are cytogenetically identical with the Y, harboring a megabase segment that is missing from the X. We show that deletion of this entire region results in a male-to-female conversion, whereas loss of a single suppressor of female development drives male-to-hermaphrodite conversion. A single copy anther-specific gene with a male sterile Arabidopsis knockout phenotype is also in the Y-specific region, supporting a two-gene model for sex chromosome evolution.

  1. The Place of RNA in the Origin and Early Evolution of the Genetic Machinery

    Directory of Open Access Journals (Sweden)

    Günter Wächtershäuser

    2014-12-01

    Full Text Available The extant genetic machinery revolves around three interrelated polymers: RNA, DNA and proteins. Two evolutionary views approach this vital connection from opposite perspectives. The RNA World theory posits that life began in a cold prebiotic broth of monomers with the de novo emergence of replicating RNA as functionally self-contained polymer and that subsequent evolution is characterized by RNA → DNA memory takeover and ribozyme → enzyme catalyst takeover. The FeS World theory posits that life began as an autotrophic metabolism in hot volcanic-hydrothermal fluids and evolved with organic products turning into ligands for transition metal catalysts thereby eliciting feedback and feed-forward effects. In this latter context it is posited that the three polymers of the genetic machinery essentially coevolved from monomers through oligomers to polymers, operating functionally first as ligands for ligand-accelerated transition metal catalysis with later addition of base stacking and base pairing, whereby the functional dichotomy between hereditary DNA with stability on geologic time scales and transient, catalytic RNA with stability on metabolic time scales existed since the dawn of the genetic machinery. Both approaches are assessed comparatively for chemical soundness.

  2. The Place of RNA in the Origin and Early Evolution of the Genetic Machinery

    Science.gov (United States)

    Wächtershäuser, Günter

    2014-01-01

    The extant genetic machinery revolves around three interrelated polymers: RNA, DNA and proteins. Two evolutionary views approach this vital connection from opposite perspectives. The RNA World theory posits that life began in a cold prebiotic broth of monomers with the de novo emergence of replicating RNA as functionally self-contained polymer and that subsequent evolution is characterized by RNA → DNA memory takeover and ribozyme → enzyme catalyst takeover. The FeS World theory posits that life began as an autotrophic metabolism in hot volcanic-hydrothermal fluids and evolved with organic products turning into ligands for transition metal catalysts thereby eliciting feedback and feed-forward effects. In this latter context it is posited that the three polymers of the genetic machinery essentially coevolved from monomers through oligomers to polymers, operating functionally first as ligands for ligand-accelerated transition metal catalysis with later addition of base stacking and base pairing, whereby the functional dichotomy between hereditary DNA with stability on geologic time scales and transient, catalytic RNA with stability on metabolic time scales existed since the dawn of the genetic machinery. Both approaches are assessed comparatively for chemical soundness. PMID:25532530

  3. The origins and evolution of genetic disease risk in modern humans.

    Science.gov (United States)

    Crespi, Bernard J

    2010-09-01

    Patterns and risks of human disease have evolved. In this article, I review evidence regarding the importance of recent adaptive evolution, positive selection, and genomic conflicts in shaping the genetic and phenotypic architectures of polygenic human diseases. Strong recent selection in human populations can create and maintain genetically based disease risk primarily through three processes: increased scope for dysregulation from recent human adaptations, divergent optima generated by intraspecific genomic conflicts, and transient or stable deleterious by-products of positive selection caused by antagonistic pleiotropy, ultimately due to trade-offs at the levels of molecular genetics, development, and physiology. Human disease due to these processes appears to be concentrated in three sets of phenotypes: cognition and emotion, reproductive traits, and life-history traits related to long life-span. Diverse, convergent lines of evidence suggest that a small set of tissues whose pleiotropic patterns of gene function and expression are under especially strong selection-brain, placenta, testis, prostate, breast, and ovary-has mediated a considerable proportion of disease risk in modern humans. © 2010 New York Academy of Sciences.

  4. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies

    Directory of Open Access Journals (Sweden)

    Agnese eLupo

    2012-01-01

    Full Text Available The environment, and especially fresh water, constitutes a reactor where the evolution and the rise of new resistances occur. In rivers or streams, bacteria from different sources such as urban, industrial and agricultural waste, probably selected by intensive antibiotic usage, are collected and mixed with environmental species. This may cause two effects on the development of antibiotic resistances: First, the contamination of water by antibiotics or other pollutants lead to the rise of resistance due to selection processes. For instance, of strains over-expressing broad range defensive mechanisms, such as efflux pumps. Second, since environmental species are provided with intrinsic antibiotic resistance mechanisms, the mixture with allochthonous species is likely to cause genetic exchange. In this context, the role of phages and integrons for the spread of resistance mechanisms appears significant. Allochthonous species could acquire new resistances from environmental donors and introduce the newly acquired resistance mechanisms into the clinics. This is illustrated by clinically relevant resistance mechanisms, such as the fluoroquinolones resistance genes qnr. Freshwater appears to play an important role in the emergence and in the spread of antibiotic resistances, highlighting the necessity for strategies of water quality improvement. Moreover, further knowledge is needed to better understand the role of the environment as reservoir of antibiotic resistances and to assess the risk of spread of antibiotic resistances via water bodies.

  5. On the origin and evolution of the Roeder knot and loop--a geometrical review.

    Science.gov (United States)

    Hage, J J

    2008-02-01

    The first laparoscopic sliding knot to be described was the Roeder knot; it has been used for a variety of procedures in all surgical disciplines. It was surmised that the introduction of new modifications in the geometry of the knot paralleled the introduction of its new indications, and that not all modifications improved its security. Therefore, a geometrical review was made of all modifications and all data on knot security and loop security of the knot were analyzed. The introduction of the original knot and its 14 applicable modifications paralleled the increase in minimally invasive techniques and the spread of these techniques in all the medical specialties. Roeder loop security depends predominantly on the number of initial turns around the standing part. Its knot security depends on the additional half hitches used to backup the knot after it has been tightened. Only a few of the modifications improved the security of the knot or its previous modifications.

  6. A phylogenetic approach to study the origin and evolution of the CRINKLY4 family

    Directory of Open Access Journals (Sweden)

    Natalia eNikonorova

    2015-10-01

    Full Text Available Cell-cell communication plays a crucial role in plant growth and development and relies to a large extent on peptide ligand-receptor kinase signalling mechanisms. The CRINKLY4 (CR4 family of receptor-like kinases is involved in a wide range of developmental processes in plants, including mediating columella stem cell identity and differentiation in the Arabidopsis thaliana root tip. Members of the CR4 family contain a signal peptide, an extracellular part, a single-pass transmembrane helix and an intracellular cytoplasmic protein kinase domain. The main distinguishing features of the family are the presence of seven ‘crinkly’ repeats and a TUMOR NECROSIS FACTOR RECEPTOR (TNFR-like domain in the extracellular part. Here, we investigated the evolutionary origin of the CR4 family and explored to what extent members of this family are conserved throughout the green lineage. We identified members of the CR4 family in various dicots and monocots, and also in the lycophyte Selaginella moellendorffii and the bryophyte Physcomitrella patens. In addition, we attempted to gain insight in the evolutionary origin of different CR4-specific domains, and we could detect ‘crinkly’ repeat containing proteins already in single celled algae. Finally, we related the presence of likely functional CR4 orthologues to its best described signalling module comprising CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 40 (CLE40, WUSCHEL RELATED HOMEOBOX 5 (WOX5, CLAVATA 1 (CLV1 and ARABIDOPSIS CR4 (ACR4, and established that this module likely is already present in bryophytes and lycophytes.

  7. Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates.

    Directory of Open Access Journals (Sweden)

    Eugenia Poliakov

    Full Text Available In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE, a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT, which generates RPE65's substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona or cephalochordates (Branchiostoma, but occur in Petromyzon marinus (Sea Lamprey, a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa (previously annotated as an RPE65 has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO to the isomerohydrolase functionality (RPE65, coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates

  8. A Survey of the Origin and Evolution of Religion from the Points of View Edward Tylor and James Frazer

    Directory of Open Access Journals (Sweden)

    Alireza khajegir

    2016-01-01

    Full Text Available As a universal human phenomenon, religion is rooted in human nature, and human beings instinctively require a superior and supreme power. Besides this internal need for religion, attention to the meaning, function, and interpretation of religion has always been prevalent in the history of human thought from West to East, and scholars have always tried to comment on and analyze this fundamental issue of human life .  From among the approaches that arose about the interpretation and explanation of religion, rationalism tendency—influenced by evolution—has stood up because in the establishment of religion, rationalism takes its genesis and evolution as manifestations of the evolution of human thought, and it takes the development and evolution of religion as equal. This approach considers religion as answer to the need of the cognitive need of human beings. In this anthropological approach, religion is the product of primitive human beings’ effort to identify objects and events in the surrounding environment. As a results, as the man’s knowledge of the world around him increases, the need for religion decreases .  Anthropologist like Edward Tylor and James Frazer have taken this view to the origin and evolution of religion. They emphasize on principles such as the bodily and cognitive unity of the mind, the survival principal, and the evolutionary intellectual pattern of human beings in order to interpret religion stages from animism and magic till monism and monotheism, which will eventually decline during the development of science .  Taylor regards anthropology as the best scientific method to achieve a universal theory to understand the origin of religion. Based on its psychological unity, religion in all times and places—despite its diversity—is a unique phenomenon and has an exclusive identity because the very existence of commonalities in all practices and customs of the people of the world is indicative of the basic

  9. A Survey of the Origin and Evolution of Religion from the Points of View Edward Tylor and James Frazer

    Directory of Open Access Journals (Sweden)

    Alireza khajegir

    2015-12-01

    Full Text Available As a universal human phenomenon, religion is rooted in human nature, and human beings instinctively require a superior and supreme power. Besides this internal need for religion, attention to the meaning, function, and interpretation of religion has always been prevalent in the history of human thought from West to East, and scholars have always tried to comment on and analyze this fundamental issue of human life .  From among the approaches that arose about the interpretation and explanation of religion, rationalism tendency—influenced by evolution—has stood up because in the establishment of religion, rationalism takes its genesis and evolution as manifestations of the evolution of human thought, and it takes the development and evolution of religion as equal. This approach considers religion as answer to the need of the cognitive need of human beings. In this anthropological approach, religion is the product of primitive human beings’ effort to identify objects and events in the surrounding environment. As a results, as the man’s knowledge of the world around him increases, the need for religion decreases .  Anthropologist like Edward Tylor and James Frazer have taken this view to the origin and evolution of religion. They emphasize on principles such as the bodily and cognitive unity of the mind, the survival principal, and the evolutionary intellectual pattern of human beings in order to interpret religion stages from animism and magic till monism and monotheism, which will eventually decline during the development of science .  Taylor regards anthropology as the best scientific method to achieve a universal theory to understand the origin of religion. Based on its psychological unity, religion in all times and places—despite its diversity—is a unique phenomenon and has an exclusive identity because the very existence of commonalities in all practices and customs of the people of the world is indicative of the basic

  10. On the Origin and Evolution of the Extant System of B Chromosomes in Oryzomyini Radiation (Rodentia, Sigmodontinae.

    Directory of Open Access Journals (Sweden)

    Karen Ventura

    Full Text Available Heterogeneous supernumerary chromosomes (Bs are recognized in the oryzomyines Holochilus brasiliensis, Nectomys rattus, N. squamipes, Oligoryzomys flavescens and Sooretamys angouya, representing about 10% of all known B-containing rodent species. They provide an outstanding model for understanding the origin, evolution and diversity of Bs in a phylogenetic context. Therefore, whole chromosome-specific probes were generated from flow-sorted Holochilus brasiliensis (HBR autosomes 11 and 25+26 and chromosomes X, Y and Bs. Hybridizations were performed on male metaphases of 15 Oryzomyini species of which 3 are B-containing species. The results reveal that among the species sampled, 12 of them, belonging to a monophyletic Oryzomiyini subclade, are positive for an anonymous Oryzomyini shared heterochromatic region (OSHR on both sex chromosomes. The OSHR is also present on Bs of Holochilus brasiliensis, Nectomys rattus and N. squamipes but not on Bs of O. flavescens and S. angouya. Two distinct additional OSHR/autosome associations are observed on S. angouya. The three species that are OSHR negative belong to an outgroup. Molecular dating suggests that the OSHR originated between 7.8 and 3 Mya on ancestral sex chromosomes. A tentative explanation for the OSHR-positive nature of B regions in three species could be that transposable elements (TEs from this specific sex chromosome region may have invaded existing B chromosomes. The presence of the OSHR on entire Xp and Yp adjacent to interstitial telomeric sequences at pericentromeric positions, as observed in Drymoreomys albimaculatus, show a similar organization as on B chromosomes in Nectomys squamipes. The diversity of the Oryzomyini Bs in number, size, morphology and genetic content may be explained by the independent origin of B chromosomes in different subgroups of species, with Bs in Holochilus brasiliensis, Nectomys squamipes and N. rattus sharing the OSHR with sex chromosomes, and those in

  11. On the Origin and Evolution of the Extant System of B Chromosomes in Oryzomyini Radiation (Rodentia, Sigmodontinae).

    Science.gov (United States)

    Ventura, Karen; O'Brien, Patricia Caroline Mary; do Nascimento Moreira, Camila; Yonenaga-Yassuda, Yatiyo; Ferguson-Smith, Malcolm Andrew

    2015-01-01

    Heterogeneous supernumerary chromosomes (Bs) are recognized in the oryzomyines Holochilus brasiliensis, Nectomys rattus, N. squamipes, Oligoryzomys flavescens and Sooretamys angouya, representing about 10% of all known B-containing rodent species. They provide an outstanding model for understanding the origin, evolution and diversity of Bs in a phylogenetic context. Therefore, whole chromosome-specific probes were generated from flow-sorted Holochilus brasiliensis (HBR) autosomes 11 and 25+26 and chromosomes X, Y and Bs. Hybridizations were performed on male metaphases of 15 Oryzomyini species of which 3 are B-containing species. The results reveal that among the species sampled, 12 of them, belonging to a monophyletic Oryzomiyini subclade, are positive for an anonymous Oryzomyini shared heterochromatic region (OSHR) on both sex chromosomes. The OSHR is also present on Bs of Holochilus brasiliensis, Nectomys rattus and N. squamipes but not on Bs of O. flavescens and S. angouya. Two distinct additional OSHR/autosome associations are observed on S. angouya. The three species that are OSHR negative belong to an outgroup. Molecular dating suggests that the OSHR originated between 7.8 and 3 Mya on ancestral sex chromosomes. A tentative explanation for the OSHR-positive nature of B regions in three species could be that transposable elements (TEs) from this specific sex chromosome region may have invaded existing B chromosomes. The presence of the OSHR on entire Xp and Yp adjacent to interstitial telomeric sequences at pericentromeric positions, as observed in Drymoreomys albimaculatus, show a similar organization as on B chromosomes in Nectomys squamipes. The diversity of the Oryzomyini Bs in number, size, morphology and genetic content may be explained by the independent origin of B chromosomes in different subgroups of species, with Bs in Holochilus brasiliensis, Nectomys squamipes and N. rattus sharing the OSHR with sex chromosomes, and those in Oligoryzomys

  12. Electron spin and the origin of Bio-homochirality II. Prebiotic inorganic-organic reaction model

    OpenAIRE

    Wang, Wei

    2014-01-01

    The emergence of biomolecular homochirality is a critically important question about life phenomenon and the origins of life. In a previous paper (arXiv:1309.1229), I tentatively put forward a new hypothesis that the emergence of a single chiral form of biomolecules in living organisms is specifically determined by the electron spin state during their enzyme-catalyzed synthesis processes. However, how a homochirality world of biomolecules could have formed in the absence of enzymatic networks...

  13. Noble gases as tracers of the origin and evolution of the Martian atmosphere and the degassing history of the planet

    Science.gov (United States)

    Swindle, T. D.

    1988-01-01

    Noble gas analysis of Martian samples can provide answers to a number of crucial questions. Some of the most obvious benefits will be in Martian chronology, using techniques that have been applied to lunar samples. However, these are by no means the only relevant noble gas studies possible. Since Mars has a substantial atmosphere, noble gases can be used to study the origin and evolution of that atmosphere, including the degassing history of the planet. This type of study can provide constraints on: (1) the total noble gas inventory of the planet, (2) the number of noble gas reservoirs existing, and (3) the exchange of gases between these reservoirs. How to achieve these goals are examined.

  14. Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009.

    Science.gov (United States)

    Harman, Denham

    2009-12-01

    Aging is the progressive accumulation in an organism of diverse, deleterious changes with time that increase the chance of disease and death. The basic chemical process underlying aging was first advanced by the free radical theory of aging (FRTA) in 1954: the reaction of active free radicals, normally produced in the organisms, with cellular constituents initiates the changes associated with aging. The involvement of free radicals in aging is related to their key role in the origin and evolution of life. The initial low acceptance of the FRTA by the scientific community, its slow growth, manifested by meetings and occasional papers based on the theory, prompted this account of the intermittent growth of acceptance of the theory over the past nearly 55 years.

  15. Assessing the origins, evolution and prospects of the literature on dynamic capabilities: A bibliometric analysis

    Directory of Open Access Journals (Sweden)

    Gema Albort-Morant

    2018-01-01

    Full Text Available The purpose of this study is to serve as orientation and guidance to academics that are starting or currently developing their research within the field of dynamic capabilities, in order to enhance their knowledge about which are the key scientific journals, authors and articles shaping this topic. This paper presents a bibliometric analysis on dynamic capabilities, making use of the Web of Science database to perform it. This analysis comprises fundamental issues such as (i the number of studies published per year, (ii the countries with the highest rate of productivity, (iii the most prolific and influential authors, (iv assessment of studies citing dynamic capabilities, and (v the most productive journals on dynamic capabilities and recent studies on this topic. Results reveal an exponential growth in the number of publications on dynamic capabilities for the 2000–2012 period. Although, since 2012 this growth has decelerated, the number of publications on this topic remains noteworthy. This study brings useful information for those academics and practitioners attempting to analyze and deepen within this particular field of research, at the same time that provides some insights concerning the future development and progress of the dynamic capabilities topic in the management, business and economics academic literature.

  16. Empirical demonstration of environmental sensing in catalytic RNA: evolution of interpretive behavior at the origins of life.

    Science.gov (United States)

    Lehman, Niles; Bernhard, Tess; Larson, Brian C; Robinson, Andrew J N; Southgate, Christopher C B

    2014-12-04

    The origins of life on the Earth required chemical entities to interact with their environments in ways that could respond to natural selection. The concept of interpretation, where biotic entities use signs in their environment as proxy for the existence of other items of selective value in their environment, has been proposed on theoretical grounds to be relevant to the origins and early evolution of life. However this concept has not been demonstrated empirically. Here, we present data that certain catalytic RNA sequences have properties that would enable interpretation of divalent cation levels in their environment. By assaying the responsiveness of two variants of the Tetrahymena ribozyme to the Ca(2+) ion as a sign for the more catalytically useful Mg(2+) ion, we show an empirical proof-of-principle that interpretation can be an evolvable trait in RNA, often suggested as a model system for early life. In particular we demonstrate that in vitro, the wild-type version of the Tetrahymena ribozyme is not interpretive, in that it cannot use Ca(2+) as a sign for Mg(2+). Yet a variant of this sequence containing five mutations that alter its ability to utilize the Ca(2+) ion engenders a strong interpretive characteristic in this RNA. We have shown that RNA molecules in a test tube can meet the minimum criteria for the evolution of interpretive behaviour in regards to their responses to divalent metal ion concentrations in their environment. Interpretation in RNA molecules provides a property entirely dependent on natural physico-chemical interactions, but capable of shaping the evolutionary trajectory of macromolecules, especially in the earliest stages of life's history.

  17. Fundamental Issues Related to the Origin of Melatonin and Melatonin Isomers during Evolution: Relation to Their Biological Functions

    Directory of Open Access Journals (Sweden)

    Dun-Xian Tan

    2014-09-01

    Full Text Available Melatonin and melatonin isomers exist and/or coexist in living organisms including yeasts, bacteria and plants. The levels of melatonin isomers are significantly higher than that of melatonin in some plants and in several fermented products such as in wine and bread. Currently, there are no reports documenting the presence of melatonin isomers in vertebrates. From an evolutionary point of view, it is unlikely that melatonin isomers do not exist in vertebrates. On the other hand, large quantities of the microbial flora exist in the gut of the vertebrates. These microorganisms frequently exchange materials with the host. Melatonin isomers, which are produced by these organisms inevitably enter the host’s system. The origins of melatonin and its isomers can be traced back to photosynthetic bacteria and other primitive unicellular organisms. Since some of these bacteria are believed to be the precursors of mitochondria and chloroplasts these cellular organelles may be the primary sites of melatonin production in animals or in plants, respectively. Phylogenic analysis based on its rate-limiting synthetic enzyme, serotonin N-acetyltransferase (SNAT, indicates its multiple origins during evolution. Therefore, it is likely that melatonin and its isomer are also present in the domain of archaea, which perhaps require these molecules to protect them against hostile environments including extremely high or low temperature. Evidence indicates that the initial and primary function of melatonin and its isomers was to serve as the first-line of defence against oxidative stress and all other functions were acquired during evolution either by the process of adoption or by the extension of its antioxidative capacity.

  18. Convergent origins and rapid evolution of spliced leader trans-splicing in metazoa: insights from the ctenophora and hydrozoa.

    Science.gov (United States)

    Derelle, Romain; Momose, Tsuyoshi; Manuel, Michael; Da Silva, Corinne; Wincker, Patrick; Houliston, Evelyn

    2010-04-01

    Replacement of mRNA 5' UTR sequences by short sequences trans-spliced from specialized, noncoding, spliced leader (SL) RNAs is an enigmatic phenomenon, occurring in a set of distantly related animal groups including urochordates, nematodes, flatworms, and hydra, as well as in Euglenozoa and dinoflagellates. Whether SL trans-splicing has a common evolutionary origin and biological function among different organisms remains unclear. We have undertaken a systematic identification of SL exons in cDNA sequence data sets from non-bilaterian metazoan species and their closest unicellular relatives. SL exons were identified in ctenophores and in hydrozoan cnidarians, but not in other cnidarians, placozoans, or sponges, or in animal unicellular relatives. Mapping of SL absence/presence obtained from this and previous studies onto current phylogenetic trees favors an evolutionary scenario involving multiple origins for SLs during eumetazoan evolution rather than loss from a common ancestor. In both ctenophore and hydrozoan species, multiple SL sequences were identified, showing high sequence diversity. Detailed analysis of a large data set generated for the hydrozoan Clytia hemisphaerica revealed trans-splicing of given mRNAs by multiple alternative SLs. No evidence was found for a common identity of trans-spliced mRNAs between different hydrozoans. One feature found specifically to characterize SL-spliced mRNAs in hydrozoans, however, was a marked adenosine enrichment immediately 3' of the SL acceptor splice site. Our findings of high sequence divergence and apparently indiscriminate use of SLs in hydrozoans, along with recent findings in other taxa, indicate that SL genes have evolved rapidly in parallel in diverse animal groups, with constraint on SL exon sequence evolution being apparently rare.

  19. Towards Understanding the Origin and Evolution of Structure in Young Stellar Clusters

    Science.gov (United States)

    Gutermuth, R. A.; Megeath, S. T.; Pipher, J. L.; Williams, J. P.; Allen, L. E.; Myers, P. C.

    2003-12-01

    There is growing evidence that most stars form in clusters of 100 or more stars. By studying the stellar density and spatial configuration in these rich clusters, we can improve our understanding of the initial configuration in which these stars form and their subsequent dynamical evolution. To this end, we present a comparative analysis of three active star-forming regions, NGC 7129, GGD 12-15, IRAS 20050+2720, which range in luminosity from 260 to 1.4 x 104 L⊙. We constructed stellar density distribution maps from 2.2 μ m wide-field observations with the FLAMINGOS instrument on the 6.5 meter MMT Telescope. We measured similar peak surface densities for all three objects, which represent volume densities of a few times 105 pc-3 assuming a spherical distribution. These densities are well below the 107 to 108 pc-3 densities required by theories explaining the formation of massive stars by the collisional agglomeration of lower mass stars. For GGD 12-15 and NGC 7129, we compare the stellar density distribution with 850 μ m maps obtained with the SCUBA instrument on the JCMT. In NGC 7129 we find an anti-correlation of the stars and dust indicating that much of the parental gas and dust has been dispersed. NGC 7129 shows a lower surface density and larger size than the other two clusters, suggesting that the cluster may be expanding due to the dispersal of the gas. In contrast, for the GGD 12-15 cluster, we find the stellar surface density traces the morphology of the dust emission.

