WorldWideScience

Sample records for evolution generation regeneration

  1. Amplification and Re-Generation of LNA-Modified Libraries

    DEFF Research Database (Denmark)

    Doessing, Holger; Hansen, Lykke H.; Veedu, Rakesh N.

    2012-01-01

    Locked nucleic acids (LNA) confer high thermal stability and nuclease resistance to oligonucleotides. The discovery of polymerases that accept LNA triphosphates has led us to propose a scheme for the amplification and re-generation of LNA-containing oligonucleotide libraries. Such libraries could...

  2. Generative inference for cultural evolution.

    Science.gov (United States)

    Kandler, Anne; Powell, Adam

    2018-04-05

    One of the major challenges in cultural evolution is to understand why and how various forms of social learning are used in human populations, both now and in the past. To date, much of the theoretical work on social learning has been done in isolation of data, and consequently many insights focus on revealing the learning processes or the distributions of cultural variants that are expected to have evolved in human populations. In population genetics, recent methodological advances have allowed a greater understanding of the explicit demographic and/or selection mechanisms that underlie observed allele frequency distributions across the globe, and their change through time. In particular, generative frameworks-often using coalescent-based simulation coupled with approximate Bayesian computation (ABC)-have provided robust inferences on the human past, with no reliance on a priori assumptions of equilibrium. Here, we demonstrate the applicability and utility of generative inference approaches to the field of cultural evolution. The framework advocated here uses observed population-level frequency data directly to establish the likely presence or absence of particular hypothesized learning strategies. In this context, we discuss the problem of equifinality and argue that, in the light of sparse cultural data and the multiplicity of possible social learning processes, the exclusion of those processes inconsistent with the observed data might be the most instructive outcome. Finally, we summarize the findings of generative inference approaches applied to a number of case studies.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).

  3. Regeneration

    Science.gov (United States)

    George A. Schier; Wayne D. Shepperd; John R. Jones

    1985-01-01

    There are basically two approaches to regenerating aspen stands-sexual reproduction using seed, or vegetative regeneration by root suckering. In the West, root suckering is the most practical method. The advantage of having an existing, well established root system capable of producing numerous root suckers easily outweighs natural or artificial reforestation in the...

  4. Generating private co-investments in area-based urban regeneration: Lessons from Denmark

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole; Larsen, Jacob Norvig; Storgaard, Kresten

    a factor 5 times higher than the public investments in the areas, in terms of urban regeneration subsidies. Private investments, however, might cover different property investment strategies: ‘Passive management’, ‘active management’ and ‘development’. We suggest that for the urban regeneration areas......In recent years, public-private collaboration as well as private co-investments has been intensely promoted in Danish area-based urban regeneration policy and programmes. The paper will discuss to which extent these ambitions have been full-filled, and what has actually attracted private...... investments to the urban regeneration areas. The paper is based on evaluations of the Danish area-based regeneration programmes, as well as research on private investments in selected urban regeneration areas. Our research shows that area-based urban regeneration in average generates private investments...

  5. ECONOMIC COMPARATIVE EVALUATION OF COMBINATION OF ACTIVATED CARBON GENERATION AND SPENT ACTIVATED CARBON REGENERATION PLANTS

    Directory of Open Access Journals (Sweden)

    TINNABHOP SANTADKHA

    2017-12-01

    Full Text Available The purpose of this study was to investigate the maximum annual profit of proposed three project plants as follows: (i a generation process of activated carbon (AC prepared from coconut shells; (ii a regeneration process of spent AC obtained from petrochemical industries; and (iii a project combined the AC generation process with the regeneration process. The maximum annual profit obtained from the sole regeneration plant was about 1.2- and 15.4- fold higher than that obtained from the integrated and the generation plants, respectively. The sensitivity of selected variables to net present value (NPV, AC sales price was the most sensitive to NPV while fixed costs of generation and regeneration, and variable cost of regeneration were the least sensitive to NPV. Based on the optimal results of each project plant, the economic indicators namely NPV, return on investment (ROI, internal rate of return (IRR, and simple payback period (SPP were determined. Applying a rule of thumb of 12% IRR and 7-year SPP, the AC sales prices for the generation, regeneration, and integrated plants were 674.31, 514.66 and 536.66 USD/ton of product, respectively. The economic analysis suggested that the sole regeneration project yields more profitable.

  6. The sea cucumber genome provides insights into morphological evolution and visceral regeneration.

    Science.gov (United States)

    Zhang, Xiaojun; Sun, Lina; Yuan, Jianbo; Sun, Yamin; Gao, Yi; Zhang, Libin; Li, Shihao; Dai, Hui; Hamel, Jean-François; Liu, Chengzhang; Yu, Yang; Liu, Shilin; Lin, Wenchao; Guo, Kaimin; Jin, Songjun; Xu, Peng; Storey, Kenneth B; Huan, Pin; Zhang, Tao; Zhou, Yi; Zhang, Jiquan; Lin, Chenggang; Li, Xiaoni; Xing, Lili; Huo, Da; Sun, Mingzhe; Wang, Lei; Mercier, Annie; Li, Fuhua; Yang, Hongsheng; Xiang, Jianhai

    2017-10-01

    Apart from sharing common ancestry with chordates, sea cucumbers exhibit a unique morphology and exceptional regenerative capacity. Here we present the complete genome sequence of an economically important sea cucumber, A. japonicus, generated using Illumina and PacBio platforms, to achieve an assembly of approximately 805 Mb (contig N50 of 190 Kb and scaffold N50 of 486 Kb), with 30,350 protein-coding genes and high continuity. We used this resource to explore key genetic mechanisms behind the unique biological characters of sea cucumbers. Phylogenetic and comparative genomic analyses revealed the presence of marker genes associated with notochord and gill slits, suggesting that these chordate features were present in ancestral echinoderms. The unique shape and weak mineralization of the sea cucumber adult body were also preliminarily explained by the contraction of biomineralization genes. Genome, transcriptome, and proteome analyses of organ regrowth after induced evisceration provided insight into the molecular underpinnings of visceral regeneration, including a specific tandem-duplicated prostatic secretory protein of 94 amino acids (PSP94)-like gene family and a significantly expanded fibrinogen-related protein (FREP) gene family. This high-quality genome resource will provide a useful framework for future research into biological processes and evolution in deuterostomes, including remarkable regenerative abilities that could have medical applications. Moreover, the multiomics data will be of prime value for commercial sea cucumber breeding programs.

  7. The sea cucumber genome provides insights into morphological evolution and visceral regeneration.

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhang

    2017-10-01

    Full Text Available Apart from sharing common ancestry with chordates, sea cucumbers exhibit a unique morphology and exceptional regenerative capacity. Here we present the complete genome sequence of an economically important sea cucumber, A. japonicus, generated using Illumina and PacBio platforms, to achieve an assembly of approximately 805 Mb (contig N50 of 190 Kb and scaffold N50 of 486 Kb, with 30,350 protein-coding genes and high continuity. We used this resource to explore key genetic mechanisms behind the unique biological characters of sea cucumbers. Phylogenetic and comparative genomic analyses revealed the presence of marker genes associated with notochord and gill slits, suggesting that these chordate features were present in ancestral echinoderms. The unique shape and weak mineralization of the sea cucumber adult body were also preliminarily explained by the contraction of biomineralization genes. Genome, transcriptome, and proteome analyses of organ regrowth after induced evisceration provided insight into the molecular underpinnings of visceral regeneration, including a specific tandem-duplicated prostatic secretory protein of 94 amino acids (PSP94-like gene family and a significantly expanded fibrinogen-related protein (FREP gene family. This high-quality genome resource will provide a useful framework for future research into biological processes and evolution in deuterostomes, including remarkable regenerative abilities that could have medical applications. Moreover, the multiomics data will be of prime value for commercial sea cucumber breeding programs.

  8. Histological evolution of the regenerate during bone transport: an experimental study in sheep.

    Science.gov (United States)

    López-Pliego, Esperanza Macarena; Giráldez-Sánchez, Miguel Ángel; Mora-Macías, Juan; Reina-Romo, Esther; Domínguez, Jaime

    2016-09-01

    Bone transport (BT) for segmentary bone defects is a well-known technique as it enables correction with new bone formation, which is similar to the previous bone. Despite the high number of experimental studies of distraction osteogenesis in bone lengthening, the types of ossification and histological changes that occur in the regenerate of the bone transport process remain controversial. The aim of this study is to provide the complete evolution of tissues and the types of ossification in the regenerate during the different phases of bone formation after BT until the end of the remodelling period. A histological study was performed using ten adult sheep that were submitted to BT. The types of ossification as well as the evolution of different tissues in the regenerate were determined using histomorphometry and inmunohistochemical studies. The evolution of trabeculae thickness, osteoblast and osteoclast densities, relationship between collagen types and changes in vascularization were also studied. Ossification was primarily intramembranous, with some focus of endochondral ossification in isolated animals. The cell counts showed a progression of cellular activity from the periphery to the centre, presenting the same progression as the growth of bone trabeculae, whose trabeculae thickness was quadrupled at the end of remodelling. Inmunohistochemical studies confirmed the prevalence of type I collagen and the ratio of the Type I/Type II collagen ratio was found to be 2.48. The percentages of the vascularized areas were proximally higher than distally in all animals, but distal zone obtained higher rates than the central region. Bone transport regenerate exhibits a centripetal ossification model and a mixed pattern with predominance of intramembranous over endochondral ossification. The data obtained resemble partially to those found in models of bone lengthening applied to large animals. This study provides a detailed structural characterization of the newly formed

  9. Local entropy generation analysis of a rotary magnetic heat pump regenerator

    International Nuclear Information System (INIS)

    Drost, M.K.; White, M.D.

    1990-01-01

    The rotary magnetic heat pump has attractive thermodynamic performance but it is strongly influenced by the effectiveness of the regenerator. This paper uses local entropy generation analysis to evaluate the regenerator design and to suggest design improvements. The results show that performance of the proposed design is dominated by heat transfer related entropy generation. This suggests that enhancement concepts that improve heat transfer should be considered, even if the enhancement causes a significant increase in viscous losses (pressure drop). One enhancement technique, the use of flow disruptors, was evaluated and the results showed that flow disruptors can significantly reduce thermodynamic losses

  10. Regenerator optimization of a Closed Brayton Cycle via entropy generation minimization

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, Élvis Falcão de; Ribeiro, Guilherme Borges; Guimarães, Lamartine N. F., E-mail: falcao@ieav.cta.br, E-mail: gbribeiro@ieav.cta.br, E-mail: guimarae@ieav.cta.br [Instituto de Estudos Avançacados (IEAv), São José dos Campos, SP (Brazil). Div. de Energia Nuclear

    2017-07-01

    This paper aims the numerical study of the heat transfer and fluid flow of a Closed Brayton Cycle (CBC) regenerator that is part of TERRA microreactor. This regenerator consists in a cross flow heat exchanger, where heat transfer occurs between internal fluid flow in radial tubes and external fluid flow passing perpendicularly to the tubes, which are disposed in a symmetrical cylindrical set where the number of tubes in the axial and radial directions can vary. In the simulations, mass flow inlet is varied for a fixed geometry. The fluid flow solution is provided by a commercial CFD solver and the entropy generation number calculation is later computed for optimization purposes. As a result, the entropy minimization method provides the regenerator configuration that enables the highest energy conversion efficiency. (author)

  11. Regenerator optimization of a Closed Brayton Cycle via entropy generation minimization

    International Nuclear Information System (INIS)

    Araújo, Élvis Falcão de; Ribeiro, Guilherme Borges; Guimarães, Lamartine N. F.

    2017-01-01

    This paper aims the numerical study of the heat transfer and fluid flow of a Closed Brayton Cycle (CBC) regenerator that is part of TERRA microreactor. This regenerator consists in a cross flow heat exchanger, where heat transfer occurs between internal fluid flow in radial tubes and external fluid flow passing perpendicularly to the tubes, which are disposed in a symmetrical cylindrical set where the number of tubes in the axial and radial directions can vary. In the simulations, mass flow inlet is varied for a fixed geometry. The fluid flow solution is provided by a commercial CFD solver and the entropy generation number calculation is later computed for optimization purposes. As a result, the entropy minimization method provides the regenerator configuration that enables the highest energy conversion efficiency. (author)

  12. Semi-automated ontology generation and evolution

    Science.gov (United States)

    Stirtzinger, Anthony P.; Anken, Craig S.

    2009-05-01

    Extending the notion of data models or object models, ontology can provide rich semantic definition not only to the meta-data but also to the instance data of domain knowledge, making these semantic definitions available in machine readable form. However, the generation of an effective ontology is a difficult task involving considerable labor and skill. This paper discusses an Ontology Generation and Evolution Processor (OGEP) aimed at automating this process, only requesting user input when un-resolvable ambiguous situations occur. OGEP directly attacks the main barrier which prevents automated (or self learning) ontology generation: the ability to understand the meaning of artifacts and the relationships the artifacts have to the domain space. OGEP leverages existing lexical to ontological mappings in the form of WordNet, and Suggested Upper Merged Ontology (SUMO) integrated with a semantic pattern-based structure referred to as the Semantic Grounding Mechanism (SGM) and implemented as a Corpus Reasoner. The OGEP processing is initiated by a Corpus Parser performing a lexical analysis of the corpus, reading in a document (or corpus) and preparing it for processing by annotating words and phrases. After the Corpus Parser is done, the Corpus Reasoner uses the parts of speech output to determine the semantic meaning of a word or phrase. The Corpus Reasoner is the crux of the OGEP system, analyzing, extrapolating, and evolving data from free text into cohesive semantic relationships. The Semantic Grounding Mechanism provides a basis for identifying and mapping semantic relationships. By blending together the WordNet lexicon and SUMO ontological layout, the SGM is given breadth and depth in its ability to extrapolate semantic relationships between domain entities. The combination of all these components results in an innovative approach to user assisted semantic-based ontology generation. This paper will describe the OGEP technology in the context of the architectural

  13. Evolution algebras generated by Gibbs measures

    International Nuclear Information System (INIS)

    Rozikov, Utkir A.; Tian, Jianjun Paul

    2009-03-01

    In this article we study algebraic structures of function spaces defined by graphs and state spaces equipped with Gibbs measures by associating evolution algebras. We give a constructive description of associating evolution algebras to the function spaces (cell spaces) defined by graphs and state spaces and Gibbs measure μ. For finite graphs we find some evolution subalgebras and other useful properties of the algebras. We obtain a structure theorem for evolution algebras when graphs are finite and connected. We prove that for a fixed finite graph, the function spaces have a unique algebraic structure since all evolution algebras are isomorphic to each other for whichever Gibbs measures are assigned. When graphs are infinite graphs then our construction allows a natural introduction of thermodynamics in studying of several systems of biology, physics and mathematics by theory of evolution algebras. (author)

  14. Hydroxyl-dependent Evolution of Oxygen Vacancies Enables the Regeneration of BiOCl photocatalyst

    KAUST Repository

    Wu, Sujuan

    2017-05-02

    Photoinduced oxygen vacancies (OVs) are widely investigated as a vital point defect in wide-band-gap semiconductors. Still, the formation mechanism of OVs remains unclear in various materials. To elucidate the formation mechanism of photoinduced OVs in bismuth oxychloride (BiOCl), we synthesized two surface hydroxyl discrete samples in light of the discovery of the significant variance of hydroxyl groups before and after UV light exposure. It is noted that OVs can be obtained easily after UV light irradiation in the sample with surface hydroxyl groups, while variable changes were observed in samples without surface hydroxyls. Density functional theory (DFT) calculations reveal that the binding energy of Bi-O is drastically influenced by surficial hydroxyl groups, which is intensely correlated to the formation of photoinduced OVs. Moreover, DFT calculations reveal that the adsorbed water molecules are energetically favored to dissociate into separate hydroxyl groups at the OV sites via proton transfer to a neighboring bridging oxygen atom, forming two bridging hydroxyl groups per initial oxygen vacancy. This result is consistent with the experimental observation that the disappearance of photoinduced OVs and the recovery of hydroxyl groups on the surface of BiOCl after exposed to a H2O(g)-rich atmosphere, and finally enables the regeneration of BiOCl photocatalyst. Here, we introduce new insights that the evolution of photoinduced OVs is dependent on surface hydroxyl groups, which will lead to the regeneration of active sites in semiconductors. This work is useful for controllable designs of defective semiconductors for applications in photocatalysis and photovoltaics.

  15. Challenges and opportunities for the next generation of photon regeneration experiments

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2010-03-01

    Photon regeneration experiments searching for signatures of oscillations of photons into hypothetical very weakly interacting ultra-light particles, such as axions, axion-like and hiddensector particles, have improved their sensitivity considerably in recent years. Important progress in laser and detector technology as well as recycling of available magnets from accelerators may allow a big further step in sensitivity such that, for the first time, laser light shining through a wall experiments will explore territory in parameter space that has not been excluded yet by astrophysics and cosmology.We review these challenges and opportunities for the next generation experiments. (orig.)

  16. Design evolution of large wind turbine generators

    Science.gov (United States)

    Spera, D. A.

    1979-01-01

    During the past five years, the goals of economy and reliability have led to a significant evolution in the basic design--both external and internal--of large wind turbine systems. To show the scope and nature of recent changes in wind turbine designs, development of three types are described: (1) system configuration developments; (2) computer code developments; and (3) blade technology developments.

  17. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m3 H2/m3·d, with a hydrogen yield of 3.4 mol H2/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes. © 2012 American Chemical Society.

  18. FUZZY INFERENCE SYSTEM MODELING FOR BED ACTIVE CARBON RE-GENERATION PROCESS (CO2 GAS FACTORY CASE

    Directory of Open Access Journals (Sweden)

    S. Febriana

    2005-01-01

    Full Text Available Bed active carbon is one of the most important materials that had great impact in determining level of impurities in production of CO2 gas. In this particular factory case, there is unavailability of standard duration time of heating and cooling and steam flow rate for the re-generation process of bed active carbon. The paper discusses the fuzzy inference system for modeling of re-generation process of bed active carbon to find the optimum setting parameter. The fuzzy inference system was build using real historical daily processing data. After validation process, surface plot analysis was performed to find the optimum setting. The result of re-generation parameter setting is 9-10 hours of heating process, 4.66-5.32 hours of cooling process, and 1500-2500 kg/hr of steam flow rate.

  19. Deep-time evolution of regeneration and preaxial polarity in tetrapod limb development.

    Science.gov (United States)

    Fröbisch, Nadia B; Bickelmann, Constanze; Olori, Jennifer C; Witzmann, Florian

    2015-11-12

    Among extant tetrapods, salamanders are unique in showing a reversed preaxial polarity in patterning of the skeletal elements of the limbs, and in displaying the highest capacity for regeneration, including full limb and tail regeneration. These features are particularly striking as tetrapod limb development has otherwise been shown to be a highly conserved process. It remains elusive whether the capacity to regenerate limbs in salamanders is mechanistically and evolutionarily linked to the aberrant pattern of limb development; both are features classically regarded as unique to urodeles. New molecular data suggest that salamander-specific orphan genes play a central role in limb regeneration and may also be involved in the preaxial patterning during limb development. Here we show that preaxial polarity in limb development was present in various groups of temnospondyl amphibians of the Carboniferous and Permian periods, including the dissorophoids Apateon and Micromelerpeton, as well as the stereospondylomorph Sclerocephalus. Limb regeneration has also been reported in Micromelerpeton, demonstrating that both features were already present together in antecedents of modern salamanders 290 million years ago. Furthermore, data from lepospondyl 'microsaurs' on the amniote stem indicate that these taxa may have shown some capacity for limb regeneration and were capable of tail regeneration, including re-patterning of the caudal vertebral column that is otherwise only seen in salamander tail regeneration. The data from fossils suggest that salamander-like regeneration is an ancient feature of tetrapods that was subsequently lost at least once in the lineage leading to amniotes. Salamanders are the only modern tetrapods that retained regenerative capacities as well as preaxial polarity in limb development.

  20. CRBRP steam-generator design evolution

    International Nuclear Information System (INIS)

    Geiger, W.R.; Gillett, J.E.; Lagally, H.O.

    1983-01-01

    The overall design of the CRBRP Steam Generator is briefly discussed. Two areas of particular concern are highlighted and considerations leading to the final design are detailed. Differential thermal expansion between the shell and the steam tubes is accommodated by the tubes flexing in the curved section of the shell. Support of the tubes by the internals structure is essential to permit free movement and minimize tube wear. Special spacer plate attachment and tube hole geometry promote unimpeded axial movement of the tubes by allowing individual tubes to rotate laterally and by providing lateral movement of the spacer plates relative to the adjacent support structure. The water/steam heads of the CRBRP Steam Generator are spherical heads welded to the lower and upper tubesheets. They were chosen principally because they provide a positively sealed system and result in more favorable stresses in the tubesheets when compared to mechanically attached steamheads

  1. A continuously self regenerating high-flux neutron-generator facility

    Science.gov (United States)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  2. A generative representation for the evolution of jazz solos

    DEFF Research Database (Denmark)

    Bäckman, Kjell; Dahlstedt, Palle

    2008-01-01

    This paper describes a system developed to create computer based jazz improvisation solos. The generation of the improvisation material uses interactive evolution, based on a dual genetic representation: a basic melody line representation, with energy constraints ("rubber band") and a hierarchic...... developed for this specific type of music. This is the first published part of an ongoing research project in generative jazz, based on probabilistic and evolutionary strategies....

  3. Evolution to 3G Mobile Communication - Second Generation ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 9. Evolution to 3G Mobile Communication - Second Generation Cellular Systems. R Ramachandran. General Article Volume 8 Issue 9 September 2003 pp 60-72 ... Keywords. Wireless communication; cellular networks; GSM; CdmaOne; TDMA ...

  4. Regeneration of 98Mo enriched from waste 99mTc generators

    International Nuclear Information System (INIS)

    Khujaev, S.; Mirzaeva, N.A.; Ashrapov, U.T.; Berdieva, M.; Nushtaeva, L.B.

    2002-01-01

    Radioisotope generator of technetium-99m have found widespread application in nuclear medicine for production of sodium pertechnetate solution ( 99m Tc). In technology of radioisotope generator making, which developed in Institute of Nuclear Physics of Uzbekistan Academy of Science the parent radioisotopes of molybdenum-90 are produced with neutron capture reaction of the enriched isotope of molybdenum-98 in nuclear reactor of WWR-SM. The specific activity of 99 Mo is reached to 5.0 Ci/g after activation process of original material ( 98 Mo). The basic mass of the original materials ( 98 Mo) which took for the irradiation is remained inactive. The high cost of enriched 97 Mo to make up necessity of development of method of 98 Mo regeneration with end in view of its recurring in manufacture. In general, the chromatographic type generator are produced in manufacture with aluminium oxide as sorbent for the parent radionuclides. So we studied the description conditions of molybdenum from aluminium oxide phase, its purification from possible accompanying admixtures and production of molybdenum in goods state. The systems: sulphur acid, ammonium and ammonium with hydrogen peroxide have been considered for molybdenum desorption from aluminium oxide phase. The sulphur oxid solution is most optimal medium for molybdenum desorption with concentration 0.5 M and elution rate for this makes up 2.0-2.05 ml/min. The 98 Mo yield makes up not over 87 %. The subsequent purification of the desorption of molybdenum-98 from the possible admixture are realized by using column with tetra-phosphonium alkali. At first , 98 Mo sorption is realized by anion exchange resin, after that sorbate is washing and dispiriting by solution with composition: 1.0 M NH 4 NO 3 +8.0 % NH 4 OH+10 -2 % H 2 O 2 . The 98 Mo yield makes up under 80 %. Further from obtained solution is realized by precipitation of molybdenum-98 in acid medium and separation of sediments from liquid phase, drying if sediments and

  5. Understanding Cancer Genome and Its Evolution by Next Generation Sequencing

    DEFF Research Database (Denmark)

    Hou, Yong

    Cancer will cause 13 million deaths by the year of 2030, ranking the second leading cause of death worldwide. Previous studies indicate that most of the cancers originate from cells that acquired somatic mutations and evolved as Darwin Theory. Ten biological insights of cancer have been summarized...... recently. Cutting-age technologies like next generation sequencing (NGS) enable exploring cancer genome and evolution much more efficiently. However, integrated cancer genome sequencing studies showed great inter-/intra-tumoral heterogeneity (ITH) and complex evolution patterns beyond the cancer biological...... knowledge we previously know. There is very limited knowledge of East Asia lung cancer genome except enrichment of EGFR mutations and lack of KRAS mutations. We carried out integrated genomic, transcriptomic and methylomic analysis of 335 primary Chinese lung adenocarcinomas (LUAD) and 35 corresponding...

  6. EVOLUTION IN SCHOOL: REGENERATION OF THE LIBERAL REPUBLIC (1880-1930

    Directory of Open Access Journals (Sweden)

    Leonardo Tovar Bernal

    2016-09-01

    Full Text Available This article tries to clarify, based on the analysis of some representative texts from the time, the way that the evolution´s notions were materialized on classroom during the conservative dominance of the late nineteenth and early twentieth century, before liberalism took power again in 1930. It is not a definitive study; much less, intended to exhaust the topic. It describes a scene about the reaction, not infrequently acrimonious, that evolution and those explanations did not contemplate the divine idea faced within education profoundly affected by Catholic dogma. It also tries to explain the convoluted situation of this case, therefore, although the dominance of notions influenced by Catholicism, there was a small space for those lessons solved to the evolution, as well as others that conjugated elements of both, which is to show a problematic situation, in which the religious feud was not absolute.

  7. Turbulent wind field characterization and re-generation based on pitot tube measurements mounted on a wind turbine

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard; Larsen, Torben J.; Aagaard Madsen, Helge

    2015-01-01

    models that compensate for axial and tangential induction, approximated by blade element momentum theory, radial expansion of the inflow, rotor tilt, dynamic and skew inflow, tip loss, as well as braking and circulation of the flow local to the airfoil. The wind speeds measured on the rotating blades...... the measured wind speeds at the recording position. In the theoretical part of this study a quite good agreement is seen between load sensors on a turbine model exposed to the reference and the re-generated turbulence field. Finally the method is applied to full scale measurements and reasonable wind shear...

  8. Evolution of design of steam generator for sodium cooled reactors

    International Nuclear Information System (INIS)

    Chetal, S.C.; Vaidyanathan

    1997-01-01

    The first sodium cooled reactor was the experimental breeder reactor (EBR-I) in usa which was commissioned in 1951 and was incidentally the first nuclear reactor to generate electrical energy. This was followed by fast breeder reactors in USSR, UK, france, USA, japan, germany and India. The use of sodium as a coolant is due to its low moderation which helps in breeding fissile fuel from fertile materials and also its high heat transfer coefficient at comparatively low velocities. The good heat transfer properties introduce thermal stresses when there are rapid changes in the sodium temperatures. Also sodium has a chemical affinity with air and water. The steam generators for sodium cooled reactors have to allow for these novel conditions and in addition, unlike other components. Choices have to be made whether it is a recirculation type as in most fossil plants or an once through unit, the power rating, shape of the tube (straight, helical, U-tube), materials (Ferritic or austenitic), with free level of sodium or not, sodium on tube side or shell side and so on. With higher pressures and steam temperatures reheating steam after partial expansion in the turbine becomes essential as in conventional turbines. For this purpose the choice of reheating fluid viz sodium or live main steam has to be made. This paper traces the evolution of steam generator designs in the different sodium cooled reactors (chronologically) and the operation experience. 16 figs., 1 tab

  9. Certification of materials for steam generator condensor and regeneration heat exchanger for nuclear plant

    International Nuclear Information System (INIS)

    Stevanovicj, M.V.; Jovashevicj, V.J.; Jovashevicj, V.D.J.; Spasicj, Zh.Lj.

    1977-01-01

    In the construction of a nuclear power plant almost all known materials are used. The choice depends on working conditions. In this work standard specifications of contemporary materials that take part in larger quantities in the following components of the secondary circuit of PWR-type nuclear power plant are proposed: steam generator with moisture separator, condensor and regenerative heat eXchanger

  10. Pancrea's generation and regeneration by stem cells : possible treatment for diabetes and other pancreatic diseases

    OpenAIRE

    Pedrosa Aguilar, Leire

    2015-01-01

    There are a lot of diseases caused by tissue degeneration or errors in the organs. Current treatment are organ transplants or using mechanical systems such as dialyzer. However, all of them have defect. Thus, researchers are interested in tissue engineering. Tissue engineering develops biological structures to generate tissues that allow restore, maintain or improve tissue or organ functionality. For instance, is been investigated the differentiation of Stem Cells (SC) to pancreatic cells tha...

  11. Modeling of a Thermoelectric Generator for Thermal Energy Regeneration in Automobiles

    Science.gov (United States)

    Tatarinov, Dimitri; Koppers, M.; Bastian, G.; Schramm, D.

    2013-07-01

    In the field of passenger transportation a reduction of the consumption of fossil fuels has to be achieved by any measures. Advanced designs of internal combustion engine have the potential to reduce CO2 emissions, but still suffer from low efficiencies in the range from 33% to 44%. Recuperation of waste heat can be achieved with thermoelectric generators (TEGs) that convert heat directly into electric energy, thus offering a less complicated setup as compared with thermodynamic cycle processes. During a specific driving cycle of a car, the heat currents and temperature levels of the exhaust gas are dynamic quantities. To optimize a thermoelectric recuperation system fully, various parameters have to be tested, for example, the electric and thermal conductivities of the TEG and consequently the heat absorbed and rejected from the system, the generated electrical power, and the system efficiency. A Simulink model consisting of a package for dynamic calculation of energy management in a vehicle, coupled with a model of the thermoelectric generator system placed on the exhaust system, determines the drive-cycle-dependent efficiency of the heat recovery system, thus calculating the efficiency gain of the vehicle. The simulation also shows the temperature drop at the heat exchanger along the direction of the exhaust flow and hence the variation of the voltage drop of consecutively arranged TEG modules. The connection between the temperature distribution and the optimal electrical circuitry of the TEG modules constituting the entire thermoelectric recuperation system can then be examined. The simulation results are compared with data obtained from laboratory experiments. We discuss error bars and the accuracy of the simulation results for practical thermoelectric systems embedded in cars.

  12. The Evolution from Generation to Post-XX

    Science.gov (United States)

    Feng, Zhao

    2011-01-01

    Young people represent the future, and youth is an eternal topic. In the 1970s when the American anthropologist Margaret Mead published her famous work "Generation Gap," research on generations gained sudden popularity worldwide, and ever since the 1980s when "Generation Gap" was brought to China, research by scholars in this…

  13. Evolution of coupled lives' dependency across generations and pricing impact

    OpenAIRE

    Elisa Luciano; Jaap Spreeuw; Elena Vigna

    2012-01-01

    This paper studies the dependence between coupled lives - both within and across generations - and its effects on prices of reversionary annuities in the presence of longevity risk. Longevity risk is represented via a stochastic mortality intensity. Dependence is modelled through copula functions. We consider Archimedean single and multi-parameter copulas. We find that dependence decreases when passing from older generations to younger generations. Not only the level of dependence but also it...

  14. Generative Models in Deep Learning: Constraints for Galaxy Evolution

    Science.gov (United States)

    Turp, Maximilian Dennis; Schawinski, Kevin; Zhang, Ce; Weigel, Anna K.

    2018-01-01

    New techniques are essential to make advances in the field of galaxy evolution. Recent developments in the field of artificial intelligence and machine learning have proven that these tools can be applied to problems far more complex than simple image recognition. We use these purely data driven approaches to investigate the process of star formation quenching. We show that Variational Autoencoders provide a powerful method to forward model the process of galaxy quenching. Our results imply that simple changes in specific star formation rate and bulge to disk ratio cannot fully describe the properties of the quenched population.

  15. Evolution and Morphogenesis of Simulated Modular Robots: A Comparison Between a Direct and Generative Encoding

    DEFF Research Database (Denmark)

    Veenstra, Frank; Faina, Andres; Risi, Sebastian

    2017-01-01

    Modular robots oer an important benet in evolutionary robotics, which is to quickly evaluate evolved morphologies and control systems in reality. However, articial evolution of simulated modular robotics is a dicult and time consuming task requiring signicant computational power. While articial...... evolution in virtual creatures has made use of powerful generative encodings, here we investigate how a generative encoding and direct encoding compare for the evolution of locomotion in modular robots when the number of robotic modules changes. Simulating less modules would decrease the size of the genome...

  16. Nonconvex evolution inclusions generated by time-dependent subdifferential operators

    Directory of Open Access Journals (Sweden)

    Kate Arseni-Benou

    1999-01-01

    Full Text Available We consider nonlinear nonconvex evolution inclusions driven by time-varying subdifferentials ∂ϕ(t,x without assuming that ϕ(t,. is of compact type. We show the existence of extremal solutions and then we prove a strong relaxation theorem. Moreover, we show that under a Lipschitz condition on the orientor field, the solution set of the nonconvex problem is path-connected in C(T,H. These results are applied to nonlinear feedback control systems to derive nonlinear infinite dimensional versions of the “bang-bang principle.” The abstract results are illustrated by two examples of nonlinear parabolic problems and an example of a differential variational inequality.

  17. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    International Nuclear Information System (INIS)

    Rossle, Manfred; Panine, Pierre; Urban, Volker S.; Riekel, Christine

    2004-01-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with β-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 (micro)m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  18. Structural evolution of regenerated silk fibroin under shear: Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rossle, Manfred [European Molecular Biology Laboratory (EMBL), France; Panine, Pierre [European Synchrotron Radiation Facility (ESRF); Urban, Volker S [ORNL; Riekel, Christine [European Synchrotron Radiation Facility (ESRF)

    2004-04-01

    The structural evolution of regenerated Bombyx mori silk fibroin during shearing with a Couette cell has been studied in situ by synchrotron radiation small- and wide-angle x-ray scattering techniques. An elongation of fibroin molecules was observed with increasing shear rate, followed by an aggregation phase. The aggregates were found to be amorphous with {beta}-conformation according to infrared spectroscopy. Scanning x-ray microdiffraction with a 5 {micro}m beam on aggregated material, which had solidified in air, showed silk II reflections and a material with equatorial reflections close to the silk I structure reflections, but with strong differences in reflection intensities. This silk I type material shows up to two low-angle peaks suggesting the presence of water molecules that might be intercalated between hydrogen-bonded sheets.

  19. "Simulated molecular evolution" or computer-generated artifacts?

    Science.gov (United States)

    Darius, F; Rojas, R

    1994-11-01

    1. The authors define a function with value 1 for the positive examples and 0 for the negative ones. They fit a continuous function but do not deal at all with the error margin of the fit, which is almost as large as the function values they compute. 2. The term "quality" for the value of the fitted function gives the impression that some biological significance is associated with values of the fitted function strictly between 0 and 1, but there is no justification for this kind of interpretation and finding the point where the fit achieves its maximum does not make sense. 3. By neglecting the error margin the authors try to optimize the fitted function using differences in the second, third, fourth, and even fifth decimal place which have no statistical significance. 4. Even if such a fit could profit from more data points, the authors should first prove that the region of interest has some kind of smoothness, that is, that a continuous fit makes any sense at all. 5. "Simulated molecular evolution" is a misnomer. We are dealing here with random search. Since the margin of error is so large, the fitted function does not provide statistically significant information about the points in search space where strings with cleavage sites could be found. This implies that the method is a highly unreliable stochastic search in the space of strings, even if the neural network is capable of learning some simple correlations. 6. Classical statistical methods are for these kind of problems with so few data points clearly superior to the neural networks used as a "black box" by the authors, which in the way they are structured provide a model with an error margin as large as the numbers being computed.7. And finally, even if someone would provide us with a function which separates strings with cleavage sites from strings without them perfectly, so-called simulated molecular evolution would not be better than random selection.Since a perfect fit would only produce exactly ones or

  20. Cryogenic regenerators

    International Nuclear Information System (INIS)

    Kush, P.; Joshi, S.C.; Thirumaleshwar, M.

    1986-01-01

    Importance of regenerators in cryogenic refrigerators is highlighted. Design aspects of regenerator are reviewed and the factors involved in the selection of regenerator material are enumerated. Various methods used to calculate the heat transfer coefficient and regenerator effectiveness are mentioned. Variation of effectiveness with various parameters is calculated by a computer programme using the ideal, Ackermann and Tipler formulae. Results are presented in graphical form. Listing of the computer programme is given in the Appendix. (author)

  1. Wind Power Generation in India: Evolution, Trends and Prospects

    Directory of Open Access Journals (Sweden)

    M.F. Khan

    2013-10-01

    Full Text Available In the present context of shrinking conventional resources coupled with environmental perils, the wind power offers an attractive alternative. Wind power generation in India started way back in early 1980s with the installation of experimental wind turbines in western and southern states of Gujarat and Tamil Nadu. For first two decades of its existence until about 2000 the progress was slow but steady. In last one decade Indian wind electricity sector has grown at very rapid pace which has promoted the country to the fifth position as largest wind electric power generator and the third largest market in the world. The galvanization of wind sector has been achieved through some aggressive policy mechanisms and persistent support by government organizations such as MNRE and C-WET. This paper articulates the journey of Indian wind program right since its inception to the present trends and developments as well as the future prospects. Keywords: mnre, c-wet, renewable energy, wind power, wind turbines.

  2. Bottlenecks in the generation and maintenance of morphogenic banana cell suspensions and plant regeneration via somatic embryogenesis therefrom

    Czech Academy of Sciences Publication Activity Database

    Schoofs, H.; Panis, B.; Strosse, H.; Mosqueda, A. M.; Torres, J. L.; Roux, N.; Doležel, Jaroslav; Swennen, R.

    2001-01-01

    Roč. 8, č. 2 (2001), s. 3-7 ISSN 0989-8972 R&D Projects: GA MŠk ME 376 Institutional research plan: CEZ:AV0Z5038910 Keywords : banana cell suspensions * plant regeneration Subject RIV: EA - Cell Biology

  3. Elastic-wave generation in the evolution of displacement peaks

    International Nuclear Information System (INIS)

    Zhukov, V.P.; Boldin, A.A.

    1988-01-01

    This paper investigated the character of elastic shock wave generation and damping in irradiated materials along with the possibility of their long-range influence on the structure of the irradiated materials. Dispersion at the elastoplastic stage of atomic displacement peak development was taken into account. The three-dimensional nonlinear wave was described by an equation in the approximation of weak nonlinearity and weak spatial dispersion. Numerical modeling of the propagation of a plane shock wave in a crystal lattice was conducted. The distribution of the density and mass velocity of the material at the instant of complete damping of the plastic shock-wave component was determined. The appearance of solitary waves (solitons) at large amplitudes, localized in space, which propagate without distortion to arbitrary distances and retain their amplitude and form in interacting with one another, was investigated. Some physical consequences of the influence of solitary waves on the irradiated materials were considered

  4. Profile of power generation in South Africa - Eskom's evolution

    International Nuclear Information System (INIS)

    Crookes, B.

    1990-01-01

    South Africa was one of the first countries in the world to use electricity on a commercial basis. As elsewhere, the supply of electricity began under the auspices of various municipalities. In 1892 the diamond mining town of Kimberley was the first to introduce electric street lighting. The need for a national power system which could meet the demand of the entire country led to the Electricity Act of 1922 and the establishment of the Electricity Supply Commission in 1923. Eskom began generating power in 1925 and soon became South Africa's leading electricity supplier and today ranks among the largest electricity utilities in the world. Eskom's 26 power stations have an installed capacity of 34 141MW. These include 18 coal fired, three gas-turbine, two hydroelectric, one nuclear power and two pumped-storage stations. Eskom operates one of the most sophisticated transmission networks in the world, which now includes 765kV lines, the first to operate successfully at this voltage at high altitude. Electricity can be distributed anywhere in South Africa and is exported to neighbouring countries. (3 figures, 2 tables, 6 references). (Author)

  5. Advances in directed monooxygenase evolution : from diversity generation and flow cytometry screening to tailor-made monooxygenases

    OpenAIRE

    Ruff, Anna Joëlle

    2012-01-01

    Directed Evolution became a powerful tool for proteins engineers to generate tailor-made biocatalyst. Directed protein evolution consist of the following three consecutive main steps, which are performed in iterative cycles; Step 1 the gene diversity generation, Step 2 the screening for improved variants and Step 3 the isolation of gene encoding for improved proteins. In this thesis, methodological advancements in the two key steps of the directed evolution, the diversity generation (SeSaM me...

  6. Creating and Exploring Huge Parameter Spaces: Interactive Evolution as a Tool for Sound Generation

    DEFF Research Database (Denmark)

    Dahlstedt, Palle

    2001-01-01

    In this paper, a program is presented that applies interactive evolution to sound generation, i.e., preferred individuals are repeatedly selected from a population of genetically bred sound objects, created with various synthesis and pattern generation algorithms. This simplifies aural exploration...... applications. It is also shown how this technique can be used to simplify sound design in standard hardware synthesizers, a task normally avoided by most musicians, due to the required amount of technical understanding....

  7. Evolution of management activities and performance of the Point Lepreau Steam Generators

    International Nuclear Information System (INIS)

    Slade, J.; Keating, J.; Gendron, T.

    2007-01-01

    The Point Lepreau steam generators have been in service since 1983 when the plant was commissioned. During the first thirteen years of operation, Point Lepreau steam generator maintenance issues led to 3-4% unplanned plant incapability Steam generator fouling, corrosion, and the introduction of foreign materials during maintenance led to six tube leaks, two unplanned outages, two lengthy extended outages, and degraded thermal performance during this period. In recognition of the link between steam generator maintenance activities and plant performance, improvements to steam generator management activities have been continuously implemented since 1987. This paper reviews the evolution of steam generator management activities at Point Lepreau and the resulting improved trends in performance. Plant incapability from unplanned steam generator maintenance has been close to zero since 1996. The positive trends have provided a strong basis for the management strategies developed for post-refurbishment operation. (author)

  8. The Evolution of Power System Planning with High Levels of Variable Renewable Generation

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of the Greening the Grid introduces the evolution of power system planning with high levels of variable renewable generation.

  9. The next generation of galaxy evolution models: A symbiosis of stellar populations and chemical abundances

    Science.gov (United States)

    Kotulla, Ralf

    2012-10-01

    Over its lifespan Hubble has invested significant effort into detailed observations of galaxies both in the local and distant universe. To extract the physical information from the observed {spectro-}photometry requires detailed and accurate models. Stellar population synthesis models are frequently used to obtain stellar masses, star formation rate, galaxy ages and star formation histories. Chemical evolution models offer another valuable and complementary approach to gain insight into many of the same aspects, yet these two methods have rarely been used in combination.Our proposed next generation of galaxy evolution models will help us improve our understanding of how galaxies form and evolve. Building on GALEV evolutionary synthesis models we incorporate state-of-the-art input physics for stellar evolution of binaries and rotating stars as well as new spectral libraries well matched to the modern observational capabilities. Our improved chemical evolution model allows us to self-consistently trace abundances of individual elements, fully accounting for the increasing initial abundances of successive stellar generations. GALEV will support variable Initial Mass Functions {IMF}, enabling us to test recent observational findings of a non-universal IMF by predicting chemical properties and integrated spectra in an integrated and consistent manner.HST is the perfect instrument for testing this approach. Its wide wavelength coverage from UV to NIR enables precise SED fitting, and with its spatial resolution we can compare the inferred chemical evolution to studies of star clusters and resolved stellar populations in nearby galaxies.

  10. Vegetative regeneration

    Science.gov (United States)

    George A. Schier; John R. Jones; Robert P. Winokur

    1985-01-01

    Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...

  11. Liver regeneration

    NARCIS (Netherlands)

    Chamuleau, R. A.; Bosman, D. K.

    1988-01-01

    Despite great advances in analysing hemodynamic, morphological and biochemical changes during the process of liver regeneration, the exact (patho)physiological mechanism is still unknown. A short survey of literature is given of the kinetics of liver regeneration and the significance of different

  12. Cultural Transmission and Evolution of Melodic Structures in Multi-generational Signaling Games

    DEFF Research Database (Denmark)

    Lumaca, Massimo; Baggio, G.

    2017-01-01

    , and basic and compound emotions as meanings, were transmitted from senders to receivers along diffusion chains in which the receiver in each game became the sender in the next game. During transmission, structural regularities accumulated in the signaling systems, following principles of proximity, symmetry...... and cognitive constraints similarly affect the evolution of musical systems? We conducted an experiment on the cultural evolution of artificial melodic systems, using multi-generational signaling games as a laboratory model of cultural transmission. Signaling systems, using five-tone sequences as signals...

  13. To the choice of the regeneration system of the K-1000-68/1500 turbine plant for the NPP with a vertical-type steam generator

    International Nuclear Information System (INIS)

    Kuznetsov, N.M.; Piskarev, A.A.; Grinman, M.I.; Kruglikov, P.A.

    1985-01-01

    Several variants of the heat regeneration system for the NPP with WWER-1000 type reactors using vertical steam generator (SG) generating saturated steam at 7.2 MPa pressure and 200 deg C feed water temperature at the SG inlet are considered. The results of comparison of variants in water and steam circuits of turbine plants are greatly influenced by integral economy account, i.e. efficiency indexes account under variable conditions of power unit operation. From variants of water and steam circuits of the K-1000-68/1500 turbine plant considered preference is given to the variant with four low pressure heaters with increased up to 1.25 MPa pressure in a deacrator without high pressure heater with pumping intermediate steam superheater condensate into feedwater circuit

  14. Cultural Transmission and Evolution of Melodic Structures in Multi-generational Signaling Games.

    Science.gov (United States)

    Lumaca, Massimo; Baggio, Giosuè

    2017-01-01

    It has been proposed that languages evolve by adapting to the perceptual and cognitive constraints of the human brain, developing, in the course of cultural transmission, structural regularities that maximize or optimize learnability and ease of processing. To what extent would perceptual and cognitive constraints similarly affect the evolution of musical systems? We conducted an experiment on the cultural evolution of artificial melodic systems, using multi-generational signaling games as a laboratory model of cultural transmission. Signaling systems, using five-tone sequences as signals, and basic and compound emotions as meanings, were transmitted from senders to receivers along diffusion chains in which the receiver in each game became the sender in the next game. During transmission, structural regularities accumulated in the signaling systems, following principles of proximity, symmetry, and good continuation. Although the compositionality of signaling systems did not increase significantly across generations, we did observe a significant increase in similarity among signals from the same set. We suggest that our experiment tapped into the cognitive and perceptual constraints operative in the cultural evolution of musical systems, which may differ from the mechanisms at play in language evolution and change.

  15. Generation and Evolution of Chaos in Double-Well Duffing Oscillator under Parametrical Excitation

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2016-01-01

    Full Text Available The generation and evolution of chaotic motion in double-well Duffing oscillator under harmonic parametrical excitation are investigated. Firstly, the complex dynamical behaviors are studied by applying multibifurcation diagram and Poincaré sections. Secondly, by means of Melnikov’s approach, the threshold value of parameter μ for generation of chaotic behavior in Smale horseshoe sense is calculated. By the numerical simulation, it is obvious that as μ exceeds this threshold value, the behavior of Duffing oscillator is still steady-state periodic but the transient motion is chaotic; until the top Lyapunov exponent turns to positive, the motion of system turns to permanent chaos. Therefore, in order to gain an insight into the evolution of chaotic behavior after μ passing the threshold value, the transient motion, basin of attraction, and basin boundary are also investigated.

  16. Analysis on the Acoustic Emission Signals in the Crack Evolution of Steam Generator Tube

    International Nuclear Information System (INIS)

    Han, Jung Ho; Hur, Do Haeng; Kim, Kyung Mo; Choi, Myung Sik; Lee, Deok Hyun

    2007-01-01

    The evolution of a defect in steam generator (SG) tube during plant operation can be classified into the stages of initiation and propagation. However, the detection and discrimination of these two stages are difficult, and the real time monitoring of the defect evolution in plant operation is impossible. Moreover, it was generally known that the commercial nondestructive examination techniques such as eddy current test(ECT) can detect the defect already grown up to the size of more than 40% in tube wall thickness. Therefore, the scope of the present study is to develop the fundamental technology for monitoring the degradation process from the initiation stage to the subsequent propagation stage by acoustic emission (AE) signal measurement

  17. APPLICATION OF RESTART COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY (RCMA-ES TO GENERATION EXPANSION PLANNING PROBLEM

    Directory of Open Access Journals (Sweden)

    K. Karthikeyan

    2012-10-01

    Full Text Available This paper describes the application of an evolutionary algorithm, Restart Covariance Matrix Adaptation Evolution Strategy (RCMA-ES to the Generation Expansion Planning (GEP problem. RCMA-ES is a class of continuous Evolutionary Algorithm (EA derived from the concept of self-adaptation in evolution strategies, which adapts the covariance matrix of a multivariate normal search distribution. The original GEP problem is modified by incorporating Virtual Mapping Procedure (VMP. The GEP problem of a synthetic test systems for 6-year, 14-year and 24-year planning horizons having five types of candidate units is considered. Two different constraint-handling methods are incorporated and impact of each method has been compared. In addition, comparison and validation has also made with dynamic programming method.

  18. Parameter optimization of differential evolution algorithm for automatic playlist generation problem

    Science.gov (United States)

    Alamag, Kaye Melina Natividad B.; Addawe, Joel M.

    2017-11-01

    With the digitalization of music, the number of collection of music increased largely and there is a need to create lists of music that filter the collection according to user preferences, thus giving rise to the Automatic Playlist Generation Problem (APGP). Previous attempts to solve this problem include the use of search and optimization algorithms. If a music database is very large, the algorithm to be used must be able to search the lists thoroughly taking into account the quality of the playlist given a set of user constraints. In this paper we perform an evolutionary meta-heuristic optimization algorithm, Differential Evolution (DE) using different combination of parameter values and select the best performing set when used to solve four standard test functions. Performance of the proposed algorithm is then compared with normal Genetic Algorithm (GA) and a hybrid GA with Tabu Search. Numerical simulations are carried out to show better results from Differential Evolution approach with the optimized parameter values.

  19. Two new fern chloroplasts and decelerated evolution linked to the long generation time in tree ferns.

    Science.gov (United States)

    Zhong, Bojian; Fong, Richard; Collins, Lesley J; McLenachan, Patricia A; Penny, David

    2014-04-30

    We report the chloroplast genomes of a tree fern (Dicksonia squarrosa) and a "fern ally" (Tmesipteris elongata), and show that the phylogeny of early land plants is basically as expected, and the estimates of divergence time are largely unaffected after removing the fastest evolving sites. The tree fern shows the major reduction in the rate of evolution, and there has been a major slowdown in the rate of mutation in both families of tree ferns. We suggest that this is related to a generation time effect; if there is a long time period between generations, then this is probably incompatible with a high mutation rate because otherwise nearly every propagule would probably have several lethal mutations. This effect will be especially strong in organisms that have large numbers of cell divisions between generations. This shows the necessity of going beyond phylogeny and integrating its study with other properties of organisms. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Physical experiments and analysis on the generation and evolution of tsunami-induced turbulent coherent structures

    Science.gov (United States)

    Kalligeris, Nikos; Lynett, Patrick

    2017-11-01

    Numerous historical accounts describe the formation of ``whirpools'' inside ports and harbors during tsunami events, causing port operation disruptions. Videos from the Japan 2011 tsunami revealed complex nearshore flow patters, resulting from the interaction of tsunami-induced currents with the man-made coastline, and the generation of large eddies (or turbulent coherent structures) in numerous ports and harbors near the earthquake epicenter. The aim of this work is to study the generation and evolution of tsunami-induced turbulent coherent structures (TCS) in a well-controlled environment using realistic scaling. A physical configuration is created in the image of a port entrance at a scale of 1:27 and a small-amplitude, long period wave creates a transient flow through the asymmetric harbor channel. A separated region forms, which coupled with the transient flow, leads to the formation of a stable monopolar TCS. The surface flow is examined through mono- and stereo-PTV techniques to extract surface velocity vectors. Surface velocity maps and vortex flow profiles are used to study the experimental TCS generation and evolution, and characterize the TCS structure. Analytical tools are used to describe the TCS growth rate and kinetic energy decay. This work was funded by the National Science Foundation NEES Research program, with Award Number 1135026.

