WorldWideScience

Sample records for evolution equation restrain

  1. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  2. A new evolution equation

    International Nuclear Information System (INIS)

    Laenen, E.

    1995-01-01

    We propose a new evolution equation for the gluon density relevant for the region of small x B . It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multigluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed α s . We find that the effects of multigluon correlations on the deep-inelastic structure function are small. (orig.)

  3. Boussinesq evolution equations

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Schaffer, H.; Madsen, Per A.

    2004-01-01

    This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic...... Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over...... a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave...

  4. Electroweak evolution equations

    International Nuclear Information System (INIS)

    Ciafaloni, Paolo; Comelli, Denis

    2005-01-01

    Enlarging a previous analysis, where only fermions and transverse gauge bosons were taken into account, we write down infrared-collinear evolution equations for the Standard Model of electroweak interactions computing the full set of splitting functions. Due to the presence of double logs which are characteristic of electroweak interactions (Bloch-Nordsieck violation), new infrared singular splitting functions have to be introduced. We also include corrections related to the third generation Yukawa couplings

  5. dimensional nonlinear evolution equations

    Indian Academy of Sciences (India)

    in real-life situations, it is important to find their exact solutions. Further, in ... But only little work is done on the high-dimensional equations. .... Similarly, to determine the values of d and q, we balance the linear term of the lowest order in eq.

  6. Evolution equations for Killing fields

    International Nuclear Information System (INIS)

    Coll, B.

    1977-01-01

    The problem of finding necessary and sufficient conditions on the Cauchy data for Einstein equations which insure the existence of Killing fields in a neighborhood of an initial hypersurface has been considered recently by Berezdivin, Coll, and Moncrief. Nevertheless, it can be shown that the evolution equations obtained in all these cases are of nonstrictly hyperbolic type, and, thus, the Cauchy data must belong to a special class of functions. We prove here that, for the vacuum and Einstein--Maxwell space--times and in a coordinate independent way, one can always choose, as evolution equations for the Killing fields, a strictly hyperbolic system: The above theorems can be thus extended to all Cauchy data for which the Einstein evolution problem has been proved to be well set

  7. Nonlocal higher order evolution equations

    KAUST Repository

    Rossi, Julio D.; Schö nlieb, Carola-Bibiane

    2010-01-01

    In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove

  8. Nonlocal higher order evolution equations

    KAUST Repository

    Rossi, Julio D.

    2010-06-01

    In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.

  9. Lie symmetries for systems of evolution equations

    Science.gov (United States)

    Paliathanasis, Andronikos; Tsamparlis, Michael

    2018-01-01

    The Lie symmetries for a class of systems of evolution equations are studied. The evolution equations are defined in a bimetric space with two Riemannian metrics corresponding to the space of the independent and dependent variables of the differential equations. The exact relation of the Lie symmetries with the collineations of the bimetric space is determined.

  10. Structural and kinematic evolution of a Miocene to Recent sinistral restraining bend: the Montejunto massif, Portugal

    Science.gov (United States)

    Curtis, Michael L.

    1999-01-01

    The Montejunto massif lies in the apex of a large-scale restraining bend at the southern termination of a sinistral transpressive fault system, in the Lusitanian basin of Portugal. Cenozoic deformation within the Montejunto massif initiated with southerly directed thrusting along the southern boundary of the massif, in association with the development of the E-W oriented Montejunto anticline, probably during the Langhian. Deformation switched to the northern boundary of the massif, in association with a change to NW-directed thrusting and continued development of the Montejunto anticline. The youngest set of structures within the massif is related to the sinistral reactivation of the Arieiro fault system, and steeply inclined bedding. This late phase of deformation represents the accommodation of a component of sinistral displacement across the restraining bend along mechanical anisotropies formed during this progressive Cenozoic deformation event. Variation in the kinematic style of the Main Arieiro fault is related to the angle ( α) between the fault plane and the displacement vector. Where α≈20°, abrupt pene-contemporaneous switches in displacement direction are recorded along the fault, whereas strike-slip kinematics predominate where α<20°. The timing of deformation events in the Montejunto massif is uncertain. However, correlation with the established Cenozoic Africa/Europe plate convergence directions may provide potential temporal constraints.

  11. Optimal Control for Stochastic Delay Evolution Equations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn [Huzhou University, Department of Mathematical Sciences (China); Shen, Yang, E-mail: skyshen87@gmail.com [York University, Department of Mathematics and Statistics (Canada)

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we apply stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.

  12. Why Wet Kaolin can be used as a Crustal Analog and its Application to Fault Evolution at Restraining Bends

    Science.gov (United States)

    Cooke, M. L.; van der Elst, N.; Schottenfeld, M. T.

    2010-12-01

    To simulate geologic deformation on observable time and length scales within the lab, a subset of analog modelers have used wet kaolin. Unlike the more often used sand, wet kaolin beautifully exhibits detailed fault structures. Furthermore, faults within the kaolin are more readily reactivated than those in sand. The low plasticity of kaolin (compared to other clays) gives it low shear strength. Consequently, the clay is a suitable analog material if we assume that the wet kaolin deforms by coulomb frictional failure. Koalin generally deforms as a Bingham solid and exhibits more complex deformation than the perfectly plastic behavior assumed with Coulomb failure. We performed fall cone and rheometric tests on wet kaolin to refine our quantitative understanding of its rheology. We use North American wet kaolin with density 1.65-1.7 g/cm3 and water content of 37.5-38.5%. The fall cone tests reveal that the undrained shear strength (100-160 Pa) is greater than previously measured with a viscometer. The rheometer tests show that the wet koalin exhibits many of the same properties of crustal materials including: 1) elastic behavior at low strains, 2) stress relaxation at near-failure strains, 3) creep under static load, 4) yield strength sensitive to strain rate and 5) rate and state dependent failure. Armed with quantitative values for this complex deformation, we can better scale the length and strain rate of the wet koalin experiments to specific crustal settings. Experiments of deformation around restraining bends show features very similar to those found in natural examples. The detailed fault structures produced in the wet kaolin can be analyzed to understand the evolution of active faulting at restraining bends.

  13. Subordination principle for fractional evolution equations

    NARCIS (Netherlands)

    Bazhlekova, E.G.

    2000-01-01

    The abstract Cauchy problem for the fractional evolution equation Daa = Au, a > 0, (1) where A is a closed densely de??ned operator in a Banach space, is investigated. The subordination principle, presented earlier in [J. P r ??u s s, Evolutionary In- tegral Equations and Applications. Birkh??auser,

  14. Advanced functional evolution equations and inclusions

    CERN Document Server

    Benchohra, Mouffak

    2015-01-01

    This book presents up-to-date results on abstract evolution equations and differential inclusions in infinite dimensional spaces. It covers equations with time delay and with impulses, and complements the existing literature in functional differential equations and inclusions. The exposition is devoted to both local and global mild solutions for some classes of functional differential evolution equations and inclusions, and other densely and non-densely defined functional differential equations and inclusions in separable Banach spaces or in Fréchet spaces. The tools used include classical fixed points theorems and the measure-of non-compactness, and each chapter concludes with a section devoted to notes and bibliographical remarks. This monograph is particularly useful for researchers and graduate students studying pure and applied mathematics, engineering, biology and all other applied sciences.

  15. Moving interfaces and quasilinear parabolic evolution equations

    CERN Document Server

    Prüss, Jan

    2016-01-01

    In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions...

  16. Nonlinear evolution equations having a physical meaning

    International Nuclear Information System (INIS)

    Nakach, R.

    1976-06-01

    The non stationary self-similar solutions of the nonlinear evolution equations which can be solved by the inverse scattering method are studied. It turns out, as shown by means of several examples, that when the L linear operator associated with these equations, is of second order and only then, the self-similar solutions can be expressed in terms of the various Painleve's transcendents [fr

  17. Emmy Noether and Linear Evolution Equations

    Directory of Open Access Journals (Sweden)

    P. G. L. Leach

    2013-01-01

    Full Text Available Noether’s Theorem relates the Action Integral of a Lagrangian with symmetries which leave it invariant and the first integrals consequent upon the variational principle and the existence of the symmetries. These each have an equivalent in the Schrödinger Equation corresponding to the Lagrangian and by extension to linear evolution equations in general. The implications of these connections are investigated.

  18. Effective evolution equations from quantum mechanics

    OpenAIRE

    Leopold, Nikolai

    2018-01-01

    The goal of this thesis is to provide a mathematical rigorous derivation of the Schrödinger-Klein-Gordon equations, the Maxwell-Schrödinger equations and the defocusing cubic nonlinear Schrödinger equation in two dimensions. We study the time evolution of the Nelson model (with ultraviolet cutoff) in a limit where the number N of charged particles gets large while the coupling of each particle to the radiation field is of order N^{−1/2}. At time zero it is assumed that almost all charges a...

  19. Spatial evolution equation of wind wave growth

    Institute of Scientific and Technical Information of China (English)

    WANG; Wei; (王; 伟); SUN; Fu; (孙; 孚); DAI; Dejun; (戴德君)

    2003-01-01

    Based on the dynamic essence of air-sea interactions, a feedback type of spatial evolution equation is suggested to match reasonably the growing process of wind waves. This simple equation involving the dominant factors of wind wave growth is able to explain the transfer of energy from high to low frequencies without introducing the concept of nonlinear wave-wave interactions, and the results agree well with observations. The rate of wave height growth derived in this dissertation is applicable to both laboratory and open sea, which solidifies the physical basis of using laboratory experiments to investigate the generation of wind waves. Thus the proposed spatial evolution equation provides a new approach for the research on dynamic mechanism of air-sea interactions and wind wave prediction.

  20. Semigroup methods for evolution equations on networks

    CERN Document Server

    Mugnolo, Delio

    2014-01-01

    This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations.  Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations.      This book is specifically devoted to the study of evolution equations – i.e., of time-dependent differential equations such as the heat equation, the wave equation, or the Schrödinger equation (quantum graphs) – bearing in mind that the majority of the literature in the last ten years on the subject of differential equations of graphs has been devoted to ellip...

  1. Evolution equations for extended dihadron fragmentation functions

    International Nuclear Information System (INIS)

    Ceccopieri, F.A.; Bacchetta, A.

    2007-03-01

    We consider dihadron fragmentation functions, describing the fragmentation of a parton in two unpolarized hadrons, and in particular extended dihadron fragmentation functions, explicitly dependent on the invariant mass, M h , of the hadron pair. We first rederive the known results on M h -integrated functions using Jet Calculus techniques, and then we present the evolution equations for extended dihadron fragmentation functions. Our results are relevant for the analysis of experimental measurements of two-particle-inclusive processes at different energies. (orig.)

  2. Complete integrability of the difference evolution equations

    International Nuclear Information System (INIS)

    Gerdjikov, V.S.; Ivanov, M.I.; Kulish, P.P.

    1980-01-01

    The class of exactly solvable nonlinear difference evolution equations (DEE) related to the discrete analog of the one-dimensional Dirac problem L is studied. For this starting from L we construct a special linear non-local operator Λ and obtain the expansions of w and σ 3 deltaw over its eigenfunctions, w being the potential in L. This allows us to obtain compact expressions for the integrals of motion and to prove that these DEE are completely integrable Hamiltonian systems. Moreover, it is shown that there exists a hierarchy of Hamiltonian structures, generated by Λ, and the action-angle variables are explicity calculated. As particular cases the difference analog of the non-linear Schroedinger equation and the modified Korteweg-de-Vries equation are considered. The quantization of these Hamiltonian system through the use of the quantum inverse scattering method is briefly discussed [ru

  3. Existence families, functional calculi and evolution equations

    CERN Document Server

    deLaubenfels, Ralph

    1994-01-01

    This book presents an operator-theoretic approach to ill-posed evolution equations. It presents the basic theory, and the more surprising examples, of generalizations of strongly continuous semigroups known as 'existent families' and 'regularized semigroups'. These families of operators may be used either to produce all initial data for which a solution in the original space exists, or to construct a maximal subspace on which the problem is well-posed. Regularized semigroups are also used to construct functional, or operational, calculi for unbounded operators. The book takes an intuitive and constructive approach by emphasizing the interaction between functional calculus constructions and evolution equations. One thinks of a semigroup generated by A as etA and thinks of a regularized semigroup generated by A as etA g(A), producing solutions of the abstract Cauchy problem for initial data in the image of g(A). Material that is scattered throughout numerous papers is brought together and presented in a fresh, ...

  4. Re-evaluating fault zone evolution, geometry, and slip rate along the restraining bend of the southern San Andreas Fault Zone

    Science.gov (United States)

    Blisniuk, K.; Fosdick, J. C.; Balco, G.; Stone, J. O.

    2017-12-01

    This study presents new multi-proxy data to provide an alternative interpretation of the late -to-mid Quaternary evolution, geometry, and slip rate of the southern San Andreas fault zone, comprising of the Garnet Hill, Banning, and Mission Creek fault strands, along its restraining bend near the San Bernardino Mountains and San Gorgonio Pass. Present geologic and geomorphic studies in the region indicate that as the Mission Creek and Banning faults diverge from one another in the southern Indio Hills, the Banning Fault Strand accommodates the majority of lateral displacement across the San Andreas Fault Zone. In this currently favored kinematic model of the southern San Andreas Fault Zone, slip along the Mission Creek Fault Strand decreases significantly northwestward toward the San Gorgonio Pass. Along this restraining bend, the Mission Creek Fault Strand is considered to be inactive since the late -to-mid Quaternary ( 500-150 kya) due to the transfer of plate boundary strain westward to the Banning and Garnet Hills Fault Strands, the Jacinto Fault Zone, and northeastward, to the Eastern California Shear Zone. Here, we present a revised geomorphic interpretation of fault displacement, initial 36Cl/10Be burial ages, sediment provenance data, and detrital geochronology from modern catchments and displaced Quaternary deposits that improve across-fault correlations. We hypothesize that continuous large-scale translation of this structure has occurred throughout its history into the present. Accordingly, the Mission Creek Fault Strand is active and likely a primary plate boundary fault at this latitude.

  5. Critical spaces for quasilinear parabolic evolution equations and applications

    Science.gov (United States)

    Prüss, Jan; Simonett, Gieri; Wilke, Mathias

    2018-02-01

    We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.

  6. Existence of solutions of abstract fractional impulsive semilinear evolution equations

    Directory of Open Access Journals (Sweden)

    K. Balachandran

    2010-01-01

    Full Text Available In this paper we prove the existence of solutions of fractional impulsive semilinear evolution equations in Banach spaces. A nonlocal Cauchy problem is discussed for the evolution equations. The results are obtained using fractional calculus and fixed point theorems. An example is provided to illustrate the theory.

  7. Decomposition of a hierarchy of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Geng Xianguo

    2003-01-01

    The generalized Hamiltonian structures for a hierarchy of nonlinear evolution equations are established with the aid of the trace identity. Using the nonlinearization approach, the hierarchy of nonlinear evolution equations is decomposed into a class of new finite-dimensional Hamiltonian systems. The generating function of integrals and their generator are presented, based on which the finite-dimensional Hamiltonian systems are proved to be completely integrable in the Liouville sense. As an application, solutions for the hierarchy of nonlinear evolution equations are reduced to solving the compatible Hamiltonian systems of ordinary differential equations

  8. Completely integrable operator evolution equations. II

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1979-01-01

    The author continues the investigation of operator classical completely integrable systems. The main attention is devoted to the stationary operator non-linear Schroedinger equation. It is shown that this equation can be used for separation of variables for a large class of completely integrable equations. (Auth.)

  9. Transformation properties of the integrable evolution equations

    International Nuclear Information System (INIS)

    Konopelchenko, B.G.

    1981-01-01

    Group-theoretical properties of partial differential equations integrable by the inverse scattering transform method are discussed. It is shown that nonlinear transformations typical to integrable equations (symmetry groups, Baecklund-transformations) and these equations themselves are contained in a certain universal nonlinear transformation group. (orig.)

  10. The fundamental solutions for fractional evolution equations of parabolic type

    Directory of Open Access Journals (Sweden)

    Mahmoud M. El-Borai

    2004-01-01

    Full Text Available The fundamental solutions for linear fractional evolution equations are obtained. The coefficients of these equations are a family of linear closed operators in the Banach space. Also, the continuous dependence of solutions on the initial conditions is studied. A mixed problem of general parabolic partial differential equations with fractional order is given as an application.

  11. Weierstrass Elliptic Function Solutions to Nonlinear Evolution Equations

    International Nuclear Information System (INIS)

    Yu Jianping; Sun Yongli

    2008-01-01

    This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation. Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations

  12. Systems of evolution equations and the singular perturbation method

    International Nuclear Information System (INIS)

    Mika, J.

    Several fundamental theorems are presented important for the solution of linear evolution equations in the Banach space. The algorithm is deduced extending the solution of the system of singularly perturbed evolution equations into an asymptotic series with respect to a small positive parameter. The asymptotic convergence is shown of an approximate solution to the accurate solution. Singularly perturbed evolution equations of the resonance type were analysed. The special role is considered of the asymptotic equivalence of P1 equations obtained as the first order approximation if the spherical harmonics method is applied to the linear Boltzmann equation, and the diffusion equations of the linear transport theory where the small parameter approaches zero. (J.B.)

  13. QCD evolution equations for high energy partons in nuclear matter

    CERN Document Server

    Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt

    1994-01-01

    We derive a generalized form of Altarelli-Parisi equations to decribe the time evolution of parton distributions in a nuclear medium. In the framework of the leading logarithmic approximation, we obtain a set of coupled integro- differential equations for the parton distribution functions and equations for the virtuality (``age'') distribution of partons. In addition to parton branching processes, we take into account fusion and scattering processes that are specific to QCD in medium. Detailed balance between gain and loss terms in the resulting evolution equations correctly accounts for both real and virtual contributions which yields a natural cancellation of infrared divergences.

  14. Lectures on nonlinear evolution equations initial value problems

    CERN Document Server

    Racke, Reinhard

    2015-01-01

    This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...