  20. The origin, evolution, and diversification of rockfishes of the genus Sebastes (Cuvier).

    Science.gov (United States)

    Hyde, John R; Vetter, Russell D

    2007-08-01

    The evolutionary relationships of the livebearing rockfishes of the genus Sebastes have been a point of interest since their original description. With over 65 species found in the northeast Pacific (NEP), 27 in the northwest Pacific (NWP), seven in the Gulf of California (GC), four in the north Atlantic (NA) and at least two in the southern hemisphere (SH), they represent a fascinating lineage for studies of spatial and temporal patterns of dispersal, vicariance and speciation in the marine environment. Previous studies of Sebastes species have attempted to reconstruct their phylogeny using allozyme patterns or portions of a single mitochondrial gene while incompletely sampling the genus, resulting in a partial picture with low statistical support. In this study, genetic analyses using sequence data (5581 characters) from seven mitochondrial genes (cytochrome b, cytochrome c oxidase subunit 1, 12S rRNA, 16S rRNA, tRNA proline, tRNA threonine and the control region) and two nuclear genes (recombination activating gene 2 and internal transcribed spacer 1), along with a near complete sampling of species, have produced a well supported phylogenetic hypothesis of the relationships between Sebastes species as well as clarifying their position within the scorpaenid subfamily, Sebastinae. Though studies of similar magnitude have been conducted at the family and subfamily level, this represents the most detailed and extensive examination of biogeography and marine speciation within a single, widely distributed marine fish genus. Both Bayesian posterior and maximum parsimony analyses produced highly similar phylogenies suggesting an origin for Sebastes at high-latitudes in the NWP. The majority of previously proposed sub-generic groupings based upon morphology are found to be either para- or polyphletic. Using Bayesian-derived genetic distance measures together with rate smoothing techniques, a molecular clock was applied to the phylogeny. The clock-calibrated data suggest

  1. Evolution in a fully constituted world: Charles Darwin's debts towards a static world in the Origin of Species (1859).

    Science.gov (United States)

    Delisle, Richard G

    2014-01-01

    The Transformist Revolution was a long intellectual quest that has expanded from the 18th century to today. One area of inquiry after another has confronted the necessity of recasting its object of study under an evolutionary view: human history, geology, biology, astronomy, etc. No single scholar fully managed to make the transition from a static worldview to an evolutionary one during his or her own lifetime; Charles Darwin is no exception. Many versions of evolutionism were proposed during this revolution, versions offering all sorts of compromises between old and new views. Not sufficiently acknowledged in the historiography is the profoundness of Darwin's debts towards the old static view. As a dual child of the Scientific Revolution and natural theology, Darwin inherited key concepts such as stability, completeness, timelessness, unity, permanence, and uniformity. Darwin took these concepts into consideration while erecting his theory of biological evolution. Unsurprisingly, this theory was ill-equipped to embrace the directionality, historicity, and novelty that came along with a new evolutionary world. This paper analyses a fundamental idea at the heart of Darwin's Origins of Species (1859) inherited from a static, stable, and machine-like conception of the world: the notion of a fully constituted world. Although in principle antithetical to the very idea of evolution itself, Darwin found a way to 'loosen up' this notion so as to retain it in a way that allows for some kind of evolutionary change. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Epidemiology, Phylogeny, and Evolution of Emerging Enteric Picobirnaviruses of Animal Origin and Their Relationship to Human Strains

    Directory of Open Access Journals (Sweden)

    Yashpal S. Malik

    2014-01-01

    Full Text Available Picobirnavirus (PBV which has been included in the list of viruses causing enteric infection in animals is highly versatile because of its broad host range and genetic diversity. PBVs are among the most recent and emerging small, nonenveloped viruses with a bisegmented double-stranded RNA genome, classified under a new family “Picobirnaviridae.” PBVs have also been detected from respiratory tract of pigs, but needs further close investigation for their inhabitant behavior. Though, accretion of genomic data of PBVs from different mammalian species resolved some of the ambiguity, quite a few questions and hypotheses regarding pathogenesis, persistence location, and evolution of PBVs remain unreciprocated. Evolutionary analysis reveals association of PBVs with partitiviruses especially fungi partitiviruses. Although, PBVs may have an ambiguous clinical implication, they do pose a potential public health concern in humans and control of PBVs mainly relies on nonvaccinal approach. Based upon the published data, from 1988 to date, generated from animal PBVs across the globe, this review provides information and discussion with respect to genetic analysis as well as evolution of PBVs of animal origin in relation to human strains.

  3. The Origin and Evolution of Baeyer-Villiger Monooxygenases (BVMOs: An Ancestral Family of Flavin Monooxygenases.

    Directory of Open Access Journals (Sweden)

    Maria Laura Mascotti

    Full Text Available The Baeyer-Villiger Monooxygenases (BVMOs are enzymes belonging to the "Class B" of flavin monooxygenases and are capable of performing exquisite selective oxidations. These enzymes have been studied from a biotechnological perspective, but their physiological substrates and functional roles are widely unknown. Here, we investigated the origin, taxonomic distribution and evolutionary history of the BVMO genes. By using in silico approaches, 98 BVMO encoding genes were detected in the three domains of life: Archaea, Bacteria and Eukarya. We found evidence for the presence of these genes in Metazoa (Hydra vulgaris, Oikopleura dioica and Adineta vaga and Haptophyta (Emiliania huxleyi for the first time. Furthermore, a search for other "Class B" monooxygenases (flavoprotein monooxygenases--FMOs--and N-hydroxylating monooxygenases--NMOs was conducted. These sequences were also found in the three domains of life. Phylogenetic analyses of all "Class B" monooxygenases revealed that NMOs and BVMOs are monophyletic, whereas FMOs form a paraphyletic group. Based on these results, we propose that BVMO genes were already present in the last universal common ancestor (LUCA and their current taxonomic distribution is the result of differential duplication and loss of paralogous genes.

  4. Seismic anisotropy: an original tool to understand the geodynamic evolution of the Italian peninsula

    Directory of Open Access Journals (Sweden)

    A. Amato

    1997-06-01

    Full Text Available Anisotropy is a common property of the Earth's crust and the upper mantle; it is related to the strain field of the medium and therefore to geodynamics. In this paper we describe the different possible origins of anisotropic behavior of the seismic waves and the seismological techniques used to define anisotropic bodies. In general it is found that the fast polarization direction is parallel to the absolute plate motion in cratonic areas, to the spreading direction near rifts or extensional zones, and to the main structural features in transpressive regimes. The delay times between fast and slow waves reflect the relative strength and penetration at depth of the deformation field. The correspondence between surface structural trends and anisotropy in the upper mantle, found in many regions of the world, strongly suggest that orogenic processes involve not only the shallow crust but the entire lithosphere. Recently in Italy both shear wave splitting analysis and Pn inversion were applied to define the trend of seismic anisotropy. Along the Northern Appeninic arc fast directions follow the strike of the arc (i.e., parallel to the strike of the Miocene-Pleistocene compressional features, whereas in the Tyrrhenian zone fast directions are about E-W SW-NE; parallel to the post-Miocene extension that is thought to have reoriented the mantle minerals fabric in the astenosphere.

  5. Theoretical Study on the Origin of Anomalous Magneto-Photoluminescence in Type II Superlattices

    Science.gov (United States)

    Kamimura, Hiroshi; Kobayashi, Yoshinori; Kouzu, Kazuma; Masaru, Nishimura

    2001-03-01

    Magneto-photoluminescence in type II superlattices [1] and in the confinement structures [2] showed an anomalous reduction of PL intensity when an applied magnetic field along the superlattice direction increases up to 40 T. We propose that a bound exciton trapped in a quantum-dot like defect at the interface is responsible for the above phenomena. For this purpose, we first develop a general effective mass theory for a magneto-exciton trapped at the interface in the type II systems, where an electron and a hole lie in different layers. Based on this theory, we have calculated the binding enregy of a bound exciton in (GaP)_n(AlP)n superlattices with n=4 by a variational method as a function of a magnetic field. The calculated results explain successfully the observed anomalous redshift of PL peak energy and also the anomalous decrease of PL intensity. 1.K.Uchida et al., Phys.Rev. B 53 (1996) 4809. 2.N.Usami et al., Phys.Rev. B 60 (1999) 1879. Present address:Kobayashi, Reserch & Development Division, Bridgestone Corp.;Kouzu, Vision Care Co, HOYA Corp.

  6. Early evolution of the Gulf of Mexico and the origin of the pervasive salt

    Science.gov (United States)

    Lawver, L. A.; Norton, I. O.; Gahagan, L.

    2016-12-01

    The final stage of formation of the Gulf of Mexico (GOM) is fairly well constrained, while the earlier evolution is still debated. During the final stage, Yucatan rotated about a Florida Straits Euler pole that created most of the oceanic crust in the GOM. From observations of salt overlying seaward-dipping reflectors (diagnostic of volcanism during the rift to drift transition) in the northeast GOM we suggest that salt was deposited at the onset of sea floor spreading, which coincides with initiation of the rotational motion of Yucatan. Salt is Callovian or earliest Oxfordian in age, and the next oldest rocks known from the northern GOM are Late Triassic redbeds found in what are generally regarded as grabens formed during early rifting. Since there was a long-lived, strikingly linear, continental margin arc in Mexico that lasted from the Permian through the Middle Jurassic (Barboza-Gudino et al., 2012), a lot of the rocks of this age seen in Mexico that are linked to GOM rifting are in fact associated with this earlier arc. This arc places major constraints on a pre-rift reconstruction involving North America, Africa, South America, Yucatan and the Tampico block of Mexico and defines the space available for Yucatan. In this presentation we will review reconstructions of the region and develop a tectonic model that forms the basis for further understanding of rifting in the GOM. A consequence of our new model involves a back-arc basin that is represented by the compressed Juarez or Cuicateco terrane of southeastern Mexico. The opening of this basin, coupled with the early opening of the Central Atlantic and the motion of South America away from Yucatan, not only allowed Yucatan to begin its rotation but may also be part of the "western" seaway that brought the necessary sea water into the Gulf to form the thick salt deposits. Barboza-Gudino, J.R., Molina-Garza. R.S., and Lawton, T.E., 2012. Sierra de Cato-: Remnants of the ancient western equatorial margin of

  7. Probing the Origin and Evolution of Interstellar and Protoplanetary Biogenic Ices with SPHEREx

    Science.gov (United States)

    Melnick, Gary; SPHEREx Science Team

    2018-01-01

    Many of the most important building blocks of life are locked in interstellar and protoplanetary ices. Examples include H2O, CO, CO2, and CH3OH, among others. There is growing evidence that within the cores of dense molecular clouds and the mid-plane of protoplanetary disks the abundance of these species in ices far exceeds that in the gas phase. As a result, collisions between ice-bearing bodies and newly forming planets are thought to be a major means of delivering these key species to young planets. There currently exist fewer than 250 ice absorption spectra toward Galactic molecular clouds, which is insufficient to reliably trace the ice content of clouds through the various evolutionary stages of collapse to form stars and planets. Likewise, the current number of spectra is inadequate to assess the effects of environment, such as cloud density and temperature, presence or absence of embedded sources, external FUV and X-ray radiation, gas-phase composition, or cosmic-ray ionization rate, on the ice composition of clouds at similar stages of evolution. Ultimately, our goal is to understand how these findings connect to our own Solar System.SPHEREx will be a game changer for the study of interstellar, circumstellar, and protoplanetary disk ices. SPHEREx will obtain spectra over the entire sky in the optical and near-IR, including the 2.5 to 5.0 micron region, which contains the above biogenic ice features. SPHEREx will detect millions of potential background continuum point sources already catalogued by NASA’s Wide-field Infrared Survey Explorer (WISE) at 3.4 and 4.6 microns for which there is evidence for intervening gas and dust based on the 2MASS+WISE colors with sufficient sensitivity to yield ice absorption spectra with SNR ≥ 100 per spectral resolution element. The resulting > 100-fold increase in the number of high-quality ice absorption spectra toward a wide variety of regions distributed throughout the Galaxy will reveal correlations between ice

  8. The origin and early evolution of metatherian mammals: the Cretaceous record

    Directory of Open Access Journals (Sweden)

    Thomas E. Williamson

    2014-12-01

    Full Text Available Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  9. The origin and early evolution of metatherian mammals: the Cretaceous record.

    Science.gov (United States)

    Williamson, Thomas E; Brusatte, Stephen L; Wilson, Gregory P

    2014-01-01

    Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  10. Origin and Ion Charge State Evolution of Solar Wind Transients during 4 - 7 August 2011

    Science.gov (United States)

    Rodkin, D.; Goryaev, F.; Pagano, P.; Gibb, G.; Slemzin, V.; Shugay, Y.; Veselovsky, I.; Mackay, D. H.

    2017-07-01

    We present a study of the complex event consisting of several solar wind transients detected by the Advanced Composition Explorer (ACE) on 4 - 7 August 2011, which caused a geomagnetic storm with Dst=-110 nT. The supposed coronal sources, three flares and coronal mass ejections (CMEs), occurred on 2 - 4 August 2011 in active region (AR) 11261. To investigate the solar origin and formation of these transients, we study the kinematic and thermodynamic properties of the expanding coronal structures using the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic field maps were used as the input data for the 3D magnetohydrodynamic (MHD) model to describe the flux rope ejection (Pagano, Mackay, and Poedts, 2013b). We characterize the early phase of the flux rope ejection in the corona, where the usual three-component CME structure formed. The flux rope was ejected with a speed of about 200 km s^{-1} to the height of 0.25 R_{⊙}. The kinematics of the modeled CME front agrees well with the Solar Terrestrial Relations Observatory (STEREO) EUV measurements. Using the results of the plasma diagnostics and MHD modeling, we calculate the ion charge ratios of carbon and oxygen as well as the mean charge state of iron ions of the 2 August 2011 CME, taking into account the processes of heating, cooling, expansion, ionization, and recombination of the moving plasma in the corona up to the frozen-in region. We estimate a probable heating rate of the CME plasma in the low corona by matching the calculated ion composition parameters of the CME with those measured in situ for the solar wind transients. We also consider the similarities and discrepancies between the results of the MHD simulation and the observations.

  11. Multi-gene phylogenetic analysis reveals the multiple origin and evolution of mangrove physiological traits through exaptation

    Science.gov (United States)

    Sahu, Sunil Kumar; Singh, Reena; Kathiresan, Kandasamy

    2016-12-01

    Mangroves are taxonomically diverse group of salt-tolerant, mainly arboreal, flowering plants that grow in tropical and sub-tropical regions and have adapted themselves to thrive in such obdurate surroundings. While evolution is often understood exclusively in terms of adaptation, innovation often begins when a feature adapted for one function is co-opted for a different purpose and the co-opted features are called exaptations. Thus, one of the fundamental issues is what features of mangroves have evolved through exaptation. We attempt to address these questions through molecular phylogenetic approach using chloroplast and nuclear markers. First, we determined if these mangroves specific traits have evolved multiple times in the phylogeny. Once the multiple origins were established, we then looked at related non-mangrove species for characters that could have been co-opted by mangrove species. We also assessed the efficacy of these molecular sequences in distinguishing mangroves at the species level. This study revealed the multiple origin of mangroves and shed light on the ancestral characters that might have led certain lineages of plants to adapt to estuarine conditions and also traces the evolutionary history of mangroves and hitherto unexplained theory that mangroves traits (aerial roots and viviparous propagules) evolved as a result of exaptation rather than adaptation to saline habitats.

  12. SPHEREx: Understanding the Origin and Evolution of Galaxies Through the Extragalactic Background Light

    Science.gov (United States)

    Zemcov, Michael; SPHEREx Science Team

    2018-01-01

    Euclid survey, uniquely SPHEREx will enable tomography of cosmic large scale structure using line tracers such as Lya, Ha, Hb, O[II] and O[III], as highlighted in community workshops and AAS special sessions over the past several years.

  13. A sample of mJy radio sources at 1.4 GHz in the Lynx and Hercules fields - II. Cosmic evolution of the space density of FR I radio sources

    Science.gov (United States)

    Rigby, E. E.; Best, P. N.; Snellen, I. A. G.

    2008-03-01

    In this paper the cosmic evolution of the space density of Fanaroff-Riley Class I (FR I) radio sources is investigated out to z ~ 1, in order to understand the origin of the differences between these and the more powerful FR IIs. High-resolution radio images are presented of the best high-redshift FR I candidate galaxies, drawn from two fields of the Leiden-Berkeley Deep Survey, and previously defined by Rigby, Snellen & Best in Paper 1. Together with lower resolution radio observations (both previously published in Paper 1 and, for a subset of sources, also presented here) these are used to morphologically classify the sample. Sources which are clearly resolved are classified by morphology alone, whereas barely or unresolved sources were classified using a combination of morphology and flux density loss in the higher resolution data, indicative of resolved-out extended emission. The space densities of the FR Is are then calculated as a function of redshift, and compared to both measurements of the local value and the behaviour of the more powerful FR IIs. The space density of FR I radio sources with luminosities (at 1.4 GHz) > 1025 WHz-1 is enhanced by a factor of 5-9 by z ~ 1, implying moderately strong evolution of this population; this enhancement is in good agreement with models of FR II evolution at the same luminosity. There are also indications that the evolution is luminosity dependent, with the lower powered sources evolving less strongly.

  14. Evolution and origin of merlin, the product of the Neurofibromatosis type 2 (NF2 tumor-suppressor gene

    Directory of Open Access Journals (Sweden)

    Omelyanchuk Leonid V

    2005-12-01

    Full Text Available Abstract Background Merlin, the product of the Neurofibromatosis type 2 (NF2 tumor suppressor gene, belongs to the ezrin-radixin-moesin (ERM subgroup of the protein 4.1 superfamily, which links cell surface glycoproteins to the actin cytoskeleton. While merlin's functional activity has been examined in mammalian and Drosophila models, little is understood about its evolution, diversity, and overall distribution among different taxa. Results By combining bioinformatic and phylogenetic approaches, we demonstrate that merlin homologs are present across a wide range of metazoan lineages. While the phylogenetic tree shows a monophyletic origin of the ERM family, the origin of the merlin proteins is robustly separated from that of the ERM proteins. The derivation of merlin is thought to be in early metazoa. We have also observed the expansion of the ERM-like proteins within the vertebrate clade, which occurred after its separation from Urochordata (Ciona intestinalis. Amino acid sequence alignment reveals the absence of an actin-binding site in the C-terminal region of all merlin proteins from various species but the presence of a conserved internal binding site in the N-terminal domain of the merlin and ERM proteins. In addition, a more conserved pattern of amino acid residues is found in the region containing the so-called "Blue Box," although some amino acid substitutions in this region exist in the merlin sequences of worms, fish, and Ciona. Examination of sequence variability at functionally significant sites, including the serine-518 residue, the phosphorylation of which modulates merlin's intra-molecular association and function as a tumor suppressor, identifies several potentially important sites that are conserved among all merlin proteins but divergent in the ERM proteins. Secondary structure prediction reveals the presence of a conserved α-helical domain in the central to C-terminal region of the merlin proteins of various species. The

  15. Geology of the Thaumasia region, Mars: Plateau development, valley origins, and magmatic evolution

    Science.gov (United States)

    Dohm, J.M.; Tanaka, K.L.

    1999-01-01

    rock occurs there. The overall volcanotectonic history at Thaumasia fits into a model for Tharsis as a whole in which long-lived Syria Planum-centered activity is ringed by a few significant, shorter-lived centers of activity like the Thaumasia plateau. Valley formation, like tectonism in the region, peaked during the Noachian and declined substantially during the Hesperian and Amazonian. Temporal and spatial associations of single erosional valleys and valley networks with volcanoes, rift systems, and large impact craters suggest that the majority of valleys formed by hydrothermal, deformational, and seismic-induced processes. The origin of scattered, mainly Noachian valleys is more conjectural; possible explanations include local precipitation, seismic disturbance of aquifers, or unrecognized intrusions. ?? 1999 Elsevier Science Ltd. All rights reserved.

  16. The dual targeting ability of type II NAD(P)H dehydrogenases arose early in land plant evolution

    Science.gov (United States)

    2013-01-01

    Background Type II NAD(PH) dehydrogenases are located on the inner mitochondrial membrane of plants, fungi, protists and some primitive animals. However, recent observations have been made which identify several Arabidopsis type II dehydrogenases as dual targeted proteins. Targeting either mitochondria and peroxisomes or mitochondria and chloroplasts. Results Members of the ND protein family were identified in various plant species. Phylogenetic analyses and subcellular targeting predictions were carried out for all proteins. All ND proteins from three model plant species Arabidopsis, rice and Physcomitrella were cloned as N- and C-terminal GFP fusions and subcellular localisations were determined. Dual targeting of plant type II dehydrogenases was observed to have evolved early in plant evolution and to be widespread throughout different plant species. In all three species tested dual targeting to both mitochondria and peroxisomes was found for at least one NDA and NDB type protein. In addition two NDB type proteins from Physcomitrella were also found to target chloroplasts. The dual targeting of NDC type proteins was found to have evolved later in plant evolution. Conclusions The functions of type II dehydrogenases within plant cells will have to be re-evaluated in light of this newly identified subcellular targeting information. PMID:23841539

  17. THE PRECAMBRIAN HISTORY OF THE ORIGIN AND EVOLUTION OF THE SOLAR SYSTEM AND EARTH. PART 1

    Directory of Open Access Journals (Sweden)

    M. I. Kuz’min

    2014-01-01

    Full Text Available The paper provides a review of early stages of development the Solar System and the geological history of Earth with reference to the latest data on the origin of the Solar System and the formation of the first continental rocks and results of studies of zircon, the oldest mineral so far dated on Earth. The formation of the Solar System from a gas-and-dust nebula is estimated to have begun 4.568 billion years ago. Ice was formed 1.5 million years later; it concentrated at the periphery of the system and served as the material for the largest planets, Jupiter and Saturn. In the central areas of the system, asteroids with diameters of about 10 km were formed. Their small bodies were composed of the basic material of the solar nebula, as evidenced by carbonaceous chondrite, CI, which composition is similar to the composition of the Sun, with the exception of hydrogen, helium, and volatile components that served as the main material for peripheral planets of the Solar System. Due to collision and partial merger of such small bodies, the formation of embryos of the terrestrial planets was initiated. Gravity made such embryos to cluster into larger bodies. After 7 million years, large asteroids and planet Mars were formed. It took 11 million years to form Planet Earth with a mass of 63 %, and 30 million years to form 93 % of its mass. Almost from the beginning of the formation of the Earth, short-lived radionuclides, 26Al and 60Fe, caused warming up of the small planetary bodies which led to the formation of their cores. During the initial stages, small magma reservoirs were formed, and molten iron particles gathered in the centres of the planetary bodies. As suggested by the ratio of 182W/184W, the major part of the core was formed within 20 million years, while its full mass accumulated completely within the next 50 million years. In 30–40 million years after the creation of the Solar System, the Earth collided with a cosmic body which mass was

  18. THE PRECAMBRIAN HISTORY OF THE ORIGIN AND EVOLUTION OF THE SOLAR SYSTEM AND EARTH. PART 1

    Directory of Open Access Journals (Sweden)

    M. I. Kuz’min

    2015-09-01

    Full Text Available The paper provides a review of early stages of development the Solar System and the geological history of Earth with reference to the latest data on the origin of the Solar System and the formation of the first continental rocks and results of studies of zircon, the oldest mineral so far dated on Earth. The formation of the Solar System from a gas-and-dust nebula is estimated to have begun 4.568 billion years ago. Ice was formed 1.5 million years later; it concentrated at the periphery of the system and served as the material for the largest planets, Jupiter and Saturn. In the central areas of the system, asteroids with diameters of about 10 km were formed. Their small bodies were composed of the basic material of the solar nebula, as evidenced by carbonaceous chondrite, CI, which composition is similar to the composition of the Sun, with the exception of hydrogen, helium, and volatile components that served as the main material for peripheral planets of the Solar System. Due to collision and partial merger of such small bodies, the formation of embryos of the terrestrial planets was initiated. Gravity made such embryos to cluster into larger bodies. After 7 million years, large asteroids and planet Mars were formed. It took 11 million years to form Planet Earth with a mass of 63 %, and 30 million years to form 93 % of its mass. Almost from the beginning of the formation of the Earth, short-lived radionuclides, 26Al and 60Fe, caused warming up of the small planetary bodies which led to the formation of their cores. During the initial stages, small magma reservoirs were formed, and molten iron particles gathered in the centres of the planetary bodies. As suggested by the ratio of 182W/184W, the major part of the core was formed within 20 million years, while its full mass accumulated completely within the next 50 million years. In 30–40 million years after the creation of the Solar System, the Earth collided with a cosmic body which mass was

  19. History of the common bean crop: its evolution beyond its areas of origin and domestication

    Directory of Open Access Journals (Sweden)

    De Ron, Antonio M.