  1. Use of erroneous wolf generation time in assessments of domestic dog and human evolution

    Science.gov (United States)

    Mech, L. David; Barber-Meyer, Shannon

    2017-01-01

    Scientific interest in dog domestication and parallel evolution of dogs and humans (Wang et al. 2013) has increased recently (Freedman et al. 2014, Larson and Bradley 2014, Franz et al. 2016,), and various important conclusions have been drawn based on how long ago the calculations show dogs were domesticated from ancestral wolves (Canis lupus). Calculation of this duration is based on “the most commonly assumed mutation rate of 1 x 10-8 per generation and a 3-year gray wolf generation time . . .” (Skoglund et al. 2015:3). It is unclear on what information the assumed generation time is based, but Ersmark et al. (2016) seemed to have based their assumption on a single wolf (Mech and Seal 1987). The importance of assuring that such assumptions are valid is obvious. Recently, two independent studies employing three large data sets and three methods from two widely separated areas have found that wolf generation time is 4.2-4.7 years. The first study, based on 200 wolves in Yellowstone National Park used age-specific birth and death rates to calculate a generation time of 4.16 years (vonHoldt et al. 2008). The second, using estimated first-breeding times of 86 female wolves in northeastern Minnesota found a generation time of 4.3 years and using uterine examination of 159 female wolves from throughout Minnesota yielded a generation time of 4.7 years (Mech et al. 2016). We suggest that previous studies using a 3-year generation time recalculate their figures and adjust their conclusions based on these generation times and publish revised results.

  2. Platelet-rich fibrin: Evolution of a second-generation platelet concentrate

    Directory of Open Access Journals (Sweden)

    Sunitha Raja V

    2008-01-01

    Full Text Available Platelet-rich plasma (PRP is a platelet concentrate that has been used widely to accelerate soft-tissue and hard-tissue healing. The preparation of PRP has been described by several authors. Platelet-rich fibrin (PRF was first described by Choukroun et al. in France. It has been referred to as a second-generation platelet concentrate, which has been shown to have several advantages over traditionally prepared PRP. Its chief advantages include ease of preparation and lack of biochemical handling of blood, which makes this preparation strictly autologous. This article describes the evolution of this novel platelet concentrate, referred to as PRF.

  3. On the generation and evolution of internal solitary waves in the southern Red Sea

    KAUST Repository

    Guo, Daquan

    2015-04-01

    Satellite observations recently revealed the existence of trains of internal solitary waves in the southern Red Sea between 16.0°N and 16.5°N, propagating from the centre of the domain toward the continental shelf [Da silva et al., 2012]. Given the relatively weak tidal velocity in this area and their generation in the central of the domain, Da Silva suggested three possible mechanisms behind the generation of the waves, namely Resonance and disintegration of interfacial tides, Generation of interfacial tides by impinging, remotely generated internal tidal beams and for geometrically focused and amplified internal tidal beams. Tide analysis based on tide stations data and barotropic tide model in the Red Sea shows that tide is indeed very weak in the centre part of the Red Sea, but it is relatively strong in the northern and southern parts (reaching up to 66 cm/s). Together with extreme steep slopes along the deep trench, it provides favourable conditions for the generation of internal solitary in the southern Red Sea. To investigate the generation mechanisms and study the evolution of the internal waves in the off-shelf region of the southern Red Sea we have implemented a 2-D, high-resolution and non-hydrostatic configuration of the MIT general circulation model (MITgcm). Our simulations reproduce well that the generation process of the internal solitary waves. Analysis of the model\\'s output suggests that the interaction between the topography and tidal flow with the nonlinear effect is the main mechanism behind the generation of the internal solitary waves. Sensitivity experiments suggest that neither tidal beam nor the resonance effect of the topography is important factor in this process.

  4. Generation and evolution of anisotropic turbulence and related energy transfer in drifting proton-alpha plasmas

    Science.gov (United States)

    Maneva, Y. G.; Poedts, S.

    2018-05-01

    The power spectra of magnetic field fluctuations in the solar wind typically follow a power-law dependence with respect to the observed frequencies and wave-numbers. The background magnetic field often influences the plasma properties, setting a preferential direction for plasma heating and acceleration. At the same time the evolution of the solar-wind turbulence at the ion and electron scales is influenced by the plasma properties through local micro-instabilities and wave-particle interactions. The solar-wind-plasma temperature and the solar-wind turbulence at sub- and sup-ion scales simultaneously show anisotropic features, with different components and fluctuation power in parallel with and perpendicular to the orientation of the background magnetic field. The ratio between the power of the magnetic field fluctuations in parallel and perpendicular direction at the ion scales may vary with the heliospheric distance and depends on various parameters, including the local wave properties and nonthermal plasma features, such as temperature anisotropies and relative drift speeds. In this work we have performed two-and-a-half-dimensional hybrid simulations to study the generation and evolution of anisotropic turbulence in a drifting multi-ion species plasma. We investigate the evolution of the turbulent spectral slopes along and across the background magnetic field for the cases of initially isotropic and anisotropic turbulence. Finally, we show the effect of the various turbulent spectra for the local ion heating in the solar wind.

  5. Improved differential evolution algorithms for handling economic dispatch optimization with generator constraints

    International Nuclear Information System (INIS)

    Coelho, Leandro dos Santos; Mariani, Viviana Cocco

    2007-01-01

    Global optimization based on evolutionary algorithms can be used as the important component for many engineering optimization problems. Evolutionary algorithms have yielded promising results for solving nonlinear, non-differentiable and multi-modal optimization problems in the power systems area. Differential evolution (DE) is a simple and efficient evolutionary algorithm for function optimization over continuous spaces. It has reportedly outperformed search heuristics when tested over both benchmark and real world problems. This paper proposes improved DE algorithms for solving economic load dispatch problems that take into account nonlinear generator features such as ramp rate limits and prohibited operating zones in the power system operation. The DE algorithms and its variants are validated for two test systems consisting of 6 and 15 thermal units. Various DE approaches outperforms other state of the art algorithms reported in the literature in solving load dispatch problems with generator constraints

  6. My Regeneration:

    DEFF Research Database (Denmark)

    Carter, Dale

    2017-01-01

    and cultural referents shows that it offers an index to the album. Using its frontier setting and a variety of sacred and secular myths, symbols and icons, ‘Heroes and Villains,’ like Smile as a whole, offers historically-informed visions of national decline, crisis and regeneration that are at once critical...

  7. On the generation and evolution of internal solitary waves in the southern Red Sea

    KAUST Repository

    Guo, Daquan

    2016-11-28

    Satellite observations recently revealed trains of internal solitary waves (ISWs) in the off-shelf region between 16.0 degrees N and 16.5 degrees N in the southern Red Sea. The generation mechanism of these waves is not entirely clear, though, as the observed generation sites are far away (50 km) from the shelf break and tidal currents are considered relatively weak in the Red Sea. Upon closer examination of the tide properties in the Red Sea and the unique geometry of the basin, it is argued that the steep bathymetry and a relatively strong tidal current in the southern Red Sea provide favorable conditions for the generation of ISWs. To test this hypothesis and further explore the evolution of ISWs in the basin, 2-D numerical simulations with the nonhydrostatic MIT general circulation model (MITgcm) were conducted. The results are consistent with the satellite observations in regard to the generation sites, peak amplitudes and the speeds of first-mode ISWs. Moreover, our simulations suggest that the generation process of ISWs in the southern Red Sea is similar to the tide-topography interaction mechanism seen in the South China Sea. Specifically, instead of ISWs arising in the immediate vicinity of the shelf break via a hydraulic lee wave mechanism, a broad, energetic internal tide is first generated, which subsequently travels away from the shelf break and eventually breaks down into ISWs. Sensitivity runs suggest that ISW generation may also be possible under summer stratification conditions, characterized by an intermediate water intrusion from the strait of Bab el Mandeb.

  8. On generation and evolution of seaward propagating internal solitary waves in the northwestern South China Sea

    Science.gov (United States)

    Xu, Jiexin; Chen, Zhiwu; Xie, Jieshuo; Cai, Shuqun

    2016-03-01

    In this paper, the generation and evolution of seaward propagating internal solitary waves (ISWs) detected by satellite image in the northwestern South China Sea (SCS) are investigated by a fully nonlinear, non-hydrostatic, three-dimensional Massachusetts Institute of Technology general circulation model (MITgcm). The three-dimensional (3D) modeled ISWs agree favorably with those by satellite image, indicating that the observed seaward propagating ISWs may be generated by the interaction of barotropic tidal flow with the arc-like continental slope south of Hainan Island. Though the tidal current is basically in east-west direction, different types of internal waves are generated by tidal currents flowing over the slopes with different shaped shorelines. Over the slope where the shoreline is straight, only weak internal tides are generated; over the slope where the shoreline is seaward concave, large-amplitude internal bores are generated, and since the concave isobaths of the arc-like continental slope tend to focus the baroclinic tidal energy which is conveyed to the internal bores, the internal bores can efficiently disintegrate into a train of rank-ordered ISWs during their propagation away from the slope; while over the slope where the shoreline is seaward convex, no distinct internal tides are generated. It is also implied that the internal waves over the slope are generated due to mixed lee wave mechanism. Furthermore, the effects of 3D model, continental slope curvature, stratification, rotation and tidal forcing on the generation of ISWs are discussed, respectively. It is shown that, the amplitude and phase speed of ISWs derived from a two-dimensional (2D) model are smaller than those from the 3D one, and the 3D model has an advantage over 2D one in simulating the ISWs generated by the interaction between tidal currents and 3D curved continental slope; the reduced continental slope curvature hinders the extension of ISW crestline; both weaker stratification

  9. Differential evolution algorithm based automatic generation control for interconnected power systems with

    Directory of Open Access Journals (Sweden)

    Banaja Mohanty

    2014-09-01

    Full Text Available This paper presents the design and performance analysis of Differential Evolution (DE algorithm based Proportional–Integral (PI and Proportional–Integral–Derivative (PID controllers for Automatic Generation Control (AGC of an interconnected power system. Initially, a two area thermal system with governor dead-band nonlinearity is considered for the design and analysis purpose. In the proposed approach, the design problem is formulated as an optimization problem control and DE is employed to search for optimal controller parameters. Three different objective functions are used for the design purpose. The superiority of the proposed approach has been shown by comparing the results with a recently published Craziness based Particle Swarm Optimization (CPSO technique for the same interconnected power system. It is noticed that, the dynamic performance of DE optimized PI controller is better than CPSO optimized PI controllers. Additionally, controller parameters are tuned at different loading conditions so that an adaptive gain scheduling control strategy can be employed. The study is further extended to a more realistic network of two-area six unit system with different power generating units such as thermal, hydro, wind and diesel generating units considering boiler dynamics for thermal plants, Generation Rate Constraint (GRC and Governor Dead Band (GDB non-linearity.

  10. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation.

    Science.gov (United States)

    Liu, Xiaofeng; Bai, Fang; Ouyang, Sisheng; Wang, Xicheng; Li, Honglin; Jiang, Hualiang

    2009-03-31

    Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105-112). Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 A to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 +/- 0.18 seconds per molecule) renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms other four multiple conformer generators in the case of

  11. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation

    Directory of Open Access Journals (Sweden)

    Li Honglin

    2009-03-01

    Full Text Available Abstract Background Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. Results The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105–112. Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 Å to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 ± 0.18 seconds per molecule renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. Conclusion On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms

  12. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox family of enzymes

    Directory of Open Access Journals (Sweden)

    Lambeth J David

    2007-07-01

    Full Text Available Abstract Background NADPH-oxidases (Nox and the related Dual oxidases (Duox play varied biological and pathological roles via regulated generation of reactive oxygen species (ROS. Members of the Nox/Duox family have been identified in a wide variety of organisms, including mammals, nematodes, fruit fly, green plants, fungi, and slime molds; however, little is known about the molecular evolutionary history of these enzymes. Results We assembled and analyzed the deduced amino acid sequences of 101 Nox/Duox orthologs from 25 species, including vertebrates, urochordates, echinoderms, insects, nematodes, fungi, slime mold amoeba, alga and plants. In contrast to ROS defense enzymes, such as superoxide dismutase and catalase that are present in prokaryotes, ROS-generating Nox/Duox orthologs only appeared later in evolution. Molecular taxonomy revealed seven distinct subfamilies of Noxes and Duoxes. The calcium-regulated orthologs representing 4 subfamilies diverged early and are the most widely distributed in biology. Subunit-regulated Noxes represent a second major subdivision, and appeared first in fungi and amoeba. Nox5 was lost in rodents, and Nox3, which functions in the inner ear in gravity perception, emerged the most recently, corresponding to full-time adaptation of vertebrates to land. The sea urchin Strongylocentrotus purpuratus possesses the earliest Nox2 co-ortholog of vertebrate Nox1, 2, and 3, while Nox4 first appeared somewhat later in urochordates. Comparison of evolutionary substitution rates demonstrates that Nox2, the regulatory subunits p47phox and p67phox, and Duox are more stringently conserved in vertebrates than other Noxes and Nox regulatory subunits. Amino acid sequence comparisons identified key catalytic or regulatory regions, as 68 residues were highly conserved among all Nox/Duox orthologs, and 14 of these were identical with those mutated in Nox2 in variants of X-linked chronic granulomatous disease. In addition to

  13. Periodontal regeneration.

    Science.gov (United States)

    Ivanovski, S

    2009-09-01

    The ultimate goal of periodontal therapy is the regeneration of the tissues destroyed as a result of periodontal disease. Currently, two clinical techniques, based on the principles of "guided tissue regeneration" (GTR) or utilization of the biologically active agent "enamel matrix derivative" (EMD), can be used for the regeneration of intrabony and Class II mandibular furcation periodontal defects. In cases where additional support and space-making requirements are necessary, both of these procedures can be combined with a bone replacement graft. There is no evidence that the combined use of GTR and EMD results in superior clinical results compared to the use of each material in isolation. Great variability in clinical outcomes has been reported in relation to the use of both EMD and GTR, and these procedures can be generally considered to be unpredictable. Careful case selection and treatment planning, including consideration of patient, tooth, site and surgical factors, is required in order to optimize the outcomes of treatment. There are limited data available for the clinical effectiveness of other biologically active molecules, such as growth factors and platelet concentrates, and although promising results have been reported, further clinical trials are required in order to confirm their effectiveness. Current active areas of research are centred on tissue engineering and gene therapy strategies which may result in more predictable regenerative outcomes in the future.

  14. On the evolution, over four generations of paraboloidal dish solar thermal electric power systems

    International Nuclear Information System (INIS)

    Kaneff, S.

    1993-01-01

    After a decade of supplying useful power, the White Cliffs Paraboloidal Dish Solar Thermal Power Station (1100 km west of Sydney) is still operational and has provided major lessons and experience for subsequent developments; particularly for the Molokai/Alburquerque unit built jointly with Power Kinetics Inc (of Troy, USA) for the US Department of Energy. This has, in turn, given valuable guidance for the third generation system now nearing completion in Canberra and employing new collector concepts refined for commercial production and viability. Unlike much dish-oriented R and D, we consider systems of dish arrays supplying central plant as a more attractive proposition than assemblies of dish/engine units, for all but very small systems (<2 MWe). Development has recently commerce on the fourth generation technology which result in a 2 MWe dish system within 2 years, expected to be followed closely by a system of 10 to 20 MWe, preparatory to still larger systems, as the technology evolves and experience is gained. The rationale in this progression in based on the achievement of commercial cost-effectiveness in competition with other energy sources. The direction of evolution is becoming clear and application of the technology to broader spheres than electricity generation is likely. Because of the nature of production methods employed and the ease of installation, system implementation can be rapid. (Author) 29 refs

  15. Vorticity generation and evolution in shock-accelerated density-stratified interfaces

    International Nuclear Information System (INIS)

    Yang, X.; Chern, I.; Zabusky, N.J.; Samtaney, R.; Hawley, J.F.

    1992-01-01

    The results of direct numerical simulations of inviscid planar shock-accelerated density-stratified interfaces in two dimensions are presented and compared with shock tube experiments of Haas [(private communication, 1988)] and Sturtevant [in Shock Tubes and Waves, edited by H. Gronig (VCH, Berlin, 1987), p. 89] . Heavy-to-light (''slow/fast or s/f) and light-to-heavy (''fast/slow,'' or f/s) gas interfaces are examined and early-time impulsive vorticity deposition and the evolution of coherent vortex structures are emphasized and quantified. The present second-order Godunov scheme yields excellent agreement with shock-polar analyses at early time. A more physical vortex interpretation explains the commonly used (i.e., linear paradigm) designations of ''unstable'' and ''stable'' for the f/s and s/f interfaces, respectively. The later time events are Rayleigh--Taylor like and can be described in terms of the evolution of a vortex layer (large-scale translation and rotation): asymmetric tip vortex ''roll-up'' and ''binding;'' layer ''instability;'' convective mixing; and baroclinic vorticity generation from secondary shock--interface interactions

  16. Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyons: Unified analyses

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2005-01-01

    We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein's gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein's gravity and others

  17. Temporal evolution of a granitic rock under thermal loads generated by fission products

    International Nuclear Information System (INIS)

    Ventura, M.A.; Ferreri, J.C.

    1985-01-01

    The thermal time history of a granitic mass under thermal loads, generated by the terminal subproducts arising from the Argentine nuclear programme is analyzed. This rock will be the final repository of those subproducts. The analysis is based on the consideration of a representative unit cell of the rock's centre using the Heating 5 programme. A preliminary analysis is made in order to obtain criteria with respect to the accuracy of the problem. Temporal evolution curves of the temperature on zones of interest of the unit cell considered are shown. Under the thermal loads considered, 500W by container, a maximum temperature of 55 deg C at the wall of the orifice subproducts' deposit is obtained. (Author) [es

  18. Gauge fixings, evolution generators and world-line conditions in relativistic classical mechanics with constraints

    International Nuclear Information System (INIS)

    Lusanna, L.

    1981-01-01

    After a review of the main models for classical relativistic N-particle systems based upon Dirac's theory of constraints, a detailed study of their Hamiltonian formulation is made. The choice of the arbitrary functions and of the gauge-fixing constraints and the associated realizations of the reduced phase-space and of the observables by means of Dirac brackets are examined in detail. The restrictions on the gauge fixings to obtain compatibility between the evolution in the reduced phase space, generated by the total energy of the system, and the one in the constraint hypersurface, generated by the Dirac Hamiltonian, are found. It is also demonstrated that these restrictions are nothing else than the world-line conditions, i.e. gauge transformations are needed to ensure the objective existence of the world-lines and manifest covariance is broken. This is due to the property of the Dirac brackets of preserving the gauge fixings in every frame of reference. Predictive mechanics and the Currie-Hill world-line conditions are not in contradiction with the previous results: avoiding the Dirac-bracket mechanism, they save the manifest covariance but at the price of using accelerations which are complicated functions of the original potentials depending upon the whole history of the system. (author)

  19. Plasticity and regeneration of gonads in the annelid Pristina leidyi

    Directory of Open Access Journals (Sweden)

    B. Duygu Özpolat

    2016-10-01

    Full Text Available Abstract Background Gonads are specialized gamete-producing structures that, despite their functional importance, are generated by diverse mechanisms across groups of animals and can be among the most plastic organs of the body. Annelids, the segmented worms, are a group in which gonads have been documented to be plastic and to be able to regenerate, but little is known about what factors influence gonad development or how these structures regenerate. In this study, we aimed to identify factors that influence the presence and size of gonads and to investigate gonad regeneration in the small asexually reproducing annelid, Pristina leidyi. Results We found that gonad presence and size in asexual adult P. leidyi are highly variable across individuals and identified several factors that influence these structures. An extrinsic factor, food availability, and two intrinsic factors, individual age and parental age, strongly influence the presence and size of gonads in P. leidyi. We also found that following head amputation in this species, gonads can develop by morphallactic regeneration in previously non-gonadal segments. We also identified a sexually mature individual from our laboratory culture that demonstrates that, although our laboratory strain reproduces only asexually, it retains the potential to become fully sexual. Conclusions Our findings demonstrate that gonads in P. leidyi display high phenotypic plasticity and flexibility with respect to their presence, their size, and the segments in which they can form. Considering our findings along with relevant data from other species, we find that, as a group, clitellate annelids can form gonads in at least four different contexts: post-starvation refeeding, fission, morphallactic regeneration, and epimorphic regeneration. This group is thus particularly useful for investigating the mechanisms involved in gonad formation and the evolution of post-embryonic phenotypic plasticity.

  20. The generation and re-generation of social capital and enterprises in multi-stakeholders social cooperative enterprises: a system dynamic approach

    Directory of Open Access Journals (Sweden)

    Claudio Travaglini

    2012-09-01

    Full Text Available Theories on social capital and on social entrepreneurship have mainly highlighted the attitude of social capital to generate enterprises and to foster good relations between third sector organizations and the public sector. This paper considers the social capital in a specific third sector enterprise; here, multi-stakeholder social cooperatives are seen, at the same time, as social capital results, creators and incubators. In the particular enterprises that identify themselves as community social enterprises, social capital, both as organizational and relational capital, is fundamental: SCEs arise from but also produce and disseminate social capital. This paper aims to improve the building of relational social capital and the refining of helpful relations drawn from other arenas, where they were created and from where they are sometimes transferred to other realities, where their role is carried on further (often working in non-profit, horizontally and vertically arranged groups, where they share resources and relations. To represent this perspective, we use a qualitative system dynamic approach in which social capital is measured using proxies. Cooperation of volunteers, customers, community leaders and third sector local organizations is fundamental to establish trust relations between public local authorities and cooperatives. These relations help the latter to maintain long-term contracts with local authorities as providers of social services and enable them to add innovation to their services, by developing experiences and management models and maintaining an interchange with civil servants regarding these matters. The long-term relations and the organizational relations linking SCEs and public organizations help to create and to renovate social capital. Thus, multi-stakeholder cooperatives originated via social capital developed in third sector organizations produce new social capital within the cooperatives themselves and between

  1. Cardiomyocyte Regeneration

    Directory of Open Access Journals (Sweden)

    Toshio Nakanishi

    2013-01-01

    Full Text Available The heart was initially believed to be a terminally differentiated organ; once the cardiomyocytes died, no recovery could be made to replace the dead cells. However, around a decade ago, the concept of cardiac stem cells (CSCs in adult hearts was proposed. CSCs differentiate into cardiomyocytes, keeping the heart functioning. Studies have proved the existence of stem cells in the heart. These somatic stem cells have been studied for use in cardiac regeneration. Moreover, recently, induced pluripotent stem cells (iPSCs were invented, and methodologies have now been developed to induce stable cardiomyocyte differentiation and purification of mature cardiomyocytes. A reprogramming method has also been applied to direct reprogramming using cardiac fibroblasts into cardiomyocytes. Here, we address cardiomyocyte differentiation of CSCs and iPSCs. Furthermore, we describe the potential of CSCs in regenerative biology and regenerative medicine.

  2. Heart regeneration.

    Science.gov (United States)

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Ecology and evolution in microbial systems: the generation and maintenance of diversity in phage-host interactions.

    Science.gov (United States)

    Jessup, Christine M; Forde, Samantha E

    2008-06-01

    Insights gained from studying the interactions between viruses and bacteria have important implications for the ecology and evolution of virus-host interactions in many environments and for pathogen-host and predator-prey interactions in general. Here, we focus on the generation and maintenance of diversity, highlighting recent laboratory and field experiments with microorganisms.

  4. Generation and evolution of turbulence in an annulus between two concentric rotating cylinders

    International Nuclear Information System (INIS)

    Kataoka, K.; Deguchi, T.

    1987-01-01

    The objective of the present work is to observe the generation and spectral evolution of time-dependent wavy disturbances in the Taylor-Couette flow. It is well known that as the Reynolds number Re = R/sub i/Ω d/ν, based on the rotation speed (Ω: angular velocity) of the inner cylinder, is gradually increased, the following five dynamical transitions occur stepwise in sequence: laminar Couette flow → laminar Taylor vortex flow → wavy vortex flow → quasi-periodic wavy vortex flow → weakly turbulent wavy vortex flow → turbulent vortex flow. Time-dependent wavy disturbances appear when the transition to wavy vortex flow occurs as a result of instability of the laminar Taylor vortex flow. The disturbances are regularly periodic because it results from the azimuthally traveling waves. The next transition to the quasi-periodic wavy vortex flow is accompanied by the amplitude modulation of the wave motion. The first fundamental frequency f/sub 1/ comes from the passing frequency of the azimuthally traveling waves and the second fundamental frequency f/sub 2/ from the modulation frequency. When the transition to the weakly turbulent wavy vortex flow occurs, chaotic turbulence first appears, A spectral analysis is made to analyze the temporal variation in the local velocity gradient measured on both the inner and outer cylinder walls by using an electrochemical technique

  5. An ancient dental gene set governs development and continuous regeneration of teeth in sharks.

    Science.gov (United States)

    Rasch, Liam J; Martin, Kyle J; Cooper, Rory L; Metscher, Brian D; Underwood, Charlie J; Fraser, Gareth J

    2016-07-15

    The evolution of oral teeth is considered a major contributor to the overall success of jawed vertebrates. This is especially apparent in cartilaginous fishes including sharks and rays, which develop elaborate arrays of highly specialized teeth, organized in rows and retain the capacity for life-long regeneration. Perpetual regeneration of oral teeth has been either lost or highly reduced in many other lineages including important developmental model species, so cartilaginous fishes are uniquely suited for deep comparative analyses of tooth development and regeneration. Additionally, sharks and rays can offer crucial insights into the characters of the dentition in the ancestor of all jawed vertebrates. Despite this, tooth development and regeneration in chondrichthyans is poorly understood and remains virtually uncharacterized from a developmental genetic standpoint. Using the emerging chondrichthyan model, the catshark (Scyliorhinus spp.), we characterized the expression of genes homologous to those known to be expressed during stages of early dental competence, tooth initiation, morphogenesis, and regeneration in bony vertebrates. We have found that expression patterns of several genes from Hh, Wnt/β-catenin, Bmp and Fgf signalling pathways indicate deep conservation over ~450 million years of tooth development and regeneration. We describe how these genes participate in the initial emergence of the shark dentition and how they are redeployed during regeneration of successive tooth generations. We suggest that at the dawn of the vertebrate lineage, teeth (i) were most likely continuously regenerative structures, and (ii) utilised a core set of genes from members of key developmental signalling pathways that were instrumental in creating a dental legacy redeployed throughout vertebrate evolution. These data lay the foundation for further experimental investigations utilizing the unique regenerative capacity of chondrichthyan models to answer evolutionary

  6. Efficient regeneration of NADPH in a 3-enzyme cascade reaction by in situ generation of glucose 6-phosphate from glucose and pyrophosphate

    NARCIS (Netherlands)

    Hartog, A.F.; van Herk, T.; Wever, R.

    2011-01-01

    We report here a promising method to regenerate NADPH (nicotinamide adenine dinucleotide phosphate) using the intermediate formation of glucose 6-phosphate (G6P) from glucose and pyrophosphate (PPi) catalyzed by the acid phosphatase from Shigella flexneri (PhoN-Sf). The G6P formed is used in turn by

  7. An autologously generated platelet-rich plasma suturable membrane may enhance peripheral nerve regeneration after neurorraphy in an acute injury model of sciatic nerve neurotmesis.

    Science.gov (United States)

    Giannessi, Elisabetta; Coli, Alessandra; Stornelli, Maria Rita; Miragliotta, Vincenzo; Pirone, Andrea; Lenzi, Carla; Burchielli, Silvia; Vozzi, Giovanni; De Maria, Carmelo; Giorgetti, Margherita

    2014-11-01

    The aim of this study was to investigate the ability of suturable platelet-rich plasma (PRP) membrane to promote peripheral nerve regeneration after neurotmesis and neurorraphy. A total of 36 rats were used: 32 animals underwent surgery and were split in two groups. An interim sacrifice was performed at 6 weeks postsurgery and final sacrifice at 12 weeks; four animals did not sustain nerve injury and served as control. Clinical, electromyographic (EMG), gross, and histological changes were assessed. The EMG signal was evaluated for its amplitude and frequency spectrum. Number of regenerating fibers, their diameter, and myelin thickness were histologically analyzed. Both EMG parameters showed a significant (p neurorraphy improves the nerve regeneration process in a rat sciatic nerve model. The use of PRP as a suturable membrane could perform an action not only as a source of bioactive proteins but also as a nerve guide to hold the scar reaction and thus improve axonal regeneration. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Chun Li

    2015-10-01

    Full Text Available The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.

  9. On the generation and evolution of internal solitary waves in the southern Red Sea

    KAUST Repository

    Guo, Daquan; Zhan, Peng; Kartadikaria, Aditya R.; Akylas, Triantaphyllos; Hoteit, Ibrahim

    2015-01-01

    the relatively weak tidal velocity in this area and their generation in the central of the domain, Da Silva suggested three possible mechanisms behind the generation of the waves, namely Resonance and disintegration of interfacial tides, Generation of interfacial

  10. Bringing Evolution to a Technological Generation: A Case Study with the Video Game SPORE

    Science.gov (United States)

    Poli, DorothyBelle; Berenotto, Christopher; Blankenship, Sara; Piatkowski, Bryan; Bader, Geoffrey A.; Poore, Mark

    2012-01-01

    The video game SPORE was found to hold characteristics that stimulate higher-order thinking even though it rated poorly for accurate science. Interested in evaluating whether a scientifically inaccurate video game could be used effectively, we exposed students to SPORE during an evolution course. Students that played the game reported that they…

  11. Mammal body size evolution in North America and Europe over 20 Myr: similar trends generated by different processes.

    Science.gov (United States)

    Huang, Shan; Eronen, Jussi T; Janis, Christine M; Saarinen, Juha J; Silvestro, Daniele; Fritz, Susanne A

    2017-02-22

    Because body size interacts with many fundamental biological properties of a species, body size evolution can be an essential component of the generation and maintenance of biodiversity. Here we investigate how body size evolution can be linked to the clade-specific diversification dynamics in different geographical regions. We analyse an extensive body size dataset of Neogene large herbivores (covering approx. 50% of the 970 species in the orders Artiodactyla and Perissodactyla) in Europe and North America in a Bayesian framework. We reconstruct the temporal patterns of body size in each order on each continent independently, and find significant increases of minimum size in three of the continental assemblages (except European perissodactyls), suggesting an active selection for larger bodies. Assessment of trait-correlated birth-death models indicates that the common trend of body size increase is generated by different processes in different clades and regions. Larger-bodied artiodactyl species on both continents tend to have higher origination rates, and both clades in North America show strong links between large bodies and low extinction rate. Collectively, our results suggest a strong role of species selection and perhaps of higher-taxon sorting in driving body size evolution, and highlight the value of investigating evolutionary processes in a biogeographic context. © 2017 The Author(s).

  12. Independent life history evolution between generations of bivoltine species: a case study of cyclical parthenogenesis.

    Science.gov (United States)

    Hood, Glen R; Ott, James R

    2017-04-01

    Successive generations of bi- and multivoltine species encounter differing biotic and abiotic environments intra-annually. The question of whether selection can independently adjust the relationship between body size and components of reproductive effort within successive generations in response to generation-specific environmental variation is applicable to a diversity of taxa. Herein, we develop a conceptual framework that illustrates increasingly independent life history adjustments between successive generations of taxa exhibiting complex life cycles. We apply this framework to the reproductive biology of the gall-forming insect, Belonocnema treatae (Hymenoptera: Cynipidae). This bivoltine species expresses cyclical parthenogenesis in which alternating sexual and asexual generations develop in different seasons and different environments. We tested the hypotheses that ecological divergence between the alternate generations is accompanied by generational differences in body size, egg size, and egg number and by changes in the relationships between body size and these components of reproductive effort. Increased potential reproductive effort of sexual generation B. treatae is attained by increased body size and egg number (with no trade-off between egg number and egg size) and by a significant increase in the slope of the relationship between body size and potential fecundity. These generation-specific relationships, interpreted in the context of the model framework, suggest that within each generation selection has independently molded the relationships relating body size to potential fecundity and potential reproductive effort in B. treatae. The conceptual framework is broadly applicable to comparisons involving the alternating generations of bi- and multivoltine species.

  13. In vitro regeneration of a common medicinal plant, Ocimum sanctum ...

    African Journals Online (AJOL)

    aristo_team

    brings down circulatory strain, mitigates cardiovascular depressant, is antiulcer, fights .... DISCUSSION. Proficient regeneration systems are vital for hereditary. 0. 10. 20 .... Hao D, Xiao P (2015). Genomics and Evolution in Traditional Medicinal.

  14. A study of small leaks of water into sodium-heated steam generators - self evolution and wastage

    International Nuclear Information System (INIS)

    Feburie, V.; Desmas, T.; Cronier, B.

    1987-01-01

    MICROMEGAS is a fully automatic test loop operating without human surveillance. It is utilized to study small leaks of water into sodium, specially the spontaneous development of a fatigue-induced crack in a tube of Incoloy 800 (dormant period, microleak, self-evolution) and the wastage of neighbouring tubes. The thermohydraulic conditions of the last tests corresponded to the economizer zone of SUPER-PHENIX steam generators, at 350 0 C. These tests were compared with those which had been done before, corresponding to the superheating zone, at 490 0 C. The main result was that the microleak phase was longer and the self-evolution slower at 350 0 C than at 490 0 C. (author)

  15. The dynamic evolution of social ties and user-generated content: a case study on a Douban group

    Science.gov (United States)

    Shan, Siqing; Ren, Jie; Li, Cangyan

    2017-11-01

    As platforms based on user-generated content (UGC), social media platforms emphasise the social ties between users and user participation, which promote the communication and propagation of ideas and help to build and maintain relationships. However, many researchers have studied only predefined social networks, such as academic social networks. We believe that there are certain characteristics associated with the network's UGC worth evaluating. We conducted research in communities in which content attracts discussion and new members and examined the evolution patterns of social and content networks in a topic-oriented Douban group. Datasets of user and content information in communities of interest were collected through web crawler software. Networks based on social and content ties were constructed and analysed. We chose scale, density, centrality, average path length and cluster coefficient as measures for exploring the evolution and correlation of both types of networks. These findings are valuable for social media marketing and helpful in directing and controlling public opinion.

  16. Fast evolution and waveform generator for extreme-mass-ratio inspirals in equatorial-circular orbits

    International Nuclear Information System (INIS)

    Han, Wen-Biao

    2016-01-01

    In this paper we discuss the development of a fast and accurate waveform model for the quasi-circular orbital evolution of extreme-mass-ratio inspirals (EMRIs). This model simply employs the data of a few numerical Teukoulsky-based energy fluxes and waveforms to fit out a set of polynomials for the entire fluxes and waveforms. These obtained polynomials are accurate enough in the entire evolution domain, and much more accurate than the resummation post-Newtonian (PN) energy fluxes and waveforms, especially when the spin of a black hole becomes large. The dynamical equation we adopted for orbital revolution is the effective-one-body (EOB) formalism. Because of the simplified expressions, the efficiency of calculating the orbital evolution with our polynomials is also better than the traditional method which uses the resummed PN analytical fluxes. Our model should be useful in calculations of waveform templates of EMRIs for gravitational wave (GW) detectors such as the evolved Laser Interferometer Space Antenna (eLISA). (paper)

  17. Evolutionary Regeneration Model of Thought Process

    OpenAIRE

    Noboru, HOKKYO; Hitachi Energy Research Laboratory

    1982-01-01

    A preliminary attempt is made to understand the thought process and the evolution of the nervous system on the same footing as regeneration processes obeying certain recursive algebraic rules which possibly economize the information content of the increasingly complex structural-functional correlate of the evolving and thinking nervous system.

  18. Evolution of fluid-like granular ejecta generated by sphere impact

    KAUST Repository

    Marston, Jeremy

    2012-05-01

    We present results from an experimental study of the speed and shape of the ejecta formed when a solid sphere impacts onto a granular bed. We use high-speed imaging at frame rates up to 100 000 f.p.s. to provide direct measurement of individual grain velocities and ejecta angles as well as the overall evolution of the granular ejecta. For larger grain sizes, the emergence velocities of the grains during the early stage flow, i.e. before the main ejecta curtain forms, increase with the kinetic energy of the impacting sphere but are inversely proportional to the time from impact. We also observe that the fastest grains, which can obtain velocities up to five times that of the impacting sphere (V g/V 0 = 5), generally emerge at the earliest times and with the lowest ejection angles. As the grain size is decreased, a more fluid-like behaviour is observed whereby the ejected material first emerges as a thin sheet of grains between the sphere and the bed surface, which is also seen when a sphere impacts a liquid pool. In this case, the sheet velocity is approximately double that of the impacting sphere (V s/V 0 = 2) and independent of the bulk packing fraction. For the finest grains we provide evidence of the existence of a vortex ring inside the ejecta curtain where grains following the air flow are entrained through the curtain. In contrast to predictions from previous studies, we find that the temporal evolution of the ejecta neck radius is not initially quadratic but rather approaches a square-root dependence on time, for the finest grains with the highest impact kinetic energy. The evolution therefore approaches that seen for the crown evolution in liquid drop impacts. By using both spherical glass beads and coarse sands, we show that the size and shape distribution are critical in determining the post-impact dynamics whereby the sands exhibit a qualitatively different response to impact, with grains ejected at lower speeds and at later times than for the glass

  19. The spatial distribution and time evolution of impact-generated magnetic fields

    Science.gov (United States)

    Crawford, D. A.; Schultz, P. H.

    1991-01-01

    The production of magnetic fields was revealed by laboratory hypervelocity impacts in easily vaporized targets. As quantified by pressure measurements, high frame-rate photography, and electrostatic probes, these impacts tend to produce large quantities of slightly ionized vapor, which is referred to as impact-generated plasma. Nonaligned electron density and temperature gradients within this plasma may lead to production of the observed magnetic fields. Past experiments were limited to measuring a single component of the impact-generated magnetic fields at only a few locations about the developing impact crater and consequently gave little information about the field production mechanism. To understand this mechanism, the techniques were extended to map the three components of the magnetic field both in space and time. By conducting many otherwise identical experiments with arrayed magnetic detectors, a preliminary 3-D picture was produced of impact-generated magnetic fields as they develop through time.

  20. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.

    2014-09-01

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  1. Reduce, reuse, recycle - Developmental signals in spinal cord regeneration.

    Science.gov (United States)

    Cardozo, Marcos Julian; Mysiak, Karolina S; Becker, Thomas; Becker, Catherina G

    2017-12-01

    Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury. Copyright © 2017. Published by Elsevier Inc.

  2. Desulfurization sorbent regeneration

    Science.gov (United States)

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  3. The evolution of the power generation mix in the world between 1980 and 2010

    International Nuclear Information System (INIS)

    Rabai, Yacine

    2013-04-01

    While proposing a table indicating the shares of the different energies in the energy mix in 1980 and in 2010 in different countries, this note outlines the increased share of nuclear energy over this period, the large heterogeneity of energy mixes notices among the different countries. As thermal energy is the most important, the note outlines that gas increased its share with respect to oil and coal. Several factors influencing the energy mix evolution are briefly discussed: notably, availability and proximity strongly impact the energy mix. A third part outlines the development of new and renewable energies over the considered period. This development is notably important for wind energy in Denmark and for solar energy in Spain

  4. Evolution of three-dimensional relativistic current sheets and development of self-generated turbulence

    Science.gov (United States)

    Takamoto, M.

    2018-05-01

    In this paper, the temporal evolution of three-dimensional relativistic current sheets in Poynting-dominated plasma is studied for the first time. Over the past few decades, a lot of efforts have been conducted on studying the evolution of current sheets in two-dimensional space, and concluded that sufficiently long current sheets always evolve into the so-called plasmoid chain, which provides a fast reconnection rate independent of its resistivity. However, it is suspected that plasmoid chain can exist only in the case of two-dimensional approximation, and would show transition to turbulence in three-dimensional space. We performed three-dimensional numerical simulation of relativistic current sheet using resistive relativistic magnetohydrodynamic approximation. The results showed that the three-dimensional current sheets evolve not into plasmoid chain but turbulence. The resulting reconnection rate is 0.004, which is much smaller than that of plasmoid chain. The energy conversion from magnetic field to kinetic energy of turbulence is just 0.01 per cent, which is much smaller than typical non-relativistic cases. Using the energy principle, we also showed that the plasmoid is always unstable for a displacement in the opposite direction to its acceleration, probably interchange-type instability, and this always results in seeds of turbulence behind the plasmoids. Finally, the temperature distribution along the sheet is discussed, and it is found that the sheet is less active than plasmoid chain. Our finding can be applied for many high-energy astrophysical phenomena, and can provide a basic model of the general current sheet in Poynting-dominated plasma.

  5. On the generation and evolution of internal solitary waves in the southern Red Sea

    KAUST Repository

    Guo, Daquan; Akylas, T. R.; Zhan, Peng; Kartadikaria, Aditya R.; Hoteit, Ibrahim

    2016-01-01

    Satellite observations recently revealed trains of internal solitary waves (ISWs) in the off-shelf region between 16.0 degrees N and 16.5 degrees N in the southern Red Sea. The generation mechanism of these waves is not entirely clear, though

  6. Automatic generation of design structure matrices through the evolution of product models

    DEFF Research Database (Denmark)

    Gopsill, James A.; Snider, Chris; McMahon, Chris

    2016-01-01

    and organizational architectures across a number of engineering disciplines. However, the process of generating these DSMs has primarily used surveys, structured interviews, and/or meetings with engineers. As a consequence, there is a high cost associated with engineers' time alongside the requirement to continually...

  7. Design Evolution and Verification of the A-3 Chemical Steam Generator

    Science.gov (United States)

    Kirchner, Casey K.

    2009-01-01

    Following is an overview of the Chemical Steam Generator system selected to provide vacuum conditions for a new altitude test facility, the A-3 Test Stand at Stennis Space Center (SSC) in Bay St. Louis, MS. A-3 will serve as NASA s primary facility for altitude testing of the J-2X rocket engine, to be used as the primary propulsion device for the upper stages of the Ares launch vehicles. The Chemical Steam Generators (CSGs) will produce vacuum conditions in the test cell through the production and subsequent supersonic ejection of steam into a diffuser downstream of the J-2X engine nozzle exit. The Chemical Steam Generators chosen have a rich heritage of operation at rocket engine altitude test facilities since the days of the Apollo program and are still in use at NASA White Sands Test Facility (WSTF) in New Mexico. The generators at WSTF have been modified to a degree, but are still very close to the heritage design. The intent for the A-3 implementation is to maintain this heritage design as much as possible, making minimal updates only where necessary to substitute for obsolete parts and to increase reliability. Reliability improvements are especially desired because the proposed system will require 27 generators, which is nine times the largest system installed in the 1960s. Improvements were suggested by the original design firm, Reaction Motors, by NASA SSC and NASA WSTF engineers, and by the A-3 test stand design contractor, Jacobs Technology, Inc. (JTI). This paper describes the range of improvements made to the design to date, starting with the heritage generator and the minor modifications made over time at WSTF, to the modernized configuration which will be used at A-3. The paper will discuss NASA s investment in modifications to SSC s E-2 test facility fire a full-scale Chemical Steam Generator in advance of the larger steam system installation at A-3. Risk mitigation testing will be performed in early 2009 at this test facility to verify that the CSGs

  8. Fusing enacted and expected mimicry generates a winning strategy that promotes the evolution of cooperation.

    Science.gov (United States)

    Fischer, Ilan; Frid, Alex; Goerg, Sebastian J; Levin, Simon A; Rubenstein, Daniel I; Selten, Reinhard

    2013-06-18

    Although cooperation and trust are essential features for the development of prosperous populations, they also put cooperating individuals at risk for exploitation and abuse. Empirical and theoretical evidence suggests that the solution to the problem resides in the practice of mimicry and imitation, the expectation of opponent's mimicry and the reliance on similarity indices. Here we fuse the principles of enacted and expected mimicry and condition their application on two similarity indices to produce a model of mimicry and relative similarity. Testing the model in computer simulations of behavioral niches, populated with agents that enact various strategies and learning algorithms, shows how mimicry and relative similarity outperforms all the opponent strategies it was tested against, pushes noncooperative opponents toward extinction, and promotes the development of cooperative populations. The proposed model sheds light on the evolution of cooperation and provides a blueprint for intentional induction of cooperation within and among populations. It is suggested that reducing conflict intensities among human populations necessitates (i) instigation of social initiatives that increase the perception of similarity among opponents and (ii) efficient lowering of the similarity threshold of the interaction, the minimal level of similarity that makes cooperation advisable.

  9. Thermal and Structural Analysis of Micro-Fabricated Involute Regenerators

    Science.gov (United States)

    Qiu, Songgang; Augenblick, Jack E.

    2005-02-01

    Long-life, high-efficiency power generators based on free-piston Stirling engines are an energy conversion solution for future space power generation and commercial applications. As part of the efforts to further improve Stirling engine efficiency and reliability, a micro-fabricated, involute regenerator structure is proposed by a Cleveland State University-led regenerator research team. This paper reports on thermal and structural analyses of the involute regenerator to demonstrate the feasibility of the proposed regenerator. The results indicate that the involute regenerator has extremely high axial stiffness to sustain reasonable axial compression forces with negligible lateral deformation. The relatively low radial stiffness may impose some challenges to the appropriate installation of the in-volute regenerators.

  10. Composite Matrix Regenerator for Stirling Engines

    Science.gov (United States)

    Knowles, Timothy R.

    1997-01-01

    This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.

  11. Design of Spiking Central Pattern Generators for Multiple Locomotion Gaits in Hexapod Robots by Christiansen Grammar Evolution.

    Science.gov (United States)

    Espinal, Andres; Rostro-Gonzalez, Horacio; Carpio, Martin; Guerra-Hernandez, Erick I; Ornelas-Rodriguez, Manuel; Sotelo-Figueroa, Marco

    2016-01-01

    This paper presents a method to design Spiking Central Pattern Generators (SCPGs) to achieve locomotion at different frequencies on legged robots. It is validated through embedding its designs into a Field-Programmable Gate Array (FPGA) and implemented on a real hexapod robot. The SCPGs are automatically designed by means of a Christiansen Grammar Evolution (CGE)-based methodology. The CGE performs a solution for the configuration (synaptic weights and connections) for each neuron in the SCPG. This is carried out through the indirect representation of candidate solutions that evolve to replicate a specific spike train according to a locomotion pattern (gait) by measuring the similarity between the spike trains and the SPIKE distance to lead the search to a correct configuration. By using this evolutionary approach, several SCPG design specifications can be explicitly added into the SPIKE distance-based fitness function, such as looking for Spiking Neural Networks (SNNs) with minimal connectivity or a Central Pattern Generator (CPG) able to generate different locomotion gaits only by changing the initial input stimuli. The SCPG designs have been successfully implemented on a Spartan 6 FPGA board and a real time validation on a 12 Degrees Of Freedom (DOFs) hexapod robot is presented.

  12. Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 High Renewable Energy Penetration Roadmap

    International Nuclear Information System (INIS)

    Zou, Peng; Chen, Qixin; Yu, Yang; Xia, Qing; Kang, Chongqing

    2017-01-01

    Highlights: • How electricity markets are evolving with the changing generation mix is studied. • China 2050 High Renewable Energy Penetration Roadmap are empirically analysed. • A multi-period Nash-Cournot model is established to study the market equilibrium. • Energy storages are analysed and compared to reveal their impacts on the equilibrium. - Abstract: The power generation mix are significantly changing due to the growth of stricter energy policies. The renewables are increasingly penetrating the power systems and leading to more clean energy and lower energy prices. However, they also require much more flexibilities and ancillary services to handle their uncertainties and variabilities. Thus, the requirements for regulation and reserve services may dramatically increase while the supplies of these services, which are mainly from the traditional thermal plants, remain almost invariant. This changing situation will cause higher regulation and reserve prices and impact the profit models and revenue structures of the traditional plants. How electricity markets are actually evolving with the changing generation mix? Can enough backup power plants be given adequate economic incentives and thus remained with the increasing renewables and the decreasing energy prices and productions? Can de-carbonization be fully performed in power systems? To explicitly answer the question, this paper uses a multi-period Nash-Cournot equilibrium model to formulate the evolution of power markets incorporating different types of generators, including thermal units, hydro units, wind farms, solar stations and energy storage systems. The price changes in the co-optimized energy, regulation and reserve markets, and the profit changes of various generators are studied. And the variabilities and uncertainties of renewable generation sources are considered in dynamically determining the requirements of regulation and reserve services. Based on the China 2050 High Renewable Energy

  13. Evolution of co-management: role of knowledge generation, bridging organizations and social learning.

    Science.gov (United States)

    Berkes, Fikret

    2009-04-01

    Over a period of some 20 years, different aspects of co-management (the sharing of power and responsibility between the government and local resource users) have come to the forefront. The paper focuses on a selection of these: knowledge generation, bridging organizations, social learning, and the emergence of adaptive co-management. Co-management can be considered a knowledge partnership. Different levels of organization, from local to international, have comparative advantages in the generation and mobilization of knowledge acquired at different scales. Bridging organizations provide a forum for the interaction of these different kinds of knowledge, and the coordination of other tasks that enable co-operation: accessing resources, bringing together different actors, building trust, resolving conflict, and networking. Social learning is one of these tasks, essential both for the co-operation of partners and an outcome of the co-operation of partners. It occurs most efficiently through joint problem solving and reflection within learning networks. Through successive rounds of learning and problem solving, learning networks can incorporate new knowledge to deal with problems at increasingly larger scales, with the result that maturing co-management arrangements become adaptive co-management in time.

  14. The generation mix in the Spanish electric system: factors affecting its evolution

    International Nuclear Information System (INIS)

    Chiarri, A.

    2009-01-01

    Currently while dealing with the electricity generation mix issue, the three pillars it is based on must be considered: sustain ability, security of supply and economic competitiveness. The two main sustain ability challenges that directly affect the future generation mix for the next decade is the development of the renewable sources and the reduction of the greenhouse gas emissions. This will cause an important increase of renewable and that the electricity system should be prepared for other low-carbon technologies such as nuclear and carbon capture and storage applied to fossil fuel plants. Regarding the security of supply, there is an increasing need to improve it. This can be achieved mainly through two actions: increase the self-sufficiency in primary energy and/or improve the diversification of the primary energy sources and of the origin such sources. finally it is also important to achieve and efficient investment system. In order to attain this goal, there is a need for a stable regulatory framework that should be the base for a real price for electricity. In order to fulfill all these requirements there is a need to keep all the options open, and also, to prepare the system to face the changes that are on sight. (Author) 8 refs

  15. On marginal regeneration

    NARCIS (Netherlands)

    Stein, H.N.

    1991-01-01

    On applying the marginal regeneration concept to the drainage of free liquid films, problems are encountered: the films do not show a "neck" of minimum thickness at the film/border transition; and the causes of the direction dependence of the marginal regeneration are unclear. Both problems can be

  16. Overview of the creative genome: effects of genome structure and sequence on the generation of variation and evolution.

    Science.gov (United States)

    Caporale, Lynn Helena

    2012-09-01

    This overview of a special issue of Annals of the New York Academy of Sciences discusses uneven distribution of distinct types of variation across the genome, the dependence of specific types of variation upon distinct classes of DNA sequences and/or the induction of specific proteins, the circumstances in which distinct variation-generating systems are activated, and the implications of this work for our understanding of evolution and of cancer. Also discussed is the value of non text-based computational methods for analyzing information carried by DNA, early insights into organizational frameworks that affect genome behavior, and implications of this work for comparative genomics. © 2012 New York Academy of Sciences.

  17. Aeroderivative advancement for power generation: Evolution of the Trend Econopac System

    Energy Technology Data Exchange (ETDEWEB)

    Buxton, R D [Rolls-Royce Industrial and Marine Gas Turbines Ltd., Coventry (United Kingdom); Thoman, R J [Westinghouse Electric Corp., Orlando, FL (United States)

    1996-12-31

    The design features and status of the development program for the Trent engine and the EconoPac generation plant, including the performance and testing program, were reviewed. The alliance formed by Rolls-Royce and Westinghouse for the Econopac project was described. The history of the development of the Trent turbofan engine and the Trent combustion turbine was presented, together with a description of the basic design of the compressors, the combustion system, and features of the modular construction. The main components of the EconoPac self-contained power plant`s were also described. Emissions and power output performance at ISO conditions were summarized. Testing programs for the Trent dry low emission (DLE) combustion system, and the after sales support programs for the Trent EconoPac were described. Indications were that the EconoPac would go into commercial use in late 1996. 6 figs.

  18. Illuminating the evolution of equids and rodents with next-generation sequencing of ancient specimens

    DEFF Research Database (Denmark)

    Mouatt, Julia Thidamarth Vilstrup

    enrichment methods and the massive throughput and latest advances within DNA sequencing, the field of ancient DNA has flourished in later years. Those advances have even enabled the sequencing of complete genomes from the past, moving the field into genomic sciences. In this thesis we have used these latest......The sequencing of ancient DNA provides perspectives on the genetic history of past populations and extinct species. However, ancient DNA research presents specific limitations mostly due to DNA survival, damage and contamination. Yet with stringent laboratory procedures, the sensitivity of target...... developments within ancient DNA research, including target enrichment capture and Next-Generation Sequencing, to address a range of evolutionary questions related to two major mammalian groups, equids and rodents. In particular we have resolved phylogenetic relationships within equids using complete mitochond...