  15. Physical entropy, information entropy and their evolution equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Inspired by the evolution equation of nonequilibrium statistical physics entropy and the concise statistical formula of the entropy production rate, we develop a theory of the dynamic information entropy and build a nonlinear evolution equation of the information entropy density changing in time and state variable space. Its mathematical form and physical meaning are similar to the evolution equation of the physical entropy: The time rate of change of information entropy density originates together from drift, diffusion and production. The concise statistical formula of information entropy production rate is similar to that of physical entropy also. Furthermore, we study the similarity and difference between physical entropy and information entropy and the possible unification of the two statistical entropies, and discuss the relationship among the principle of entropy increase, the principle of equilibrium maximum entropy and the principle of maximum information entropy as well as the connection between them and the entropy evolution equation.

  16. Evolution equation for classical and quantum light in turbulence

    CSIR Research Space (South Africa)

    Roux, FS

    2015-06-01

    Full Text Available Recently, an infinitesimal propagation equation was derived for the evolution of orbital angular momentum entangled photonic quantum states through turbulence. The authors will discuss its derivation and application within both classical and quantum...

  17. Effective average action for gauge theories and exact evolution equations

    International Nuclear Information System (INIS)

    Reuter, M.; Wetterich, C.

    1993-11-01

    We propose a new nonperturbative evolution equation for Yang-Mills theories. It describes the scale dependence of an effective action. The running of the nonabelian gauge coupling in arbitrary dimension is computed. (orig.)

  18. An application of transverse momentum dependent evolution equations in QCD

    International Nuclear Information System (INIS)

    Ceccopieri, Federico A.; Trentadue, Luca

    2008-01-01

    The properties and behaviour of the solutions of the recently obtained k t -dependent QCD evolution equations are investigated. When used to reproduce transverse momentum spectra of hadrons in Semi-Inclusive DIS, an encouraging agreement with data is found. The present analysis also supports at the phenomenological level the factorization properties of the Semi-Inclusive DIS cross-sections in terms of k t -dependent distributions. Further improvements and possible developments of the proposed evolution equations are envisaged

  19. On a new series of integrable nonlinear evolution equations

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Wadati, Miki; Konno, Kimiaki; Shimizu, Tohru.

    1980-10-01

    Recent results of our research are surveyed in this report. The derivative nonlinear Schroedinger equation for the circular polarized Alfven wave admits the spiky soliton solutions for the plane wave boundary condition. The nonlinear equation for complex amplitude associated with the carrier wave is shown to be a generalized nonlinear Schroedinger equation, having the ordinary cubic nonlinear term and the derivative of cubic nonlinear term. A generalized scheme of the inverse scattering transformation has confirmed that superposition of the A-K-N-S scheme and the K-N scheme for the component equations valids for the generalized nonlinear Schroedinger equation. Then, two types of new integrable nonlinear evolution equation have been derived from our scheme of the inverse scattering transformation. One is the type of nonlinear Schroedinger equation, while the other is the type of Korteweg-de Vries equation. Brief discussions are presented for physical phenomena, which could be accounted by the second type of the new integrable nonlinear evolution equation. Lastly, the stationary solitary wave solutions have been constructed for the integrable nonlinear evolution equation of the second type. These solutions have peculiar structure that they are singular and discrete. It is a new challenge to construct singular potentials by the inverse scattering transformation. (author)

  20. Prolongation Structure of Semi-discrete Nonlinear Evolution Equations

    International Nuclear Information System (INIS)

    Bai Yongqiang; Wu Ke; Zhao Weizhong; Guo Hanying

    2007-01-01

    Based on noncommutative differential calculus, we present a theory of prolongation structure for semi-discrete nonlinear evolution equations. As an illustrative example, a semi-discrete model of the nonlinear Schroedinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.

  1. Comment on connections between nonlinear evolution equations

    International Nuclear Information System (INIS)

    Fuchssteiner, B.; Hefter, E.F.

    1981-01-01

    An open problem raised in a recent paper by Chodos is treated. We explain the reason for the interrelation between the conservation laws of the Korteweg-de Vries (KdV) and sine-Gordon equations. We point out that it is due to a corresponding connection between the infinite-dimensional Abelian symmetry groups of these equations. While it has been known for a long time that a Baecklund transformation (in this case the Miura transformation) connects corresponding members of the KdV and the sine-Gordon families, it is quite obvious that no Baecklund transformation can exist between different members of these families. And since the KdV and sine-Gordon equations do not correspond to each other, one cannot expect a Baecklund transformation between them; nevertheless we can give explicit relations between their two-soliton solutions. No inverse scattering techniques are used in this paper

  2. Fermionic covariant prolongation structure theory for supernonlinear evolution equation

    International Nuclear Information System (INIS)

    Cheng Jipeng; Wang Shikun; Wu Ke; Zhao Weizhong

    2010-01-01

    We investigate the superprincipal bundle and its associated superbundle. The super(nonlinear)connection on the superfiber bundle is constructed. Then by means of the connection theory, we establish the fermionic covariant prolongation structure theory of the supernonlinear evolution equation. In this geometry theory, the fermionic covariant fundamental equations determining the prolongation structure are presented. As an example, the supernonlinear Schroedinger equation is analyzed in the framework of this fermionic covariant prolongation structure theory. We obtain its Lax pairs and Baecklund transformation.

  3. Hamiltonian structures of some non-linear evolution equations

    International Nuclear Information System (INIS)

    Tu, G.Z.

    1983-06-01

    The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)

  4. Diffusion equations and the time evolution of foreign exchange rates

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Annibal; Castro, Marcio T. de [Institute of Physics, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Fonseca, Regina C.B. da [Department of Mathematics, Instituto Federal de Goiás, Goiânia GO 74055-110 (Brazil); Gleria, Iram, E-mail: iram@fis.ufal.br [Institute of Physics, Federal University of Alagoas, Brazil, Maceió AL 57072-900 (Brazil)

    2013-10-01

    We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers–Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.

  5. Diffusion equations and the time evolution of foreign exchange rates

    Science.gov (United States)

    Figueiredo, Annibal; de Castro, Marcio T.; da Fonseca, Regina C. B.; Gleria, Iram

    2013-10-01

    We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers-Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.

  6. Diffusion equations and the time evolution of foreign exchange rates

    International Nuclear Information System (INIS)

    Figueiredo, Annibal; Castro, Marcio T. de; Fonseca, Regina C.B. da; Gleria, Iram

    2013-01-01

    We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers–Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.

  7. On the solution of fractional evolution equations

    International Nuclear Information System (INIS)

    Kilbas, Anatoly A; Pierantozzi, Teresa; Trujillo, Juan J; Vazquez, Luis

    2004-01-01

    This paper is devoted to the solution of the bi-fractional differential equation ( C D α t u)(t, x) = λ( L D β x u)(t, x) (t>0, -∞ 0 and λ ≠ 0, with the initial conditions lim x→±∞ u(t,x) = 0 u(0+,x)=g(x). Here ( C D α t u)(t, x) is the partial derivative coinciding with the Caputo fractional derivative for 0 L D β x u)(t, x)) is the Liouville partial fractional derivative ( L D β t u)(t, x)) of order β > 0. The Laplace and Fourier transforms are applied to solve the above problem in closed form. The fundamental solution of these problems is established and its moments are calculated. The special case α = 1/2 and β = 1 is presented, and its application is given to obtain the Dirac-type decomposition for the ordinary diffusion equation

  8. Stochastic Evolution Equations Driven by Fractional Noises

    Science.gov (United States)

    2016-11-28

    paper is to establish the weak convergence, in the topology of the Skorohod space, of the ν-symmetric Riemann sums for functionals of the fractional...stochastic heat equation with fractional-colored noise: existence of the solution. ALEA Lat. Am. J. Probab. Math . Stat. 4 (2008), 57–87. [8] P. Carmona, Y...Hu: Strong disorder implies strong localization for directed polymers in a random environment. ALEA Lat. Am. J. Probab. Math . Stat. 2 (2006), 217

  9. An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like

    International Nuclear Information System (INIS)

    Pierantozzi, T.; Vazquez, L.

    2005-01-01

    Through fractional calculus and following the method used by Dirac to obtain his well-known equation from the Klein-Gordon equation, we analyze a possible interpolation between the Dirac and the diffusion equations in one space dimension. We study the transition between the hyperbolic and parabolic behaviors by means of the generalization of the D'Alembert formula for the classical wave equation and the invariance under space and time inversions of the interpolating fractional evolution equations Dirac like. Such invariance depends on the values of the fractional index and is related to the nonlocal property of the time fractional differential operator. For this system of fractional evolution equations, we also find an associated conserved quantity analogous to the Hamiltonian for the classical Dirac case

  10. On the solution of fractional evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Kilbas, Anatoly A [Department of Mathematics and Mechanics, Belarusian State University, 220050 Minsk (Belarus); Pierantozzi, Teresa [Departamento de Matematica Aplicada, Facultad de Informatica, Universidad Complutense, E-28040 Madrid (Spain); Trujillo, Juan J [Departamento de Analisis Matematico, Universidad de la Laguna, 38271 La Laguna-Tenerife (Spain); Vazquez, Luis [Departamento de Matematica Aplicada, Facultad de Informatica, Universidad Complutense, E-28040 Madrid (Spain)

    2004-03-05

    This paper is devoted to the solution of the bi-fractional differential equation ({sup C}D{sup {alpha}}{sub t}u)(t, x) = {lambda}({sup L}D{sup {beta}}{sub x}u)(t, x) (t>0, -{infinity} 0 and {lambda} {ne} 0, with the initial conditions lim{sub x{yields}}{sub {+-}}{sub {infinity}} u(t,x) = 0 u(0+,x)=g(x). Here ({sup C}D{sup {alpha}}{sub t}u)(t, x) is the partial derivative coinciding with the Caputo fractional derivative for 0 < {alpha} < 1 and with the usual derivative for {alpha} = 1, while ({sup L}D{sup {beta}}{sub x}u)(t, x)) is the Liouville partial fractional derivative ({sup L}D{sup {beta}}{sub t}u)(t, x)) of order {beta} > 0. The Laplace and Fourier transforms are applied to solve the above problem in closed form. The fundamental solution of these problems is established and its moments are calculated. The special case {alpha} = 1/2 and {beta} = 1 is presented, and its application is given to obtain the Dirac-type decomposition for the ordinary diffusion equation.

  11. Finite difference evolution equations and quantum dynamical semigroups

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Weber, T.

    1983-12-01

    We consider the recently proposed [Bonifacio, Lett. Nuovo Cimento, 37, 481 (1983)] coarse grained description of time evolution for the density operator rho(t) through a finite difference equation with steps tau, and we prove that there exists a generator of the quantum dynamical semigroup type yielding an equation giving a continuous evolution coinciding at all time steps with the one induced by the coarse grained description. The map rho(0)→rho(t) derived in this way takes the standard form originally proposed by Lindblad [Comm. Math. Phys., 48, 119 (1976)], even when the map itself (and, therefore, the corresponding generator) is not bounded. (author)

  12. Periodic feedback stabilization for linear periodic evolution equations

    CERN Document Server

    Wang, Gengsheng

    2016-01-01

    This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equations. Secondly, it identifies several criteria for the periodic feedback stabilization from the perspective of geometry, algebra and analyses respectively. Next, it describes several ways to design periodic feedback laws. Lastly, the book introduces readers to key methods for designing the control machines. Given its coverage and scope, it offers a helpful guide for graduate students and researchers in the areas of control theory and applied mathematics.

  13. Almost Periodic Solutions for Impulsive Fractional Stochastic Evolution Equations

    Directory of Open Access Journals (Sweden)

    Toufik Guendouzi

    2014-08-01

    Full Text Available In this paper, we consider the existence of square-mean piecewise almost periodic solutions for impulsive fractional stochastic evolution equations involving Caputo fractional derivative. The main results are obtained by means of the theory of operators semi-group, fractional calculus, fixed point technique and stochastic analysis theory and methods adopted directly from deterministic fractional equations. Some known results are improved and generalized.

  14. From BBGKY hierarchy to non-Markovian evolution equations

    International Nuclear Information System (INIS)

    Gerasimenko, V.I.; Shtyk, V.O.; Zagorodny, A.G.

    2009-01-01

    The problem of description of the evolution of the microscopic phase density and its generalizations is discussed. With this purpose, the sequence of marginal microscopic phase densities is introduced, and the appropriate BBGKY hierarchy for these microscopic distributions and their average values is formulated. The microscopic derivation of the generalized evolution equation for the average value of the microscopic phase density is given, and the non-Markovian generalization of the Fokker-Planck collision integral is proposed

  15. On the evolution equations, solvable through the inverse scattering method

    International Nuclear Information System (INIS)

    Gerdjikov, V.S.; Khristov, E.Kh.

    1979-01-01

    The nonlinear evolution equations (NLEE), related to the one-parameter family of Dirac operators are considered in a uniform manner. The class of NLEE solvable through the inverse scatterina method and their conservation laws are described. The description of the hierarchy of Hamiltonian structures and the proof of complete integrability of the NLEE is presented. The class of Baecklund transformations for these NLEE is derived. The general formulae are illustrated by two important examples: the nonlinear Schroedinger equation and the sine-Gordon equation

  16. Topological soliton solutions for some nonlinear evolution equations

    Directory of Open Access Journals (Sweden)

    Ahmet Bekir

    2014-03-01

    Full Text Available In this paper, the topological soliton solutions of nonlinear evolution equations are obtained by the solitary wave ansatz method. Under some parameter conditions, exact solitary wave solutions are obtained. Note that it is always useful and desirable to construct exact solutions especially soliton-type (dark, bright, kink, anti-kink, etc. envelope for the understanding of most nonlinear physical phenomena.

  17. Effective evolution equations from many-body quantum mechanics

    International Nuclear Information System (INIS)

    Benedikter, Niels Patriz

    2014-01-01

    Systems of interest in physics often consist of a very large number of interacting particles. In certain physical regimes, effective non-linear evolution equations are commonly used as an approximation for making predictions about the time-evolution of such systems. Important examples are Bose-Einstein condensates of dilute Bose gases and degenerate Fermi gases. While the effective equations are well-known in physics, a rigorous justification is very difficult. However, a rigorous derivation is essential to precisely understand the range and the limits of validity and the quality of the approximation. In this thesis, we prove that the time evolution of Bose-Einstein condensates in the Gross-Pitaevskii regime can be approximated by the time-dependent Gross-Pitaevskii equation, a cubic non-linear Schroedinger equation. We then turn to fermionic systems and prove that the evolution of a degenerate Fermi gas can be approximated by the time-dependent Hartree-Fock equation (TDHF) under certain assumptions on the semiclassical structure of the initial data. Finally, we extend the latter result to fermions with relativistic kinetic energy. All our results provide explicit bounds on the error as the number of particles becomes large. A crucial methodical insight on bosonic systems is that correlations can be modeled by Bogolyubov transformations. We construct initial data appropriate for the Gross-Pitaevskii regime using a Bogolyubov transformation acting on a coherent state, which amounts to studying squeezed coherent states. As a crucial insight for fermionic systems, we point out a semiclassical structure in states close to the ground state of fermions in a trap. As a convenient language for studying the dynamics of fermionic systems, we use particle-hole transformations.

  18. Spectral transform and solvability of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Degasperis, A.

    1979-01-01

    These lectures deal with an exciting development of the last decade, namely the resolving method based on the spectral transform which can be considered as an extension of the Fourier analysis to nonlinear evolution equations. Since many important physical phenomena are modeled by nonlinear partial wave equations this method is certainly a major breakthrough in mathematical physics. We follow the approach, introduced by Calogero, which generalizes the usual Wronskian relations for solutions of a Sturm-Liouville problem. Its application to the multichannel Schroedinger problem will be the subject of these lectures. We will focus upon dynamical systems described at time t by a multicomponent field depending on one space coordinate only. After recalling the Fourier technique for linear evolution equations we introduce the spectral transform method taking the integral equations of potential scattering as an example. The second part contains all the basic functional relationships between the fields and their spectral transforms as derived from the Wronskian approach. In the third part we discuss a particular class of solutions of nonlinear evolution equations, solitons, which are considered by many physicists as a first step towards an elementary particle theory, because of their particle-like behaviour. The effect of the polarization time-dependence on the motion of the soliton is studied by means of the corresponding spectral transform, leading to new concepts such as the 'boomeron' and the 'trappon'. The rich dynamic structure is illustrated by a brief report on the main results of boomeron-boomeron and boomeron-trappon collisions. In the final section we discuss further results concerning important properties of the solutions of basic nonlinear equations. We introduce the Baecklund transform for the special case of scalar fields and demonstrate how it can be used to generate multisoliton solutions and how the conservation laws are obtained. (HJ)

  19. Existence results for impulsive evolution differential equations with state-dependent delay

    OpenAIRE

    Eduardo Hernandez M.; Rathinasamy Sakthivel; Sueli Tanaka Aki

    2008-01-01

    We study the existence of mild solution for impulsive evolution abstract differential equations with state-dependent delay. A concrete application to partial delayed differential equations is considered.

  20. Evolution equations for connected and disconnected sea parton distributions

    Science.gov (United States)

    Liu, Keh-Fei

    2017-08-01

    It has been revealed from the path-integral formulation of the hadronic tensor that there are connected sea and disconnected sea partons. The former is responsible for the Gottfried sum rule violation primarily and evolves the same way as the valence. Therefore, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations can be extended to accommodate them separately. We discuss its consequences and implications vis-á-vis lattice calculations.

  1. Symbolic Detection of Permutation and Parity Symmetries of Evolution Equations

    KAUST Repository

    Alghamdi, Moataz

    2017-06-18

    We introduce a symbolic computational approach to detecting all permutation and parity symmetries in any general evolution equation, and to generating associated invariant polynomials, from given monomials, under the action of these symmetries. Traditionally, discrete point symmetries of differential equations are systemically found by solving complicated nonlinear systems of partial differential equations; in the presence of Lie symmetries, the process can be simplified further. Here, we show how to find parity- and permutation-type discrete symmetries purely based on algebraic calculations. Furthermore, we show that such symmetries always form groups, thereby allowing for the generation of new group-invariant conserved quantities from known conserved quantities. This work also contains an implementation of the said results in Mathematica. In addition, it includes, as a motivation for this work, an investigation of the connection between variational symmetries, described by local Lie groups, and conserved quantities in Hamiltonian systems.