    2016-06-01

    Full Text Available The common bean (Phaseolus vulgaris L. is the most important grain legume for direct human consumption on a global scale. Current bean germplasm collections show a wide variation of phenotypes, although genetic erosion is gradually affecting this species as in many countries local traditional varieties are being replaced by elite cultivars. This crop has spread to every continent over the past few centuries, which has resulted in a complex genetic structure of bean germplasm outside its areas of origin and domestication (South and Central America. Some evidence indicates that this germplasm is more complex than previously thought and contains additional, as yet unexplored, diversity. This is especially the case in southern Europe, particularly in the Iberian Peninsula, where it was introduced in the early sixteenth century and has been documented as a secondary focus of domestication of the species. The integration of omic data into bean germplasm documentation databases and its combination with genotypic, phenotypic and agro-ecological data is opening a new era for the enhancement and efficient use of common bean genetic resources as the main grain legume in Europe and worldwide.La judía común (Phaseolus vulgaris L. es la leguminosa de grano más relevante para el consumo humano directo en escala global. Las colecciones de germoplasma de judía actuales muestran una amplia variación de fenotipos, aunque en muchos países las variedades locales están siendo reemplazados por cultivares de élite, concentrando la producción agraria en un número cada vez más reducido de cultivares con la consecuente erosión genética o pérdida de biodiversidad. Este cultivo se ha extendido por todos los continentes durante los últimos siglos, lo que ha dado lugar a una compleja estructura genética fuera de sus áreas de origen y domesticación (Mesoamérica y Sudamérica. Diversas evidencias indican que el germoplasma europeo contiene una diversidad

  20. Geochemical indicators of the origins and evolution of methane in groundwater: Gippsland Basin, Australia.

    Science.gov (United States)

    Currell, Matthew; Banfield, Dominic; Cartwright, Ian; Cendón, Dioni I

    2017-05-01

    Recent expansion of shale and coal seam gas production worldwide has increased the need for geochemical studies in aquifers near gas deposits, to determine processes impacting groundwater quality and better understand the origins and behavior of dissolved hydrocarbons. We determined dissolved methane concentrations (n = 36) and δ13C and δ2H values (n = 31) in methane and groundwater from the 46,000-km2 Gippsland Basin in southeast Australia. The basin contains important water supply aquifers and is a potential target for future unconventional gas development. Dissolved methane concentrations ranged from 0.0035 to 30 mg/L (median = 8.3 mg/L) and were significantly higher in the deep Lower Tertiary Aquifer (median = 19 mg/L) than the shallower Upper Tertiary Aquifer (median = 3.45 mg/L). Groundwater δ13CDIC values ranged from -26.4 to -0.4 ‰ and were generally higher in groundwater with high methane concentrations (mean δ13CDIC = -9.5 ‰ for samples with >3 mg/L CH4 vs. -16.2 ‰ in all others), which is consistent with bacterial methanogenesis. Methane had δ13CCH4 values of -97.5 to -31.8 ‰ and δ2HCH4 values of -391 to -204 ‰ that were also consistent with bacterial methane, excluding one site with δ13CCH4 values of -31.8 to -37.9 ‰, where methane may have been thermogenic. Methane from different regions and aquifers had distinctive stable isotope values, indicating differences in the substrate and/or methanogenesis mechanism. Methane in the Upper Tertiary Aquifer in Central Gippsland had lower δ13CCH4 (-83.7 to -97.5 ‰) and δ2HCH4 (-236 to -391 ‰) values than in the deeper Lower Tertiary Aquifer (δ13CCH4 = -45.8 to -66.2 ‰ and δ2HCH4 = -204 to -311 ‰). The particularly low δ13CCH4 values in the former group may indicate methanogenesis at least partly through carbonate reduction. In deeper groundwater, isotopic values were more consistent with acetate fermentation. Not all methane at a given depth and

  1. Origin and evolution of gnathostome dentitions: a question of teeth and pharyngeal denticles in placoderms.

    Science.gov (United States)

    Zerina, Johanson; Smith, Moya M

    2005-05-01

    The fossil group Placodermi is the most phylogenetically basal of the clade of jawed vertebrates but lacks a marginal dentition comparable to that of the dentate Chondrichthyes, Acanthodii and Osteichthyes (crown-group Gnathostomata). The teeth of crown-group gnathostomes are part of an ordered dentition replaced from, and patterned by, a dental lamina, exemplified by the elasmobranch model. A dentition recognised by these criteria has been previously judged absent in placoderms, based on structural evidence such as absence of tooth whorls and typical vertebrate dentine. However, evidence for regulated tooth addition in a precise spatiotemporal order can be observed in placoderms, but significantly, only within the group Arthrodira. In these fossils, as in other jawed vertebrates with statodont, non-replacing dentitions, new teeth are added at the ends of rows below the bite, but in line with biting edges of the dentition. The pattern is different on each gnathal bone and probably arises from single odontogenic primordia on each, but tooth rows are arranged in a distinctive placoderm pattern. New teeth are made of regular dentine comparable to that of crown-gnathostomes, formed from a pulp cavity. This differs from semidentine previously described for placoderm gnathalia, a type present in the external dermal tubercles. The Arthrodira is a derived taxon within the Placodermi, hence origin of teeth in placoderms occurs late in the phylogeny and teeth are convergently derived, relative to those of other jawed vertebrates. More basal placoderm taxa adopted other strategies for providing biting surfaces and these vary substantially, but include addition of denticles to the growing gnathal plates, at the margins of pre-existing denticle patches. These alternative strategies and apparent absence of regular dentine have led to previous interpretations that teeth were entirely absent from the placoderm dentition. A consensus view emerged that a dentition, as developed

  2. Famine food of vegetal origin consumed in the Netherlands during World War II.

    Science.gov (United States)

    Vorstenbosch, Tom; de Zwarte, Ingrid; Duistermaat, Leni; van Andel, Tinde

    2017-11-17

    Periods of extreme food shortages during war force people to eat food that they normally do not consider edible. The last time that countries in Western Europe experienced severe scarcities was during World War II. The so-called Dutch famine or Hunger Winter (1944-1945) made at least 25,000 victims. The Dutch government took action by opening soup kitchens and providing information on wild plants and other famine food sources in "wartime cookbooks." The Dutch wartime diet has never been examined from an ethnobotanical perspective. We interviewed 78 elderly Dutch citizens to verify what they remembered of the consumption of vegetal and fungal famine food during World War II by them and their close surroundings. We asked whether they experienced any adverse effects from consuming famine food plants and how they knew they were edible. We identified plant species mentioned during interviews by their local Dutch names and illustrated field guides and floras. We hypothesized that people living in rural areas consumed more wild species than urban people. A Welch t test was performed to verify whether the number of wild and cultivated species differed between urban and rural citizens. A total number of 38 emergency food species (14 cultivated and 21 wild plants, three wild fungi) were mentioned during interviews. Sugar beets, tulip bulbs, and potato peels were most frequently consumed. Regularly eaten wild species were common nettle, blackberry, and beechnuts. Almost one third of our interviewees explicitly described to have experienced extreme hunger during the war. People from rural areas listed significantly more wild species than urban people. The number of cultivated species consumed by both groups was similar. Negative effects were limited to sore throats and stomachache from the consumption of sugar beets and tulip bulbs. Knowledge on the edibility of famine food was obtained largely by oral transmission; few people remembered the written recipes in wartime

  3. On the Origin of Sub-subgiant Stars. II. Binary Mass Transfer, Envelope Stripping, and Magnetic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Leiner, Emily; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Geller, Aaron M., E-mail: leiner@astro.wisc.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2017-05-10

    Sub-subgiant stars (SSGs) lie to the red of the main sequence and fainter than the red giant branch in cluster color–magnitude diagrams (CMDs), a region not easily populated by standard stellar evolution pathways. While there has been speculation on what mechanisms may create these unusual stars, no well-developed theory exists to explain their origins. Here we discuss three hypotheses of SSG formation: (1) mass transfer in a binary system, (2) stripping of a subgiant’s envelope, perhaps during a dynamical encounter, and (3) reduced luminosity due to magnetic fields that lower convective efficiency and produce large starspots. Using the stellar evolution code MESA, we develop evolutionary tracks for each of these hypotheses, and compare the expected stellar and orbital properties of these models with six known SSGs in the two open clusters M67 and NGC 6791. All three of these mechanisms can create stars or binary systems in the SSG CMD domain. We also calculate the frequency with which each of these mechanisms may create SSG systems, and find that the magnetic field hypothesis is expected to create SSGs with the highest frequency in open clusters. Mass transfer and envelope stripping have lower expected formation frequencies, but may nevertheless create occasional SSGs in open clusters. They may also be important mechanisms to create SSGs in higher mass globular clusters.

  4. On the Origin of Sub-subgiant Stars. II. Binary Mass Transfer, Envelope Stripping, and Magnetic Activity

    Science.gov (United States)

    Leiner, Emily; Mathieu, Robert D.; Geller, Aaron M.

    2017-05-01

    Sub-subgiant stars (SSGs) lie to the red of the main sequence and fainter than the red giant branch in cluster color-magnitude diagrams (CMDs), a region not easily populated by standard stellar evolution pathways. While there has been speculation on what mechanisms may create these unusual stars, no well-developed theory exists to explain their origins. Here we discuss three hypotheses of SSG formation: (1) mass transfer in a binary system, (2) stripping of a subgiant’s envelope, perhaps during a dynamical encounter, and (3) reduced luminosity due to magnetic fields that lower convective efficiency and produce large starspots. Using the stellar evolution code MESA, we develop evolutionary tracks for each of these hypotheses, and compare the expected stellar and orbital properties of these models with six known SSGs in the two open clusters M67 and NGC 6791. All three of these mechanisms can create stars or binary systems in the SSG CMD domain. We also calculate the frequency with which each of these mechanisms may create SSG systems, and find that the magnetic field hypothesis is expected to create SSGs with the highest frequency in open clusters. Mass transfer and envelope stripping have lower expected formation frequencies, but may nevertheless create occasional SSGs in open clusters. They may also be important mechanisms to create SSGs in higher mass globular clusters. This is paper number 74 in the WIYN Open Cluster Study.

  5. A contribution to the identification of charcoal origin in Brazil II - Macroscopic characterization of Cerrado species.

    Science.gov (United States)

    Gonçalves, Thaís A P; Nisgoski, Silvana; Oliveira, Julia S; Marcati, Carmen R; Ballarin, Adriano W; Muñiz, Graciela I B

    2016-05-13

    The Brazilian Cerrado is the richest savanna in the world. It is also one of the biomes more threatened in the country and a hotspot for conservation priorities. The main causes of deforestation in Cerrado are agricultural practices, livestock and charcoal production. Although charcoal has a minor impact, its consumption represents the deforestation of 16.000 Km² of the Cerrado. To contribute for the biomes's conservation it is very important to improve forestry supervision. Thus, in this work we present the macroscopic characterization of charcoal from 25 Cerrado's species. We simulate the real conditions of forest controllers by using the magnifications of 10x, 25x and 65x. Likewise, the charcoals micrographs are all of transverse sections due to the larger amount of anatomical information. We also analyzed texture, brightness, vitrification, ruptures and some special features. The species present several differences in their anatomical structure. Although some of them are very unique, this work does not intent to identify charcoals only by macroscopic analyses. But it might give directions to future identification of genera or species. It also provides knowledge for government agents to verify the documents of forestry origin by fast analyzing a sample of charcoal itself.

  6. A contribution to the identification of charcoal origin in Brazil II - Macroscopic characterization of Cerrado species

    Directory of Open Access Journals (Sweden)

    THAÍS A.P. GONÇALVES

    2016-06-01

    Full Text Available The Brazilian Cerrado is the richest savanna in the world. It is also one of the biomes more threatened in the country and a hotspot for conservation priorities. The main causes of deforestation in Cerrado are agricultural practices, livestock and charcoal production. Although charcoal has a minor impact, its consumption represents the deforestation of 16.000 Km² of the Cerrado. To contribute for the biomes's conservation it is very important to improve forestry supervision. Thus, in this work we present the macroscopic characterization of charcoal from 25 Cerrado's species. We simulate the real conditions of forest controllers by using the magnifications of 10x, 25x and 65x. Likewise, the charcoals micrographs are all of transverse sections due to the larger amount of anatomical information. We also analyzed texture, brightness, vitrification, ruptures and some special features. The species present several differences in their anatomical structure. Although some of them are very unique, this work does not intent to identify charcoals only by macroscopic analyses. But it might give directions to future identification of genera or species. It also provides knowledge for government agents to verify the documents of forestry origin by fast analyzing a sample of charcoal itself.

  7. The Origin of Sterol Biosynthesis: A Time-Point for the Evolution of Eukaryotes and the Presence of O2

    Science.gov (United States)

    Pearson, A.; Budin, M.; Brocks, J. J.

    2003-12-01

    The evolution of sterol biosynthesis is of critical interest to geoscientists as well as to evolutionary biologists. The first enzyme in the pathway, squalene monooxygenase (Sqmo), requires molecular oxygen (O2), suggesting that this process post-dates the evolution of Cyanobacteria. Additionally, the presence of steranes in ancient rocks marks the suggested time-point of eukaryogenesis(1). Sterol biosynthesis is viewed primarily as a eukaryotic process, and the frequency of its occurrence in bacteria long has been a subject of controversy. In this work, 19 protein gene sequences for Sqmo from eukaryotes were compared to all available complete and partial prokaryotic genomes. Twelve protein gene sequences representing oxidosqualene cyclase (Osc), the second enzyme of the sterol biosynthetic pathway, also were examined. The only unequivocal matches among the bacteria were the alpha-proteobacterium, Methylococcus capsulatus, in which sterol biosynthesis already is known, and the planctomycete, Gemmata obscuriglobus. The latter species contains the most abbreviated sterol pathway yet identified in any organism. Experiments show that the major sterols in Gemmata are lanosterol and its uncommon isomer, parkeol. In bacteria, the sterol biosynthesis genes occupy a contiguous coding region and may represent a single operon. Phylogenetic trees show that the sterol pathway in bacteria and eukaryotes has a common ancestry. Gemmata may retain the most ancient remnants of the pathway's origin, and it is likely that sterol biosynthesis in eukaryotes was acquired through gene transfer from bacteria. However, this work indicates that no known prokaryotes could produce the 24-ethyl steranes found in Archaean rocks(1). Therefore these compounds remain indicative of the presence of both eukaryotes and O2 at 2.7 Ga. 1. J. J. Brocks, G. A. Logan, R. Buick, R. E. Summons, (1999) Science 285, 1033-1036.

  8. Using features of a Creole language to reconstruct population history and cultural evolution: tracing the English origins of Sranan.

    Science.gov (United States)

    Sherriah, André C; Devonish, Hubert; Thomas, Ewart A C; Creanza, Nicole

    2018-04-05

    Creole languages are formed in conditions where speakers from distinct languages are brought together without a shared first language, typically under the domination of speakers from one of the languages and particularly in the context of the transatlantic slave trade and European colonialism. One such Creole in Suriname, Sranan, developed around the mid-seventeenth century, primarily out of contact between varieties of English from England, spoken by the dominant group, and multiple West African languages. The vast majority of the basic words in Sranan come from the language of the dominant group, English. Here, we compare linguistic features of modern-day Sranan with those of English as spoken in 313 localities across England. By way of testing proposed hypotheses for the origin of English words in Sranan, we find that 80% of the studied features of Sranan can be explained by similarity to regional dialect features at two distinct input locations within England, a cluster of locations near the port of Bristol and another cluster near Essex in eastern England. Our new hypothesis is supported by the geographical distribution of specific regional dialect features, such as post-vocalic rhoticity and word-initial 'h', and by phylogenetic analysis of these features, which shows evidence favouring input from at least two English dialects in the formation of Sranan. In addition to explicating the dialect features most prominent in the linguistic evolution of Sranan, our historical analyses also provide supporting evidence for two distinct hypotheses about the likely geographical origins of the English speakers whose language was an input to Sranan. The emergence as a likely input to Sranan of the speech forms of a cluster near Bristol is consistent with historical records, indicating that most of the indentured servants going to the Americas between 1654 and 1666 were from Bristol and nearby counties, and that of the cluster near Essex is consistent with documents

  9. Evolution of stellar collision products in open clusters : II. A grid of low-mass collisions

    NARCIS (Netherlands)

    Glebbeek, E.|info:eu-repo/dai/nl/30483324X; Pols, O.R.|info:eu-repo/dai/nl/111811155

    2008-01-01

    In a companion paper we studied the detailed evolution of stellar collision products that occurred in an N-body simulation of the old open cluster M 67 and compared our detailed models to simple prescriptions. In this paper we extend this work by studying the evolution of the collision products in

  10. Current Status of Research in Teaching and Learning Evolution: II. Pedagogical Issues

    Science.gov (United States)

    Smith, Mike U.

    2010-01-01

    This is the second of two articles that address recent scholarship about teaching and learning about evolution. This second review seeks to summarize this state of affairs and address the implications of this work for the classroom by addressing four basic questions: (1) What is evolution?/What components of the theory are important at the…

  11. The evolution of menstruation: a new model for genetic assimilation: explaining molecular origins of maternal responses to fetal invasiveness.

    Science.gov (United States)

    Emera, Deena; Romero, Roberto; Wagner, Günter

    2012-01-01

    Why do humans menstruate while most mammals do not? Here, we present our answer to this long-debated question, arguing that (i) menstruation occurs as a mechanistic consequence of hormone-induced differentiation of the endometrium (referred to as spontaneous decidualization, or SD); (ii) SD evolved because of maternal-fetal conflict; and (iii) SD evolved by genetic assimilation of the decidualization reaction, which is induced by the fetus in non-menstruating species. The idea that menstruation occurs as a consequence of SD has been proposed in the past, but here we present a novel hypothesis on how SD evolved. We argue that decidualization became genetically stabilized in menstruating lineages, allowing females to prepare for pregnancy without any signal from the fetus. We present three models for the evolution of SD by genetic assimilation, based on recent advances in our understanding of the mechanisms of endometrial differentiation and implantation. Testing these models will ultimately shed light on the evolutionary significance of menstruation, as well as on the etiology of human reproductive disorders like endometriosis and recurrent pregnancy loss. Copyright © 2012 WILEY Periodicals, Inc.

  12. Origin and evolution of formation water at the Jujo-Tecominoacan oil reservoir, Gulf of Mexico. Part 1: Chemical evolution and water-rock interaction

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, Peter, E-mail: birkle@iie.org.mx [Instituto de Investigaciones Electricas (IIE), Gerencia de Geotermia, Av. Reforma 113, Cuernavaca, Morelos 62490 (Mexico); Garcia, Bernardo Martinez; Milland Padron, Carlos M. [PEMEX Exploracion y Produccion, Region Sur, Activo Integral Bellota-Jujo, Diseno de Explotacion, Cardenas, Tabasco (Mexico)

    2009-04-15

    The origin and evolution of formation water from Upper Jurassic to Upper Cretaceous mudstone-packstone-dolomite host rocks at the Jujo-Tecominoacan oil reservoir, located onshore in SE-Mexico at a depth from 5200 to 6200 m.b.s.l., have been investigated, using detailed water geochemistry from 12 producer wells and six closed wells, and related host rock mineralogy. Saline waters of Cl-Na type with total dissolved solids from 10 to 23 g/L are chemically distinct from hypersaline Cl-Ca-Na and Cl-Na-Ca type waters with TDS between 181 and 385 g/L. Bromine/Cl and Br/Na ratios suggest the subaerial evaporation of seawater beyond halite precipitation to explain the extreme hypersaline components, while less saline samples were formed by mixing of high salinity end members with surface-derived, low salinity water components. The dissolution of evaporites from adjacent salt domes has little impact on present formation water composition. Geochemical simulations with Harvie-M{phi}ller-Weare and PHRQPITZ thermodynamic data sets suggest secondary fluid enrichment in Ca, HCO{sub 3} and Sr by water-rock interaction. The volumetric mass balance between Ca enrichment and Mg depletion confirms dolomitization as the major alteration process. Potassium/Cl ratios below evaporation trajectory are attributed to minor precipitation of K feldspar and illitization without evidence for albitization at the Jujo-Tecominoacan reservoir. The abundance of secondary dolomite, illite and pyrite in drilling cores from reservoir host rock reconfirms the observed water-rock exchange processes. Sulfate concentrations are controlled by anhydrite solubility as indicated by positive SI-values, although anhydrite deposition is limited throughout the lithological reservoir column. The chemical variety of produced water at the Jujo-Tecominoacan oil field is related to a sequence of primary and secondary processes, including infiltration of evaporated seawater and original meteoric fluids, the subsequent

  13. Evolution Analysis of the Aux/IAA Gene Family in Plants Shows Dual Origins and Variable Nuclear Localization Signals

    Science.gov (United States)

    Wu, Wentao; Liu, Yaxue; Wang, Yuqian; Li, Huimin; Liu, Jiaxi; Tan, Jiaxin; He, Jiadai; Bai, Jingwen

    2017-01-01

    The plant hormone auxin plays pivotal roles in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA) gene family encodes short-lived nuclear proteins acting on auxin perception and signaling, but the evolutionary history of this gene family remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges from three (Physcomitrella patens) to 63 (Glycine max). The phylogenetic analysis shows that the canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae. Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may be generated from the C-terminal truncation of auxin response factor (ARF) proteins. Our results indicate that tandem and segmental duplications play dominant roles for the expansion of the Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals (NLSs) in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their functions during the course of evolution. PMID:28991190

  14. Evolution Analysis of the Aux/IAA Gene Family in Plants Shows Dual Origins and Variable Nuclear Localization Signals.

    Science.gov (United States)

    Wu, Wentao; Liu, Yaxue; Wang, Yuqian; Li, Huimin; Liu, Jiaxi; Tan, Jiaxin; He, Jiadai; Bai, Jingwen; Ma, Haoli

    2017-10-08

    The plant hormone auxin plays pivotal roles in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA) gene family encodes short-lived nuclear proteins acting on auxin perception and signaling, but the evolutionary history of this gene family remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges from three (Physcomitrella patens) to 63 (Glycine max). The phylogenetic analysis shows that the canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae. Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may be generated from the C-terminal truncation of auxin response factor (ARF) proteins. Our results indicate that tandem and segmental duplications play dominant roles for the expansion of the Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals (NLSs) in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their functions during the course of evolution.

  15. Evolution Analysis of the Aux/IAA Gene Family in Plants Shows Dual Origins and Variable Nuclear Localization Signals

    Directory of Open Access Journals (Sweden)

    Wentao Wu

    2017-10-01

    Full Text Available The plant hormone auxin plays pivotal roles in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA gene family encodes short-lived nuclear proteins acting on auxin perception and signaling, but the evolutionary history of this gene family remains to be elucidated. In this study, the Aux/IAA gene family in 17 plant species covering all major lineages of plants is identified and analyzed by using multiple bioinformatics methods. A total of 434 Aux/IAA genes was found among these plant species, and the gene copy number ranges from three (Physcomitrella patens to 63 (Glycine max. The phylogenetic analysis shows that the canonical Aux/IAA proteins can be generally divided into five major clades, and the origin of Aux/IAA proteins could be traced back to the common ancestor of land plants and green algae. Many truncated Aux/IAA proteins were found, and some of these truncated Aux/IAA proteins may be generated from the C-terminal truncation of auxin response factor (ARF proteins. Our results indicate that tandem and segmental duplications play dominant roles for the expansion of the Aux/IAA gene family mainly under purifying selection. The putative nuclear localization signals (NLSs in Aux/IAA proteins are conservative, and two kinds of new primordial bipartite NLSs in P. patens and Selaginella moellendorffii were discovered. Our findings not only give insights into the origin and expansion of the Aux/IAA gene family, but also provide a basis for understanding their functions during the course of evolution.

  16. Creating Cover and Constructing Capacity: Assessing the Origins, Evolution, and Impact of Race to the Top. Education Stimulus Watch. Special Report 6

    Science.gov (United States)

    McGuinn, Patrick

    2010-01-01

    The Obama administration's Race to the Top (RTT) competitive grant program has been heralded for revolutionizing the federal role in education and transforming state school reform efforts. This paper offers an initial analysis of the origins, evolution, and impact of RTT. In many ways, RTT is an attempt to circumvent the perceived failings of No…

  17. Origin of the Dutch coastal landscape. Long-term landscape evolution of the Netherlands during the Holocene, described and visualized in national, regional and local palaeogeographical map series

    NARCIS (Netherlands)

    Vos, P.C.

    2015-01-01

    The topic of this thesis is the Origin of the Dutch coastal landscapes during the Holocene. The landscape evolution is visualized in a series of palaeogeographical maps, and the driving mechanisms behind the environmental changes are discussed. The practice to make palaeogeographical map

  18. Chemical Formation of Methanol and Hydrocarbon ("Organic") Derivatives from CO2 and H2-Carbon Sources for Subsequent Biological Cell Evolution and Life's Origin.

    Science.gov (United States)

    Olah, George A; Mathew, Thomas; Prakash, G K Surya

    2017-01-18

    Formation of methanol and hydrocarbon derivatives from CO2 and H2, their simplest molecular building blocks, under biocompatible conditions is proposed. Alternate panspermia of similar extraterrestrially formed and observed hydrocarbons to earth is also discussed. The simple molecular building blocks derived from CO2 and H2 are carbon sources in the initial stage of biological evolution of cells leading to life's origin.