  19. Microstructure evolution characteristics induced by oxygen vacancy generation in anatase TiO2 based resistive switching devices

    Science.gov (United States)

    Liu, Chen; Gao, Bin; Huang, Peng; Kang, Jinfeng

    2017-03-01

    In this work, first principle calculations are employed to study the microstructure characteristics of the anatase TiO2 resistive switching material associated with the generation of oxygen vacancy (V o) based nanofilaments during the switching process. The calculations indicate that both the magnéli phase Ti4O7 and V o-defect phase of anatase TiO2 may be formed with the generation of oxygen vacancies during the forming and SET processes. Based on the calculations, a new physical insight is proposed to clarify the microstructure evolution characteristics of the anatase TiO2 resistive switching material and the correlation with resistive switching behaviors. During the forming or SET process, the anatase TiO2 is first excited to a transition state with the generation of oxygen vacancies, then fully relaxes to a stable V o-defect state. This V o-defect state may either recover to the original state with the recombination of the oxygen vacancies, which causes the reversible resistive switching behavior, or further transform to a much more stable state—the magnéli phase Ti4O7, through a phase transition process with the generation of many more oxygen vacancies. The phase transition from V o- defective anatase phase to magnéli phase Ti4O7 causes the failure of the resistive switching due to the significantly reduced possibility of the reversible phase transition from the magnéli phase to the anatase phase, compared with the possibility of the recombination from the V o-defective anatase.

  20. ASTRID SFR prototype steam generator design evolution related to safety and cost issues - 15236

    International Nuclear Information System (INIS)

    Woaye Hune, A.; Gerber, A.; Pirus, J.P.; Soucille, L.; Rodriguez, G.; Beauchamp, F.

    2015-01-01

    One option of the ASTRID prototype power conversion systems (PCS) is the steam cycle based on the Rankine cycle, which has been implemented in the past in France in the Phenix and Superphenix Sodium Fast Reactors, and is also being implemented in other SFRs in construction in the world (Russia, India, China). This paper is placed in the context of the Rankine cycle ameliorations and in particular on the Steam Generator (SG), developed by AREVA, from the safety point of view without significant penalty on cost. Therefore significant progresses are expected to reduce sodium/water reaction accident scenario impact as much by prevention as by mitigation. ASTRID project performed a thorough comparison of SG designs with regard to these safety requirements but also including increased sodium/water segregation (inlet and outlet of sodium implemented at the bottom of the SG), material issues and cost considerations. The design is based today on a monolithic SG with alloy 800 helical tubes but equipped with geometric specificities necessary for allowing the use of a single component per secondary loop. (authors)

  1. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors

    Science.gov (United States)

    Guidez, Joel; Saturnin, Anne

    2017-11-01

    During the operation of a nuclear reactor, the external individual doses received by the personnel are measured and recorded, in conformity with the regulations in force. The sum of these measurements enables an evaluation of the annual collective dose expressed in man·Sv/year. This information is a useful tool when comparing the different design types and reactors. This article discusses the evolution of the collective dose for several types of reactors, mainly based on publications from the NEA and the IAEA. The spread of good practices (optimization of working conditions and of the organization, sharing of lessons learned, etc.) and ongoing improvements in reactor design have meant that over time, the doses of various origins received by the personnel have decreased. In the case of sodium-cooled fast reactors (SFRs), the compilation and summarizing of various documentary resources has enabled them to be situated and compared to other types of reactors of the second and third generations (respectively pressurized water reactors in operation and EPR under construction). From these results, it can be seen that the doses received during the operation of SFR are significantly lower for this type of reactor.

  2. Microstructural Evolution and Creep-Rupture Behavior of Fusion Welds Involving Alloys for Advanced Ultrasupercritical Power Generation

    Science.gov (United States)

    Bechetti, Daniel H., Jr.

    Projections for large increases in the global demand for electric power produced by the burning of fossil fuels, in combination with growing environmental concerns surrounding these fuel sources, have sparked initiatives in the United States, Europe, and Asia aimed at developing a new generation of coal fired power plant, termed Advanced Ultrasupercritical (A-USC). These plants are slated to operate at higher steam temperatures and pressures than current generation plants, and in so doing will offer increased process cycle efficiency and reduced greenhouse gas emissions. Several gamma' precipitation strengthened Ni-based superalloys have been identified as candidates for the hottest sections of these plants, but the microstructural instability and poor creep behavior (compared to wrought products) of fusion welds involving these alloys present significant hurdles to their implementation and a gap in knowledge that must be addressed. In this work, creep testing and in-depth microstructural characterization have been used to provide insight into the long-term performance of these alloys. First, an investigation of the weld metal microstructural evolution as it relates to creep strength reductions in A-USC alloys INCONELRTM 740, NIMONICRTM 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and HaynesRTM 282RTM (Haynes and 282 are registered trademarks of Haynes International) was performed. gamma'-precipitate free zones were identified in two of these three alloys, and their development was linked to the evolution of phases that precipitate at the expense of gamma'. Alloy 282 was shown to avoid precipitate free zone formation because the precipitates that form during long term aging in this alloy are poor in the gamma'-forming elements. Next, the microstructural evolution of INCONELRTM 740H (a compositional variant of alloy 740) during creep was investigated. Gleeble-based interrupted creep and creep-rupture testing was used to

  3. Hyaluronic acid in the tail and limb of amphibians and lizards recreates permissive embryonic conditions for regeneration due to its hygroscopic and immunosuppressive properties.

    Science.gov (United States)

    Alibardi, Lorenzo

    2017-12-01

    The present review focuses on the role of hyaluronate (hyaluronic acid; HA) during limb and tail regeneration in amphibians and lizards mainly in relation to cells of the immune system. This non-sulfated glycosaminoglycan (GAG) increases in early stages of wound healing and blastema formation, like during limb or tail embryogenesis, when the immune system is still immature. The formation of a regenerating blastema occurs by the accumulation of mesenchymal cells displaying embryonic-like antigens and HA. This GAG adsorbs large amount of water and generates a soft tissue over 80% hydrated where mesenchymal and epithelial cells can move and interact, an obligatory passage for organ regeneration. GAGs and HA in particular rise to a high amount and coat plasma membranes of blastema cells forming a shield that likely impedes to the circulating immune cells to elicit an immune reaction against the embryonic-like antigens present on blastema cells. The evolution of limb-tail regeneration in amphibians dates back to the Devonian-Carboniferous, while tail regeneration in lizards is a more recent evolution process, possibly occurred since the Jurassic, which is unique among amniotes. Both processes are associated with the reactivation of proliferating embryonic programs that involve the upregulation of genes for Wnt, non-coding RNAs, and HA synthesis in an immune-suppress organ, the regenerative blastema. Failure of maintaining a lasting HA synthesis for the formation of a highly hydrated blastema leads to scarring, the common healing process of amniotes equipped with an efficient immune system. The study of amphibian and lizard regeneration indicates that attempts to stimulate organ regeneration in other vertebrates require the induction of a highly hydrated and immune-depressed, HA-rich environment, similar to the extracellular environment present during development. © 2017 Wiley Periodicals, Inc.

  4. Differential Evolution Based IDWNN Controller for Fault Ride-Through of Grid-Connected Doubly Fed Induction Wind Generators.

    Science.gov (United States)

    Manonmani, N; Subbiah, V; Sivakumar, L

    2015-01-01

    The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs) supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs). The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation.

  5. Differential Evolution Based IDWNN Controller for Fault Ride-Through of Grid-Connected Doubly Fed Induction Wind Generators

    Directory of Open Access Journals (Sweden)

    N. Manonmani

    2015-01-01

    Full Text Available The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs. The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation.

  6. Evolution of robust circadian clocks in Drosophila melanogaster populations reared in constant dark for over 330 generations

    Science.gov (United States)

    Shindey, Radhika; Varma, Vishwanath; Nikhil, K. L.; Sharma, Vijay Kumar

    2016-10-01

    Robustness is considered to be an important feature of biological systems which may evolve when the functionality of a trait is associated with higher fitness across multiple environmental conditions. Thus, the ability to maintain stable biological phenotypes across environments is thought to be of adaptive value. Previously, we have reported higher intrinsic activity levels (activity levels of free-running rhythm in constant darkness) and power of rhythm (as assessed by amplitude of the periodogram) in Drosophila melanogaster populations (stocks) reared in constant darkness (DD stocks) as compared to those reared in constant light (LL stocks) and 12:12-h light-dark cycles (LD stocks) for over 19 years (˜330 generations). In the current study, we intended to examine whether the enhanced levels of activity observed in DD stocks persist under various environments such as photoperiods, ambient temperatures, non-24-h light-dark (LD) cycles, and semi-natural conditions (SN). We found that DD stocks largely retain their phenotype of enhanced activity levels across most of the above-mentioned environments suggesting the evolution of robust circadian clocks in DD stocks. Furthermore, we compared the peak activity levels of the three stocks across different environmental conditions relative to their peaks in constant darkness and found that the change in peak activity levels upon entrainment was not significantly different across the three stocks for any of the examined environmental conditions. This suggests that the enhancement of activity levels in DD stocks is not due to differential sensitivity to environment. Thus, these results suggest that rearing in constant darkness (DD) leads to evolution of robust circadian clocks suggesting a possible adaptive value of possessing such rhythms under constant dark environments.

  7. Parameterization of a Conventional and Regenerated UHB Turbofan

    Science.gov (United States)

    Oliveira, Fábio; Brójo, Francisco

    2015-09-01

    The attempt to improve aircraft engines efficiency resulted in the evolution from turbojets to the first generation low bypass ratio turbofans. Today, high bypass ratio turbofans are the most traditional type of engine in commercial aviation. Following many years of technological developments and improvements, this type of engine has proved to be the most reliable facing the commercial aviation requirements. In search of more efficiency, the engine manufacturers tend to increase the bypass ratio leading to ultra-high bypass ratio (UHB) engines. Increased bypass ratio has clear benefits in terms of propulsion system like reducing the specific fuel consumption. This study is aimed at a parametric analysis of a UHB turbofan engine focused on short haul flights. Two cycle configurations (conventional and regenerated) were studied, and estimated values of their specific fuel consumption (TSFC) and specific thrust (Fs) were determined. Results demonstrate that the regenerated cycle may contribute towards a more economic and friendly aero engines in a higher range of bypass ratio.

  8. Helping the Retina Regenerate

    Science.gov (United States)

    ... the retina News Brief 03/30/17 A new report gives recommendations for regenerating retinal ganglion cells (RGCs), crucial neurons in the back of the eye that carry visual information to the brain. Authored ...

  9. Perfluorodecalin and bone regeneration

    Directory of Open Access Journals (Sweden)

    F Tamimi

    2013-01-01

    Full Text Available Perfluorodecalin (PFD is a chemically and biologically inert biomaterial and, as many perfluorocarbons, is also hydrophobic, radiopaque and has a high solute capacity for gases such as oxygen. In this article we have demonstrated, both in vitro and in vivo, that PFD may significantly enhance bone regeneration. Firstly, the potential benefit of PFD was demonstrated by prolonging the survival of bone marrow cells cultured in anaerobic conditions. These findings translated in vivo, where PFD incorporated into bone-marrow-loaded 3D-printed scaffolds substantially improved their capacity to regenerate bone. Secondly, in addition to biological applications, we have also shown that PFD improves the radiopacity of bone regeneration biomaterials, a key feature required for the visualisation of biomaterials during and after surgical implantation. Finally, we have shown how the extreme hydrophobicity of PFD enables the fabrication of highly cohesive self-setting injectable biomaterials for bone regeneration. In conclusion, perfluorocarbons would appear to be highly beneficial additives to a number of regenerative biomaterials, especially those for bone regeneration.

  10. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  11. Method of continuously regenerating decontaminating electrolytic solution

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Kobayashi, Toshio; Wada, Koichi.

    1985-01-01

    Purpose: To continuously recover radioactive metal ions from the electrolytic solution used for the electrolytic decontamination of radioactive equipment and increased with the radioactive dose, as well as regenerate the electrolytic solution to a high concentration acid. Method: A liquid in an auxiliary tank is recycled to a cathode chamber containing water of an electro depositing regeneration tank to render pH = 2 by way of a pH controller and a pH electrode. The electrolytic solution in an electrolytic decontaminating tank is introduced by way of an injection pump to an auxiliary tank and, interlocking therewith, a regenerating solution is introduced from a regenerating solution extracting pump by way of a extraction pipeway to an electrolytic decontaminating tank. Meanwhile, electric current is supplied to the electrode to deposit radioactive metal ions dissolved in the cathode chamber on the capturing electrode. While on the other hand, anions are transferred by way of a partition wall to an anode chamber to regenerate the electrolytic solution to high concentration acid solution. While on the other hand, water is supplied by way of an electromagnetic valve interlocking with the level meter to maintain the level meter constant. This can decrease the generation of the liquid wastes and also reduce the amount of the radioactive secondary wastes. (Horiuchi, T.)

  12. Serial analysis of gene expression (SAGE) in rat liver regeneration

    International Nuclear Information System (INIS)

    Cimica, Velasco; Batusic, Danko; Haralanova-Ilieva, Borislava; Chen, Yonglong; Hollemann, Thomas; Pieler, Tomas; Ramadori, Giuliano

    2007-01-01

    We have applied serial analysis of gene expression for studying the molecular mechanism of the rat liver regeneration in the model of 70% partial hepatectomy. We generated three SAGE libraries from a normal control liver (NL library: 52,343 tags), from a sham control operated liver (Sham library: 51,028 tags), and from a regenerating liver (PH library: 53,061 tags). By SAGE bioinformatics analysis we identified 40 induced genes and 20 repressed genes during the liver regeneration. We verified temporal expression of such genes by real time PCR during the regeneration process and we characterized 13 induced genes and 3 repressed genes. We found connective tissue growth factor transcript and protein induced very early at 4 h after PH operation before hepatocytes proliferation is triggered. Our study suggests CTGF as a growth factor signaling mediator that could be involved directly in the mechanism of liver regeneration induction

  13. Bex1 knock out mice show altered skeletal muscle regeneration

    International Nuclear Information System (INIS)

    Koo, Jae Hyung; Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2007-01-01

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca 2+ /CaM may be involved in skeletal muscle regeneration

  14. Supercritical fluid regeneration of adsorbents

    Science.gov (United States)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  15. A View From The Sea The Regeneration of Marseille Waterfront: Iconic Buildings And Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Maria Elena Buslacchi

    2014-01-01

    Full Text Available In this paper I will discuss how the isomorphic trend of urban regeneration of waterfronts implies a modeling which is not free from critical points. If we focus on the growing use of art and culture as a tool, both in stable museum form both in ephemeral festival form, we must pair this tool with a local contextualization which requires a deep and multi-prospectic knowledge of the territory. In this context a view “from the sea” becomes fundamental when we think to renovate the identity of the port cities materially and, at the same time, symbolically. First a general introduction about the actual evolution of strategies for regeneration of coastal areas will be given. Then two fundamental specific case-studies in the regeneration of the city of Marseille  will be discussed: Vieux Port and the Esplanade - Fort St-Jean. These areas, studied during my Ph. D. thesis, are meaningful for the connection generated between the local reality and the original project, based on a general purpose model. This paper will try to employ ethnographic methodology to examine which functions have been associated to renewed areas and how these acquired functions can be connected with project steps and with already observed results in other cities. A descriptive approach is predominant in this work; anyway a critical judgment cannot be avoided. This sort of judgment is not to be extended to all the other effects which cannot be directly observed within the case-study.

  16. Resonantly Enhanced Axion-Photon Regeneration

    CERN Document Server

    Sikivie, P; Van Bibber, K; Bibber, Karl van

    2007-01-01

    We point out that photon regeneration-experiments that search for the axion, or axion-like particles, may be resonantly enhanced by employing matched Fabry-Perot optical cavities encompassing both the axion production and conversion magnetic field regions. Compared to a simple photon regeneration experiment, which uses the laser in a single-pass geometry, this technique can result in a gain in rate of order ${\\cal F}^2$, where ${\\cal F}$ is the finesse of the cavities. This gain could feasibly be $10^{(10-12)}$, corresponding to an improvement in sensitivity in the axion-photon coupling, $g_{a\\gamma\\gamma}$ , of order ${\\cal F}^{1/2} \\sim 10^{(2.5-3)}$, permitting a practical purely laboratory search to probe axion-photon couplings not previously excluded by stellar evolution limits, or solar axion searches.

  17. An active magnetic regenerator device

    DEFF Research Database (Denmark)

    2015-01-01

    A rotating active magnetic regenerator (AMR) device comprising two or more regenerator beds, a magnet arrangement and a valve arrangement. The valve arrangement comprises a plurality of valve elements arranged substantially immovably with respect to the regenerator beds along a rotational direction...

  18. Generation of Transparent Oxygen Evolution Electrode Consisting of Regularly Ordered Nanoparticles from Self-Assembly Cobalt Phthalocyanine as a Template

    KAUST Repository

    Ziani, Ahmed; Shinagawa, Tatsuya; Stegenburga, Liga; Takanabe, Kazuhiro

    2016-01-01

    of the nanoparticles, and transparency of the catalysts. In this study, we present a systematic study of the structural and optical properties, surface morphologies, and electrochemical oxygen evolution reaction (OER) performance of cobalt oxide prepared from a

  19. Infection and Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Sahng G. Kim

    2016-03-01

    Full Text Available The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed.

  20. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  1. Bionanomaterials for skin regeneration

    CERN Document Server

    Leonida, Mihaela D

    2016-01-01

    This book gives a concise overview of bionanomaterials with applications for skin regeneration. The advantages and challenges of nanoscale materials are covered in detail, giving a basic view of the skin structure and conditions that require transdermal or topical applications. Medical applications, such as wound healing, care for burns, skin disease, and cosmetic care, such as aging of the skin and photodamage, and how they benefit from bionanomaterials, are described in detail. A final chapter is devoted to the ethical and social issues related to the use of bionanomaterials for skin regeneration. This is an ideal book for researchers in materials science, medical scientists specialized in dermatology, and cosmetic chemists working in formulations. It can also serve as a reference for nanotechnologists, dermatologists, microbiologists, engineers, and polymer chemists, as well as students studying in these fields.

  2. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  3. Regeneration of Optic Nerve

    Directory of Open Access Journals (Sweden)

    Kwok-Fai So

    2011-05-01

    Full Text Available The optic nerve is part of the central nervous system (CNS and has a structure similar to other CNS tracts. The axons that form the optic nerve originate in the ganglion cell layer of the retina and extend through the optic tract. As a tissue, the optic nerve has the same organization as the white matter of the brain in regard to its glia. There are three types of glial cells: Oligodendrocytes, astrocytes, and microglia. Little structural and functional regeneration of the CNS takes place spontaneously following injury in adult mammals. In contrast, the ability of the mammalian peripheral nervous system (PNS to regenerate axons after injury is well documented. A number of factors are involved in the lack of CNS regeneration, including: (i the response of neuronal cell bodies against the damage; (ii myelin-mediated inhibition by oligodendrocytes; (iii glial scarring, by astrocytes; (iv macrophage infiltration; and (v insufficient trophic factor support. The fundamental difference in the regenerative capacity between CNS and PNS neuronal cell bodies has been the subject of intensive research. In the CNS the target normally conveys a retrograde trophic signal to the cell body. CNS neurons die because of trophic deprivation. Damage to the optic nerve disconnects the neuronal cell body from its target-derived trophic peptides, leading to the death of retinal ganglion cells. Furthermore, the axontomized neurons become less responsive to the peptide trophic signals they do receive. On the other hand, adult PNS neurons are intrinsically responsive to neurotrophic factors and do not lose trophic responsiveness after axotomy. In this talk different strategies to promote optic-nerve regeneration in adult mammals are reviewed. Much work is still needed to resolve many issues. This is a very important area of neuroregeneration and neuroprotection, as currently there is no cure after traumatic optic nerve injury or retinal disease such as glaucoma, which

  4. Magnetotherapy: The quest for tendon regeneration.

    Science.gov (United States)

    Pesqueira, Tamagno; Costa-Almeida, Raquel; Gomes, Manuela E

    2018-05-09

    Tendons are mechanosensitive tissues that connect and transmit the forces generated by muscles to bones by allowing the conversion of mechanical input into biochemical signals. These physical forces perform the fundamental work of preserving tendon homeostasis assuring body movements. However, overloading causes tissue injuries, which leads us to the field of tendon regeneration. Recently published reviews have broadly shown the use of biomaterials and different strategies to attain tendon regeneration. In this review, our focus is the use of magnetic fields as an alternative therapy, which has demonstrated clinical relevance in tendon medicine because of their ability to modulate cell fate. Yet the underlying cellular and molecular mechanisms still need to be elucidated. While providing a brief outlook about specific signalling pathways and intracellular messengers as framework in play by tendon cells, application of magnetic fields as a subcategory of physical forces is explored, opening up a compelling avenue to enhance tendon regeneration. We outline here useful insights on the effects of magnetic fields both at in vitro and in vivo levels, particularly on the expression of tendon genes and inflammatory cytokines, ultimately involved in tendon regeneration. Subsequently, the potential of using magnetically responsive biomaterials in tendon tissue engineering is highlighted and future directions in magnetotherapy are discussed. © 2018 Wiley Periodicals, Inc.

  5. Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration

    Science.gov (United States)

    2016-04-01

    1 Award Number: W81XWH-11-2-0047 TITLE: Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration PRINCIPAL INVESTIGATOR: Ahmet Höke...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-2-0047 Nanofiber nerve guide for peripheral nerve repair and regeneration 5b. GRANT NUMBER...goal of this collaborative research project was to develop next generation engineered nerve guide conduits (NGCs) with aligned nanofibers and

  6. Applying Unique Molecular Identifiers in Next Generation Sequencing Reveals a Constrained Viral Quasispecies Evolution under Cross-Reactive Antibody Pressure Targeting Long Alpha Helix of Hemagglutinin

    Science.gov (United States)

    Hauck, Nastasja C.; Kirpach, Josiane; Kiefer, Christina; Farinelle, Sophie; Morris, Stephen A.; Muller, Claude P.; Lu, I-Na

    2018-01-01

    To overcome yearly efforts and costs for the production of seasonal influenza vaccines, new approaches for the induction of broadly protective and long-lasting immune responses have been developed in the past decade. To warrant safety and efficacy of the emerging crossreactive vaccine candidates, it is critical to understand the evolution of influenza viruses in response to these new immune pressures. Here we applied unique molecular identifiers in next generation sequencing to analyze the evolution of influenza quasispecies under in vivo antibody pressure targeting the hemagglutinin (HA) long alpha helix (LAH). Our vaccine targeting LAH of hemagglutinin elicited significant seroconversion and protection against homologous and heterologous influenza virus strains in mice. The vaccine not only significantly reduced lung viral titers, but also induced a well-known bottleneck effect by decreasing virus diversity. In contrast to the classical bottleneck effect, here we showed a significant increase in the frequency of viruses with amino acid sequences identical to that of vaccine targeting LAH domain. No escape mutant emerged after vaccination. These results not only support the potential of a universal influenza vaccine targeting the conserved LAH domains, but also clearly demonstrate that the well-established bottleneck effect on viral quasispecies evolution does not necessarily generate escape mutants. PMID:29587397

  7. Applying Unique Molecular Identifiers in Next Generation Sequencing Reveals a Constrained Viral Quasispecies Evolution under Cross-Reactive Antibody Pressure Targeting Long Alpha Helix of Hemagglutinin

    Directory of Open Access Journals (Sweden)

    Nastasja C. Hauck

    2018-03-01

    Full Text Available To overcome yearly efforts and costs for the production of seasonal influenza vaccines, new approaches for the induction of broadly protective and long-lasting immune responses have been developed in the past decade. To warrant safety and efficacy of the emerging crossreactive vaccine candidates, it is critical to understand the evolution of influenza viruses in response to these new immune pressures. Here we applied unique molecular identifiers in next generation sequencing to analyze the evolution of influenza quasispecies under in vivo antibody pressure targeting the hemagglutinin (HA long alpha helix (LAH. Our vaccine targeting LAH of hemagglutinin elicited significant seroconversion and protection against homologous and heterologous influenza virus strains in mice. The vaccine not only significantly reduced lung viral titers, but also induced a well-known bottleneck effect by decreasing virus diversity. In contrast to the classical bottleneck effect, here we showed a significant increase in the frequency of viruses with amino acid sequences identical to that of vaccine targeting LAH domain. No escape mutant emerged after vaccination. These results not only support the potential of a universal influenza vaccine targeting the conserved LAH domains, but also clearly demonstrate that the well-established bottleneck effect on viral quasispecies evolution does not necessarily generate escape mutants.

  8. The head-regeneration transcriptome of the planarian Schmidtea mediterranea

    Science.gov (United States)

    2011-01-01

    Background Planarian flatworms can regenerate their head, including a functional brain, within less than a week. Despite the enormous potential of these animals for medical research and regenerative medicine, the mechanisms of regeneration and the molecules involved remain largely unknown. Results To identify genes that are differentially expressed during early stages of planarian head regeneration, we generated a de novo transcriptome assembly from more than 300 million paired-end reads from planarian fragments regenerating the head at 16 different time points. The assembly yielded 26,018 putative transcripts, including very long transcripts spanning multiple genomic supercontigs, and thousands of isoforms. Using short-read data from two platforms, we analyzed dynamic gene regulation during the first three days of head regeneration. We identified at least five different temporal synexpression classes, including genes specifically induced within a few hours after injury. Furthermore, we characterized the role of a conserved Runx transcription factor, smed-runt-like1. RNA interference (RNAi) knockdown and immunofluorescence analysis of the regenerating visual system indicated that smed-runt-like1 encodes a transcriptional regulator of eye morphology and photoreceptor patterning. Conclusions Transcriptome sequencing of short reads allowed for the simultaneous de novo assembly and differential expression analysis of transcripts, demonstrating highly dynamic regulation during head regeneration in planarians. PMID:21846378

  9. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  10. Understanding Urban Regeneration in Turkey

    Science.gov (United States)

    Candas, E.; Flacke, J.; Yomralioglu, T.

    2016-06-01

    In Turkey, rapid population growth, informal settlements, and buildings and infrastructures vulnerable to natural hazards are seen as the most important problems of cities. Particularly disaster risk cannot be disregarded, as large parts of various cities are facing risks from earthquakes, floods and landslides and have experienced loss of lives in the recent past. Urban regeneration is an important planning tool implemented by local and central governments in order to reduce to disaster risk and to design livable environments for the citizens. The Law on the Regeneration of Areas under Disaster Risk, commonly known as the Urban Regeneration Law, was enacted in 2012 (Law No.6306, May 2012). The regulation on Implementation of Law No. 6306 explains the fundamental steps of the urban regeneration process. The relevant institutions furnished with various authorities such as expropriation, confiscation and changing the type and place of your property which makes urban regeneration projects very important in terms of property rights. Therefore, urban regeneration projects have to be transparent, comprehensible and acceptable for all actors in the projects. In order to understand the urban regeneration process, the legislation and projects of different municipalities in Istanbul have been analyzed. While some steps of it are spatial data demanding, others relate to land values. In this paper an overview of the urban regeneration history and activities in Turkey is given. Fundamental steps of the urban regeneration process are defined, and particularly spatial-data demanding steps are identified.

  11. Performance of Generating Plant: Managing the Changes. Supporting paper: The evolution of the electricity sector and renewable sources in Italy: opportunities and problems for wind power integration

    Energy Technology Data Exchange (ETDEWEB)

    Salvaderi, Luigi [IEEE Fellow (Italy)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This document serves as a supporting paper. Sections include: features of Italian energy and electricity; the evolution of liberalisation; support mechanism for renewables; connection to wind farm transmission network; wind source integration into power system; and, final comments.

  12. Microbiological soil regeneration

    International Nuclear Information System (INIS)

    Behrens, D.; Wiesner, J.

    1992-01-01

    The Interdiciplinary Task Force ''Environmental Biotechnology - Soil'' of DECHEMA aims to pool the knowledge potential of the Dechema study committees on environmental biotechnology and soil protection with a view to the advancement of microbiological soil decontamination techniques. This conference volume on the 9th expert meeting of Dechema on environmental protection subjects entitled ''Microbiological Soil Regeneration'', held on February 27th and 28th, 1991, and the subsequent compilation of results give an intermediate account of the ongoing work of the Dechema Task Force. (orig.) [de

  13. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors

    Directory of Open Access Journals (Sweden)

    Guidez Joel

    2017-01-01

    In the case of sodium-cooled fast reactors (SFRs, the compilation and summarizing of various documentary resources has enabled them to be situated and compared to other types of reactors of the second and third generations (respectively pressurized water reactors in operation and EPR under construction. From these results, it can be seen that the doses received during the operation of SFR are significantly lower for this type of reactor.

  14. In-service inspection of nuclear reactor vessels and steam generators. Results and evolution of the technics

    International Nuclear Information System (INIS)

    Rapin, Michel; Saglio, Robert.

    1978-01-01

    Methods and original technics have been developed by the CEA for inspection of the primary coolant circuit of PWR. Multifrequency Eddy currents for inspection of steam generators tubes gudgeons and bolts; focussed ultrasonics to test all the welds of the reactor vessel and its cover of mixed welds of tanks and steam generators, pressurizer welds and gudgeons from the inside; gamma radiography of vessel mixed welds, televisual examination of the stainless steel lining of the reactor vessel and its cover. Use of these technics is made with specific automatic machines designed either for inspection of steam generator tubes or for complete inspection of the vessel. Several reactors were inspected with these devices [fr

  15. Coincident effect characteristic in a thermoacoustic regenerator

    International Nuclear Information System (INIS)

    Liu Yicai; Xin Tianlong; Huang Qian; Shi Xiangnan; Chen Siming; Chen Lixin

    2011-01-01

    Many previous studies on characteristics of thermoacoustic regenerator are based on fluid micro-groups and their compression-expansion cycle. In this paper, coincident frequency is introduced to evaluate its acoustic characteristics by combining structural acoustic with structural vibration theories. The relationship among structure wave radiation and regenerator position, slab thickness, and properties of material are analyzed by numerical calculation. The results show that in the low-frequency thermoacoustic system, the coincident effect generated by higher frequency wave weakens the fundamental sound wave. While in the high-frequency thermoacoustic system, where the oscillating fundamental frequency is higher than the coincident frequency, the sound field strength is enhanced by stronger structure wave radiation because of the coincident effect.

  16. Cuboid Ni2 P as a Bifunctional Catalyst for Efficient Hydrogen Generation from Hydrolysis of Ammonia Borane and Electrocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Du, Yeshuang; Liu, Chao; Cheng, Gongzhen; Luo, Wei

    2017-11-16

    The design of high-performance catalysts for hydrogen generation is highly desirable for the upcoming hydrogen economy. Herein, we report the colloidal synthesis of nanocuboid Ni 2 P by the thermal decomposition of nickel chloride hexahydrate (NiCl 2 ⋅6 H 2 O) and trioctylphosphine. The obtained nanocuboid Ni 2 P was characterized by using powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma atomic emission spectroscopy. For the first time, the as-synthesized nanocuboid Ni 2 P is used as a bifunctional catalyst for hydrogen generation from the hydrolysis of ammonia borane and electrocatalytic hydrogen evolution. Owing to the strong synergistic electronic effect between Ni and P, the as-synthesized Ni 2 P exhibits catalytic performance that is superior to its counterpart without P doping. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Regeneration of desiccants with solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Butts, C.L.; Lown, J.B.

    1985-01-01

    Saturated silica gel was regenerated with solar energy. This paper describes the experimental set-up for silica gel regeneration and data collection. The regenerated silica gel can be used to dry high moisture in-shell pecans.

  18. Regulation of Regenerative Responses by Factors in the Extracellular Matrix during Axolotl (Ambystoma mexicanum) Limb Regeneration

    OpenAIRE

    Phan, Anne Quy

    2014-01-01

    Salamanders are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. Axolotl limb regeneration is a stepwise sequence of three requisite processes: (1) scarless wound healing to generate a regenerative wound epithelium, (2) blastema formation by migration, proliferation and dedifferentiation to create a mass of multipotent regeneration-competent progenitor cells, and (3) induction of pattern formation by interaction of cells with opposi...

  19. Manipulations to regenerate aspen ecosystems

    Science.gov (United States)

    Wayne D. Shepperd

    2001-01-01

    Vegetative regeneration of aspen can be initiated through manipulations that provide hormonal stimulation, proper growth environment, and sucker protection - the three elements of the aspen regeneration triangle. The correct course of action depends upon a careful evaluation of the size, vigor, age, and successional status of the existing clone. Soils and site...

  20. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  1. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  2. Materializing Heart Regeneration: Biomimicry of Key Observations in Cell Transplantation Therapies and Natural Cardiac Regeneration

    Science.gov (United States)

    Kong, Yen P.; Jongpaiboonkit, Leena

    2016-07-01

    New regenerative paradigms are needed to address the growing global problem of heart failure as existing interventions are unsatisfactory. Outcomes from the current paradigm of cell transplantation have not been stellar but the mechanistic knowledge learned from them is instructive in the development of future paradigms. An emerging biomaterial-based approach incorporating key mechanisms and additional ones scrutinized from the process of natural heart regeneration in zebrafish may become the next evolution in cardiac repair. We highlight, with examples, tested key concepts and pivotal ones that may be integrated into a successful therapy.

  3. Results from neutral kaon regeneration at high energies

    International Nuclear Information System (INIS)

    Hladky, J.

    1976-01-01

    Experimental neutral kaon regeneration results at Serpukhov energies up to 50 GeV are presented, including the coherent regeneration on hydrogen, deuterium and carbon regenerators and elastic regeneration on deuterium and carbon regenerators. (author)

  4. Fuel cell catholyte regenerating apparatus

    International Nuclear Information System (INIS)

    Struthers, R. C.

    1985-01-01

    A catholyte regenerating apparatus for a fuel cell having a cathode section containing a catholyte solution and wherein fuel cell reaction reduces the catholyte to gas and water. The apparatus includes means to conduct partically reduced water diluted catholyte from the fuel cell and means to conduct the gas from the fuel cell to a mixing means. An absorption tower containing a volume of gas absorbing liquid solvent receives the mixed together gas and diluted catholyte from the mixing means within the absorption column, the gas is absorbed by the solvent and the gas ladened solvent and diluted catholyte are commingled. A liquid transfer means conducts gas ladened commingled. A liquid transfer means conducts gas ladened commingled solvent and electrolyte from the absorption column to an air supply means wherein air is added and commingled therewith and a stoichiometric volume of oxygen from the air is absorbed thereby. A second liquid transfer means conducts the gas ladened commingled solvent and diluted catholyte into a catalyst column wherein the oxygen and gas react to reconstitute the catholyte from which the gas was generated wna wherein the reconstituted diluted catholyte is separated from the solvent. Recirculating means conducts the solvent from the catalyst column back into the absorption column and liquid conducting means conducts the reconstituted catholyte to a holding tank preparatory for catholyte to a holding tank preparatory for recirculation through the cathode section of the fuel cell

  5. Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish.

    Science.gov (United States)

    González-Rosa, Juan Manuel; Sharpe, Michka; Field, Dorothy; Soonpaa, Mark H; Field, Loren J; Burns, Caroline E; Burns, C Geoffrey

    2018-02-26

    Correlative evidence suggests that polyploidization of heart muscle, which occurs naturally in post-natal mammals, creates a barrier to heart regeneration. Here, we move beyond a correlation by demonstrating that experimental polyploidization of zebrafish cardiomyocytes is sufficient to suppress their proliferative potential during regeneration. Initially, we determined that zebrafish myocardium becomes susceptible to polyploidization upon transient cytokinesis inhibition mediated by dominant-negative Ect2. Using a transgenic strategy, we generated adult animals containing mosaic hearts composed of differentially labeled diploid and polyploid-enriched cardiomyocyte populations. Diploid cardiomyocytes outcompeted their polyploid neighbors in producing regenerated heart muscle. Moreover, hearts composed of equivalent proportions of diploid and polyploid cardiomyocytes failed to regenerate altogether, demonstrating that a critical percentage of diploid cardiomyocytes is required to achieve heart regeneration. Our data identify cardiomyocyte polyploidization as a barrier to heart regeneration and suggest that mobilizing rare diploid cardiomyocytes in the human heart will improve its regenerative capacity. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Generation of Transparent Oxygen Evolution Electrode Consisting of Regularly Ordered Nanoparticles from Self-Assembly Cobalt Phthalocyanine as a Template

    KAUST Repository

    Ziani, Ahmed

    2016-11-04

    The decoration of (photo)electrodes for efficient photoresponse requires the use of electrocatalysts with good dispersion and high transparency for efficient light absorption by the photoelectrode. As a result of the ease of thermal evaporation and particulate self-assembly growth, the phthalocyanine molecular species can be uniformly deposited layer-by-layer on the surface of substrates. This structure can be used as a template to achieve a tunable amount of catalysts, high dispersion of the nanoparticles, and transparency of the catalysts. In this study, we present a systematic study of the structural and optical properties, surface morphologies, and electrochemical oxygen evolution reaction (OER) performance of cobalt oxide prepared from a phthalocyanine metal precursor. Cobalt phthalocyanine (CoPc) films with different thicknesses were deposited by thermal evaporation on different substrates. The films were annealed at 400 °C in air to form a material with the cobalt oxide phase. The final Co oxide catalysts exhibit high transparency after thermal treatment. Their OER measurements demonstrate well expected mass activity for OER. Thermally evaporated and treated transition metal oxide nanoparticles are attractive for the functionalization of (photo)anodes for water oxidation.

  7. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  8. Implication of Free Fatty Acids in Thrombin Generation and Fibrinolysis in Vascular Inflammation in Zucker Rats and Evolution with Aging

    Directory of Open Access Journals (Sweden)

    Jérémy Lagrange

    2017-11-01

    Full Text Available Background: The metabolic syndrome (MetS and aging are associated with modifications in blood coagulation factors, vascular inflammation, and increased risk of thrombosis.Objectives: Our aim was to determine concomitant changes in thrombin generation in the blood compartment and at the surface of vascular smooth muscle cells (VSMCs and its interplay with adipokines, free fatty acids (FFA, and metalloproteinases (MMPs in obese Zucker rats that share features of the human MetS.Methods: Obese and age-matched lean Zucker rats were compared at 25 and 80 weeks of age. Thrombin generation was assessed by calibrated automated thrombography (CAT.Results: Endogenous thrombin potential (ETP was increased in obese rats independent of platelets and age. Clot half-lysis time was delayed with obesity and age. Interleukin (IL-1β and IL-13 were increased with obesity and age respectively. Addition of exogenous fibrinogen, leptin, linoleic, or palmitic acid increased thrombin generation in plasma whereas adiponectin had an opposite effect. ETP was increased at the surface of VSMCs from obese rats and addition of exogenous palmitic acid further enhanced ETP values. Gelatinase activity was increased in aorta at both ages in obese rats and MMP-2 activity was increased in VSMCs from obese rats.Conclusions: Our study demonstrated in MetS an early prothrombotic phenotype of the blood compartment reinforced by procoagulant properties of dedifferentiated and inflammatory VSMCs. Mechanisms involved (1 increased fibrinogen and impaired fibrinolysis and (2 increased saturated fatty acids responsible for additive procoagulant effects. Whether specifically targeting this hypercoagulability using direct thrombin inhibitors would improve outcome in MetS is worth investigating.

  9. An energy storage and regeneration system

    DEFF Research Database (Denmark)

    2006-01-01

      The present invention relates to a method and a system for storing excess energy produced by an electric power plant during periods of lower energy demand than the power plant production capacity. The excess energy is stored by hydrolysis of water and storage of hydrogen and oxygen in underground...... caverns. When the energy demand exceeds the power production capacity of the plant, the stored gases are burned and the thermal energy is converted into electricity in gas turbine generators. The regenerated electrical power is then used to supplement the output of the electric power plant to meet...... the higher level of energy demand....

  10. Vertically- and horizontally-transmitted memories – the fading boundaries between regeneration and inheritance in planaria

    Directory of Open Access Journals (Sweden)

    Moran Neuhof

    2016-09-01

    Full Text Available The Weismann barrier postulates that genetic information passes only from the germline to the soma and not in reverse, thus providing an obstacle to the inheritance of acquired traits. Certain organisms such as planaria – flatworms that can reproduce through asymmetric fission – avoid the limitations of this barrier, thus blurring the distinction between the processes of inheritance and development. In this paper, we re-evaluate canonical ideas about the interaction between developmental, genetic and evolutionary processes through the lens of planaria. Biased distribution of epigenetic effects in asymmetrically produced parts of a regenerating organism could increase variation and therefore affect the species' evolution. The maintenance and fixing of somatic experiences, encoded via stable biochemical or physiological states, may contribute to evolutionary processes in the absence of classically defined generations. We discuss different mechanisms that could induce asymmetry between the two organisms that eventually develop from the regenerating parts, including one particularly fascinating source – the potential capacity of the brain to produce long-lasting epigenetic changes.

  11. Hospitality, Culture and Regeneration: Urban decay, entrepreneurship and the "ruin" bars of Budapest

    OpenAIRE

    Lugosi, Peter; Bell, David; Lugosi, Krisztina

    2010-01-01

    This paper considers the relationships between hospitality, culture and urban regeneration through an examination of rom (ruin) venues, which operate in dilapidated buildings in Budapest, Hungary. The paper reviews previous work on culture and urban regeneration in order to locate the role of hospitality within emerging debates. It subsequently interrogates the evolution of the rom phenomenon and demonstrates how, in this context, hospitality thrives because of social and physical decay in ur...

  12. Regenerable Carbon Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Regenerable Carbon Filter (RCF) is proposed for the removal of carbonaceous particulate matter produced in Environmental Control and Life Support (ECLS) processes....

  13. Active Nanomaterials to Meet the Challenge of Dental Pulp Regeneration.

    Science.gov (United States)

    Keller, Laetitia; Offner, Damien; Schwinté, Pascale; Morand, David; Wagner, Quentin; Gros, Catherine; Bornert, Fabien; Bahi, Sophie; Musset, Anne-Marie; Benkirane-Jessel, Nadia; Fioretti, Florence

    2015-11-05

    The vitality of the pulp is fundamental to the functional life of the tooth. For this aim, active and living biomaterials are required to avoid the current drastic treatment, which is the removal of all the cellular and molecular content regardless of its regenerative potential. The regeneration of the pulp tissue is the dream of many generations of dental surgeons and will revolutionize clinical practices. Recently, the potential of the regenerative medicine field suggests that it would be possible to achieve such complex regeneration. Indeed, three crucial steps are needed: the control of infection and inflammation and the regeneration of lost pulp tissues. For regenerative medicine, in particular for dental pulp regeneration, the use of nano-structured biomaterials becomes decisive. Nano-designed materials allow the concentration of many different functions in a small volume, the increase in the quality of targeting, as well as the control of cost and delivery of active molecules. Nanomaterials based on extracellular mimetic nanostructure and functionalized with multi-active therapeutics appear essential to reverse infection and inflammation and concomitantly to orchestrate pulp cell colonization and differentiation. This novel generation of nanomaterials seems very promising to meet the challenge of the complex dental pulp regeneration.

  14. Active Nanomaterials to Meet the Challenge of Dental Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Laetitia Keller

    2015-11-01

    Full Text Available The vitality of the pulp is fundamental to the functional life of the tooth. For this aim, active and living biomaterials are required to avoid the current drastic treatment, which is the removal of all the cellular and molecular content regardless of its regenerative potential. The regeneration of the pulp tissue is the dream of many generations of dental surgeons and will revolutionize clinical practices. Recently, the potential of the regenerative medicine field suggests that it would be possible to achieve such complex regeneration. Indeed, three crucial steps are needed: the control of infection and inflammation and the regeneration of lost pulp tissues. For regenerative medicine, in particular for dental pulp regeneration, the use of nano-structured biomaterials becomes decisive. Nano-designed materials allow the concentration of many different functions in a small volume, the increase in the quality of targeting, as well as the control of cost and delivery of active molecules. Nanomaterials based on extracellular mimetic nanostructure and functionalized with multi-active therapeutics appear essential to reverse infection and inflammation and concomitantly to orchestrate pulp cell colonization and differentiation. This novel generation of nanomaterials seems very promising to meet the challenge of the complex dental pulp regeneration.

  15. Identifying the conceptual evolution in the electromagnetism teaching, through a UEPS based on an automotive sound system generator of energy

    Directory of Open Access Journals (Sweden)

    Carla Beatriz Spohr

    2017-12-01

    Full Text Available In this study we present the proposal of a Potentially Significant Teaching Unit (UEPS for the teaching of electromagnetism from an electric circuit capable of transforming the sound energy emitted by the loudspeaker into electric energy to recharge the battery. This circuit was considered significant to present the relations between the concepts worked, for example, electric current and electromagnetic induction with the operation of speakers and microphones. For this purpose, academics of the Graduation Course in Natural Sciences (UNIPAMPA - Uruguaiana / RS proposed to elaborate, implement and evaluate a UEPS to teach concepts of electromagnetism for secundary-schooll students, based on the use of the electric circuit that has shown to be an instrument that provokes the motivation of the learner, one of the necessary conditions for the meaningful learning to occur. At the end of the UEPS, the motivation on the part of the academics responsible for teaching with theoretical foundations based on the constructivist theory of Ausubel, as well as on the part of the students of high school through the predisposition to learn, evidenced throughout the meetings was notorious. The results obtained in the present study compare the advances, setbacks and stagnations of the participating students in relation to the evidences of meaningful learning indicated through the answers given by the students to the beginning and the end of the meetings. The data indicate that the conceptual evolution is due to the planning and application of the UEPS, which sought to constantly observe the sequential organization of the contents to be developed, in a manner consistent with the dependency relations that naturally exist between them. In addition to the organization of the contents foreseen in the planning of the UEPS, each meeting was considered prior knowledge of the student, as well as the presence of subsumes in their cognitive structure to enable the anchoring of

  16. Review: Biological and Molecular Differences between Tail Regeneration and Limb Scarring in Lizard: An Inspiring Model Addressing Limb Regeneration in Amniotes.

    Science.gov (United States)

    Alibardi, Lorenzo

    2017-09-01

    Tissue regeneration in lizards represents a unique model of regeneration and scarring in amniotes. The tail and limb contain putative stem cells but also dedifferentiating cells contribute to regeneration. Following tail amputation, inflammation is low and cell proliferation high, leading to regeneration while the intense inflammation in the limb leads to low proliferation and scarring. FGFs stimulate tail and limb regeneration and are present in the wound epidermis and blastema while they disappear in the limb wound epidermis 2-3 weeks postamputation in the scarring outgrowth. FGFs localize in the tail blastema and the apical epidermal peg (AEP), an epidermal microregion that allows tail growth but is absent in the limb. Inflammatory cells invade the limb blastema and wound epidermis, impeding the formation of an AEP. An embryonic program of growth is activated in the tail, dominated by Wnt-positive and -negative regulators of cell proliferation and noncoding RNAs, that represent the key regenerative genes. The balanced actions of these regulators likely impede the formation of a tumor in the tail tip. Genes for FACIT and fibrillar collagens, protease inhibitors, and embryonic keratins are upregulated in the regenerating tail blastema. A strong downregulation of genes for both B and T-lymphocyte activation suggests the regenerating tail blastema is a temporal immune-tolerated organ, whereas a scarring program is activated in the limb. Wnt inhibitors, pro-inflammatory genes, negative regulators of cell proliferation, downregulation of myogenic genes, proteases, and oxidases favoring scarring are upregulated. The evolution of an efficient immune system may be the main limiting barrier for organ regeneration in amniotes, and the poor regeneration of mammals and birds is associated with the efficiency of their mature immune system. This does not tolerate embryonic antigens formed in reprogrammed embryonic cells (as for neoplastic cells) that are consequently

  17. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied by significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV

  18. Plasma skin regeneration technology.

    Science.gov (United States)

    Bogle, M A

    2006-09-01

    Plasma skin regeneration (PSR) technology uses energy delivered from plasma rather than light or radiofrequency. Plasma is the fourth state of matter in which electrons are stripped from atoms to form an ionized gas. The plasma is emitted in a millisecond pulse to deliver energy to target tissue upon contact without reliance on skin chromophores. The technology can be used at varying energies for different depths of effect, from superficial epidermal sloughing to deeper dermal heating. With the Portrait PSR device (Rhytec, Inc.) there are three treatment guidelines termed PSR1, PSR2, and PSR3. The PSR1 protocol uses a series of low-energy treatments (1.0,1.2 Joules) spaced 3 weeks apart. The PSR2 protocol uses one high-energy pass (3.0, 4.0 Joules) performed in a single treatment, and the PSR3 protocol uses two high-energy passes (3.0 4.0 Joules) performed in a single treatment. All protocols improve fine lines, textural irregularities, and dyspigmentation; however, skin tightening is probably more pronounced with the high-energy treatments.

  19. Regeneration mechanisms in Syllidae (Annelida)

    Science.gov (United States)

    Ribeiro, Rannyele P.

    2018-01-01

    Abstract Syllidae is one of the most species‐rich groups within Annelida, with a wide variety of reproductive modes and different regenerative processes. Syllids have striking ability to regenerate their body anteriorly and posteriorly, which in many species is redeployed during sexual (schizogamy) and asexual (fission) reproduction. This review summarizes the available data on regeneration in syllids, covering descriptions of regenerative mechanisms in different species as well as regeneration in relation to reproductive modes. Our survey shows that posterior regeneration is widely distributed in syllids, whereas anterior regeneration is limited in most of the species, excepting those reproducing by fission. The latter reproductive mode is well known for a few species belonging to Autolytinae, Eusyllinae, and Syllinae. Patterns of fission areas have been studied in these animals. Deviations of the regular regeneration pattern or aberrant forms such as bifurcated animals or individuals with multiple heads have been reported for several species. Some of these aberrations show a deviation of the bilateral symmetry and antero‐posterior axis, which, interestingly, can also be observed in the regular branching body pattern of some species of syllids. PMID:29721325

  20. Numerical modeling of the waves evolution generated by the depressurization of the vessels containing a supercritical parameters coolant

    Science.gov (United States)

    Alekseev, Maksim V.; Vozhakov, Ivan S.; Lezhnin, Sergey I.; Pribaturin, Nikolay A.

    2017-10-01

    The development of power plants focuses on increasing the parameters of water coolants up to a supercritical level. Depressurization of the unit circuits with such a coolant leads to emergency situations. Their scenarios can change significantly with the variation of initial pressure and temperature before the start of depressurization. When the pressure drops from the supercritical single-phase region of the initial thermodynamic parameters of the coolant, either the liquid boils up, or the vapor is condensed. Because of the rapid pressure decrease, the phase transition can be non-equilibrium that must be taken into account in the simulation. In the present study, an axisymmetric problem of the outflow of a water coolant from the pipe butt-end is considered. The equations of continuity, momentum and energy for a two-phase homogeneous mixture are solved numerically. The vapor and liquid properties are calculated using the TTSE software package (The Tabular Taylor Series Expansion Method). On the basis of the computer complex LCPFCT (The Flux-Corrected Transport Algorithm) the program code was developed for solving numerous problems on the depressurization of vessels or pipelines, containing superheated water or gas under high pressure. Different variants of outflow in the external model atmosphere and generation of waves are analyzed. The calculated data on the interaction of pressure waves with a barrier are calculated. To describe phase transitions, an asymptotic relaxation model of nonequilibrium evaporation and condensation has been created and tested.