  2. Operations involving momentum variables in non-Hamiltonian evolution equations

    International Nuclear Information System (INIS)

    Benatti, F.; Ghirardi, G.C.; Rimini, A.; Weber, T.

    1988-02-01

    Non-Hamiltonian evolution equations have been recently considered for the description of various physical processes. Among this type of equations the class which has been more extensively studied is the one usually referred to as Quantum Dynamical Semigroup equations (QDS). In particular an equation of the QDS type has been considered as the basis for a model, called Quantum Mechanics with Spontaneous Localization (QMSL), which has been shown to exhibit some very interesting features allowing to overcome most of the conceptual difficulties of standard quantum theory, QMSL assumes a modification of the pure Schroedinger evolution by assuming the occurrence, at random times, of stochastic processes for the wave function corresponding formally to approximate position measurements. In this paper, we investigate the consequences of modifying and/or enlarging the class of the considered stochastic processes, by considering the spontaeous occurrence of approximate momentum and of simultaneous position and momentum measurements. It is shown that the considered changes in the elementary processes have unacceptable consequences. In particular they either lead to drastic modifications in the dynamics of microsystems or are completely useless from the point of view of the conceptual advantages that one was trying to get from QMSL. The present work supports therefore the idea that QMSL, as originally formulated, can be taken as the basic scheme for the generalizations which are still necessary in order to make it appropriate for the description of systems of identical particles and to meet relativistic requirements. (author). 14 refs

  3. Operations involving momentum variables in non-Hamiltonian evolution equation

    International Nuclear Information System (INIS)

    Benatti, F.; Ghirardi, G.C.; Weber, T.; Rimini, A.

    1988-01-01

    Non-Hamiltonian evolution equations have been recently considered for the description of various physical processes. Among these types of equations the class which has been more extensively studied is the one usually referred to as quantum-dynamical semi-group equations (QDS). In particular an equation of the QDS type has been considered as the basis for a model, called quantum mechanics with spontaneous localization (QMSL), which has been shown to exhibit some very interesting features allowing us to overcome most of the conceptual difficulties of standard quantum theory. QMSL assumes a modification of the pure Schroedinger evolution by assuming the occurrence, at random times, of stochastic processes for the wave function corresponding formally to approximate position measurements. In this paper the consequences of modifying and/or enlarging the class of the considered stochastic processes, by considering the spontaneous occurrence of approximate momentum and of simultaneous position and momentum measurements, are investigated. It is shown that the considered changes in the elementary processes have unacceptable consequences. In particular they either lead to drastic modification in the dynamics of microsystems or are completely useless from the point of view of the conceptual advantages that one was trying to get from QMSL. The present work supports therefore the idea that QMSL, as originally formulated, can be taken as the basic scheme for the generalizations which are still necessary in order to make it appropriate for the description of systems of identical particles and to meet relativistic requirements

  4. Asymptotically Almost Periodic Solutions of Evolution Equations in Banach Spaces

    Science.gov (United States)

    Ruess, W. M.; Phong, V. Q.

    Tile linear abstract evolution equation (∗) u'( t) = Au( t) + ƒ( t), t ∈ R, is considered, where A: D( A) ⊂ E → E is the generator of a strongly continuous semigroup of operators in the Banach space E. Starting from analogs of Kadets' and Loomis' Theorems for vector valued almost periodic Functions, we show that if σ( A) ∩ iR is countable and ƒ: R → E is [asymptotically] almost periodic, then every bounded and uniformly continuous solution u to (∗) is [asymptotically] almost periodic, provided e-λ tu( t) has uniformly convergent means for all λ ∈ σ( A) ∩ iR. Related results on Eberlein-weakly asymptotically almost periodic, periodic, asymptotically periodic and C 0-solutions of (∗), as well as on the discrete case of solutions of difference equations are included.

  5. Time evolution of the wave equation using rapid expansion method

    KAUST Repository

    Pestana, Reynam C.; Stoffa, Paul L.

    2010-01-01

    Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.

  6. Time evolution of the wave equation using rapid expansion method

    KAUST Repository

    Pestana, Reynam C.

    2010-07-01

    Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.

  7. Higher order Lie-Baecklund symmetries of evolution equations

    International Nuclear Information System (INIS)

    Roy Chowdhury, A.; Roy Chowdhury, K.; Paul, S.

    1983-10-01

    We have considered in detail the analysis of higher order Lie-Baecklund symmetries for some representative nonlinear evolution equations. Until now all such symmetry analyses have been restricted only to the first order of the infinitesimal parameter. But the existence of Baecklund transformation (which can be shown to be an overall sum of higher order Lie-Baecklund symmetries) makes it necessary to search for such higher order Lie-Baecklund symmetries directly without taking recourse to the Baecklund transformation or inverse scattering technique. (author)

  8. Nonlinear evolution equations for waves in random media

    International Nuclear Information System (INIS)

    Pelinovsky, E.; Talipova, T.

    1994-01-01

    The scope of this paper is to highlight the main ideas of asymptotical methods applying in modern approaches of description of nonlinear wave propagation in random media. We start with the discussion of the classical conception of ''mean field''. Then an exactly solvable model describing nonlinear wave propagation in the medium with fluctuating parameters is considered in order to demonstrate that the ''mean field'' method is not correct. We develop new asymptotic procedures of obtaining the nonlinear evolution equations for the wave fields in random media. (author). 16 refs

  9. Approach in Theory of Nonlinear Evolution Equations: The Vakhnenko-Parkes Equation

    Directory of Open Access Journals (Sweden)

    V. O. Vakhnenko

    2016-01-01

    Full Text Available A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the Vakhnenko equation (VE as an example. The VE, which arises in modelling the propagation of high-frequency waves in a relaxing medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. The VE can be written in an alternative form, known as the Vakhnenko-Parkes equation (VPE, by a change of independent variables. The VPE has an N-soliton solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE comprises N-loop-like solitons. Aspects of the inverse scattering transform (IST method, as applied originally to the KdV equation, are used to find one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-order. A Bäcklund transformation for the VPE is used to construct conservation laws. The standard IST method for third-order spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum. This leads to N-soliton solutions and M-mode periodic solutions, respectively. Interactions between these types of solutions are investigated.

  10. Solving Partial Differential Equations Using a New Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Natee Panagant

    2014-01-01

    Full Text Available This paper proposes an alternative meshless approach to solve partial differential equations (PDEs. With a global approximate function being defined, a partial differential equation problem is converted into an optimisation problem with equality constraints from PDE boundary conditions. An evolutionary algorithm (EA is employed to search for the optimum solution. For this approach, the most difficult task is the low convergence rate of EA which consequently results in poor PDE solution approximation. However, its attractiveness remains due to the nature of a soft computing technique in EA. The algorithm can be used to tackle almost any kind of optimisation problem with simple evolutionary operation, which means it is mathematically simpler to use. A new efficient differential evolution (DE is presented and used to solve a number of the partial differential equations. The results obtained are illustrated and compared with exact solutions. It is shown that the proposed method has a potential to be a future meshless tool provided that the search performance of EA is greatly enhanced.

  11. Patient restraining strap for scintiphotography

    International Nuclear Information System (INIS)

    Kay, T.D.; Harper, J.W.

    1976-01-01

    A patient restraining strap for scintiphotography having a pair of expandable cloth-like bags joined together is presented. The strap encompasses the head of a patient and is then secured to a Gamma Scintillation Camera. Once inflated the restraining strap immobilizes the head without discomfort to the patient during the scintiphotography procedure. 1 claim, 1 drawing figure

  12. Symbolic computation of exact solutions for a nonlinear evolution equation

    International Nuclear Information System (INIS)

    Liu Yinping; Li Zhibin; Wang Kuncheng

    2007-01-01

    In this paper, by means of the Jacobi elliptic function method, exact double periodic wave solutions and solitary wave solutions of a nonlinear evolution equation are presented. It can be shown that not only the obtained solitary wave solutions have the property of loop-shaped, cusp-shaped and hump-shaped for different values of parameters, but also different types of double periodic wave solutions are possible, namely periodic loop-shaped wave solutions, periodic hump-shaped wave solutions or periodic cusp-shaped wave solutions. Furthermore, periodic loop-shaped wave solutions will be degenerated to loop-shaped solitary wave solutions for the same values of parameters. So do cusp-shaped solutions and hump-shaped solutions. All these solutions are new and first reported here

  13. Loss of Energy Concentration in Nonlinear Evolution Beam Equations

    Science.gov (United States)

    Garrione, Maurizio; Gazzola, Filippo

    2017-12-01

    Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.

  14. An x-space analysis of evolution equations: Soffer's inequality and the non-forward evolution

    International Nuclear Information System (INIS)

    Cafarella, Alessandro; Coriano, Claudio; Guzzi, Marco

    2003-01-01

    We analyze the use of algorithms based in x-space for the solution of renormalization group equations of DGLAP-type and test their consistency by studying bounds among partons distributions - in our specific case Soffer's inequality and the perturbative behaviour of the nucleon tensor charge - to next-to-leading order in QCD. A discussion of the perturbative resummation implicit in these expansions using Mellin moments is included. We also comment on the (kinetic) proof of positivity of the evolution of h1, using a kinetic analogy and illustrate the extension of the algorithm to the evolution of generalized parton distributions. We prove positivity of the non-forward evolution in a special case and illustrate a Fokker-Planck approximation to it. (author)

  15. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1979-01-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly

  16. The presentation of explicit analytical solutions of a class of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Feng Jinshun; Guo Mingpu; Yuan Deyou

    2009-01-01

    In this paper, we introduce a function set Ω m . There is a conjecture that an arbitrary explicit travelling-wave analytical solution of a real constant coefficient nonlinear evolution equation is necessarily a linear (or nonlinear) combination of the product of some elements in Ω m . A widespread applicable approach for solving a class of nonlinear evolution equations is established. The new analytical solutions to two kinds of nonlinear evolution equations are described with the aid of the guess.

  17. Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method

    International Nuclear Information System (INIS)

    Ebaid, A.

    2007-01-01

    Based on the Exp-function method, exact solutions for some nonlinear evolution equations are obtained. The KdV equation, Burgers' equation and the combined KdV-mKdV equation are chosen to illustrate the effectiveness of the method

  18. Wave functions, evolution equations and evolution kernels form light-ray operators of QCD

    International Nuclear Information System (INIS)

    Mueller, D.; Robaschik, D.; Geyer, B.; Dittes, F.M.; Horejsi, J.

    1994-01-01

    The widely used nonperturbative wave functions and distribution functions of QCD are determined as matrix elements of light-ray operators. These operators appear as large momentum limit of non-local hardron operators or as summed up local operators in light-cone expansions. Nonforward one-particle matrix elements of such operators lead to new distribution amplitudes describing both hadrons simultaneously. These distribution functions depend besides other variables on two scaling variables. They are applied for the description of exclusive virtual Compton scattering in the Bjorken region near forward direction and the two meson production process. The evolution equations for these distribution amplitudes are derived on the basis of the renormalization group equation of the considered operators. This includes that also the evolution kernels follow from the anomalous dimensions of these operators. Relations between different evolution kernels (especially the Altarelli-Parisi and the Brodsky-Lepage kernels) are derived and explicitly checked for the existing two-loop calculations of QCD. Technical basis of these resluts are support and analytically properties of the anomalous dimensions of light-ray operators obtained with the help of the α-representation of Green's functions. (orig.)

  19. Analysis and classification of nonlinear dispersive evolution equations in the potential representation

    International Nuclear Information System (INIS)

    Eichmann, U.A.; Draayer, J.P.; Ludu, A.

    2002-01-01

    A potential representation for the subset of travelling solutions of nonlinear dispersive evolution equations is introduced. The procedure involves reduction of a third-order partial differential equation to a first-order ordinary differential equation. The potential representation allows us to deduce certain properties of the solutions without the actual need to solve the underlying evolution equation. In particular, the paper deals with the so-called K(n, m) equations. Starting from their respective potential representations it is shown that these equations can be classified according to a simple point transformation. As a result, e.g., all equations with linear dispersion join the same equivalence class with the Korteweg-deVries equation being its representative, and all soliton solutions of higher order nonlinear equations are thus equivalent to the KdV soliton. Certain equations with both linear and quadratic dispersions can also be treated within this equivalence class. (author)

  20. Symplectic and Hamiltonian structures of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Dorfman, I.Y.

    1993-01-01

    A Hamiltonian structure on a finite-dimensional manifold can be introduced either by endowing it with a (pre)symplectic structure, or by describing the Poisson bracket with the help of a tensor with two upper indices named the Poisson structure. Under the assumption of nondegeneracy, the Poisson structure is nothing else than the inverse of the symplectic structure. Also in the degenerate case the distinction between the two approaches is almost insignificant, because both presymplectic and Poisson structures split into symplectic structures on leaves of appropriately chosen foliations. Hamiltonian structures that arise in the theory of evolution equations demonstrate something new in this respect: trying to operate in local terms, one is induced to develop both approaches independently. Hamiltonian operators, being the infinite-dimensional counterparts of Poisson structures, were the first to become the subject of investigations. A considerable period of time passed before the papers initiated research in the theory of symplectic operators, being the counterparts of presymplectic structures. In what follows, we focus on the main achievements in this field

  1. On the fundamental equation of nonequilibrium statistical physics—Nonequilibrium entropy evolution equation and the formula for entropy production rate

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper the author presents an overview on his own research works. More than ten years ago, we proposed a new fundamental equation of nonequilibrium statistical physics in place of the present Liouville equation. That is the stochastic velocity type’s Langevin equation in 6N dimensional phase space or its equivalent Liouville diffusion equation. This equation is time-reversed asymmetrical. It shows that the form of motion of particles in statistical thermodynamic systems has the drift-diffusion duality, and the law of motion of statistical thermodynamics is expressed by a superposition of both the law of dynamics and the stochastic velocity and possesses both determinism and probability. Hence it is different from the law of motion of particles in dynamical systems. The stochastic diffusion motion of the particles is the microscopic origin of macroscopic irreversibility. Starting from this fundamental equation the BBGKY diffusion equation hierarchy, the Boltzmann collision diffusion equation, the hydrodynamic equations such as the mass drift-diffusion equation, the Navier-Stokes equation and the thermal conductivity equation have been derived and presented here. What is more important, we first constructed a nonlinear evolution equation of nonequilibrium entropy density in 6N, 6 and 3 dimensional phase space, predicted the existence of entropy diffusion. This entropy evolution equation plays a leading role in nonequilibrium entropy theory, it reveals that the time rate of change of nonequilibrium entropy density originates together from its drift, diffusion and production in space. From this evolution equation, we presented a formula for entropy production rate (i.e. the law of entropy increase) in 6N and 6 dimensional phase space, proved that internal attractive force in nonequilibrium system can result in entropy decrease while internal repulsive force leads to another entropy increase, and derived a common expression for this entropy decrease rate or

  2. A general nonlinear evolution equation for irreversible conservative approach to stable equilibrium

    International Nuclear Information System (INIS)

    Beretta, G.P.

    1986-01-01

    This paper addresses a mathematical problem relevant to the question of nonequilibrium and irreversibility, namely, that of ''designing'' a general evolution equation capable of describing irreversible but conservative relaxtion towards equilibrium. The objective is to present an interesting mathematical solution to this design problem, namely, a new nonlinear evolution equation that satisfies a set of very stringent relevant requirements. Three different frameworks are defined from which the new equation could be adopted, with entirely different interpretations. Some useful well-known mathematics involving Gram determinants are presented and a nonlinear evolution equation is given which meets the stringent design specifications

  3. Symmetry Reduction and Cauchy Problems for a Class of Fourth-Order Evolution Equations

    International Nuclear Information System (INIS)

    Li Jina; Zhang Shunli

    2008-01-01

    We exploit higher-order conditional symmetry to reduce initial-value problems for evolution equations to Cauchy problems for systems of ordinary differential equations (ODEs). We classify a class of fourth-order evolution equations which admit certain higher-order generalized conditional symmetries (GCSs) and give some examples to show the main reduction procedure. These reductions cannot be derived within the framework of the standard Lie approach, which hints that the technique presented here is something essential for the dimensional reduction of evolution equations

  4. Equations of State: Gateway to Planetary Origin and Evolution (Invited)

    Science.gov (United States)

    Melosh, J.

    2013-12-01

    Research over the past decades has shown that collisions between solid bodies govern many crucial phases of planetary origin and evolution. The accretion of the terrestrial planets was punctuated by planetary-scale impacts that generated deep magma oceans, ejected primary atmospheres and probably created the moons of Earth and Pluto. Several extrasolar planetary systems are filled with silicate vapor and condensed 'tektites', probably attesting to recent giant collisions. Even now, long after the solar system settled down from its violent birth, a large asteroid impact wiped out the dinosaurs, while other impacts may have played a role in the origin of life on Earth and perhaps Mars, while maintaining a steady exchange of small meteorites between the terrestrial planets and our moon. Most of these events are beyond the scale at which experiments are possible, so that our main research tool is computer simulation, constrained by the laws of physics and the behavior of materials during high-speed impact. Typical solar system impact velocities range from a few km/s in the outer solar system to 10s of km/s in the inner system. Extrasolar planetary systems expand that range to 100s of km/sec typical of the tightly clustered planetary systems now observed. Although computer codes themselves are currently reaching a high degree of sophistication, we still rely on experimental studies to determine the Equations of State (EoS) of materials critical for the correct simulation of impact processes. The recent expansion of the range of pressures available for study, from a few 100 GPa accessible with light gas guns up to a few TPa from current high energy accelerators now opens experimental access to the full velocity range of interest in our solar system. The results are a surprise: several groups in both the USA and Japan have found that silicates and even iron melt and vaporize much more easily in an impact than previously anticipated. The importance of these findings is

  5. Traveling solitary wave solutions to evolution equations with nonlinear terms of any order

    International Nuclear Information System (INIS)

    Feng Zhaosheng

    2003-01-01

    Many physical phenomena in one- or higher-dimensional space can be described by nonlinear evolution equations, which can be reduced to ordinary differential equations such as the Lienard equation. Thus, to study those ordinary differential equations is of significance not only in mathematics itself, but also in physics. In this paper, a kind of explicit exact solutions to the Lienard equation is obtained. The applications of the solutions to the nonlinear RR-equation and the compound KdV-type equation are presented, which extend the results obtained in the previous literature

  6. Soliton solutions of some nonlinear evolution equations with time ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we obtain exact soliton solutions of the modified KdV equation, inho- mogeneous nonlinear Schrödinger equation and G(m, n) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the ...