  19. Origin and evolution of GALA-LRR, a new member of the CC-LRR subfamily: from plants to bacteria?

    Directory of Open Access Journals (Sweden)

    Andrey V Kajava

    Full Text Available The phytopathogenic bacterium Ralstonia solanacearum encodes type III effectors, called GALA proteins, which contain F-box and LRR domains. The GALA LRRs do not perfectly fit any of the previously described LRR subfamilies. By applying protein sequence analysis and structural prediction, we clarify this ambiguous case of LRR classification and assign GALA-LRRs to CC-LRR subfamily. We demonstrate that side-by-side packing of LRRs in the 3D structures may control the limits of repeat variability within the LRR subfamilies during evolution. The LRR packing can be used as a criterion, complementing the repeat sequences, to classify newly identified LRR domains. Our phylogenetic analysis of F-box domains proposes the lateral gene transfer of bacterial GALA proteins from host plants. We also present an evolutionary scenario which can explain the transformation of the original plant LRRs into slightly different bacterial LRRs. The examination of the selective evolutionary pressure acting on GALA proteins suggests that the convex side of their horse-shoe shaped LRR domains is more prone to positive selection than the concave side, and we therefore hypothesize that the convex surface might be the site of protein binding relevant to the adaptor function of the F-box GALA proteins. This conclusion provides a strong background for further functional studies aimed at determining the role of these type III effectors in the virulence of R. solanacearum.

  20. Deciphering the Origin and Evolution of Hepatitis B Viruses by Means of a Family of Non-enveloped Fish Viruses.

    Science.gov (United States)

    Lauber, Chris; Seitz, Stefan; Mattei, Simone; Suh, Alexander; Beck, Jürgen; Herstein, Jennifer; Börold, Jacob; Salzburger, Walter; Kaderali, Lars; Briggs, John A G; Bartenschlager, Ralf

    2017-09-13

    Hepatitis B viruses (HBVs), which are enveloped viruses with reverse-transcribed DNA genomes, constitute the family Hepadnaviridae. An outstanding feature of HBVs is their streamlined genome organization with extensive gene overlap. Remarkably, the ∼1,100 bp open reading frame (ORF) encoding the envelope proteins is fully nested within the ORF of the viral replicase P. Here, we report the discovery of a diversified family of fish viruses, designated nackednaviruses, which lack the envelope protein gene, but otherwise exhibit key characteristics of HBVs including genome replication via protein-primed reverse-transcription and utilization of structurally related capsids. Phylogenetic reconstruction indicates that these two virus families separated more than 400 million years ago before the rise of tetrapods. We show that HBVs are of ancient origin, descending from non-enveloped progenitors in fishes. Their envelope protein gene emerged de novo, leading to a major transition in viral lifestyle, followed by co-evolution with their hosts over geologic eras. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations

    Directory of Open Access Journals (Sweden)

    Edson V. Perez

    2016-09-01

    Full Text Available Gas separation for industrial, energy, and environmental applications requires low energy consumption and small footprint technology to minimize operating and capital costs for the processing of large volumes of gases. Among the separation methods currently being used, like distillation, amine scrubbing, and pressure and temperature swing adsorption, membrane-based gas separation has the potential to meet these demands. The key component, the membrane, must then be engineered to allow for high gas flux, high selectivity, and chemical and mechanical stability at the operating conditions of feed composition, pressure, and temperature. Among the new type of membranes studied that show promising results are the inorganic-based and the metal-organic framework-based mixed-matrix membranes (MOF-MMMs. A MOF is a unique material that offers the possibility of tuning the porosity of a membrane by introducing diffusional channels and forming a compatible interface with the polymer. This review details the origins of these membranes and their evolution since the first inorganic/polymer and MOF/polymer MMMs were reported in the open literature. The most significant advancements made in terms of materials, properties, and testing conditions are described in a chronological fashion.

  2. Heat in evolution's kitchen: evolutionary perspectives on the functions and origin of the facial pit of pitvipers (Viperidae: Crotalinae).

    Science.gov (United States)

    Krochmal, Aaron R; Bakken, George S; LaDuc, Travis J

    2004-11-01

    Pitvipers (Viperidae: Crotalinae) possess thermal radiation receptors, the facial pits, which allow them to detect modest temperature fluctuations within their environments. It was previously thought that these organs were used solely to aid in prey acquisition, but recent findings demonstrated that western diamondback rattlesnakes (Crotalus atrox) use them to direct behavioral thermoregulation, suggesting that facial pits might be general purpose organs used to drive a suite of behaviors. To investigate this further, we conducted a phylogenetic survey of viperine thermoregulatory behavior cued by thermal radiation. We assessed this behavior in 12 pitviper species, representing key nodes in the evolution of pitvipers and a broad range of thermal environments, and a single species of true viper (Viperidae: Viperinae), a closely related subfamily of snakes that lack facial pits but possess a putative thermal radiation receptor. All pitviper species were able to rely on their facial pits to direct thermoregulatory movements, while the true viper was unable to do so. Our results suggest that thermoregulatory behavior cued by thermal radiation is a universal role of facial pits and probably represents an ancestral trait among pitvipers. Further, they establish behavioral thermoregulation as a plausible hypothesis explaining the evolutionary origin of the facial pit.

  3. Type II Supernova Spectral Diversity. I. Observations, Sample Characterization, and Spectral Line Evolution

    DEFF Research Database (Denmark)

    Gutierrez, Claudia P.; Anderson, Joseph P.; Hamuy, Mario

    2017-01-01

    We present 888 visual-wavelength spectra of 122 nearby type II supernovae (SNe II) obtained between 1986 and 2009, and ranging between 3 and 363 days post-explosion. In this first paper, we outline our observations and data reduction techniques, together with a characterization based on the spect...

  4. Evolution

    Science.gov (United States)

    Peter, Ulmschneider

    When we are looking for intelligent life outside the Earth, there is a fundamental question: Assuming that life has formed on an extraterrestrial planet, will it also develop toward intelligence? As this is hotly debated, we will now describe the development of life on Earth in more detail in order to show that there are good reasons why evolution should culminate in intelligent beings.

  5. Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem

    Science.gov (United States)

    Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico

    2017-11-01

    The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the `final parsec' problem regardless of the stellar distribution.

  6. Origins and evolution of the HET-s prion-forming protein: searching for other amyloid-forming solenoids.

    Directory of Open Access Journals (Sweden)

    Deena M A Gendoo

    Full Text Available The HET-s prion-forming domain from the filamentous fungus Podospora anserina is gaining considerable interest since it yielded the first well-defined atomic structure of a functional amyloid fibril. This structure has been identified as a left-handed beta solenoid with a triangular hydrophobic core. To delineate the origins of the HET-s prion-forming protein and to discover other amyloid-forming proteins, we searched for all homologs of the HET-s protein in a database of protein domains and fungal genomes, using a combined application of HMM, psi-blast and pGenThreader techniques, and performed a comparative evolutionary analysis of the N-terminal alpha-helical domain and the C-terminal prion-forming domain of HET-s. By assessing the tandem evolution of both domains, we observed that the prion-forming domain is restricted to Sordariomycetes, with a marginal additional sequence homolog in Arthroderma otae as a likely case of horizontal transfer. This suggests innovation and rapid evolution of the solenoid fold in the Sordariomycetes clade. In contrast, the N-terminal domain evolves at a slower rate (in Sordariomycetes and spans many diverse clades of fungi. We performed a full three-dimensional protein threading analysis on all identified HET-s homologs against the HET-s solenoid fold, and present detailed structural annotations for identified structural homologs to the prion-forming domain. An analysis of the physicochemical characteristics in our set of structural models indicates that the HET-s solenoid shape can be readily adopted in these homologs, but that they are all less optimized for fibril formation than the P. anserina HET-s sequence itself, due chiefly to the presence of fewer asparagine ladders and salt bridges. Our combined structural and evolutionary analysis suggests that the HET-s shape has "limited scope" for amyloidosis across the wider protein universe, compared to the 'generic' left-handed beta helix. We discuss the

  7. Fast evolution of the retroprocessed mitochondrial rps3 gene in Conifer II and further evidence for the phylogeny of gymnosperms.

    Science.gov (United States)

    Ran, Jin-Hua; Gao, Hui; Wang, Xiao-Quan

    2010-01-01

    The popular view that plant mitochondrial genome evolves slowly in sequence has been recently challenged by the extraordinarily high substitution rates of mtDNA documented mainly from several angiosperm genera, but high substitution rate acceleration accompanied with great length variation has been very rarely reported in plant mitochondrial genes. Here, we studied evolution of the mitochondrial rps3 gene that encodes the ribosomal small subunit protein 3 and found a dramatically high variation in both length and sequence of an exon region of it in Conifer II. A sequence comparison between cDNA and genomic DNA showed that there are no RNA editing sites in the Conifer II rps3 gene. Southern blotting analyses of the total DNA and mtDNA, together with the real-time PCR analysis, showed that rps3 exists as a single mitochondrial locus in gymnosperms. It is very likely that the Conifer II rps3 gene has experienced retroprocessing, i.e., the re-integration of its cDNA into the mitochondrial genome, followed by an evolutionary acceleration due to the intron loss. In addition, the phylogenetic analysis of rps3 supports the sister relationship between conifers and Gnetales. In particular, the monophyly of conifer II is strongly supported by the shared loss of two rps3 introns. Our results also indicate that the mitochondrial gene tree would be affected in topology when the "edited" paralogs are analyzed together with their genomic sequences.

  8. THE RADIO AND OPTICAL LUMINOSITY EVOLUTION OF QUASARS. II. THE SDSS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Singal, J.; Petrosian, V. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory and Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Stawarz, L. [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5510 (Japan); Lawrence, A., E-mail: jsingal@stanford.edu [University of Edinburgh Institute for Astronomy, Scottish Universities Physics Alliance (SUPA), Royal Observatory, Blackford Hill, Edinburgh (United Kingdom)

    2013-02-10

    We determine the radio and optical luminosity evolutions and the true distribution of the radio-loudness parameter R, defined as the ratio of the radio to optical luminosity, for a set of more than 5000 quasars combining Sloan Digital Sky Survey optical and Faint Images of the Radio Sky at Twenty cm (FIRST) radio data. We apply the method of Efron and Petrosian to access the intrinsic distribution parameters, taking into account the truncations and correlations inherent in the data. We find that the population exhibits strong positive evolution with redshift in both wavebands, with somewhat greater radio evolution than optical. With the luminosity evolutions accounted for, we determine the density evolutions and local radio and optical luminosity functions. The intrinsic distribution of the radio-loudness parameter R is found to be quite different from the observed one and is smooth with no evidence of a bimodality in radio loudness for log R {>=} -1. The results we find are in general agreement with the previous analysis of Singal et al., which used POSS-I optical and FIRST radio data.

  9. The Radio and Optical Luminosity Evolution of Quasars II - The SDSS Sample

    Energy Technology Data Exchange (ETDEWEB)

    Singal, J.; Petrosian, V.; Stawarz, L.; Lawrence, A.

    2012-12-28

    We determine the radio and optical luminosity evolutions and the true distribution of the radio loudness parameter R, defined as the ratio of the radio to optical luminosity, for a set of more than 5000 quasars combining SDSS optical and FIRST radio data. We apply the method of Efron and Petrosian to access the intrinsic distribution parameters, taking into account the truncations and correlations inherent in the data. We find that the population exhibits strong positive evolution with redshift in both wavebands, with somewhat greater radio evolution than optical. With the luminosity evolutions accounted for, we determine the density evolutions and local radio and optical luminosity functions. The intrinsic distribution of the radio loudness parameter R is found to be quite different than the observed one, and is smooth with no evidence of a bi-modality in radio loudness. The results we find are in general agreement with the previous analysis of Singal et al., 2011 which used POSS-I optical and FIRST radio data.

  10. Steep Decay Phase Shaped by the Curvature Effect. II. Spectral Evolution

    Science.gov (United States)

    Lin, Da-Bin; Mu, Hui-Jun; Liang, Yun-Feng; Liu, Tong; Gu, Wei-Min; Lu, Rui-Jing; Wang, Xiang-Gao; Liang, En-Wei

    2017-05-01

    We derive a simple analytical formula to describe the evolution of spectral index β in the steep decay phase shaped by the curvature effect with the assumption that the spectral parameters and Lorentz factor of the jet shell are the same for different latitudes. Here, the value of β is estimated in the 0.3-10 keV energy band. For a spherical thin shell with a cutoff power-law (CPL) intrinsic radiation spectrum, the spectral evolution can be read as a linear function of observer time. For the situation with the Band function intrinsic radiation spectrum, the spectral evolution may be complex. If the observed break energy of the radiation spectrum is larger than 10 keV, the spectral evolution is the same as that shaped by jet shells with a CPL spectrum. If the observed break energy is less than 0.3 keV, the value of β would be a constant. For others, the spectral evolution can be approximated as a logarithmal function of the observer time in general.

  11. Comparative Analysis of Transcriptomes in Rhizophoraceae Provides Insights into the Origin and Adaptive Evolution of Mangrove Plants in Intertidal Environments.

    Science.gov (United States)

    Guo, Wuxia; Wu, Haidan; Zhang, Zhang; Yang, Chao; Hu, Ling; Shi, Xianggang; Jian, Shuguang; Shi, Suhua; Huang, Yelin

    2017-01-01

    Mangroves are woody plants that grow at the interface between land and sea in tropical and subtropical latitudes, where they exist in conditions of high salinity, extreme tides, strong winds, high temperatures, and muddy, anaerobic soils. Rhizophoraceae is a key mangrove family, with highly developed morphological and physiological adaptations to extreme conditions. It is an ideal system for the study of the origin and adaptive evolution of mangrove plants. In this study, we characterized and comprehensively compared the transcriptomes of four mangrove species, from all four mangrove genera, as well as their closest terrestrial relative in Rhizophoraceae, using RNA-Seq. We obtained 41,936-48,845 unigenes with N50 values of 982-1,185 bp and 61.42-69.48% annotated for the five species in Rhizophoraceae. Orthology annotations of Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Groups revealed overall similarities in the transcriptome profiles among the five species, whereas enrichment analysis identified remarkable genomic characteristics that are conserved across the four mangrove species but differ from their terrestrial relative. Based on 1,816 identified orthologs, phylogeny analysis and divergence time estimation revealed a single origin for mangrove species in Rhizophoraceae, which diverged from the terrestrial lineage ~56.4 million years ago (Mya), suggesting that the transgression during the Paleocene-Eocene Thermal Maximum may have been responsible for the entry of the mangrove lineage of Rhizophoraceae into intertidal environments. Evidence showed that the ancestor of Rhizophoraceae may have experienced a whole genome duplication event ~74.6 Mya, which may have increased the adaptability and survival chances of Rhizophoraceae during and following the Cretaceous-Tertiary extinction. The analysis of positive selection identified 10 positively selected genes from the ancestor branch of Rhizophoraceae mangroves, which were

  12. Comparative Analysis of Transcriptomes in Rhizophoraceae Provides Insights into the Origin and Adaptive Evolution of Mangrove Plants in Intertidal Environments

    Directory of Open Access Journals (Sweden)

    Wuxia Guo

    2017-05-01

    Full Text Available Mangroves are woody plants that grow at the interface between land and sea in tropical and subtropical latitudes, where they exist in conditions of high salinity, extreme tides, strong winds, high temperatures, and muddy, anaerobic soils. Rhizophoraceae is a key mangrove family, with highly developed morphological and physiological adaptations to extreme conditions. It is an ideal system for the study of the origin and adaptive evolution of mangrove plants. In this study, we characterized and comprehensively compared the transcriptomes of four mangrove species, from all four mangrove genera, as well as their closest terrestrial relative in Rhizophoraceae, using RNA-Seq. We obtained 41,936–48,845 unigenes with N50 values of 982–1,185 bp and 61.42–69.48% annotated for the five species in Rhizophoraceae. Orthology annotations of Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Groups revealed overall similarities in the transcriptome profiles among the five species, whereas enrichment analysis identified remarkable genomic characteristics that are conserved across the four mangrove species but differ from their terrestrial relative. Based on 1,816 identified orthologs, phylogeny analysis and divergence time estimation revealed a single origin for mangrove species in Rhizophoraceae, which diverged from the terrestrial lineage ~56.4 million years ago (Mya, suggesting that the transgression during the Paleocene–Eocene Thermal Maximum may have been responsible for the entry of the mangrove lineage of Rhizophoraceae into intertidal environments. Evidence showed that the ancestor of Rhizophoraceae may have experienced a whole genome duplication event ~74.6 Mya, which may have increased the adaptability and survival chances of Rhizophoraceae during and following the Cretaceous–Tertiary extinction. The analysis of positive selection identified 10 positively selected genes from the ancestor branch of

  13. HLA Class I and Class II Alleles and Haplotypes Confirm the Berber Origin of the Present Day Tunisian Population.

    Directory of Open Access Journals (Sweden)

    Abdelhafidh Hajjej

    Full Text Available In view of its distinct geographical location and relatively small area, Tunisia witnessed the presence of many civilizations and ethnic groups throughout history, thereby questioning the origin of present-day Tunisian population. We investigated HLA class I and class II gene profiles in Tunisians, and compared this profile with those of Mediterranean and Sub-Sahara African populations. A total of 376 unrelated Tunisian individuals of both genders were genotyped for HLA class I (A, B and class II (DRB1, DQB1, using reverse dot-blot hybridization (PCR-SSO method. Statistical analysis was performed using Arlequin software. Phylogenetic trees were constructed by DISPAN software, and correspondence analysis was carried out by VISTA software. One hundred fifty-three HLA alleles were identified in the studied sample, which comprised 41, 50, 40 and 22 alleles at HLA-A,-B,-DRB1 and -DQB1 loci, respectively. The most frequent alleles were HLA-A*02:01 (16.76%, HLA-B*44:02/03 (17.82%, HLA-DRB1*07:01 (19.02%, and HLA-DQB1*03:01 (17.95%. Four-locus haplotype analysis identified HLA-A*02:01-B*50:01-DRB1*07:01-DQB1*02:02 (2.2% as the common haplotype in Tunisians. Compared to other nearby populations, Tunisians appear to be genetically related to Western Mediterranean population, in particular North Africans and Berbers. In conclusion, HLA genotype results indicate that Tunisians are related to present-day North Africans, Berbers and to Iberians, but not to Eastern Arabs (Palestinians, Jordanians and Lebanese. This suggests that the genetic contribution of Arab invasion of 7th-11th century A.D. had little impact of the North African gene pool.

  14. Lesbian, gay, bisexual, and transgender (LGBT) health services in the United States: Origins, evolution, and contemporary landscape.

    Science.gov (United States)

    Martos, Alexander J; Wilson, Patrick A; Meyer, Ilan H

    2017-01-01

    LGBT community organizations in the United States have been providing health services since at least the 1970s. However, available explanations for the origins of LGBT health services do not sufficiently explain why health in particular has been so closely and consistently linked to LGBT activism. Little is also known regarding how LGBT health services may have evolved over time with the growing scientific understanding of LGBT health needs. This study begins with a review of the early intersections of sexuality and health that led to an LGBT health movement in the United States, as well as the evolution of LGBT health services over time. Informed by this, an asset map displaying the location and types of services provided by "LGBT community health centers" today in relation to the population density of LGBT people was explored. An online search of LGBT community health centers was conducted between September-December, 2015. Organizational details, including physical addresses and the services provided, were confirmed via an online database of federally-registered non-profit organizations and organizational websites. The locations and types of services provided were analyzed and presented alongside county-level census data of same-sex households using geographic information system (GIS) software ArcGIS for Desktop. LGBT community health centers are concentrated within urban hubs and coastal states, and are more likely to be present in areas with a high density of same-sex couples. LGBT community health centers do not operate in 13 states. The most common health services provided are wellness programs, HIV/STI services, and counseling services. LGBT community health centers have adapted over time to meet the needs of LGBT people. However, significant gaps in service remain in the United States, and LGBT community health centers may require significant transformations going forward in order to continue serving LGBT people.

  15. Lesbian, gay, bisexual, and transgender (LGBT health services in the United States: Origins, evolution, and contemporary landscape.

    Directory of Open Access Journals (Sweden)

    Alexander J Martos

    Full Text Available LGBT community organizations in the United States have been providing health services since at least the 1970s. However, available explanations for the origins of LGBT health services do not sufficiently explain why health in particular has been so closely and consistently linked to LGBT activism. Little is also known regarding how LGBT health services may have evolved over time with the growing scientific understanding of LGBT health needs.This study begins with a review of the early intersections of sexuality and health that led to an LGBT health movement in the United States, as well as the evolution of LGBT health services over time. Informed by this, an asset map displaying the location and types of services provided by "LGBT community health centers" today in relation to the population density of LGBT people was explored. An online search of LGBT community health centers was conducted between September-December, 2015. Organizational details, including physical addresses and the services provided, were confirmed via an online database of federally-registered non-profit organizations and organizational websites. The locations and types of services provided were analyzed and presented alongside county-level census data of same-sex households using geographic information system (GIS software ArcGIS for Desktop.LGBT community health centers are concentrated within urban hubs and coastal states, and are more likely to be present in areas with a high density of same-sex couples. LGBT community health centers do not operate in 13 states. The most common health services provided are wellness programs, HIV/STI services, and counseling services.LGBT community health centers have adapted over time to meet the needs of LGBT people. However, significant gaps in service remain in the United States, and LGBT community health centers may require significant transformations going forward in order to continue serving LGBT people.

  16. Computing the origin and evolution of the ribosome from its structure — Uncovering processes of macromolecular accretion benefiting synthetic biology

    Science.gov (United States)

    Caetano-Anollés, Gustavo; Caetano-Anollés, Derek

    2015-01-01

    Accretion occurs pervasively in nature at widely different timeframes. The process also manifests in the evolution of macromolecules. Here we review recent computational and structural biology studies of evolutionary accretion that make use of the ideographic (historical, retrodictive) and nomothetic (universal, predictive) scientific frameworks. Computational studies uncover explicit timelines of accretion of structural parts in molecular repertoires and molecules. Phylogenetic trees of protein structural domains and proteomes and their molecular functions were built from a genomic census of millions of encoded proteins and associated terminal Gene Ontology terms. Trees reveal a ‘metabolic-first’ origin of proteins, the late development of translation, and a patchwork distribution of proteins in biological networks mediated by molecular recruitment. Similarly, the natural history of ancient RNA molecules inferred from trees of molecular substructures built from a census of molecular features shows patchwork-like accretion patterns. Ideographic analyses of ribosomal history uncover the early appearance of structures supporting mRNA decoding and tRNA translocation, the coevolution of ribosomal proteins and RNA, and a first evolutionary transition that brings ribosomal subunits together into a processive protein biosynthetic complex. Nomothetic structural biology studies of tertiary interactions and ancient insertions in rRNA complement these findings, once concentric layering assumptions are removed. Patterns of coaxial helical stacking reveal a frustrated dynamics of outward and inward ribosomal growth possibly mediated by structural grafting. The early rise of the ribosomal ‘turnstile’ suggests an evolutionary transition in natural biological computation. Results make explicit the need to understand processes of molecular growth and information transfer of macromolecules. PMID:27096056

  17. Lesbian, gay, bisexual, and transgender (LGBT) health services in the United States: Origins, evolution, and contemporary landscape

    Science.gov (United States)

    Wilson, Patrick A.; Meyer, Ilan H.

    2017-01-01

    Background LGBT community organizations in the United States have been providing health services since at least the 1970s. However, available explanations for the origins of LGBT health services do not sufficiently explain why health in particular has been so closely and consistently linked to LGBT activism. Little is also known regarding how LGBT health services may have evolved over time with the growing scientific understanding of LGBT health needs. Methods This study begins with a review of the early intersections of sexuality and health that led to an LGBT health movement in the United States, as well as the evolution of LGBT health services over time. Informed by this, an asset map displaying the location and types of services provided by “LGBT community health centers” today in relation to the population density of LGBT people was explored. An online search of LGBT community health centers was conducted between September–December, 2015. Organizational details, including physical addresses and the services provided, were confirmed via an online database of federally-registered non-profit organizations and organizational websites. The locations and types of services provided were analyzed and presented alongside county-level census data of same-sex households using geographic information system (GIS) software ArcGIS for Desktop. Findings LGBT community health centers are concentrated within urban hubs and coastal states, and are more likely to be present in areas with a high density of same-sex couples. LGBT community health centers do not operate in 13 states. The most common health services provided are wellness programs, HIV/STI services, and counseling services. Conclusions LGBT community health centers have adapted over time to meet the needs of LGBT people. However, significant gaps in service remain in the United States, and LGBT community health centers may require significant transformations going forward in order to continue serving LGBT people

  18. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Discussion of the nature, origin and role of the intercrater plains of Mercury and the Moon. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The nature and origin of the intercrater plains of Mercury and the Moon as determined through geologic mapping, crater statistics, and remotely sensed data are summarized. Implications of these results regarding scarp formation, absolute ages, and terrestrial planet surfaces are included. The role of the intercrater plains is defined and future work which might lead to a better understanding of these units and terrestrial planet evolution is outlined.

  19. Phase II study of concurrent capecitabine and external beam radiotherapy for pain control of bone metastases of breast cancer origin.