  1. Diversity in theory and practice: A review with application to the evolution of renewable energy generation in the UK

    International Nuclear Information System (INIS)

    Cooke, Henrietta; Keppo, Ilkka; Wolf, Steven

    2013-01-01

    There is clear consensus on the value of diversity as applied to energy systems, with the concept being a central reference for governments, industry and civil society organizations. Given its importance in policy debates, we have sought to explore the specification and measurement of diversity. We show that although conceptualisation of diversity has developed over recent years, along with increasingly elegant mathematical representations, the concept is, at core, subjective and irreducibly context specific. Subjectivity derives from determination of boundaries and the placement of objects into categories, the acts that make assessment of diversity possible. We illustrate this point with an empirical analysis of the diversity of renewable energy generation in the UK over the past century. By applying a range of different indices and classifications to this dataset, we demonstrate that the ‘diversity story’ told is different in each case. As such we argue that the analysis of diversity must be produced and consumed critically. Attempts to expand, manage, measure or comment upon the diversity of a system, be it an ecosystem, an organization, an economy, or an energy portfolio, demand rigor, reflexivity and, most importantly, transparency. - Highlights: • We review concepts of diversity and approaches to diversity measurement. • We examine the inherent subjectivity associated with any such measurement. • We illustrate this by applying different diversity indices to the same dataset. • The dataset used is the UK renewable energy portfolio over the past 100 years. • Different measures yield different results telling different ‘diversity stories’

  2. Piezoelectric materials for tissue regeneration: A review.

    Science.gov (United States)

    Rajabi, Amir Hossein; Jaffe, Michael; Arinzeh, Treena Livingston

    2015-09-01

    The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues raised the question whether or not electric fields play an important role in cell function. It has kindled research and the development of technologies in emulating biological electricity for tissue regeneration. Promising effects of electrical stimulation on cell growth and differentiation and tissue growth has led to interest in using piezoelectric scaffolds for tissue repair. Piezoelectric materials can generate electrical activity when deformed. Hence, an external source to apply electrical stimulation or implantation of electrodes is not needed. Various piezoelectric materials have been employed for different tissue repair applications, particularly in bone repair, where charges induced by mechanical stress can enhance bone formation; and in neural tissue engineering, in which electric pulses can stimulate neurite directional outgrowth to fill gaps in nervous tissue injuries. In this review, a summary of piezoelectricity in different biological tissues, mechanisms through which electrical stimulation may affect cellular response, and recent advances in the fabrication and application of piezoelectric scaffolds will be discussed. The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues has kindled research and the development of technologies using electrical stimulation for tissue regeneration. Piezoelectric materials generate electrical activity in response to deformations and allow for the delivery of an electrical stimulus without the need for an external power source. As a scaffold for tissue engineering, growing interest exists due to its potential of providing electrical stimulation to cells to promote tissue formation. In this review, we cover the discovery of piezoelectricity in biological tissues, its connection to streaming potentials, biological response to electrical stimulation and

  3. Role of HHM coupling mechanisms on the evolution of rock masses around nuclear waste disposals in the context of gas generation

    International Nuclear Information System (INIS)

    Hoxha, D.; Do, D.-P.; Wendling, J.; Poutrel, A.

    2010-01-01

    Document available in extended abstract form only. This paper aims at modelling of long term evolution of hydro-mechanical state of rock masses around sealing nuclear waste disposals. In the principles of nuclear waste disposals the geological barrier must play a long term confining role in respect with nuclide transport. In terms of hydro-mechanical properties this calls for managing the damage around the underground workings of the waste disposals. In particular the seal buffers and barrier rock will support the generation of hydrogen of different origins, mainly from the corrosion of steals used in various elements of a nuclear waste disposal. This generation would generate gas pressures sufficiently high to partially dry seal or barrier rock leading to a redistribution of stress around underground openings, to a reactivation of the rock damage and finally could put in question the concept of geological barrier itself. The object of this paper is to shed light in the mechanisms of HHM coupling in rocks around a repository by comparative numerical analyses. Basically, we chose two configurations to proceed with analyses: one in plan strain conditions and the other an axial symmetric configuration. The goal of the first configuration is the assessment of gas pressure evolution in the openings of a repository. The principal input of the problem is the kinetics of gas generation (H 2 generation) given by a step-wise function of time describing the gas generation of one single nuclear waste coli. Then known the repository architecture one could easily calculate the mass of gas generated on one access gallery. Since extreme scenario is studied, we suppose that the gas generated by the set of alveoli is fully located in the access gallery and only a radial gas flux is possible.The hydro mechanical properties of rocks up to the surface were taken into account. For the callovo-Oxfordian clay that constitutes barrier rock in immediate neighbouring of the gallery a model

  4. Molecular size evolution of oligomers in organic aerosols collected in urban atmospheres and generated in a smog chamber.

    Science.gov (United States)

    Kalberer, Markus; Sax, Mirjam; Samburova, Vera

    2006-10-01

    Only a minor fraction of the total organic aerosol mass can be resolved on a molecular level. High molecular weight compounds in organic aerosols have recently gained much attention because this class of compound potentially explains a major fraction of the unexplained organic aerosol mass. These compounds have been identified with different mass spectrometric methods, and compounds with molecular masses up to 1000 Da are found in secondary organic aerosols (SOA) generated from aromatic and terpene precursors in smog chamber experiments. Here, we apply matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to SOA particles from two biogenic precursors, alpha-pinene and isoprene. Similar oligomer patterns are found in these two SOA systems, but also in SOA from trimethylbenzene, an anthropogenic SOA precursor. However, different maxima molecular sizes were measured for these three SOA systems. While oligomers in alpha-pinene and isoprene have sizes mostly below 600-700 Da, they grow up to about 1000 Da in trimethylbenzene-SOA. The final molecular size of the oligomers is reached early during the particle aging process, whereas other particle properties related to aging, such as the overall acid concentration or the oligomer concentration, increase continuously over a much longer time scale. This kinetic behavior of the oligomer molecular size growth can be explained by a chain growth kinetic regime. Similar oligomer mass patterns were measured in aqueous extracts of ambient aerosol samples (measured with the same technique). Distinct differences between summer and winter were observed. In summer a few single mass peaks were measured with much higher intensity than in winter, pointing to a possible difference in the formation processes of these compounds in winter and summer.

  5. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Directory of Open Access Journals (Sweden)

    Wataru Sonoyama

    2006-12-01

    Full Text Available Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla. Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  6. Electro regeneration of iodide loaded resin. Contributed Paper RD-18

    International Nuclear Information System (INIS)

    Kumar, Ratnesh; Kumar, T.; Sree Kumar, B.; Seshadri, K.S.; Paul, Biplob

    2014-01-01

    Spent resins generated in the nuclear reactor contain essentially cationic activities due to Cesium, Strontium, Cobalt, and anionic activities due to Iodide, Iodate etc with activity loading to the extent of 0.1 Cim -3 and a surface dose of the order of 5 R. It is necessary to convert the spent resin into innocuous, reusable forms. An attempt has been made to regenerate Iodide containing spent resin into OH - electrolytically by using the OH - produced at the cathode compartment of an electrolytic cell. Results show that the regeneration of the spent resin containing Iodide could be completely accomplished electrolytically more efficiently than by addition of alkali. (author)

  7. Endogenous Ion Dynamics in Cell Motility and Tissue Regeneration

    International Nuclear Information System (INIS)

    Özkucur, N; Perike, S; Epperlein, H H; Funk, R H W

    2011-01-01

    Directional cell migration is an essential process, including regeneration of tissues, wound healing, and embryonic development. Cells achieve persistent directional migration by polarizing the spatiotemporal components involved in the morphological polarity. Ion transporter proteins situated at the cell membrane generates small electric fields that can induce directional cell motility. Besides them, externally applied direct current electric fields induce similar kind of responses as cell orientation and directional migration. However, the bioelectric mechanisms that lead to cellular directedness are poorly understood. Therefore, understanding the bioelectric signaling cues can serve as a powerful modality in controlling the cell behaviour, which can contribute additional insights for development and regeneration.

  8. Constellation-X to Generation-X: evolution of large collecting area moderate resolution grazing incidence x-ray telescopes to larger area high-resolution adjustable optics

    Science.gov (United States)

    Reid, Paul B.; Cameron, Robert A.; Cohen, Lester; Elvis, Martin; Gorenstein, Paul; Jerius, Diab; Petre, Robert; Podgorski, William A.; Schwartz, Daniel A.; Zhang, William W.

    2004-10-01

    Large collecting area x-ray telescopes are designed to study the early Universe, trace the evolution of black holes, stars and galaxies, study the chemical evolution of the Universe, and study matter in extreme environments. The Constellation-X mission (Con-X), planned for launch in 2016, will provide ~ 10^4 cm^2 collecting area with 15 arc-sec resolution, with a goal of 5 arc-sec. Future missions require larger collecting area and finer resolution. Generation-X (Gen-X), a NASA Visions Mission, will achieve 100 m^2 effective area at 1 keV and angular resolution of 0.1 arc-sec, half power diameter. We briefly describe the Con-X flowdown of imaging requirements to reflector figure error. To meet requirements beyond Con-X, Gen-X optics will be thinner and more accurately shaped than has ever been accomplished. To meet these challenging goals, we incorporate for the first time active figure control with grazing incidence optics. Piezoelectric material will be deposited in discrete cells directly on the back surface of the optical segments, with the strain directions oriented parallel to the surface. Differential strain between the two layers of the mirror causes localized bending in two directions, enabling local figure control. Adjusting figure on-orbit eases fabrication and metrology. The ability to make changes to mirror figure adds margin by mitigating risk due to launch-induced deformations and/or on-orbit degradation. We flowdown the Gen-X requirements to mirror figure and four telescope designs, and discuss various trades between the designs.

  9. Experiments on cold trap regeneration by NaH decomposition

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Skladzien, S.B.; Raue, D.J.

    1979-10-01

    Cold trap regeneration may be very important in future LMFBRs because of the expected high hydrogen source from the steam generators. This hydrogen precipitates as NaH in the cold trap and may fill the trap within one year of operation. Several methods of cold trap regeneration were considered, but the simplest and least expensive appears to be decomposition of NaH under vacuum at elevated temperatures. Experiments were done to assess the feasibility of this method for cold trap regeneration. Small-scale simulated cold traps (SCT) were located with NaH and NaH plus Na 2 O, and were heated both under vacuum and under a sweep gas at 100 kPa. The evolved hydrogen was converted to water by a CuO bed and collected in a weighting tube

  10. Motor Axonal Regeneration After Partial and Complete Spinal Cord Transection

    Science.gov (United States)

    Lu, Paul; Blesch, Armin; Graham, Lori; Wang, Yaozhi; Samara, Ramsey; Banos, Karla; Haringer, Verena; Havton, Leif; Weishaupt, Nina; Bennett, David; Fouad, Karim; Tuszynski, Mark H.

    2012-01-01

    We subjected rats to either partial mid-cervical or complete upper thoracic spinal cord transections and examined whether combinatorial treatments support motor axonal regeneration into and beyond the lesion. Subjects received cAMP injections into brainstem reticular motor neurons to stimulate their endogenous growth state, bone marrow stromal cell grafts in lesion sites to provide permissive matrices for axonal growth, and brain-derived neurotrophic factor (BDNF) gradients beyond the lesion to stimulate distal growth of motor axons. Findings were compared to several control groups. Combinatorial treatment generated motor axon regeneration beyond both C5 hemisection and complete transection sites. Yet despite formation of synapses with neurons below the lesion, motor outcomes worsened after partial cervical lesions and spasticity worsened after complete transection. These findings highlight the complexity of spinal cord repair, and the need for additional control and shaping of axonal regeneration. PMID:22699902

  11. [Guided bone regeneration: general survey].

    Science.gov (United States)

    Cosyn, Jan; De Bruyn, Hugo

    2009-01-01

    The principle of 'guided bone regeneration' was first described in 1988 on the basis of animal-experimental data. Six weeks after transmandibular defects had been created and protected by non-resorbable teflonmembranes, complete bone regeneration was found. The technique was based on the selective repopulation of the wound: every infiltration of cells outside the neighbouring bone tissue was prevented by the application of the membrane. Additional animal experiments showed that guided bone regeneration was a viable treatment option for local bone defects surrounding dental implants. Clinical practice, however, showed that premature membrane exposure was a common complication, which was responsible for a tremendous reduction in regenerated bone volume. In addition, a second surgical intervention was always necessary to remove the membrane. As a result, resorbable alternatives were developed. Since these are less rigid, bone fillers are usually used simultaneously. These comprise autogenous bone chips and bone substitutes from allogenic or xenogenic origine. Also alloplastic materials could be used for this purpose. Based on their characteristics this article provides an overview of the biomaterials that could be considered for guided bone regeneration. Specific attention goes to their application in clinical practice.

  12. Polymorphic regenerated silk fibers assembled through bioinspired spinning.

    Science.gov (United States)

    Ling, Shengjie; Qin, Zhao; Li, Chunmei; Huang, Wenwen; Kaplan, David L; Buehler, Markus J

    2017-11-09

    A variety of artificial spinning methods have been applied to produce regenerated silk fibers; however, how to spin regenerated silk fibers that retain the advantages of natural silks in terms of structural hierarchy and mechanical properties remains challenging. Here, we show a bioinspired approach to spin regenerated silk fibers. First, we develop a nematic silk microfibril solution, highly viscous and stable, by partially dissolving silk fibers into microfibrils. This solution maintains the hierarchical structures in natural silks and serves as spinning dope. It is then spun into regenerated silk fibers by direct extrusion in the air, offering a useful route to generate polymorphic and hierarchical regenerated silk fibers with physical properties beyond natural fiber construction. The materials maintain the structural hierarchy and mechanical properties of natural silks, including a modulus of 11 ± 4 GPa, even higher than natural spider silk. It can further be functionalized with a conductive silk/carbon nanotube coating, responsive to changes in humidity and temperature.

  13. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    Science.gov (United States)

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  14. Microwave regeneration of molecular sieves

    International Nuclear Information System (INIS)

    Singh, V.P.

    1984-05-01

    Molecular sieve driers have been included in the design of tritium handling systems for fusion reactors. In these systems there is a need to maintain extremely low exit dew points from the driers as well as a capability to rapidly reduce tritium concentrations following an accident. The required capacity of the driers is very high. The conventional method of regenerating these sieves after a water adsorption cycle is with hot air. However, because water is rapidly heated by microwave energy, this technology may be suitable for decreasing the bed regeneration time and hence may allow reduced capital and operating costs associated with a smaller bed. The present study was conducted to obtain preliminary information on the technical feasibility of regenerating molecular sieves with microwave energy. The study concentrated on Type 4A molecular sieve with a few tests on Type 13X sieve and also a silica gel adsorbent

  15. Regenerator cross arm seal assembly

    Science.gov (United States)

    Jackman, Anthony V.

    1988-01-01

    A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.

  16. Revolutionizing Our Understanding of AGN Feedback and its Importance to Galaxy Evolution in the Era of the Next Generation Very Large Array

    Science.gov (United States)

    Nyland, K.; Harwood, J. J.; Mukherjee, D.; Jagannathan, P.; Rujopakarn, W.; Emonts, B.; Alatalo, K.; Bicknell, G. V.; Davis, T. A.; Greene, J. E.; Kimball, A.; Lacy, M.; Lonsdale, Carol; Lonsdale, Colin; Maksym, W. P.; Molnár, D. C.; Morabito, L.; Murphy, E. J.; Patil, P.; Prandoni, I.; Sargent, M.; Vlahakis, C.

    2018-05-01

    Energetic feedback by active galactic nuclei (AGNs) plays an important evolutionary role in the regulation of star formation on galactic scales. However, the effects of this feedback as a function of redshift and galaxy properties such as mass, environment, and cold gas content remain poorly understood. The broad frequency coverage (1 to 116 GHz), high sensitivity (up to ten times higher than the Karl G. Jansky Very Large Array), and superb angular resolution (maximum baselines of at least a few hundred kilometers) of the proposed next-generation Very Large Array (ngVLA) are uniquely poised to revolutionize our understanding of AGNs and their role in galaxy evolution. Here, we provide an overview of the science related to AGN feedback that will be possible in the ngVLA era and present new continuum ngVLA imaging simulations of resolved radio jets spanning a wide range of intrinsic extents. We also consider key computational challenges and discuss exciting opportunities for multiwavelength synergy with other next-generation instruments, such as the Square Kilometer Array and the James Webb Space Telescope. The unique combination of high-resolution, large collecting area, and wide frequency range will enable significant advancements in our understanding of the effects of jet-driven feedback on sub-galactic scales, particularly for sources with extents of a few parsec to a few kiloparsec, such as young and/or lower-power radio AGNs, AGNs hosted by low-mass galaxies, radio jets that are interacting strongly with the interstellar medium of the host galaxy, and AGNs at high redshift.

  17. "We Was Regenerated Out": Regeneration, Recycling and Devaluing Communities

    Directory of Open Access Journals (Sweden)

    Luna Glucksberg

    2014-12-01

    Full Text Available This article looks at well documented processes of urban regeneration and community displacement in the inner-city through an innovative anthropological perspective focused on concepts of waste and value. Using the notion of symbolic devaluation of the working classes developed by Skeggs (1997; 2004, it traces their exclusion from recycling practices while at the same time the estates they live on are being regenerated. Raising questions about the parallels and contradictions between regeneration and recycling, it shows how symbolic devaluation of specifi c areas and their inhabitants are necessary precursors of the physical demolition and removal that characterize regeneration processes. Through an ethnographic approach, the deep connections between people and their waste, and people as waste, are exposed and questioned, showing how valuable middle class selves are produced through appropriate waste management procedures, i.e. individualized recycling, while inner-city, estate dwellers are remade into uncaring, unworthy citizens who cannot take part in this value-producing circuit.

  18. An Ambystoma mexicanum EST sequencing project: analysis of 17,352 expressed sequence tags from embryonic and regenerating blastema cDNA libraries

    Science.gov (United States)

    Habermann, Bianca; Bebin, Anne-Gaelle; Herklotz, Stephan; Volkmer, Michael; Eckelt, Kay; Pehlke, Kerstin; Epperlein, Hans Henning; Schackert, Hans Konrad; Wiebe, Glenis; Tanaka, Elly M

    2004-01-01

    Background The ambystomatid salamander, Ambystoma mexicanum (axolotl), is an important model organism in evolutionary and regeneration research but relatively little sequence information has so far been available. This is a major limitation for molecular studies on caudate development, regeneration and evolution. To address this lack of sequence information we have generated an expressed sequence tag (EST) database for A. mexicanum. Results Two cDNA libraries, one made from stage 18-22 embryos and the other from day-6 regenerating tail blastemas, generated 17,352 sequences. From the sequenced ESTs, 6,377 contigs were assembled that probably represent 25% of the expressed genes in this organism. Sequence comparison revealed significant homology to entries in the NCBI non-redundant database. Further examination of this gene set revealed the presence of genes involved in important cell and developmental processes, including cell proliferation, cell differentiation and cell-cell communication. On the basis of these data, we have performed phylogenetic analysis of key cell-cycle regulators. Interestingly, while cell-cycle proteins such as the cyclin B family display expected evolutionary relationships, the cyclin-dependent kinase inhibitor 1 gene family shows an unusual evolutionary behavior among the amphibians. Conclusions Our analysis reveals the importance of a comprehensive sequence set from a representative of the Caudata and illustrates that the EST sequence database is a rich source of molecular, developmental and regeneration studies. To aid in data mining, the ESTs have been organized into an easily searchable database that is freely available online. PMID:15345051

  19. Evaluating remote control and robotics actions in NPPs in an ALARA perspective: lessons from the evolution of steam generator tube plugging technique in France

    International Nuclear Information System (INIS)

    Lefaure, C.; Lochard, J.; Blain, A.

    1989-01-01

    Introducing remote tooling and robotics in NPPs raises many questions. Is it better to develop specific robotic tools for each type of operation, or to conceive more generic multipurpose tool carriers. Does the introduction of remote control and robotics always reduce human involvement and collective doses. What are the impacts on individual doses distribution for the most exposed operators. Under what conditions is robotics justified from an economical point of view. Even if robotics and remote tooling actions can reduce significantly individual and collective exposures, because of their high costs of development, they will be adopted only if simultaneously the potential for operational cost savings is also clearly demonstrated. Integrating operational cost savings in the cost evaluation of the ALARA procedure is important to compare and select among different robotics and remote control actions. This paper presents how to evaluate in a systematic way dose reductions, operational costs savings as well as the conditions under which robotics and remote control actions can effectively improve occupational radiation protection in NPPs. The demonstration is based on an analysis of the evolution of the steam generator tube plugging technique developed in French PWRs

  20. Plant Regeneration and Genetic Transformation in Eggplant ...

    African Journals Online (AJOL)

    Dr Harmander Gill

    2014-02-05

    Feb 5, 2014 ... Review. Plant regeneration in eggplant (Solanum melongena L.): A review ... and development of somatic hybrids, efficient plant regeneration ... was first reported in eggplant from immature seed embryos .... Hormone free MS.

  1. Skeletal muscle regeneration is modulated by inflammation

    Directory of Open Access Journals (Sweden)

    Wenjun Yang

    2018-04-01

    Full Text Available Skeletal muscle regeneration is a complex process orchestrated by multiple steps. Recent findings indicate that inflammatory responses could play central roles in bridging initial muscle injury responses and timely muscle injury reparation. The various types of immune cells and cytokines have crucial roles in muscle regeneration process. In this review, we briefly summarise the functions of acute inflammation in muscle regeneration. The translational potential of this article: Immune system is closely relevant to the muscle regeneration. Understanding the mechanisms of inflammation in muscle regeneration is therefore critical for the development of effective regenerative, and therapeutic strategies in muscular disorders. This review provides information for muscle regeneration research regarding the effects of inflammation on muscle regeneration. Keywords: Chronic muscle disorders, Cytokines, Immune cells, Inflammation, Muscle regeneration, Muscle stem cells

  2. Generation: the case for evolution

    International Nuclear Information System (INIS)

    Sharman, Hugh

    1994-01-01

    This article puts forward the case for conventional coal fired power stations. The dash for gas is examined, and the case for an international coal supply, and for conventionally fired boilers with Rankine-cycle and de-NO x /flue-gas desulphurisation is considered. Flue gas cleaning and large scale diesel engines are discussed. (UK)

  3. Modelling and simulation of regenerators with complex flow arrangements for active magnetocaloric refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Nielsen, Kaspar Kirstein; Engelbrecht, Kurt

    2014-01-01

    Compared to a conventional vapor compression refrigera-tion system, a magnetocaloric refrigerator has many advantages, such as potentially high efficiency, low vibration and avoidance of refrigerants that deplete the ozone layer and cause the green-house effect. As a main component of the active...... magnetic re-generative refrigerator, the regenerator plays an important role in the cooling performance and efficiency of the whole system. However, the regenerator design is constrained by several exter-nal factors, such as the geometry of the magnetic field source and flow resistance. In this work, novel...... regenerators with complex flow arrange-ments, providing high performance at lower pressure drop, are investigated. Correspondingly a one dimensional model is pre-sented and comparative studies between novel and conventional regenerators are carried out by simulation. The effect of regen-erator geometries...

  4. Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance.

    Science.gov (United States)

    Ando, Kazunori; Shibata, Eri; Hans, Stefan; Brand, Michael; Kawakami, Atsushi

    2017-12-04

    Mammals cannot re-form heavily damaged bones as in large fracture gaps, whereas zebrafish efficiently regenerate bones even after amputation of appendages. However, the source of osteoblasts that mediate appendage regeneration is controversial. Several studies in zebrafish have shown that osteoblasts are generated by dedifferentiation of existing osteoblasts at injured sites, but other observations suggest that de novo production of osteoblasts also occurs. In this study, we found from cell-lineage tracing and ablation experiments that a group of cells reserved in niches serves as osteoblast progenitor cells (OPCs) and has a significant role in fin ray regeneration. Besides regeneration, OPCs also supply osteoblasts for normal bone maintenance. We further showed that OPCs are derived from embryonic somites, as is the case with embryonic osteoblasts, and are replenished from mesenchymal precursors in adult zebrafish. Our findings reveal that reserved progenitors are a significant and complementary source of osteoblasts for zebrafish bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. QPSK regeneration without active phase-locking

    DEFF Research Database (Denmark)

    Kjøller, Niels-Kristian; Da Ros, Francesco; Røge, Kasper Meldgaard

    2016-01-01

    QPSK regeneration without active phase stabilization is investigated in numerical simulations. We propose an improved scheme for phase-locking free QPSK regeneration showing significant improvements in the error vector magnitude of the signal.......QPSK regeneration without active phase stabilization is investigated in numerical simulations. We propose an improved scheme for phase-locking free QPSK regeneration showing significant improvements in the error vector magnitude of the signal....

  6. A Conserved MicroRNA Regulatory Circuit Is Differentially Controlled during Limb/Appendage Regeneration.

    Directory of Open Access Journals (Sweden)

    Benjamin L King

    Full Text Available Although regenerative capacity is evident throughout the animal kingdom, it is not equally distributed throughout evolution. For instance, complex limb/appendage regeneration is muted in mammals but enhanced in amphibians and teleosts. The defining characteristic of limb/appendage regenerative systems is the formation of a dedifferentiated tissue, termed blastema, which serves as the progenitor reservoir for regenerating tissues. In order to identify a genetic signature that accompanies blastema formation, we employ next-generation sequencing to identify shared, differentially regulated mRNAs and noncoding RNAs in three different, highly regenerative animal systems: zebrafish caudal fins, bichir pectoral fins and axolotl forelimbs.These studies identified a core group of 5 microRNAs (miRNAs that were commonly upregulated and 5 miRNAs that were commonly downregulated, as well as 4 novel tRNAs fragments with sequences conserved with humans. To understand the potential function of these miRNAs, we built a network of 1,550 commonly differentially expressed mRNAs that had functional relationships to 11 orthologous blastema-associated genes. As miR-21 was the most highly upregulated and most highly expressed miRNA in all three models, we validated the expression of known target genes, including the tumor suppressor, pdcd4, and TGFβ receptor subunit, tgfbr2 and novel putative target genes such as the anti-apoptotic factor, bcl2l13, Choline kinase alpha, chka and the regulator of G-protein signaling, rgs5.Our extensive analysis of RNA-seq transcriptome profiling studies in three regenerative animal models, that diverged in evolution ~420 million years ago, reveals a common miRNA-regulated genetic network of blastema genes. These comparative studies extend our current understanding of limb/appendage regeneration by identifying previously unassociated blastema genes and the extensive regulation by miRNAs, which could serve as a foundation for future

  7. Nanostructured Mesoporous Silicas for Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Isabel Izquierdo-Barba

    2008-01-01

    Full Text Available The research on the development of new biomaterials that promote bone tissue regeneration is receiving great interest by the biomedical scientific community. Recent advances in nanotechnology have allowed the design of materials with nanostructure similar to that of natural bone. These materials can promote new bone formation by inducing the formation of nanocrystalline apatites analogous to the mineral phase of natural bone onto their surfaces, i.e. they are bioactive. They also stimulate osteoblast proliferation and differentiation and, therefore, accelerate the healing processes. Silica-based ordered mesoporous materials are excellent candidates to be used as third generation bioceramics that enable the adsorption and local control release of biological active agents that promote bone regeneration. This local delivery capability together with the bioactive behavior of mesoporous silicas opens up promising expectations in the bioclinical field. In this review, the last advances in nanochemistry aimed at designing and tailoring the chemical and textural properties of mesoporous silicas for biomedical applications are described. The recent developed strategies to synthesize bioactive glasses with ordered mesopore arrangements are also summarized. Finally, a deep discussion about the influence of the textural parameters and organic modification of mesoporous silicas on molecules adsorption and controlled release is performed.

  8. Hospitality, culture and regeneration: urban decay, entrepreneurship and the "ruin" bars of Budapest.

    Science.gov (United States)

    Lugosi, Peter; Bell, David; Lugosi, Krisztina

    2010-01-01

    This paper considers the relationships between hospitality, culture and urban regeneration through an examination of rom (ruin) venues, which operate in dilapidated buildings in Budapest, Hungary. The paper reviews previous work on culture and urban regeneration in order to locate the role of hospitality within emerging debates. It subsequently interrogates the evolution of the rom phenomenon and demonstrates how, in this context, hospitality thrives because of social and physical decay in urban locations, how operators and entrepreneurs exploit conflicts among various actors involved in regeneration and how hospitality may be mobilised purposefully in the regeneration process. The paper demonstrates how networked entrepreneurship maintains these operations and how various forms of cultural production are entangled and mobilised in the venues' hospitality propositions.

  9. Guide to Regeneration of Bottomland Hardwoods

    Science.gov (United States)

    Martha R. McKevlin

    1992-01-01

    This guide will help landowners, consulting foresters, and public service foresters regenerate bottomland hardwoods. It discusses (1) interpretation of site characteristics, (2) selection of species, and (3) selection of regeneration methods. A dichotomous key for selection of appropriate regeneration methods under various conditions is presented.

  10. All optical regeneration using semiconductor devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Tromborg, Bjarne

    All-optical regeneration is a key functionality for implementing all-optical networks. We present a simple theory for the bit-error-rate in links employing all-optical regenerators, which elucidates the interplay between the noise and and nonlinearity of the regenerator. A novel device structure ...... is analyzed, emphasizing general aspects of active semiconductor waveguides....

  11. Semiconductor devices for all-optical regeneration

    DEFF Research Database (Denmark)

    Öhman, Filip; Bischoff, Svend; Tromborg, Bjarne

    2003-01-01

    We review different implementations of semiconductor devices for all-optical regeneration. A general model will be presented for all-optical regeneration in fiber links, taking into consideration the trade-off between non-linearity and noise. Furthermore we discuss a novel regenerator type, based...

  12. The blastema and epimorphic regeneration in mammals.

    Science.gov (United States)

    Seifert, Ashley W; Muneoka, Ken

    2018-01-15

    Studying regeneration in animals where and when it occurs is inherently interesting and a challenging research topic within developmental biology. Historically, vertebrate regeneration has been investigated in animals that display enhanced regenerative abilities and we have learned much from studying organ regeneration in amphibians and fish. From an applied perspective, while regeneration biologists will undoubtedly continue to study poikilothermic animals (i.e., amphibians and fish), studies focused on homeotherms (i.e., mammals and birds) are also necessary to advance regeneration biology. Emerging mammalian models of epimorphic regeneration are poised to help link regenerative biology and regenerative medicine. The regenerating rodent digit tip, which parallels human fingertip regeneration, and the regeneration of large circular defects through the ear pinna in spiny mice and rabbits, provide tractable, experimental systems where complex tissue structures are regrown through blastema formation and morphogenesis. Using these models as examples, we detail similarities and differences between the mammalian blastema and its classical counterpart to arrive at a broad working definition of a vertebrate regeneration blastema. This comparison leads us to conclude that regenerative failure is not related to the availability of regeneration-competent progenitor cells, but is most likely a function of the cellular response to the microenvironment that forms following traumatic injury. Recent studies demonstrating that targeted modification of this microenvironment can restrict or enhance regenerative capabilities in mammals helps provide a roadmap for eventually pushing the limits of human regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. MECHANICAL REGENERATION OF SAND WASTE

    Directory of Open Access Journals (Sweden)

    D. I. Gnir

    2005-01-01

    Full Text Available The experimental activation of the sand regenerator of the firm SINTO is carried out at ОАО “MZOO". It is shown that sand grains are cleared from films of binding agents, that allows to use the treated sand for preparation of agglutinant and core sands.

  14. Periodontal regeneration around natural teeth.

    Science.gov (United States)

    Garrett, S

    1996-11-01

    1. Evidence is conclusive (Table 2) that periodontal regeneration in humans is possible following the use of bone grafts, guided tissue regeneration procedures, both without and in combination with bone grafts, and root demineralization procedures. 2. Clinically guided tissue regeneration procedures have demonstrated significant positive clinical change beyond that achieved with debridement alone in treating mandibular and maxillary (buccal only) Class II furcations. Similar data exist for intraosseous defects. Evidence suggests that the use of bone grafts or GTR procedures produce equal clinical benefit in treating intraosseous defects. Further research is necessary to evaluate GTR procedures compared to, or combined with, bone grafts in treating intraosseous defects. 3. Although there are some data suggesting hopeful results in Class II furcations, the clinical advantage of procedures combining present regenerative techniques remains to be demonstrated. Additional randomized controlled trials with sufficient power are needed to demonstrate the potential usefulness of these techniques. 4. Outcomes following regenerative attempts remain somewhat variable with differences in results between studies and individual subjects. Some of this variability is likely patient related in terms of compliance with plaque control and maintenance procedures, as well as personal habits; e.g., smoking. Variations in the defects selected for study may also affect predictability of outcomes along with other factors. 5. There is evidence to suggest that present regenerative techniques lead to significant amounts of regeneration at localized sites on specific teeth. However, if complete regeneration is to become a reality, additional stimuli to enhance the regenerative process are likely needed. Perhaps this will be accomplished in the future, with combined procedures that include appropriate polypeptide growth factors or tissue factors to provide additional stimulus.

  15. Neurotrophic regulation of fibroblast dedifferentiation during limb skeletal regeneration in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M

    2010-01-15

    The ability of animals to repair tissue damage is widespread and impressive. Among tissues, the repair and remodeling of bone occurs during growth and in response to injury; however, loss of bone above a threshold amount is not regenerated, resulting in a "critical-size defect" (CSD). The development of therapies to replace or regenerate a CSD is a major focus of research in regenerative medicine and tissue engineering. Adult urodeles (salamanders) are unique in their ability to regenerate complex tissues perfectly, yet like mammals do not regenerate a CSD. We report on an experimental model for the regeneration of a CSD in the axolotl (the Excisional Regeneration Model) that allows for the identification of signals to induce fibroblast dedifferentiation and skeletal regeneration. This regenerative response is mediated in part by BMP signaling, as is the case in mammals; however, a complete regenerative response requires the induction of a population of undifferentiated, regeneration-competent cells. These cells can be induced by signaling from limb amputation to generate blastema cells that can be grafted to the wound, as well as by signaling from a nerve and a wound epithelium to induce blastema cells from fibroblasts within the wound environment. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Optical Regeneration and Noise in Semiconductor Devices

    DEFF Research Database (Denmark)

    Öhman, Filip

    2005-01-01

    In this report all-optical 2R-regeneration in optical communication systems is investigated. A simple regenerator device based on concatenated semiconductor optical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined. Experiments show that the monolithic SOA-EA 2R-regenerator......In this report all-optical 2R-regeneration in optical communication systems is investigated. A simple regenerator device based on concatenated semiconductor optical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined. Experiments show that the monolithic SOA-EA 2R...

  17. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration.

    Science.gov (United States)

    Mahmoud, Ahmed I; O'Meara, Caitlin C; Gemberling, Matthew; Zhao, Long; Bryant, Donald M; Zheng, Ruimao; Gannon, Joseph B; Cai, Lei; Choi, Wen-Yee; Egnaczyk, Gregory F; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Poss, Kenneth D; Lee, Richard T

    2015-08-24

    Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Osseointegration of subperiosteal implant via guided tissue regeneration. A pilot study

    DEFF Research Database (Denmark)

    Hjørting-Hansen, E; Helbo, M; Aaboe, M

    1995-01-01

    The principle of guided tissue regeneration was applied in an attempt to generate bone to cover a subperiosteal implant. Titanium frame works, casted on individual impressions of the anterior surface of the tibia of 4 Copenhagen White rabbits, were stabilized to the tibia by microscrews, and half...... of them were covered by an expanded polytetrafluoroethylene augmentation membrane. The observation period was 12 weeks. Guided bone regeneration partly covering the implants was seen at all experimental sides; on the control sides the implants were mainly embedded in fibrous tissue. Studies...... are in progress with the aim of reducing marked marrow space formation observed in all the regenerated areas....

  19. Chemical strategies for pancreatic β cell differentiation, reprogramming, and regeneration.

    Science.gov (United States)

    Ma, Xiaojie; Zhu, Saiyong

    2017-04-01

    Generation of unlimited functional pancreatic β cells is critical for the study of pancreatic biology and treatment of diabetes mellitus. Recent advances have suggested several promising directions, including directed differentiation of pancreatic β cells from pluripotent stem cells, reprogramming of pancreatic β cells from other types of somatic cells, and stimulated proliferation and enhanced functions of existing pancreatic β cells. Small molecules are useful in generating unlimited numbers of functional pancreatic cells in vitro and could be further developed as drugs to stimulate endogenous pancreatic regeneration. Here, we provide an updated summary of recent major achievements in pancreatic β cell differentiation, reprogramming, proliferation, and function. These studies will eventually lead to significant advances in the field of pancreatic biology and regeneration. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Lead-cooled hybrid reactors and fuel regeneration for energy production and incineration evolution of physical parameters and induced radiotoxicity; Capacites des reacteurs hybrides au plomb pour la production d'energie et l'incineration avec multirecyclage des combustibles evolution des parametres physiques radiotoxicites induites

    Energy Technology Data Exchange (ETDEWEB)

    David, S

    1999-07-01

    The concept of accelerator driven subcritical reactors (hybrid reactors), as re-launched in the beginning of the 1990's by C. Rubbia and C.D. Bowman, allows to open new paths in the management of radioactive wastes. This work treats, first, of the study of the neutron multiplication characteristics in a subcritical reactor core and shows the fundamental differences with critical systems and the advantages that follow. This study is based on the series of measurements performed at Cadarache (Muse experiment), the first results of which are presented. The subcritical property of an hybrid reactor makes this system very flexible and allows to foresee different uses, like the energy production or the incineration of wastes. The second part of this work deals with the Monte Carlo simulation of the capacities of fast spectrum and lead-cooled hybrid systems to produce energy by using different fuel cycles (uranium and thorium), and in the same time regenerating the fissile matter and keeping the reactivity up without any external intervention. Different types of fuel multi-recycles are considered. The results allow to quantify the advantages linked with the use of the thorium cycle, in particular in terms of radiotoxicity abatement. The study of the intermediate steps necessary to develop this reactor technology with the present day fuels (plutonium from thermal reactors and enriched uranium) proposes an efficient management of the actinides produced by today's reactors which are used as auxiliary fissile materials. Finally, the incineration of actinides at the end of the cycle (shutdown scenario) is considered and allows to describe the advantage of lead-cooled hybrid systems for the abatement of the radiotoxicity of an inventory at the end of cycle. (J.S.)

  1. Modeling, numerical simulation and optimal control of plasma configuration evolution for the NET Tokamak and for the future generation of nuclear fusion

    International Nuclear Information System (INIS)

    Bourbon, F.

    1993-03-01

    The present thesis treats of the modeling, of the numerical simulation and equilibrium optimal control and configuration evolution of the plasma in a tokamak. In the first chapter, we establish the problem of equilibrium of the plasma by the finite elements method and a Newton algorithm. Then, we investigate the problem of equilibrium control: determination of currents in circuits of the tokamak to reach a given configuration. In the third chapter, we develop a model for evolution of the plasma configuration during a discharge. We solve this question by a Newton algorithm; with the fourth chapter, we treat the monitoring of plasma configuration evolution

  2. Multicolour Observations, Inhomogeneity & Evolution

    OpenAIRE

    Hellaby, Charles

    2000-01-01

    We propose a method of testing source evolution theories that is independent of the effects of inhomogeneity, and thus complementary to other studies of evolution. It is suitable for large scale sky surveys, and the new generation of large telescopes. In an earlier paper it was shown that basic cosmological observations - luminosity versus redshift, area distance versus redshift and number counts versus redshift - cannot separate the effects of cosmic inhomogeneity, cosmic evolution and sourc...

  3. Locally Minimum Storage Regenerating Codes in Distributed Cloud Storage Systems

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Wei Luo; Wei Liang; Xiangyang Liu; Xiaodai Dong

    2017-01-01

    In distributed cloud storage sys-tems, inevitably there exist multiple node fail-ures at the same time. The existing methods of regenerating codes, including minimum storage regenerating (MSR) codes and mini-mum bandwidth regenerating (MBR) codes, are mainly to repair one single or several failed nodes, unable to meet the repair need of distributed cloud storage systems. In this paper, we present locally minimum storage re-generating (LMSR) codes to recover multiple failed nodes at the same time. Specifically, the nodes in distributed cloud storage systems are divided into multiple local groups, and in each local group (4, 2) or (5, 3) MSR codes are constructed. Moreover, the grouping method of storage nodes and the repairing process of failed nodes in local groups are studied. The-oretical analysis shows that LMSR codes can achieve the same storage overhead as MSR codes. Furthermore, we verify by means of simulation that, compared with MSR codes, LMSR codes can reduce the repair bandwidth and disk I/O overhead effectively.

  4. Innate heart regeneration: endogenous cellular sources and exogenous therapeutic amplification.

    Science.gov (United States)

    Malliaras, Konstantinos; Vakrou, Styliani; Kapelios, Chris J; Nanas, John N

    2016-11-01

    The -once viewed as heretical- concept of the adult mammalian heart as a dynamic organ capable of endogenous regeneration has recently gained traction. However, estimated rates of myocyte turnover vary wildly and the underlying mechanisms of cardiac plasticity remain controversial. It is still unclear whether the adult mammalian heart gives birth to new myocytes through proliferation of resident myocytes, through cardiomyogenic differentiation of endogenous progenitors or through both mechanisms. In this review, the authors discuss the cellular origins of postnatal mammalian cardiomyogenesis and touch upon therapeutic strategies that could potentially amplify innate cardiac regeneration. The adult mammalian heart harbors a limited but detectable capacity for spontaneous endogenous regeneration. During normal aging, proliferation of pre-existing cardiomyocytes is the dominant mechanism for generation of new cardiomyocytes. Following myocardial injury, myocyte proliferation increases modestly, but differentiation of endogenous progenitor cells appears to also contribute to cardiomyogenesis (although agreement on the latter point is not universal). Since cardiomyocyte deficiency underlies almost all types of heart disease, development of therapeutic strategies that amplify endogenous regeneration to a clinically-meaningful degree is of utmost importance.

  5. Alkali-free bioactive glasses for bone regeneration

    OpenAIRE

    Kapoor, Saurabh

    2014-01-01

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tiss...

  6. An Efficient Energy Regeneration System for Diesel Engines

    OpenAIRE

    HUANG, Ying; YANG, Fuyuan; OUYANG, Minggao; CHEN, Lin; GAO, Guojing; He, Yongsheng

    2010-01-01

    In order to further improve the fuel economy of vehicles, an efficient energy regeneration system for diesel engines is designed and constructed. An additional automatic clutch is added between the engine and the motor in a conventional ISG (Integrated Starter and Generator) system. During regenerative braking, the clutch can be disengaged and the engine braking is avoided. Control strategy is redesigned to determine the braking torque distribution and coordinate all the components. The gener...

  7. Active Nanomaterials to Meet the Challenge of Dental Pulp Regeneration

    OpenAIRE

    Keller, Laetitia; Offner, Damien; Schwint?, Pascale; Morand, David; Wagner, Quentin; Gros, Catherine; Bornert, Fabien; Bahi, Sophie; Musset, Anne-Marie; Benkirane-Jessel, Nadia; Fioretti, Florence

    2015-01-01

    The vitality of the pulp is fundamental to the functional life of the tooth. For this aim, active and living biomaterials are required to avoid the current drastic treatment, which is the removal of all the cellular and molecular content regardless of its regenerative potential. The regeneration of the pulp tissue is the dream of many generations of dental surgeons and will revolutionize clinical practices. Recently, the potential of the regenerative medicine field suggests that it would be p...

  8. Data on chemical activation of Wnt/β-catenin during axolotl limb regeneration

    Directory of Open Access Journals (Sweden)

    Sabina Wischin

    2017-04-01

    Full Text Available Limb amputation in axolotls was performed to obtain data demonstrating that a chemical agonist of Wnt (int-related protein/β-catenin signalling can have a role in axolotl limb regeneration (Wischin et al., 2017 [1]. The data revealed that active β-catenin protein was present during limb regeneration in some Leydig cells in the epithelium; after the chemical treatment, it was observed in more Leydig cells. In addition, the chemical agonist of Wnt generated distinct limb malformation.

  9. MHD (Magnetohydrodynamics) recovery and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    McIlroy, R. A. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Probert, P. B. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lahoda, E. J. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Swift, W. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jackson, D. M. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Prasad, J. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Martin, J. [Hudson Engineering (United States); Rogers, C. [Hudson Engineering (United States); Ho, K. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Senary, M. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lee, S. [Univ. of Akron, OH (United States)

    1988-10-01

    A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.

  10. Cell migration during heart regeneration in zebrafish.

    Science.gov (United States)

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Analysis of newly established EST databases reveals similarities between heart regeneration in newt and fish

    Directory of Open Access Journals (Sweden)

    Weis Patrick

    2010-01-01

    Full Text Available Abstract Background The newt Notophthalmus viridescens possesses the remarkable ability to respond to cardiac damage by formation of new myocardial tissue. Surprisingly little is known about changes in gene activities that occur during the course of regeneration. To begin to decipher the molecular processes, that underlie restoration of functional cardiac tissue, we generated an EST database from regenerating newt hearts and compared the transcriptional profile of selected candidates with genes deregulated during zebrafish heart regeneration. Results A cDNA library of 100,000 cDNA clones was generated from newt hearts 14 days after ventricular injury. Sequencing of 11520 cDNA clones resulted in 2894 assembled contigs. BLAST searches revealed 1695 sequences with potential homology to sequences from the NCBI database. BLAST searches to TrEMBL and Swiss-Prot databases assigned 1116 proteins to Gene Ontology terms. We also identified a relatively large set of 174 ORFs, which are likely to be unique for urodele amphibians. Expression analysis of newt-zebrafish homologues confirmed the deregulation of selected genes during heart regeneration. Sequences, BLAST results and GO annotations were visualized in a relational web based database followed by grouping of identified proteins into clusters of GO Terms. Comparison of data from regenerating zebrafish hearts identified biological processes, which were uniformly overrepresented during cardiac regeneration in newt and zebrafish. Conclusion We concluded that heart regeneration in newts and zebrafish led to the activation of similar sets of genes, which suggests that heart regeneration in both species might follow similar principles. The design of the newly established newt EST database allows identification of molecular pathways important for heart regeneration.

  12. Domain Regeneration for Cross-Database Micro-Expression Recognition

    Science.gov (United States)

    Zong, Yuan; Zheng, Wenming; Huang, Xiaohua; Shi, Jingang; Cui, Zhen; Zhao, Guoying

    2018-05-01

    In this paper, we investigate the cross-database micro-expression recognition problem, where the training and testing samples are from two different micro-expression databases. Under this setting, the training and testing samples would have different feature distributions and hence the performance of most existing micro-expression recognition methods may decrease greatly. To solve this problem, we propose a simple yet effective method called Target Sample Re-Generator (TSRG) in this paper. By using TSRG, we are able to re-generate the samples from target micro-expression database and the re-generated target samples would share same or similar feature distributions with the original source samples. For this reason, we can then use the classifier learned based on the labeled source samples to accurately predict the micro-expression categories of the unlabeled target samples. To evaluate the performance of the proposed TSRG method, extensive cross-database micro-expression recognition experiments designed based on SMIC and CASME II databases are conducted. Compared with recent state-of-the-art cross-database emotion recognition methods, the proposed TSRG achieves more promising results.

  13. Regenerating computer model of the thymus

    International Nuclear Information System (INIS)

    Lumb, J.R.

    1975-01-01

    This computer model simulates the cell population kinetics of the development and later degeneration of the thymus. Nutritional factors are taken into account by the growth of blood vessels in the simulated thymus. The stem cell population is kept at its maximum by allowing some stem cells to divide into two stem cells until the population reaches its maximum, thus regenerating the thymus after an insult such as irradiation. After a given number of population doublings the maximum allowed stem cell population is gradually decreased in order to simulate the degeneration of the thymus. Results show that the simulated thymus develops and degenerates in a pattern similar to that of the natural thymus. This simulation is used to evaluate cellular kinetic data for the the thymus. The results from testing the internal consistency of available data are reported. The number of generations which most represents the natural thymus includes seven dividing generations of lymphocytes and one mature, nondividing generation of small lymphocytes. The size of the resulting developed thymus can be controlled without affecting other variables by changing the maximum stem cell population allowed. In addition, recovery from irradiation is simulated

  14. Dendrite Injury Triggers DLK-Independent Regeneration

    Directory of Open Access Journals (Sweden)

    Michelle C. Stone

    2014-01-01

    Full Text Available Axon injury triggers regeneration through activation of a conserved kinase cascade, which includes the dual leucine zipper kinase (DLK. Although dendrites are damaged during stroke, traumatic brain injury, and seizure, it is not known whether mature neurons monitor dendrite injury and initiate regeneration. We probed the response to dendrite damage using model Drosophila neurons. Two larval neuron types regrew dendrites in distinct ways after all dendrites were removed. Dendrite regeneration was also triggered by injury in adults. Next, we tested whether dendrite injury was initiated with the same machinery as axon injury. Surprisingly, DLK, JNK, and fos were dispensable for dendrite regeneration. Moreover, this MAP kinase pathway was not activated by injury to dendrites. Thus, neurons respond to dendrite damage and initiate regeneration without using the conserved DLK cascade that triggers axon regeneration.

  15. Kaolinite adsorption-regeneration system for dyestuff treatment by Fenton based processes.

    Science.gov (United States)

    Rosales, Emilio; Anasie, Delia; Pazos, Marta; Lazar, Iuliana; Sanromán, M Angeles

    2018-05-01

    The regeneration and reuse of adsorbents is a subject of interest nowadays in order to reduce the pollution and the wastes generated in the adsorption wastewater treatment. In this work, the regeneration of the spent kaolinite by different advanced oxidation processes (Fenton, electro-Fenton and electrokinetic-Fenton) was evaluated. Initially, it was confirmed the ability of a low cost clayey material, kaolinite, for the adsorption of model dye such as Rhodamine B showing Freundlich isotherm fitting. Then, the regeneration and consequent degradation of the pollutant in the adsorbent by Fenton based processes was carried out. The role of different parameters affecting the regeneration process (H 2 O 2 :Fe 2+ ratio, liquid:solid ratio) were evaluated. Working at 100:1 H 2 O 2 :Fe 2+ ratio and 30min near complete dye removal (around 97%) from kaolinite was obtained by Fenton treatment. After that, a two-stage treatment for adsorption-regeneration was evaluated during five treatment cycles demonstrating its viability for regeneration of the adsorbent through dye degradation. Based on the successful application of Fenton technique, the improvement of the treatment by electro-Fenton and electrokinetic-Fenton were studied for different solid:liquid ratios achieving satisfactory regeneration values. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Pulp-dentin Regeneration: Current State and Future Prospects.

    Science.gov (United States)

    Cao, Y; Song, M; Kim, E; Shon, W; Chugal, N; Bogen, G; Lin, L; Kim, R H; Park, N-H; Kang, M K

    2015-11-01

    The goal of regenerative endodontics is to reinstate normal pulp function in necrotic and infected teeth that would result in reestablishment of protective functions, including innate pulp immunity, pulp repair through mineralization, and pulp sensibility. In the unique microenvironment of the dental pulp, the triad of tissue engineering would require infection control, biomaterials, and stem cells. Although revascularization is successful in resolving apical periodontitis, multiple studies suggest that it alone does not support pulp-dentin regeneration. More recently, cell-based approaches in endodontic regeneration based on pulpal mesenchymal stem cells (MSCs) have demonstrated promising results in terms of pulp-dentin regeneration in vivo through autologous transplantation. Although pulpal regeneration requires the cell-based approach, several challenges in clinical translation must be overcome-including aging-associated phenotypic changes in pulpal MSCs, availability of tissue sources, and safety and regulation involved with expansion of MSCs in laboratories. Allotransplantation of MSCs may alleviate some of these obstacles, although the long-term stability of MSCs and efficacy in pulp-dentin regeneration demand further investigation. For an alternative source of MSCs, our laboratory developed induced MSCs (iMSCs) from primary human keratinocytes through epithelial-mesenchymal transition by modulating the epithelial plasticity genes. Initially, we showed that overexpression of ΔNp63α, a major isoform of the p63 gene, led to epithelial-mesenchymal transition and acquisition of stem characteristics. More recently, iMSCs were generated by transient knockdown of all p63 isoforms through siRNA, further simplifying the protocol and resolving the potential safety issues of viral vectors. These cells may be useful for patients who lack tissue sources for endogenous MSCs. Further research will elucidate the level of potency of these iMSCs and assess their

  17. The effect of endogenous hydrogen peroxide induced by cold treatment in the improvement of tissue regeneration efficiency

    NARCIS (Netherlands)

    Szechynska-Hebda, M.; Skrzypek, E.; Dabrowska, G.; Wedzony, M.; Lammeren, van A.A.M.

    2012-01-01

    We propose that oxidative stress resulting from an imbalance between generation and scavenging hydrogen peroxide contributes to tissue regeneration efficiency during somatic embryogenesis of hexaploid winter wheat (Triticum aestivum cv. Kamila) and organogenesis of faba bean (Vicia faba ssp. minor

  18. Irradiation inhibits the regeneration of aneurogenic limbs

    International Nuclear Information System (INIS)

    Wallace, H.; Maden, M.