  7. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear partial differential evolution equations of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.

  8. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  9. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    Science.gov (United States)

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  10. Application of Exp-function method for (2 + 1)-dimensional nonlinear evolution equations

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Boz, Ahmet

    2009-01-01

    In this paper, the Exp-function method is used to construct solitary and soliton solutions of (2 + 1)-dimensional nonlinear evolution equations. (2 + 1)-dimensional breaking soliton (Calogero) equation, modified Zakharov-Kuznetsov and Konopelchenko-Dubrovsky equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations.

  11. Nonlinear evolution equations and Painlevé test

    CERN Document Server

    Steeb, Willi-Hans

    1988-01-01

    This book is an edited version of lectures given by the authors at a seminar at the Rand Afrikaans University. It gives a survey on the Painlevé test, Painlevé property and integrability. Both ordinary differential equations and partial differential equations are considered.

  12. On an improved method for solving evolution equations of higher ...

    African Journals Online (AJOL)

    In this paper we introduce a new algebraic procedure to compute new classes of solutions of (1+1)-nonlinear partial differential equations (nPDEs) both of physical and technical relevance. The basic assumption is that the unknown solution(s) of the nPDE under consideration satisfy an ordinary differential equation (ODE) of ...

  13. An axisymmetric evolution code for the Einstein equations on hyperboloidal slices

    International Nuclear Information System (INIS)

    Rinne, Oliver

    2010-01-01

    We present the first stable dynamical numerical evolutions of the Einstein equations in terms of a conformally rescaled metric on hyperboloidal hypersurfaces extending to future null infinity. Axisymmetry is imposed in order to reduce the computational cost. The formulation is based on an earlier axisymmetric evolution scheme, adapted to time slices of constant mean curvature. Ideas from a previous study by Moncrief and the author are applied in order to regularize the formally singular evolution equations at future null infinity. Long-term stable and convergent evolutions of Schwarzschild spacetime are obtained, including a gravitational perturbation. The Bondi news function is evaluated at future null infinity.

  14. The Liouville equation for flavour evolution of neutrinos and neutrino wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Rasmus Sloth Lundkvist; Smirnov, Alexei Yu., E-mail: rasmus@mpi-hd.mpg.de, E-mail: smirnov@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-12-01

    We consider several aspects related to the form, derivation and applications of the Liouville equation (LE) for flavour evolution of neutrinos. To take into account the quantum nature of neutrinos we derive the evolution equation for the matrix of densities using wave packets instead of Wigner functions. The obtained equation differs from the standard LE by an additional term which is proportional to the difference of group velocities. We show that this term describes loss of the propagation coherence in the system. In absence of momentum changing collisions, the LE can be reduced to a single derivative equation over a trajectory coordinate. Additional time and spatial dependence may stem from initial (production) conditions. The transition from single neutrino evolution to the evolution of a neutrino gas is considered.

  15. Gas-evolution oscillators. 10. A model based on a delay equation

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Eli, K.; Noyes, R.M. [Univ. of Oregon, Eugene, OR (United States)

    1992-09-17

    This paper develops a simplified method to model the behavior of a gas-evolution oscillator with two differential delay equations in two unknowns consisting of the population of dissolved molecules in solution and the pressure of the gas.

  16. Gas-evolution oscillators. 10. A model based on a delay equation

    International Nuclear Information System (INIS)

    Bar-Eli, K.; Noyes, R.M.

    1992-01-01

    This paper develops a simplified method to model the behavior of a gas-evolution oscillator with two differential delay equations in two unknowns consisting of the population of dissolved molecules in solution and the pressure of the gas

  17. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition

    KAUST Repository

    Bessaih, Hakima; Efendiev, Yalchin; Maris, Florin

    2015-01-01

    The evolution Stokes equation in a domain containing periodically distributed obstacles subject to Fourier boundary condition on the boundaries is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior

  18. Solitary wave solutions to nonlinear evolution equations in ...

    Indian Academy of Sciences (India)

    1Computer Engineering Technique Department, Al-Rafidain University College, Baghdad, ... applied to extract solutions are tan–cot method and functional variable approaches. ... Consider the nonlinear partial differential equation in the form.

  19. Analytic treatment of nonlinear evolution equations using first ...

    Indian Academy of Sciences (India)

    1. — journal of. July 2012 physics pp. 3–17. Analytic treatment of nonlinear evolution ... Eskisehir Osmangazi University, Art-Science Faculty, Department of Mathematics, ... (2.2) is integrated where integration constants are considered zeros.

  20. Phase-space formalism: Operational calculus and solution of evolution equations in phase-space

    International Nuclear Information System (INIS)

    Dattoli, G.; Torre, A.

    1995-05-01

    Phase-space formulation of physical problems offers conceptual and practical advantages. A class of evolution type equations, describing the time behaviour of a physical system, using an operational formalism useful to handle time ordering problems has been described. The methods proposed generalize the algebraic ordering techniques developed to deal with the ordinary Schroedinger equation, and how they are taylored suited to treat evolution problems both in classical and quantum dynamics has been studied

  1. Preservation of support and positivity for solutions of degenerate evolution equations

    International Nuclear Information System (INIS)

    Ambrose, David M; Wright, J Douglas

    2010-01-01

    We prove that sufficiently smooth solutions of equations of a certain class have two interesting properties. These evolution equations are in a sense degenerate, in that every term on the right-hand side of the evolution equation has either the unknown or its first spatial derivative as a factor. We first find a conserved quantity for the equation: the measure of the set on which the solution is non-zero. Second, we show that solutions which are initially non-negative remain non-negative for all times. These properties rely heavily upon the degeneracy of the leading order term. When the equation is more degenerate, we are able to prove that there are additional conserved quantities: the measure of the set on which the solution is positive and the measure of the set on which the solution is negative. To illustrate these results, we give examples of equations with nonlinear dispersion which have solutions in spaces with sufficient regularity to satisfy the hypotheses of the support and positivity theorems. An important family of equations with nonlinear dispersion are the Rosenau–Hyman compacton equations; there is no existence theory yet for these equations, but the known solutions of the compacton equations are of lower regularity than is needed for the preceding theorems. We prove an additional positivity theorem which applies to solutions of the same family of equations in a function space which includes some solutions of compacton equations

  2. Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains

    Science.gov (United States)

    Adler, V. E.

    2018-04-01

    We consider differential-difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a secondorder scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.

  3. Solving nonlinear evolution equation system using two different methods

    Science.gov (United States)

    Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.

    2015-12-01

    This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.

  4. Algebraic models for the hierarchy structure of evolution equations at small x

    International Nuclear Information System (INIS)

    Rembiesa, P.; Stasto, A.M.

    2005-01-01

    We explore several models of QCD evolution equations simplified by considering only the rapidity dependence of dipole scattering amplitudes, while provisionally neglecting their dependence on transverse coordinates. Our main focus is on the equations that include the processes of pomeron splittings. We examine the algebraic structures of the governing equation hierarchies, as well as the asymptotic behavior of their solutions in the large-rapidity limit

  5. Exact solutions for nonlinear evolution equations using Exp-function method

    International Nuclear Information System (INIS)

    Bekir, Ahmet; Boz, Ahmet

    2008-01-01

    In this Letter, the Exp-function method is used to construct solitary and soliton solutions of nonlinear evolution equations. The Klein-Gordon, Burger-Fisher and Sharma-Tasso-Olver equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations

  6. Evolution equation for the shape function in the parton model approach to inclusive B decays

    International Nuclear Information System (INIS)

    Baek, Seungwon; Lee, Kangyoung

    2005-01-01

    We derive an evolution equation for the shape function of the b quark in an analogous way to the Altarelli-Parisi equation by incorporating the perturbative QCD correction to the inclusive semileptonic decays of the B meson. Since the parton picture works well for inclusive B decays due to the heavy mass of the b quark, the scaling feature manifests and the decay rate may be expressed by a single structure function describing the light-cone distribution of the b quark apart from the kinematic factor. The evolution equation introduces a q 2 dependence of the shape function and violates the scaling properties. We solve the evolution equation and discuss the phenomenological implication.

  7. Collinear and TMD quark and gluon densities from parton branching solution of QCD evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Hautmann, F. [Rutherford Appleton Laboratory, Chilton (United Kingdom); Oxford Univ. (United Kingdom). Dept. of Theoretical Physics; Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysica; Jung, H.; Lelek, A.; Zlebcik, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Radescu, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2017-08-15

    We study parton-branching solutions of QCD evolution equations and present a method to construct both collinear and transverse momentum dependent (TMD) parton densities from this approach. We work with next-to-leading-order (NLO) accuracy in the strong coupling. Using the unitarity picture in terms of resolvable and non-resolvable branchings, we analyze the role of the soft-gluon resolution scale in the evolution equations. For longitudinal momentum distributions, we find agreement of our numerical calculations with existing evolution programs at the level of better than 1 percent over a range of five orders of magnitude both in evolution scale and in longitudinal momentum fraction. We make predictions for the evolution of transverse momentum distributions. We perform fits to the high-precision deep inelastic scattering (DIS) structure function measurements, and we present a set of NLO TMD distributions based on the parton branching approach.

  8. Lie symmetry analysis and conservation laws for the time fractional fourth-order evolution equation

    Directory of Open Access Journals (Sweden)

    Wang Li

    2017-06-01

    Full Text Available In this paper, we study Lie symmetry analysis and conservation laws for the time fractional nonlinear fourth-order evolution equation. Using the method of Lie point symmetry, we provide the associated vector fields, and derive the similarity reductions of the equation, respectively. The method can be applied wisely and efficiently to get the reduced fractional ordinary differential equations based on the similarity reductions. Finally, by using the nonlinear self-adjointness method and Riemann-Liouville time-fractional derivative operator as well as Euler-Lagrange operator, the conservation laws of the equation are obtained.

  9. New generalized and improved (G′/G-expansion method for nonlinear evolution equations in mathematical physics

    Directory of Open Access Journals (Sweden)

    Hasibun Naher

    2014-10-01

    Full Text Available In this article, new extension of the generalized and improved (G′/G-expansion method is proposed for constructing more general and a rich class of new exact traveling wave solutions of nonlinear evolution equations. To demonstrate the novelty and motivation of the proposed method, we implement it to the Korteweg-de Vries (KdV equation. The new method is oriented toward the ease of utilize and capability of computer algebraic system and provides a more systematic, convenient handling of the solution process of nonlinear equations. Further, obtained solutions disclose a wider range of applicability for handling a large variety of nonlinear partial differential equations.

  10. The relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Liu Chunping; Liu Xiaoping

    2004-01-01

    First, we investigate the solitary wave solutions of the Burgers equation and the KdV equation, which are obtained by using the hyperbolic function method. Then we present a theorem which will not only give us a clear relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations, but also provide us an approach to construct new exact solutions in complex scalar field. Finally, we apply the theorem to the KdV-Burgers equation and obtain its new exact solutions

  11. The spectral transform as a tool for solving nonlinear discrete evolution equations

    International Nuclear Information System (INIS)

    Levi, D.

    1979-01-01

    In this contribution we study nonlinear differential difference equations which became important to the description of an increasing number of problems in natural science. Difference equations arise for instance in the study of electrical networks, in statistical problems, in queueing problems, in ecological problems, as computer models for differential equations and as models for wave excitation in plasma or vibrations of particles in an anharmonic lattice. We shall first review the passages necessary to solve linear discrete evolution equations by the discrete Fourier transfrom, then, starting from the Zakharov-Shabat discretized eigenvalue, problem, we shall introduce the spectral transform. In the following part we obtain the correlation between the evolution of the potentials and scattering data through the Wronskian technique, giving at the same time many other properties as, for example, the Baecklund transformations. Finally we recover some of the important equations belonging to this class of nonlinear discrete evolution equations and extend the method to equations with n-dependent coefficients. (HJ)

  12. Spin and energy evolution equations for a wide class of extended bodies

    International Nuclear Information System (INIS)

    Racine, Etienne

    2006-01-01

    We give a surface integral derivation of the leading-order evolution equations for the spin and energy of a relativistic body interacting with other bodies in the post-Newtonian expansion scheme. The bodies can be arbitrarily shaped and can be strongly self-gravitating. The effects of all mass and current multipoles are taken into account. As part of the computation one of the 2PN potentials parametrizing the metric is obtained. The formulae obtained here for spin and energy evolution coincide with those obtained by Damour, Soffel and Xu for the case of weakly self-gravitating bodies. By combining an Einstein-Infeld-Hoffman-type surface integral approach with multipolar expansions we extend the domain of validity of these evolution equations to a wide class of strongly self-gravitating bodies. This paper completes in a self-contained way a previous work by Racine and Flanagan on translational equations of motion for compact objects

  13. Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves

    DEFF Research Database (Denmark)

    Eldeberky, Y.; Madsen, Per A.

    1999-01-01

    and stochastic formulations are solved numerically for the case of cross shore motion of unidirectional waves and the results are verified against laboratory data for wave propagation over submerged bars and over a plane slope. Outside the surf zone the two model predictions are generally in good agreement......This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary...... is significantly underestimated for larger wave numbers. In the present work we correct this inconsistency. In addition to the improved deterministic formulation, we present improved stochastic evolution equations in terms of the energy spectrum and the bispectrum for multidirectional waves. The deterministic...

  14. New prospects in direct, inverse and control problems for evolution equations

    CERN Document Server

    Fragnelli, Genni; Mininni, Rosa

    2014-01-01

    This book, based on a selection of talks given at a dedicated meeting in Cortona, Italy, in June 2013, shows the high degree of interaction between a number of fields related to applied sciences. Applied sciences consider situations in which the evolution of a given system over time is observed, and the related models can be formulated in terms of evolution equations (EEs). These equations have been studied intensively in theoretical research and are the source of an enormous number of applications. In this volume, particular attention is given to direct, inverse and control problems for EEs. The book provides an updated overview of the field, revealing its richness and vitality.

  15. Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation

    International Nuclear Information System (INIS)

    Zhaqilao,

    2013-01-01

    A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed

  16. Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhaqilao,, E-mail: zhaqilao@imnu.edu.cn

    2013-12-06

    A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed.

  17. Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Kostov, N.A.

    1989-01-01

    In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs

  18. Existence and uniqueness of mild and classical solutions of impulsive evolution equations

    Directory of Open Access Journals (Sweden)

    Annamalai Anguraj

    2005-10-01

    Full Text Available We consider the non-linear impulsive evolution equation $$displaylines{ u'(t=Au(t+f(t,u(t,Tu(t,Su(t, quad 0evolution equation by using semigroup theory and then show that the mild solutions give rise to a classical solutions.

  19. Soliton evolution and radiation loss for the Korteweg--de Vries equation

    International Nuclear Information System (INIS)

    Kath, W.L.; Smyth, N.F.

    1995-01-01

    The time-dependent behavior of solutions of the Korteweg--de Vries (KdV) equation for nonsoliton initial conditions is considered. While the exact solution of the KdV equation can in principle be obtained using the inverse scattering transform, in practice it can be extremely difficult to obtain information about a solution's transient evolution by this method. As an alternative, we present here an approximate method for investigating this transient evolution which is based upon the conservation laws associated with the KdV equation. Initial conditions which form one or two solitons are considered, and the resulting approximate evolution is found to be in good agreement with the numerical solution of the KdV equation. Justification for the approximations employed is also given by way of the linearized inverse scattering solution of the KdV equation. In addition, the final soliton state determined from the approximate equations agrees very well with the final state determined from the exact inverse scattering transform solution

  20. Molecular representation of molar domain (volume), evolution equations, and linear constitutive relations for volume transport.

    Science.gov (United States)

    Eu, Byung Chan

    2008-09-07

    In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel.

  1. Existence of solutions for quasilinear random impulsive neutral differential evolution equation

    Directory of Open Access Journals (Sweden)

    B. Radhakrishnan

    2018-07-01

    Full Text Available This paper deals with the existence of solutions for quasilinear random impulsive neutral functional differential evolution equation in Banach spaces and the results are derived by using the analytic semigroup theory, fractional powers of operators and the Schauder fixed point approach. An application is provided to illustrate the theory. Keywords: Quasilinear differential equation, Analytic semigroup, Random impulsive neutral differential equation, Fixed point theorem, 2010 Mathematics Subject Classification: 34A37, 47H10, 47H20, 34K40, 34K45, 35R12

  2. Controllability for Semilinear Functional and Neutral Functional Evolution Equations with Infinite Delay in Frechet Spaces

    International Nuclear Information System (INIS)

    Agarwal, Ravi P.; Baghli, Selma; Benchohra, Mouffak

    2009-01-01

    The controllability of mild solutions defined on the semi-infinite positive real interval for two classes of first order semilinear functional and neutral functional differential evolution equations with infinite delay is studied in this paper. Our results are obtained using a recent nonlinear alternative due to Avramescu for sum of compact and contraction operators in Frechet spaces, combined with the semigroup theory

  3. Interpretation of the evolution parameter of the Feynman parametrization of the Dirac equation

    International Nuclear Information System (INIS)

    Aparicio, J.P.; Garcia Alvarez, E.T.

    1995-01-01

    The Feynman parametrization of the Dirac equation is considered in order to obtain an indefinite mass formulation of relativistic quantum mechanics. It is shown that the parameter that labels the evolution is related to the proper time. The Stueckelberg interpretation of antiparticles naturally arises from the formalism. ((orig.))

  4. A generalized variational algebra and conserved densities for linear evolution equations

    International Nuclear Information System (INIS)

    Abellanas, L.; Galindo, A.