    Directory of Open Access Journals (Sweden)

    Yulia Kundel

    Full Text Available Pain from bone metastases of breast cancer origin is treated with localized radiation. Modulating doses and schedules has shown little efficacy in improving results. Given the synergistic therapeutic effect reported for combined systemic chemotherapy with local radiation in anal, rectal, and head and neck malignancies, we sought to evaluate the tolerability and efficacy of combined capecitabine and radiation for palliation of pain due to bone metastases from breast cancer.Twenty-nine women with painful bone metastases from breast cancer were treated with external beam radiation in 10 fractions of 3 Gy, 5 fractions a week for 2 consecutive weeks. Oral capecitabine 700 mg/m(2 twice daily was administered throughout radiation therapy. Rates of complete response, defined as a score of 0 on a 10-point pain scale and no increase in analgesic consumption, were 14% at 1 week, 38% at 2 weeks, 52% at 4 weeks, 52% at 8 weeks, and 48% at 12 weeks. Corresponding rates of partial response, defined as a reduction of at least 2 points in pain score without an increase in analgesics consumption, were 31%, 38%, 28%, 34% and 38%. The overall response rate (complete and partial at 12 weeks was 86%. Side effects were of mild intensity (grade I or II and included nausea (38% of patients, weakness (24%, diarrhea (24%, mucositis (10%, and hand and foot syndrome (7%.External beam radiation with concurrent capecitabine is safe and tolerable for the treatment of pain from bone metastases of breast cancer origin. The overall and complete response rates in our study are unusually high compared to those reported for radiation alone. Further evaluation of this approach, in a randomized study, is warranted.ClinicalTrials.gov NCT01784393NCT01784393.

  20. Gene-Mating Dynamic Evolution Theory II: Global stability of N-gender-mating polyploid systems

    OpenAIRE

    Wang, Juven

    2015-01-01

    Extending the previous 2-gender dioecious biploid gene-mating evolution model, we attempt to answer "whether the Hardy-Weinberg global stability and the exact analytic dynamical solutions can be found in the generalized N-gender polyploid gene-mating system?'" For a 2-gender gene-mating evolution model, a pair of male and female determines the trait of their offspring. Each of the pair contributes one inherited character, the allele, to combine into the genotype of their offspring. Hence, for...

  1. The role of OH in the chemical evolution of protoplanetary disks. II. Gas-rich environments

    NARCIS (Netherlands)

    Chaparro Molano, G.; Kamp, I.

    2012-01-01

    Context. We present a method for including gas extinction of cosmic-ray-generated UV photons in chemical models of the midplane of protoplanetary disks, focusing on its implications on ice formation and chemical evolution. Aims: Our goal is to improve on chemical models by treating cosmic rays, the

  2. The role of OH in the chemical evolution of protoplanetary disks : II. Gas-rich environments

    NARCIS (Netherlands)

    Chaparro-Molano, German; Kamp, I.

    2012-01-01

    Context. We present a method for including gas extinction of cosmic-ray-generated UV photons in chemical models of the midplane of protoplanetary disks, focusing on its implications on ice formation and chemical evolution. Aims. Our goal is to improve on chemical models by treating cosmic rays, the

  3. Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms.

    Science.gov (United States)

    Löhne, Cornelia; Borsch, Thomas

    2005-02-01

    Sequences of spacers and group I introns in plant chloroplast genomes have recently been shown to be very effective in phylogenetic reconstruction at higher taxonomic levels and not only for inferring relationships among species. Group II introns, being more frequent in those genomes than group I introns, may be further promising markers. Because group II introns are structurally constrained, we assumed that sequences of a group II intron should be alignable across seed plants. We designed universal amplification primers for the petD intron and sequenced this intron in a representative selection of 47 angiosperms and three gymnosperms. Our sampling of taxa is the most representative of major seed plant lineages to date for group II introns. Through differential analysis of structural partitions, we studied patterns of molecular evolution and their contribution to phylogenetic signal. Nonpairing stretches (loops, bulges, and interhelical nucleotides) were considerably more variable in both substitutions and indels than in helical elements. Differences among the domains are basically a function of their structural composition. After the exclusion of four mutational hotspots accounting for less than 18% of sequence length, which are located in loops of domains I and IV, all sequences could be aligned unambiguously across seed plants. Microstructural changes predominantly occurred in loop regions and are mostly simple sequence repeats. An indel matrix comprising 241 characters revealed microstructural changes to be of lower homoplasy than are substitutions. In showing Amborella first branching and providing support for a magnoliid clade through a synapomorphic indel, the petD data set proved effective in testing between alternative hypotheses on the basal nodes of the angiosperm tree. Within angiosperms, group II introns offer phylogenetic signal that is intermediate in information content between that of spacers and group I introns on the one hand and coding sequences

  4. APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. II. EVOLUTION OF BINARY PLANETESIMALS

    Energy Technology Data Exchange (ETDEWEB)

    Grishin, Evgeni; Perets, Hagai B. [Physics Department, Technion—Israel Institute of Technology, Haifa, 3200003 (Israel)

    2016-04-01

    One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas–planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (m{sub p} ∼ 10{sup 21}–10{sup 25} g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded in a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above m{sub p} ≳ 10{sup 22} g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai–Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ∼50% of them are destroyed.

  5. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution: Introduction. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The relative ages of various geologic units and structures place tight constraints on the origin of the Moon and the planet Mercury, and thus provide a better understanding of the geologic histories of these bodies. Crater statistics, a reexamination of lunar geologic maps, and the compilation of a geologic map of a quarter of Mercury's surface based on plains units dated relative to crater degradation classes were used to determine relative ages. This provided the basis for deducing the origin of intercrater plains and their role in terrestrial planet evolution.

  6. Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving Complex

    Science.gov (United States)

    Howard, Derrick L.; Tinoco, Arthur D.; Brudvig, Gary W.; Vrettos, John S.; Allen, Bertha Connie

    2005-01-01

    Bioinorganic models of the manganese Mn4 cluster are important not only as aids in understanding the structure and function of the oxygen-evolving complex (OEC), but also in developing artificial water-oxidation catalysts. The mechanism of water oxidation by photosystem II (PSII) is thought to involve the formation of a high-valent terminal Mn-oxo…

  7. Relating Systems Thinking and Design II. Theoretical Evolution in Systemic Design

    OpenAIRE

    Peter Jones

    2014-01-01

    We have joined two issues of FORMakademisk to accommodate two sets of articles developed from remarkable early work presented at the 2013 Relating Systems Thinking to Design Symposium in Oslo. We organized these papers into a theory set, and a set for practice of systemic design, although most of these theoretical works are deeply informed by design and planning practices. The theory issue, Theoretical Evolution in Systemic Design, comprises the perspectives of scholars contributing new work ...

  8. Constraint Propagation of $C^2$-adjusted Formulation II -- Another Recipe for Robust BSSN Evolution System

    CERN Document Server

    Tsuchiya, Takuya; Shinkai, Hisa-aki

    2011-01-01

    To obtain an evolution system robust against the violation of constraints, we present a new set of evolution systems based on the so-called Baumgarte-Shapiro-Shibata-Nakamura (BSSN) equations. The idea is to add functional derivatives of the norm of constraints, $C^2$, to the evolution equations, which was proposed by Fiske (2004) and was applied to the ADM formulation in our previous study. We derive the constraint propagation equations, discuss the behavior of constraint damping, and present the results of numerical tests using the gauge-wave and polarized Gowdy wave spacetimes. The construction of the $C^2$-adjusted system is straightforward. However, in BSSN, there are two kinetic constraints and three algebraic constraints; thus, the definition of $C^2$ is a matter of concern. By analyzing constraint propagation equations, we conclude that $C^2$ should include all the constraints, which is also confirmed numerically. By tuning the parameters, the lifetime of the simulations can be increased to 2-10 times...

  9. On the chronology of lunar origin and evolution. Implications for Earth, Mars and the Solar System as a whole

    Science.gov (United States)

    Geiss, Johannes; Rossi, Angelo Pio

    2013-11-01

    An origin of the Moon by a Giant Impact is presently the most widely accepted theory of lunar origin. It is consistent with the major lunar observations: its exceptionally large size relative to the host planet, the high angular momentum of the Earth-Moon system, the extreme depletion of volatile elements, and the delayed accretion, quickly followed by the formation of a global crust and mantle. According to this theory, an impact on Earth of a Mars-sized body set the initial conditions for the formation and evolution of the Moon. The impact produced a protolunar cloud. Fast accretion of the Moon from the dense cloud ensured an effective transformation of gravitational energy into heat and widespread melting. A "Magma Ocean" of global dimensions formed, and upon cooling, an anorthositic crust and a mafic mantle were created by gravitational separation. Several 100 million years after lunar accretion, long-lived isotopes of K, U and Th had produced enough additional heat for inducing partial melting in the mantle; lava extruded into large basins and solidified as titanium-rich mare basalt. This delayed era of extrusive rock formation began about 3.9 Ga ago and may have lasted nearly 3 Ga. A relative crater count timescale was established and calibrated by radiometric dating (i.e., dating by use of radioactive decay) of rocks returned from six Apollo landing regions and three Luna landing spots. Fairly well calibrated are the periods ≈4 Ga to ≈3 Ga BP (before present) and ≈0.8 Ga BP to the present. Crater counting and orbital chemistry (derived from remote sensing in spectral domains ranging from γ- and x-rays to the infrared) have identified mare basalt surfaces in the Oceanus Procellarum that appear to be nearly as young as 1 Ga. Samples returned from this area are needed for narrowing the gap of 2 Ga in the calibrated timescale. The lunar timescale is not only used for reconstructing lunar evolution, but it serves also as a standard for chronologies of the

  10. Can Rosetta Noble Gas and Isotopic Measurements Contribute to Understanding the Origin and Evolution of Venus' Atmosphere?

    Science.gov (United States)

    Mandt, K. E.; Luspay-Kuti, A.; Mousis, O.; Fuselier, S. A.

    2017-11-01

    New observations of noble gas abundances and stable isotope ratios from comets provide important information on potential sources of volatiles for Venus. They can help refine current atmospheric evolution models and plan for future missions.

  11. Presentation - I: Electronic structure calculations of ordered cubic-based Mg-Li alloys; II: Microstructural evolution of a+ß

    CSIR Research Space (South Africa)

    Phasha, MJ

    2006-04-01

    Full Text Available University, UK M. Osawa# and H. Harada# #National Institute for Materials Science (NIMS), High Temperature Materials Group, 1-2-1 Sengen, Tsukuba Science City, Ibaraki, 305-0047, Japan II: Microstructural evolution of α+β region of Mg... is the mechanically unstable) and vice versa. II: Microstructural evolution of α+β region of MgLi alloys From ab initio predictions, exp. were conducted as follows - Preparations of Mg-Li samples - Heat treatments - Microstructural phase...

  12. The Evolution of Criminality in Someş County on the Verge of World War II

    Directory of Open Access Journals (Sweden)

    GEORGE CRISTIAN SPÎNU

    2010-06-01

    Full Text Available This article refers to the characteristics and the evolution of criminality in Someş County, Romania, in 1938. The document supporting the analyses in this article is "Activitatea organelor poliţiei judiciare de sub Autoritatea Inspectoratului de Poliţie al Ţinutului Someş pe anul 1938" (The activity of judicial police bodies subordinated to the Someş County Police Inspectorate Authority in 1938". It contains the crimes recorded by the police authorities that year, along with their attempts at classifying them. With respect to the cases presented, they represent "snapshots" of the criminal events recorded by the police.

  13. PREDICTING Lyα AND Mg II FLUXES FROM K AND M DWARFS USING GALAXY EVOLUTION EXPLORER ULTRAVIOLET PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Shkolnik, Evgenya L.; Rolph, Kristina A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Peacock, Sarah; Barman, Travis S., E-mail: shkolnik@lowell.edu, E-mail: kristina.rolph@fandm.edu, E-mail: speacock@lpl.arizona.edu, E-mail: barman@lpl.arizona.edu [Department of Planetary Sciences and Lunar and Planetary Laboratory University of Arizona, Tucson AZ 85721 (United States)

    2014-11-20

    A star's ultraviolet (UV) emission can greatly affect the atmospheric chemistry and physical properties of closely orbiting planets with the potential for severe mass loss. In particular, the Lyα emission line at 1216 Å, which dominates the far-ultraviolet (FUV) spectrum, is a major source of photodissociation of important atmospheric molecules such as water and methane. The intrinsic flux of Lyα, however, cannot be directly measured due to the absorption of neutral hydrogen in the interstellar medium and contamination by geocoronal emission. To date, reconstruction of the intrinsic Lyα line based on Hubble Space Telescope spectra has been accomplished for 46 FGKM nearby stars, 28 of which have also been observed by the Galaxy Evolution Explorer (GALEX). Our investigation provides a correlation between published intrinsic Lyα and GALEX far- and near-ultraviolet (NUV) chromospheric fluxes for K and M stars. The negative correlations between the ratio of the Lyα to the GALEX fluxes reveal how the relative strength of Lyα compared to the broadband fluxes weakens as the FUV and NUV excess flux increase. We also correlate GALEX fluxes with the strong NUV Mg II h+k spectral emission lines formed at lower chromospheric temperatures than Lyα. The reported correlations provide estimates of intrinsic Lyα and Mg II fluxes for the thousands of K and M stars in the archived GALEX all-sky surveys. These will constrain new stellar upper atmosphere models for cool stars and provide realistic inputs to models describing exoplanetary photochemistry and atmospheric evolution in the absence of UV spectroscopy.

  14. Isotopic and geochemical constraints on the origin and evolution of postcollapse rhyolites in the Valles Caldera, New Mexico

    Science.gov (United States)

    Spell, Terry L.; Kyle, Philip R.; Thirlwall, Matthew F.; Campbell, Andrew R.

    1993-11-01

    Ring-fracture rhyolites of the Valles Caldera (VC) were examined to determine the evolution of the magma system following eruption of the upper Bandelier Tuff (UBT) and subsequent caldera collapse. Volcanism began with eruption of Deer Canyon (DC), Redondo Creek, and Del Medio (DM) rhyolites during the interval 1140-1133 ka. Quartz delta O-18 for the UBT, (average +8.3 %), DC (+7.9 %), and DM (+8.7 %) rhyolites indicate no significant lowering of delta O-18 following caldera collapse. In contrast, DM rhyolites record low epsilon(sub Nd) of -3.6 to -3.8 relative to the UBT (-2.7) and variable initial 87-Sr/86-Sr (0.70923-0.71307). Del Abrigo (DA) and Santa Rosa I rhyolites (973-915 ka) exhibit lower epsilon(Sub Nd) (-4.4 to -4.6) and initial 87-Sr/86-Sr (0.70707-0.71009), as well as shifts in compatible and incompatible trace element ratios. Seco, San Luis, and Santa Rosa II rhyolites (800-787 ka) have epsilon(Sub Nd) (-4.0 to -4.3) similar to the 973 to 915 ka rhyolites but lower initial 87-Sr/86-Sr (0.70616-0.70747). After a hiatus of 230 ka, San Antonio (SA), South Mountain (SM), and La Jara (LJ) rhyolites (557-521 ka) were erupted with epsilon(Sub Nd) of -3.7 to 4.3, distinctly lower initial 87-Sr/86-Sr of 0.70513-0.70553 and less evolved trace element compositions. The youngest rhyolites, the El Cajete-Banco Bonito group (EC-BB) (300-170 ka) are petrographically and geochemically distinct with the highest epsilon(Sub Nd) (-2.7 to -3.0) and the lowest initial 87-Sr/86-Sr (0.70464-0.70478) of postcollapse rhyolites. The isotopic data indicate that Valles rhyolites are not direct melts of Proterozoic basement (epsilon(Sub Nd) of -10 to -15) and indicate a significant mantle-derived (basaltic) component. Elevated initial 87-Sr/86-Sr is restricted to rhyolites depleted in Sr (less than 10 ppm) and probably reflects minor upper crustal assimilation. Calculated magma delta 0-18 values (+6.6 to +7.0 %) indicate no substantial supracrustal sediment in the source region

  15. TiO2/ZnS/CdS Nanocomposite for Hydrogen Evolution and Orange II Dye Degradation

    Directory of Open Access Journals (Sweden)

    Václav Štengl

    2011-01-01

    Full Text Available TiO2/ZnS/CdS composites for photocatalytic hydrogen production from water were prepared by homogeneous hydrolysis of aqueous solutions mixture of TiOSO4, ZnSO4, and CdSO4 with thioacetamide. Hydrogen evolution was observed in the presence of palladium and platinum nanoparticles deposited on TiO2/ZnS/CdS composites. The morphology was obtained by scanning electron microscopy, the nitrogen adsorption-desorption was used for determination of surface area (BET and porosity. The method of UV-VIS diffuse reflectance spectroscopy was employed to estimate band-gap energies of prepared TiO2/ZnS/CdS nano-composites. The photocatalytic activity of the prepared samples were assessed by photocatalytic decomposition of Orange II dye in an aqueous slurry under UV irradiation at 365 nm wavelength and visible light up to 400 nm wavelength. Doped titanium dioxide by the CdS increased band-gap energy and doping with ZnS increased photocatalytic activity. The best photocatalytic activity for H2 evolution shows sample named TiZnCd7 on surface deposited with palladium, which contains 20.21% TiO2, 78.5% ZnS, and 1.29% CdS.

  16. Close binary evolution. II. Impact of tides, wind magnetic braking, and internal angular momentum transport

    Science.gov (United States)

    Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.

    2018-01-01

    Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The

  17. Compact planetary systems perturbed by an inclined companion. II. Stellar spin-orbit evolution

    Energy Technology Data Exchange (ETDEWEB)

    Boué, Gwenaël; Fabrycky, Daniel C., E-mail: boue@imcce.fr [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2014-07-10

    The stellar spin orientation relative to the orbital planes of multiplanet systems is becoming accessible to observations. Here, we analyze and classify different types of spin-orbit evolution in compact multiplanet systems perturbed by an inclined outer companion. Our study is based on classical secular theory, using a vectorial approach developed in a separate paper. When planet-planet perturbations are truncated at the second order in eccentricity and mutual inclination, and the planet-companion perturbations are developed at the quadrupole order, the problem becomes integrable. The motion is composed of a uniform precession of the whole system around the total angular momentum, and in the rotating frame, the evolution is periodic. Here, we focus on the relative motion associated with the oscillations of the inclination between the planet system and the outer orbit and of the obliquities of the star with respect to the two orbital planes. The solution is obtained using a powerful geometric method. With this technique, we identify four different regimes characterized by the nutation amplitude of the stellar spin axis relative to the orbital plane of the planets. In particular, the obliquity of the star reaches its maximum when the system is in the Cassini regime where planets have more angular momentum than the star and where the precession rate of the star is similar to that of the planets induced by the companion. In that case, spin-orbit oscillations exceed twice the inclination between the planets and the companion. Even if the mutual inclination is only ≅ 20°, this resonant case can cause the spin-orbit angle to oscillate between perfectly aligned and retrograde values.

  18. The evolution of the temperature field during cavity collapse in liquid nitromethane. Part II: Reactive case

    OpenAIRE

    Michael, Louisa; Nikiforakis, Nikolaos

    2017-01-01

    We study effect of cavity collapse in non-ideal explosives as a means of controlling their sensitivity. The main aim is to understand the origin of localised temperature peaks (hot spots) that play a leading order role at early ignition stages. Thus, we perform 2D and 3D numerical simulations of shock induced single gas-cavity collapse in nitromethane. Ignition is the result of a complex interplay between fluid dynamics and exothermic chemical reaction. In part I of this work we focused on th...

  19. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Anindya [Fermilab; Rane, Tejas [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-07-06

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.

  20. The Evolution of the Multiplicity of Embedded Protostars. II. Binary Separation Distribution and Analysis

    Science.gov (United States)

    Connelley, Michael S.; Reipurth, Bo; Tokunaga, Alan T.

    2008-06-01

    We present the Class I protostellar binary separation distribution based on the data tabulated in a companion paper. We verify the excess of Class I binary stars over solar-type main-sequence stars in the separation range from 500 AU to 4500 AU. Although our sources are in nearby star-forming regions distributed across the entire sky (including Orion), none of our objects are in a high stellar density environment. A log-normal function, used by previous authors to fit the main-sequence and T Tauri binary separation distributions, poorly fits our data, and we determine that a log-uniform function is a better fit. Our observations show that the binary separation distribution changes significantly during the Class I phase, and that the binary frequency at separations greater than 1000 AU declines steadily with respect to spectral index. Despite these changes, the binary frequency remains constant until the end of the Class I phase, when it drops sharply. We propose a scenario to account for the changes in the Class I binary separation distribution. This scenario postulates that a large number of companions with a separation greater than ~1000 AU were ejected during the Class 0 phase, but remain gravitationally bound due to the significant mass of the Class I envelope. As the envelope dissipates, these companions become unbound and the binary frequency at wide separations declines. Circumstellar and circumbinary disks are expected to play an important role in the orbital evolution at closer separations. This scenario predicts that a large number of Class 0 objects should be non-hierarchical multiple systems, and that many Class I young stellar objects (YSOs) with a widely separated companion should also have a very close companion. We also find that Class I protostars are not dynamically pristine, but have experienced dynamical evolution before they are visible as Class I objects. Our analysis shows that the Class I binary frequency and the binary separation

  1. Patterns of evolution of MHC class II genes of crows (Corvus suggest trans-species polymorphism

    Directory of Open Access Journals (Sweden)

    John A. Eimes

    2015-03-01

    Full Text Available A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP, in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis American crows (C. brachyrhynchos and carrion crows (C. corone orientalis. Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While

  2. High nrDNA ITS polymorphism in the ancient extant seed plant Cycas: incomplete concerted evolution and the origin of pseudogenes.

    Science.gov (United States)

    Xiao, Long-Qian; Möller, Michael; Zhu, Hua

    2010-04-01

    Molecular studies of six species from the ancient extant seed plant Cycas, covering a wide range of its morphological diversity and all major areas of distribution, revealed a high level of intra-individual polymorphism of the internal transcribed spacer (ITS1, 5.8S, and ITS2) region, indicative of incomplete nrDNA concerted evolution. Through a range of comparisons of sequence characteristics to functional cDNA ITS copies, including sequence length and substitution variation, GC content, secondary structure stability, the presence of a conserved motif in the 5.8S gene, and evolutionary rates, the PCR amplified divergent genomic DNA ITS paralogs were identified as either putative pseudogenes, recombinants or functional paralogs. This incomplete ITS concerted evolution may be linked to the high number of nucleolar organizer regions in the Cycas genome, and the incomplete lineage sorting due to recent species divergence in the genus. Based on the distribution of a 14 bp deletion, an early evolutionary origin of the pseudogenes is indicated, possibly predating the diversification of Cycas. Due to their early origin combined with the unconstraint evolution of the ITS region in pseudogenes, they accumulate high levels of homoplastic mutations. This leads to random relationships among the pseudogenes due to long-branch attractions, whereas the phylogenetic relationships inferred from the functional ITS paralogs grouped the sequences in species specific clades (except for C. circinalis and C. rumphii). The findings of our extensive study will have a wide significance, for the evolution of these molecular sequences, and their utilization as a major marker for reconstructing phylogenies. (c) 2009 Elsevier Inc. All rights reserved.

  3. Full computation of massive AGB evolution. II. The role of mass loss and cross-sections

    Science.gov (United States)

    Ventura, P.; D'Antona, F.

    2005-09-01

    In the course of a systematic exploration of the uncertainties associated with the input micro- and macro-physics in the modeling of the evolution of intermediate mass stars during their Asymptotic Giant Branch (AGB) phase, we focus on the role of the nuclear reactions rates and mass loss. We consider masses 3≤ M/M_⊙ ≤ 6.5 for a metallicity typical for globular clusters, Z=0.001, and compare the results obtained by computing the full nucleosynthesis with hot bottom burning (HBB), for a network of 30 elements, using either the NACRE or the Cameron & Fowler (CF88) cross-sections. The results differ in particular with respect to the 23Na nucleosynthesis (which is more efficient in the NACRE case) and the magnesium isotopes ratios. For both choices, however, the CNO nucleosynthesis shows that the C+N+O is constant within a factor of two, in our models employing a very efficient convection treatment. Different mass loss rates alter the physical conditions for HBB and the length of the AGB phase, indirectly changing the chemical yields. These computations show that the predictive power of our AGB models is undermined by these uncertainties. In particular, it appears at the moment very difficult to strongly accept or dismiss that these sources play a key-role in the pollution of Globular Clusters (GCs), and that they have been the main stellar site responsible for the chemical anomalies that are observed at the surface of giant and turn-off stars of GCs, in the self-enrichment scenarios.