    1976-01-01

    The developing arms of axolotl larvae from the 2-digit stage onward and the aneurogenic arms of surgically denervated larvae maintained in parabiosis are able to regenerate after amputation. Such regeneration is uniformly inhibited by local irradiation of the arm, whether innervated or not. This demonstration refutes a recent hypothesis that x-rays interfere with a special activity of nerves required for regeneration, and supports the earlier concept that x-rays act directly on those cells which must proliferate to form the regenerated tissues

  19. Early regulation of axolotl limb regeneration.

    Science.gov (United States)

    Makanae, Aki; Satoh, Akira

    2012-10-01

    Amphibian limb regeneration has been studied for a long time. In amphibian limb regeneration, an undifferentiated blastema is formed around the region damaged by amputation. The induction process of blastema formation has remained largely unknown because it is difficult to study the induction of limb regeneration. The recently developed accessory limb model (ALM) allows the investigation of limb induction and reveals early events of amphibian limb regeneration. The interaction between nerves and wound epidermis/epithelium is an important aspect of limb regeneration. During early limb regeneration, neurotrophic factors act on wound epithelium, leading to development of a functional epidermis/epithelium called the apical epithelial cap (AEC). AEC and nerves create a specific environment that inhibits wound healing and induces regeneration through blastema formation. It is suggested that FGF-signaling and MMP activities participate in creating a regenerative environment. To understand why urodele amphibians can create such a regenerative environment and humans cannot, it is necessary to identify the similarities and differences between regenerative and nonregenerative animals. Here we focus on ALM to consider limb regeneration from a new perspective and we also reported that focal adhesion kinase (FAK)-Src signaling controlled fibroblasts migration in axolotl limb regeneration. Copyright © 2012 Wiley Periodicals, Inc.

  20. Angiogenesis is inhibitory for mammalian digit regeneration

    Science.gov (United States)

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong

    2014-01-01

    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  1. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.

    Science.gov (United States)

    Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan

    2016-11-14

    Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.

  2. CO2 regeneration performance enhancement by nanoabsorbents for energy conversion application

    International Nuclear Information System (INIS)

    Lee, Jung Hun; Lee, Jae Won; Kang, Yong Tae

    2016-01-01

    Graphical abstract: (a) Optical profiling image of the surface of copper after regeneration process in nanoabsorbents, Al 2 O 3 (45 nm, 0.01 vol%). (b) The number of regeneration sites by the nanoabsorbents. - Highlights: • CO 2 regeneration performance is enhanced by using Al 2 O 3 nanoabsorbents. • CO 2 regeneration process on the heating surface is visualized in nanoabsorbents. • Surface modification by nanoabsorbents has a greater effect than the nanoparticle size. • The mechanism of surface effect is the most plausible to explain the regeneration performance enhancement. - Abstract: Due to the recent increase in the consumption of energy and the use of fossil fuels, global warming has become a serious issue. To address this problem, CO 2 gas, which is the major element of the greenhouse gases, should be captured, regenerated and converted to useful fuels. The Integrated Gasification Combined Cycle (IGCC) and cement process generate large amount of CO 2 , which are controlled through pre-combustion capture. However, this method has a disadvantage because the system temperature should be decreased to −20 °C or lower. Therefore, the development of new absorbent is required to reduce the energy consumed for refrigeration. There is a study that improved the CO 2 absorption performance by adding Al 2 O 3 nanoparticles to methanol. However, studies on the regeneration of CO 2 in nanofluid absorbents (nanoabsorbents) are insufficient. Therefore, in this study, the CO 2 regeneration performance in Al 2 O 3 nanoabsorbents is evaluated. It is found that the regeneration performance of CO 2 is improved by 16% by using nanoabsorbents compared to methanol. Furthermore, the CO 2 regeneration characteristics of nanoabsorbents are analyzed by considering the detachment time of CO 2 bubbles from the surface, the cross-sectional area of CO 2 bubble, and the number of regeneration sites through the CO 2 regeneration and bubble visualization experiments. It is concluded

  3. The Evolution of the Stem Cell Theory for Heart Failure.

    Science.gov (United States)

    Silvestre, Jean-Sébastien; Menasché, Philippe

    2015-12-01

    Various stem cell-based approaches for cardiac repair have achieved encouraging results in animal experiments, often leading to their rapid proceeding to clinical testing. However, freewheeling evolutionary developments of the stem cell theory might lead to dystopian scenarios where heterogeneous sources of therapeutic cells could promote mixed clinical outcomes in un-stratified patient populations. This review focuses on the lessons that should be learnt from the first generation of stem cell-based strategies and emphasizes the absolute requirement to better understand the basic mechanisms of stem cell biology and cardiogenesis. We will also discuss about the unexpected "big bang" in the stem cell theory, "blasting" the therapeutic cells to their unchallenged ability to release paracrine factors such as extracellular membrane vesicles. Paradoxically, the natural evolution of the stem cell theory for cardiac regeneration may end with the development of cell-free strategies with multiple cellular targets including cardiomyocytes but also other infiltrating or resident cardiac cells.

  4. Towards Regeneration of Articular Cartilage

    Science.gov (United States)

    Iwamoto, Masahiro; Ohta, Yoichi; Larmour, Colleen; Enomoto-Iwamoto, Motomi

    2014-01-01

    Articular cartilage is classified into permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in growth plate. In the process of synovial joint development, articular cartilage is originated from the interzone, developing at the edge of the cartilaginous anlagen, it establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators such as Wnts, GDF5, Erg, and PTHLH coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracerllular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier’s groove, the intra-articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Further, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. PMID:24078496

  5. The Amount of Regenerated Heat Inside the Regenerator of a Stirling Engine

    Directory of Open Access Journals (Sweden)

    J. Škorpík

    2008-01-01

    Full Text Available The paper deals with analytical computing of the regenerated heat inside the regenerator of a Stirling engine. The total sum of the regenerated heat is constructed as a function of the crank angle in the case of Schmidt’s idealization. 

  6. Purifying and regenerating hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1931-11-19

    Hydrocarbons are freed from sulfur-containing compounds, colloidal asphaltic bodies and unstable unsaturated substances by treatment with a small amount of dilute sulfuric acid and a salt of a trivalent cation, such as ferric chloride or sulfate. Hydrocarbons specified are petroleum, crude benzol, low temperature tars, shale oil or vapor-phase cracked spirit. Motor spirit or lubricating oil distillates are refined and finally distilled. The acid reagent may be regenerated by filtering through sand or asbestos. Used lubricating oils may be treated similarly and after removal of refining agent, the oil is heated with an adsorbent and decolorizing material and then filtered.

  7. Bone regeneration and stem cells

    Science.gov (United States)

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  8. Bone regeneration and stem cells

    DEFF Research Database (Denmark)

    Arvidson, K; Abdallah, B M; Applegate, L A

    2011-01-01

    cells, use of platelet rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.......This invited review covers research areas of central importance for orthopedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and fetal stem cells, effects of sex steroids on mesenchymal stem...

  9. Generation 1.5 Preservice Teachers: The Evolution of Their Writing Confidence Levels and Self-Efficacy in Writing Intensive Courses

    Science.gov (United States)

    Lewis, Katie D.

    2016-01-01

    This action research examines how Generation 1.5 preservice teachers develop as writers during writing intensive courses. Generation 1.5 reflects immigrants who have life experiences inclusive of two or more countries including diverse cultures and languages (Roberge, 2009). Understanding the factors impacting how Generation 1.5 students use…

  10. Analysis of the dynamic co-expression network of heart regeneration in the zebrafish

    Science.gov (United States)

    Rodius, Sophie; Androsova, Ganna; Götz, Lou; Liechti, Robin; Crespo, Isaac; Merz, Susanne; Nazarov, Petr V.; de Klein, Niek; Jeanty, Céline; González-Rosa, Juan M.; Muller, Arnaud; Bernardin, Francois; Niclou, Simone P.; Vallar, Laurent; Mercader, Nadia; Ibberson, Mark; Xenarios, Ioannis; Azuaje, Francisco

    2016-05-01

    The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration.

  11. Regeneration of ammonia borane spent fuel

    International Nuclear Information System (INIS)

    Sutton, Andrew David; Davis, Benjamin L.; Gordon, John C.

    2009-01-01

    or from nickel carbene catalyst dehydrogenation. In this cycle, the PB is digested with benzenedithiol to yield two products which can both be converted to AB using Bu 3 SnH and BU 2 SnH 2 as reductants. However, in a real world situation the process becomes more complicated for several reasons. Bu 2 SnH 2 is thermally unstable and therefore not viable in a process scale operation. This has led to the development of Bu 3 SnH as the sole reductant although this requires an additional amine exchange step in order to facilitate the reduction to an amine-borane which can then be converted to AB. The tin by-products also need to be recycled in order to maximize the overall energy efficiency and therefore minimize the overall cost of the process. In addition, on an industrial scale, the mass of the tin reductant generates significant cost due to the manipulation of the relatively large quantities involved so reducing the mass at this stage would be of vast significance. We will discuss further developments made to the tin recycle component of the cycle (including methods to minimize tin usage) and investigate new methods of reduction of the digested products, primarily focusing on lighter reductants, including lighter analogs of Bu 2 SnH 2 and Bu 3 SnH. These advances will have a significant impact on the cost of production and therefore the viability of AB as a fuel. Minimization of tin reagents and their recycle will contribute to reduction of the overall cost of AB regeneration and all stages of AB regeneration have been demonstrated.

  12. The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration

    Directory of Open Access Journals (Sweden)

    Luca Gentile

    2011-01-01

    Full Text Available Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine.

  13. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury

    Science.gov (United States)

    Embree, Mildred C.; Chen, Mo; Pylawka, Serhiy; Kong, Danielle; Iwaoka, George M.; Kalajzic, Ivo; Yao, Hai; Shi, Chancheng; Sun, Dongming; Sheu, Tzong-Jen; Koslovsky, David A.; Koch, Alia; Mao, Jeremy J.

    2016-01-01

    Tissue regeneration using stem cell-based transplantation faces many hurdles. Alternatively, therapeutically exploiting endogenous stem cells to regenerate injured or diseased tissue may circumvent these challenges. Here we show resident fibrocartilage stem cells (FCSCs) can be used to regenerate and repair cartilage. We identify FCSCs residing within the superficial zone niche in the temporomandibular joint (TMJ) condyle. A single FCSC spontaneously generates a cartilage anlage, remodels into bone and organizes a haematopoietic microenvironment. Wnt signals deplete the reservoir of FCSCs and cause cartilage degeneration. We also show that intra-articular treatment with the Wnt inhibitor sclerostin sustains the FCSC pool and regenerates cartilage in a TMJ injury model. We demonstrate the promise of exploiting resident FCSCs as a regenerative therapeutic strategy to substitute cell transplantation that could be beneficial for patients suffering from fibrocartilage injury and disease. These data prompt the examination of utilizing this strategy for other musculoskeletal tissues. PMID:27721375

  14. Effectiveness of high temperature innovative geometry fixed ceramic matrix regenerators used in glass furnaces

    Directory of Open Access Journals (Sweden)

    Wołkowycki Grzegorz

    2016-03-01

    Full Text Available The paper presents the effectiveness of waste heat recovery regenerators equipped with innovative ceramic matrix forming an integral part of a real glass furnace. The paper full description of the regenerators’ matrix structure with its dimensions, thermo-physical properties and operating parameters is included experimentally determined was the effectiveness of the regenerators has been descrbed using the obtained experimental data such as the operating temperature, gas flows as well as the gases generated during the liquid glass manufacturing process. The effectiveness values refer not only to the heating cycle when the regenerator matrix is heated by combustion gases but also to the cooling cycle in which the matrix is cooled as a result of changes in the direction of the flowing gas. On the basis of the determined effectiveness values for both cycles and measurement uncertainties it was possible, to calculate the weighted average efficiency for each of the regenerators.

  15. Regeneration performance of CO2-rich solvents by using membrane vacuum regeneration technology: Relationships between absorbent structure and regeneration efficiency

    International Nuclear Information System (INIS)

    Yan, Shuiping; Fang, Mengxiang; Wang, Zhen; Luo, Zhongyang

    2012-01-01

    Highlights: ► MVR may be viable to successfully use less valuable heat to replace high grade steam. ► Increasing OH and amine groups will increase the regeneration efficiency. ► Absorbents with a four carbon chain length will be more attractive to MVR. ► Amino acid salts will be more appropriate for MVR. ► HRM conducted at ambient pressure and low temperature is inferior to MVR. -- Abstract: In order to give a better understanding for the selection of suitable absorbents for the novel membrane vacuum regeneration technology (MVR) which has the potential to reduce CO 2 energy requirement by utilizing the waste heat or low-grade energy, an experimental study to determine the relationships between chemical structure and vacuum regeneration behavior of CO 2 absorbents at 70 °C and 10 kPa was performed. Eleven typical absorbents with different functional groups in their chemical structures were investigated in terms of vacuum regeneration efficiencies. Results showed that the regeneration efficiency decreased with an increase of number of activated hydrogen atom in amine group and decreased with the number of hydroxyl group. Especially, more attention should be paid to these alkanolamines with one hydrogen atom in amine group and two or more hydroxyl groups in the structures due to their better comprehensive performance in regeneration, absorbent loss and CO 2 absorption aspects. Increasing the carbon chain length and amine groups in the absorbent structure contributed to the improvement of regeneration performance and reduction of absorbent volatile loss. These absorbents with a four carbon chain length bonded at amine group might be more attractive to MVR. Furthermore, polyamines were superior to monoamines in terms of higher regeneration efficiencies and lower absorbent losses. Additionally, the individual effects of the potassium carboxylate group and hydroxymethylene group were also compared in this study. Results showed that amino acid salts were more

  16. Microwave Regenerable Air Purification Device

    Science.gov (United States)

    Atwater, James E.; Holtsnider, John T.; Wheeler, Richard R., Jr.

    1996-01-01

    The feasibility of using microwave power to thermally regenerate sorbents loaded with water vapor, CO2, and organic contaminants has been rigorously demonstrated. Sorbents challenged with air containing 0.5% CO2, 300 ppm acetone, 50 ppm trichloroethylene, and saturated with water vapor have been regenerated, singly and in combination. Microwave transmission, reflection, and phase shift has also been determined for a variety of sorbents over the frequency range between 1.3-2.7 GHz. This innovative technology offers the potential for significant energy savings in comparison to current resistive heating methods because energy is absorbed directly by the material to be heated. Conductive, convective and radiative losses are minimized. Extremely rapid heating is also possible, i.e., 1400 C in less than 60 seconds. Microwave powered thermal desorption is directly applicable to the needs of Advance Life Support in general, and of EVA in particular. Additionally, the applicability of two specific commercial applications arising from this technology have been demonstrated: the recovery for re-use of acetone (and similar solvents) from industrial waste streams using a carbon based molecular sieve; and the separation and destruction of trichloroethylene using ZSM-5 synthetic zeolite catalyst, a predominant halocarbon environmental contaminant. Based upon these results, Phase II development is strongly recommended.

  17. Liver Development, Regeneration, and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Janet W. C. Kung

    2010-01-01

    Full Text Available The identification of putative liver stem cells has brought closer the previously separate fields of liver development, regeneration, and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for drug testing, bioartificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer, providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration, and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver cancers.

  18. Regeneration of Pelargonium in vitro

    Directory of Open Access Journals (Sweden)

    Agnieszka Wojtania

    2013-12-01

    Full Text Available Pelargonium sp. has been a subject of numerous studies to deterimine the effec tiveness of in vitro techniques to produce a large number of pathogen-free plants. Regeneration of pelargonium plants from the different initial explants as well via organogenesis as via somatic embryogenesis has been obtained. The most effective adventitious shoot formation has been achieved from shoot tips and axillary buds using cytokinin or cytokinin/auxin combinations. Leaf explants, whose general have lower organogenic potency, regenerate better in the presence of thidiazuron. This growth regulator stimulate the somatic embryos production from hypocotyl and cotyledone explants too. The main problem in tissue culture propagation of Pelargonium has been the high tendency to formation of vigorously growing callus with low organogenic potency and rapid senescence of cultures. Moreover, the significant differen ces in requirements to the medium composition (minerals, organic compounds and growth regulators between Pelargonium cultivars has been observed. This makes difficult to develop an universaI method of Pelargonium micropropagation.

  19. The evolution of radiation dose over time: Measurement of a patient cohort undergoing whole-body examinations on three computer tomography generations

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Roy P., E-mail: roy.marcus@med.uni-tuebingen.de [Institute of Diagnostic and Interventional Radiology, Eberhard-Karls-Universität, Tübingen (Germany); Department of Radiology, Mayo Clinic, Rochester, MN (United States); Koerner, Elise [Institute of Diagnostic and Interventional Radiology, Eberhard-Karls-Universität, Tübingen (Germany); Aydin, Roland C. [Institute for Computational Mechanics, Technische Universität München, Garching (Germany); Zinsser, Dominik; Finke, Tobias [Institute of Diagnostic and Interventional Radiology, Eberhard-Karls-Universität, Tübingen (Germany); Cyron, Christian J. [Institute for Computational Mechanics, Technische Universität München, Garching (Germany); Bamberg, Fabian; Nikolaou, Konstantin; Notohamiprodjo, Mike [Institute of Diagnostic and Interventional Radiology, Eberhard-Karls-Universität, Tübingen (Germany)

    2017-01-15

    Objectives: To evaluate and compare the radiation dose and image quality of whole-body-CT (WBCT) performed on the 3rd-generation dual-source-CT (DSCT) with 2nd-generation DSCT and 64-slices-Single-Source-CT (SSCT) in a large patient cohort. Material and methods: Using a monitoring and tracking software 1451, 747 and 1861 patients scanned with a one-spiral-thorax-abdomen-pelvis-CT-examination on a 3rd-, 2nd-generation DSCT and SSCT, respectively, were extracted from the PACS server. For the intra-individual analysis, 203 patients on the 3rd-generation DSCT were identified. Out of those 203 patients, 155 had the same examination on the 2nd-generation DSCT, 91 patients had the same examination on the SSCT and 43 patients had an examination on all three CT-generations. Automatic tube current modulation was active on all three CT-generations, whereas automatic tube voltage selection was only available on both DSCT-generations. Dose was recorded by the size-specific-dose-estimate-method (SSDE); signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated placing a ROI on the ascending aorta/liver and the subcutaneous adipose tissue at comparable level. Image quality of axillary and mediastinal lymph nodes and adrenal glands was assessed by two experienced radiologists. Results: Subjective image quality was excellent throughout all three CT-generations (p = 0.38–0.98). Quantitative image quality in both DSCT generations was superior to SSCT (p < 0.001). SNR and CNR in the liver parenchyma were superior in the 3rd-generation DSCT compared to the 2nd generation DSCT (p < 0.001), whereas there was no difference in the aorta. In the inter-individual analysis, CTDI{sub vol} was lower by 26.9% and 44.3% in the 3rd-generation DSCT, when compared to the 2nd-generation DSCT and SSCT, respectively; SSDE was lower by 31.5% and 51% in the 3rd-generation DSCT, when compared to the 2nd-generation DSCT and SSCT, respectively. In the intra-individual comparison CTDI

  20. Cardiac regeneration therapy: connections to cardiac physiology.

    Science.gov (United States)

    Takehara, Naofumi; Matsubara, Hiroaki

    2011-12-01

    Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.

  1. Heat exchanger versus regenerator: A fundamental comparison

    NARCIS (Netherlands)

    Will, M.E.; Waele, de A.T.A.M.

    2005-01-01

    Irreversible processes in regenerators and heat exchangers limit the performance of cryocoolers. In this paper we compare the performance of cryocoolers, operating with regenerators and heat exchangers from a fundamental point of view. The losses in the two systems are calculated from the entropy

  2. Adventitious shoots induction and plant regeneration from ...

    African Journals Online (AJOL)

    A highly efficient regeneration system is a prerequisite step for successful genetic transformation of watermelon cultivars (Citrullus lanatus L.). The objective of this study was to establish efficient in vitro plant regeneration for three watermelon cultivars. To achieve optimal conditions for adventitious shoot induction, the ...

  3. Plant regeneration in wheat mature embryo culture

    African Journals Online (AJOL)

    Kamil Haliloğlu

    2011-11-09

    Nov 9, 2011 ... Success in genetic engineering of cereals depends on the callus formation and efficient plant regeneration system. Callus formation and plant regeneration of wheat mature embryos ... compiled by modification of methods previously mentioned in ..... of more and readily available nutrition than artificial cul-.

  4. Oak regeneration potential increased by shelterwood treatments

    Science.gov (United States)

    Richard C. Schlesinger; Ivan L. Sander; Kenneth R. Davidson

    1993-01-01

    In much of the Central Hardwood Forest Region, oak species are not regenerating well, even though large oak trees are common within the existing forests. The shelterwood method has been suggested as a potential tool for establishing and developing advanced regeneration where it is lacking. The 10-yr results from a study of several variants of the shelterwood method...

  5. Animal regeneration: ancestral character or evolutionary novelty?

    Science.gov (United States)

    Slack, Jonathan Mw

    2017-09-01

    An old question about regeneration is whether it is an ancestral character which is a general property of living matter, or whether it represents a set of specific adaptations to the different circumstances faced by different types of animal. In this review, some recent results on regeneration are assessed to see if they can throw any new light on this question. Evidence in favour of an ancestral character comes from the role of Wnt and bone morphogenetic protein signalling in controlling the pattern of whole-body regeneration in acoels, which are a basal group of bilaterian animals. On the other hand, there is some evidence for adaptive acquisition or maintenance of the regeneration of appendages based on the occurrence of severe non-lethal predation, the existence of some novel genes in regenerating organisms, and differences at the molecular level between apparently similar forms of regeneration. It is tentatively concluded that whole-body regeneration is an ancestral character although has been lost from most animal lineages. Appendage regeneration is more likely to represent a derived character resulting from many specific adaptations. © 2017 The Author.

  6. Axonal regeneration in zebrafish spinal cord

    Science.gov (United States)

    Hui, Subhra Prakash

    2018-01-01

    Abstract In the present review we discuss two interrelated events—axonal damage and repair—known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals. PMID:29721326

  7. Hyperinnervation improves Xenopus laevis limb regeneration.

    Science.gov (United States)

    Mitogawa, Kazumasa; Makanae, Aki; Satoh, Akira

    2018-01-15

    Xenopus laevis (an anuran amphibian) shows limb regeneration ability between that of urodele amphibians and that of amniotes. Xenopus frogs can initiate limb regeneration but fail to form patterned limbs. Regenerated limbs mainly consist of cone-shaped cartilage without any joints or branches. These pattern defects are thought to be caused by loss of proper expressions of patterning-related genes. This study shows that hyperinnervation surgery resulted in the induction of a branching regenerate. The hyperinnervated blastema allows the identification and functional analysis of the molecules controlling this patterning of limb regeneration. This paper focuses on the nerve affects to improve Xenopus limb patterning ability during regeneration. The nerve molecules, which regulate limb patterning, were also investigated. Blastemas grown in a hyperinnervated forelimb upregulate limb patterning-related genes (shh, lmx1b, and hoxa13). Nerves projecting their axons to limbs express some growth factors (bmp7, fgf2, fgf8, and shh). Inputs of these factors to a blastema upregulated some limb patterning-related genes and resulted in changes in the cartilage patterns in the regenerates. These results indicate that additional nerve factors enhance Xenopus limb patterning-related gene expressions and limb regeneration ability, and that bmp, fgf, and shh are candidate nerve substitute factors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Complement components of nerve regeneration conditioned fluid influence the microenvironment of nerve regeneration

    Directory of Open Access Journals (Sweden)

    Guang-shuai Li

    2016-01-01

    Full Text Available Nerve regeneration conditioned fluid is secreted by nerve stumps inside a nerve regeneration chamber. A better understanding of the proteinogram of nerve regeneration conditioned fluid can provide evidence for studying the role of the microenvironment in peripheral nerve regeneration. In this study, we used cylindrical silicone tubes as the nerve regeneration chamber model for the repair of injured rat sciatic nerve. Isobaric tags for relative and absolute quantitation proteomics technology and western blot analysis confirmed that there were more than 10 complement components (complement factor I, C1q-A, C1q-B, C2, C3, C4, C5, C7, C8ß and complement factor D in the nerve regeneration conditioned fluid and each varied at different time points. These findings suggest that all these complement components have a functional role in nerve regeneration.

  9. Searching for the prototypic eye genetic network: Sine oculis is essential for eye regeneration in planarians

    Science.gov (United States)

    Pineda, D.; Gonzalez, J.; Callaerts, P.; Ikeo, K.; Gehring, W. J.; Salo, E.

    2000-01-01

    We have identified a sine oculis gene in the planarian Girardia tigrina (Platyhelminthes; Turbellaria; Tricladida). The planarian sine oculis gene (Gtso) encodes a protein with a sine oculis (Six) domain and a homeodomain that shares significant sequence similarity with so proteins assigned to the Six-2 gene family. Gtso is expressed as a single transcript in both regenerating and fully developed eyes. Whole-mount in situ hybridization studies show exclusive expression in photoreceptor cells. Loss of function of Gtso by RNA interference during planarian regeneration inhibits eye regeneration completely. Gtso is also essential for maintenance of the differentiated state of photoreceptor cells. These results, combined with the previously demonstrated expression of Pax-6 in planarian eyes, suggest that the same basic gene regulatory circuit required for eye development in Drosophila and mouse is used in the prototypic eye spots of platyhelminthes and, therefore, is truly conserved during evolution. PMID:10781056

  10. Hydroprocessing catalysts utilization and regeneration schemes

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off-site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed.

  11. Regeneration limit of classical Shannon capacity

    Science.gov (United States)

    Sorokina, M. A.; Turitsyn, S. K.

    2014-05-01

    Since Shannon derived the seminal formula for the capacity of the additive linear white Gaussian noise channel, it has commonly been interpreted as the ultimate limit of error-free information transmission rate. However, the capacity above the corresponding linear channel limit can be achieved when noise is suppressed using nonlinear elements; that is, the regenerative function not available in linear systems. Regeneration is a fundamental concept that extends from biology to optical communications. All-optical regeneration of coherent signal has attracted particular attention. Surprisingly, the quantitative impact of regeneration on the Shannon capacity has remained unstudied. Here we propose a new method of designing regenerative transmission systems with capacity that is higher than the corresponding linear channel, and illustrate it by proposing application of the Fourier transform for efficient regeneration of multilevel multidimensional signals. The regenerative Shannon limit—the upper bound of regeneration efficiency—is derived.

  12. CHEMICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1965-06-01

    How did life come to be on the surface of the earth? Darwin himself recognized that his basic idea of evolution by variation and natural selection must be a continuous process extending backward in time through that period in which the first living things arose and into the period of 'Chemical Evolution' which preceded it. We are approaching the examination of these events by two routes. One is to seek for evidence in the ancient rocks of the earth which were laid down prior to that time in which organisms capable of leaving their skeletons in the rocks to be fossilized were in existence. This period is sometime prior to approximately 600 million years ago. The earth is believed to have taken its present form approximately 4700 million years ago. We have found in rocks whose age is about 1000 million years certain organic molecules which are closely related to the green pigment of plants, chlorophyll. This seems to establish that green plants were already fluorishing prior to that time. We have now found in rocks of still greater age, namely, 2500 million years, the same kinds of molecules mentioned above which can be attributed to the presence of living organisms. If these molecules are as old as the rocks, we have thus shortened the time available for the generation of the complex biosynthetic sequences which give rise to these specific hydrocarbons (polyisoprenoids) to less than 2000 million years.

  13. Peripheral Nerve Injuries and Transplantation of Olfactory Ensheathing Cells for Axonal Regeneration and Remyelination: Fact or Fiction?

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2012-10-01

    Full Text Available Successful nerve regeneration after nerve trauma is not only important for the restoration of motor and sensory functions, but also to reduce the potential for abnormal sensory impulse generation that can occur following neuroma formation. Satisfying functional results after severe lesions are difficult to achieve and the development of interventional methods to achieve optimal functional recovery after peripheral nerve injury is of increasing clinical interest. Olfactory ensheathing cells (OECs have been used to improve axonal regeneration and functional outcome in a number of studies in spinal cord injury models. The rationale is that the OECs may provide trophic support and a permissive environment for axonal regeneration. The experimental transplantation of OECs to support and enhance peripheral nerve regeneration is much more limited. This chapter reviews studies using OECs as an experimental cell therapy to improve peripheral nerve regeneration.

  14. Overview 2004 of NASA Stirling-Convertor CFD-Model Development and Regenerator R&D Efforts

    Science.gov (United States)

    Tew, Roy C.; Dyson, Rodger W.; Wilson, Scott D.; Demko, Rikako

    2005-01-01

    This paper reports on accomplishments in 2004 in development of Stirling-convertor CFD model at NASA GRC and via a NASA grant, a Stirling regenerator-research effort being conducted via a NASA grant (a follow-on effort to an earlier DOE contract), and a regenerator-microfabrication contract for development of a "next-generation Stirling regenerator." Cleveland State University is the lead organization for all three grant/contractual efforts, with the University of Minnesota and Gedeor Associates as subcontractors. Also, the Stirling Technology Co. and Sunpower, Inc. are both involved in all three efforts, either as funded or unfunded participants. International Mezzo Technologies of Baton Rouge, LA is the regenerator fabricator for the regenerator-microfabrication contract. Results of the efforts in these three areas are summarized.

  15. Pollutant emissions from vehicles with regenerating after-treatment systems in regulatory and real-world driving cycles.

    Science.gov (United States)

    Alvarez, Robert; Weilenmann, Martin; Novak, Philippe

    2008-07-15

    Regenerating exhaust after-treatment systems are increasingly employed in passenger cars in order to comply with regulatory emission standards. These systems include pollutant storage units that occasionally have to be regenerated. The regeneration strategy applied, the resultant emission levels and their share of the emission level during normal operation mode are key issues in determining realistic overall emission factors for these cars. In order to investigate these topics, test series with four cars featuring different types of such after-treatment systems were carried out. The emission performance in legislative and real-world cycles was monitored as well as at constant speeds. The extra emissions determined during regeneration stages are presented together with the methodology applied to calculate their impact on overall emissions. It can be concluded that exhaust after-treatment systems with storage units cause substantial overall extra emissions during regeneration mode and can appreciably affect the emission factors of cars equipped with such systems, depending on the frequency of regenerations. Considering that the fleet appearance of vehicles equipped with such after-treatment systems will increase due to the evolution of statutory pollutant emission levels, extra emissions originating from regenerations of pollutant storage units consequently need to be taken into account for fleet emission inventories. Accurately quantifying these extra emissions is achieved by either conducting sufficient repetitions of emission measurements with an individual car or by considerably increasing the size of the sample of cars with comparable after-treatment systems.

  16. Continuing Climate Warming Will Result in Failure of Post-Harvest Natural Regeneration across the Landscape in Interior Alaska

    Science.gov (United States)

    Morimoto, M.; Juday, G. P.; Huettmann, F.

    2016-12-01

    Following forest disturbance, the stand initiation stage decisively influences future forest structure. Understanding post-harvest regeneration, especially under climate change, is essential to predicting future carbon stores in this extensive forest biome. We apply IPCC B1, A1B, and A2 climate scenarios to generate plausible future forest conditions under different management. We recorded presence of white spruce, birch, and aspen in 726 plots on 30 state forest white spruce harvest units. We built spatially explicit models and scenarios of species presence/absence using TreeNet (Stochastic Gradient Boosting). Post-harvest tree regeneration predictions in calibration data closely matched the validation set, indicating tree regeneration scenarios are reliable. Early stage post-harvest regeneration is similar to post-fire regeneration and matches the pattern of long-term natural vegetation distribution, confirming that site environmental factors are more important than management practices. Post-harvest natural regeneration of tree species increases under moderate warming scenarios, but fails under strong warming scenarios in landscape positions with high temperatures and low precipitation. Under all warming scenarios, the most successful regenerating species following white spruce harvest is white spruce. Birch experiences about 30% regeneration failure under A2 scenario by 2050. White spruce and aspen are projected to regenerate more successfully when site preparation is applied. Although white spruce has been the major managed species, birch may require more intensive management. Sites likely to experience regeneration failure of current tree species apparently will experience biome shift, although adaptive migration of existing or new species might be an option. Our scenario modeling tool allows resource managers to forecast tree regeneration on productive managed sites that have made a disproportionate contribution to carbon flux in a critical region.

  17. Fostering and Planning Urban Regeneration

    DEFF Research Database (Denmark)

    Lidegaard, Christina; Nuccio, Massimiliano; Bille, Trine

    2018-01-01

    Policy-makers and urban planners struggle to find the right formula to implement urban regeneration processes based on cultural assets, often focusing on the desired outcomes, but rarely questioning how the policy process can shape them. This paper examines different governance models...... cultural districts in the city centre. The paper contributes to the literature on cultural districts by matching specificities and contingencies attached to a particular urban area with the governance model adopted for its development. The paper claims that temporal experimentation has to be included...... for the implementation and organization of cultural districts, and evaluates how they can affect their actual realization by investigating three cases in Copenhagen, Denmark. The deindustrialization of Copenhagen left many of the city’s harbour areas disused and in turn provided the opportunity to develop three new...

  18. Study Of Plant Regeneration Potential In Tropical Moist Deciduous Forest In Northern India

    Directory of Open Access Journals (Sweden)

    Ashish K Mishra

    2013-12-01

    Full Text Available Regeneration patterns of species population can address climate change by adaptive evolution or by migrating association to survive in their favorable climate and finally decided to particular forest future. In this paper we examined the status of regeneration potential of tree species in tropical moist deciduous forest at Katerniaghat Wildlife Sanctuary, Northern India. To investigate tree, sapling and seedling population distribution, we examine regeneration status in 145 random plots in study area. Total 74 plant species of 60 genera belonging to 32 families out of which 71 species of trees, 56 of seedlings and 60 of saplings were found in the forest. On the basis of importance value index Mallotus philippensis, Tectona grandis, Shorea robusta, Syzygium cumini and Bombax ceiba have been found as dominant species in the study area. As far as the regeneration status is concerned, the maximum tree species (64% have been found in good regeneration category. Significant variations in species richness and population density, between three life form (i. e. tree, sapling and seedling have been found. In which only three new tree species Prosopis juliflora, Psidium guajava and Morus alba were added in sapling and seedling stage. It is major ecological concern that about 19 % economically important plant species like Madhuca longifolia, Terminalia elliptica, Buchanania cochinchinensis, some Ficus species etc. have been found in poor regeneration phage, whereas about 7% species found in no regeneration categories. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 153-163 DOI: http://dx.doi.org/10.3126/ije.v2i1.9218

  19. Efficient Greedy Randomized Adaptive Search Procedure for the Generalized Regenerator Location Problem

    Directory of Open Access Journals (Sweden)

    J.D. Quintana

    2016-12-01

    Full Text Available Over the years, there has been an evolution in the manner in which we perform traditional tasks. Nowadays, almost every simple action that we can think about involves the connection among two or more devices. It is desirable to have a high quality connection among devices, by using electronic or optical signals. Therefore, it is really important to have a reliable connection among terminals in the network. However, the transmission of the signal deteriorates when increasing the distance among devices. There exists a special piece of equipment that we can deploy in a network, called regenerator, which is able to restore the signal transmitted through it, in order to maintain its quality. Deploying a regenerator in a network is generally expensive, so it is important to minimize the number of regenerators used. In this paper we focus on the Generalized Regenerator Location Problem (GRLP, which tries to innd the minimum number of regenerators that must be deployed in a network in order to have a reliable communication without loss of quality. We present a GRASP metaheuristic in order to innd good solutions for the GRLP. The results obtained by the proposal are compared with the best previous methods for this problem. We conduct an extensive computational experience with 60 large and challenging instances, emerging the proposed method as the best performing one. This fact is innally supported by non-parametric statistical tests.

  20. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies.

    Science.gov (United States)

    Chuah, Yon Jin; Peck, Yvonne; Lau, Jia En Josias; Hee, Hwan Tak; Wang, Dong-An

    2017-03-28

    Hydrogels have been extensively employed as an attractive biomaterial to address numerous existing challenges in the fields of regenerative medicine and research because of their unique properties such as the capability to encapsulate cells, high water content, ease of modification, low toxicity, injectability, in situ spatial fit and biocompatibility. These inherent properties have created many opportunities for hydrogels as a scaffold or a cell/drug carrier in tissue regeneration, especially in the field of cartilaginous tissue such as articular cartilage and intervertebral discs. A concise overview of the anatomy/physiology of these cartilaginous tissues and their pathophysiology, epidemiology and existing clinical treatments will be briefly described. This review article will discuss the current state-of-the-art of various polymers and developing strategies that are explored in establishing different technologies for cartilaginous tissue regeneration. In particular, an innovative approach to generate scaffold-free cartilaginous tissue via a transient hydrogel scaffolding system for disease modeling to pre-clinical trials will be examined. Following that, the article reviews numerous hydrogel-based medical implants used in clinical treatment of osteoarthritis and degenerated discs. Last but not least, the challenges and future directions of hydrogel based medical implants in the regeneration of cartilaginous tissue are also discussed.

  1. Endogenous retinal neural stem cell reprogramming for neuronal regeneration

    Directory of Open Access Journals (Sweden)

    Romain Madelaine

    2017-01-01

    Full Text Available In humans, optic nerve injuries and associated neurodegenerative diseases are often followed by permanent vision loss. Consequently, an important challenge is to develop safe and effective methods to replace retinal neurons and thereby restore neuronal functions and vision. Identifying cellular and molecular mechanisms allowing to replace damaged neurons is a major goal for basic and translational research in regenerative medicine. Contrary to mammals, the zebrafish has the capacity to fully regenerate entire parts of the nervous system, including retina. This regenerative process depends on endogenous retinal neural stem cells, the Müller glial cells. Following injury, zebrafish Müller cells go back into cell cycle to proliferate and generate new neurons, while mammalian Müller cells undergo reactive gliosis. Recently, transcription factors and microRNAs have been identified to control the formation of new neurons derived from zebrafish and mammalian Müller cells, indicating that cellular reprogramming can be an efficient strategy to regenerate human retinal neurons. Here we discuss recent insights into the use of endogenous neural stem cell reprogramming for neuronal regeneration, differences between zebrafish and mammalian Müller cells, and the need to pursue the identification and characterization of new molecular factors with an instructive and potent function in order to develop theurapeutic strategies for eye diseases.

  2. Weak Evidence of Regeneration Habitat but Strong Evidence of Regeneration Niche for a Leguminous Shrub

    Science.gov (United States)

    Delerue, Florian; Gonzalez, Maya; Michalet, Richard; Pellerin, Sylvain; Augusto, Laurent

    2015-01-01

    The identification of an ecological niche specific to the regeneration phase has mobilised significant attention. However, the importance of the regeneration niche concept remains unclear. Our main objective was to study the existence of such a regeneration niche for a leguminous shrub, Ulex europaeus. This study was carried out in southwest France in the context of water and nutrient stresses (mainly phosphorus limitation) due to the presence of nutrient-poor sandy soils. We analysed the regeneration of the species from the germination of seeds and emergence of new seedlings until the seedlings reached young shrub size. Our design included a P fertilisation treatment. We also investigated microsite characteristics (micro-topography and vegetation development) as they can interact with meteorological conditions and determine water availability for seeds and seedlings. We found that P availability controlled seedling growth and the time necessary to reach young shrub size. Water availability appeared to impact the species germination and seedlings survival. We also found that P and water availability depended on the interactions between microsite characteristics and climatic variations. Finally we found evidence that P and water availability are important ecological factors shaping the regeneration niche of the species, but we found weak evidence that any microsite would be appropriate for the regeneration of the species in the long term. Future studies regarding regeneration niches need to distinguish more clearly the ecological factors important for regeneration (the regeneration niche per se) and the physical world where the seedlings appear and develop (the regeneration habitat). PMID:26098877

  3. Weak Evidence of Regeneration Habitat but Strong Evidence of Regeneration Niche for a Leguminous Shrub.

    Directory of Open Access Journals (Sweden)

    Florian Delerue

    Full Text Available The identification of an ecological niche specific to the regeneration phase has mobilised significant attention. However, the importance of the regeneration niche concept remains unclear. Our main objective was to study the existence of such a regeneration niche for a leguminous shrub, Ulex europaeus. This study was carried out in southwest France in the context of water and nutrient stresses (mainly phosphorus limitation due to the presence of nutrient-poor sandy soils. We analysed the regeneration of the species from the germination of seeds and emergence of new seedlings until the seedlings reached young shrub size. Our design included a P fertilisation treatment. We also investigated microsite characteristics (micro-topography and vegetation development as they can interact with meteorological conditions and determine water availability for seeds and seedlings. We found that P availability controlled seedling growth and the time necessary to reach young shrub size. Water availability appeared to impact the species germination and seedlings survival. We also found that P and water availability depended on the interactions between microsite characteristics and climatic variations. Finally we found evidence that P and water availability are important ecological factors shaping the regeneration niche of the species, but we found weak evidence that any microsite would be appropriate for the regeneration of the species in the long term. Future studies regarding regeneration niches need to distinguish more clearly the ecological factors important for regeneration (the regeneration niche per se and the physical world where the seedlings appear and develop (the regeneration habitat.

  4. Bioengineered Lacrimal Gland Organ Regeneration in Vivo

    Directory of Open Access Journals (Sweden)

    Masatoshi Hirayama

    2015-07-01

    Full Text Available The lacrimal gland plays an important role in maintaining a homeostatic environment for healthy ocular surfaces via tear secretion. Dry eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye disorders and causes ocular discomfort, significant visual disturbances, and a reduced quality of life. Current therapies for dry eye disease, including artificial tear eye drops, are transient and palliative. The lacrimal gland, which consists of acini, ducts, and myoepithelial cells, develops from its organ germ via reciprocal epithelial-mesenchymal interactions during embryogenesis. Lacrimal tissue stem cells have been identified for use in regenerative therapeutic approaches aimed at restoring lacrimal gland functions. Fully functional organ replacement, such as for tooth and hair follicles, has also been developed via a novel three-dimensional stem cell manipulation, designated the Organ Germ Method, as a next-generation regenerative medicine. Recently, we successfully developed fully functional bioengineered lacrimal gland replacements after transplanting a bioengineered organ germ using this method. This study represented a significant advance in potential lacrimal gland organ replacement as a novel regenerative therapy for dry eye disease. In this review, we will summarize recent progress in lacrimal regeneration research and the development of bioengineered lacrimal gland organ replacement therapy.

  5. Metabolomic homeostasis shifts after callus formation and shoot regeneration in tomato

    Science.gov (United States)

    Kumari, Alka; Ray, Kamalika; Sadhna, Sadhna; Pandey, Arun Kumar; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2017-01-01

    Plants can regenerate from a variety of tissues on culturing in appropriate media. However, the metabolic shifts involved in callus formation and shoot regeneration are largely unknown. The metabolic profiles of callus generated from tomato (Solanum lycopersicum) cotyledons and that of shoot regenerated from callus were compared with the pct1-2 mutant that exhibits enhanced polar auxin transport and the shr mutant that exhibits elevated nitric oxide levels. The transformation from cotyledon to callus involved a major shift in metabolite profiles with denser metabolic networks in the callus. In contrast, the transformation from callus to shoot involved minor changes in the networks. The metabolic networks in pct1-2 and shr mutants were distinct from wild type and were rewired with shifts in endogenous hormones and metabolite interactions. The callus formation was accompanied by a reduction in the levels of metabolites involved in cell wall lignification and cellular immunity. On the contrary, the levels of monoamines were upregulated in the callus and regenerated shoot. The callus formation and shoot regeneration were accompanied by an increase in salicylic acid in wild type and mutants. The transformation to the callus and also to the shoot downregulated LST8 and upregulated TOR transcript levels indicating a putative linkage between metabolic shift and TOR signalling pathway. The network analysis indicates that shift in metabolite profiles during callus formation and shoot regeneration is governed by a complex interaction between metabolites and endogenous hormones. PMID:28481937

  6. Evolution, reproduction and autopoiesis

    Directory of Open Access Journals (Sweden)

    Francois Durand

    2017-11-01

    Full Text Available The term autopoiesis was coined to describe the regenerating and self-maintaining chemical systems of cells. The term has subsequently been applied to many different fields, including sociology, systems theory and information systems. This theory postulates that an autopoietic unity (cell, machine is an organised network of processes that exists in a delimited space, which produces components which in turn continuously regenerate and create the network of processes that produced them. The Santiago Theory of Cognition grew from the Theory of Allopoiesis stating that all living systems are cognitive systems, and the process of living is a process of cognition. Cognition is the ability to adapt to a certain environment and cognition emerges because of a continuous bilateral interaction between the system and its environment. The resultant complexity seen in living systems is caused by this interaction between the system and its environment. Autopoiesis and cognition are however opposing concepts because cognition can only exist when the system is open and not closed as autopoiesis suggests. It is also difficult to see how autopoietic systems could originate if they are closed and how the continuous change which we see in evolution can be explained if life consists of autopoietic systems. It is postulated that cells and organisms are in fact open systems relating genetically to ancestors before them and their ever-changing descendants after them and the flow of molecules and energy through an ever-changing ecology.

  7. CONVECTIVE-REACTIVE PROTON-12C COMBUSTION IN SAKURAI'S OBJECT (V4334 SAGITTARII) AND IMPLICATIONS FOR THE EVOLUTION AND YIELDS FROM THE FIRST GENERATIONS OF STARS

    International Nuclear Information System (INIS)

    Herwig, Falk; Pignatari, Marco; Woodward, Paul R.; Porter, David H.; Rockefeller, Gabriel; Fryer, Chris L.; Bennett, Michael; Hirschi, Raphael

    2011-01-01

    Depending on mass and metallicity as well as evolutionary phase, stars occasionally experience convective-reactive nucleosynthesis episodes. We specifically investigate the situation when nucleosynthetically unprocessed, H-rich material is convectively mixed with an He-burning zone, for example in a convectively unstable shell on top of electron-degenerate cores in asymptotic giant branch stars, young white dwarfs, or X-ray bursting neutron stars. Such episodes are frequently encountered in stellar evolution models of stars of extremely low or zero metal content, such as the first stars. We have carried out detailed nucleosynthesis simulations based on stellar evolution models and informed by hydrodynamic simulations. We focus on the convective-reactive episode in the very late thermal pulse star Sakurai's object (V4334 Sagittarii). Asplund et al. determined the abundances of 28 elements, many of which are highly non-solar, ranging from H, He, and Li all the way to Ba and La, plus the C isotopic ratio. Our simulations show that the mixing evolution according to standard, one-dimensional stellar evolution models implies neutron densities in the He intershell (∼ 11 cm -3 ) that are too low to obtain a significant neutron capture nucleosynthesis on the heavy elements. We have carried out three-dimensional hydrodynamic He-shell flash convection simulations in 4π geometry to study the entrainment of H-rich material. Guided by these simulations we assume that the ingestion process of H into the He-shell convection zone leads only after some delay time to a sufficient entropy barrier that splits the convection zone into the original one driven by He burning and a new one driven by the rapid burning of ingested H. By making such mixing assumptions that are motivated by our hydrodynamic simulations we obtain significantly higher neutron densities (∼ few 10 15 cm -3 ) and reproduce the key observed abundance trends found in Sakurai's object. These include an

  8. Pulp regeneration: Current approaches and future challenges

    Directory of Open Access Journals (Sweden)

    Jingwen eYANG

    2016-03-01

    Full Text Available Regenerative endodontics aims to replace inflamed/necrotic pulp tissues with regenerated pulp-like tissues to revitalize teeth and improve life quality. Pulp revascularization case reports, which showed successful clinical and radiographic outcomes, indicated the possible clinical application of pulp regeneration via cell homing strategy. From a clinical point of view, functional pulp-like tissues should be regenerated with the characterization of vascularization, re-innervation, and dentin deposition with a regulated rate similar to that of normal pulp. Efficient root canal disinfection and proper size of the apical foramen are the two requisite preconditions for pulp regeneration. Progress has been made on pulp regeneration via cell homing strategies. This review focused on the requisite preconditions and cell homing strategies for pulp regeneration. In addition to the traditionally used mechanical preparation and irrigation, antibiotics, irrigation assisted with EndoVac apical negative-pressure system, and ultrasonic and laser irradiation are now being used in root canal disinfection. In addition, pulp-like tissues could be formed with the apical foramen less than 1 mm, although more studies are needed to determine the appropriate size. Moreover, signaling molecules including stromal cell derived factor (SDF-1α, basic Fibroblast Growth Factor (bFGF, Platelet Derived Growth Factor (PDGF, stem cell factor (SCF, and Granulocyte Colony-Stimulating Factor (G-CSF were used to achieve pulp-like tissue formation via a cell homing strategy. Studies on the cell sources of pulp regeneration might give some indications on the signaling molecular selection. The active recruitment of endogenous cells into root canals to regenerate pulp-like tissues is a novel concept that may offer an unprecedented opportunity for the near-term clinical translation of current biology-based therapies for dental pulp regeneration.

  9. Nitrogen uptake and regeneration pathways in the equatorial Pacific: a basin scale modeling study

    Directory of Open Access Journals (Sweden)

    R. Le Borgne

    2009-11-01

    Full Text Available It is well known that most primary production is fueled by regenerated nitrogen in the open ocean. Therefore, studying the nitrogen cycle by focusing on uptake and regeneration pathways would advance our understanding of nitrogen dynamics in the marine ecosystem. Here, we carry out a basin-scale modeling study, by assessing model simulations of nitrate and ammonium, and rates of nitrate uptake, ammonium uptake and regeneration in the equatorial Pacific. Model-data comparisons show that the model is able to reproduce many observed features of nitrate, ammonium, such as the deep ammonium maximum (DAM. The model also reproduces the observed de-coupling of ammonium uptake and regeneration, i.e., regeneration rate greater than uptake rate in the lower euphotic zone. The de-coupling largely explains the observed DAM in the equatorial Pacific Ocean. Our study indicates that zooplankton excretion and remineralization of organic nitrogen play a different role in nitrogen regeneration. Rates of zooplankton excretion vary from <0.01 mmol m−3 d−1 to 0.1 mmol m−3 d−1 in the upper euphotic zone while rates of remineralization fall within a narrow range (0.015–0.025 mmol m−3 d−1 . Zooplankton excretion contributes up to 70% of total ammonium regeneration in the euphotic zone, and is largely responsible for the spatial variability of nitrogen regeneration. However, remineralization provides a steady supply of ammonium in the upper ocean, and is a major source of inorganic nitrogen for the oligotrophic regions. Overall, ammonium generation and removal are approximately balanced over the top 150 m in the equatorial Pacific.

  10. Stator current harmonics evolution by neural network method based on CFE/SS algorithm for ACEC generator of Rey Power Plant

    International Nuclear Information System (INIS)

    Soleymani, S.; Ranjbar, A.M.; Mirabedini, H.

    2001-01-01

    One method for on-line fault diagnosis in synchronous generator is stator current harmonics analysis. Then artificial neural network is considered in this paper in order to evaluate stator current harmonics in different loads. Training set of artificial neural network is made ready by generator modeling, finite element method and state space model. Many points from generator capability curve are used in order to complete this set. Artificial neural network which is used in this paper is a percept ron network with a single hidden layer, Eight hidden neurons and back propagation algorithm. Results are indicated that the trained artificial neural network can identify stator current harmonics for arbitrary load from the capability curve. The error is less than 10% in comparison with values obtained directly from the CFE-SS algorithm. The rating parameters of modeled generator are 43950 (kV A), 11(KV), 3000 (rpm), 50 (H Z), (P F=0.8)

  11. Aberrant regeneration of the third cranial nerve.

    Science.gov (United States)

    Shrestha, U D; Adhikari, S

    2012-01-01

    Aberrant regeneration of the third cranial nerve is most commonly due to its damage by trauma. A ten-month old child presented with the history of a fall from a four-storey building. She developed traumatic third nerve palsy and eventually the clinical features of aberrant regeneration of the third cranial nerve. The adduction of the eye improved over time. She was advised for patching for the strabismic amblyopia as well. Traumatic third nerve palsy may result in aberrant regeneration of the third cranial nerve. In younger patients, motility of the eye in different gazes may improve over time. © NEPjOPH.

  12. Divergent Cumulative Cultural Evolution

    OpenAIRE

    Marriott, Chris; Chebib, Jobran

    2016-01-01

    Divergent cumulative cultural evolution occurs when the cultural evolutionary trajectory diverges from the biological evolutionary trajectory. We consider the conditions under which divergent cumulative cultural evolution can occur. We hypothesize that two conditions are necessary. First that genetic and cultural information are stored separately in the agent. Second cultural information must be transferred horizontally between agents of different generations. We implement a model with these ...