    1978-01-01

    The symbolic algebra of Gel'fand and Dikii is generalized to the case of n variables. Using this algebraic approach a rigorous characterization of the polynomial kernel of the variational derivative is given. This is applied to classify all the conservation laws for linear polynomial evolution equations of arbitrary order. (Auth.)

  5. Existence of mild solutions for nonlocal Cauchy problem for fractional neutral evolution equations with infinite delay

    Directory of Open Access Journals (Sweden)

    V. Vijayakumar

    2014-09-01

    Full Text Available In this article, we study the existence of mild solutions for nonlocal Cauchy problem for fractional neutral evolution equations with infinite delay. The results are obtained by using the Banach contraction principle. Finally, an application is given to illustrate the theory.

  6. Music for untying restrained patients.

    Science.gov (United States)

    Janelli, L M; Kanski, G

    1998-03-01

    The purpose of this descriptive pilot study was two-fold: (a) to test psychometrically an observational instrument designed to measure patient behaviors displayed while unrestrained and receiving a musical intervention; and (b) to determine the effect of a musical intervention on the behavioral reactions of physically restrained patients. The Restraint-Music Response Instrument (RMRI) is a 40-item observational checklist consisting of 22 positive and 18 negative responses developed by the researchers. Content validity was assessed by a panel of experts. The RMRI was tested for interrater reliability using three simulated and 10 actual patients. Results suggest that the RMRI is a valid and reliable measure of patients' responses to music but requires additional study with a control group not receiving the intervention.

  7. The Pathwise Numerical Approximation of Stationary Solutions of Semilinear Stochastic Evolution Equations

    International Nuclear Information System (INIS)

    Caraballo, T.; Kloeden, P.E.

    2006-01-01

    Under a one-sided dissipative Lipschitz condition on its drift, a stochastic evolution equation with additive noise of the reaction-diffusion type is shown to have a unique stochastic stationary solution which pathwise attracts all other solutions. A similar situation holds for each Galerkin approximation and each implicit Euler scheme applied to these Galerkin approximations. Moreover, the stationary solution of the Euler scheme converges pathwise to that of the Galerkin system as the stepsize tends to zero and the stationary solutions of the Galerkin systems converge pathwise to that of the evolution equation as the dimension increases. The analysis is carried out on random partial and ordinary differential equations obtained from their stochastic counterparts by subtraction of appropriate Ornstein-Uhlenbeck stationary solutions

  8. Decoupling of the Leading Order DGLAP Evolution Equation with Spin Dependent Structure Functions

    Science.gov (United States)

    Azadbakht, F. Teimoury; Boroun, G. R.

    2018-02-01

    We propose an analytical solution for DGLAP evolution equations with polarized splitting functions at the Leading Order (LO) approximation based on the Laplace transform method. It is shown that the DGLAP evolution equations can be decoupled completely into two second order differential equations which then are solved analytically by using the initial conditions δ FS(x,Q2)=F[partial δ FS0(x), δ FS0(x)] and {δ G}(x,Q2)=G[partial δ G0(x), δ G0(x)]. We used this method to obtain the polarized structure function of the proton as well as the polarized gluon distribution function inside the proton and compared the numerical results with experimental data of COMPASS, HERMES, and AAC'08 Collaborations. It was found that there is a good agreement between our predictions and the experiments.

  9. Analytic solutions of QCD evolution equations for parton cascades inside nuclear matter at small x

    International Nuclear Information System (INIS)

    Geiger, K.

    1994-01-01

    An analytical method is presented to solve generalized QCD evolution equations for the time development of parton cascades in a nuclear environment. In addition to the usual parton branching processes in vacuum, these evolution equations provide a consistent description of interactions with the nuclear medium by accounting for stimulated branching processes, fusion, and scattering processes that are specific to QCD in a medium. Closed solutions for the spectra of produced partons with respect to the variables time, longitudinal momentum, and virtuality are obtained under some idealizing assumptions about the composition of the nuclear medium. Several characteristic features of the resulting parton distributions are discussed. One of the main conclusions is that the evolution of a parton shower in a medium is dilated as compared to free space and is accompanied by an enhancement of particle production. These effects become stronger with increasing nuclear density

  10. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    International Nuclear Information System (INIS)

    Maccari, A.

    1997-01-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio endash temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a open-quotes universalclose quotes character, inasmuch as they may be derived from a very large class of nonlinear evolution equations with a linear dispersive part. copyright 1997 American Institute of Physics

  11. Solving QCD evolution equations in rapidity space with Markovian Monte Carlo

    CERN Document Server

    Golec-Biernat, K; Placzek, W; Skrzypek, M

    2009-01-01

    This work covers methodology of solving QCD evolution equation of the parton distribution using Markovian Monte Carlo (MMC) algorithms in a class of models ranging from DGLAP to CCFM. One of the purposes of the above MMCs is to test the other more sophisticated Monte Carlo programs, the so-called Constrained Monte Carlo (CMC) programs, which will be used as a building block in the parton shower MC. This is why the mapping of the evolution variables (eikonal variable and evolution time) into four-momenta is also defined and tested. The evolution time is identified with the rapidity variable of the emitted parton. The presented MMCs are tested independently, with ~0.1% precision, against the non-MC program APCheb especially devised for this purpose.

  12. Nonlinear evolution-type equations and their exact solutions using inverse variational methods

    International Nuclear Information System (INIS)

    Kara, A H; Khalique, C M

    2005-01-01

    We present the role of invariants in obtaining exact solutions of differential equations. Firstly, conserved vectors of a partial differential equation (p.d.e.) allow us to obtain reduced forms of the p.d.e. for which some of the Lie point symmetries (in vector field form) are easily concluded and, therefore, provide a mechanism for further reduction. Secondly, invariants of reduced forms of a p.d.e. are obtainable from a variational principle even though the p.d.e. itself does not admit a Lagrangian. In this latter case, the reductions carry all the usual advantages regarding Noether symmetries and double reductions. The examples we consider are nonlinear evolution-type equations such as the Korteweg-deVries equation, but a detailed analysis is made on the Fisher equation (which describes reaction-diffusion waves in biology, inter alia). Other diffusion-type equations lend themselves well to the method we describe (e.g., the Fitzhugh Nagumo equation, which is briefly discussed). Some aspects of Painleve properties are also suggested

  13. Evolution of spin-dependent structure functions from DGLAP equations in leading order and next to leading order

    International Nuclear Information System (INIS)

    Baishya, R.; Jamil, U.; Sarma, J. K.

    2009-01-01

    In this paper the spin-dependent singlet and nonsinglet structure functions have been obtained by solving Dokshitzer, Gribov, Lipatov, Altarelli, Parisi evolution equations in leading order and next to leading order in the small x limit. Here we have used Taylor series expansion and then the method of characteristics to solve the evolution equations. We have also calculated t and x evolutions of deuteron structure functions, and the results are compared with the SLAC E-143 Collaboration data.

  14. The Relationship between Nonconservative Schemes and Initial Values of Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    林万涛

    2004-01-01

    For the nonconservative schemes of the nonlinear evolution equations, taking the one-dimensional shallow water wave equation as an example, the necessary conditions of computational stability are given.Based on numerical tests, the relationship between the nonlinear computational stability and the construction of difference schemes, as well as the form of initial values, is further discussed. It is proved through both theoretical analysis and numerical tests that if the construction of difference schemes is definite, the computational stability of nonconservative schemes is decided by the form of initial values.

  15. A class of periodic solutions of nonlinear wave and evolution equations

    International Nuclear Information System (INIS)

    Kashcheev, V.N.

    1987-01-01

    For the case of 1+1 dimensions a new heuristic method is proposed for deriving dels-similar solutions to nonlinear autonomous differential equations. If the differential function f is a polynomial, then: (i) in the case of even derivatives in f the solution is the ratio of two polynomials from the Weierstrass elliptic functions; (ii) in the case of any order derivatives in f the solution is the ratio of two polynomials from simple exponents. Numerous examples are given constructing such periodic solutions to the wave and evolution equations

  16. The relation between the kink-type solution and the kink-bell-type solution of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Liu Chunping

    2003-01-01

    Using a direct algebraic method, more new exact solutions of the Kolmogorov-Petrovskii-Piskunov equation are presented by formula form. Then a theorem concerning the relation between the kink-type solution and the kink-bell-type solution of nonlinear evolution equations is given. Finally, the applications of the theorem to several well-known equations in physics are also discussed

  17. Periodic Solutions and S-Asymptotically Periodic Solutions to Fractional Evolution Equations

    Directory of Open Access Journals (Sweden)

    Jia Mu

    2017-01-01

    Full Text Available This paper deals with the existence and uniqueness of periodic solutions, S-asymptotically periodic solutions, and other types of bounded solutions for some fractional evolution equations with the Weyl-Liouville fractional derivative defined for periodic functions. Applying Fourier transform we give reasonable definitions of mild solutions. Then we accurately estimate the spectral radius of resolvent operator and obtain some existence and uniqueness results.

  18. The population and decay evolution of a qubit under the time-convolutionless master equation

    International Nuclear Information System (INIS)

    Huang Jiang; Fang Mao-Fa; Liu Xiang

    2012-01-01

    We consider the population and decay of a qubit under the electromagnetic environment. Employing the time-convolutionless master equation, we investigate the Markovian and non-Markovian behaviour of the corresponding perturbation expansion. The Jaynes-Cummings model on resonance is investigated. Some figures clearly show the different evolution behaviours. The reasons are interpreted in the paper. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods

    Czech Academy of Sciences Publication Activity Database

    Fiala, Zdeněk

    2015-01-01

    Roč. 226, č. 1 (2015), s. 17-35 ISSN 0001-5970 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * evolution equation of Lie-type * time-discrete integration Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.694, year: 2015 http://link.springer.com/article/10.1007%2Fs00707-014-1162-9#page-1

  20. Dynamics of second order in time evolution equations with state-dependent delay

    Czech Academy of Sciences Publication Activity Database

    Chueshov, I.; Rezunenko, Oleksandr

    123-124, č. 1 (2015), s. 126-149 ISSN 0362-546X R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Second order evolution equations * State dependent delay * Nonlinear plate * Finite-dimensional attractor Subject RIV: BD - Theory of Information Impact factor: 1.125, year: 2015 http://library.utia.cas.cz/separaty/2015/AS/rezunenko-0444708.pdf

  1. A trick loop algebra and a corresponding Liouville integrable hierarchy of evolution equations

    International Nuclear Information System (INIS)

    Zhang Yufeng; Xu Xixiang

    2004-01-01

    A subalgebra of loop algebra A-bar 2 is first constructed, which has its own special feature. It follows that a new Liouville integrable hierarchy of evolution equations is obtained, possessing a tri-Hamiltonian structure, which is proved by us in this paper. Especially, three symplectic operators are constructed directly from recurrence relations. The conjugate operator of a recurrence operator is a hereditary symmetry. As reduction cases of the hierarchy presented in this paper, the celebrated MKdV equation and heat-conduction equation are engendered, respectively. Therefore, we call the hierarchy a generalized MKdV-H system. At last, a high-dimension loop algebra G-bar is constructed by making use of a proper scalar transformation. As a result, a type expanding integrable model of the MKdV-H system is given

  2. Exponentially Stable Stationary Solutions for Stochastic Evolution Equations and Their Perturbation

    International Nuclear Information System (INIS)

    Caraballo, Tomas; Kloeden, Peter E.; Schmalfuss, Bjoern

    2004-01-01

    We consider the exponential stability of stochastic evolution equations with Lipschitz continuous non-linearities when zero is not a solution for these equations. We prove the existence of anon-trivial stationary solution which is exponentially stable, where the stationary solution is generated by the composition of a random variable and the Wiener shift. We also construct stationary solutions with the stronger property of attracting bounded sets uniformly. The existence of these stationary solutions follows from the theory of random dynamical systems and their attractors. In addition, we prove some perturbation results and formulate conditions for the existence of stationary solutions for semilinear stochastic partial differential equations with Lipschitz continuous non-linearities

  3. Evolution of the cosmological horizons in a universe with countably infinitely many state equations

    Energy Technology Data Exchange (ETDEWEB)

    Margalef-Bentabol, Berta; Cepa, Jordi [Departamento de Astrofísica, Universidad de la Laguna, E-38205 La Laguna, Tenerife (Spain); Margalef-Bentabol, Juan, E-mail: bmb@cca.iac.es, E-mail: juanmargalef@estumail.ucm.es, E-mail: jcn@iac.es [Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2013-02-01

    This paper is the second of two papers devoted to the study of the evolution of the cosmological horizons (particle and event horizons). Specifically, in this paper we consider a general accelerated universe with countably infinitely many constant state equations, and we obtain simple expressions in terms of their respective recession velocities that generalize the previous results for one and two state equations. We also provide a qualitative study of the values of the horizons and their velocities at the origin of the universe and at the far future, and we prove that these values only depend on one dominant state equation. Finally, we compare both horizons and determine when one is larger than the other.

  4. arXiv GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations

    CERN Document Server

    Ghiglieri, J.

    2017-05-23

    Starting from operator equations of motion and making arguments based on a separation of time scales, a set of equations is derived which govern the non-equilibrium time evolution of a GeV-scale sterile neutrino density matrix and active lepton number densities at temperatures T > 130 GeV. The density matrix possesses generation and helicity indices; we demonstrate how helicity permits for a classification of various sources for leptogenesis. The coefficients parametrizing the equations are determined to leading order in Standard Model couplings, accounting for the LPM resummation of 1+n 2+n scatterings and for all 2 2 scatterings. The regime in which sphaleron processes gradually decouple so that baryon plus lepton number becomes a separate non-equilibrium variable is also considered.

  5. A novel algebraic procedure for solving non-linear evolution equations of higher order

    International Nuclear Information System (INIS)

    Huber, Alfred

    2007-01-01

    We report here a systematic approach that can easily be used for solving non-linear partial differential equations (nPDE), especially of higher order. We restrict the analysis to the so called evolution equations describing any wave propagation. The proposed new algebraic approach leads us to traveling wave solutions and moreover, new class of solution can be obtained. The crucial step of our method is the basic assumption that the solutions satisfy an ordinary differential equation (ODE) of first order that can be easily integrated. The validity and reliability of the method is tested by its application to some non-linear evolution equations. The important aspect of this paper however is the fact that we are able to calculate distinctive class of solutions which cannot be found in the current literature. In other words, using this new algebraic method the solution manifold is augmented to new class of solution functions. Simultaneously we would like to stress the necessity of such sophisticated methods since a general theory of nPDE does not exist. Otherwise, for practical use the algebraic construction of new class of solutions is of fundamental interest

  6. Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method

    International Nuclear Information System (INIS)

    Fan Engui

    2002-01-01

    A new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system. Compared with most of the existing tanh methods, the Jacobi elliptic function method or other sophisticated methods, the proposed method not only gives new and more general solutions, but also provides a guideline to classify the various types of the travelling wave solutions according to the values of some parameters. The solutions obtained in this paper include (a) kink-shaped and bell-shaped soliton solutions, (b) rational solutions, (c) triangular periodic solutions and (d) Jacobi and Weierstrass doubly periodic wave solutions. Among them, the Jacobi elliptic periodic wave solutions exactly degenerate to the soliton solutions at a certain limit condition. The efficiency of the method can be demonstrated on a large variety of nonlinear evolution equations such as those considered in this paper, KdV-MKdV, Ito's fifth MKdV, Hirota, Nizhnik-Novikov-Veselov, Broer-Kaup, generalized coupled Hirota-Satsuma, coupled Schroedinger-KdV, (2+1)-dimensional dispersive long wave, (2+1)-dimensional Davey-Stewartson equations. In addition, as an illustrative sample, the properties of the soliton solutions and Jacobi doubly periodic solutions for the Hirota equation are shown by some figures. The links among our proposed method, the tanh method, extended tanh method and the Jacobi elliptic function method are clarified generally. (author)

  7. Population Thinking, Price’s Equation and the Analysis of Economic Evolution

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    2004-01-01

    applicable to economic evolution due to the development of what may be called a general evometrics. Central to this evometrics is a method for partitioning evolutionary change developed by George Price into the selection effect and what may be called the innovation effect. This method serves surprisingly...... well as a means of accounting for evolution and as a starting point for the explanation of evolution. The applications of Price’s equation cover the partitioning and analysis of relatively short-term evolutionary change within individual industries as well as the study of more complexly structured...... populations of firms. By extrapolating these applications of Price’s evometrics, the paper suggests that his approach may play a central role in the emerging evolutionary econometrics....

  8. New extended (G'/G)-expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation.

    Science.gov (United States)

    Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum

    2014-01-01

    In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.