  4. Evolution of Migmatitic Granulite Complexes: implications from Lapland Granulite Belt, Part II: isotopic dating

    Directory of Open Access Journals (Sweden)

    Pekka Tuisku

    2006-01-01

    Full Text Available The migmatitic metapelites of the Lapland granulite belt (LGB in the NE part of the Fennoscandian Shield represent an arc-related greywacke basin metamorphosed in the granulite facies. Detrital zircons from migmatitic metapelites are derived from 1.94 - 2.9 Ga old acid source rocks (U-Pb SIMS ages. The clustering of detrital zircon ages between 1.97 and 2.2 Ga is problematic, because abundant felsic crust of this age is absent in the shield. The metasediments are characterized by Sm-Nd model ages of ca. 2.3 Ga. A younger, 1905-1880 Ma population of homogeneous zircons was formed during regional metamorphism. The peak high-grade metamorphism took place at ~1900 Ma and the latest chronological record from subsequent decompression and cooling phase is from ca. 1870 Ma. The norite-enderbite series of the LGB represents arc-magmas, which were intruded into the metasediments at ~1920-1905 Ma ago according to zircon U-Pb ages and were probably an important heat source for metamorphism. Older, zoned zircon grains in a quartz norite vein, initial εNd values of 0 to +1 and the continuous spectrum of LILE enrichment in the enderbite-series probably reflect assimilation of metasediments by magmas. Monazite U-Pb ages of migmatitic metasediments in the range 1906-1910±3 Ma overlap the late stage of enderbite intrusion and growth of early metamorphic zircons. Garnet-whole rock Sm-Nd ages from leucosomes in the range 1880-1886±7 Ma are concurrent with the growth of the youngest metamorphic zircons and probably indicate the crystallization of leucosomes of the influence of a fluid liberated from them. Isotopic and petrologic data reveal that the evolution of Lapland Granulite belt from the erosion of source rocks to the generation of a sedimentary basin, its burial, metamorphism and exhumation took place within ca. 60 Ma.

  5. Origin and evolution of the transcribed repeated sequences of the Y chromosome lampbrush loops of Drosophila hydei

    OpenAIRE

    Hareven, Dana; Zuckerman, Mathi; Lifschytz, Eliezer

    1986-01-01

    The molecular evolution and patterns of conservation of clones from four Y chromosome lampbrush loops of Drosophila hydei were investigated. Each loop contains a discrete family of transcribed repeats that are only slightly conserved even in the hydei subgroup species. Sequencing of clones from the four D. hydei loops indicates that all transcribed repeats evolved from A+T-rich elements of the genome. Evidence is presented that suggests a Y-specific family evolved as a result of the transposi...

  6. Comets and the origins and evolution of life; Proceedings of the Conference, Univ. of Wisconsin, Eau Claire, Sept. 30-Oct. 2, 1991

    Science.gov (United States)

    Thomas, Paul J. (Editor)

    1992-01-01

    Papers are presented on comets and the formation of biochemical compounds on the primitive earth; the cometary origin of carbon, nitrogen, and water on the earth; comets as a possible source of prebiotic molecules; comet impacts and chemical evolution on the bombarded earth; and cometary supply of terrestrial organics (lessons from the K/T and the present epoch). Other papers are on a computational study of radiation chemical processing in comet nuclei, the origin of the polycyclic aromatic hydrocarbons in meteorites, the fate of organic matter during planetary accretion (preliminary studies of the organic chemistry of experimentally shocked Murchison meteorite), recent observations of interstellar molecules (detection of CCO and a limit on H2C3O), terrestrial and extraterrestrial sources of molecular monochirality, and dark matter in the solar system (hydrogen cyanide polymers).

  7. Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors.

    Directory of Open Access Journals (Sweden)

    Sergey Yegorov

    Full Text Available Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL and relaxin family peptide receptors (RXFP. Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of

  8. Evolution Born of Moisture: Analogies and Parallels Between Anaximander's Ideas on Origin of Life and Man and Later Pre-Darwinian and Darwinian Evolutionary Concepts.

    Science.gov (United States)

    Kočandrle, Radim; Kleisner, Karel

    2013-01-01

    This study focuses on the origin of life as presented in the thought of Anaximander of Miletus but also points to some parallel motifs found in much later conceptions of both the pre-Darwinian German romantic science and post-Darwinian biology. According to Anaximander, life originated in the moisture associated with earth (mud). This moist environment hosted the first living creatures that later populated the dry land. In these descriptions, one can trace the earliest hints of the notion of environmental adaptation. The origin of humans was seen as connected in some way with fish: ancient humans were supposed to have developed inside fish-like animals. Anaximander took into account changes in the development of living creatures (adaptations) and speculated on the origins of humans. Similar ideas are found also in the writings of much later, eighteenth and nineteenth century authors who were close to the tradition of German romantic science. We do not argue that these later concepts are in any way directly linked with those of the pre-Socratics, but they show surprising parallels in, e.g., the hypothesis that life originated in a moist environment or the supposition that human developed from fish-like ancestors. These transformations are seen as a consequence of timeless logic rather than as evolution in historical terms. Despite the accent on the origin of living things, both Anaximander and the later Naturphilosophen lack in their notions the element most characteristic of Darwin's thought, that is, the emphasis on historicity and uniqueness of all that comes into being.

  9. Environmental Effects on Galaxy Evolution. II. Quantifying the Tidal Features in NIR Images of the Cluster Abell 85

    Science.gov (United States)

    Venkatapathy, Y.; Bravo-Alfaro, H.; Mayya, Y. D.; Lobo, C.; Durret, F.; Gamez, V.; Valerdi, M.; Granados-Contreras, A. P.; Navarro-Poupard, F.

    2017-12-01

    This work is part of a series of papers devoted to investigating the evolution of cluster galaxies during their infall. In the present article, we image in NIR a selected sample of galaxies throughout the massive cluster Abell 85 (z = 0.055). We obtain (JHK‧) photometry for 68 objects, reaching ˜1 mag arcsec-2 deeper than 2MASS. We use these images to unveil asymmetries in the outskirts of a sample of bright galaxies and develop a new asymmetry index, {α }{An}, which allows us to quantify the degree of disruption by the relative area occupied by the tidal features on the plane of the sky. We measure the asymmetries for a subsample of 41 large-area objects, finding clear asymmetries in 10 galaxies; most of these are in groups and pairs projected at different clustercentric distances, and some of them are located beyond R 500. Combining information on the H I gas content of blue galaxies and the distribution of substructures across Abell 85 with the present NIR asymmetry analysis, we obtain a very powerful tool to confirm that tidal mechanisms are indeed present and are currently affecting a fraction of galaxies in Abell 85. However, when comparing our deep NIR images with UV blue images of two very disrupted (jellyfish) galaxies in this cluster, we discard the presence of tidal interactions down to our detection limit. Our results suggest that ram-pressure stripping is at the origin of such spectacular disruptions. We conclude that across a complex cluster like Abell 85, environmental mechanisms, both gravitational and hydrodynamical, are playing an active role in driving galaxy evolution.

  10. Little white lies: pericarp color provides insights into the origins and evolution of Southeast Asian weedy rice

    Science.gov (United States)

    Weedy rice is a conspecific form of cultivated rice (Oryza sativa L.) that infests rice fields and results in severe crop losses. Weed strains in different world regions appear to have originated multiple times from different domesticated and/or wild rice progenitors. In the case of Malaysian weedy ...

  11. Origin and early evolution of photosynthetic eukaryotes in freshwater environments: reinterpreting proterozoic paleobiology and biogeochemical processes in light of trait evolution.

    Science.gov (United States)

    Blank, Carrine E

    2013-12-01

    Phylogenetic analyses were performed on concatenated data sets of 31 genes and 11,789 unambiguously alignable characters from 37 cyanobacterial and 35 chloroplast genomes. The plastid lineage emerged somewhat early in the cyanobacterial tree, at a time when Cyanobacteria were likely unicellular and restricted to freshwater ecosystems. Using relaxed molecular clocks and 22 age constraints spanning cyanobacterial and eukaryote nodes, the common ancestor to the photosynthetic eukaryotes was predicted to have also inhabited freshwater environments around the time that oxygen appeared in the atmosphere (2.0-2.3 Ga). Early diversifications within each of the three major plastid clades were also inferred to have occurred in freshwater environments, through the late Paleoproterozoic and into the middle Mesoproterozoic. The colonization of marine environments by photosynthetic eukaryotes may not have occurred until after the middle Mesoproterozoic (1.2-1.5 Ga). The evolutionary hypotheses proposed here predict that early photosynthetic eukaryotes may have never experienced the widespread anoxia or euxinia suggested to have characterized marine environments in the Paleoproterozoic to early Mesoproterozoic. It also proposes that earliest acritarchs (1.5-1.7 Ga) may have been produced by freshwater taxa. This study highlights how the early evolution of habitat preference in photosynthetic eukaryotes, along with Cyanobacteria, could have contributed to changing biogeochemical conditions on the early Earth. © 2013 Phycological Society of America.

  12. Geochemistry of U and Th and its Influence on the Origin and Evolution of the Crust of Earth and the Biological Evolution

    CERN Document Server

    Bao, Xuezhao

    1998-01-01

    We have investigated the migration behaviors of uranium (U) and thorium (Th) in the Earth and other terrestrial planets. Theoretical models of U and Th migration have been proposed. These models suggest that the unique features of the Earth are closely connected with its unique U and Th migration models and distribution patterns. In the Earth, U and Th can combine with oxidative volatile components and water, migrate up to the asthenosphere position to form an enrichment zone (EZ) of U and Th first, and then migrate up further to the crusts through magmatism and metamorphism. We emphasize that the formation of an EZ of U, Th and other heat-producing elements is a prerequisite for the formation of a plate tectonic system. The heat-producing elements, currently mainly U and Th, in the EZ are also the energy sources that drive the formation and evolution of the crust of Earth and create special granitic continental crusts. In other terrestrial planets, including Mercury, Venus, and Mars, an EZ can not be formed ...

  13. EMISSION-LINE GALAXIES FROM THE HUBBLE SPACE TELESCOPE PROBING EVOLUTION AND REIONIZATION SPECTROSCOPICALLY (PEARS) GRISM SURVEY. II. THE COMPLETE SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Grogin, Norman A.; Dahlen, Tomas; Noeske, Kai G.; Bellini, Andrea [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21210 (United States); Malhotra, Sangeeta; Rhoads, James E.; Cohen, Seth H.; Mechtley, Matthew; Windhorst, Rogier A. [School of Earth And Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Meurer, Gerhardt R. [International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Walsh, Jeremy R. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Hathi, Nimish P. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Holwerda, Benne W. [ESA-ESTEC, Keplerlaan 1, 2200 AG, Noordwijk (Netherlands); Straughn, Amber N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States)

    2013-07-20

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitess grism spectroscopic data obtained with the Advanced Camera for Surveys on board Hubble Space Telescope. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random survey of galaxies, as well as the availability of a wide variety of ancillary observations complemented by the spectroscopic results. Using the PEARS data, we are able to identify star-forming galaxies (SFGs) within the redshift volume 0 < z < 1.5. Star-forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allows us to detect the presence of multiple emission-line regions (ELRs) within a single galaxy. We identified a total of 1162 H{alpha}, [O III], and/or [O II] emission lines in the PEARS sample of 906 galaxies to a limiting flux of {approx}10{sup -18} erg s{sup -1} cm{sup -2}. The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis, we find three key results: (1) the computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; (2) the star-forming systems show evidence of complex morphologies with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass. (3) Also, the number density of SFGs with M{sub *} {>=} 10{sup 9} M{sub Sun} decreases by an order of magnitude at z {<=} 0.5 relative to the number at 0.5 < z < 0.9, supporting the argument of galaxy downsizing.

  14. The Mittag-Leffler Theorem: The origin, evolution, and reception of a mathematical result, 1876–1884

    OpenAIRE

    Turner, Laura E.

    2013-01-01

    The Swedish mathematician Gösta Mittag-Leffler (1846-1927) is well-known for founding Acta Mathematica, the first international mathematical journal. A "post-doctoral" student in Paris and Berlin (1873-76), Mittag-Leffler built on Karl Weierstrass' work by proving the Mittag-Leffler theorem, roughly: a meromorphic function is specified by its poles, their multiplicities, and the coefficients in the principal part of its Laurent expansion. In this thesis, I explore the evolution of the Mittag-...

  15. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.

    2015-08-25

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic properties by altering the pH. We have utilized the oxygen functional moieties such as carboxylate, epoxide, and hydroxyl groups on the edge and basal planes of the GO for binding the Cu2+ ions through dative bonds. The GO-Cu2+ hybrid materials were characterized by cyclic voltammetry in sodium acetate buffer solution. The morphology of the hybrid GO-Cu2+ was characterized by atomic force microscopy. The GO-Cu2+ hybrid electrodes show good electrocatalytic activity for HER with low overpotential in acidic solution. The Tafel slope for the GO-Cu2+ hybrid electrode implies that the primary discharge step is the rate determining step and HER proceed with Volmer step. © 2015 American Institute of Chemical Engineers Environ Prog.

  16. Landmarks in the Evolution of (t)-RNAs from the Origin of Life up to Their Present Role in Human Cognition.

    Science.gov (United States)

    Balke, Darko; Kuss, Andreas; Müller, Sabine

    2015-12-23

    How could modern life have evolved? The answer to that question still remains unclear. However, evidence is growing that, since the origin of life, RNA could have played an important role throughout evolution, right up to the development of complex organisms and even highly sophisticated features such as human cognition. RNA mediated RNA-aminoacylation can be seen as a first landmark on the path from the RNA world to modern DNA- and protein-based life. Likewise, the generation of the RNA modifications that can be found in various RNA species today may already have started in the RNA world, where such modifications most likely entailed functional advantages. This association of modification patterns with functional features was apparently maintained throughout the further course of evolution, and particularly tRNAs can now be seen as paradigms for the developing interdependence between structure, modification and function. It is in this spirit that this review highlights important stepping stones of the development of (t)RNAs and their modifications (including aminoacylation) from the ancient RNA world up until their present role in the development and maintenance of human cognition. The latter can be seen as a high point of evolution at its present stage, and the susceptibility of cognitive features to even small alterations in the proper structure and functioning of tRNAs underscores the evolutionary relevance of this RNA species.

  17. TcI, TcII and TcVI Trypanosoma cruzi samples from Chagas disease patients with distinct clinical forms and critical analysis of in vitro and in vivo behavior, response to treatment and infection evolution in murine model.

    Science.gov (United States)

    Oliveira, Maykon Tavares de; Branquinho, Renata Tupinambá; Alessio, Gláucia Diniz; Mello, Carlos Geraldo Campos; Nogueira-de-Paiva, Nívia Carolina; Carneiro, Cláudia Martins; Toledo, Max Jean de Ornelas; Reis, Alexandre Barbosa; Martins-Filho, Olindo Assis Martins; Lana, Marta de

    2017-03-01

    The clonal evolution of Trypanosoma cruzi sustains scientifically the hypothesis of association between parasite's genetic, biological behavior and possibly the clinical aspects of Chagas disease in patients from whom they were isolated. This study intended to characterize a range of biological properties of TcI, TcII and TcVI T. cruzi samples in order to verify the existence of these associations. Several biological features were evaluated, including in vitro epimastigote-growth, "Vero"cells infectivity and growth, along with in vivo studies of parasitemia, polymorphism of trypomastigotes, cardiac inflammation, fibrosis and response to treatment by nifurtimox during the acute and chronic murine infection. The global results showed that the in vitro essays (acellular and cellular cultures) TcII parasites showed higher values for all parameters (growth and infectivity) than TcVI, followed by TcI. In vivo TcII parasites were more virulent and originated from patients with severe disease. Two TcII isolates from patients with severe pathology were virulent in mice, while the isolate from a patient with the indeterminate form of the disease caused mild infection. The only TcVI sample, which displayed low values in all parameters evaluated, was also originated of an indeterminate case of Chagas disease. Response to nifurtimox was not associated to parasite genetic and biology, as well as to clinical aspects of human disease. Although few number of T. cruzi samples have been analyzed, a discreet correlation between parasite genetics, biological behavior in vitro and in vivo (murine model) and the clinical form of human disease from whom the samples were isolated was verified. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics

    Science.gov (United States)

    Baker, P.A.; Fritz, S.C.; Silva, C.G.; Rigsby, C.A.; Absy, M.L.; Almeida, R.P.; Caputo, M.C.; Chiessi, C.M.; Cruz, F.W.; Dick, C.W.; Feakins, S.J.; Figueiredo, J.; Freeman, K.H.; Hoorn, C.; Jaramillo, C.A.; Kern, A.; Latrubesse, E.M.; Ledru, M.P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W.E.; Ramos, M.I.F.; Ribas, C.C.; Trinadade, R.; West, A.J.; Wahnfried, I.; Willard, Debra A.

    2015-01-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.

  19. Effects of among-offspring relatedness on the origins and evolution of parental care and filial cannibalism.

    Science.gov (United States)

    Bonsall, M B; Klug, H

    2011-06-01

    Parental care is expected to increase the likelihood of offspring survival at the cost of investment in future reproductive success. However, alternative parental behaviours, such as filial cannibalism, can decrease current reproductive success and consequently individual fitness. We evaluate the role of among-offspring relatedness on the evolution of parental care and filial cannibalism. Building on our previous work, we show how the evolution of care is influenced by the effect of among-offspring relatedness on both the strength of competition and filial cannibalism. When there is a positive relationship between among-offspring competition and relatedness, parental care will be favoured when among-offspring relatedness is relatively low, and the maintenance of both care and no-care strategies is expected. If the relationship between among-offspring competition and relatedness is negative, parental care is most strongly favoured when broods contain highly related offspring. Further, we highlight the range of conditions over which the level of this among-offspring relatedness can affect the co-occurrence of different care/no care and cannibalism/no cannibalism strategies. Coexistence of multiple strategies is independent of the effects of among-offspring relatedness on cannibalism but more likely when among-offspring relatedness and competition are positively associated. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  20. Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics

    Science.gov (United States)

    Baker, P. A.; Fritz, S. C.; Silva, C. G.; Rigsby, C. A.; Absy, M. L.; Almeida, R. P.; Caputo, M.; Chiessi, C. M.; Cruz, F. W.; Dick, C. W.; Feakins, S. J.; Figueiredo, J.; Freeman, K. H.; Hoorn, C.; Jaramillo, C.; Kern, A. K.; Latrubesse, E. M.; Ledru, M. P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W. E.; Ramos, M. I. F.; Ribas, C. C.; Trnadade, R.; West, A. J.; Wahnfried, I.; Willard, D. A.

    2015-12-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.

  1. Little White Lies: Pericarp Color Provides Insights into the Origins and Evolution of Southeast Asian Weedy Rice.

    Science.gov (United States)

    Cui, Yongxia; Song, Beng Kah; Li, Lin-Feng; Li, Ya-Ling; Huang, Zhongyun; Caicedo, Ana L; Jia, Yulin; Olsen, Kenneth M

    2016-12-07

    Weedy rice is a conspecific form of cultivated rice (Oryza sativa L.) that infests rice fields and results in severe crop losses. Weed strains in different world regions appear to have originated multiple times from different domesticated and/or wild rice progenitors. In the case of Malaysian weedy rice, a multiple-origin model has been proposed based on neutral markers and analyses of domestication genes for hull color and seed shattering. Here, we examined variation in pericarp (bran) color and its molecular basis to address how this trait evolved in Malaysian weeds and its possible role in weed adaptation. Functional alleles of the Rc gene confer proanthocyanidin pigmentation of the pericarp, a trait found in most wild and weedy Oryzas and associated with seed dormancy; nonfunctional rc alleles were strongly favored during rice domestication, and most cultivated varieties have nonpigmented pericarps. Phenotypic characterizations of 52 Malaysian weeds revealed that most strains are characterized by the pigmented pericarp; however, some weeds have white pericarps, suggesting close relationships to cultivated rice. Phylogenetic analyses indicate that the Rc haplotypes present in Malaysian weeds likely have at least three distinct origins: wild O. rufipogon, white-pericarp cultivated rice, and red-pericarp cultivated rice. These diverse origins contribute to high Rc nucleotide diversity in the Malaysian weeds. Comparison of Rc allelic distributions with other rice domestication genes suggests that functional Rc alleles may confer particular fitness benefits in weedy rice populations, for example, by conferring seed dormancy. This may promote functional Rc introgression from local wild Oryza populations. Copyright © 2016 Cui et al.

  2. The NE Rift of Tenerife: towards a model on the origin and evolution of ocean island rift

    OpenAIRE

    Delcamp, A.; Troll, V.; S. Wiesmaier; R. Paris; Rodríguez González, A.; Pérez-Torrado, F. J.; Rodríguez Badiola, E.; Guillou, H.; Carracedo, J.C; Fernández-Turiel, J.L. (José Luis)

    2009-01-01

    The NE Rift of Tenerife is an excellent example of a persistent, recurrent rift, providing important evidence of the origin and dynamics of these major volcanic features. The rift developed in three successive, intense and relatively short eruptive stages (a few hundred ka), separated by longer periods of quiescence or reduced activity: A Miocene stage (7266 ± 156 ka), apparently extending the central Miocene shield of Tenerife towards the Anaga massif; an Upper Pliocene stage (2710 ± 58 ka) ...

  3. Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?

    Science.gov (United States)

    Moreira, David; López-García, Purificación

    2015-09-26

    The recent discovery of diverse very large viruses, such as the mimivirus, has fostered a profusion of hypotheses positing that these viruses define a new domain of life together with the three cellular ones (Archaea, Bacteria and Eucarya). It has also been speculated that they have played a key role in the origin of eukaryotes as donors of important genes or even as the structures at the origin of the nucleus. Thanks to the increasing availability of genome sequences for these giant viruses, those hypotheses are amenable to testing via comparative genomic and phylogenetic analyses. This task is made very difficult by the high evolutionary rate of viruses, which induces phylogenetic artefacts, such as long branch attraction, when inadequate methods are applied. It can be demonstrated that phylogenetic trees supporting viruses as a fourth domain of life are artefactual. In most cases, the presence of homologues of cellular genes in viruses is best explained by recurrent horizontal gene transfer from cellular hosts to their infecting viruses and not the opposite. Today, there is no solid evidence for the existence of a viral domain of life or for a significant implication of viruses in the origin of the cellular domains. © 2015 The Author(s).

  4. External quality assurance system for antibiotic resistance in bacteria of animal origin in Europe (ARBAO-II), 2003

    NARCIS (Netherlands)

    Fo Wong, Lo D.M.A.; Hendriksen, R.S.; Mevius, D.J.; Veldman, K.T.; Aarestrup, F.M.

    2006-01-01

    Initiated in 2003 by the European Union, ARBAO-II aims to establish a monitoring of antimicrobial susceptibility among the veterinary laboratories in all European countries based on validated methodologies. This includes an external quality control system for the most important bacterial pathogens.

  5. A new sauropodomorph dinosaur from the Early Jurassic of Patagonia and the origin and evolution of the sauropod-type sacrum.

    Directory of Open Access Journals (Sweden)

    Diego Pol

    Full Text Available BACKGROUND: The origin of sauropod dinosaurs is one of the major landmarks of dinosaur evolution but is still poorly understood. This drastic transformation involved major skeletal modifications, including a shift from the small and gracile condition of primitive sauropodomorphs to the gigantic and quadrupedal condition of sauropods. Recent findings in the Late Triassic-Early Jurassic of Gondwana provide critical evidence to understand the origin and early evolution of sauropods. METHODOLOGY/PRINCIPAL FINDINGS: A new sauropodomorph dinosaur, Leonerasaurus taquetrensis gen. et sp. nov., is described from the Las Leoneras Formation of Central Patagonia (Argentina. The new taxon is diagnosed by the presence of anterior unserrated teeth with a low spoon-shaped crown, amphicoelous and acamerate vertebral centra, four sacral vertebrae, and humeral deltopectoral crest low and medially deflected along its distal half. The phylogenetic analysis depicts Leonerasaurus as one of the closest outgroups of Sauropoda, being the sister taxon of a clade of large bodied taxa composed of Melanorosaurus and Sauropoda. CONCLUSIONS/SIGNIFICANCE: The dental and postcranial anatomy of Leonerasaurus supports its close affinities with basal sauropods. Despite the small size and plesiomorphic skeletal anatomy of Leonerasaurus, the four vertebrae that compose its sacrum resemble that of the large-bodied primitive sauropods. This shows that the appearance of the sauropod-type of sacrum predated the marked increase in body size that characterizes the origins of sauropods, rejecting a causal explanation and evolutionary linkage between this sacral configuration and body size. Alternative phylogenetic placements of Leonerasaurus as a basal anchisaurian imply a convergent acquisition of the sauropod-type sacrum in the new small-bodied taxon, also rejecting an evolutionary dependence of sacral configuration and body size in sauropodomorphs. This and other recent discoveries are

  6. Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems

    Science.gov (United States)

    Ruiz-Mirazo, Kepa; Briones, Carlos

    2017-01-01

    In recent years, an extension of the Darwinian framework is being considered for the study of prebiotic chemical evolution, shifting the attention from homogeneous populations of naked molecular species to populations of heterogeneous, compartmentalized and functionally integrated assemblies of molecules. Several implications of this shift of perspective are analysed in this critical review, both in terms of the individual units, which require an adequate characterization as self-maintaining systems with an internal organization, and also in relation to their collective and long-term evolutionary dynamics, based on competition, collaboration and selection processes among those complex individuals. On these lines, a concrete proposal for the set of molecular control mechanisms that must be coupled to bring about autonomous functional systems, at the interface between chemistry and biology, is provided. PMID:28446711

  7. Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems.