  13. Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β-cell regeneration in mice.

    Science.gov (United States)

    Criscimanna, Angela; Coudriet, Gina M; Gittes, George K; Piganelli, Jon D; Esni, Farzad

    2014-11-01

    Although the cells that contribute to pancreatic regeneration have been widely studied, little is known about the mediators of this process. During tissue regeneration, infiltrating macrophages debride the site of injury and coordinate the repair response. We investigated the role of macrophages in pancreatic regeneration in mice. We used a saporin-conjugated antibody against CD11b to reduce the number of macrophages in mice following diphtheria toxin receptor-mediated cell ablation of pancreatic cells, and evaluated the effects on pancreatic regeneration. We analyzed expression patterns of infiltrating macrophages after cell-specific injury or from the pancreas of nonobese diabetic mice. We developed an in vitro culture system to study the ability of macrophages to induce cell-specific regeneration. Depletion of macrophages impaired pancreatic regeneration. Macrophage polarization, as assessed by expression of tumor necrosis factor-α, interleukin 6, interleukin 10, and CD206, depended on the type of injury. The signals provided by polarized macrophages promoted lineage-specific generation of acinar or endocrine cells. Macrophage from nonobese diabetic mice failed to provide signals necessary for β-cell generation. Macrophages produce cell type-specific signals required for pancreatic regeneration in mice. Additional study of these processes and signals might lead to new approaches for treating type 1 diabetes or pancreatitis. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. System and method for regeneration and recirculation of a reducing agent using highly exothermic reactions induced by mixed industrial slags

    Science.gov (United States)

    Nakano, Jinichiro; Bennett, James P.; Nakano, Anna

    2017-12-12

    Embodiments relate to systems and methods for regenerating and recirculating a CO, H.sub.2 or combinations thereof utilized for metal oxide reduction in a reduction furnace. The reduction furnace receives the reducing agent, reduces the metal oxide, and generates an exhaust of the oxidized product. The oxidized product is transferred to a mixing vessel, where the oxidized product, a calcium oxide, and a vanadium oxide interact to regenerate the reducing agent from the oxidized product. The regenerated reducing agent is transferred back to the reduction furnace for continued metal oxide reductions.

  15. Regenerating America: Meeting the Challenge of Building Local Economies.

    Science.gov (United States)

    Gabel, Medard; And Others

    The document includes five papers on the implications and applications of regeneration by the Regeneration Project, based in Emmaus, Pa. The first paper, "Regenerating America: Meeting the Challenge of Building Local Economies," (Medard Gabel) defines regeneration as economic recovery and growth, fostered by diversification within a…

  16. Inhibiting the regeneration of N-nitrosodimethylamine in drinking water by UV photolysis combined with ozonation

    International Nuclear Information System (INIS)

    Xu Bingbing; Chen Zhonglin; Qi Fei; Ma Jun; Wu Fengchang

    2009-01-01

    N-Nitrosodimethylamine (NDMA) is a highly carcinogenic compound that is suspected of carcinogenic activity in the human body. A variety of methods are used to remove NDMA from water, but the main degradation products, dimethylamine (DMA) and NO 2 - , are also precursors for NDMA formation. UV irradiation combined with ozonation (UV/O 3 ) was examined in this investigation for its ability to inhibit the regeneration of NDMA after degradation. Both the degradation products and the regeneration potential of NDMA were compared between UV irradiation alone and UV/O 3 . The yields of DMA and NO 2 - in the UV/O 3 process were less than for UV irradiation alone. Yields of DMA and NO 2 - were 2.25 mg L -1 and 3.22 mg L -1 from UV irradiation, while they were 0.92 mg L -1 and 0.45 mg L -1 from the UV/O 3 process. Furthermore, the regeneration of NDMA was also less after the UV/O 3 process than after UV irradiation. The concentration of regenerated NDMA was more than 51.8 μg L -1 after UV irradiation regardless of the dosage of Cl 2 . However, the concentration of regenerated NDMA in the UV/O 3 process was less than 7.37 μg L -1 under the same conditions. Consequently, the UV/O 3 process was more effective than UV irradiation alone in inhibiting NDMA regeneration. The inhibition of NDMA regeneration was due to a decrease in DMA and NO 2 - produced by the UV/O 3 process. As the major products generated from NDMA, NO 2 - and DMA were likely to be oxidized by ozone and hydroxyl radicals (·OH). In addition, the reaction between NDMA and ·OH would possibly generate methylamine as the only product, leading to a decrease in the production of DMA by the UV/O 3 process.

  17. ADAPTATION OF REGENERANTS OF Vaccinium Corymbosum L

    African Journals Online (AJOL)

    Kutas

    2011-05-09

    May 9, 2011 ... Adaptation of regenerants of Vaccinium corymbosum ... functions of the sheet plants growing in an aseptic culture, in hothouses or open ground .... L. (Koralle) were preserved in alcohol-acetic acid (3:1). ..... and soil moisture.

  18. Chronological protein synthesis in regenerating rat liver.

    Science.gov (United States)

    He, Jinjun; Hao, Shuai; Zhang, Hao; Guo, Fuzheng; Huang, Lingyun; Xiao, Xueyuan; He, Dacheng

    2015-07-01

    Liver regeneration has been studied for decades; however, its regulation remains unclear. In this study, we report a dynamic tracing of protein synthesis in rat regenerating liver with a new proteomic technique, (35) S in vivo labeling analysis for dynamic proteomics (SiLAD). Conventional proteomic techniques typically measure protein alteration in accumulated amounts. The SiLAD technique specifically detects protein synthesis velocity instead of accumulated amounts of protein through (35) S pulse labeling of newly synthesized proteins, providing a direct way for analyzing protein synthesis variations. Consequently, protein synthesis within short as 30 min was visualized and protein regulations in the first 8 h of regenerating liver were dynamically traced. Further, the 3.5-5 h post partial hepatectomy (PHx) was shown to be an important regulatory turning point by acute regulation of many proteins in the initiation of liver regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rapid plant regeneration of chrysanthemum (Chrysanthemum ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... demand for chrysanthemum, it has become one of the first commercial targets for ... frequency of multiple shoot regeneration response was. 95 and 91%, for nodal ..... Dordrecht, The Netherlands, pp. 91-101. Prasad RN ...

  20. Grazing management that regenerates ecosystem function and ...

    African Journals Online (AJOL)

    Grazing management that regenerates ecosystem function and grazingland ... in ecosystem improvement, productivity, soil carbon and fertility, water-holding ... for sufficient time to produce resource improvement, sound animal production, and ...

  1. An experimental study of passive regenerator geometries

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Nielsen, Kaspar Kirstein; Pryds, Nini

    2011-01-01

    Active magnetic regenerative (AMR) systems are being investigated because they represent a potentially attractive alternative to vapor compression technology. The performance of these systems is dependent on the heat transfer and pressure drop performance of the regenerator geometry. Therefore th...

  2. Fingernails Yield Clues to Limb Regeneration

    Science.gov (United States)

    ... it is involved in limb formation in mammalian embryonic development, as well as limb regeneration in amphibians. ... of the nail stem cells and the underlying layer of cells called the nail epithelium are left ...

  3. Optimization of regeneration and transformation parameters in ...

    African Journals Online (AJOL)

    PRECIOUS

    transformation and regeneration therefore optimization of these two factors is .... An analysis of variance was conducted using explants types x construct ... and significant differences between means were assessed by the. Tukey's test at 1 and ...

  4. Regeneration-associated macrophages: a novel approach to boost intrinsic regenerative capacity for axon regeneration

    Directory of Open Access Journals (Sweden)

    Min Jung Kwon

    2016-01-01

    Full Text Available Axons in central nervous system (CNS do not regenerate spontaneously after injuries such as stroke and traumatic spinal cord injury. Both intrinsic and extrinsic factors are responsible for the regeneration failure. Although intensive research efforts have been invested on extrinsic regeneration inhibitors, the extent to which glial inhibitors contribute to the regeneration failure in vivo still remains elusive. Recent experimental evidence has rekindled interests in intrinsic factors for the regulation of regeneration capacity in adult mammals. In this review, we propose that activating macrophages with pro-regenerative molecular signatures could be a novel approach for boosting intrinsic regenerative capacity of CNS neurons. Using a conditioning injury model in which regeneration of central branches of dorsal root ganglia sensory neurons is enhanced by a preceding injury to the peripheral branches, we have demonstrated that perineuronal macrophages surrounding dorsal root ganglia neurons are critically involved in the maintenance of enhanced regeneration capacity. Neuron-derived chemokine (C-C motif ligand 2 (CCL2 seems to mediate neuron-macrophage interactions conveying injury signals to perineuronal macrophages taking on a soley pro-regenerative phenotype, which we designate as regeneration-associated macrophages (RAMs. Manipulation of the CCL2 signaling could boost regeneration potential mimicking the conditioning injury, suggesting that the chemokine-mediated RAM activation could be utilized as a regenerative therapeutic strategy for CNS injuries.

  5. A numerical analysis of a reciprocating Active Magnetic Regenerator with a parallel-plate regenerator geometry

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank; Pryds, Nini; Smith, Anders

    2007-01-01

    We have developed a two-dimensional model of a reciprocating Active Magnetic Regenerator(AMR) with a regenerator made of parallel plates arranged in a stack configuration. The time dependent,two-dimensional model solves the Navier-Stokes equations for the heat transfer fluid and the coupled heat...... transfer equations for the regenerator and the fluid. The model is implemented using the Finite Element Method. The model can be used to study both transient and steady-state phenomena in the AMR for any ratio of regenerator to fluid heat capacity. Results on the AMR performance for different design...

  6. Storage, generation, and use of hydrogen

    Science.gov (United States)

    McClaine, Andrew W.; Rolfe, Jonathan L.; Larsen, Christopher A.; Konduri, Ravi K.

    2006-05-30

    A composition comprising a carrier liquid; a dispersant; and a chemical hydride. The composition can be used in a hydrogen generator to generate hydrogen for use, e.g., as a fuel. A regenerator recovers elemental metal from byproducts of the hydrogen generation process.

  7. Emdogain--periodontal regeneration based on biomimicry.

    Science.gov (United States)

    Gestrelius, S; Lyngstadaas, S P; Hammarström, L

    2000-06-01

    Biomimicry has been introduced as a term for innovations inspired by nature [1]. Such innovations may appear in almost every part of modern society. This review on the effects of enamel matrix proteins on the formation of cementum and the development of emdogain for regeneration of periodontal tissues lost due to periodontitis shows an example of biomimicry in dentistry. Findings from clinical and laboratory investigations are summarized and the biological basis for enamel matrix-induced periodontal regeneration is discussed.

  8. DIAGNOSTICS AND REGENERATION OF COMMON RAIL INJECTORS

    Directory of Open Access Journals (Sweden)

    Łukasz KONIECZNY

    2015-03-01

    Full Text Available The article presents the methodology of Common Rail injector diagnostic, regeneration and regulation with use of professional test stands. The EPS 815 machine can be used to test and repair all BOSCH injectors fully satisfying the producer requirements and standards. The article describes an example injector diagnosis with use of such test stand and additionally presents appropriate injector regeneration and encoding techniques

  9. Brownfield regeneration: Towards strengthening social cohesion?

    Directory of Open Access Journals (Sweden)

    Minić Marta

    2016-01-01

    Full Text Available In broader terms, the paper refers to the topic of brownfield regeneration, as one of the most complex mechanisms for sustainable spatial development. In addition to the fact that brownfield regeneration demands a variety of instruments, such as: tax subsidies, the change of land use ownership, soil remediation, planning regulative amendments, etc., the complexity of brownfield regeneration is primarily seen in a number of stakeholders participating in such a process. Thus, the paper focuses on the social aspect of brownfield regeneration - precisely, on researching the community role and reviewing the possibilities for achieving the 'local' interests in complex developmental processes. The main research hypothesis is that brownfield regeneration positively affects the creation of and strengthening the social cohesion in the areas close to the brownfield site. More precisley, the paper presents the ways towards strenghtening social cohesion in the initial phase of the brownfield regeneration process, as well as the effects of such a process in its operationalisation phase on social cohesion. The thesis is examined by two main parameters: 1 participation of local community, and 2 social costs and benefits of brownfield regeneration versus greenfield investment. The research results are presented in the form of argumentative essay. In fact, the critical overview of arguments for and against the main research hypothesis is provided based on the review of interdisciplinary literature in the domain of brownfield regeneration. Such research organisation ensures the identification and description of the measures needed for strengthening social cohesion, as an utmost goal of this research. The final research contribution is about offering the guidelines for similar methodological approach in urban research.

  10. Straight-Pore Microfilter with Efficient Regeneration

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.; McCallum. Thomas J.; Schmitt, Edwin W.

    2010-01-01

    A novel, high-efficiency gas particulate filter has precise particle size screening, low pressure drop, and a simple and fast regeneration process. The regeneration process, which requires minimal material and energy consumption, can be completely automated, and the filtration performance can be restored within a very short period of time. This filter is of a novel material composite that contains the support structure and a novel coating.

  11. Abiotic factors influencing tropical dry forests regeneration

    Directory of Open Access Journals (Sweden)

    Ceccon Eliane

    2006-01-01

    Full Text Available Tropical dry forests represent nearly half the tropical forests in the world and are the ecosystems registering the greatest deterioration from the anthropogenic exploitation of the land. This paper presents a review on the dynamics of tropical dry forests regeneration and the main abiotic factors influencing this regeneration, such as seasonal nature, soil fertility and humidity, and natural and anthropic disturbances. The main purpose is to clearly understand an important part of TDF succession dynamics.

  12. Protoplast formation and regeneration in Lactobacillus delbrueckii

    OpenAIRE

    Singhvi, Mamta; Joshi, Dipti; Gaikaiwari, Shalaka; Gokhale, Digambar V.

    2010-01-01

    Method for production and regeneration of Lactobacillus delbrueckii protoplasts are described. The protoplasts were obtained by treatment with a mixture of lysozyme and mutanolysin in protoplast buffer at pH 6.5 with different osmotic stabilizers. The protoplasts were regenerated on deMan, Rogosa and Sharpe (MRS) with various osmotic stabilizers. Maximum protoplast formation was obtained in protoplast buffer with sucrose as an osmotic stabilizer using a combination of lysozyme (1 mg/ml) and m...

  13. Continuous microwave regeneration apparatus for absorption media

    Science.gov (United States)

    Smith, Douglas D.

    1999-01-01

    A method and apparatus for continuously drying and regenerating ceramic beads for use in process gas moisture drying operations such as glove boxes. A microwave energy source is coupled to a process chamber to internally heat the ceramic beads and vaporize moisture contained therein. In a preferred embodiment, the moisture laden ceramic beads are conveyed toward the microwave source by a screw mechanism. The regenerated beads flow down outside of the screw mechanism and are available to absorb additional moisture.

  14. A second generation genetic map of the bumblebee Bombus terrestris (Linnaeus, 1758 reveals slow genome and chromosome evolution in the Apidae

    Directory of Open Access Journals (Sweden)

    Kube Michael

    2011-01-01

    Full Text Available Abstract Background The bumblebee Bombus terrestris is an ecologically and economically important pollinator and has become an important biological model system. To study fundamental evolutionary questions at the genomic level, a high resolution genetic linkage map is an essential tool for analyses ranging from quantitative trait loci (QTL mapping to genome assembly and comparative genomics. We here present a saturated linkage map and match it with the Apis mellifera genome using homologous markers. This genome-wide comparison allows insights into structural conservations and rearrangements and thus the evolution on a chromosomal level. Results The high density linkage map covers ~ 93% of the B. terrestris genome on 18 linkage groups (LGs and has a length of 2'047 cM with an average marker distance of 4.02 cM. Based on a genome size of ~ 430 Mb, the recombination rate estimate is 4.76 cM/Mb. Sequence homologies of 242 homologous markers allowed to match 15 B. terrestris with A. mellifera LGs, five of them as composites. Comparing marker orders between both genomes we detect over 14% of the genome to be organized in synteny and 21% in rearranged blocks on the same homologous LG. Conclusions This study demonstrates that, despite the very high recombination rates of both A. mellifera and B. terrestris and a long divergence time of about 100 million years, the genomes' genetic architecture is highly conserved. This reflects a slow genome evolution in these bees. We show that data on genome organization and conserved molecular markers can be used as a powerful tool for comparative genomics and evolutionary studies, opening up new avenues of research in the Apidae.

  15. Advances in plasma skin regeneration.

    Science.gov (United States)

    Foster, K Wade; Moy, Ronald L; Fincher, Edgar F

    2008-09-01

    Plasma skin regeneration (PSR) is a novel method of resurfacing that uses plasma energy to create a thermal effect on the skin. PSR is different from lasers, light sources, and ablative lasers in that it is not chromophore dependent and does not vaporize tissue, but leaves a layer of intact, desiccated epidermis that acts as a natural biologic dressing and promotes wound healing and rapid recovery. Histological studies performed on plasma resurfacing patients have confirmed continued collagen production, reduction of elastosis, and progressive skin rejuvenation beyond 1 year after treatment. PSR has received US Food and Drug Administration 510 (k) clearance for treatment of rhytides of the body, superficial skin lesions, actinic keratoses, viral papillomata, and seborrheic keratoses. PSR also has beneficial effects in the treatment of other conditions including dyschromias, photoaging, skin laxity, and acne scars. The safety profile of PSR is excellent, and there have been no reports of demarcation lines in perioral, periorbital, or jawline areas, as can sometimes be observed following CO2 resurfacing. PSR is effective in improving facial and periorbital rhytides and can be used on nonfacial sites, including the hands, neck, and chest. Numerous treatment protocols with variable energy settings allow for individualized treatments and provide the operator with fine control over the degree of injury and length of subsequent recovery time.

  16. Immunology Guides Skeletal Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    F. Andrea Sass

    2018-03-01

    Full Text Available Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.

  17. Limb Regeneration in Axolotl: Is It Superhealing?

    Directory of Open Access Journals (Sweden)

    Stéphane Roy

    2006-01-01

    Full Text Available The ability of axolotls to regenerate their limbs is almost legendary. In fact, urodeles such as the axolotl are the only vertebrates that can regenerate multiple structures like their limbs, jaws, tail, spinal cord, and skin (the list goes on throughout their lives. It is therefore surprising to realize, although we have known of their regenerative potential for over 200 years, how little we understand the mechanisms behind this achievement of adult tissue morphogenesis. Many observations can be drawn between regeneration and other disciplines such as development and wound healing. In this review, we present new developments in functional analysis that will help to address the role of specific genes during the process of regeneration. We also present an analysis of the resemblance between wound healing and regeneration, and discuss whether axolotls are superhealers. A better understanding of these animals' regenerative capacity could lead to major benefits by providing regenerative medicine with directions on how to develop therapeutic approaches leading to regeneration in humans.

  18. Silymarin Accelerates Liver Regeneration after Partial Hepatectomy

    Directory of Open Access Journals (Sweden)

    Jia-Ping Wu

    2015-01-01

    Full Text Available Partial hepatectomy (PHx is a liver regeneration physiological response induced to maintain homeostasis. Liver regeneration evolved presumably to protect wild animals from catastrophic liver loss caused by toxins or tissue injury. Silymarin (Sm ability to stimulate liver regeneration has been an object of curiosity for many years. Silymarin has been investigated for use as an antioxidant and anticarcinogen. However, its use as a supportive treatment for liver damage is elusive. In this study, we fed silymarin (Sm, 25 mg/kg to male Sprague-Dawley rats for 7 weeks. Surgical 2/3 PHx was then conducted on the rats at 6 hrs, 24 hrs, and 72 hrs. Western blot and RT-PCR were conducted to detect the cell cycle activities and silymarin effects on hepatic regeneration. The results showed that silymarin enhanced liver regeneration by accelerating the cell cycle in PHx liver. Silymarin led to increased G1 phase (cyclin D1/pRb, S phase (cyclin E/E2F, G2 phase (cyclin B, and M phase (cyclin A protein and mRNA at 6 hrs, 24 hrs, and 72 hrs PHx. HGF, TGFα, and TGFβ1 growth factor expressions were also enhanced. We suggest that silymarin plays a crucial role in accelerated liver regeneration after PHx.

  19. Pore structure of natural and regenerated soil aggregates

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2014-01-01

    Quantitative characterization of aggregate pore structure can reveal the evolution of aggregates under different land use and management practices and their effects on soil processes and functions. Advances in X-ray Computed Tomography (CT) provide powerful means to conduct such characterization....... This study examined aggregate pore structure of three differently managed same textured Danish soils (mixed forage cropping, MFC; mixed cash cropping, MCC; cereal cash cropping, CCC) for (i) natural aggregates, and (ii) aggregates regenerated after 20 months of incubation. In total, 27 aggregates (8-16 mm...... pore diameter of 200 and 170 Hm, respectively. Pore shape analysis indicated that CCC and MFC aggregates had an abundance of rounded and elongated pores, respectively, and those of MCC were in-between CCC and MFC. Aggregate pore structure development in the lysimeters was nearly similar irrespective...

  20. MEMBRANOUS FLOWS IN GAS-LIQUID COLLECTORS-REGENERATORS OF SOLAR ABSORPTIVE SYSTEMS FEATURES

    Directory of Open Access Journals (Sweden)

    Doroshenko А.V.

    2009-12-01

    Full Text Available Article is devoted to the creation of new generation of solar collectors of the gas-liquid type, intended for use in alternative refrigerating and conditioning systems of drying-evaporating type with direct solar regeneration of absorbent. Special attention is given to the study of membranous flows features on inclined surfaces, including questions of such flows stability.

  1. The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians?

    Science.gov (United States)

    Sarig, Rachel; Tzahor, Eldad

    2017-04-01

    Regeneration in mammals is restricted to distinct tissues and occurs mainly by expansion and maturation of resident stem cells. During regeneration, even subtle mutations in the proliferating cells may cause a detrimental effect by eliciting abnormal differentiation or malignant transformation. Indeed, cancer in mammals has been shown to arise through deregulation of stem cells maturation, which often leads to a differentiation block and cell transformation. In contrast, lower organisms such as amphibians retain a remarkable regenerative capacity in various organs, which occurs via de- and re-differentiation of mature cells. Interestingly, regenerating amphibian cells are highly resistant to oncogenic transformation. Therapeutic approaches to improve mammalian regeneration mainly include stem-cell transplantations; but, these have proved unsuccessful in non-regenerating organs such as the heart. A recently developed approach is to induce de-differentiation of mature cardiomyocytes using factors that trigger their re-entry into the cell cycle. This novel approach raises numerous questions regarding the balance between transformation and regeneration induced by de-differentiation of mature mammalian somatic cells. Can this balance be controlled artificially? Do de-differentiated cells acquire the protection mechanisms seen in regenerating cells of lower organisms? Is this model unique to the cardiac tissue, which rarely develops tumors? This review describes regeneration processes in both mammals and lower organisms and, particularly, the ability of regenerating cells to avoid transformation. By comparing the characteristics of mammalian embryonic and somatic cells, we discuss therapeutic strategies of using various cell populations for regeneration. Finally, we describe a novel cardiac regeneration approach and its implications for regenerative medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email

  2. Promoting tissue regeneration by modulating the immune system.

    Science.gov (United States)

    Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M

    2017-04-15

    The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support

  3. Reptile scale paradigm: Evo-Devo, pattern formation and regeneration

    Science.gov (United States)

    Chang, Cheng; Wu, Ping; Baker, Ruth E.; Maini, Philip K.; Alibardi, Lorenzo; Chuong, Cheng-Ming

    2010-01-01

    The purpose of this perspective is to highlight the merit of the reptile integument as an experimental model. Reptiles represent the first amniotes. From stem reptiles, extant reptiles, birds and mammals have evolved. Mammal hairs and feathers evolved from Therapsid and Sauropsid reptiles, respectively. The early reptilian integument had to adapt to the challenges of terrestrial life, developing a multi-layered stratum corneum capable of barrier function and ultraviolet protection. For better mechanical protection, diverse reptilian scale types have evolved. The evolution of endothermy has driven the convergent evolution of hair and feather follicles: both form multiple localized growth units with stem cells and transient amplifying cells protected in the proximal follicle. This topological arrangement allows them to elongate, molt and regenerate without structural constraints. Another unique feature of reptile skin is the exquisite arrangement of scales and pigment patterns, making them testable models for mechanisms of pattern formation. Since they face the constant threat of damage on land, different strategies were developed to accommodate skin homeostasis and regeneration. Temporally, they can be under continuous renewal or sloughing cycles. Spatially, they can be diffuse or form discrete localized growth units (follicles). To understand how gene regulatory networks evolved to produce increasingly complex ectodermal organs, we have to study how prototypic scale-forming pathways in reptiles are modulated to produce appendage novelties. Despite the fact that there are numerous studies of reptile scales, molecular analyses have lagged behind. Here, we underscore how further development of this novel experimental model will be valuable in filling the gaps of our understanding of the Evo-Devo of amniote integuments. PMID:19557687

  4. Zirconia changes after grinding and regeneration firing.

    Science.gov (United States)

    Hatanaka, Gabriel R; Polli, Gabriela S; Fais, Laiza M G; Reis, José Maurício Dos S N; Pinelli, Lígia A P

    2017-07-01

    Despite improvements in computer-aided design and computer-aided manufacturing (CAD-CAM) systems, grinding during either laboratory procedures or clinical adjustments is often needed to modify the shape of 3 mol(%) yttria-tetragonal zirconia polycrystal (3Y-TZP) restorations. However, the best way to achieve adjustment is unclear. The purpose of this in vitro study was to evaluate the microstructural and crystallographic phase changes, flexural strength, and Weibull modulus of a 3Y-TZP zirconia after grinding with or without water cooling and regeneration firing. Ninety-six bar-shaped specimens were obtained and divided as follows: as-sintered, control; as-sintered with regeneration firing; grinding without water cooling; grinding and regeneration firing with water cooling; and grinding and regeneration firing. Grinding (0.3 mm) was performed with a 150-μm diamond rotary instrument in a high-speed handpiece. For regeneration firing, the specimens were annealed at 1000°C for 30 minutes. The crystalline phases were evaluated by using x-ray powder diffraction. A 4-point bending test was conducted (10 kN; 0.5 mm/min). The Weibull modulus was used to analyze strength reliability. The microstructure was analyzed by scanning electron microscopy. Data from the flexural strength test were evaluated using the Kruskal-Wallis and Dunn tests (α=.05). Tetragonal-to-monoclinic phase transformation was identified in the ground specimens; R regeneration firing groups showed only the tetragonal phase. The median flexural strength of as-sintered specimens was 642.0; 699.3 MPa for as-sintered specimens with regeneration firing; 770.1 MPa for grinding and water-cooled specimens; 727.3 MPa for specimens produced using water-cooled grinding and regeneration firing; 859.9 MPa for those produced by grinding; and 764.6 for those produced by grinding and regeneration firing; with statistically higher values for the ground groups. The regenerative firing did not affect the flexural

  5. Sustainable Urban Regeneration Based on Energy Balance

    Directory of Open Access Journals (Sweden)

    Sacha Silvester

    2012-07-01

    Full Text Available In this paper, results are reported of a technology assessment of the use and integration of decentralized energy systems and storage devices in an urban renewal area. First the general context of a different approach based on 'rethinking' and the incorporation of ongoing integration of coming economical and environmental interests on infrastructure, in relation to the sustainable urban development and regeneration from the perspective of the tripod people, technology and design is elaborated. However, this is at different scales, starting mainly from the perspective of the urban dynamics. This approach includes a renewed look at the ‘urban metabolism’ and the role of environmental technology, urban ecology and environment behavior focus. Second, the potential benefits of strategic and balanced introduction and use of decentralized devices and electric vehicles (EVs, and attached generation based on renewables are investigated in more detail in the case study of the ‘Merwe-Vierhaven’ area (MW4 in the Rotterdam city port in the Netherlands. In order to optimize the energy balance of this urban renewal area, it is found to be impossible to do this by tuning the energy consumption. It is more effective to change the energy mix and related infrastructures. However, the problem in existing urban areas is that often these areas are restricted to a few energy sources due to lack of available space for integration. Besides this, energy consumption in most cases is relatively concentrated in (existing urban areas. This limits the potential of sustainable urban regeneration based on decentralized systems, because there is no balanced choice regarding the energy mix based on renewables and system optimization. Possible solutions to obtain a balanced energy profile can come from either the choice to not provide all energy locally, or by adding different types of storage devices to the systems. The use of energy balance based on renewables as a

  6. Generation and evolution of nanoscale AlP and Al{sub 13}Fe{sub 4} particles in Al-Fe-P system

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Huan; Gao, Tong; Zhu, Xiangzhen; Wu, Yuying; Qian, Zhao; Liu, Xiangfa, E-mail: xfliu@sdu.edu.cn

    2015-02-15

    Highlights: • Diffusion and gradual solid reactions between Al and Fe{sub x}P phases in Al-Fe-P alloy were investigated. • Nanoscale AlP clusters are in-situ generated and evolve during the whole process. • This novel Al-Fe-P alloy has an excellent low-temperature refining performance on hypereutectic Al-Si alloy. - Abstract: In this paper, the gradual solid reactions between Al and Fe{sub x}P phases in Al-Fe-P alloy were investigated. The results show that the whole reaction process undergoes four main stages: the diffusion of Al atom, the generation of (Al, Fe, P) intermediate compound, the precipitation of nano AlP and Al{sub 13}Fe{sub 4} clusters and their growth to submicron particles. The microstructure of Fe-P particles evolves from the “egg-type”, the “sponge-type” to the “sesame-cake” structure. AlP and Al{sub 13}Fe{sub 4} nano phases have in-situ generated and evolved during the whole process. The gradual reaction mechanism has been discussed. Furthermore, a novel Al-Fe-P alloy which contains (Al, Fe, P) intermediate compounds and nano AlP particles has been synthesized and its low-temperature refining performance on A390 alloy has also been investigated.

  7. Effect of surrounding gas temperature on the morphological evolution of TiO2 nanoparticles generated by laser ablation in tubular furnace

    International Nuclear Information System (INIS)

    Tsuji, Masayuki; Seto, Takafumi; Otani, Yoshio

    2012-01-01

    Titanium oxide nanoparticles are synthesized by laser ablation of Ti target in oxygen atmosphere under well-controlled temperature profiles in a tubular furnace. The size and the shape of generated nanoparticles are varied by changing the temperature of furnace. The mobility-based size distributions of generated air-borne nanoparticles are measured using a scanning mobility particle sizer, and the size distributions of primary particles are analyzed by a scanning electron microscope. When the particles are generated by laser ablation at the room temperature, the particles are agglomerates in gas phase with the average mobility diameter of 117 nm and the mean diameter of primary particles of 11 nm. The primary particle diameter increases from 11 to 24 nm by raising the furnace temperature up to 800 °C. Since the mass of Ti vapor ablated from a target is found to be constant regardless of the furnace temperature, this particle growth may be attributed to the reduction in nuclei number as a result of mild quenching at higher temperatures. As the temperature reaches higher than 1,000 °C, the mobility diameter suddenly drops and the primary particle diameter increases due to sintering, and at 1,200 °C the mobility diameter coincides with the primary particle diameter. Since the laser oven method offers an independent control of vapor concentration and the temperature of surrounding atmosphere, it is an effective tool to study the formation process of nanoparticles from primary particles with a given size.

  8. A maximum likelihood approach to generate hypotheses on the evolution and historical biogeography in the Lower Volga Valley regions (southwest Russia)

    Science.gov (United States)

    Mavrodiev, Evgeny V; Laktionov, Alexy P; Cellinese, Nico

    2012-01-01

    The evolution of the diverse flora in the Lower Volga Valley (LVV) (southwest Russia) is complex due to the composite geomorphology and tectonic history of the Caspian Sea and adjacent areas. In the absence of phylogenetic studies and temporal information, we implemented a maximum likelihood (ML) approach and stochastic character mapping reconstruction aiming at recovering historical signals from species occurrence data. A taxon-area matrix of 13 floristic areas and 1018 extant species was constructed and analyzed with RAxML and Mesquite. Additionally, we simulated scenarios with numbers of hypothetical extinct taxa from an unknown palaeoflora that occupied the areas before the dramatic transgression and regression events that have occurred from the Pleistocene to the present day. The flora occurring strictly along the river valley and delta appear to be younger than that of adjacent steppes and desert-like regions, regardless of the chronology of transgression and regression events that led to the geomorphological formation of the LVV. This result is also supported when hypothetical extinct taxa are included in the analyses. The history of each species was inferred by using a stochastic character mapping reconstruction method as implemented in Mesquite. Individual histories appear to be independent from one another and have been shaped by repeated dispersal and extinction events. These reconstructions provide testable hypotheses for more in-depth investigations of their population structure and dynamics. PMID:22957179

  9. The influence of regeneration fellings on the development of artificially regenerated beech (Fagus sylvatica L.) plantations

    Czech Academy of Sciences Publication Activity Database

    Bednář, Pavel; Černý, J.

    2014-01-01

    Roč. 62, č. 5 (2014), s. 859-867 ISSN 1211-8516 Institutional support: RVO:67179843 Keywords : European beech * regeneration felling * artificial regeneration * height * DBH – the diameter at breast-height * quality * ISF – Indirect Site Factor Subject RIV: GK - Forestry

  10. Functional hepatocellular regeneration measured by hepatobiliary scintigraphy, functional regeneration or functional hepatocytes?

    NARCIS (Netherlands)

    Olthof, Pim B.; Cieslak, Kasia P.; Bennink, Roelof J.; van Gulik, Thomas M.

    2016-01-01

    In a recent issue of this journal, Fernandes et al(1) reported on functional hepatocellular regeneration in elderly patients undergoing hepatectomy. They used (99m) Tc-mebrofinin HBS to quantify liver function before and after surgery and concluded that functional regeneration is already present at

  11. Regeneration in natural and logged tropical rain forest : modelling seed dispersal and regeneration

    NARCIS (Netherlands)

    Ulft, Lambertus Henricus van

    2004-01-01

    Regeneration and disturbance are thought to play key roles in the maintenance of the high tree species diversity in tropical rain forests. Nevertheless, the earliest stages in the regeneration of tropical rain forest trees, from seed production to established seedlings, have received little

  12. Applications of Metals for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Kristina Glenske

    2018-03-01

    Full Text Available The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP-based substitute materials based on natural (allo- and xenografts and synthetic origins (alloplastic materials are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.

  13. Mechanisms of lymphatic regeneration after tissue transfer.

    Directory of Open Access Journals (Sweden)

    Alan Yan

    2011-02-01

    Full Text Available Lymphedema is the chronic swelling of an extremity that occurs commonly after lymph node resection for cancer treatment. Recent studies have demonstrated that transfer of healthy tissues can be used as a means of bypassing damaged lymphatics and ameliorating lymphedema. The purpose of these studies was to investigate the mechanisms that regulate lymphatic regeneration after tissue transfer.Nude mice (recipients underwent 2-mm tail skin excisions that were either left open or repaired with full-thickness skin grafts harvested from donor transgenic mice that expressed green fluorescent protein in all tissues or from LYVE-1 knockout mice. Lymphatic regeneration, expression of VEGF-C, macrophage infiltration, and potential for skin grafting to bypass damaged lymphatics were assessed.Skin grafts healed rapidly and restored lymphatic flow. Lymphatic regeneration occurred beginning at the peripheral edges of the graft, primarily from ingrowth of new lymphatic vessels originating from the recipient mouse. In addition, donor lymphatic vessels appeared to spontaneously re-anastomose with recipient vessels. Patterns of VEGF-C expression and macrophage infiltration were temporally and spatially associated with lymphatic regeneration. When compared to mice treated with excision only, there was a 4-fold decrease in tail volumes, 2.5-fold increase in lymphatic transport by lymphoscintigraphy, 40% decrease in dermal thickness, and 54% decrease in scar index in skin-grafted animals, indicating that tissue transfer could bypass damaged lymphatics and promote rapid lymphatic regeneration.Our studies suggest that lymphatic regeneration after tissue transfer occurs by ingrowth of lymphatic vessels and spontaneous re-connection of existing lymphatics. This process is temporally and spatially associated with VEGF-C expression and macrophage infiltration. Finally, tissue transfer can be used to bypass damaged lymphatics and promote rapid lymphatic regeneration.

  14. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars

    Directory of Open Access Journals (Sweden)

    Sahoo Khirod K

    2011-12-01

    Full Text Available Abstract Background Rice genome sequencing projects have generated remarkable amount of information about genes and genome architecture having tremendous potential to be utilized in both basic and applied research. Success in transgenics is paving the way for preparing a road map of functional genomics which is expected to correlate action of a gene to a trait in cellular and organismal context. However, the lack of a simple and efficient method for transformation and regeneration is a major constraint for such studies in this important cereal crop. Results In the present study, we have developed an easy, rapid and highly efficient transformation and regeneration protocol using mature seeds as explants and found its successful applicability to a choice of elite indica rice genotypes. We have optimized various steps of transformation and standardized different components of the regeneration medium including growth hormones and the gelling agent. The modified regeneration medium triggers production of large number of shoots from smaller number of calli and promotes their faster growth, hence significantly advantageous over the existing protocols where the regeneration step requires maximum time. Using this protocol, significantly higher transformation efficiency (up to 46% and regeneration frequency (up to 92% for the untransformed calli and 59% for the transformed calli were achieved for the four tested cultivars. We have used this protocol to produce hundreds of independent transgenic lines of different indica rice genotypes. Upon maturity, these transgenic lines were fertile thereby indicating that faster regeneration during tissue culture did not affect their reproductive potential. Conclusions This speedy, yet less labor-intensive, protocol overcomes major limitations associated with genetic manipulation in rice. Moreover, our protocol uses mature seeds as the explant, which can easily be obtained in quantity throughout the year and kept

  15. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries

    Directory of Open Access Journals (Sweden)

    Oscar A. Carballo-Molina

    2015-02-01

    Full Text Available Damage caused to neural tissue by disease or injury frequently produces a discontinuity in the nervous system. Such damage generates diverse alterations that are commonly permanent, due to the limited regeneration capacity of the adult nervous system, particularly the Central Nervous System (CNS. The cellular reaction to noxious stimulus leads to several events such as the formation of glial and fibrous scars, which inhibit axonal regeneration in both the CNS and the Peripheral Nervous System (PNS. Although in the PNS there is some degree of nerve regeneration, it is common that the growing axons reinnervate incorrect areas, causing mismatches. Providing a permissive substrate for axonal regeneration in combination with delivery systems for the release of molecules, which enhances axonal growth, could increase regeneration and the recovery of functions in the CNS or the PNS. Currently, there are no effective vehicles to supply growth factors or cells to the damaged/diseased nervous system. Hydrogels are polymers that are biodegradable, biocompatible and have the capacity to deliver a large range of molecules in situ. The inclusion of cultured neural cells into hydrogels forming three-dimensional structures allows the formation of synapses and neuronal survival. There is also evidence showing that hydrogels constitute an amenable substrate for axonal growth of endogenous or grafted cells, overcoming the presence of axonal regeneration inhibitory molecules, in both the central and peripheral nervous systems. Recent experiments suggest that hydrogels can carry and deliver several proteins relevant for improving neuronal survival and axonal growth. Although the use of hydrogels is appealing, its effectiveness is still a matter of discussion, and more results are needed to achieve consistent recovery using different parameters. This review also discusses areas of opportunity where hydrogels can be applied, in order to promote axonal regeneration of

  16. Lens regeneration in axolotl: new evidence of developmental plasticity

    Directory of Open Access Journals (Sweden)

    Suetsugu-Maki Rinako

    2012-12-01

    Full Text Available Abstract Background Among vertebrates lens regeneration is most pronounced in newts, which have the ability to regenerate the entire lens throughout their lives. Regeneration occurs from the dorsal iris by transdifferentiation of the pigment epithelial cells. Interestingly, the ventral iris never contributes to regeneration. Frogs have limited lens regeneration capacity elicited from the cornea during pre-metamorphic stages. The axolotl is another salamander which, like the newt, regenerates its limbs or its tail with the spinal cord, but up until now all reports have shown that it does not regenerate the lens. Results Here we present a detailed analysis during different stages of axolotl development, and we show that despite previous beliefs the axolotl does regenerate the lens, however, only during a limited time after hatching. We have found that starting at stage 44 (forelimb bud stage lens regeneration is possible for nearly two weeks. Regeneration occurs from the iris but, in contrast to the newt, regeneration can be elicited from either the dorsal or the ventral iris and, occasionally, even from both in the same eye. Similar studies in the zebra fish concluded that lens regeneration is not possible. Conclusions Regeneration of the lens is possible in the axolotl, but differs from both frogs and newts. Thus the axolotl iris provides a novel and more plastic strategy for lens regeneration.

  17. HTGR steam generator development

    International Nuclear Information System (INIS)

    Schuetzenduebel, W.G.; Hunt, P.S.; Weber, M.

    1976-01-01

    More than 40 gas-cooled reactor plants have produced in excess of 400 reactor years of operating experience which have proved a reasonably high rate of gas-cooled reactor steam generator availability. The steam generators used in these reactors include single U-tube and straight-tube steam generators as well as meander type and helically wound or involute tube steam generators. It appears that modern reactors are being equipped with helically wound steam generators of the once-through type as the end product of steam generator evolution in gas-cooled reactor plants. This paper provides a general overview of gas-cooled reactor steam generator evolution and operating experience and shows how design criteria and constraints, research and development, and experience data are factored into the design/development of modern helically wound tube steam generators for the present generation of gas-cooled reactors

  18. Biological regeneration of para-nitrophenol loaded activated carbon

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.; Martin, R.J.

    1997-01-01

    Biological regeneration is one of several methods that may be used to restore the adsorptive capacity of exhausted granular activated carbon (GAC). This study deals with in-situ biological regeneration on a pilot scale. The principal objective of this research was to ascertain whether biological regeneration of GAC could occur under conditions typical of water treatment. The important parameters which may have the greatest impact on bio regeneration of a given adsorbate were studied. The research investigated the extent of bio regeneration for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in the total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in he total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated with a mixed culture of bacteria, and lastly the carbon was re-saturated. In the totally exhausted GAC system, the bio regeneration was enhanced by increasing the during of regeneration for a fixed initial biomass content of the bioreactor. The bio regeneration efficiency of the totally exhausted (with PNP) GAC the empty bed contact time (EBCT) and the initial concentration of the substrate had a profound effect on the bio regeneration efficiency. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. (author)

  19. Experiments on cold-trap regeneration by NaH decomposition

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Skladzien, S.B.; Raue, D.J.

    1980-06-01

    Cold-trap regeneration may be very important in future LMFBRs because of the expected high hydrogen source from the steam generators. This hydrogen precipitates as NaH in the cold trap and may fill the trap within one year of operation. Several methods of cold-trap regeneration were considered, but the simplest and least expensive appears to be decomposition of NaH under vacuum at elevated temperatures. Experiments were done to assess the feasibility of this method for cold-trap regeneration. Small-scale simulated cold traps (SCT) were loaded with NaH and NaH plus Na 2 O, and were heated both under vacuum and under a sweep gas at 100 kPa. The evolved hydrogen was converted to water by a CuO bed and collected in a weighing tube

  20. Optimization of Multi-layer Active Magnetic Regenerator towards Compact and Efficient Refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein

    2016-01-01

    Magnetic refrigerators can theoretically be more efficient than current vapor compression systems and use no vapor refrigerants with global warming potential. The core component, the active magnetic regenerator (AMR) operates based on the magnetocaloric effect of magnetic materials and the heat r....... In addition, simulations are carried out to investigate the potential of applying nanofluid in future magnetic refrigerators.......Magnetic refrigerators can theoretically be more efficient than current vapor compression systems and use no vapor refrigerants with global warming potential. The core component, the active magnetic regenerator (AMR) operates based on the magnetocaloric effect of magnetic materials and the heat...... their Curie temperature. Simulations are implemented to investigate how to layer the FOPT materials for obtaining higher cooling capacity. Moreover, based on entropy generation minimization, optimization of the regenerator geometry and related operating parameters is presented for improving the AMR efficiency...

  1. Thinning in artificially regenerated young beech stands

    Directory of Open Access Journals (Sweden)

    Novák Jiří

    2015-12-01

    Full Text Available Although beech stands are usually regenerated naturally, an area of up to 5,000 ha year−1 is artificially regenerated by beech in the Czech Republic annually. Unfortunately, these stands often showed insufficient stand density and, consequently, lower quality of stems. Therefore, thinning methods developed for naturally regenerated beech stands are applicable with difficulties. The paper evaluates the data from two thinning experiments established in young artificially regenerated beech stands located in different growing conditions. In both experiments, thinning resulted in the lower amount of salvage cut in following years. Positive effect of thinning on periodic stand basal area increment and on periodic diameter increment of dominant trees was found in the beech stand located at middle elevations. On the other hand, thinning effects in mountain conditions were negligible. Thinning focusing on future stand quality cannot be commonly applied in artificially regenerated beech stands because of their worse initial quality and lower density. However, these stands show good growth and response to thinning, hence their management can be focused on maximising beech wood production.

  2. The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods

    Science.gov (United States)

    McCusker, Catherine; Bryant, Susan V.

    2015-01-01

    Abstract The axolotl is one of the few tetrapods that are capable of regenerating complicated biological structures, such as complete limbs, throughout adulthood. Upon injury the axolotl generates a population of regeneration‐competent limb progenitor cells known as the blastema, which will grow, establish pattern, and differentiate into the missing limb structures. In this review we focus on the crucial early events that occur during wound healing, the neural−epithelial interactions that drive the formation of the early blastema, and how these mechanisms differ from those of other species that have restricted regenerative potential, such as humans. We also discuss how the presence of cells from the different axes of the limb is required for the continued growth and establishment of pattern in the blastema as described in the polar coordinate model, and how this positional information is reprogrammed in blastema cells during regeneration. Multiple cell types from the mature limb stump contribute to the blastema at different stages of regeneration, and we discuss the contribution of these types to the regenerate with reference to whether they are “pattern‐forming” or “pattern‐following” cells. Lastly, we explain how an engineering approach will help resolve unanswered questions in limb regeneration, with the goal of translating these concepts to developing better human regenerative therapies. PMID:27499868

  3. Magnetic forces and magnetized biomaterials provide dynamic flux information during bone regeneration.

    Science.gov (United States)

    Russo, Alessandro; Bianchi, Michele; Sartori, Maria; Parrilli, Annapaola; Panseri, Silvia; Ortolani, Alessandro; Sandri, Monica; Boi, Marco; Salter, Donald M; Maltarello, Maria Cristina; Giavaresi, Gianluca; Fini, Milena; Dediu, Valentin; Tampieri, Anna; Marcacci, Maurilio

    2016-03-01

    The fascinating prospect to direct tissue regeneration by magnetic activation has been recently explored. In this study we investigate the possibility to boost bone regeneration in an experimental defect in rabbit femoral condyle by combining static magnetic fields and magnetic biomaterials. NdFeB permanent magnets are implanted close to biomimetic collagen/hydroxyapatite resorbable scaffolds magnetized according to two different protocols . Permanent magnet only or non-magnetic scaffolds are used as controls. Bone tissue regeneration is evaluated at 12 weeks from surgery from a histological, histomorphometric and biomechanical point of view. The reorganization of the magnetized collagen fibers under the effect of the static magnetic field generated by the permanent magnet produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. In contrast, only partial defect healing is achieved within the control groups. We ascribe the peculiar bone regeneration to the transfer of micro-environmental information, mediated by collagen fibrils magnetized by magnetic nanoparticles, under the effect of the static magnetic field. These results open new perspectives on the possibility to improve implant fixation and control the morphology and maturity of regenerated bone providing "in site" forces by synergically combining static magnetic fields and biomaterials.

  4. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    Science.gov (United States)

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.

  5. dlx and sp6-9 Control optic cup regeneration in a prototypic eye.

    Directory of Open Access Journals (Sweden)

    Sylvain W Lapan

    2011-08-01

    Full Text Available Optic cups are a structural feature of diverse eyes, from simple pit eyes to camera eyes of vertebrates and cephalopods. We used the planarian prototypic eye as a model to study the genetic control of optic cup formation and regeneration. We identified two genes encoding transcription factors, sp6-9 and dlx, that were expressed in the eye specifically in the optic cup and not the photoreceptor neurons. RNAi of these genes prevented formation of visible optic cups during regeneration. Planarian regeneration requires an adult proliferative cell population with stem cell-like properties called the neoblasts. We found that optic cup formation occurred only after migration of progressively differentiating progenitor cells from the neoblast population. The eye regeneration defect caused by dlx and sp6-9 RNAi can be explained by a failure to generate these early optic cup progenitors. Dlx and Sp6-9 genes function as a module during the development of diverse animal appendages, including vertebrate and insect limbs. Our work reveals a novel function for this gene pair in the development of a fundamental eye component, and it utilizes these genes to demonstrate a mechanism for total organ regeneration in which extensive cell movement separates new cell specification from organ morphogenesis.

  6. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials?

    Science.gov (United States)

    Hedayati, R; Janbaz, S; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2017-01-01

    Although the initial mechanical properties of additively manufactured porous biomaterials are intensively studied during the last few years, almost no information is available regarding the evolution of the mechanical properties of implant-bone complex as the tissue regeneration progresses. In this paper, we studied the effects of tissue regeneration on the static and fatigue behavior of selective laser melted porous titanium structures with three different porosities (i.e. 77, 81, and 85%). The porous structures were filled with four different polymeric materials with mechanical properties in the range of those observed for de novo bone (0.7GPamanufactured and filled porous structures were then determined. The static mechanical properties and fatigue life (including endurance limit) of the porous structures were found to increase by factors 2-7, even when they were filled with polymeric materials with relatively low mechanical properties. The relative increase in the mechanical properties was much higher for the porous structures with lower porosities. Moreover, the increase in the fatigue life was more notable as compared to the increase in the static mechanical properties. Such large values of increase in the mechanical properties with the progress of bone tissue regeneration have implications in terms of mechanical stimulus for bone tissue regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

    Science.gov (United States)

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-01-01

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287

  8. Surface grafting of styrene on polypropylene fibers by argon plasma and its adsorption-regeneration of BTX

    Science.gov (United States)

    Xu, J. J.; Guo, M. L.; Chen, Q. G.; Lian, Z. Y.; Wei, W. J.; Luo, Z. W.; Xie, G.; Chen, H. N.; Dong, K.

    2017-08-01

    Active macromolecular free radicals were generated on polypropylene (PP) fibers surfaces by argon (Ar) plasma irradiation, then, PP surface modified fibers (PP-g-St fibers) were prepared by in-situ grafting reaction of styrene monomers (St). Effects of reaction parameters on grafting percentage were studied and adsorption capacities of PP-g-St fibers for benzene, toluene and xylene (BTX) were evaluated. Afterwards, regeneration adsorption efficiencies after maximum adsorption were explored. The results indicated that the optimum input power, irradiation time and grafting reaction time are 90 W, 3 min and 3 h respectively and the grafting percentage of St reached 5.7 %. The adsorption capacities of PP-g-St fibers towards toluene and xylene emulsions and solutions in water increased by 336.89 % and 344.57 % respectively, compared to pristine PP fibers. In addition, regeneration adsorption efficiencies of modified fibers remained > 90 % after six cycles of regeneration-adsorption experiments, which showed excellent regeneration ability.

  9. Planning and Implementation of Urban Regeneration

    DEFF Research Database (Denmark)

    Aunsborg, Christian; Sørensen, Michael Tophøj

    2008-01-01

    new statutory tools to handle the spatial transformation of urban regeneration areas. The paper examines the subsequent development of Danish planning legislation with the purpose of determining whether the present 'statutory toolbox' can be considered sufficient compared to the problems...... the regeneration challenge became an issue in the professional debate. The urban, economic and spatial problematics rising from structural development trends of society were subject to a committee work from 1999 through 2001. The work resulted in a number of recommendations comprising i.a. suggestions concerning...... and challenges emerging in practice. To evaluate the adequacy of the toolbox the paper draws on case studies on urban regeneration projects in three major Danish cities. The conclusion is that the legislative developments during the last five years must be considered very relevant to problem solving in practice...

  10. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also...... temperature dependent. We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions....

  11. Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective

    Science.gov (United States)

    Henkel, Jan; Woodruff, Maria A.; Epari, Devakara R.; Steck, Roland; Glatt, Vaida; Dickinson, Ian C.; Choong, Peter F. M.; Schuetz, Michael A.; Hutmacher, Dietmar W.