  9. Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation

    International Nuclear Information System (INIS)

    Goryainov, V V

    2015-01-01

    The paper is concerned with evolution families of conformal mappings of the unit disc to itself that fix an interior point and a boundary point. Conditions are obtained for the evolution families to be differentiable, and an existence and uniqueness theorem for an evolution equation is proved. A convergence theorem is established which describes the topology of locally uniform convergence of evolution families in terms of infinitesimal generating functions. The main result in this paper is the embedding theorem which shows that any conformal mapping of the unit disc to itself with two fixed points can be embedded into a differentiable evolution family of such mappings. This result extends the range of the parametric method in the theory of univalent functions. In this way the problem of the mutual change of the derivative at an interior point and the angular derivative at a fixed point on the boundary is solved for a class of mappings of the unit disc to itself. In particular, the rotation theorem is established for this class of mappings. Bibliography: 27 titles

  10. A stochastic version of the Price equation reveals the interplay of deterministic and stochastic processes in evolution

    Directory of Open Access Journals (Sweden)

    Rice Sean H

    2008-09-01

    Full Text Available Abstract Background Evolution involves both deterministic and random processes, both of which are known to contribute to directional evolutionary change. A number of studies have shown that when fitness is treated as a random variable, meaning that each individual has a distribution of possible fitness values, then both the mean and variance of individual fitness distributions contribute to directional evolution. Unfortunately the most general mathematical description of evolution that we have, the Price equation, is derived under the assumption that both fitness and offspring phenotype are fixed values that are known exactly. The Price equation is thus poorly equipped to study an important class of evolutionary processes. Results I present a general equation for directional evolutionary change that incorporates both deterministic and stochastic processes and applies to any evolving system. This is essentially a stochastic version of the Price equation, but it is derived independently and contains terms with no analog in Price's formulation. This equation shows that the effects of selection are actually amplified by random variation in fitness. It also generalizes the known tendency of populations to be pulled towards phenotypes with minimum variance in fitness, and shows that this is matched by a tendency to be pulled towards phenotypes with maximum positive asymmetry in fitness. This equation also contains a term, having no analog in the Price equation, that captures cases in which the fitness of parents has a direct effect on the phenotype of their offspring. Conclusion Directional evolution is influenced by the entire distribution of individual fitness, not just the mean and variance. Though all moments of individuals' fitness distributions contribute to evolutionary change, the ways that they do so follow some general rules. These rules are invisible to the Price equation because it describes evolution retrospectively. An equally general

  11. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition

    KAUST Repository

    Bessaih, Hakima

    2015-04-01

    The evolution Stokes equation in a domain containing periodically distributed obstacles subject to Fourier boundary condition on the boundaries is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior of the domain and another stochastic perturbation on the boundaries of the obstacles. We represent the solid obstacles by holes in the fluid domain. The macroscopic (homogenized) equation is derived as another stochastic partial differential equation, defined in the whole non perforated domain. Here, the initial stochastic perturbation on the boundary becomes part of the homogenized equation as another stochastic force. We use the twoscale convergence method after extending the solution with 0 in the holes to pass to the limit. By Itô stochastic calculus, we get uniform estimates on the solution in appropriate spaces. In order to pass to the limit on the boundary integrals, we rewrite them in terms of integrals in the whole domain. In particular, for the stochastic integral on the boundary, we combine the previous idea of rewriting it on the whole domain with the assumption that the Brownian motion is of trace class. Due to the particular boundary condition dealt with, we get that the solution of the stochastic homogenized equation is not divergence free. However, it is coupled with the cell problem that has a divergence free solution. This paper represents an extension of the results of Duan and Wang (Comm. Math. Phys. 275:1508-1527, 2007), where a reaction diffusion equation with a dynamical boundary condition with a noise source term on both the interior of the domain and on the boundary was studied, and through a tightness argument and a pointwise two scale convergence method the homogenized equation was derived. © American Institute of Mathematical Sciences.

  12. Hamiltonian approach to the derivation of evolution equations for wave trains in weakly unstable media

    Directory of Open Access Journals (Sweden)

    N. N. Romanova

    1998-01-01

    Full Text Available The dynamics of weakly nonlinear wave trains in unstable media is studied. This dynamics is investigated in the framework of a broad class of dynamical systems having a Hamiltonian structure. Two different types of instability are considered. The first one is the instability in a weakly supercritical media. The simplest example of instability of this type is the Kelvin-Helmholtz instability. The second one is the instability due to a weak linear coupling of modes of different nature. The simplest example of a geophysical system where the instability of this and only of this type takes place is the three-layer model of a stratified shear flow with a continuous velocity profile. For both types of instability we obtain nonlinear evolution equations describing the dynamics of wave trains having an unstable spectral interval of wavenumbers. The transformation to appropriate canonical variables turns out to be different for each case, and equations we obtained are different for the two types of instability we considered. Also obtained are evolution equations governing the dynamics of wave trains in weakly subcritical media and in media where modes are coupled in a stable way. Presented results do not depend on a specific physical nature of a medium and refer to a broad class of dynamical systems having the Hamiltonian structure of a special form.

  13. Markovian Monte Carlo program EvolFMC v.2 for solving QCD evolution equations

    Science.gov (United States)

    Jadach, S.; Płaczek, W.; Skrzypek, M.; Stokłosa, P.

    2010-02-01

    We present the program EvolFMC v.2 that solves the evolution equations in QCD for the parton momentum distributions by means of the Monte Carlo technique based on the Markovian process. The program solves the DGLAP-type evolution as well as modified-DGLAP ones. In both cases the evolution can be performed in the LO or NLO approximation. The quarks are treated as massless. The overall technical precision of the code has been established at 5×10. This way, for the first time ever, we demonstrate that with the Monte Carlo method one can solve the evolution equations with precision comparable to the other numerical methods. New version program summaryProgram title: EvolFMC v.2 Catalogue identifier: AEFN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including binary test data, etc.: 66 456 (7407 lines of C++ code) No. of bytes in distributed program, including test data, etc.: 412 752 Distribution format: tar.gz Programming language: C++ Computer: PC, Mac Operating system: Linux, Mac OS X RAM: Less than 256 MB Classification: 11.5 External routines: ROOT ( http://root.cern.ch/drupal/) Nature of problem: Solution of the QCD evolution equations for the parton momentum distributions of the DGLAP- and modified-DGLAP-type in the LO and NLO approximations. Solution method: Monte Carlo simulation of the Markovian process of a multiple emission of partons. Restrictions:Limited to the case of massless partons. Implemented in the LO and NLO approximations only. Weighted events only. Unusual features: Modified-DGLAP evolutions included up to the NLO level. Additional comments: Technical precision established at 5×10. Running time: For the 10 6 events at 100 GeV: DGLAP NLO: 27s; C-type modified DGLAP NLO: 150s (MacBook Pro with Mac OS X v.10

  14. Decoupling the NLO coupled DGLAP evolution equations: an analytic solution to pQCD

    International Nuclear Information System (INIS)

    Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.

    2010-01-01

    Using repeated Laplace transforms, we turn coupled, integral-differential singlet DGLAP equations into NLO (next-to-leading) coupled algebraic equations, which we then decouple. After two Laplace inversions we find new tools for pQCD: decoupled NLO analytic solutions F s (x,Q 2 )=F s (F s0 (x),G 0 (x)), G(x,Q 2 )=G(F s0 (x), G 0 (x)). F s , G are known NLO functions and F s0 (x)≡F s (x,Q 0 2 ), G 0 (x)≡G(x,Q 0 2 ) are starting functions for evolution beginning at Q 2 =Q 0 2 . We successfully compare our u and d non-singlet valence quark distributions with MSTW results (Martin et al., Eur. Phys. J. C 63:189, 2009). (orig.)

  15. Some Evolution Hierarchies Derived from Self-dual Yang-Mills Equations

    International Nuclear Information System (INIS)

    Zhang Yufeng; Hon, Y.C.

    2011-01-01

    We develop in this paper a new method to construct two explicit Lie algebras E and F. By using a loop algebra Ē of the Lie algebra E and the reduced self-dual Yang-Mills equations, we obtain an expanding integrable model of the Giachetti-Johnson (GJ) hierarchy whose Hamiltonian structure can also be derived by using the trace identity. This provides a much simpler construction method in comparing with the tedious variational identity approach. Furthermore, the nonlinear integrable coupling of the GJ hierarchy is readily obtained by introducing the Lie algebra g N . As an application, we apply the loop algebra E-tilde of the Lie algebra E to obtain a kind of expanding integrable model of the Kaup-Newell (KN) hierarchy which, consisting of two arbitrary parameters α and β, can be reduced to two nonlinear evolution equations. In addition, we use a loop algebra F of the Lie algebra F to obtain an expanding integrable model of the BT hierarchy whose Hamiltonian structure is the same as using the trace identity. Finally, we deduce five integrable systems in R 3 based on the self-dual Yang-Mills equations, which include Poisson structures, irregular lines, and the reduced equations. (general)

  16. On an abstract evolution equation with a spectral operator of scalar type

    Directory of Open Access Journals (Sweden)

    Marat V. Markin

    2002-01-01

    Full Text Available It is shown that the weak solutions of the evolution equation y′(t=Ay(t, t∈[0,T (0

  17. Three-loop evolution equation for flavor-nonsinglet operators in off-forward kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Braun, V.M.; Strohmaier, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Manashov, A.N. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik; Moch, S. [Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik

    2017-03-15

    Using the approach based on conformal symmetry we calculate the three-loop (NNLO) contribution to the evolution equation for flavor-nonsinglet leading twist operators in the MS scheme. The explicit expression for the three-loop kernel is derived for the corresponding light-ray operator in coordinate space. The expansion in local operators is performed and explicit results are given for the matrix of the anomalous dimensions for the operators up to seven covariant derivatives. The results are directly applicable to the renormalization of the pion light-cone distribution amplitude and flavor-nonsinglet generalized parton distributions.

  18. Evolution in fluctuating environments: decomposing selection into additive components of the Robertson-Price equation.

    Science.gov (United States)

    Engen, Steinar; Saether, Bernt-Erik

    2014-03-01

    We analyze the stochastic components of the Robertson-Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  19. Equivalent construction of the infinitesimal time translation operator in algebraic dynamics algorithm for partial differential evolution equation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.

  20. Scalar evolution equations for shear waves in incompressible solids: a simple derivation of the Z, ZK, KZK and KP equations

    OpenAIRE

    Destrade, Michel; Goriely, Alain; Saccomandi, Giuseppe

    2011-01-01

    We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent, and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation c...

  1. Evolution equation for the higher-twist B-meson distribution amplitude

    International Nuclear Information System (INIS)

    Braun, V.M.; Offen, N.; Manashov, A.N.; Regensburg Univ.; Sankt-Petersburg State Univ.

    2015-07-01

    We find that the evolution equation for the three-particle quark-gluon B-meson light-cone distribution amplitude (DA) of subleading twist is completely integrable in the large N c limit and can be solved exactly. The lowest anomalous dimension is separated from the remaining, continuous, spectrum by a finite gap. The corresponding eigenfunction coincides with the contribution of quark-gluon states to the two-particle DA φ - (ω) so that the evolution equation for the latter is the same as for the leading-twist DA φ + (ω) up to a constant shift in the anomalous dimension. Thus, ''genuine'' three-particle states that belong to the continuous spectrum effectively decouple from φ - (ω) to the leading-order accuracy. In turn, the scale dependence of the full three-particle DA turns out to be nontrivial so that the contribution with the lowest anomalous dimension does not become leading at any scale. The results are illustrated on a simple model that can be used in studies of 1/m b corrections to heavy-meson decays in the framework of QCD factorization or light-cone sum rules.

  2. Green's function-stochastic methods framework for probing nonlinear evolution problems: Burger's equation, the nonlinear Schroedinger's equation, and hydrodynamic organization of near-molecular-scale vorticity

    International Nuclear Information System (INIS)

    Keanini, R.G.

    2011-01-01

    Research highlights: → Systematic approach for physically probing nonlinear and random evolution problems. → Evolution of vortex sheets corresponds to evolution of an Ornstein-Uhlenbeck process. → Organization of near-molecular scale vorticity mediated by hydrodynamic modes. → Framework allows calculation of vorticity evolution within random strain fields. - Abstract: A framework which combines Green's function (GF) methods and techniques from the theory of stochastic processes is proposed for tackling nonlinear evolution problems. The framework, established by a series of easy-to-derive equivalences between Green's function and stochastic representative solutions of linear drift-diffusion problems, provides a flexible structure within which nonlinear evolution problems can be analyzed and physically probed. As a preliminary test bed, two canonical, nonlinear evolution problems - Burgers' equation and the nonlinear Schroedinger's equation - are first treated. In the first case, the framework provides a rigorous, probabilistic derivation of the well known Cole-Hopf ansatz. Likewise, in the second, the machinery allows systematic recovery of a known soliton solution. The framework is then applied to a fairly extensive exploration of physical features underlying evolution of randomly stretched and advected Burger's vortex sheets. Here, the governing vorticity equation corresponds to the Fokker-Planck equation of an Ornstein-Uhlenbeck process, a correspondence that motivates an investigation of sub-sheet vorticity evolution and organization. Under the assumption that weak hydrodynamic fluctuations organize disordered, near-molecular-scale, sub-sheet vorticity, it is shown that these modes consist of two weakly damped counter-propagating cross-sheet acoustic modes, a diffusive cross-sheet shear mode, and a diffusive cross-sheet entropy mode. Once a consistent picture of in-sheet vorticity evolution is established, a number of analytical results, describing the

  3. Center manifolds for a class of degenerate evolution equations and existence of small-amplitude kinetic shocks

    Science.gov (United States)

    Pogan, Alin; Zumbrun, Kevin

    2018-06-01

    We construct center manifolds for a class of degenerate evolution equations including the steady Boltzmann equation and related kinetic models, establishing in the process existence and behavior of small-amplitude kinetic shock and boundary layers. Notably, for Boltzmann's equation, we show that elements of the center manifold decay in velocity at near-Maxwellian rate, in accord with the formal Chapman-Enskog picture of near-equilibrium flow as evolution along the manifold of Maxwellian states, or Grad moment approximation via Hermite polynomials in velocity. Our analysis is from a classical dynamical systems point of view, with a number of interesting modifications to accommodate ill-posedness of the underlying evolution equation.

  4. Analytic treatment of leading-order parton evolution equations: Theory and tests

    International Nuclear Information System (INIS)

    Block, Martin M.; Durand, Loyal; McKay, Douglas W.

    2009-01-01

    We recently derived an explicit expression for the gluon distribution function G(x,Q 2 )=xg(x,Q 2 ) in terms of the proton structure function F 2 γp (x,Q 2 ) in leading-order (LO) QCD by solving the LO Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation for the Q 2 evolution of F 2 γp (x,Q 2 ) analytically, using a differential-equation method. We showed that accurate experimental knowledge of F 2 γp (x,Q 2 ) in a region of Bjorken x and virtuality Q 2 is all that is needed to determine the gluon distribution in that region. We rederive and extend the results here using a Laplace-transform technique, and show that the singlet quark structure function F S (x,Q 2 ) can be determined directly in terms of G from the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi gluon evolution equation. To illustrate the method and check the consistency of existing LO quark and gluon distributions, we used the published values of the LO quark distributions from the CTEQ5L and MRST2001 LO analyses to form F 2 γp (x,Q 2 ), and then solved analytically for G(x,Q 2 ). We find that the analytic and fitted gluon distributions from MRST2001LO agree well with each other for all x and Q 2 , while those from CTEQ5L differ significantly from each other for large x values, x > or approx. 0.03-0.05, at all Q 2 . We conclude that the published CTEQ5L distributions are incompatible in this region. Using a nonsinglet evolution equation, we obtain a sensitive test of quark distributions which holds in both LO and next-to-leading order perturbative QCD. We find in either case that the CTEQ5 quark distributions satisfy the tests numerically for small x, but fail the tests for x > or approx. 0.03-0.05--their use could potentially lead to significant shifts in predictions of quantities sensitive to large x. We encountered no problems with the MRST2001LO distributions or later CTEQ distributions. We suggest caution in the use of the CTEQ5 distributions.

  5. A quasi moment description of the evolution of an electron gas towards a state dominated by a reduced transport equation

    International Nuclear Information System (INIS)

    Oeien, A.H.

    1980-09-01

    For electrons in electric and magnetic fields which collide elastically with neutral atoms or molecules a minute evolution study is made using the multiple time scale method. In this study a set of quasi moment equations is used which is derived from the Boltzmann equation by taking appropriate quasi moments, i.e. velocity moments where the integration is performed only over velocity angles. In a systematic way the evolution in a transient regime is revealed where processes take place on time scales related to the electron-atom collision frequency and electron cyclotron frequency and how the evolution enters a regime where it is governed by a reduced transport equation is shown. This work has relevance to the theory of evolution of gases of charged particles in general and to non-neutral plasmas and partially ionized gases in particular. (Auth.)

  6. On the classification of scalar evolution equations with non-constant separant

    Science.gov (United States)

    Hümeyra Bilge, Ayşe; Mizrahi, Eti

    2017-01-01

    The ‘separant’ of the evolution equation u t   =  F, where F is some differentiable function of the derivatives of u up to order m, is the partial derivative \\partial F/\\partial {{u}m}, where {{u}m}={{\\partial}m}u/\\partial {{x}m} . As an integrability test, we use the formal symmetry method of Mikhailov-Shabat-Sokolov, which is based on the existence of a recursion operator as a formal series. The solvability of its coefficients in the class of local functions gives a sequence of conservation laws, called the ‘conserved densities’ {ρ(i)}, i=-1,1,2,3,\\ldots . We apply this method to the classification of scalar evolution equations of orders 3≤slant m≤slant 15 , for which {ρ(-1)}={≤ft[\\partial F/\\partial {{u}m}\\right]}-1/m} and {{ρ(1)} are non-trivial, i.e. they are not total derivatives and {ρ(-1)} is not linear in its highest order derivative. We obtain the ‘top level’ parts of these equations and their ‘top dependencies’ with respect to the ‘level grading’, that we defined in a previous paper, as a grading on the algebra of polynomials generated by the derivatives u b+i , over the ring of {{C}∞} functions of u,{{u}1},\\ldots,{{u}b} . In this setting b and i are called ‘base’ and ‘level’, respectively. We solve the conserved density conditions to show that if {ρ(-1)} depends on u,{{u}1},\\ldots,{{u}b}, then, these equations are level homogeneous polynomials in {{u}b+i},\\ldots,{{u}m} , i≥slant 1 . Furthermore, we prove that if {ρ(3)} is non-trivial, then {ρ(-1)}={≤ft(α ub2+β {{u}b}+γ \\right)}1/2} , with b≤slant 3 while if {{ρ(3)} is trivial, then {ρ(-1)}={≤ft(λ {{u}b}+μ \\right)}1/3} , where b≤slant 5 and α, β, γ, λ and μ are functions of u,\\ldots,{{u}b-1} . We show that the equations that we obtain form commuting flows and we construct their recursion operators that are respectively of orders 2 and 6 for non-trivial and trivial {{ρ(3)} respectively. Omitting lower order

  7. Neutron star evolutions using tabulated equations of state with a new execution model

    Science.gov (United States)

    Anderson, Matthew; Kaiser, Hartmut; Neilsen, David; Sterling, Thomas

    2012-03-01

    The addition of nuclear and neutrino physics to general relativistic fluid codes allows for a more realistic description of hot nuclear matter in neutron star and black hole systems. This additional microphysics requires that each processor have access to large tables of data, such as equations of state, and in large simulations the memory required to store these tables locally can become excessive unless an alternative execution model is used. In this talk we present neutron star evolution results obtained using a message driven multi-threaded execution model known as ParalleX as an alternative to using a hybrid MPI-OpenMP approach. ParalleX provides the user a new way of computation based on message-driven flow control coordinated by lightweight synchronization elements which improves scalability and simplifies code development. We present the spectrum of radial pulsation frequencies for a neutron star with the Shen equation of state using the ParalleX execution model. We present performance results for an open source, distributed, nonblocking ParalleX-based tabulated equation of state component capable of handling tables that may even be too large to read into the memory of a single node.