    Science.gov (United States)

    Ruiz-Mirazo, Kepa; Briones, Carlos; de la Escosura, Andrés

    2017-04-01

    In recent years, an extension of the Darwinian framework is being considered for the study of prebiotic chemical evolution, shifting the attention from homogeneous populations of naked molecular species to populations of heterogeneous, compartmentalized and functionally integrated assemblies of molecules. Several implications of this shift of perspective are analysed in this critical review, both in terms of the individual units, which require an adequate characterization as self-maintaining systems with an internal organization, and also in relation to their collective and long-term evolutionary dynamics, based on competition, collaboration and selection processes among those complex individuals. On these lines, a concrete proposal for the set of molecular control mechanisms that must be coupled to bring about autonomous functional systems, at the interface between chemistry and biology, is provided. © 2017 The Authors.

  8. Adaptive evolution of 5'HoxD genes in the origin and diversification of the cetacean flipper.

    Science.gov (United States)

    Wang, Zhe; Yuan, Lihong; Rossiter, Stephen J; Zuo, Xueguo; Ru, Binghua; Zhong, Hui; Han, Naijian; Jones, Gareth; Jepson, Paul D; Zhang, Shuyi

    2009-03-01

    The homeobox (Hox) genes Hoxd12 and Hoxd13 control digit patterning and limb formation in tetrapods. Both show strong expression in the limb bud during embryonic development, are highly conserved across vertebrates, and show mutations that are associated with carpal, metacarpal, and phalangeal deformities. The most dramatic evolutionary reorganization of the mammalian limb has occurred in cetaceans (whales, dolphins, and porpoises), in which the hind limbs have been lost and the forelimbs have evolved into paddle-shaped flippers. We reconstructed the phylogeny of digit patterning in mammals and inferred that digit number has changed twice in the evolution of the cetacean forelimb. First, the divergence of the early cetaceans from their even-toed relatives coincided with the reacquisition of the pentadactyl forelimb, whereas the ancestors of tetradactyl baleen whales (Mysticeti) later lost a digit again. To test whether the evolution of the cetacean forelimb is associated with positive selection or relaxation of Hoxd12 and Hoxd13, we sequenced these genes in a wide range of mammals. In Hoxd12, we found evidence of Darwinian selection associated with both episodes of cetacean forelimb reorganization. In Hoxd13, we found a novel expansion of a polyalanine tract in cetaceans compared with other mammals (17/18 residues vs. 14/15 residues, respectively), lengthening of which has previously been shown to be linked to synpolydactyly in humans and mice. Both genes also show much greater sequence variation among cetaceans than across other mammalian lineages. Our results strongly implicate 5'HoxD genes in the modulation of digit number, web forming, and the high morphological diversity of the cetacean manus.

  9. On the evolution of genetic incompatibility systems. V. Origin of sporophytic self-incompatibility in response to overdominance in viability.

    Science.gov (United States)

    Uyenoyama, M K

    1989-12-01

    Conditions for the origin of partial sporophytic self-incompatibility (SSI) are obtained from two quantitative models, which differ with respect to the determination of offspring viability. Offspring viability depends solely on the source (self or nonself) of the fertilizing pollen in the first model, which describes changes only at a primitive S-locus itself. Two loci evolve in the second model: overdominant viability selection maintains an arbitrary number of alleles at one locus, with SSI under the control of a separate locus. In both cases, the origin of SSI requires that the relative change in the numbers of offspring derived by the two reproductive modes compensate for the twofold cost of outcrossing. In the first model studied, the viability of inbred offspring fully determines the relative change in the numbers of inbred and outbred offspring produced. In the second model, the relative change in offspring numbers depends in addition on associations between the S-locus and the viability locus. Because these two-locus associations are comparable in magnitude to the differences between the viabilities of inbred and outbred offspring, SSI can arise under less restrictive conditions than expected from the one-locus model. Greater allelic multiplicity at the viability locus facilitates the origin of SSI by reducing the relative viability of inbred offspring. Tight linkage between the S-locus and the viability locus and high rates of receipt of self-pollen promote the generation and maintenance of associations between the S-locus and the viability locus. In populations in which more than two viability alleles are maintained, the active S-allele can invade even in the absence of linkage with the viability locus. The present study establishes that incompatibility systems can arise in response to identity disequilibrium between a modifier of incompatibility and a locus subject to overdominant viability selection; in particular, compensation for the twofold cost of

  10. Origin of the tertiary red beds in the Northern part of the Duero Basin (Spain), II. Composition and genesis

    NARCIS (Netherlands)

    Mabesoone, J.M.

    1961-01-01

    In this second paper the red beds outcropping in the northern part of the Duero basin have been treated regarding their mineral and pebble composition, chemical parameters, and surface textures of quartz sand grains, taking as basis the results reported in the first paper. These deposits originate

  11. Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) removal and hydrogen evolution in bioelectrochemical systems.

    Science.gov (United States)

    Wang, Qiang; Huang, Liping; Pan, Yuzhen; Zhou, Peng; Quan, Xie; Logan, Bruce E; Chen, Hongbo

    2016-01-01

    Bioelectrochemical systems (BESs) were first operated in microbial fuel cell mode for recovering Cu(II), and then shifted to microbial electrolysis cells for Cd(II) reduction on the same cathodes of titanium sheet (TS), nickel foam (NF) or carbon cloth (CC). Cu(II) reduction was similar to all materials (4.79-4.88mg/Lh) whereas CC exhibited the best Cd(II) reduction (5.86±0.25mg/Lh) and hydrogen evolution (0.35±0.07m(3)/m(3)d), followed by TS (5.27±0.43mg/Lh and 0.15±0.02m(3)/m(3)d) and NF (4.96±0.48mg/Lh and 0.80±0.07m(3)/m(3)d). These values were higher than no copper controls by factors of 2.0 and 5.0 (TS), 4.2 and 2.0 (NF), and 1.8 and 7.0 (CC). These results demonstrated cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) reduction and hydrogen production in BESs, providing an alternative approach for efficiently remediating Cu(II) and Cd(II) co-contamination with simultaneous hydrogen production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Evolution of the Earth and Origin of Life: The Role of Gas/Fluid Interactions with Rocks

    Science.gov (United States)

    Freund, Friedemann

    2001-01-01

    The work under the Cooperative Agreement will be centered on questions of the evolution of Life on the early Earth and possibly on Mars. It is still hotly debated whether the essential organic molecules were delivered to the early Earth from space (by comets, meteorites or interplanetary dust particles) or were generated in situ on Earth. Prior work that has shown that the matrix of igneous minerals is a medium in which progenitors of organic molecules assemble from H2O, C02 and N2 incorporated as minority "impurities" in minerals of igneous rocks during crystallization from H2O/CO2/N2-laden magmas. The underlying processes involve a redox. conversion whereby C, H, and N become chemically reduced, while 0 becomes oxidized to the peroxy state. During Year 02 the work will be divided into three tasks. Task 1: After carboxylic (fatty) acids and N-bearing compounds have been identified, other extractable organic molecules including lipids, oily substances and amino acids will be studied. Dedicated lipid analysis will be combined with gas chromatographic-mass spectroscopic (GCMS) analysis of organic compounds extracted from minerals and rocks. Task 2: Using infrared (IR) spectroscopy, C-H entities that are indicators for the organic progenitors in mineral matrices will be studied. A preliminary heating experiment with MgO single crystals has shown that the C-H entities can be pyrolyzed, causing the IR bands to disappear, but at room temperature the IR bands reappear in a matter of days to weeks. This work will be expanded, both by studying synthetic MgO crystals and olivine crystals from the Earth's upper mantle. The C-H bands will be compared to the published "organic" IR feature of dust in the interstellar medium (ISM) and interplanetary dust particles (IDP). Task 3: A paradox marks the evolution of early Life: Oxygen is highly toxic to primitive life, yet early organisms "learned" to detoxify reactive oxygen species, to utilize oxygen, and even produce it. Why would

  13. Influence of different ruthenium(II) bipyridyl complex on the photocatalytic H{sub 2} evolution over TiO{sub 2} nanoparticles with mesostructures

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Tianyou [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Hubei Key Laboratory for Catalysis and Material Science, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074 (China); Ke, Dingning; Cai, Ping; Dai, Ke; Ma, Liang; Zan, Ling [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China)

    2008-05-15

    H{sub 2} production over dye-sensitized Pt/TiO{sub 2} nanoparticles with mesostructures (m-TiO{sub 2}) under visible light ({lambda} > 420 nm) was investigated by using methanol as electron donors. Experimental results indicate that three types of ruthenium(II) bipyridyl complex dyes (one binuclear Ru, two mononuclear Ru), which can be attached to Pt/m-TiO{sub 2} with different linkage modes, show different photosensitization effects due to their different coordination circumstances and physicochemical properties. The dye tightly linked with m-TiO{sub 2} has better durability but the lowest H{sub 2} evolution efficiency, whereas the loosely attached dyes possess higher H{sub 2} evolution efficiency and preferable durability. It seems that the dynamic equilibrium between the linkage of the ground state dye with TiO{sub 2} and the divorce of the oxidization state dye from the surfaces plays a crucial role in the photochemical behavior during the photocatalyst sensitization process. It is helpful to improve the H{sub 2} evolution efficiency by enhancing the electron injection and hindering the backward transfer. The binuclear Ru(II) dye shows a better photosensitization in comparison with mononuclear Ru(II) dyes due to its large molecular area, conjugation system, and ''antenna effect'', which, in turn, improve the visible light harvesting and electron transfer between the dye molecules and TiO{sub 2}. (author)

  14. Cretaceous origin of giant rhinoceros beetles (Dynastini; Coleoptera) and correlation of their evolution with the Pangean breakup.

    Science.gov (United States)

    Jin, Haofei; Yonezawa, Takahiro; Zhong, Yang; Kishino, Hirohisa; Hasegawa, Masami

    2017-03-17

    The giant rhinoceros beetles (Dynastini, Scarabaeidae, Coleoptera) are distributed in tropical and temperate regions in Asia, America and Africa. Recent molecular phylogenetic studies have revealed that the giant rhinoceros beetles can be divided into three clades representing Asia, America and Africa. Although a correlation between their evolution and the continental drift during the Pangean breakup was suggested, there is no accurate divergence time estimation among the three clades based on molecular data. Moreover, there is a long chronological gap between the timing of the Pangean breakup (Cretaceous: 110-148 Ma) and the emergence of the oldest fossil record (Oligocene: 33 Ma). In this study, we estimated their divergence times based on molecular data, using several combinations of fossil calibration sets, and obtained robust estimates. The inter-continental divergence events among the clades were estimated to have occurred about 99 Ma (Asian clade and others) and 78 Ma (American clade and African clade), both of which are after the Pangean breakup. These estimates suggest their inter-continental divergences occurred by overseas sweepstakes dispersal, rather than by vicariances of the population caused by the Pangean breakup.

  15. Origin and Evolution of the Neo-Sex Chromosomes in Pamphagidae Grasshoppers through Chromosome Fusion and Following Heteromorphization

    Science.gov (United States)

    Bugrov, Alexander Gennadievich; Buleu, Olesya Georgievna; Bogomolov, Anton Gennadievich; Rubtsov, Nikolay Borisovich

    2017-01-01

    In most phylogenetic lineages, the evolution of sex chromosomes is accompanied by their heteromorphization and degradation of one of them. The neo-sex chromosomes are useful model for studying early stages of these processes. Recently two lineages of the neo-sex chromosomes on different stages of heteromorphization was discovered in Pamphagidae family. The neo-sex chromosome heteromorphization was analyzed by generation of DNA probes derived from the neo-Xs and neo-Ys followed with chromosome painting in nineteen species of Pamphagidae family. The homologous regions of the neo-sex chromosomes were determined in closely related species with the painting procedure and image analysis with application of the Visualization of the Specific Signal in Silico software package. Results of these analyses and distribution of C-positive regions in the neo-sex chromosomes revealed details of the heteromorphization of the neo-sex chromosomes in species from both phylogenetic lineages of Pamphagidae grasshoppers. The hypothetical mechanism of the neo-Y degradation was suggested. It includes expansion of different repeats from the proximal neo-Y chromosome region by inversions, spreading them towards distal region. Amplification of these repeats leads to formation of C-positive regions and elimination of the C-negative regions located between them. PMID:29137168

  16. Ultrastructure of the ovary of Dermatobia hominis (Diptera: cuterebridae. II. Origin of the tunica propria in ovarioles

    Directory of Open Access Journals (Sweden)

    E. A. Gregório

    1990-09-01

    Full Text Available Ovaries up to the 8th day pupae of Dermatobia hominis were studied by transmission electron microscopy. Ovarioles were recognized in ovaries of 4-day old pre-pupae, surrounded by a thin tunica propria of acellular fibrilar material similar in structure to the internal portion of the external tunica of the ovary. There is continuity of the tunica propria and the ovarian tunica, indicating that the former structure originates from the tunica externa. In 5 to 7-day pupae the interstitial somatic cells from the apical region of the ovary, close to the ovarioles, show delicate filamentous material inside of their rough endoplasmic reticulum cisternae; similar material is seem among these cells. Our observations suggest that interstitial somatic cells do not originate the tunica propria but contribute to its final composition.

  17. Peri-Gondwanan terranes in the Romanian Carpathians: A review of their spatial distribution, origin, provenance, and evolution

    Directory of Open Access Journals (Sweden)

    Ioan Balintoni

    2014-05-01

    The late Cambrian–Ordovician terranes are defined here as Carpathian-type terranes. According to their lithostratigraphy and origin, some are of continental margin magmatic arc setting, whereas others formed in rift and back-arc environment and closed to passive continental margin settings. In a paleogeographic reconstruction, the continental margin magmatic arc terranes were first that drifted out, followed by the passive continental margin terranes with the back-arc terranes in their front. They accreted to Laurussia during the Variscan orogeny. Some of them (Sebeş-Lotru in South Carpathians and Baia de Arieş in Apuseni mountains underwent eclogite-grade metamorphism. The Danubian terranes, the Bretila terrane and the Someş terrane were intruded by Variscan granitoids.

  18. Investigating cultural evolution using phylogenetic analysis: the origins and descent of the southeast Asian tradition of warp ikat weaving.

    Science.gov (United States)

    Buckley, Christopher D

    2012-01-01

    The warp ikat method of making decorated textiles is one of the most geographically widespread in southeast Asia, being used by Austronesian peoples in Indonesia, Malaysia and the Philippines, and Daic peoples on the Asian mainland. In this study a dataset consisting of the decorative characters of 36 of these warp ikat weaving traditions is investigated using Bayesian and Neighbornet techniques, and the results are used to construct a phylogenetic tree and taxonomy for warp ikat weaving in southeast Asia. The results and analysis show that these diverse traditions have a common ancestor amongst neolithic cultures the Asian mainland, and parallels exist between the patterns of textile weaving descent and linguistic phylogeny for the Austronesian group. Ancestral state analysis is used to reconstruct some of the features of the ancestral weaving tradition. The widely held theory that weaving motifs originated in the late Bronze Age Dong-Son culture is shown to be inconsistent with the data.

  19. The Subduction of Continental Crust, the Variscan Evolution of the Bohemian Massif, and the Origin of PO Granitoids

    Science.gov (United States)

    Brueckner, H. K.

    2012-04-01

    Slices of continental crust subducted into the mantle during collisional orogeny may either undergo metamorphism and exhumation towards the surface as coherent slab-like or domal high pressure/ultrahigh pressure (HP/UHP) terranes or, if stalled or delayed in the mantle, melt and return towards the surface as magmas, or undergo a combination of exhumation and melting. Some exhumed HP/UHP terranes contain synorogenic granitoid bodies demonstrating melting does occur during exhumation. Therefore, crust that remains trapped in the mantle will also melt when temperatures reach the appropriate solidi through adiabatic decompression and/or conductive heating and/or radioactive decay. Subducted terranes with hydrous phases will undergo hydrate-breakdown melting and could melt during subduction, when stalled in the mantle or during exhumation. Terranes lacking hydrous phases probably require melting by adiabatic decompression as heated crust becomes ductile and rises as diapirs through the mantle wedge. The generated magmas will intrude through the overlying mantle wedge and into the overlying continental crust to form late orogenic and post orogenic (PO) granitoids depending on the time required to reach solidus temperatures. Geochemical characteristics will depend on P-T conditions, the age/chemistry/mineralogy of the subducted terrane (especially the presence or lack of hydrous phases), and the degree of melt interaction (i.e. the traverse length) with the mantle wedge. Melts that significantly traverse the wedge will acquire the hybrid mantle/crust nature of many PO granitoids. Melts generated by adiabatic decompression close to or within the continental crust will retain ancient crustal signatures. The Variscan evolution of the Bohemian Massif involved two episodes of subduction of continental crust: (1), the southward (present coordinates) subduction of Saxo-Thuringia beneath Bohemia (aka Tapla-Barrandia) along an east-west suture at 400-370 Ma followed by, (2), the

  20. The origin and evolution of Jonah high in the Middle of the Levant Basin and its Significance to the History of Rifting

    Science.gov (United States)

    Sagy, Yael; Gvirtzman, Zohar; Moshe, Reshef; Makovsky, Yizhaq

    2016-04-01

    Large gas fields such as Tamar, Dalit and Leviathan, were discovered during the last few years within the thick (>15 km) sedimentary section of the Levant basin (Eastern Mediterranean). These new discoveries attract the attention of the industry, the academy, and the general community to deeply buried structural highs striving to understand the origin of such structures, their relations to the tectonic history of the basin, and their evolution through time. Here we focus on the Jonah high, which is one of the largest structures in the basin and is particularly enigmatic in its geometry, dimensions and location compared to nearby structures. It is buried under more than 3 km of Late Tertiary sediments, and is associated with one of the largest magnetic anomalies in the basin, though no significant gravity anomaly is observed. Previous studies raised several possibilities explaining its origin: an ancient horst related to the early stage of basin formation (Late Paleozoic or early Mesozoic); a Syrian Arc fold (Late Cretaceous to Neogene); a giant volcanic seamount; and an intrusive magmatic body. A reconstruction of the evolution of this structure is proposed here based on newly produced pre-stack depth migration of five selected seismic reflection lines crossing the Jonah high combined with a basin-wide interpretation of more than 500 2-D time-migrated lines. We suggest that the Jonah high is a horst bounded by grabens, most probably formed during continental breakup related to the Neo-Tethys formation. However, unlike other extensional structures that were reactivated and inverted during the Syrian Arc deformation, the Jonah high was never reactivated. Rather, it formed a prominent seamount that persisted for 120-140 million years until the Early Miocene, when it was finally buried. In a wider perspective the Jonah horst is similar to the Eratosthenes seamount, a fragment of continental crust between the Levant and Herodotus basins.

  1. A phylogenetic approach to study the origin and evolution of plasmodesmata-localized Glycosyl Hydrolases family 17

    Directory of Open Access Journals (Sweden)

    Rocio eGaudioso-Pedraza

    2014-05-01

    Full Text Available Colonization of the land by plants required major modifications in cellular structural composition and metabolism. Intercellular communication through plasmodesmata (PD plays a critical role in the coordination of growth and cell activities. Changes in the form, regulation or function of these channels are likely linked to plant adaptation to the terrestrial environments. Constriction of PD aperture by deposition of callose is the best-studied mechanism in PD regulation. Glycosyl hydrolases family 17 (GHL17 are callose degrading enzymes. In Arabidopsis this is a large protein family, few of which have been PD-localized. The objective here is to identify correlations between evolution of this protein family and their role at PD and to use this information as a tool to predict the localization of candidates isolated in a proteomic screen. With this aim, we studied phylogenetic relationship between Arabidopsis GHL17 sequences and those isolated from fungi, green algae, mosses and monocot representatives. Three distinct phylogenetic clades were identified. Clade alpha contained only embryophytes sequences suggesting that this subgroup appeared during land colonization in organisms with functional PD. Accordingly, all PD-associated GHL17 proteins identified so far in Arabidopsis thaliana and Populus are grouped in this ‘embryophytes only’ phylogenetic clade. Next, we tested the use of this knowledge to discriminate between candidates isolated in the PD proteome. Transient and stable expression of GFP protein fusions confirmed PD localization for candidates contained in clade alpha but not for candidates contained in clade beta. Our results suggest that GHL17 membrane proteins contained in the alpha clade evolved and expanded during land colonization to play new roles, among others, in PD regulation.

  2. Distribution and characteristics of overdeepenings beneath the Greenland and Antarctic ice sheets: Implications for overdeepening origin and evolution

    Science.gov (United States)

    Patton, H.; Swift, D. A.; Clark, C. D.; Livingstone, S. J.; Cook, S. J.

    2016-09-01

    Glacier bed overdeepenings are ubiquitous in glacier systems and likely exert significant influence on ice dynamics, subglacial hydrology, and ice stability. Understanding of overdeepening formation and evolution has been hampered by an absence of quantitative empirical studies of their distribution and morphology, with process insights having been drawn largely from theoretical or numerical studies. To address this shortcoming, we first map the distribution of potential overdeepenings beneath the Antarctic and Greenland ice sheets using a GIS-based algorithm that identifies closed-contours in the bed topography and then describe and analyse the characteristics and metrics of a subset of overdeepenings that pass further quality control criteria. Overdeepenings are found to be widespread, but are particularly associated with areas of topographically laterally constrained ice flow, notably near the ice sheet margins where outlet systems follow deeply incised troughs. Overdeepenings also occur in regions of topographically unconstrained ice flow (for example, beneath the Siple Coast ice streams and on the Greenland continental shelf). Metrics indicate that overdeepening growth is generally allometric and that topographic confinement of ice flow in general enhances overdeepening depth. However, overdeepening depth is skewed towards shallow values - typically 200-300 m - indicating that the rate of deepening slows with overdeepening age. This is reflected in a decline in adverse slope steepness with increasing overdeepening planform size. Finally, overdeepening long-profiles are found to support headward quarrying as the primary factor in overdeepening development. These observations support proposed negative feedbacks related to hydrology and sediment transport that stabilise overdeepening growth through sedimentation on the adverse slope but permit continued overdeepening planform enlargement by processes of headward erosion.

  3. Insights into alpha-hemolysin (Hla evolution and expression among Staphylococcus aureus clones with hospital and community origin.

    Directory of Open Access Journals (Sweden)

    Ana Tavares

    Full Text Available Alpha-hemolysin (Hla is a major virulence factor in the pathogenesis of Staphylococcus aureus infection, being active against a wide range of host cells. Although hla is ubiquitous in S. aureus, its genetic diversity and variation in expression in different genetic backgrounds is not known. We evaluated nucleotide sequence variation and gene expression profiles of hla among representatives of hospital (HA and community-associated (CA S. aureus clones.51 methicillin-resistant S. aureus and 22 methicillin-susceptible S. aureus were characterized by PFGE, spa typing, MLST and SCCmec typing. The internal regions of hla and the hla promoter were sequenced and gene expression was assessed by RT-PCR.Alpha-hemolysin encoding- and promoter sequences were diverse, with 12 and 23 different alleles, respectively. Based on phylogenetic analysis, we suggest that hla may have evolved together with the S. aureus genetic background, except for ST22, ST121, ST59 and ST93. Conversely, the promoter region showed lack of co-evolution with the genetic backgrounds. Four non-synonymous amino acid changes were identified close to important regions of hla activity. Amino acid changes in the RNAIII binding site were not associated to hla expression. Although expression rates of hla were in general strain-specific, we observed CA clones showed significantly higher hla expression (p = 0.003 when compared with HA clones.We propose that the hla gene has evolved together with the genetic background. Overall, CA genetic backgrounds showed higher levels of hla expression than HA, and a high strain-to-strain variation of gene expression was detected in closely related strains.

  4. Insights into alpha-hemolysin (Hla) evolution and expression among Staphylococcus aureus clones with hospital and community origin.

    Science.gov (United States)

    Tavares, Ana; Nielsen, Jesper B; Boye, Kit; Rohde, Susanne; Paulo, Ana C; Westh, Henrik; Schønning, Kristian; de Lencastre, Hermínia; Miragaia, Maria

    2014-01-01

    Alpha-hemolysin (Hla) is a major virulence factor in the pathogenesis of Staphylococcus aureus infection, being active against a wide range of host cells. Although hla is ubiquitous in S. aureus, its genetic diversity and variation in expression in different genetic backgrounds is not known. We evaluated nucleotide sequence variation and gene expression profiles of hla among representatives of hospital (HA) and community-associated (CA) S. aureus clones. 51 methicillin-resistant S. aureus and 22 methicillin-susceptible S. aureus were characterized by PFGE, spa typing, MLST and SCCmec typing. The internal regions of hla and the hla promoter were sequenced and gene expression was assessed by RT-PCR. Alpha-hemolysin encoding- and promoter sequences were diverse, with 12 and 23 different alleles, respectively. Based on phylogenetic analysis, we suggest that hla may have evolved together with the S. aureus genetic background, except for ST22, ST121, ST59 and ST93. Conversely, the promoter region showed lack of co-evolution with the genetic backgrounds. Four non-synonymous amino acid changes were identified close to important regions of hla activity. Amino acid changes in the RNAIII binding site were not associated to hla expression. Although expression rates of hla were in general strain-specific, we observed CA clones showed significantly higher hla expression (p = 0.003) when compared with HA clones. We propose that the hla gene has evolved together with the genetic background. Overall, CA genetic backgrounds showed higher levels of hla expression than HA, and a high strain-to-strain variation of gene expression was detected in closely related strains.