    2013-01-01

    The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteoconductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineering and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts. PMID:26273505

  12. The process of urban regeneration in context of information society

    Directory of Open Access Journals (Sweden)

    Bazik Dragana

    2006-01-01

    Full Text Available This paper deals with the concept of innovation of the urban regeneration process in context of transformations which are generated by information-communication technologies. From one aspect, Serbia has an exceptional human potential presented in number of 13,000 graduates each year, or in share of 42% of population who speaks English, which is the largest among all Eastern and Central European countries. This forms a basis for formulation of strategies of information society development in Serbia as well as for economic adjustments based upon knowledge, and for tracing the way to future knowledge society, i.e. eEurope 2020. On the other hand, we are witnessing an intensive development of huge complexes of mega and hypermarkets as a present dominant way for our city spaces' regeneration. At the same time, experiences from some other locations point to the deterioration of cities' urban identity as a consequence of the global capital infiltration and of development within an urban tissue of a huge complex of multi-national companies. Aiming to overcome the mistakes portrayed by international experience, as well as potential oversights that may occur because of routine and mismatch between certain phases of the sustainable development process, this paper makes an emphasis on the importance of an integral evaluation of the information society development trends and the spatial aspects of urban regeneration. It is essential to adjust devastated urban spaces as artifacts of one technological era to the actual information era with indication of future digital knowledge era, i.e. to plan, design and develop *according to new technological requirements and possibilities for new working places and new quality of living.

  13. Nerve regeneration with aid of nanotechnology and cellular engineering.

    Science.gov (United States)

    Sedaghati, Tina; Yang, Shi Yu; Mosahebi, Afshin; Alavijeh, Mohammad S; Seifalian, Alexander M

    2011-01-01

    Repairing nerve defects with large gaps remains one of the most operative challenges for surgeons. Incomplete recovery from peripheral nerve injuries can produce a diversity of negative outcomes, including numbness, impairment of sensory or motor function, possibility of developing chronic pain, and devastating permanent disability. In the last few years, numerous microsurgical techniques, such as coaptation, nerve autograft, and different biological or polymeric nerve conduits, have been developed to reconstruct a long segment of damaged peripheral nerve. A few of these techniques are promising and have become popular among surgeons. Advancements in the field of tissue engineering have led to development of synthetic nerve conduits as an alternative for the nerve autograft technique, which is the current practice to bridge nerve defects with gaps larger than 30 mm. However, to date, despite significant progress in this field, no material has been found to be an ideal alternative to the nerve autograft. This article briefly reviews major up-to-date published studies using different materials as an alternative to the nerve autograft to bridge peripheral nerve gaps in an attempt to assess their ability to support and enhance nerve regeneration and their prospective drawbacks, and also highlights the promising hope for nerve regeneration with the next generation of nerve conduits, which has been significantly enhanced with the tissue engineering approach, especially with the aid of nanotechnology in development of the three-dimensional scaffold. The goal is to determine potential alternatives for nerve regeneration and repair that are simply and directly applicable in clinical conditions. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  14. Retinal stem cells and regeneration of vision system.

    Science.gov (United States)

    Yip, Henry K

    2014-01-01

    The vertebrate retina is a well-characterized model for studying neurogenesis. Retinal neurons and glia are generated in a conserved order from a pool of mutlipotent progenitor cells. During retinal development, retinal stem/progenitor cells (RPC) change their competency over time under the influence of intrinsic (such as transcriptional factors) and extrinsic factors (such as growth factors). In this review, we summarize the roles of these factors, together with the understanding of the signaling pathways that regulate eye development. The information about the interactions between intrinsic and extrinsic factors for retinal cell fate specification is useful to regenerate specific retinal neurons from RPCs. Recent studies have identified RPCs in the retina, which may have important implications in health and disease. Despite the recent advances in stem cell biology, our understanding of many aspects of RPCs in the eye remains limited. PRCs are present in the developing eye of all vertebrates and remain active in lower vertebrates throughout life. In mammals, however, PRCs are quiescent and exhibit very little activity and thus have low capacity for retinal regeneration. A number of different cellular sources of RPCs have been identified in the vertebrate retina. These include PRCs at the retinal margin, pigmented cells in the ciliary body, iris, and retinal pigment epithelium, and Müller cells within the retina. Because PRCs can be isolated and expanded from immature and mature eyes, it is possible now to study these cells in culture and after transplantation in the degenerated retinal tissue. We also examine current knowledge of intrinsic RPCs, and human embryonic stems and induced pluripotent stem cells as potential sources for cell transplant therapy to regenerate the diseased retina. Copyright © 2013 Wiley Periodicals, Inc.

  15. A novel osteogenesis technique: The expansible guided bone regeneration

    Directory of Open Access Journals (Sweden)

    Osama Zakaria

    2012-12-01

    Full Text Available Guided bone regeneration is a unique osteogenesis technique that requires a barrier membrane under periosteum to create space for bone regeneration. However, creating sizeable spaces is clinically not commonly feasible. A titanium plate and a thin silicone membrane were surgically layered on each calvaria of eight rabbits. Then, the periphery of the silicone membrane was fixed by a plastic ring to the underlying bone using titanium micro screws. After 1 week, a 5-mm-length titanium screw was used to elevate the titanium plate, which in turn elevated the silicone membrane together with overlying soft tissue in a rate of 1 mm/day for 5 days to create a secluded space. Animals were killed at 2 months (n = 4, group 1 and 4 months (n = 4, group 2 after the elevation. Histological and microradiographical analyses demonstrated creation of an amount of de novo bone formation (68.2 ± 22 mm3 in group 1 and 70.3 ± 14 mm3 in group 2 in the sizeable created spaces (207.1 ± 31 mm3 in group 1 and 202 ± 21 mm3 in group 2 without exposure of the device. This novel osteogenesis technique, “expansible guided bone regeneration,” created a substantial in vivo incubator without applying growth factors or osteoprogenitor cells. Creating a growing space over the secluded surface allowed the development of normal biological healing process occurring on the bone surface into a regenerative process, generating bone outside the genetically determined skeletal bone. This technique is a new tissue engineering approach stimulating endogenous tissue repair without applying cells or factors exogenously.

  16. Proposal of a combined heat and power plant hybridized with regeneration organic Rankine cycle: Energy-Exergy evaluation

    International Nuclear Information System (INIS)

    Anvari, Simin; Jafarmadar, Samad; Khalilarya, Shahram

    2016-01-01

    Highlights: • A new thermodynamic cogeneration system is proposed. • Energy and exergy analysis of the considered cycle were performed. • An enhancement of 2.6% in exergy efficiency compared to that of baseline cycle. - Abstract: Among Rankine cycles (simple, reheat and regeneration), regeneration organic Rankine cycle demonstrates higher efficiencies compared to other cases. Consequently, in the present work a regeneration organic Rankine cycle has been utilized to recuperate gas turbine’s heat using heat recovery steam generator. At first, this cogeneration system was subjected to energy and exergy analysis and the obtained results were compared with that of investigated cogeneration found in literature (a cogeneration system in which a reheat organic Rankine cycle for heat recuperation of gas turbine cycle was used with the aid of heat recovery steam generator). Results indicated that the first and second thermodynamic efficiencies in present cycle utilizing regeneration cycle instead of reheat cycle has increased 2.62% and 2.6%, respectively. In addition, the effect of thermodynamic parameters such as combustion chamber’s inlet temperature, gas turbine inlet temperature, evaporator and condenser temperature on the energetic and exergetic efficiencies of gas turbine-heat recovery steam generator cycle and gas turbine-heat recovery steam generator cycle with regeneration organic Rankine cycle was surveyed. Besides, parametric analysis shows that as gas turbine and combustion chamber inlet temperatures increase, energetic and exergetic efficiencies tend to increase. Moreover, once condenser and evaporator temperature raise, a slight decrement in energetic and exergetic efficiency is expected.

  17. Regeneration of neural crest derivatives in the Xenopus tadpole tail

    Directory of Open Access Journals (Sweden)

    Slack Jonathan MW

    2007-05-01

    Full Text Available Abstract Background After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper. Results Labelling of the spinal cord by electroporation, or by orthotopic grafting of transgenic tissue expressing GFP, shows that no cells emigrate from the spinal cord in the course of regeneration. There is very limited regeneration of the spinal ganglia, but new neurons as well as fibre tracts do appear in the regenerated spinal cord and the regenerated tail also contains abundant peripheral innervation. The regenerated tail contains a normal density of melanophores. Cell labelling experiments show that melanophores do not arise from the spinal cord during regeneration, nor from the mesenchymal tissues of the skin, but they do arise by activation and proliferation of pre-existing melanophore precursors. If tails are prepared lacking melanophores, then the regenerates also lack them. Conclusion On regeneration there is no induction of a new neural crest similar to that seen in embryonic development. However there is some regeneration of neural crest derivatives. Abundant melanophores are regenerated from unpigmented precursors, and, although spinal ganglia are not regenerated, sufficient sensory systems are produced to enable essential functions to continue.

  18. New insight into regenerated air heat pump cycle

    International Nuclear Information System (INIS)

    Zhang, Chun-Lu; Yuan, Han; Cao, Xiang

    2015-01-01

    Regenerated air (reverse Brayton) cycle has unique potentials in heat pump applications compared to conventional vapor-compression cycles. To better understand the regenerated air heat pump cycle characteristics, a thermodynamic model with new equivalent parameters was developed in this paper. Equivalent temperature ratio and equivalent isentropic efficiency of expander were introduced to represent the effect of regenerator, which made the regenerated air cycle in the same mathematical expressions as the basic air cycle and created an easy way to prove some important features that regenerated air cycle inherits from the basic one. Moreover, we proved in theory that the regenerator does not always improve the air cycle efficiency. Larger temperature ratio and lower effectiveness of regenerator could make the regenerated air cycle even worse than the basic air cycle. Lastly, we found that only under certain conditions the cycle could get remarkable benefits from a well-sized regenerator. These results would enable further study of the regenerated air cycle from a different perspective. - Highlights: • A thermodynamic model for regenerated air heat pump cycle was developed. • Equivalent temperature ratio and equivalent expander efficiency were introduced. • We proved regenerated air cycle can make heating capacity in line with heating load. • We proved the regenerator does not always improve the air cycle efficiency.

  19. Qutrit squeezing via semiclassical evolution

    International Nuclear Information System (INIS)

    Klimov, Andrei B; Dinani, Hossein Tavakoli; Medendorp, Zachari E D; Guise, Hubert de

    2011-01-01

    We introduce a concept of squeezing in collective qutrit systems through a geometrical picture connected to the deformation of the isotropic fluctuations of su(3) operators when evaluated in a coherent state. This kind of squeezing can be generated by Hamiltonians nonlinear in the generators of su(3) algebra. A simplest model of such a nonlinear evolution is analyzed in terms of semiclassical evolution of the SU(3) Wigner function. (paper)

  20. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant.

    Science.gov (United States)

    Zhang, Wei; Zhou, Zhen; An, Ying; Du, Silu; Ruan, Danian; Zhao, Chengyue; Ren, Ning; Tian, Xiaoce

    2017-07-01

    Simultaneous zeolites regeneration and nitrogen removal were investigated by using a mixed solution of NaClO and NaCl (NaClO-NaCl solution), and effects of the regenerant on ammonium removal performance and textural properties of zeolites were analyzed by long-term adsorption and regeneration operations. Mixed NaClO-NaCl solution removed more NH 4 + exchanged on zeolites and converted more of them to nitrogen than using NaClO or NaCl solution alone. Response surface methodological analysis indicated that molar ratio of hypochlorite and nitrogen (ClO - /N), NaCl concentration and pH value all had significant effects on zeolites regeneration and NH 4 + conversion to nitrogen, and the optimum condition was obtained at ClO - /N of 1.75, NaCl concentration of 20 g/L and pH of 10.0. Zeolites regenerated by mixed NaClO-NaCl solution showed higher ammonium adsorption rate and lower capacity than unused zeolites. Zeolites and the regeneration solution were both effective even after 20 cycles of use. Composition and morphological analysis revealed that the main mineral species and surface morphology of zeolites before and after NaClO-NaCl regeneration were unchanged. Textural analysis indicated that NaClO-NaCl regeneration leads to an increased surface area of zeolites, especially the microporosity. The results indicated that NaClO-NaCl regeneration is an attractive method to achieve sustainable removal of nitrogen from wastewater through zeolite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Schumpeter's Evolution

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    reworking of his basic theory of economic evolution in Development from 1934, and this reworking was continued in Cycles from 1939. Here Schumpeter also tried to handle the statistical and historical evidence on the waveform evolution of the capitalist economy. Capitalism from 1942 modified the model...

  2. Galactic evolution

    International Nuclear Information System (INIS)

    Pagel, B.

    1979-01-01

    Ideas are considered concerning the evolution of galaxies which are closely related to those of stellar evolution and the origin of elements. Using information obtained from stellar spectra, astronomers are now able to consider an underlying process to explain the distribution of various elements in the stars, gas and dust clouds of the galaxies. (U.K.)

  3. Darwinian evolution

    NARCIS (Netherlands)

    Jagers op Akkerhuis, Gerard A.J.M.; Spijkerboer, Hendrik Pieter; Koelewijn, Hans Peter

    2016-01-01

    Darwinian evolution is a central tenet in biology. Conventionally, the defi nition of Darwinian evolution is linked to a population-based process that can be measured by focusing on changes in DNA/allele frequencies. However, in some publications it has been suggested that selection represents a

  4. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  5. Concept development of exchange liquid regeneration

    International Nuclear Information System (INIS)

    Mader, D.L.

    1985-08-01

    Concepts are described for regeneration of the intermediate liquid used for isotope exchange in indirect laser isotope separation processes where the laser operates on a process gas distinct from the feed stream. The specific case of regeneration of an exchange liquid consisting of water, sodium hydroxide, and dimethyl sulfoxide for a process to separate deuterium from hydrogen using laser irradiation of trifluoromethane gas is developed. A water feed stream is converted to steam which rises in a chemical process column where it redeuterates a descending flow of exchange liquid without causing significant changes in its chemical composition

  6. Regeneration of sulfated metal oxides and carbonates

    Science.gov (United States)

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  7. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process

    Science.gov (United States)

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-06-01

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration.

  8. Factors influencing callus induction and plant regeneration of ...

    African Journals Online (AJOL)

    ajl yemi

    2012-01-12

    ). Effect of basal medium on callus induction and plant regeneration. Three different kinds of basal mediums (MS, N6 and SH) were used to investigate their effects on callus induction and regeneration. Significant differences ...

  9. Complete regeneration of ablated eyestalk in penaeid prawn, Penaeus monodon

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, U.M.; Achuthankutty, C

    regenerated in less than 6 months and assumed the shape, size, structure and pigmentation of the unablated eye. Significance of this observation in the context of captive broodstock development and the need for detailed examination of the regeneration process...

  10. Development of an efficient plant regeneration protocol for sweet ...

    African Journals Online (AJOL)

    UKZN

    2012-10-18

    Oct 18, 2012 ... explants produced highly recalcitrant callus that did not regenerate into ... Key words: Tissue culture, regeneration, sweet potato, genetic transformation. .... sterilized in 5% (v/v) sodium hypochlorite solution for 20 min and.

  11. Callus regeneration from stem explants of Pseudarthira viscida (L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... regeneration frequency have come from tissue culture work done in ... Table 1. In vitro responses from stem callus of Psudarthria viscida Wight & Arn. Growth .... plantlets regeneration from cotyledonary callus of Tomato.

  12. Adaptation of regenerants of Vaccinium corymbosum L. and ...

    African Journals Online (AJOL)

    The benchmark analysis of the structured-functional particularities of regeneration ... the structured-functional organization regeneration (a mobile system) can be ... Key words: Aseptic culture, greenhouse, open ground, anatomical structure, ...

  13. Regeneration of Full Scale Adsorptive Media Systems - Update

    Science.gov (United States)

    Presentation provides an update of the regeneration studies conducted at Twentynine Palms, CA. Following a short introduction, the presentation summarizes the results of the three regeneration tests conducted on the exhausted media of the arsenic removal system at Twentynine Pal...

  14. Autoradiographic analysis of protein regeneration in striated skeleton muscle

    International Nuclear Information System (INIS)

    Dadoune, J.P.

    1977-01-01

    An autoradiographic study was conducted of protein regeneration in striated muscles aimed at clarifying the contradictions in the literature: while some authors hold that the regeneration rate is identical for all types of myofibril proteins and the myofibril is thus regenerated as a whole, others claim that the regeneration rate differs depending on the type of the myofibril protein. Tritium-labelled leucine incorporation experiments showed the existence of at least 2 pools of newly formed proteins in striated muscles in both adult and young animals. One pool is regenerated in 1 to 2 weeks, the other roughly in a month. The regeneration of proteins is initially more significant in red fibres; thus the rate of myofibril protein regeneration is not uniform. In adult animals regeneration seems to be slower in filaments than in the sarcoplasm and in the mitochondria. (A.K.)

  15. Macrophages are necessary for epimorphic regeneration in African spiny mice.

    Science.gov (United States)

    Simkin, Jennifer; Gawriluk, Thomas R; Gensel, John C; Seifert, Ashley W

    2017-05-16

    How the immune system affects tissue regeneration is not well understood. In this study, we used an emerging mammalian model of epimorphic regeneration, the African spiny mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury during regeneration ( Acomys cahirinus ) and scarring ( Mus musculus ), we found that both species exhibited an acute inflammatory response, with scarring characterized by stronger myeloperoxidase activity. In contrast, ROS production was stronger and more persistent during regeneration. By depleting macrophages during injury, we demonstrate a functional requirement for these cells to stimulate regeneration. Importantly, the spatial distribution of activated macrophage subtypes was unique during regeneration with pro-inflammatory macrophages failing to infiltrate the regeneration blastema. Together, our results demonstrate an essential role for inflammatory cells to regulate a regenerative response.

  16. Sustainable Regeneration of Nanoparticle Enhanced Activated Carbon in Water

    Science.gov (United States)

    The regeneration and reuse of exhausted granular activated carbon (GAC) is an appropriate method for lowering operational and environmental costs. Advanced oxidation is a promising environmental friendly technique for GAC regeneration. The main objective of this research was to ...

  17. Spent oxide fuel regeneration by crystallization in molybdate melts

    International Nuclear Information System (INIS)

    Ustinov, O.A.; Sukhanov, L.P.; Yakunin, S.A.

    2006-01-01

    Paper describes a procedure to regenerate spent oxide fuel by its crystallization in molybdate melts. Paper presents the process procedures to regenerate spent fuel of both fast and thermal neutron reactors. One analyzes the advantages of the elaborated procedure [ru

  18. Regeneration of hair cells in the mammalian vestibular system.

    Science.gov (United States)

    Li, Wenyan; You, Dan; Chen, Yan; Chai, Renjie; Li, Huawei

    2016-06-01

    Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicininduced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atoh1. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.

  19. A method for generating hydrogen from water

    International Nuclear Information System (INIS)

    Godin, Paul; Mascarello, Jean; Millet, Jacques.

    1974-01-01

    Description is given of a method and an installation for generating hydrogen from water, through an endothermic cycle of several successive chemical reactions involving intermediate substances regenerated during said cycle, said reactions occuring at different temperatures. The reaction which takes place at the highest temperature is carried out electrochemically. This can be applied to power-generating units comprising a nuclear reactor [fr

  20. The thermal evolution and timing of hydrocarbon generation in the Maritimes Basin of eastern Canada: evidence from apatite fission track data

    International Nuclear Information System (INIS)

    Grist, A.M.; Zentilli, M.

    1995-01-01

    Sandstone drill core and/or cuttings from six wells in the Gulf of St. Lawrence and cabot Strait have been analyzed using the apatite fission track (AFT) method. Measured AFT ages for the late Paleozoic sandstones range from 26 ±7 to 184 ±28 Ma (2-σ errors). The AFT data indicate that most Maritimes Basin strata were heated to temperatures in excess of 100-150 o C very soon after their deposition. The strata also attained significant vitrinite reflectance (R 0 ) levels (i.e., reaching the oil window) early in the burial history. These findings imply the generation of hydrocarbons and coalbed methane in the early basin history (pre-250 Ma). In the Maritimes Basin AFT and R 0 data provide complementary information about the integrated thermal history, including maximum burial temperatures (from R 0 data), and information on the subsequent cooling history from AFT analysis. The present study also supports the proposal made previously by others that substantial erosion of the Eastern Canadian margin (up to 4 km) has occurred since the Permian and extends the AFT evidence for this erosional event to include the southern Gulf of St. Lawrence area. Thermal models of the AFT data demonstrate that they are consistent with a history of exhumation of basin strata since late Permian time. The model-predicted AFT age and track length histograms closely correspond to the measured AFT parameters. AFT analysis also indicates present-day geothermal gradients of less than 40 o C/km. (author). 42 refs.,3 tabs., 7 figs

  1. Experiments and Analysis of DPF Loading and Regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Krishnan

    2000-08-20

    Particulate filter system consists of a filter and a regeneration strategy Commercial filters are very effective at removing PM, but regeneration is a challenge. In addition to removal of PM if is important to reduce other pollutants including NO, from diesel engine exhaust Particulate filter regeneration strategy can include catalysts, fuel additives, engine control, and fuel injection Regeneration 5M?-500 C without catalyst Near 350 C with fuel additive or catalyst coated DPF

  2. The regeneration of polluted active carbon by radiation techniques

    International Nuclear Information System (INIS)

    Bao Borong; Wu Minghong; Hu Longxin; Zhou Riumin; Zhu Jinliang

    1998-01-01

    In this paper, we investigated the regeneration of polluted active carbon from monosodium glutamate factory by combination of radiation and acid-alkali chemical techniques. The experimental results show that the polluted active carbon will be highly regenerated on the conditions of process concentration 3%, process time 0.5 hour and the adjustment process concentration 2%, time 0.5 hour, radiation dose 5kGy. As regeneration times increase, the regenerated active carbon behaves with good repetition and stable property

  3. Method for modifying trigger level for adsorber regeneration

    Science.gov (United States)

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  4. Untersuchungen zur Regeneration des Hinterendes bei Anaitides mucosa (Polychaeta, Phyllodocidae)

    Science.gov (United States)

    Röhrkasten, A.

    1983-06-01

    Caudal regeneration was investigated in decerebrate Anaitides mucosa and in brain-intact individuals. Both groups show an identical capacity to regenerate lost caudal segments. Furthermore there is no difference in males and females. Low temperature (5 °C) inhibits the regeneration of caudal segments, but it is necessary for normal oogenesis. Under conditions of high temperature (15 °C), caudal regeneration is very extensive. At the same time degeneration of most oocytes occurs.

  5. Derepression of the plant Chromovirus LORE1 induces germline transposition in regenerated plants.

    Directory of Open Access Journals (Sweden)

    Eigo Fukai

    2010-03-01

    Full Text Available Transposable elements represent a large proportion of the eukaryotic genomes. Long Terminal Repeat (LTR retrotransposons are very abundant and constitute the predominant family of transposable elements in plants. Recent studies have identified chromoviruses to be a widely distributed lineage of Gypsy elements. These elements contain chromodomains in their integrases, which suggests a preference for insertion into heterochromatin. In turn, this preference might have contributed to the patterning of heterochromatin observed in host genomes. Despite their potential importance for our understanding of plant genome dynamics and evolution, the regulatory mechanisms governing the behavior of chromoviruses and their activities remain largely uncharacterized. Here, we report a detailed analysis of the spatio-temporal activity of a plant chromovirus in the endogenous host. We examined LORE1a, a member of the endogenous chromovirus LORE1 family from the model legume Lotus japonicus. We found that this chromovirus is stochastically de-repressed in plant populations regenerated from de-differentiated cells and that LORE1a transposes in the male germline. Bisulfite sequencing of the 5' LTR and its surrounding region suggests that tissue culture induces a loss of epigenetic silencing of LORE1a. Since LTR promoter activity is pollen specific, as shown by the analysis of transgenic plants containing an LTR::GUS fusion, we conclude that male germline-specific LORE1a transposition in pollen grains is controlled transcriptionally by its own cis-elements. New insertion sites of LORE1a copies were frequently found in genic regions and show no strong insertional preferences. These distinctive novel features of LORE1 indicate that this chromovirus has considerable potential for generating genetic and epigenetic diversity in the host plant population. Our results also define conditions for the use of LORE1a as a genetic tool.

  6. Neoblast Specialization in Regeneration of the Planarian Schmidtea mediterranea

    Directory of Open Access Journals (Sweden)

    M. Lucila Scimone

    2014-08-01

    Full Text Available Planarians can regenerate any missing body part in a process requiring dividing cells called neoblasts. Historically, neoblasts have largely been considered a homogeneous stem cell population. Most studies, however, analyzed neoblasts at the population rather than the single-cell level, leaving the degree of heterogeneity in this population unresolved. We combined RNA sequencing of neoblasts from wounded planarians with expression screening and identified 33 transcription factors transcribed in specific differentiated cells and in small fractions of neoblasts during regeneration. Many neoblast subsets expressing distinct tissue-associated transcription factors were present, suggesting candidate specification into many lineages. Consistent with this possibility, klf, pax3/7, and FoxA were required for the differentiation of cintillo-expressing sensory neurons, dopamine-β-hydroxylase-expressing neurons, and the pharynx, respectively. Together, these results suggest that specification of cell fate for most-to-all regenerative lineages occurs within neoblasts, with regenerative cells of blastemas being generated from a highly heterogeneous collection of lineage-specified neoblasts.

  7. Living cardiac patch: the elixir for cardiac regeneration.

    Science.gov (United States)

    Lakshmanan, Rajesh; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2012-12-01

    A thorough understanding of the cellular and muscle fiber orientation in left ventricular cardiac tissue is of paramount importance for the generation of artificial cardiac patches to treat the ischemic myocardium. The major challenge faced during cardiac patch engineering is to choose a perfect combination of three entities; cells, scaffolds and signaling molecules comprising the tissue engineering triad for repair and regeneration. This review provides an overview of various scaffold materials, their mechanical properties and fabrication methods utilized in cardiac patch engineering. Stem cell therapies in clinical trials and the commercially available cardiac patch materials were summarized in an attempt to provide a recent perspective in the treatment of heart failure. Various tissue engineering strategies employed thus far to construct viable thick cardiac patches is schematically illustrated. Though many strategies have been proposed for fabrication of various cardiac scaffold materials, the stage and severity of the disease condition demands the incorporation of additional cues in a suitable scaffold material. The scaffold may be nanofibrous patch, hydrogel or custom designed films. Integration of stem cells and biomolecular cues along with the scaffold may provide the right microenvironment for the repair of unhealthy left ventricular tissue as well as promote its regeneration.

  8. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine.

    Science.gov (United States)

    Cao, Yu; Liu, Zhenhai; Xie, Yilin; Hu, Jingchao; Wang, Hua; Fan, Zhipeng; Zhang, Chunmei; Wang, Jingsong; Wu, Chu-Tse; Wang, Songlin

    2015-12-15

    Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor (HGF) and human dental pulp stem cells (DPSCs) in periodontal tissue regeneration in swine. In the present study, we transferred an adenovirus that carried HGF gene into human DPSCs (HGF-hDPSCs) under good manufacturing practice (GMP) conditions. These cells were then transplanted into a swine model for periodontal regeneration. Twenty miniature pigs were used to generate periodontitis with bone defect of 5 mm in width, 7 mm in length, and 3 mm in depth. After 12 weeks, clinical, radiological, quantitative and histological assessment of regenerated periodontal tissues was performed to compare periodontal regeneration in swine treated with cell implantation. Our study showed that injecting HGF-hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. A hDPSC or HGF-hDPSC sheet showed superior periodontal tissue regeneration compared to the injection of dissociated cells. However, the sheets required surgical placement; thus, they were suitable for surgically-managed periodontitis treatments. The adenovirus-mediated transfer of the HGF gene markedly decreased hDPSC apoptosis in a hypoxic environment or in serum-free medium, and it increased blood vessel regeneration. This study indicated that HGF-hDPSCs produced under GMP conditions significantly improved periodontal bone regeneration in swine; thus, this method represents a potential clinical application for periodontal regeneration.

  9. Recloning of regenerated plantlets from elite oil palm ( Elaeis ...

    African Journals Online (AJOL)

    Plant regeneration in oil palm cv. Tenera via somatic embryogenesis was conducted using regenerated plantlets as an explant source. Explants from different positions – apex, middle and basal segments of regenerated plantlets – were cultured in N6 medium supplemented with 100, 120 and 140 mg/L 2 ...

  10. Nucleated regeneration of semiarid sclerophyllous forests close to remnant vegetation

    NARCIS (Netherlands)

    Fuentes-Castillo, T.; Miranda, A.; Rivera-Hutinel, A.; Smith-Ramirez, C.; Holmgren, M.

    2012-01-01

    Natural regeneration of mediterranean plant communities has proved difficult in all continents. In this paper we assess whether regeneration of sclerophyllous forests shows nucleated patterns indicative of a positive effect of vegetation remnants at the landscape level and compare the regeneration

  11. Regeneration of the coalfield areas. Anglo-German perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Critcher, C; Schubert, K; Waddington, D [eds.

    1996-12-31

    Papers are presented under 6 main parts: the context; industrial regeneration through innovation, conversion and diversification; industrial regeneration through new investment by public and private sector partnership; fostering entrepreneurship through economic and psychological incentives; environmental issues - land reclamation and local regeneration; and education and training - reskilling the workforce.

  12. Optimization of chemical regeneration procedures of spent activated carbon

    Directory of Open Access Journals (Sweden)

    Naser Ghasemzadeh

    2017-01-01

    Full Text Available The chemical regeneration of granular activated carbon exhausted in a petrochemical wastewater unit was investigated. Gas chromatography and energy-dispersive X-ray spectroscopy demonstrated that spent activated carbon carries large types of organic and inorganic materials. Diverse chemical solvents were adopted in comparison with traditional chemical solvents and regeneration efficiency was investigated for each approach. The optimum procedure and optimum condition including temperature, concentration of solvent, and time were determined. The regenerated activated carbon was used in the adsorption of methylene blue (MB in order to find its regeneration efficiency. The regeneration efficiency can be identified by comparing of amount of MB absorbed by the fresh and regenerated activated carbon. The best acidic regenerator was hydrofluoric acid. The higher the temperature causes the faster desorption rate and consequently, the higher regeneration efficiency. The regeneration efficiency increased by means of an increase in the time of regeneration and solvent concentration, but there was an optimum time and solvent concentration for regeneration. The optimum temperature, solvent concentration and regeneration time obtained was 80 ⁰C, 3 molar and 3 hours, respectively.

  13. Regeneration of used activated carbon by electron beam irradiation

    International Nuclear Information System (INIS)

    Arai, H.; Hosono, M.; Zhu, G.; Miyata, T.

    1992-01-01

    The adsorbing power of granular activated carbons which adsorbed sodium laurylsulfate were most effectively recovered by irradiation of high energy electron beams in nitrogen stream, and the carbon was hardly lost by irradiation. The regeneration was induced mainly by microscopic heating of adsorption sites. Regeneration was also confirmed by adsorption endotherms. Regeneration cost was tentatively evaluated. (author)

  14. In vivo study of lens regeneration in Rana cyanophlyctis under ...

    African Journals Online (AJOL)

    SAM

    2014-03-12

    Mar 12, 2014 ... enhanced the percentage lens regeneration not only in young tadpoles but also in froglets. Lens regeneration ability ... Influence of vitamin A and ascorbic acid on lens regeneration in young, mature tadpoles and froglets of the frog Rana cyanophlyctis. Group .... ingested by macrophages. Dorsal iris cells ...

  15. Regeneration of the coalfield areas. Anglo-German perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Critcher, C.; Schubert, K.; Waddington, D. [eds.

    1995-12-31

    Papers are presented under 6 main parts: the context; industrial regeneration through innovation, conversion and diversification; industrial regeneration through new investment by public and private sector partnership; fostering entrepreneurship through economic and psychological incentives; environmental issues - land reclamation and local regeneration; and education and training - reskilling the workforce.

  16. The effect of tapering on a magnetocaloric regenerator bed

    DEFF Research Database (Denmark)

    Dallolio, Stefano; Lei, Tian; Engelbrecht, Kurt

    2017-01-01

    . Therefore, this paper investigates the effect of the tapering of the regenerators, which exhibit better air-gap utilization. Several simulations using a 1D AMR model were run to study the performance of the tapered regenerator, and the results were compared to the case of the straight regenerator bed...

  17. Kidney regeneration and repair after transplantation

    NARCIS (Netherlands)

    M. Franquesa (Marcella); M. Flaquer (Maria); J.M. Cruzado; J. Grinyo (Josep)

    2013-01-01

    textabstractPURPOSE OF REVIEW: To briefly show which are the mechanisms and cell types involved in kidney regeneration and describe some of the therapies currently under study in regenerative medicine for kidney transplantation. RECENT FINDINGS: The kidney contains cell progenitors that under

  18. Somatic Embryogenesis and Plant Regeneration in Eggplant ...

    African Journals Online (AJOL)

    DR SIDHU

    2013-02-20

    Feb 20, 2013 ... Two as well as three way interactions of three eggplant genotypes, media compositions and explants. (hypocotyl, cotyledon and leaf) showed significant differences for plant regeneration. Among three explants, hypocotyl induced highest percent callusing, but cotyledon showed best results for somatic.

  19. Regeneration in selected Cucurbita spp. germplasm

    OpenAIRE

    Gisbert Domenech, Maria Carmen; Picó Sirvent, María Belén N:2949; Nuez Viñals, Fernando

    2011-01-01

    Gisbert Domenech, MC.; Picó Sirvent, MBN.; Nuez Viñals, F. (2011). Regeneration in selected Cucurbita spp. germplasm. Report- Cucurbit Genetics Cooperative. 33-34:53-54. http://hdl.handle.net/10251/62926 Senia 53 54 33-34

  20. Plant regeneration through indirect organogenesis of chestnut ...

    African Journals Online (AJOL)

    Mehrcedeh

    2013-12-18

    Dec 18, 2013 ... Druce-A multiple desert tree. Researcher 1:28-32. Kvaalen H, Gram Daehlen O, Tove Rognstad A, Grǿnstad B,. Egertsdotter U (2005). Somatic embryogenesis for plant production of. Abies lasiocarpa. Can. J. For. Res. 35:1053-1060. Liu CZ, Murch SJ, Demerdash MEL, Saxena PK (2003). Regeneration.

  1. Stem cells to regenerate the newborn brain

    NARCIS (Netherlands)

    van Velthoven, C.T.J.

    2011-01-01

    Perinatal hypoxia-ischemia (HI) is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. In this thesis we investigate whether mesenchymal stem cells (MSC) regenerate the neonatal brain after HI injury. We show that transplantation of MSC after neonatal brain injury

  2. Somatic embryogenesis and plantlet regeneration from protoplast ...

    African Journals Online (AJOL)

    Administrator

    2010-05-30

    May 30, 2010 ... supplemented with 1 mg/l each of NAA and BA, 100 mg/l ascorbic acid and 0.5 M mannitol at 25°C in ... Key words: Ca-alginate beads, Muscari neglectum, nurse culture, plantlet regeneration, ..... Maddock SR (1987).

  3. Enhanced regeneration in explants of tomato (Lycopersicon ...

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... The development of a cost effective and efficient protocol for mass propagation of high quality tomato seedlings via tissue culture could help to reduce the price per seedling. A good in vitro plant regeneration system may also assist in further improvement of the commercially important cultivars for disease.

  4. Magnetoneurographic evaluation of peripheral nerve regeneration

    NARCIS (Netherlands)

    P.D.L. Kuypers (Paul)

    1998-01-01

    textabstractWhen a peripheral nerve is reconstructed after it has been damaged. it is important to assess, in an early stage, whether the nerve is regenerating across the lesion. However, at present for this purpose an adequate method is not available. In this study short term changes in the

  5. Entrepreneurship Education: Ireland's Solution to Economic Regeneration?

    Science.gov (United States)

    O'Connor, John; Fenton, Mary; Barry, Almar

    2012-01-01

    The significance of entrepreneurship has come into sharper focus as enterprise and innovation are being flagged as solutions to regenerate the Irish economy. The Irish Innovation Task Force believes that Ireland could become an "innovation hub", attracting foreign risk capital and international and indigenous entrepreneurs to start and…

  6. Deactivation and regeneration of refinery catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1979-08-01

    A discussion covers the mechanisms of catalyst aging, poisoning, coke deposition, and metals deposition; feedstock pretreatment to extend catalyst life; the effects of operating conditions; the effects of catalyst composition and structure on its stability; nonchemical deactivation processes; and methods of catalyst regeneration, including coke burn-off and solvent extraction.

  7. Conduit for regeneration of biological material

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a conduit comprising a first material, having 1) a through-going hole, 2) fibers aligned along the long-axis in the through-going hole, each fiber having a diameter in the range 200-2000 nm. The conduit is preferably for regeneration of biological material, even...

  8. Electrochemical regeneration of chrome etching solution

    NARCIS (Netherlands)

    Andel, van Y.; Janssen, L.J.J.

    2002-01-01

    A metal surface is chromatized with a chromic acid solution to obtain a good adherence of polymer coatings. In this process Cr(VI) is reduced to Cr(III). The oxidation strength of the solution decreases during use. The chrome solution needs to be regenerated and purified. A new anode material,

  9. Stem Cells in Tissue Repair and Regeneration

    OpenAIRE

    Falanga, Vincent

    2012-01-01

    The field of tissue repair and wound healing has blossomed in the last 30 years. We have gone from recombinant growth factors, to living tissue engineering constructs, to stem cells. The task now is to pursue true regeneration, thus achieving full restoration of structures and their function.

  10. Establishment of high effective regeneration and propagation ...

    African Journals Online (AJOL)

    In order to establish efficient regeneration system for ornamental tissue culture, we used Malus spp. 'Indian Magic as the experimental materials and investigated the effects of disinfection and antibrowning agents, culture mediums and hormones proportion on differentiation, multiplication, callus induction and rooting, and ...

  11. Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity

    NARCIS (Netherlands)

    Gensel, J.C.; Nakamura, S.; Guan, Z.; Rooijen, van N.; Ankeny, D.P.; Popovich, P.G.

    2009-01-01

    Activated macrophages can promote regeneration of CNS axons. However, macrophages also release factors that kill neurons. These opposing functions are likely induced simultaneously but are rarely considered together in the same experimental preparation. A goal of this study was to unequivocally

  12. Enhancement of liver regeneration and liver surgery

    NARCIS (Netherlands)

    Olthof, P.B.

    2017-01-01

    Liver regeneration allows surgical resection of up to 75% of the liver and enables curative treatment potential for patients with primary or secondary hepatic malignancies. Liver surgery is associated with substantial risks, reflected by considerable morbidity and mortality rates. Optimization of

  13. Oak Regeneration Guidelines for the Central Appalachians

    Science.gov (United States)

    Kim C. Steiner; James C. Finley; Peter J. Gould; Songlin Fei; Marc McDill

    2008-01-01

    This article presents the first explicit guidelines for regenerating oaks in the central Appalachians. The objectives of this paper are (1) to describe the research foundation on which the guidelines are based and (2) to provide users with the instructions, data collection forms, supplementary tables, and decision charts needed to apply the guidelines in the field. The...

  14. Reparative inflammation takes charge of tissue regeneration

    NARCIS (Netherlands)

    Karin, Michael; Clevers, Hans

    2016-01-01

    Inflammation underlies many chronic and degenerative diseases, but it also mitigates infections, clears damaged cells and initiates tissue repair. Many of the mechanisms that link inflammation to damage repair and regeneration in mammals are conserved in lower organisms, indicating that it is an

  15. Calcium phosphate coatings for bone regeneration

    NARCIS (Netherlands)

    Yang, Liang

    2010-01-01

    As a novel approach to repair and regenerate damaged and degraded bone tissue, tissue engineering has recorded tremendous growth for the last thirty years. This is an emerging interdisciplinary field applying the principles of biology and engineering to the development of viable substitutes that

  16. Expression and localization of regenerating gene I in a rat liver regeneration model

    International Nuclear Information System (INIS)

    Wang Jingshu; Koyota, Souichi; Zhou, Xiaoping; Ueno, Yasuharu; Ma Li; Kawagoe, Masami; Koizumi, Yukio; Okamoto, Hiroshi; Sugiyama, Toshihiro

    2009-01-01

    Regenerating gene (Reg) I has been identified as a regenerative/proliferative factor for pancreatic islet cells. We examined Reg I expression in the regenerating liver of a rat model that had been administered 2-acetylaminofluorene and treated with 70% partial hepatectomy (2-AAF/PH model), where hepatocyte and cholangiocyte proliferation was suppressed and the hepatic stem cells and/or hepatic progenitor cells were activated. In a detailed time course study of activation of hepatic stem cells in the 2-AAF/PH model, utilizing immunofluorescence staining with antibodies of Reg I and other cell-type-specific markers, we found that Reg I-expressing cells are present in the bile ductules and increased during regeneration. Reg I-expressing cells were colocalized with CK19, OV6, and AFP. These results demonstrate that Reg I is significantly upregulated in the liver of the 2-AAF/PH rat model, accompanied by the formation of bile ductules during liver regeneration.

  17. Efficient electrochemical regeneration of nicotinamide cofactors using a cyclopentadienyl-rhodium complex on functionalized indium tin oxide electrodes

    International Nuclear Information System (INIS)

    Kim, Soojin; Lee, Ga Ye; Lee, Jungha; Rajkumar, Eswaran; Baeg, Jin-Ook; Kim, Jinheung

    2013-01-01

    Functionalized ITO electrodes are used to regenerate NADH using [Cp*Rh(bpy)(H 2 O)] 2+ (Cp* = pentamethylcyclopentadienyl, bpy = 2,2′-bipyridine) electrochemically in a buffer solution. Amino- and mercapto-functionalized electrodes featured higher activity and stability for electrocatalytic generation of NADH than a bare ITO electrode. Effect of metal nanoparticles was also studied on modified ITO electrodes and the addition of platinum nanoparticles even resulted in improved activity. The electrochemical regeneration was somewhat affected in the presence of dioxygen, but not significantly. In addition, a conversion of carbon dioxide was carried out utilizing the electrochemically generated NADH and formate dehydrogenase to produce formic acid

  18. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  19. Economic analysis of replacement regeneration and coppice regeneration in eucalyptus stands under risk conditions

    Directory of Open Access Journals (Sweden)

    Isabel Carolina de Lima Guedes

    2011-09-01

    Full Text Available Projects are by their very nature subject to conditions of uncertainty that obstruct the decision-making process. Uncertainties involving forestry projects are even greater, as they are combined with time of return on capital invested, being medium to long term. For successful forest planning, it is necessary to quantify uncertainties by converting them into risks. The decision on whether to adopt replacement regeneration or coppice regeneration in a forest stand is influenced by several factors, which include land availability for new forest crops, changes in project end use, oscillations in demand and technological advancement. This study analyzed the economic feasibility of replacement regeneration and coppice regeneration of eucalyptus stands, under deterministic and under risk conditions. Information was gathered about costs and revenues for charcoal production in order to structure the cash flow used in the economic analysis, adopting the Net Present Value method (VPL. Risk assessment was based on simulations running the Monte Carlo method. Results led to the following conclusions: replacement regeneration is economically viable, even if the future stand has the same productivity as the original stand; coppice regeneration is an economically viable option even if productivity is a mere 70% of the original stand (high-tree planted stand, the best risk-return ratio option is restocking the stand (replacement regeneration by one that is 20% more productive; the probabilistic analysis running the Monte Carlo method revealed that invariably there is economic viability for the various replacement and coppice regeneration options being studied, minimizing uncertainties and consequently increasing confidence in decision-making.

  20. Proliferation zones in the axolotl brain and regeneration of the telencephalon

    Directory of Open Access Journals (Sweden)

    Maden Malcolm

    2013-01-01

    Full Text Available Abstract Background Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue. Results There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over. Conclusion There is a continual generation of neuronal cells from neural progenitor cells

  1. Gene expression patterns specific to the regenerating limb of the Mexican axolotl

    Directory of Open Access Journals (Sweden)

    James R. Monaghan

    2012-07-01

    Salamander limb regeneration is dependent upon tissue interactions that are local to the amputation site. Communication among limb epidermis, peripheral nerves, and mesenchyme coordinate cell migration, cell proliferation, and tissue patterning to generate a blastema, which will form missing limb structures. An outstanding question is how cross-talk between these tissues gives rise to the regeneration blastema. To identify genes associated with epidermis-nerve-mesenchymal interactions during limb regeneration, we examined histological and transcriptional changes during the first week following injury in the wound epidermis and subjacent cells between three injury types; 1 a flank wound on the side of the animal that will not regenerate a limb, 2 a denervated limb that will not regenerate a limb, and 3 an innervated limb that will regenerate a limb. Early, histological and transcriptional changes were similar between the injury types, presumably because a common wound-healing program is employed across anatomical locations. However, some transcripts were enriched in limbs compared to the flank and are associated with vertebrate limb development. Many of these genes were activated before blastema outgrowth and expressed in specific tissue types including the epidermis, peripheral nerve, and mesenchyme. We also identified a relatively small group of transcripts that were more highly expressed in innervated limbs versus denervated limbs. These transcripts encode for proteins involved in myelination of peripheral nerves, epidermal cell function, and proliferation of mesenchymal cells. Overall, our study identifies limb-specific and nerve-dependent genes that are upstream of regenerative growth, and thus promising candidates for the regulation of blastema formation.

  2. Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells.

    Science.gov (United States)

    Erler, Piril; Sweeney, Alexandra; Monaghan, James R

    2017-01-01

    Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa + /BrdU + coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247. © 2016 AlphaMed Press.

  3. Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells.

    Science.gov (United States)

    Yoshida, Keita; Hozumi, Akiko; Treen, Nicholas; Sakuma, Tetsushi; Yamamoto, Takashi; Shirae-Kurabayashi, Maki; Sasakura, Yasunori

    2017-03-15

    The ascidian Ciona intestinalis has a high regeneration capacity that enables the regeneration of artificially removed primordial germ cells (PGCs) from somatic cells. We utilized PGC regeneration to establish efficient methods of germ line mutagenesis with transcription activator-like effector nucleases (TALENs). When PGCs were artificially removed from animals in which a TALEN pair was expressed, somatic cells harboring mutations in the target gene were converted into germ cells, this germ cell population exhibited higher mutation rates than animals not subjected to PGC removal. PGC regeneration enables us to use TALEN expression vectors of specific somatic tissues for germ cell mutagenesis. Unexpectedly, cis elements for epidermis, neural tissue and muscle could be used for germ cell mutagenesis, indicating there are multiple sources of regenerated PGCs, suggesting a flexibility of differentiated Ciona somatic cells to regain totipotency. Sperm and eggs of a single hermaphroditic, PGC regenerated animal typically have different mutations, suggesting they arise from different cells. PGCs can be generated from somatic cells even though the maternal PGCs are not removed, suggesting that the PGC regeneration is not solely an artificial event but could have an endogenous function in Ciona. This study provides a technical innovation in the genome-editing methods, including easy establishment of mutant lines. Moreover, this study suggests cellular mechanisms and the potential evolutionary significance of PGC regeneration in Ciona. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Solar Fuel Generator

    Science.gov (United States)

    Lewis, Nathan S. (Inventor); West, William C. (Inventor)

    2017-01-01

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  5. CFD Analysis of the Oscillating Flow within a Stirling Engine with an Additively Manufactured Foil Type Regenerator

    Science.gov (United States)

    Qiu, Songgang; Solomon, Laura

    2017-11-01

    The simplistic design, fuel independence, and robustness of Stirling convertors makes them the ideal choice for use in solar power and combined heat and power (CHP) applications. A lack of moving parts and the use of novel flexure bearings allows free-piston type Stirling engines to run in excess of ten years without degradation or maintenance. The key component to their overall efficiency is the regenerator. While a foil type regenerator outperforms a sintered random fiber regenerator, limitation in manufacturing and keeping uniform spacing between the foils has limited their overall use. However, with the advent of additive manufacturing, a robust foil type regenerator can be cheaply manufactured without traditional limitations. Currently, a CFD analysis of the oscillating internal flow within the novel design was conducted to evaluate the flow loses within the system. Particularly the pressure drop across the regenerator in comparison to a traditionally used random fiber regenerator. Additionally, the heat transfer and flow over the tubular heater hear was evaluated. The results of the investigation will be used to optimize the operation of the next generation of additively manufactured Stirling convertors. This research was supported by ARPA-E and West Virginia University.

  6. MicroRNA profiling of antler stem cells in potentiated and dormant states and their potential roles in antler regeneration.

    Science.gov (United States)

    Ba, Hengxing; Wang, Datao; Li, Chunyi

    2016-04-01

    MicroRNAs (miRNAs) can effectively regulate gene expression at the post-transcriptional level and play a critical role in tissue growth, development and regeneration. Our previous studies showed that antler regeneration is a stem cell-based process and antler stem cells reside in the periosteum of a pedicle, the permanent bony protuberance, from which antler regeneration takes place. Antlers are the only mammalian organ that can fully regenerate and hence provide a unique opportunity to identify miRNAs that are involved in organ regeneration. In the present study, we used next generation sequencing technology sequenced miRNAs of the stem cells derived from either the potentiated or the dormant pedicle periosteum. A population of both conserved and 20 deer-specific miRNAs was identified. These conserved miRNAs were derived from 453 homologous hairpin precursors across 88 animal species, and were further grouped into 167 miRNA families. Among them, the miR-296 is embryonic stem cell-specific. The potentiation process resulted in the significant regulation (>±2 Fold, q value cell potentiation process. This research has identified miRNAs that are associated either with the dormant or the potentiated antler stem cells and identified some target miRNAs for further research into their role played in mammalian organ regeneration.

  7. Peptide-Based Materials for Cartilage Tissue Regeneration.

    Science.gov (United States)

    Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2017-01-01

    Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.

  8. Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation

    Directory of Open Access Journals (Sweden)

    Xiaoling Lu

    2016-01-01

    Full Text Available Hair cells (HCs are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.

  9. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

    Directory of Open Access Journals (Sweden)

    Ashvin K. Dewan

    2014-01-01

    Full Text Available Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells and associated scaffolds (natural or synthetic, hydrogels or membranes. ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient’s knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients.

  10. Perkembangan Terkini Membran Guided Tissue Regeneration/Guided Bone Regeneration sebagai Terapi Regenerasi Jaringan Periodontal

    Directory of Open Access Journals (Sweden)

    Cindy Cahaya

    2015-06-01

    kombinasi prosedur-prosedur di atas, termasuk prosedur bedah restoratif yang berhubungan dengan rehabilitasi oral dengan penempatan dental implan. Pada tingkat selular, regenerasi periodontal adalah proses kompleks yang membutuhkan proliferasi yang terorganisasi, differensiasi dan pengembangan berbagai tipe sel untuk membentuk perlekatan periodontal. Rasionalisasi penggunaan guided tissue regeneration sebagai membran pembatas adalah menahan epitel dan gingiva jaringan pendukung, sebagai barrier membrane mempertahankan ruang dan gigi serta menstabilkan bekuan darah. Pada makalah ini akan dibahas sekilas mengenai 1. Proses penyembuhan terapi periodontal meliputi regenerasi, repair ataupun pembentukan perlekatan baru. 2. Periodontal spesific tissue engineering. 3. Berbagai jenis membran/guided tissue regeneration yang beredar di pasaran dengan keuntungan dan kerugian sekaligus karakteristik masing-masing membran. 4. Perkembangan membran terbaru sebagai terapi regenerasi penyakit periodontal. Tujuan penulisan untuk memberi gambaran masa depan mengenai terapi regenerasi yang menjanjikan sebagai perkembangan terapi penyakit periodontal.   Latest Development of Guided Tissue Regeneration and Guided Bone Regeneration Membrane as Regenerative Therapy on Periodontal Tissue. Periodontitis is a patological state which influences the integrity of periodontal system that could lead to the destruction of the periodontal tissue and end up with tooth loss. Currently, there are so many researches and efforts to regenerate periodontal tissue, not only to stop the process of the disease but also to reconstruct the periodontal tissue. Periodontal regenerative therapy aims at directing the growth of new bone, cementum and periodontal ligament on the affected teeth. Regenerative procedures consist of soft tissue graft, bone graft, roots biomodification, guided tissue regeneration and combination of the procedures, including restorative surgical procedure that is

  11. In vitro regeneration of kidney from pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Osafune, Kenji, E-mail: osafu@cira.kyoto-u.ac.jp [Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); JST Yamanaka iPS Cell Special Project, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2010-10-01

    Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.

  12. In vitro regeneration of kidney from pluripotent stem cells

    International Nuclear Information System (INIS)

    Osafune, Kenji

    2010-01-01

    Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.