  8. Scalar evolution equations for shear waves in incompressible solids: a simple derivation of the Z, ZK, KZK and KP equations

    KAUST Repository

    Destrade, M.

    2010-12-08

    We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.

  9. Scalar evolution equations for shear waves in incompressible solids: a simple derivation of the Z, ZK, KZK and KP equations

    KAUST Repository

    Destrade, M.; Goriely, A.; Saccomandi, G.

    2010-01-01

    We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.

  10. Transversely Compressed- and Restrained Shear Joints

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Hansen, Christian Skodborg

    2013-01-01

    Anchorage of FRP strengthening systems where the deformation perpendicular to the FRP material is restrained or a compressive force is applied on the strengthening, seems to provide ductility, increased utilization of the FRP and failure modes which can be controlled through the anchorage method....

  11. On the evolution of perturbations to solutions of the Kadomtsev-Petviashvilli equation using the Benney-Luke equation

    International Nuclear Information System (INIS)

    Ablowitz, Mark J; Curtis, Christopher W

    2011-01-01

    The Benney-Luke equation, which arises as a long wave asymptotic approximation of water waves, contains the Kadomtsev-Petviashvilli (KP) equation as a leading-order maximal balanced approximation. The question analyzed is how the Benney-Luke equation modifies the so-called web solutions of the KP equation. It is found that the Benney-Luke equation introduces dispersive radiation which breaks each of the symmetric soliton-like humps well away from the interaction region of the KP web solution into a tail of multi-peaked oscillating profiles behind the main solitary hump. Computation indicates that the wave structure is modified near the center of the interaction region. Both analytical and numerical techniques are employed for working with non-periodic, non-decaying solutions on unbounded domains.

  12. On the evolution of perturbations to solutions of the Kadomtsev-Petviashvilli equation using the Benney-Luke equation

    Science.gov (United States)

    Ablowitz, Mark J.; Curtis, Christopher W.

    2011-05-01

    The Benney-Luke equation, which arises as a long wave asymptotic approximation of water waves, contains the Kadomtsev-Petviashvilli (KP) equation as a leading-order maximal balanced approximation. The question analyzed is how the Benney-Luke equation modifies the so-called web solutions of the KP equation. It is found that the Benney-Luke equation introduces dispersive radiation which breaks each of the symmetric soliton-like humps well away from the interaction region of the KP web solution into a tail of multi-peaked oscillating profiles behind the main solitary hump. Computation indicates that the wave structure is modified near the center of the interaction region. Both analytical and numerical techniques are employed for working with non-periodic, non-decaying solutions on unbounded domains.

  13. A multiscale asymptotic analysis of time evolution equations on the complex plane

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Gastão A., E-mail: gbraga@mat.ufmg.br [Departamento de Matemática, Universidade Federal de Minas Gerais, Caixa Postal 702, 30161-970 Belo Horizonte, MG (Brazil); Conti, William R. P., E-mail: wrpconti@gmail.com [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Dr. Carvalho de Mendonça 144, 11070-100 Santos, SP (Brazil)

    2016-07-15

    Using an appropriate norm on the space of entire functions, we extend to the complex plane the renormalization group method as developed by Bricmont et al. The method is based upon a multiscale approach that allows for a detailed description of the long time asymptotics of solutions to initial value problems. The time evolution equation considered here arises in the study of iterations of the block spin renormalization group transformation for the hierarchical N-vector model. We show that, for initial conditions belonging to a certain Fréchet space of entire functions of exponential type, the asymptotics is universal in the sense that it is dictated by the fixed point of a certain operator acting on the space of initial conditions.

  14. Modeling Restrained Shrinkage Induced Cracking in Concrete Rings Using the Thick Level Set Approach

    Directory of Open Access Journals (Sweden)

    Rebecca Nakhoul

    2018-03-01

    Full Text Available Modeling restrained shrinkage-induced damage and cracking in concrete is addressed herein. The novel Thick Level Set (TLS damage growth and crack propagation model is used and adapted by introducing shrinkage contribution into the formulation. The TLS capacity to predict damage evolution, crack initiation and growth triggered by restrained shrinkage in absence of external loads is evaluated. A study dealing with shrinkage-induced cracking in elliptical concrete rings is presented herein. Key results such as the effect of rings oblateness on stress distribution and critical shrinkage strain needed to initiate damage are highlighted. In addition, crack positions are compared to those observed in experiments and are found satisfactory.

  15. Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth

    International Nuclear Information System (INIS)

    Thiele, U

    2010-01-01

    In the present contribution we review basic mathematical results for three physical systems involving self-organizing solid or liquid films at solid surfaces. The films may undergo a structuring process by dewetting, evaporation/condensation or epitaxial growth, respectively. We highlight similarities and differences of the three systems based on the observation that in certain limits all of them may be described using models of similar form, i.e. time evolution equations for the film thickness profile. Those equations represent gradient dynamics characterized by mobility functions and an underlying energy functional. Two basic steps of mathematical analysis are used to compare the different systems. First, we discuss the linear stability of homogeneous steady states, i.e. flat films, and second the systematics of non-trivial steady states, i.e. drop/hole states for dewetting films and quantum-dot states in epitaxial growth, respectively. Our aim is to illustrate that the underlying solution structure might be very complex as in the case of epitaxial growth but can be better understood when comparing the much simpler results for the dewetting liquid film. We furthermore show that the numerical continuation techniques employed can shed some light on this structure in a more convenient way than time-stepping methods. Finally we discuss that the usage of the employed general formulation does not only relate seemingly unrelated physical systems mathematically, but does allow as well for discussing model extensions in a more unified way.

  16. Decoupling the NLO coupled DGLAP evolution equations: an analytic solution to pQCD

    Energy Technology Data Exchange (ETDEWEB)

    Block, Martin M. [Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Durand, Loyal [University of Wisconsin, Department of Physics, Madison, WI (United States); Ha, Phuoc [Towson University, Department of Physics, Astronomy and Geosciences, Towson, MD (United States); McKay, Douglas W. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States)

    2010-10-15

    Using repeated Laplace transforms, we turn coupled, integral-differential singlet DGLAP equations into NLO (next-to-leading) coupled algebraic equations, which we then decouple. After two Laplace inversions we find new tools for pQCD: decoupled NLO analytic solutions F{sub s}(x,Q{sup 2})=F{sub s}(F{sub s0}(x),G{sub 0}(x)), G(x,Q{sup 2})=G(F{sub s0}(x), G{sub 0}(x)). F{sub s}, G are known NLO functions and F{sub s0}(x){identical_to}F{sub s}(x,Q{sub 0}{sup 2}), G{sub 0}(x){identical_to}G(x,Q{sub 0}{sup 2}) are starting functions for evolution beginning at Q{sup 2}=Q{sub 0}{sup 2}. We successfully compare our u and d non-singlet valence quark distributions with MSTW results (Martin et al., Eur. Phys. J. C 63:189, 2009). (orig.)

  17. A transport equation for the evolution of shock amplitudes along rays

    Directory of Open Access Journals (Sweden)

    Giovanni Russo

    1991-05-01

    Full Text Available A new asymptotic method is derived for the study of the evolution of weak shocks in several dimension. The method is based on the Generalized Wavefront Expansion derived in [1]. In that paper the propagation of a shock into a known background was studied under the assumption that shock is weak, i.e. Mach Number =1+O(ε, ε ≪ 1, and that the perturbation of the field varies over a length scale O(ε. To the lowest order, the shock surface evolves along the rays associated with the unperturbed state. An infinite system of compatibility relations was derived for the jump in the field and its normal derivatives along the shock, but no valid criterion was found for a truncation of the system. Here we show that the infinite hierarchy is equivalent to a single equation that describes the evolution of the shock along the rays. We show that this method gives equivalent results to those obtained by Weakly Nonlinear Geometrical Optics [2].

  18. Cultural transmission and the evolution of human behaviour: a general approach based on the Price equation.

    Science.gov (United States)

    El Mouden, C; André, J-B; Morin, O; Nettle, D

    2014-02-01

    Transmitted culture can be viewed as an inheritance system somewhat independent of genes that is subject to processes of descent with modification in its own right. Although many authors have conceptualized cultural change as a Darwinian process, there is no generally agreed formal framework for defining key concepts such as natural selection, fitness, relatedness and altruism for the cultural case. Here, we present and explore such a framework using the Price equation. Assuming an isolated, independently measurable culturally transmitted trait, we show that cultural natural selection maximizes cultural fitness, a distinct quantity from genetic fitness, and also that cultural relatedness and cultural altruism are not reducible to or necessarily related to their genetic counterparts. We show that antagonistic coevolution will occur between genes and culture whenever cultural fitness is not perfectly aligned with genetic fitness, as genetic selection will shape psychological mechanisms to avoid susceptibility to cultural traits that bear a genetic fitness cost. We discuss the difficulties with conceptualizing cultural change using the framework of evolutionary theory, the degree to which cultural evolution is autonomous from genetic evolution, and the extent to which cultural change should be seen as a Darwinian process. We argue that the nonselection components of evolutionary change are much more important for culture than for genes, and that this and other important differences from the genetic case mean that different approaches and emphases are needed for cultural than genetic processes. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  19. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics

    Science.gov (United States)

    Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood

    2018-03-01

    The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.

  20. Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations

    Science.gov (United States)

    Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru

    2018-04-01

    This paper studies the symmetry analysis, explicit solutions, convergence analysis, and conservation laws (Cls) for two different space-time fractional nonlinear evolution equations with Riemann-Liouville (RL) derivative. The governing equations are reduced to nonlinear ordinary differential equation (ODE) of fractional order using their Lie point symmetries. In the reduced equations, the derivative is in Erdelyi-Kober (EK) sense, power series technique is applied to derive an explicit solutions for the reduced fractional ODEs. The convergence of the obtained power series solutions is also presented. Moreover, the new conservation theorem and the generalization of the Noether operators are developed to construct the nonlocal Cls for the equations . Some interesting figures for the obtained explicit solutions are presented.

  1. Analytic solution to leading order coupled DGLAP evolution equations: A new perturbative QCD tool

    International Nuclear Information System (INIS)

    Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.

    2011-01-01

    We have analytically solved the LO perturbative QCD singlet DGLAP equations [V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)][G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977)][Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)] using Laplace transform techniques. Newly developed, highly accurate, numerical inverse Laplace transform algorithms [M. M. Block, Eur. Phys. J. C 65, 1 (2010)][M. M. Block, Eur. Phys. J. C 68, 683 (2010)] allow us to write fully decoupled solutions for the singlet structure function F s (x,Q 2 ) and G(x,Q 2 ) as F s (x,Q 2 )=F s (F s0 (x 0 ),G 0 (x 0 )) and G(x,Q 2 )=G(F s0 (x 0 ),G 0 (x 0 )), where the x 0 are the Bjorken x values at Q 0 2 . Here F s and G are known functions--found using LO DGLAP splitting functions--of the initial boundary conditions F s0 (x)≡F s (x,Q 0 2 ) and G 0 (x)≡G(x,Q 0 2 ), i.e., the chosen starting functions at the virtuality Q 0 2 . For both G(x) and F s (x), we are able to either devolve or evolve each separately and rapidly, with very high numerical accuracy--a computational fractional precision of O(10 -9 ). Armed with this powerful new tool in the perturbative QCD arsenal, we compare our numerical results from the above equations with the published MSTW2008 and CTEQ6L LO gluon and singlet F s distributions [A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009)], starting from their initial values at Q 0 2 =1 GeV 2 and 1.69 GeV 2 , respectively, using their choice of α s (Q 2 ). This allows an important independent check on the accuracies of their evolution codes and, therefore, the computational accuracies of their published parton distributions. Our method completely decouples the two LO distributions, at the same time guaranteeing that both G and F s satisfy the singlet coupled DGLAP equations. It also allows one to easily obtain the effects of the starting functions on the evolved gluon and singlet structure functions, as functions of both Q

  2. A Simple Approach to Derive a Novel N-Soliton Solution for a (3+1)-Dimensional Nonlinear Evolution Equation

    International Nuclear Information System (INIS)

    Wu Jianping

    2010-01-01

    Based on the Hirota bilinear form, a simple approach without employing the standard perturbation technique, is presented for constructing a novel N-soliton solution for a (3+1)-dimensional nonlinear evolution equation. Moreover, the novel N-soliton solution is shown to have resonant behavior with the aid of Mathematica. (general)

  3. Thermodynamic consistency of viscoplastic material models involving external variable rates in the evolution equations for the internal variables

    International Nuclear Information System (INIS)

    Malmberg, T.

    1993-09-01

    The objective of this study is to derive and investigate thermodynamic restrictions for a particular class of internal variable models. Their evolution equations consist of two contributions: the usual irreversible part, depending only on the present state, and a reversible but path dependent part, linear in the rates of the external variables (evolution equations of ''mixed type''). In the first instance the thermodynamic analysis is based on the classical Clausius-Duhem entropy inequality and the Coleman-Noll argument. The analysis is restricted to infinitesimal strains and rotations. The results are specialized and transferred to a general class of elastic-viscoplastic material models. Subsequently, they are applied to several viscoplastic models of ''mixed type'', proposed or discussed in the literature (Robinson et al., Krempl et al., Freed et al.), and it is shown that some of these models are thermodynamically inconsistent. The study is closed with the evaluation of the extended Clausius-Duhem entropy inequality (concept of Mueller) where the entropy flux is governed by an assumed constitutive equation in its own right; also the constraining balance equations are explicitly accounted for by the method of Lagrange multipliers (Liu's approach). This analysis is done for a viscoplastic material model with evolution equations of the ''mixed type''. It is shown that this approach is much more involved than the evaluation of the classical Clausius-Duhem entropy inequality with the Coleman-Noll argument. (orig.) [de

  4. An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2017-11-01

    Full Text Available In this article, a variety of solitary wave solutions are observed for microtubules (MTs. We approach the problem by treating the solutions as nonlinear RLC transmission lines and then find exact solutions of Nonlinear Evolution Equations (NLEEs involving parameters of special interest in nanobiosciences and biophysics. We determine hyperbolic, trigonometric, rational and exponential function solutions and obtain soliton-like pulse solutions for these equations. A comparative study against other methods demonstrates the validity of the technique that we developed and demonstrates that our method provides additional solutions. Finally, using suitable parameter values, we plot 2D and 3D graphics of the exact solutions that we observed using our method. Keywords: Analytical method, Exact solutions, Nonlinear evolution equations (NLEEs of microtubules, Nonlinear RLC transmission lines

  5. Group theoretical and Hamiltonian structures of integrable evolution equations in 1x1 and 2x1 dimensions

    International Nuclear Information System (INIS)

    Konopel'chenko, B.G.

    1983-01-01

    New results in investigation of the group-theoretical and hamiltonian structure of the integrable evolution equations in 1+1 and 2+1 dimensions are briefly reviewed. Main general results, such as the form of integrable equations, Baecklund transfomations, symmetry groups, are turned out to have the same form for different spectral problems. The used generalized AKNS-method (the Ablowitz Kaup, Newell and Segur method) permits to prove that all nonlinear evolution equations considered are hamiltonians. The general condition of effective application of the ACNS mehtod to the concrete spectral problem is the possibility to calculate a recursion operator explicitly. The embedded representation is shown to be a fundamental object connected with different aspects of the inverse scattering problem

  6. Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I

    International Nuclear Information System (INIS)

    Tsuchida, Takayuki; Wolf, Thomas

    2005-01-01

    We perform a classification of integrable systems of mixed scalar and vector evolution equations with respect to higher symmetries. We consider polynomial systems that are homogeneous under a suitable weighting of variables. This paper deals with the KdV weighting, the Burgers (or potential KdV or modified KdV) weighting, the Ibragimov-Shabat weighting and two unfamiliar weightings. The case of other weightings will be studied in a subsequent paper. Making an ansatz for undetermined coefficients and using a computer package for solving bilinear algebraic systems, we give the complete lists of second-order systems with a third-order or a fourth-order symmetry and third-order systems with a fifth-order symmetry. For all but a few systems in the lists, we show that the system (or, at least a subsystem of it) admits either a Lax representation or a linearizing transformation. A thorough comparison with recent work of Foursov and Olver is made

  7. Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchida, Takayuki [Department of Physics, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan); Wolf, Thomas [Department of Mathematics, Brock University, St Catharines, ON L2S 3A1 (Canada)

    2005-09-02

    We perform a classification of integrable systems of mixed scalar and vector evolution equations with respect to higher symmetries. We consider polynomial systems that are homogeneous under a suitable weighting of variables. This paper deals with the KdV weighting, the Burgers (or potential KdV or modified KdV) weighting, the Ibragimov-Shabat weighting and two unfamiliar weightings. The case of other weightings will be studied in a subsequent paper. Making an ansatz for undetermined coefficients and using a computer package for solving bilinear algebraic systems, we give the complete lists of second-order systems with a third-order or a fourth-order symmetry and third-order systems with a fifth-order symmetry. For all but a few systems in the lists, we show that the system (or, at least a subsystem of it) admits either a Lax representation or a linearizing transformation. A thorough comparison with recent work of Foursov and Olver is made.

  8. Diffusion-equation representations of landform evolution in the simplest circumstances: Appendix C

    Science.gov (United States)

    Hanks, Thomas C.

    2009-01-01

    The diffusion equation is one of the three great partial differential equations of classical physics. It describes the flow or diffusion of heat in the presence of temperature gradients, fluid flow in porous media in the presence of pressure gradients, and the diffusion of molecules in the presence of chemical gradients. [The other two equations are the wave equation, which describes the propagation of electromagnetic waves (including light), acoustic (sound) waves, and elastic (seismic) waves radiated from earthquakes; and LaPlace’s equation, which describes the behavior of electric, gravitational, and fluid potentials, all part of potential field theory. The diffusion equation reduces to LaPlace’s equation at steady state, when the field of interest does not depend on t. Poisson’s equation is LaPlace’s equation with a source term.