  5. The Origin and Evolution of the Plant Cell Surface: Algal Integrin-Associated Proteins and a New Family of Integrin-Like Cytoskeleton-ECM Linker Proteins.

    Science.gov (United States)

    Becker, Burkhard; Doan, Jean Michel; Wustman, Brandon; Carpenter, Eric J; Chen, Li; Zhang, Yong; Wong, Gane K-S; Melkonian, Michael

    2015-05-14

    The extracellular matrix of scaly green flagellates consists of small organic scales consisting of polysaccharides and scale-associated proteins (SAPs). Molecular phylogenies have shown that these organisms represent the ancestral stock of flagellates from which all green plants (Viridiplantae) evolved. The molecular characterization of four different SAPs is presented. Three SAPs are type-2 membrane proteins with an arginine/alanine-rich short cytoplasmic tail and an extracellular domain that is most likely of bacterial origin. The fourth protein is a filamin-like protein. In addition, we report the presence of proteins similar to the integrin-associated proteins α-actinin (in transcriptomes of glaucophytes and some viridiplants), LIM-domain proteins, and integrin-associated kinase in transcriptomes of viridiplants, glaucophytes, and rhodophytes. We propose that the membrane proteins identified are the predicted linkers between scales and the cytoskeleton. These proteins are present in many green algae but are apparently absent from embryophytes. These proteins represent a new protein family we have termed gralins for green algal integrins. Gralins are absent from embryophytes. A model for the evolution of the cell surface proteins in Plantae is discussed. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. On the origin of residual strain in shape memory alloys: experimental investigation on evolutions in the microstructure of CuAlBe during complex thermomechanical loadings

    Science.gov (United States)

    Barati, M.; Arbab Chirani, S.; Kadkhodaei, M.; Saint-Sulpice, L.; Calloch, S.

    2017-02-01

    The behaviors of shape memory alloys (SMAs) strongly depend on the presence of different phases: austenite, thermally-induced martensite and stress-induced martensite. Consequently, it is important to know the phase volume fraction of each phases and their evolution during thermomechanical loadings. In this work, a three-phase proportioning method based on electric resistivity variation of a CuAlBe SMA is proposed. Simple thermomechanical loadings (i. e. pseudoplasticity and pseudoelasticity), one-way shape memory effect, recovery stress, assisted two-way memory effect at different level of stress and cyclic pseudoelasticity tests are investigated. Based on the electric resistivity results, during each loading path, evolution of the microstructure is determined. The origin of residual strain observed during the considered thermomechanical loadings is discussed. A special attention is paid to two-way shape memory effect generated after considered cyclic loadings and its relation with the developed residual strain. These results permit to identify and to validate the macroscopic models of SMAs behaviors.

  7. Tracing back EFL gene evolution in the cryptomonads-haptophytes assemblage: separate origins of EFL genes in haptophytes, photosynthetic cryptomonads, and goniomonads.

    Science.gov (United States)

    Sakaguchi, Miako; Takishita, Kiyotaka; Matsumoto, Takuya; Hashimoto, Tetsuo; Inagaki, Yuji

    2009-07-15

    A recently identified GTPase, elongation factor-like (EFL) protein is proposed to bear the principal functions of translation elongation factor 1alpha (EF-1alpha). Pioneering studies of EF-1alpha/EFL evolution have revealed the phylogenetically scattered distribution of EFL amongst eukaryotes, suggesting frequent eukaryote-to-eukaryote EFL gene transfer events and subsequent replacements of EF-1alpha functions by EFL. We here determined/identified seven new EFL sequences of the photosynthetic cryptomonad Cryptomonas ovata, the non-photosynthetic cryptomonad (goniomonad) Goniomonas amphinema, the foraminifer Planoglabratella opecularis, the haptophyte Chrysochromulina sp., the centroheliozoan Raphidiophrys contractilis, and two red algae Chondrus crispus and Gracilaria changii. The analyses of these EFL sequences successfully brought new insights into lateral EFL gene transfer amongst eukaryotes. Of most interest is a complex EFL evolution in a monophyletic assemblage comprised of cryptomonads and haptophytes. Since our analyses rejected any phylogenetic affinity amongst the EFL sequences from Goniomonas, photosynthetic cryptomonads, and haptophytes, the EFL genes of the three lineages most likely originated from different phylogenetic sources.

  8. The Biological “Invariant of Motion” vs. “Struggle for Life”? On the Possible Quantum Mechanical Origin and Evolution of Semiotic Controls in Biology

    Directory of Open Access Journals (Sweden)

    András Balázs

    2013-10-01

    Full Text Available A novel, alternative and deeper view to the “selfish gene” paradigm is presented, describable as the “selfish code” frame. Introducing it, we put forth a quantum mechanical algorithm as a new description of the intracellular protein synthetizing machinery. The successive steps of the algorithm are, tentatively, semiotic constraints of the well-known quantum mechanical molecular “internal measurement” type. It is proposed that this molecular algorithm mediates a quantum mechanical time reversed dynamics with a primordial special version of this latter molecular measurement type (“mixed measurement” as its origin. It is furthermore suggested that this intracellular regressive algorithmical dynamics is a component of biological “motion”, the other, strongly coupled component being the macroscopic phenotypic motion. The biological “invariant of motion” of this hierarchically coupled overall generalized dynamics is suggested to be the evolutionally converged invariant genetic code vocabulary. It forms, possibly, the underlying internal “driving force” of evolution, as being “struggle for life”.

  9. Phytogeography of the copper and cobalt flora of Upper Shaba (Zaire, with emphasis on its endemism, origin and evolution mechanisms

    Directory of Open Access Journals (Sweden)

    F. P. Malaisse

    1983-11-01

    Full Text Available Copper and cobalt ore deposits occur on at least a hundred outcrops scattered in the Shaban Copperbow, an area of 2 000 square kilometres, in the metallogenic Province of Southern Central Africa. With more than 200 species, this flora includes a large number (42 of endemic species of various degrees. Some species are known from only one site, many are located on neighbouring outcrops, others occur on all the ore deposits. Present migratory pathways have been traced for some species and are reported. The relative importance of palaeoendemism and neoendemism is discussed. The origin of these endemics, as well as that of other plants is to be found in several adjacent floras such as that of steppe-savannas developed on more or less poorly aerated soils (Kalahari sands or dambos overlaying laterite, dwarf vegetation on siliceous cellular rocks and miombo woodlands on poor hydromorphic soils. Examples are given for each vegetation type. Systematic details, leaf anatomy and phytogeochemistry data support these hypotheses, which are illustrated for several closely related taxa.

  10. Origin and evolution of binucleated cells and binucleated cells with micronuclei in cisplatin-treated CHO cultures.

    Science.gov (United States)

    Rodilla, V

    1993-08-01

    It has recently been described that cisplatin is an agent able to induce binucleated cells (BC) in cultured CHO cells. Both the origin and the significance of those cells within a population are unknown although several hypothesis have been suggested such as blocking of cytokinesis or cell fusion. Using interval photography we have found that at least two mechanisms are involved in the production of BC. These cells can arise in a culture as a result of an incomplete process of cell division, i.e. karyokinesis with incomplete cytokinesis or as a result of the mitotic division of a pre-existent BC. The mitotic division of a BC can give rise to different types of daughter cells. These BC sometimes enter mitosis but fail to divide and as a consequence they remain BC. When the process of division is successful (in the vast majority of cases), the results that have been found are either two mononucleated cells or one mononucleated and one binucleated cell. The possible implications and significance of BC and BC with micronuclei in a given population are discussed.

  11. Cranial remain from Tunisia provides new clues for the origin and evolution of Sirenia (Mammalia, Afrotheria in Africa.

    Directory of Open Access Journals (Sweden)

    Julien Benoit

    Full Text Available Sea cows (manatees, dugongs are the only living marine mammals to feed solely on aquatic plants. Unlike whales or dolphins (Cetacea, the earliest evolutionary history of sirenians is poorly documented, and limited to a few fossils including skulls and skeletons of two genera composing the stem family of Prorastomidae (Prorastomus and Pezosiren. Surprisingly, these fossils come from the Eocene of Jamaica, while stem Hyracoidea and Proboscidea--the putative sister-groups to Sirenia--are recorded in Africa as early as the Late Paleocene. So far, the historical biogeography of early Sirenia has remained obscure given this paradox between phylogeny and fossil record. Here we use X-ray microtomography to investigate a newly discovered sirenian petrosal from the Eocene of Tunisia. This fossil represents the oldest occurrence of sirenians in Africa. The morphology of this petrosal is more primitive than the Jamaican prorastomids' one, which emphasizes the basal position of this new African taxon within the Sirenia clade. This discovery testifies to the great antiquity of Sirenia in Africa, and therefore supports their African origin. While isotopic analyses previously suggested sirenians had adapted directly to the marine environment, new paleoenvironmental evidence suggests that basal-most sea cows were likely restricted to fresh waters.

  12. The origins of music in auditory scene analysis and the roles of evolution and culture in musical creation.

    Science.gov (United States)

    Trainor, Laurel J

    2015-03-19

    Whether music was an evolutionary adaptation that conferred survival advantages or a cultural creation has generated much debate. Consistent with an evolutionary hypothesis, music is unique to humans, emerges early in development and is universal across societies. However, the adaptive benefit of music is far from obvious. Music is highly flexible, generative and changes rapidly over time, consistent with a cultural creation hypothesis. In this paper, it is proposed that much of musical pitch and timing structure adapted to preexisting features of auditory processing that evolved for auditory scene analysis (ASA). Thus, music may have emerged initially as a cultural creation made possible by preexisting adaptations for ASA. However, some aspects of music, such as its emotional and social power, may have subsequently proved beneficial for survival and led to adaptations that enhanced musical behaviour. Ontogenetic and phylogenetic evidence is considered in this regard. In particular, enhanced auditory-motor pathways in humans that enable movement entrainment to music and consequent increases in social cohesion, and pathways enabling music to affect reward centres in the brain should be investigated as possible musical adaptations. It is concluded that the origins of music are complex and probably involved exaptation, cultural creation and evolutionary adaptation.

  13. The origin and evolution of fibromelanosis in domesticated chickens: Genomic comparison of Indonesian Cemani and Chinese Silkie breeds.

    Directory of Open Access Journals (Sweden)

    Anik Budhi Dharmayanthi

    Full Text Available Like Chinese Silkie, Indonesian Ayam Cemani exhibits fibromelanosis or dermal hyperpigmentation and possesses complex segmental duplications on chromosome 20 that involve the endothelin 3 gene, EDN3. A genomic region, DR1 of 127 kb, together with another region, DR2 of 171 kb, was duplicated by unequal crossing over, accompanied by inversion of one DR2. Quantitative PCR and copy number variation analyses on the Cemani genome sequence confirmed the duplication of EDN3. These genetic arrangements are identical in Cemani and Silkie, indicating a single origin of the genetic cause of Fm. The two DR1s harbor two distinct EDN3 haplotypes in a form of permanent heterozygosity, although they remain allelic in the ancestral Red Jungle Fowl population and some domesticated chicken breeds, with their allelic divergence time being as recent as 0.3 million years ago. In Cemani and Silkie breeds, artificial selection favoring the Fm phenotype has left an unambiguous record for selective sweep that extends in both directions from tandemly duplicated EDN3 loci. This highly homozygous tract is different in length between Cemani and Silkie, reflecting their distinct breeding histories. It is estimated that the Fm phenotype came into existence at least 6600-9100 years ago, prior to domestication of Cemani and Silkie, and that throughout domestication there has been intense artificial selection with strength s > 50% in each breed.

  14. Molecular characterization, origin, and evolution of teleost p68 gene family: Insights from Japanese flounder, Paralichthys olivaceus.

    Science.gov (United States)

    Wang, Zhongkai; Liu, Wei; Zhou, Nayu; Wang, Huizhen; Li, Peizhen; Wang, Mengxun; Zhang, Quanqi

    2015-12-01

    Two rounds of whole-genome duplication occurred in the common ancestor of vertebrates. Later, a third round genome duplication occurred in the teleost fishes. As a prototype member of DEAD-box RNA helicases, the function of p68 helicase in development has been well investigated in human, however, limited information is available regarding the regulatory function of this gene in the development of teleosts. In this study, being an important farmed fish in North China, Japanese flounder (Paralichthys olivaceus) was used as model fish to investigate the role of p68 gene in teleost development. Two p68 genes were first identified from Japanese flounder. Molecular characterization of them was performed by analyzing the exon-intron boundaries. Then, we confirmed that such two teleost p68 genes originated from teleost-specific genome duplication through phylogenetic and synteny analyses. Additionally, comparative analyses of amino acid sequences, variation in selective pressure, and expression profiles of p68 genes revealed probable sub-functionalization fate of teleost p68 genes after the duplication. Therefore, this study supplements the evolutionary properties of teleost p68 gene family and provides the groundwork for further studying the regulatory function of p68 genes in the development of teleosts. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. The origins of music in auditory scene analysis and the roles of evolution and culture in musical creation

    Science.gov (United States)

    Trainor, Laurel J.

    2015-01-01

    Whether music was an evolutionary adaptation that conferred survival advantages or a cultural creation has generated much debate. Consistent with an evolutionary hypothesis, music is unique to humans, emerges early in development and is universal across societies. However, the adaptive benefit of music is far from obvious. Music is highly flexible, generative and changes rapidly over time, consistent with a cultural creation hypothesis. In this paper, it is proposed that much of musical pitch and timing structure adapted to preexisting features of auditory processing that evolved for auditory scene analysis (ASA). Thus, music may have emerged initially as a cultural creation made possible by preexisting adaptations for ASA. However, some aspects of music, such as its emotional and social power, may have subsequently proved beneficial for survival and led to adaptations that enhanced musical behaviour. Ontogenetic and phylogenetic evidence is considered in this regard. In particular, enhanced auditory–motor pathways in humans that enable movement entrainment to music and consequent increases in social cohesion, and pathways enabling music to affect reward centres in the brain should be investigated as possible musical adaptations. It is concluded that the origins of music are complex and probably involved exaptation, cultural creation and evolutionary adaptation. PMID:25646512

  16. From basalt to dacite: origin and evolution of the calc-alkaline series of Salina, Aeolian Arc, Italy

    Science.gov (United States)

    Gertisser, Ralf; Keller, Jörg

    2000-09-01

    The island of Salina comprises one of the most distinct calc-alkaline series of the Aeolian arc (Italy), in which calc-alkaline, high-K calc-alkaline, shoshonitic and leucite-shoshonitic magma series are developed. Detailed petrological, geochemical and isotopic (Sr, Nd, Pb, O) data are reported for a stratigraphically well-established sequence of lavas and pyroclastic rocks from the Middle Pleistocene volcanic cycle (430-127 ka) of Salina, which is characterized by an early period of basaltic volcanism (Corvo; Capo; Rivi; Fossa delle Felci, group 1) and a sequence of basaltic andesites, and andesites and dacites in the final stages of activity (Fossa delle Felci, groups 2-8). Major and trace element compositional trends, rare earth element (REE) abundances and mineralogy reveal the importance of crystal fractionation of plagioclase + clinopyroxene + olivine/ orthopyroxene ± titanomagnetite ± amphibole ± apatite in generating the more evolved magma types from parental basaltic magmas, and plagioclase accumulation in producing the high Al2O3 contents of some of the more evolved basalts. Sr isotope ratios range from 0.70410 to 0.70463 throughout the suite and show a well-defined negative correlation with 143Nd/144Nd (0.51275-0.51279). Pb isotope compositions are distinctly radiogenic with relatively large variations in 206Pb/204Pb (19.30-19.66), fairly constant 207Pb/204Pb (15.68-15.76) and minor variations in 208Pb/204Pb ratios (39.15-39.51). Whole-rock δ18O values range from +6.4 to +8.5‰ and correlate positively with Sr isotope ratios. Overall, the isotopic variations are correlated with the degree of differentiation of the rocks, indicating that only small degrees of crustal assimilation are overprinting the dominant evolution by crystal-liquid fractionation (AFC-type processes). The radiogenic and oxygen isotope composition of the Salina basalts suggests derivation from primary magmas from a depleted mantle source contaminated by slab-derived fluids and

  17. Filling the gap. Human cranial remains from Gombore II (Melka Kunture, Ethiopia; ca. 850 ka) and the origin of Homo heidelbergensis.

    Science.gov (United States)

    Profico, Antonio; Di Vincenzo, Fabio; Gagliardi, Lorenza; Piperno, Marcello; Manzi, Giorgio

    2016-06-20

    African archaic humans dated to around 1,0 Ma share morphological affinities with Homo ergaster and appear distinct in cranio-dental morphology from those of the Middle Pleistocene that are referred to Homo heidelbergensis. This observation suggests a taxonomic and phylogenetic discontinuity in Africa that ranges across the Matuyama/Brunhes reversal (780 ka). Yet, the fossil record between roughly 900 and 600 ka is notoriously poor. In this context, the Early Stone Age site of Gombore II, in the Melka Kunture formation (Upper Awash, Ethiopia), provides a privileged case-study. In the Acheulean layer of Gombore II, somewhat more recent than 875 ±10 ka, two large cranial fragments were discovered in 1973 and 1975 respectively: a partial left parietal (Melka Kunture 1) and a right portion of the frontal bone (Melka Kunture 2), which probably belonged to the same cranium. We present here the first detailed description and computer-assisted reconstruction of the morphology of the cranial vault pertaining to these fossil fragments. Our analysis suggest that the human fossil specimen from Gombore II fills a phenetic gap between Homo ergaster and Homo heidelbergensis. This appears in agreement with the chronology of such a partial cranial vault, which therefore represents at present one of the best available candidates (if any) for the origin of Homo heidelbergensis in Africa.

  18. The Origin and Evolution of Nucleosynthetic Sr Isotope Variability in Calcium and Aluminum-rich Refractory Inclusions

    Science.gov (United States)

    Myojo, Kunihiro; Yokoyama, Tetsuya; Okabayashi, Satoki; Wakaki, Shigeyuki; Sugiura, Naoji; Iwamori, Hikaru

    2018-01-01

    Nucleosynthetic isotope anomalies in meteorites are useful for investigating the origin of materials in the protoplanetary disk and dynamical processes of planetary formation. In particular, calcium and aluminum-rich inclusions (CAIs) found in chondrites are key minerals for decoding the initial conditions of the solar system before the accretion of small planetary bodies. In this study, we report isotopic analyses for three Allende CAIs, fluffy type A (FTA), type B, and fine-grained spinel rich (FS) inclusions, with a specific emphasis on the measurements of 84Sr/86Sr ratios. It was found that the average μ 84Sr values (106 relative deviations from a standard material) were 175, 129, and 56 ppm for the samples of FTA, type B, and FS inclusions, respectively. Additionally, the FTA samples exhibited heterogeneous μ 84Sr values, while those for the type B and FS inclusions were homogeneous within individual inclusions. The elevated μ 84Sr values were most likely explained by the relative enrichment of r-process nuclides in the CAI formation region. The variation of μ 84Sr values between the FTA and type B inclusions, as well as within the FTA inclusion, suggests the presence of multiple CAI source reservoirs with distinct isotopic compositions, which is either inherited from isotopic heterogeneity in the molecular cloud or caused by the selective destruction of r-process-enriched supernova grains via nebular thermal processing. On the other hand, the reaction between a refractory precursor of the FS inclusion and a gaseous reservoir enriched in Mg, Si, and 16O resulted in the lowest μ 84Sr values for the FS inclusion.

  19. Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems.

    Science.gov (United States)

    Iyer, Lakshminarayan M; Zhang, Dapeng; Rogozin, Igor B; Aravind, L

    2011-12-01

    The deaminase-like fold includes, in addition to nucleic acid/nucleotide deaminases, several catalytic domains such as the JAB domain, and others involved in nucleotide and ADP-ribose metabolism. Using sensitive sequence and structural comparison methods, we develop a comprehensive natural classification of the deaminase-like fold and show that its ancestral version was likely to operate on nucleotides or nucleic acids. Consequently, we present evidence that a specific group of JAB domains are likely to possess a DNA repair function, distinct from the previously known deubiquitinating peptidase activity. We also identified numerous previously unknown clades of nucleic acid deaminases. Using inference based on contextual information, we suggest that most of these clades are toxin domains of two distinct classes of bacterial toxin systems, namely polymorphic toxins implicated in bacterial interstrain competition and those that target distantly related cells. Genome context information suggests that these toxins might be delivered via diverse secretory systems, such as Type V, Type VI, PVC and a novel PrsW-like intramembrane peptidase-dependent mechanism. We propose that certain deaminase toxins might be deployed by diverse extracellular and intracellular pathogens as also endosymbionts as effectors targeting nucleic acids of host cells. Our analysis suggests that these toxin deaminases have been acquired by eukaryotes on several independent occasions and recruited as organellar or nucleo-cytoplasmic RNA modifiers, operating on tRNAs, mRNAs and short non-coding RNAs, and also as mutators of hyper-variable genes, viruses and selfish elements. This scenario potentially explains the origin of mutagenic AID/APOBEC-like deaminases, including novel versions from Caenorhabditis, Nematostella and diverse algae and a large class of fast-evolving fungal deaminases. These observations greatly expand the distribution of possible unidentified mutagenic processes catalyzed by

  20. Geochemical and geochronological constraints on the origin and evolution of rocks in the active Woodlark Rift of Papua New Guinea

    Science.gov (United States)

    Zirakparvar, Nasser Alexander

    Tectonically active regions provide important natural laboratories to glean information that is applicable to developing a better understanding of the geologic record. One such area of the World is Papua New Guinea, much of which is situated in an active and transient plate boundary zone. The focus of this PhD research is to develop a better understanding of rocks in the active Woodlark Rift, situated in Papua New Guinea's southernmost reaches. In this region, rifting and lithospheric rupture is occurring within a former subduction complex where there is a history of continental subduction and (U)HP metamorphism. The lithostratigraphic units exposed in the Woodlark Rift provide an opportunity to better understand the records of plate boundary processes at many scales from micron-sized domains within individual minerals to regional geological relationships. This thesis is composed of three chapters that are independent of one another but are all related to the overall goal of developing a better understanding of the record of plate boundary processes in the rocks currently exposed in the Woodlark Rift. The first chapter, published in its entirety in Earth and Planetary Science Letters (2011 v. 309, p. 56 - 66), is entitled 'Lu-Hf garnet geochronology applied to plate boundary zones: Insights from the (U)HP terrane exhumed within the Woodlark Rift'. This chapter focuses on the use of the Lu-Hf isotopic system to date garnets in the Woodlark Rift. Major findings of this study are that some of the rocks in the Woodlark Rift preserve a Lu-Hf garnet isotopic record of initial metamorphism and continental subduction occurring in the Late Mesozoic, whereas others only preserve a record of tectonic processes related to lithospheric rupture during the initiation of rifting in the Late Cenozoic. The second chapter is entitled 'Geochemical and geochronological constraints on the origin of rocks in the active Woodlark Rift of Papua New Guinea: Recognizing the dispersed

  1. Origin and evolution of rare amphibole-bearing mantle peridotites from Wilcza Góra (SW Poland), Central Europe

    Science.gov (United States)

    Matusiak-Małek, Magdalena; Puziewicz, Jacek; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna; Wojtulek, Piotr Marian

    2017-08-01

    Mantle xenoliths in the 20 Ma Wilcza Góra basanite (Lower Silesia, NE Bohemian Massif) are mostly harzburgites, some with amphibole which is exceptional in the region. Forsterite content in olivine defines two Groups of peridotites: Group A (Fo89.1-91.5) and Group B (Fo84.2-89.2). Hornblende-clinopyroxenite, websterite and one composite xenolith consisting of dunite, olivine-hornblendite and pyroxene-hornblende-peridotite contain olivine with Fo77.3-82.5 and are classified as Group C. Group A xenoliths contain Al-poor orthopyroxene and some contain LREE-enriched clinopyroxene with negative Ti, Zr-Hf and Nb-Ta anomalies. Spinel (Cr# 0.57-0.68) is scarce in Group A, and Cr-rich pargasite occurs in only two xenoliths. Group B xenoliths contain less magnesian orthopyroxene and clinopyroxene. The REE patterns of Group B clinopyroxene are convex downward, less enriched in LREE and have smaller negative Ti, Zr-Hf and Nb-Ta anomalies than those in Group A. The Cr# in Group B spinel is 0.26-0.56, while pargasite is Ti-rich and Cr-poor. Clinopyroxene from Group C is low magnesian, slightly enriched in LREE and has no negative Ti, Zr-Hf and Nb-Ta anomalies. Group C pargasite is rich in Ti and poor in Cr. Equilibration temperatures recorded in all groups vary within the range of 905-970 °C. Xenoliths from Wilcza Góra record a polyphase lithospheric mantle evolution, starting with melting which extracted ca. 30% melt from the protolith and left a harzburgite residuum depleted in Al, lacking clinopyroxene and containing rare Cr-rich spinel. This residuum was later overprinted by chromatographic metasomatism by carbonated hydrous silicate melt related to Cenozoic volcanism. The metasomatic agent was locally hydrous enough to enable amphibole to crystallize. The Group C pyroxenites formed directly from the metasomatic melt or during peridotite-melt reactions at high melt-rock ra