  13. Modeling water and hydrogen networks with partitioning regeneration units

    Directory of Open Access Journals (Sweden)

    W.M. Shehata

    2015-03-01

    Full Text Available Strict environment regulations in chemical and refinery industries lead to minimize resource consumption by designing utility networks within industrial process plants. The present study proposed a superstructure based optimization model for the synthesis of water and hydrogen networks with partitioning regenerators without mixing the regenerated sources. This method determines the number of partitioning regenerators needed for the regeneration of the sources. The number of the regenerators is based on the number of sources required to be treated for recovery. Each source is regenerated in an individual partitioning regenerator. Multiple regeneration systems can be employed to achieve minimum flowrate and costs. The formulation is linear in the regenerator balance equations. The optimized model is applied for two systems, partitioning regeneration systems of the fixed outlet impurity concentration and partitioning regeneration systems of the fixed impurity load removal ratio (RR for water and hydrogen networks. Several case studies from the literature are solved to illustrate the ease and applicability of the proposed method.

  14. Regeneration of limb joints in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Lee, Jangwoo; Gardiner, David M

    2012-01-01

    In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander) model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints.

  15. Regeneration of limb joints in the axolotl (Ambystoma mexicanum.

    Directory of Open Access Journals (Sweden)

    Jangwoo Lee

    Full Text Available In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints.

  16. Comparison contemporary methods of regeneration sodium-cationic filters

    Science.gov (United States)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Verkhovsky, A. E.; Ilyushin, A. S.; Aladushkin, S. V.

    2017-11-01

    Regeneration plays a crucial role in the field of efficient application sodium-cationic filters for softening the water. Traditionally used as regenerant saline NaCl. However, due to the modern development of the energy industry and its close relationship with other industrial and academic sectors the opportunity to use in the regeneration of other solutions. The report estimated data and application possibilities as regenerant solution sodium-cationic filters brine wells a high mineral content, as both primary application and after balneotherapeutic use reverse osmosis and concentrates especially recycled regenerant water repeated. Comparison of the effectiveness of these solutions with the traditional use of NaCl. Developed and tested system for the processing of highly mineralized brines wells after balneological use. Recommendations for use as regeneration solutions for the sodium-cationic unit considered solutions and defined rules of brine for regeneration costs.

  17. Thermodynamic analysis of a Stirling engine including regenerator dead volume

    Energy Technology Data Exchange (ETDEWEB)

    Puech, Pascal; Tishkova, Victoria [Universite de Toulouse, UPS, CNRS, CEMES, 29 rue Jeanne Marvig, F-31055 Toulouse (France)

    2011-02-15

    This paper provides a theoretical investigation on the thermodynamic analysis of a Stirling engine with linear and sinusoidal variations of the volume. The regenerator in a Stirling engine is an internal heat exchanger allowing to reach high efficiency. We used an isothermal model to analyse the net work and the heat stored in the regenerator during a complete cycle. We show that the engine efficiency with perfect regeneration doesn't depend on the regenerator dead volume but this dead volume strongly amplifies the imperfect regeneration effect. An analytical expression to estimate the improvement due to the regenerator has been proposed including the combined effects of dead volume and imperfect regeneration. This could be used at the very preliminary stage of the engine design process. (author)

  18. Cancer-related aspects of regeneration research: a review

    International Nuclear Information System (INIS)

    Donaldson, D.J.; Mason, J.M.

    1975-01-01

    Tissue regeneration is simply the replacement of lost cells of a tissue by those remaining. Epimorphic regeneration involves dedifferentiation of many tissues and their organization into a blastema which eventually differentiates into the missing part, usually an appendage. A detailed comparison of the cell membrane changes occurring in epimorphic regeneration, tissue regeneration and cancer can contribute to greater understanding of the differences between normal and tumor cells. Further, there is evidence that epimorphic regeneration fields may in some instances suppress tumor induction and control existing tumors. This influence may be mediated by bioelectric fields, which are ubiquitous in nature and appear to control many cellular events. Disruption of these bioelectric fields suppresses epimorphic regeneration and may lead to cancer in mammals, while applied electric fields alter regenerative events and cause tumor regression. Studies on x-radioinduced regeneration suppression in relation to mutagenesis are also reviewed

  19. Renda e evolução da geração per capita de resíduos sólidos no Brasil Evolution of income and per capita generation of solid wastes in Brazil

    Directory of Open Access Journals (Sweden)

    Heliana Kátia Tavares Campos

    2012-06-01

    Full Text Available A redução da geração de resíduos sólidos é a prioridade para o manejo dos resíduos sólidos no Brasil, de acordo com a Política Nacional de Resíduos Sólidos. Este texto apresenta dados sobre a evolução da geração per capita de resíduos sólidos no Brasil e em outros países desenvolvidos, bem como os esforços e as dificuldades encontradas por estes últimos para a sua redução ou estabilização. São levantadas hipóteses sobre fatores sociais, econômicos e culturais que interferem no consumo e na consequente geração de resíduos sólidos, visando contribuir com o debate sobre o tema. Em uma primeira análise sobre a evolução da geração per capita dos resíduos sólidos no Brasil verifica-se uma maior propensão ao seu crescimento em função, principalmente, da melhoria da renda da população pobre e fatores culturais como a redução do tamanho das famílias e a entrada da mulher no mercado de trabalho.Reducing solid wastes generation is a priority for solid waste management in Brazil, according to the National Policy of Solid Waste. This paper presents data on trends in per capita solid wastes generation in Brazil, and in other developed countries, as well as the efforts and difficulties to reduce or stabilize that flow. In order to contribute to the debate on the subject, some hypotheses are raised about social, economic and cultural factors that affect consumption and the consequent generation of solid wastes. In a first analysis of the evolution of the per capita generation of solid wastes in Brazil, there is a greater propensity for growth due mainly to the improvement in the income of the poor and to cultural factors, such as reduction of the family size and inclusion of women in the labor market.

  20. Simulated big sagebrush regeneration supports predicted changes at the trailing and leading edges of distribution shifts

    Science.gov (United States)

    Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.

    2015-01-01

    Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing

  1. Electroweak evolution equations

    International Nuclear Information System (INIS)

    Ciafaloni, Paolo; Comelli, Denis

    2005-01-01

    Enlarging a previous analysis, where only fermions and transverse gauge bosons were taken into account, we write down infrared-collinear evolution equations for the Standard Model of electroweak interactions computing the full set of splitting functions. Due to the presence of double logs which are characteristic of electroweak interactions (Bloch-Nordsieck violation), new infrared singular splitting functions have to be introduced. We also include corrections related to the third generation Yukawa couplings

  2. Moral regeneration: Seedbeds for civic virtue

    Directory of Open Access Journals (Sweden)

    Piet G.J. Meiring

    2003-10-01

    Full Text Available Taking his cue from a recent report by the US National Council on Civil Society, the author discusses a number of “seedbeds of civic virtue” that may play a role in the much needed moral regeneration of South African society. The “seedbeds” are (1 family, (2 the local community, (3 faith communities, (4 voluntary civil organizations, (5 arts and art institutions, (6 education, (7 business, labour and economic institu-tions, (8 the media, (9 government, (10 the nation. The “rainbow nation”, the author contends, has in recent times lost some of its colour, but if the different partners in the quest for moral regeneration take hands, the colours of the rainbow may return.

  3. EVALUATING THE CULTURE-LED REGENERATION

    Directory of Open Access Journals (Sweden)

    D'Angelo Francesca

    2010-12-01

    Full Text Available The aim of the paper is to propose a new approach to urban planning, evaluating the culture-led regeneration processes. In the last few years, the cultural turn in urban planning played a central role in the urban studies. In this way we try to elaborate a more robust perspective interpreting the complex phenomenology emerging from the culture-led regeneration processes. Within the concept of complexity we discuss about the metabolic process that are the processes necessary to transform energy, material and information in goods and service functional to the complex urban system life. The approach that will be employed is the MuSIASEM that is based on several novel concept and an innovative methods never applied in this research field.

  4. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    International Nuclear Information System (INIS)

    Clark, F.T.; Hensley, A.L. Jr.

    1992-01-01

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600 degrees F to about 1400 degrees F

  5. Iodine removal adsorbent histories, aging and regeneration

    International Nuclear Information System (INIS)

    Hunt, J.R.; Rankovic, L.; Lubbers, R.; Kovach, J.L.

    1976-01-01

    The experience of efficiency changes with life under various test conditions is described. The adsorbents were periodically removed from both standby and continuously operating systems and tested under various test methods for residual iodine adsorption efficiency. Adsorbent from several conventional ''sampler'' cartridges versus the bulk adsorbent was also tested showing deficiency in the use of cartridge type sampling. Currently required test conditions were found inadequate to follow the aging of the adsorbent because pre-equilibration of the sample acts as a regenerant and the sample is not tested in the ''as is'' condition. The most stringent test was found to be the ambient temperature, high humidity test to follow the aging of the adsorbent. Several methods were evaluated to regenerate used adsorbents; of these high temperature steaming and partial reimpregnation were found to produce adsorbents with near identical properties of freshly prepared adsorbents

  6. How x rays inhibit amphibian limb regeneration

    International Nuclear Information System (INIS)

    Maden, M.; Wallace, H.

    1976-01-01

    The effects of an inhibiting dose of 2,000 rad of x-rays on the regenerating limbs of axolotl larvae have been examined in a histological and cytological study. Particular attention was paid to the mitotic indices of normal and irradiated epidermal and blastemal cells. Both the characteristic pattern of epidermal mitotic stimulation which normally follows amputation and the later increase in blastemal mitoses are suppressed by irradiation. In most cells the effects are permanent, but in a small proportion a mitotic delay is induced and upon subsequent division chromosome damage in the form of micronuclei is revealed. Thus irradiated cells which do divide almost certainly die. These results are discussed in relation to other theories of x-ray inhibition of regeneration with particular reference to the view that irradiated cells can be reactivated

  7. In vitro regeneration of Basella alba L

    Science.gov (United States)

    Edney, Norris Allen; Rizvi, Muhammad A.; Rizvi, Narjis F.

    1989-01-01

    Basella alba L. is a tropical vine used as a vegetable in some Asian and African countries. It has potential as a nontraditional crop for small family farms. A short day plant, it blooms during the fall, provided the temperatures are mild. In the southeastern U.S., the short days of fall are associated with subfreezing temperatures, and plants are killed before blooming. Attempts were made to regenerate the plant using tissue culture techniques. Several trials were conducted with different media, hormones, and explants. It was found that nodal segments on Gamborg medium regenerated shoots. Interaction studies of auxins and cytokinins indicated that its endogeneous auxin content might be high because callus proliferated in almost all treatments and roots initiated even when the medium was not supplemented with an auxin.

  8. Tumor suppressors: enhancers or suppressors of regeneration?

    Science.gov (United States)

    Pomerantz, Jason H.; Blau, Helen M.

    2013-01-01

    Tumor suppressors are so named because cancers occur in their absence, but these genes also have important functions in development, metabolism and tissue homeostasis. Here, we discuss known and potential functions of tumor suppressor genes during tissue regeneration, focusing on the evolutionarily conserved tumor suppressors pRb1, p53, Pten and Hippo. We propose that their activity is essential for tissue regeneration. This is in contrast to suggestions that tumor suppression is a trade-off for regenerative capacity. We also hypothesize that certain aspects of tumor suppressor pathways inhibit regenerative processes in mammals, and that transient targeted modification of these pathways could be fruitfully exploited to enhance processes that are important to regenerative medicine. PMID:23715544

  9. Endothelial-regenerating cells: an expanding universe.

    Science.gov (United States)

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  10. Biomimetic electrospun nanofibers for tissue regeneration

    International Nuclear Information System (INIS)

    Liao, Susan; Li Bojun; Ma Zuwei; Wei He; Chan Casey; Ramakrishna, Seeram

    2006-01-01

    Nanofibers exist widely in human tissue with different patterns. Electrospinning nanotechnology has recently gained a new impetus due to the introduction of the concept of biomimetic nanofibers for tissue regeneration. The advanced electrospinning technique is a promising method to fabricate a controllable continuous nanofiber scaffold similar to the natural extracellular matrix. Thus, the biomedical field has become a significant possible application field of electrospun fibers. Although electrospinning has developed rapidly over the past few years, electrospun nanofibers are still at a premature research stage. Further comprehensive and deep studies on electrospun nanofibers are essential for promoting their biomedical applications. Current electrospun fiber materials include natural polymers, synthetic polymers and inorganic substances. This review briefly describes several typically electrospun nanofiber materials or composites that have great potential for tissue regeneration, and describes their fabrication, advantages, drawbacks and future prospects. (topical review)

  11. Experimental investigation of different fluid flow profiles in a rotary multi-bed active magnetic regenerator device

    DEFF Research Database (Denmark)

    Fortkamp, F. P.; Eriksen, D.; Engelbrecht, K.

    2018-01-01

    A rotary multi-bed active magnetic regenerator (AMR) device was modified to allow testing different fluid flow waveforms, with different blow fractions (i.e. the fraction of the AMR cycle when there is fluid flow in the regenerators). The different values of blow fraction were generated using dif.......1% was obtained for the largest blow fraction tested (80%). Designs for magnetic refrigerators where the fluid flow waveform can change during operation are also discussed in this paper.......A rotary multi-bed active magnetic regenerator (AMR) device was modified to allow testing different fluid flow waveforms, with different blow fractions (i.e. the fraction of the AMR cycle when there is fluid flow in the regenerators). The different values of blow fraction were generated using...... different cam rings that actuate the poppet valves at the inlet and outlet of the regenerators, controlling how long the valves stay open and the number of valves open at the same time. Results showed that smaller blow fractions yield higher values of temperature span for fixed flow rate and cooling...

  12. Inhibiting the regeneration of N-nitrosodimethylamine in drinking water by UV photolysis combined with ozonation

    Energy Technology Data Exchange (ETDEWEB)

    Bingbing, Xu [State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090 (China); State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012 (China); Chen Zhonglin, E-mail: zhonglinchen@263.net [State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090 (China); Fei, Qi [College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083 (China); Jun, Ma [State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090 (China); Fengchang, Wu [State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012 (China)

    2009-08-30

    N-Nitrosodimethylamine (NDMA) is a highly carcinogenic compound that is suspected of carcinogenic activity in the human body. A variety of methods are used to remove NDMA from water, but the main degradation products, dimethylamine (DMA) and NO{sub 2}{sup -}, are also precursors for NDMA formation. UV irradiation combined with ozonation (UV/O{sub 3}) was examined in this investigation for its ability to inhibit the regeneration of NDMA after degradation. Both the degradation products and the regeneration potential of NDMA were compared between UV irradiation alone and UV/O{sub 3}. The yields of DMA and NO{sub 2}{sup -} in the UV/O{sub 3} process were less than for UV irradiation alone. Yields of DMA and NO{sub 2}{sup -} were 2.25 mg L{sup -1} and 3.22 mg L{sup -1} from UV irradiation, while they were 0.92 mg L{sup -1} and 0.45 mg L{sup -1} from the UV/O{sub 3} process. Furthermore, the regeneration of NDMA was also less after the UV/O{sub 3} process than after UV irradiation. The concentration of regenerated NDMA was more than 51.8 {mu}g L{sup -1} after UV irradiation regardless of the dosage of Cl{sub 2}. However, the concentration of regenerated NDMA in the UV/O{sub 3} process was less than 7.37 {mu}g L{sup -1} under the same conditions. Consequently, the UV/O{sub 3} process was more effective than UV irradiation alone in inhibiting NDMA regeneration. The inhibition of NDMA regeneration was due to a decrease in DMA and NO{sub 2}{sup -} produced by the UV/O{sub 3} process. As the major products generated from NDMA, NO{sub 2}{sup -} and DMA were likely to be oxidized by ozone and hydroxyl radicals ({center_dot}OH). In addition, the reaction between NDMA and {center_dot}OH would possibly generate methylamine as the only product, leading to a decrease in the production of DMA by the UV/O{sub 3} process.

  13. The investigation of HTGR fuel regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Lazarev, L N; Bertina, L E; Popik, V P; Isakov, V P; Alkhimov, N B; Pokhitonov, Yu A

    1985-07-01

    The aim of this report is the investigation of HTGR fuel regeneration. The operation in the technologic scheme of uranium extraction from fuel depleted elements is separation of fuel from graphite. Available methods of graphite matrix destruction are: mechanical destruction, chemical destruction, and burning. Mechanical destruction is done in combination with leaching or chlorination. Methods of chemical destruction of graphite matrix are not sufficiently studied. Most of the investigations nowadays sre devoted to removal of graphite by burning.

  14. Study of the heavy water regeneration processes

    International Nuclear Information System (INIS)

    Cavcic, E.

    1965-11-01

    Experience derived from heavy water reactor operation showed degradation and dilution of heavy water to be inevitable and depends on the type of reactor. Dilution of heavy water during operation of the RA and the RB reactors is shown in this report. Principles and procedures of heavy water regeneration by electrolysis, fractional distillation, cleaning, prevention of tritium contamination are described as well as separation columns

  15. Calpain 3 is important for muscle regeneration

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Sveen, Marie-Louise; Duno, Morten

    2012-01-01

    Limb girdle muscular dystrophy (LGMD) type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study...... was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration....

  16. Tissue Engineering Strategies in Ligament Regeneration

    OpenAIRE

    Yilgor, Caglar; Yilgor Huri, Pinar; Huri, Gazi

    2011-01-01

    Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue eng...

  17. Heartbreak hotel: a convergence in cardiac regeneration.

    Science.gov (United States)

    Schneider, Michael D

    2016-05-01

    In February 2016, The Company of Biologists hosted an intimate gathering of leading international researchers at the forefront of experimental cardiovascular regeneration, with its emphasis on 'Transdifferentiation and Tissue Plasticity in Cardiovascular Rejuvenation'. As I review here, participants at the workshop revealed how understanding cardiac growth and lineage decisions at their most fundamental level has transformed the strategies in hand that presently energize the prospects for human heart repair. © 2016. Published by The Company of Biologists Ltd.

  18. Vestibular regeneration ? experimental models and clinical implications

    OpenAIRE

    Albu, Silviu; Muresanu, Dafin F

    2012-01-01

    Therapies aimed at the protection and/or regeneration of inner ear hair cells are of great interest, given the significant monetary and quality of life impact of balance disorders. Different viral vectors have been shown to transfect various cell types in the inner ear. The past decade has provided tremendous advances in the use of adenoviral vectors to achieve targeted treatment delivery. Several routes of delivery have been identified to introduce vectors into the inner ear while minimizing...

  19. The investigation of HTGR fuel regeneration process

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Bertina, L.E.; Popik, V.P.; Isakov, V.P.; Alkhimov, N.B.; Pokhitonov, Yu.A.

    1985-01-01

    The aim of this report is the investigation of HTGR fuel regeneration. The operation in the technologic scheme of uranium extraction from fuel depleted elements is separation of fuel from graphite. Available methods of graphite matrix destruction are: mechanical destruction, chemical destruction, and burning. Mechanical destruction is done in combination with leaching or chlorination. Methods of chemical destruction of graphite matrix are not sufficiently studied. Most of the investigations nowadays sre devoted to removal of graphite by burning

  20. Hypertranscription in development, stem cells, and regeneration

    Science.gov (United States)

    Percharde, Michelle; Bulut-Karslioglu, Aydan; Ramalho-Santos, Miguel

    2016-01-01

    SUMMARY Cells can globally up-regulate their transcriptome during specific transitions, a phenomenon called hypertranscription. Evidence for hypertranscription dates back over 70 years, but it has gone largely ignored in the genomics era until recently. We discuss data supporting the notion that hypertranscription is a unifying theme in embryonic development, stem cell biology, regeneration and cell competition. We review the history, methods for analysis, underlying mechanisms and biological significance of hypertranscription. PMID:27989554

  1. An eco-friendly approach for heavy metal adsorbent regeneration using CO2-responsive molecular octopus.

    Science.gov (United States)

    Bai, Yu; Liang, Yen Nan; Hu, Xiao

    2017-10-01

    Perennial problems of adsorption in wastewater treatment include adsorbent recycling, generation of waste sludge and secondary pollution because harmful concentrated acids, bases or strong chelators are often used for adsorbent regeneration and adsorbate recovery. We report, for the first time, an eco-friendly regeneration concept demonstrated with a CO 2 -responsive octopus-like polymeric adsorbent. Various heavy metals can be scavenged at very high Q e by such adsorbent through coordination. Most importantly, the rapid and complete regeneration of the adsorbent and recovery of the heavy metal ions can be readily achieved by CO 2 bubbling within a few minutes under mild conditions, i.e., room temperature and atmospheric pressure. The adsorbent can then be restored to its adsorptive state and reused upon removal of CO 2 by simply bubbling another gas. This eco-friendly, effective, ultra-fast and repeatable CO 2 -triggered regeneration process using CO 2 -responsive adsorbent with versatile structure, morphology or form can be incorporated into a sustainable closed-loop wastewater treatment process to solve the perennial problems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Stable transformation via particle bombardment in two different soybean regeneration systems.

    Science.gov (United States)

    Sato, S; Newell, C; Kolacz, K; Tredo, L; Finer, J; Hinchee, M

    1993-05-01

    The Biolistics(®) particle delivery system for the transformation of soybean (Glycine max L. Merr.) was evaluated in two different regeneration systems. The first system was multiple shoot proliferation from shoot tips obtained from immature zygotic embryos of the cultivar Williams 82, and the second was somatic embryogenesis from a long term proliferative suspension culture of the cultivar Fayette. Bombardment of shoot tips with tungsten particles, coated with precipitated DNA containing the gene for β-glucuronidase (GUS), produced GUS-positive sectors in 30% of the regenerated shoots. However, none of the regenerants which developed into plants continued to produce GUS positive tissue. Bombardment of embryogenic suspension cultures produced GUS positive globular somatic embryos which proliferated into GUS positive somatic embryos and plants. An average of 4 independent transgenic lines were generated per bombarded flask of an embryogenic suspension. Particle bombardment delivered particles into the first two cell layers of either shoot tips or somatic embryos. Histological analysis indicated that shoot organogenesis appeared to involve more than the first two superficial cell layers of a shoot tip, while somatic embryo proliferation occurred from the first cell layer of existing somatic embryos. The different transformation results obtained with these two systems appeared to be directly related to differences in the cell types which were responsible for regeneration and their accessibility to particle penetration.

  3. Control of electrothermal heating during regeneration of activated carbon fiber cloth.

    Science.gov (United States)

    Johnsen, David L; Mallouk, Kaitlin E; Rood, Mark J

    2011-01-15

    Electrothermal swing adsorption (ESA) of organic gases generated by industrial processes can reduce atmospheric emissions and allow for reuse of recovered product. Desorption energy efficiency can be improved through control of adsorbent heating, allowing for cost-effective separation and concentration of these gases for reuse. ESA experiments with an air stream containing 2000 ppm(v) isobutane and activated carbon fiber cloth (ACFC) were performed to evaluate regeneration energy consumption. Control logic based on temperature feedback achieved select temperature and power profiles during regeneration cycles while maintaining the ACFC's mean regeneration temperature (200 °C). Energy requirements for regeneration were independent of differences in temperature/power oscillations (1186-1237 kJ/mol of isobutane). ACFC was also heated to a ramped set-point, and the average absolute error between the actual and set-point temperatures was small (0.73%), demonstrating stable control as set-point temperatures vary, which is necessary for practical applications (e.g., higher temperatures for higher boiling point gases). Additional logic that increased the maximum power application at lower ACFC temperatures resulted in a 36% decrease in energy consumption. Implementing such control logic improves energy efficiency for separating and concentrating organic gases for post-desorption liquefaction of the organic gas for reuse.

  4. Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration

    Directory of Open Access Journals (Sweden)

    Shila Gilbert

    2015-02-01

    Full Text Available Intestinal epithelial stem cells (IESCs control the intestinal homeostatic response to inflammation and regeneration. The underlying mechanisms are unclear. Cytokine-STAT5 signaling regulates intestinal epithelial homeostasis and responses to injury. We link STAT5 signaling to IESC replenishment upon injury by depletion or activation of Stat5 transcription factor. We found that depletion of Stat5 led to deregulation of IESC marker expression and decreased LGR5+ IESC proliferation. STAT5-deficient mice exhibited worse intestinal histology and impaired crypt regeneration after γ-irradiation. We generated a transgenic mouse model with inducible expression of constitutively active Stat5. In contrast to Stat5 depletion, activation of STAT5 increased IESC proliferation, accelerated crypt regeneration, and conferred resistance to intestinal injury. Furthermore, ectopic activation of STAT5 in mouse or human stem cells promoted LGR5+ IESC self-renewal. Accordingly, STAT5 promotes IESC proliferation and regeneration to mitigate intestinal inflammation. STAT5 is a functional therapeutic target to improve the IESC regenerative response to gut injury.

  5. Regeneration of long-distance peripheral nerve defects after delayed reconstruction in healthy and diabetic rats is supported by immunomodulatory chitosan nerve guides

    OpenAIRE

    Stenberg, Lena; Stã¶ãŸel, Maria; Ronchi, Giulia; Geuna, Stefano; Yin, Yaobin; Mommert, Susanne; Mã¥rtensson, Lisa; Metzen, Jennifer; Grothe, Claudia; Dahlin, Lars B.; Haastert-Talini, Kirsten

    2017-01-01

    Background Delayed reconstruction of transection or laceration injuries of peripheral nerves is inflicted by a reduced regeneration capacity. Diabetic conditions, more frequently encountered in clinical practice, are known to further impair regeneration in peripheral nerves. Chitosan nerve guides (CNGs) have recently been introduced as a new generation of medical devices for immediate peripheral nerve reconstruction. Here, CNGs were used for 45?days delayed reconstruction of critical length 1...

  6. Augmenting nerve regeneration with electrical stimulation.

    Science.gov (United States)

    Gordon, T; Brushart, T M; Chan, K M

    2008-12-01

    Poor functional recovery after peripheral nerve injury is generally attributed to irreversible target atrophy. In rats, we addressed the functional outcomes of prolonged neuronal separation from targets (chronic axotomy for up to 1 year) and atrophy of Schwann cells (SCs) in distal nerve stumps, and whether electrical stimulation (ES) accelerates axon regeneration. In carpal tunnel syndrome (CTS) patients with severe axon degeneration and release surgery, we asked whether ES accelerates muscle reinnervation. Reinnervated motor unit (MUs) and regenerating neuron numbers were counted electrophysiologically and with dye-labeling after chronic axotomy, chronic SC denervation and after immediate nerve repair with and without trains of 20 Hz ES for 1 hour to 2 weeks in rats and in CTS patients. Chronic axotomy reduced regenerative capacity to 67% and was alleviated by exogenous growth factors. Reduced regeneration to approximately 10% by SC denervation atrophy was ameliorated by forskolin and transforming growth factor-beta SC reactivation. ES (1 h) accelerated axon outgrowth across the suture site in association with elevated neuronal neurotrophic factor and receptors and in patients, promoted the full reinnervation of thenar muscles in contrast to a non-significant increase in MU numbers in the control group. The rate limiting process of axon outgrowth, progressive deterioration of both neuronal growth capacity and SC support, but not irreversible target atrophy, account for observed poor functional recovery after nerve injury. Brief ES accelerates axon outgrowth and target muscle reinnervation in animals and humans, opening the way to future clinical application to promote functional recovery.

  7. Polymeric membranes for guided bone regeneration.

    Science.gov (United States)

    Gentile, Piergiorgio; Chiono, Valeria; Tonda-Turo, Chiara; Ferreira, Ana M; Ciardelli, Gianluca

    2011-10-01

    In this review, different barrier membranes for guided bone regeneration (GBR) are described as a useful surgical technique to enhance bone regeneration in damaged alveolar sites before performing implants and fitting other dental appliances. The GBR procedure encourages bone regeneration through cellular exclusion and avoids the invasion of epithelial and connective tissues that grow at the defective site instead of bone tissue. The barrier membrane should satisfy various properties, such as biocompatibility, non-immunogenicity, non-toxicity, and a degradation rate that is long enough to permit mechanical support during bone formation. Other characteristics such as tissue integration, nutrient transfer, space maintenance and manageability are also of interest. In this review, various non-resorbable and resorbable commercially available membranes are described, based on expanded polytetrafluoroethylene, poly(lactic acid), poly(glycolic acid) and their copolymers. The polyester-based membranes are biodegradable, permit a single-stage procedure, and have higher manageability than non-resorbable membranes; however, they have shown poor biocompatibility. In contrast, membranes based on natural materials, such as collagen, are biocompatible but are characterized by poor mechanical properties and stability due to their early degradation. Moreover, new approaches are described, such as the use of multi-layered, graft-copolymer-based and composite membranes containing osteoconductive ceramic fillers as alternatives to conventional membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Tissue Engineering Strategies in Ligament Regeneration

    Directory of Open Access Journals (Sweden)

    Caglar Yilgor

    2012-01-01

    Full Text Available Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue engineering is a novel promising technique that aims to solve these problems, by producing viable artificial ligament substitutes in the laboratory conditions with the potential of transplantation to the patients with a high success rate. Direct cell and/or growth factor injection to the defect site is another current approach aiming to enhance the repair process of the native tissue. This review summarizes the current approaches in ligament tissue engineering strategies including the use of scaffolds, their modification techniques, as well as the use of bioreactors to achieve enhanced regeneration rates, while also discussing the advances in growth factor and cell therapy applications towards obtaining enhanced ligament regeneration.

  9. Enamel Regeneration - Current Progress and Challenges

    Science.gov (United States)

    Baswaraj; H.K, Navin; K.B, Prasanna

    2014-01-01

    Dental Enamel is the outermost covering of teeth. It is hardest mineralized tissue present in the human body. Enamel faces the challenge of maintaining its integrity in a constant demineralization and remineralization within the oral environment and it is vulnerable to wear, damage, and decay. It cannot regenerate itself, because it is formed by a layer of cells that are lost after the tooth eruption. Conventional treatment relies on synthetic materials to restore lost enamel that cannot mimic natural enamel. With advances in material science and understanding of basic principles of organic matrix mediated mineralization paves a way for formation of synthetic enamel. The knowledge of enamel formation and understanding of protein interactions and their gene products function along with the isolation of postnatal stem cells from various sources in the oral cavity, and the development of smart materials for cell and growth factor delivery, makes possibility for biological based enamel regeneration. This article will review the recent endeavor on biomimetic synthesis and cell based strategies for enamel regeneration. PMID:25386548

  10. Animal evolution

    DEFF Research Database (Denmark)

    Nielsen, Claus

    This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes it possi......This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes...

  11. Modelling and comparison studies of packed screen regenerators for active magnetocaloric refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, K. K.

    2011-01-01

    In active magnetic regeneration (AMR) systems, not only the magnetocaloric properties of materials, but also the regenerator geometry plays an important role in the system performance. Packed sphere regenerators are often employed in existing prototypes, however, the characteristics such as relat...... is improved and applied to simulate the regenerators. The performance of the new regenerators is studied and compared with that of the packed sphere regenerators. Possible fabrication methods of the packed screen regenerators are also discussed....

  12. Modelling and comparison studies of packed screen regenerators for active magnetocaloric refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein

    2014-01-01

    In active magnetic regeneration (AMR) systems, not only the magnetocaloric properties of materials, but also the regenerator geometry plays an important role in the system performance. Packed sphere regenerators are often employed in existing prototypes, however, the characteristics such as relat...... is improved and applied to simulate the regenerators. The performance of the new regenerators is studied and compared with that of the packed sphere regenerators. Possible fabrication methods of the packed screen regenerators are also discussed....

  13. Regenerating an Arsenic Removal Iron-Based Adsorptive ...

    Science.gov (United States)

    The replacement of exhausted, adsorptive media used to remove arsenic from drinking water accounts for approximately 80% of the total operational and maintenance (O/M) costs of this commonly used small system technology. The results of three, full scale system studies of an on-site media regeneration process (Part 1) showed it to be effective in stripping arsenic and other contaminants from the exhausted media. Part 2, of this two part paper, presents information on the performance of the regenerated media to remove arsenic through multiple regeneration cycles (3) and the approximate cost savings of regeneration over media replacement. The results of the studies indicate that regenerated media is very effective in removing arsenic and the regeneration cost is substantially less than the media replacement cost. On site regeneration, therefore, provides small systems with alternative to media replacement when removing arsenic from drinking water using adsorptive media technology. Part 2 of a two part paper on the performance of the regenerated media to remove arsenic through multiple regeneration cycles (3) and the approximate cost savings of regeneration over media replacement.

  14. Supercritical Regeneration of an Activated Carbon Fiber Exhausted with Phenol

    Directory of Open Access Journals (Sweden)

    M. Jesus Sanchez-Montero

    2018-01-01

    Full Text Available The properties of supercritical CO2 (SCCO2 and supercritical water (SCW turn them into fluids with a great ability to remove organic adsorbates retained on solids. These properties were used herein to regenerate an activated carbon fiber (ACF saturated with a pollutant usually contained in wastewater and drinking water, phenol. Severe regeneration conditions, up to 225 bar and 400 °C, had to be employed in SCCO2 regeneration to break the strong interaction established between phenol and the ACF. Under suitable conditions (regeneration temperature, time, and pressure, and flow of SCCO2 the adsorption capacity of the exhausted ACF was completely recovered, and even slightly increased. Most of the retained phenol was removed by thermal desorption, but the extra percentage removed by extraction allowed SCCO2 regeneration to be significantly more efficient than the classical thermal regeneration methods. SCCO2 regeneration and SCW regeneration were also compared for the first time. The use of SCW slightly improved regeneration, although SCW pressure was thrice SCCO2 pressure. The pathways that controlled SCW regeneration were also investigated.

  15. A novel life cycle arising from leaf segments in plants regenerated from horseradish hairy roots.

    Science.gov (United States)

    Mano, Y; Matsuhashi, M

    1995-03-01

    Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.

  16. Harnessing biomechanics to develop cartilage regeneration strategies.

    Science.gov (United States)

    Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C

    2015-02-01

    As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of

  17. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration

    NARCIS (Netherlands)

    Wagner, Ines; Wang, Heng; Weissert, Philipp M.; Straube, Werner L.; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, Andras; Drechsel, David N.; Tanaka, Elly M.

    2017-01-01

    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell

  18. Representing Evolution

    DEFF Research Database (Denmark)

    Hedin, Gry

    2012-01-01

    . This article discusses Willumsen's etching in the context of evolutionary theory, arguing that Willumsen is a rare example of an artist who not only let the theory of evolution fuel his artistic imagination, but also concerned himself with a core issue of the theory, namely to what extent it could be applied...

  19. Security Evolution.

    Science.gov (United States)

    De Patta, Joe

    2003-01-01

    Examines how to evaluate school security, begin making schools safe, secure schools without turning them into fortresses, and secure schools easily and affordably; the evolution of security systems into information technology systems; using schools' high-speed network lines; how one specific security system was developed; pros and cons of the…

  20. Cepheid evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1984-05-01

    A review of the phases of stellar evolution relevant to Cepheid variables of both Types I and II is presented. Type I Cepheids arise as a result of normal post-main sequence evolutionary behavior of many stars in the intermediate to massive range of stellar masses. In contrast, Type II Cepheids generally originate from low-mass stars of low metalicity which are undergoing post core helium-burning evolution. Despite great progress in the past two decades, uncertainties still remain in such areas as how to best model convective overshoot, semiconvection, stellar atmospheres, rotation, and binary evolution as well as uncertainties in important physical parameters such as the nuclear reaction rates, opacity, and mass loss rates. The potential effect of these uncertainties on stellar evolution models is discussed. Finally, comparisons between theoretical predictions and observations of Cepheid variables are presented for a number of cases. The results of these comparisons show both areas of agreement and disagreement with the latter result providing incentive for further research

  1. Venom Evolution

    Indian Academy of Sciences (India)

    IAS Admin

    Therefore, the platypus sequence was studied to quantify the role of gene duplication in the evolution of venom. ... Platypus venom is present only in males and is used for asserting dominance over com- petitors during the ... Certain toxin gene families are known to re- peatedly evolve through gene duplications. The rapidly ...

  2. Characterization of Morphological and Cellular Events Underlying Oral Regeneration in the Sea Anemone, Nematostella vectensis

    Directory of Open Access Journals (Sweden)

    Aldine R. Amiel

    2015-12-01

    Full Text Available Cnidarians, the extant sister group to bilateria, are well known for their impressive regenerative capacity. The sea anemone Nematostella vectensis is a well-established system for the study of development and evolution that is receiving increased attention for its regenerative capacity. Nematostella is able to regrow missing body parts within five to six days after its bisection, yet studies describing the morphological, cellular, and molecular events underlying this process are sparse and very heterogeneous in their experimental approaches. In this study, we lay down the basic framework to study oral regeneration in Nematostella vectensis. Using various imaging and staining techniques we characterize in detail the morphological, cellular, and global molecular events that define specific landmarks of this process. Furthermore, we describe in vivo assays to evaluate wound healing success and the initiation of pharynx reformation. Using our described landmarks for regeneration and in vivo assays, we analyze the effects of perturbing either transcription or cellular proliferation on the regenerative process. Interestingly, neither one of these experimental perturbations has major effects on wound closure, although they slightly delay or partially block it. We further show that while the inhibition of transcription blocks regeneration in a very early step, inhibiting cellular proliferation only affects later events such as pharynx reformation and tentacle elongation.

  3. Synthesis and characterization of polycaprolactone for anterior cruciate ligament regeneration

    International Nuclear Information System (INIS)

    Gurlek, Ayse Cansu; Sevinc, Burcu; Bayrak, Ece; Erisken, Cevat

    2017-01-01

    Anterior cruciate ligament (ACL) is the most frequently torn ligament in the knee, and complete healing is unlikely due to lack of vascularization. Current approaches for the treatment of ACL injuries include surgical interventions and grafting, however recent reports show that surgeries have 94% recurrency, and that repaired tissues are biomechanically inferior to the native tissue. These necessitate the need for new strategies for scar-free repair/regeneration of ACL injuries. Polycaprolactone (PCL) is a biodegradable and biocompatible synthetic polymer, which has been widely used in the connective tissue repair/regeneration attempts. Here, we report on the synthesis of PCL via ring opening polymerization using ε-caprolactone as the monomer, and ammonium heptamolybdate as a catalyst. The synthesized PCL was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. It was then processed using electrospinning to form nanofiber-based scaffolds. These scaffolds were characterized in terms of surface as well as mechanical properties, and compared to the properties of commercially available PCL, and of native ACL tissue harvested from sheep. In addition, scaffolds fabricated with synthesized PCL were evaluated regarding their cell attachment capacity using human bone marrow mesenchymal stem cells (hBMSCs). Our findings demonstrated that the synthesized PCL is similar to its commercially available counterpart in terms of surface morphology and mechanical properties. In addition, fibrous scaffolds generated with electrospinning showed weaker mechanical properties visa vis native ACL tissue in terms of ultimate stress, and elastic modulus. Also, the synthesized PCL can accommodate cell attachment when tested with hBMSCs. Putting together, these observations reveal that the PCL synthesized in this study could be a good candidate as a biomaterial for ligament repair or regeneration. - Highlights: • Synthesis of

  4. Synthesis and characterization of polycaprolactone for anterior cruciate ligament regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gurlek, Ayse Cansu; Sevinc, Burcu; Bayrak, Ece; Erisken, Cevat, E-mail: cerisken@etu.edu.tr

    2017-02-01

    Anterior cruciate ligament (ACL) is the most frequently torn ligament in the knee, and complete healing is unlikely due to lack of vascularization. Current approaches for the treatment of ACL injuries include surgical interventions and grafting, however recent reports show that surgeries have 94% recurrency, and that repaired tissues are biomechanically inferior to the native tissue. These necessitate the need for new strategies for scar-free repair/regeneration of ACL injuries. Polycaprolactone (PCL) is a biodegradable and biocompatible synthetic polymer, which has been widely used in the connective tissue repair/regeneration attempts. Here, we report on the synthesis of PCL via ring opening polymerization using ε-caprolactone as the monomer, and ammonium heptamolybdate as a catalyst. The synthesized PCL was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. It was then processed using electrospinning to form nanofiber-based scaffolds. These scaffolds were characterized in terms of surface as well as mechanical properties, and compared to the properties of commercially available PCL, and of native ACL tissue harvested from sheep. In addition, scaffolds fabricated with synthesized PCL were evaluated regarding their cell attachment capacity using human bone marrow mesenchymal stem cells (hBMSCs). Our findings demonstrated that the synthesized PCL is similar to its commercially available counterpart in terms of surface morphology and mechanical properties. In addition, fibrous scaffolds generated with electrospinning showed weaker mechanical properties visa vis native ACL tissue in terms of ultimate stress, and elastic modulus. Also, the synthesized PCL can accommodate cell attachment when tested with hBMSCs. Putting together, these observations reveal that the PCL synthesized in this study could be a good candidate as a biomaterial for ligament repair or regeneration. - Highlights: • Synthesis of

  5. Tissue regeneration and biomineralization in sea urchins: role of Notch signaling and presence of stem cell markers.

    Directory of Open Access Journals (Sweden)

    Helena C Reinardy

    Full Text Available Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions.

  6. Internodal function in normal and regenerated mammalian axons

    DEFF Research Database (Denmark)

    Moldovan, M; Krarup, C

    2007-01-01

    AIM: Following Wallerian degeneration, peripheral myelinated axons have the ability to regenerate and, given a proper pathway, establish functional connections with targets. In spite of this capacity, the clinical outcome of nerve regeneration remains unsatisfactory. Early studies have found...... that regenerated internodes remain persistently short though this abnormality did not seem to influence recovery in conduction. It remains unclear to which extent abnormalities in axonal function itself may contribute to the poor outcome of nerve regeneration. METHODS: We review experimental evidence indicating...... that internodes play an active role in axonal function. RESULTS: By investigating internodal contribution to axonal excitability we have found evidence that axonal function may be permanently compromised in regenerated nerves. Furthermore, we illustrate that internodal function is also abnormal in regenerated...

  7. Improved modelling of a parallel plate active magnetic regenerator

    International Nuclear Information System (INIS)

    Engelbrecht, K; Nielsen, K K; Bahl, C R H; Tušek, J; Kitanovski, A; Poredoš, A

    2013-01-01

    Much of the active magnetic regenerator (AMR) modelling presented in the literature considers only the solid and fluid domains of the regenerator and ignores other physical effects that have been shown to be important, such as demagnetizing fields in the regenerator, parasitic heat losses and fluid flow maldistribution in the regenerator. This paper studies the effects of these loss mechanisms and compares theoretical results with experimental results obtained on an experimental AMR device. Three parallel plate regenerators were tested, each having different demagnetizing field characteristics and fluid flow maldistributions. It was shown that when these loss mechanisms are ignored, the model significantly over predicts experimental results. Including the loss mechanisms can significantly change the model predictions, depending on the operating conditions and construction of the regenerator. The model is compared with experimental results for a range of fluid flow rates and cooling loads. (paper)

  8. Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.

    Science.gov (United States)

    Green, D W; Watson, G S; Watson, J A; Lee, D-J; Lee, J-M; Jung, H-S

    2016-09-15

    Regenerative medicine and biomaterials design are driven by biomimicry. There is the essential requirement to emulate human cell, tissue, organ and physiological complexity to ensure long-lasting clinical success. Biomimicry projects for biomaterials innovation can be re-invigorated with evolutionary insights and perspectives, since Darwinian evolution is the original dynamic process for biological organisation and complexity. Many existing human inspired regenerative biomaterials (defined as a nature generated, nature derived and nature mimicking structure, produced within a biological system, which can deputise for, or replace human tissues for which it closely matches) are without important elements of biological complexity such as, hierarchy and autonomous actions. It is possible to engineer these essential elements into clinical biomaterials via bioinspired implementation of concepts, processes and mechanisms played out during Darwinian evolution; mechanisms such as, directed, computational, accelerated evolutions and artificial selection contrived in the laboratory. These dynamos for innovation can be used during biomaterials fabrication, but also to choose optimal designs in the regeneration process. Further evolutionary information can help at the design stage; gleaned from the historical evolution of material adaptations compared across phylogenies to changes in their environment and habitats. Taken together, harnessing evolutionary mechanisms and evolutionary pathways, leading to ideal adaptations, will eventually provide a new class of Darwinian and evolutionary biomaterials. This will provide bioengineers with a more diversified and more efficient innovation tool for biomaterial design, synthesis and function than currently achieved with synthetic materials chemistry programmes and rational based materials design approach, which require reasoned logic. It will also inject further creativity, diversity and richness into the biomedical technologies that

  9. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration.

    Science.gov (United States)

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-05-01

    Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may

  10. Human Umbilical Cord MSCs as New Cell Sources for Promoting Periodontal Regeneration in Inflammatory Periodontal Defect.

    Science.gov (United States)

    Shang, Fengqing; Liu, Shiyu; Ming, Leiguo; Tian, Rong; Jin, Fang; Ding, Yin; Zhang, Yongjie; Zhang, Hongmei; Deng, Zhihong; Jin, Yan

    2017-01-01

    Human periodontal ligament stem cells (hPDLSCs) transplantation represents a promising approach for periodontal regeneration; however, the cell source is limited due to the invasive procedure required for cell isolation. As human umbilical cord mesenchymal stem cells (hUCMSCs) can be harvested inexpensively and inexhaustibly, here we evaluated the regenerative potentials of hUCMSCs as compared with hPDLSCs to determine whether hUCMSCs could be used as new cell sources for periodontal regeneration. Methods The characteristics of hUCMSCs, including multi-differentiation ability and anti-inflammatory capability, were determined by comparison with hPDLSCs. We constructed cell aggregates (CA) using hUCMSCs and hPDLSCs respectively. Then hPDLSCs-CA and hUCMSCs-CA were combined with β-tricalcium phosphate bioceramic (β-TCP) respectively and their regenerative potentials were determined in a rat inflammatory periodontal defect model. Results hPDLSCs showed higher osteogenic differentiation potentials than hUCMSCs. Meanwhile, hUCMSCs showed higher extracellular matrix secretion and anti-inflammatory abilities than hPDLSCs. Similar to hPDLSCs, hUCMSCs were able to contribute to regeneration of both soft and hard periodontal tissues under inflammatory periodontitis condition. There were more newly formed bone and periodontal ligaments in hPDLSCs and hUCMSCs groups than in non-cell treated group. Moreover, no significant differences of regenerative promoting effects between hPDLSCs and hUCMSCs were found. Conclusion : hUCMSCs generated similar promoting effects on periodontal regeneration compared with hPDLSCs, and can be used as new cell sources for periodontal regeneration.

  11. Axonal Regeneration in Mammals with Spinal Cord Injury

    Science.gov (United States)

    1983-09-14

    Cajal, S. 1905. Notas preventivas sobre la degeneracion y regeneracion las vias nerviosos centrales . Trab. Lab. Invest. Biol. Univ. Madrid, 4: 295-301...S. 1914. Degeneracion y Regeneration del Sistema Nervioso , Vol. 1, 2. (Nicolas Moya, Madrid), Ramon y Cajal, S. 1928. Degeneration and Regeneration...field of central nervous system (CNS) regeneration research. These developments have revealed important aspects regarding the histology and

  12. Supercritical Regeneration of an Activated Carbon Fiber Exhausted with Phenol

    OpenAIRE

    M. Jesus Sanchez-Montero; Jennifer Pelaz; Nicolas Martin-Sanchez; Carmen Izquierdo; Francisco Salvador

    2018-01-01

    The properties of supercritical CO2 (SCCO2) and supercritical water (SCW) turn them into fluids with a great ability to remove organic adsorbates retained on solids. These properties were used herein to regenerate an activated carbon fiber (ACF) saturated with a pollutant usually contained in wastewater and drinking water, phenol. Severe regeneration conditions, up to 225 bar and 400 °C, had to be employed in SCCO2 regeneration to break the strong interaction established between phenol and th...

  13. Comparative study of radiosensitivity of normal and regenerating tissues

    International Nuclear Information System (INIS)

    Samokhvalova, H.S.; Popova, M.F.

    1983-01-01

    A comparative study of radiosensitivity of cells of normal and regenerating tissues of bone marrow and spleen has demonstrated that single exposure to X-rays produces a lesser damaging effect on regenerating tissues than on normal ones. The data obtained indicate that the increase in radioresistance of the organism during active regeneration of the haemopoietic organs is due not merely to the increase in the dividing cell pool of these organs but also to qualitative changes in their functional state

  14. The influence of pressure ratio on the regenerator performance

    Science.gov (United States)

    Lin, Y.; Zhu, S.

    2017-12-01

    For a multi-stage pulse tube refrigerator with displacer, improving the regenerator efficiency is important. A displacer can get higher operating pressure ratio compared with inertance tube. The pressure ratio and porosity influence on the regenerator performance with is discussed, and CFD simulation is done on a two-stage pulse tube refrigerator with displacer to show that mass flow rate and pressure wave relation in the regenerator can be realized by a step-displacer.

  15. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    OpenAIRE

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental p...

  16. The Evolution of the Stem Cell Theory for Heart Failure

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien Silvestre

    2015-12-01

    Full Text Available Various stem cell-based approaches for cardiac repair have achieved encouraging results in animal experiments, often leading to their rapid proceeding to clinical testing. However, freewheeling evolutionary developments of the stem cell theory might lead to dystopian scenarios where heterogeneous sources of therapeutic cells could promote mixed clinical outcomes in un-stratified patient populations. This review focuses on the lessons that should be learnt from the first generation of stem cell-based strategies and emphasizes the absolute requirement to better understand the basic mechanisms of stem cell biology and cardiogenesis. We will also discuss about the unexpected “big bang” in the stem cell theory, “blasting” the therapeutic cells to their unchallenged ability to release paracrine factors such as extracellular membrane vesicles. Paradoxically, the natural evolution of the stem cell theory for cardiac regeneration may end with the development of cell-free strategies with multiple cellular targets including cardiomyocytes but also other infiltrating or resident cardiac cells.

  17. Orthogonal muscle fibres have different instructive roles in planarian regeneration.

    Science.gov (United States)

    Scimone, M Lucila; Cote, Lauren E; Reddien, Peter W

    2017-11-30

    The ability to regenerate missing body parts exists throughout the animal kingdom. Positional information is crucial for regeneration, but how it is harboured and used by differentiated tissues is poorly understood. In planarians, positional information has been identified from study of phenotypes caused by RNA interference in which the wrong tissues are regenerated. For example, inhibition of the Wnt signalling pathway leads to regeneration of heads in place of tails. Characterization of these phenotypes has led to the identification of position control genes (PCGs)-genes that are expressed in a constitutive and regional manner and are associated with patterning. Most PCGs are expressed within planarian muscle; however, how muscle is specified and how different muscle subsets affect regeneration is unknown. Here we show that different muscle fibres have distinct regulatory roles during regeneration in the planarian Schmidtea mediterranea. myoD is required for formation of a specific muscle cell subset: the longitudinal fibres, oriented along the anterior-posterior axis. Loss of longitudinal fibres led to complete regeneration failure because of defects in regeneration initiation. A different transcription factor-encoding gene, nkx1-1, is required for the formation of circular fibres, oriented along the medial-lateral axis. Loss of circular fibres led to a bifurcated anterior-posterior axis with fused heads forming in single anterior blastemas. Whereas muscle is often viewed as a strictly contractile tissue, these findings reveal that different muscle types have distinct and specific regulatory roles in wound signalling and patterning to enable regeneration.

  18. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-01-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration

  19. Centroacinar cells: At the center of pancreas regeneration.

    Science.gov (United States)

    Beer, Rebecca L; Parsons, Michael J; Rovira, Meritxell

    2016-05-01

    The process of regeneration serves to heal injury by replacing missing cells. Understanding regeneration can help us replace cell populations lost during disease, such as the insulin-producing β cells lost in diabetic patients. Centroacinar cells (CACs) are a specialized ductal pancreatic cell type that act as progenitors to replace β cells in the zebrafish. However, whether CACs contribute to β-cell regeneration in adult mammals remains controversial. Here we review the current understanding of the role of CACs as endocrine progenitors during regeneration in zebrafish and mammals. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Nudging Evolution?

    OpenAIRE

    Katharine N. Farrell; Andreas Thiel

    2013-01-01

    This Special Feature, "Nudging Evolution? Critical Exploration of the Potential and Limitations of the Concept of Institutional Fit for the Study and Adaptive Management of Social-Ecological Systems," aims to contribute toward the development of social theory and social research methods for the study of social-ecological system dynamics. Our objective is to help strengthen the academic discourse concerning if, and if so, how, to what extent, and in what concrete ways the concept of institut...