  9. Evolution operator equation: Integration with algebraic and finite difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado

    1997-10-01

    The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.

  10. Symbolic Computations and Exact and Explicit Solutions of Some Nonlinear Evolution Equations in Mathematical Physics

    International Nuclear Information System (INIS)

    Oezis, Turgut; Aslan, Imail

    2009-01-01

    With the aid of symbolic computation system Mathematica, several explicit solutions for Fisher's equation and CKdV equation are constructed by utilizing an auxiliary equation method, the so called G'/G-expansion method, where the new and more general forms of solutions are also constructed. When the parameters are taken as special values, the previously known solutions are recovered. (general)

  11. Temporal attention for visual food stimuli in restrained eaters.

    Science.gov (United States)

    Neimeijer, Renate A M; de Jong, Peter J; Roefs, Anne

    2013-05-01

    Although restrained eaters try to limit their food intake, they often fail and indulge in exactly those foods that they want to avoid. A possible explanation is a temporal attentional bias for food cues. It could be that for these people food stimuli are processed relatively efficiently and require less attentional resources to enter awareness. Once a food stimulus has captured attention, it may be preferentially processed and granted prioritized access to limited cognitive resources. This might help explain why restrained eaters often fail in their attempts to restrict their food intake. A Rapid Serial Visual Presentation task consisting of dual and single target trials with food and neutral pictures as targets and/or distractors was administered to restrained (n=40) and unrestrained (n=40) eaters to study temporal attentional bias. Results indicated that (1) food cues did not diminish the attentional blink in restrained eaters when presented as second target; (2) specifically restrained eaters showed an interference effect of identifying food targets on the identification of preceding neutral targets; (3) for both restrained and unrestrained eaters, food cues enhanced the attentional blink; (4) specifically in restrained eaters, food distractors elicited an attention blink in the single target trials. In restrained eaters, food cues get prioritized access to limited cognitive resources, even if this processing priority interferes with their current goals. This temporal attentional bias for food stimuli might help explain why restrained eaters typically have difficulties maintaining their diet rules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Oscillating patterns in image processing and nonlinear evolution equations the fifteenth Dean Jacqueline B. Lewis memorial lectures

    CERN Document Server

    Meyer, Yves

    2001-01-01

    Image compression, the Navier-Stokes equations, and detection of gravitational waves are three seemingly unrelated scientific problems that, remarkably, can be studied from one perspective. The notion that unifies the three problems is that of "oscillating patterns", which are present in many natural images, help to explain nonlinear equations, and are pivotal in studying chirps and frequency-modulated signals. The first chapter of this book considers image processing, more precisely algorithms of image compression and denoising. This research is motivated in particular by the new standard for compression of still images known as JPEG-2000. The second chapter has new results on the Navier-Stokes and other nonlinear evolution equations. Frequency-modulated signals and their use in the detection of gravitational waves are covered in the final chapter. In the book, the author describes both what the oscillating patterns are and the mathematics necessary for their analysis. It turns out that this mathematics invo...

  13. Emotional arousal and overeating in restrained eaters.

    Science.gov (United States)

    Cools, J; Schotte, D E; McNally, R J

    1992-05-01

    We tested the effects of 3 mood inductions (neutral, positive, and negative) on food intake in 91 women of varying degrees of dietary restraint. Mood induction was accomplished by exposure to 1 of 3 film segments: a travelogue (neutral affect), a comedy film (positive affect), and a horror film (negative affect). In subjects exposed to the neutral film, food intake decreased with increasing levels of dietary restraint. Among subjects who viewed either the comedy film or the horror film, however, food intake increased with increasing restraint. Although the horror film appeared to be more disinhibiting than the comedy film, this effect may have resulted from a difference in the intensity of the emotions induced rather than from their valence. These results suggest that emotional arousal, regardless of valence, may trigger overeating among restrained eaters.

  14. Traveling wave solutions for two nonlinear evolution equations with nonlinear terms of any order

    International Nuclear Information System (INIS)

    Feng Qing-Hua; Zhang Yao-Ming; Meng Fan-Wei

    2011-01-01

    In this paper, based on the known first integral method and the Riccati sub-ordinary differential equation (ODE) method, we try to seek the exact solutions of the general Gardner equation and the general Benjamin—Bona—Mahoney equation. As a result, some traveling wave solutions for the two nonlinear equations are established successfully. Also we make a comparison between the two methods. It turns out that the Riccati sub-ODE method is more effective than the first integral method in handling the proposed problems, and more general solutions are constructed by the Riccati sub-ODE method. (general)

  15. A thermal active restrained shrinkage ring test to study the early age concrete behaviour of massive structures

    International Nuclear Information System (INIS)

    Briffaut, M.; Benboudjema, F.; Torrenti, J.M.; Nahas, G.

    2011-01-01

    In massive concrete structures, cracking may occur during hardening, especially if autogenous and thermal strains are restrained. The concrete permeability due to this cracking may rise significantly and thus increase leakage (in tank, nuclear containment...) and reduce the durability. The restrained shrinkage ring test is used to study the early age concrete behaviour (delayed strains evolution and cracking). This test shows, at 20 o C and without drying, for a concrete mix which is representative of a French nuclear power plant containment vessel (w/c ratio equal to 0.57), that the amplitude of autogenous shrinkage (about 40 μm/m for the studied concrete mix) is not high enough to cause cracking. Indeed, in this configuration, thermal shrinkage is not significant, whereas this is a major concern for massive structures. Therefore, an active test has been developed to study cracking due to restrained thermal shrinkage. This test is an evolution of the classical restrained shrinkage ring test. It allows to take into account both autogenous and thermal shrinkages. Its principle is to create the thermal strain effects by increasing the temperature of the brass ring (by a fluid circulation) in order to expand it. With this test, the early age cracking due to restrained shrinkage, the influence of reinforcement and construction joints have been experimentally studied. It shows that, as expected, reinforcement leads to an increase of the number of cracks but a decrease of crack widths. Moreover, cracking occurs preferentially at the construction joint.

  16. Mass and energy-capital conservation equations to study the price evolution of non-renewable energy resources

    International Nuclear Information System (INIS)

    Gori, F.

    2006-01-01

    Mass conservation equation of non-renewable resources is employed to study the resources remaining in the reservoir according to the extraction policy. The energy conservation equation is transformed into an energy-capital conservation equation. The Hotelling rule is shown to be a special case of the general energy-capital conservation equation when the mass flow rate of extracted resources is equal to unity. Mass and energy-capital conservation equations are then coupled and solved together. It is investigated the price evolution of extracted resources. The conclusion of the Hotelling rule for non-extracted resources, i.e. an exponential increase of the price of non-renewable resources at the rate of current interest, is then generalized. A new parameter, called 'Price Increase Factor', PIF, is introduced as the difference between the current interest rate of capital and the mass flow rate of extraction of non-renewable resources. The price of extracted resources can increase exponentially only if PIF is greater than zero or if the mass flow rate of extraction is lower than the current interest rate of capital. The price is constant if PIF is zero or if the mass flow rate of extraction is equal to the current interest rate. The price is decreasing with time if PIF is smaller than zero or if the mass flow rate of extraction is higher than the current interest rate. (author)

  17. 49 CFR 1103.22 - Restraining clients from improprieties.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Restraining clients from improprieties. 1103.22... Practitioner's Duties and Responsibilities Toward A Client § 1103.22 Restraining clients from improprieties. A practitioner should see that his clients act with the same restraint that the practitioner himself uses...

  18. Equations for the non linear evolution of the resistive tearing modes in toroidal plasmas

    International Nuclear Information System (INIS)

    Edery, D.; Pellat, R.; Soule, J.L.

    1979-09-01

    Following the tokamak ordering, we simplify the resistive MHD equations in toroidal geometry. We obtain a closed system of non linear equations for two scalar potentials of the magnetic and velocity fields and for plasma density and temperature. If we expand these equations in the inverse of aspect ratio they are exact to the two first orders. Our formalism should correctly describe the mode coupling by curvature effects /1/ and the toroidal displacement of magnetic surfaces /2/. It provides a natural extension of the well known cylindrical model /3/ and is now being solved on computer

  19. Almost Automorphic and Pseudo-Almost Automorphic Solutions to Semilinear Evolution Equations with Nondense Domain

    Directory of Open Access Journals (Sweden)

    Bruno de Andrade

    2009-01-01

    Full Text Available We study the existence and uniqueness of almost automorphic (resp., pseudo-almost automorphic solutions to a first-order differential equation with linear part dominated by a Hille-Yosida type operator with nondense domain.

  20. Continuous evolution of equations and inclusions involving set-valued contraction mappings with applications to generalized fractal transforms

    Directory of Open Access Journals (Sweden)

    Herb Kunze

    2014-06-01

    Full Text Available Let T be a set-valued contraction mapping on a general Banach space $\\mathcal{B}$. In the first part of this paper we introduce the evolution inclusion $\\dot x + x \\in Tx$ and study the convergence of solutions to this inclusion toward fixed points of T. Two cases are examined: (i T has a fixed point $\\bar y \\in \\mathcal{B}$ in the usual sense, i.e., $\\bar y = T \\bar y$ and (ii T has a fixed point in the sense of inclusions, i.e., $\\bar y \\in T \\bar y$. In the second part we extend this analysis to the case of set-valued evolution equations taking the form $\\dot x + x = Tx$. We also provide some applications to generalized fractal transforms.

  1. Second order time evolution of the multigroup diffusion and P1 equations for radiation transport

    International Nuclear Information System (INIS)

    Olson, Gordon L.

    2011-01-01

    Highlights: → An existing multigroup transport algorithm is extended to be second-order in time. → A new algorithm is presented that does not require a grey acceleration solution. → The two algorithms are tested with 2D, multi-material problems. → The two algorithms have comparable computational requirements. - Abstract: An existing solution method for solving the multigroup radiation equations, linear multifrequency-grey acceleration, is here extended to be second order in time. This method works for simple diffusion and for flux-limited diffusion, with or without material conduction. A new method is developed that does not require the solution of an averaged grey transport equation. It is effective solving both the diffusion and P 1 forms of the transport equation. Two dimensional, multi-material test problems are used to compare the solution methods.

  2. A comparison analysis of Sivashinsky's type evolution equations describing flame propagation in channels

    International Nuclear Information System (INIS)

    Guidi, Leonardo F.; Marchetti, D.H.U.

    2003-01-01

    We establish a comparison between Rakib-Sivashinsky and Michelson-Sivashinsky quasilinear parabolic differential equations governing the weak thermal limit of flame front propagating in channels. For the former equation, we give a complete description of all steady solutions and present their local and global stability analysis. For the latter, bi-coalescent and interpolating unstable steady solutions are introduced and shown to be more numerous than the previous known coalescent solutions. These facts are argued to be responsible for the disagreement between the observed dynamics in numerical experiments and the exact (linear) stability analysis and give ingredients to construct quasi-stable solutions describing parabolic steadily propagating flame with centered tip

  3. Persistence of solutions to nonlinear evolution equations in weighted Sobolev spaces

    Directory of Open Access Journals (Sweden)

    Xavier Carvajal Paredes

    2010-11-01

    Full Text Available In this article, we prove that the initial value problem associated with the Korteweg-de Vries equation is well-posed in weighted Sobolev spaces $mathcal{X}^{s,heta}$, for $s geq 2heta ge 2$ and the initial value problem associated with the nonlinear Schrodinger equation is well-posed in weighted Sobolev spaces $mathcal{X}^{s,heta}$, for $s geq heta geq 1$. Persistence property has been proved by approximation of the solutions and using a priori estimates.

  4. An evolution infinity Laplace equation modelling dynamic elasto-plastic torsion

    Science.gov (United States)

    Messelmi, Farid

    2017-12-01

    We consider in this paper a parabolic partial differential equation involving the infinity Laplace operator and a Leray-Lions operator with no coercitive assumption. We prove the existence and uniqueness of the corresponding approached problem and we show that at the limit the solution solves the parabolic variational inequality arising in the elasto-plastic torsion problem.

  5. Dark energy equation of state parameter and its evolution at low redshift

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Ashutosh; Sangwan, Archana; Jassal, H.K., E-mail: ashutosh_tripathi@fudan.edu.cn, E-mail: archanakumari@iisermohali.ac.in, E-mail: hkjassal@iisermohali.ac.in [Indian Institute of Science Education and Research Mohali, SAS Nagar, Mohali 140306, Punjab (India)

    2017-06-01

    In this paper, we constrain dark energy models using a compendium of observations at low redshifts. We consider the dark energy as a barotropic fluid, with the equation of state a constant as well the case where dark energy equation of state is a function of time. The observations considered here are Supernova Type Ia data, Baryon Acoustic Oscillation data and Hubble parameter measurements. We compare constraints obtained from these data and also do a combined analysis. The combined observational constraints put strong limits on variation of dark energy density with redshift. For varying dark energy models, the range of parameters preferred by the supernova type Ia data is in tension with the other low redshift distance measurements.

  6. Optical analogues of the Newton-Schrödinger equation and boson star evolution.

    Science.gov (United States)

    Roger, Thomas; Maitland, Calum; Wilson, Kali; Westerberg, Niclas; Vocke, David; Wright, Ewan M; Faccio, Daniele

    2016-11-14

    Many gravitational phenomena that lie at the core of our understanding of the Universe have not yet been directly observed. An example in this sense is the boson star that has been proposed as an alternative to some compact objects currently interpreted as being black holes. In the weak field limit, these stars are governed by the Newton-Schrodinger equation. Here we present an optical system that, under appropriate conditions, identically reproduces such equation in two dimensions. A rotating boson star is experimentally and numerically modelled by an optical beam propagating through a medium with a positive thermal nonlinearity and is shown to oscillate in time while also stable up to relatively high densities. For higher densities, instabilities lead to an apparent breakup of the star, yet coherence across the whole structure is maintained. These results show that optical analogues can be used to shed new light on inaccessible gravitational objects.

  7. Evolution of a Network of Vortex Loops in He-II: Exact Solution of the Rate Equation

    International Nuclear Information System (INIS)

    Nemirovskii, Sergey K.

    2006-01-01

    The evolution of a network of vortex loops in He-II due to the fusion and breakdown of vortex loops is studied. We perform investigation on the base of the ''rate equation'' for the distribution function n(l) of number of loops of length l. By use of the special ansatz we have found the exact powerlike solution of the rate equation in a stationary case. That solution is the famous equilibrium distribution n(l)∝l -5/2 obtained earlier from thermodynamic arguments. Our result, however, is not equilibrium; it describes the state with two mutual fluxes of the length (or energy) in l space. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the superfluid turbulent helium. In particular, we obtained that the mean radius of the curvature is of the order of interline space and that the decay of the vortex tangle obeys the Vinen equation. We also evaluated the full rate of reconnection

  8. Evolution of a network of vortex loops in He-II: exact solution of the rate equation.

    Science.gov (United States)

    Nemirovskii, Sergey K

    2006-01-13

    The evolution of a network of vortex loops in He-II due to the fusion and breakdown of vortex loops is studied. We perform investigation on the base of the "rate equation" for the distribution function n(l) of number of loops of length l. By use of the special ansatz we have found the exact power-like solution of the rate equation in a stationary case. That solution is the famous equilibrium distribution n(l) proportional l(-5/2) obtained earlier from thermodynamic arguments. Our result, however, is not equilibrium; it describes the state with two mutual fluxes of the length (or energy) in l space. Analyzing this solution we drew several results on the structure and dynamics of the vortex tangle in the superfluid turbulent helium. In particular, we obtained that the mean radius of the curvature is of the order of interline space and that the decay of the vortex tangle obeys the Vinen equation. We also evaluated the full rate of reconnection.

  9. Conformationally restrained aromatic analogues of fosmidomycin and FR900098.

    Science.gov (United States)

    Kurz, Thomas; Schlüter, Katrin; Pein, Miriam; Behrendt, Christoph; Bergmann, Bärbel; Walter, Rolf D

    2007-07-01

    The synthesis and in-vitro antimalarial activity of conformationally restrained bis(pivaloyloxymethyl) ester analogues of the natural product fosmidomycin is presented. In contrast to alpha-aryl-substituted analogues, conformationally restrained aromatic analogues exhibit only moderate in-vitro antimalarial activity against the chloroquine-sensitive strain 3D7 of Plasmodium falciparum. The most active derivative displays an IC(50) value of 47 microM.

  10. Behaviour of biaxially restrained concretes under high temperature

    International Nuclear Information System (INIS)

    Thienel, K.-Ch.; Rostasy, F.S.

    1993-01-01

    Under asymmetric biaxial loading the major restraining stresses of concrete made with expanded shale or quarzite aggregates change between both loading axis. Differences between uniaxial and biaxial restraint vanish, if the restraint is normalized with respect to the ultimate strength at ambient temperature of the same stress ratio K. The type of aggregate and the mix proportions do affect the restraining stresses irrespective of the initial stress ratio K 0 . (author)

  11. Pseudo-Newtonian Equations for Evolution of Particles and Fluids in Stationary Space-times

    Energy Technology Data Exchange (ETDEWEB)

    Witzany, Vojtěch; Lämmerzahl, Claus, E-mail: vojtech.witzany@zarm.uni-bremen.de, E-mail: claus.laemmerzahl@zarm.uni-bremen.de [ZARM, Universität Bremen, Am Fallturm, D-28359 Bremen (Germany)

    2017-06-01

    Pseudo-Newtonian potentials are a tool often used in theoretical astrophysics to capture some key features of a black hole space-time in a Newtonian framework. As a result, one can use Newtonian numerical codes, and Newtonian formalism, in general, in an effective description of important astrophysical processes such as accretion onto black holes. In this paper, we develop a general pseudo-Newtonian formalism, which pertains to the motion of particles, light, and fluids in stationary space-times. In return, we are able to assess the applicability of the pseudo-Newtonian scheme. The simplest and most elegant formulas are obtained in space-times without gravitomagnetic effects, such as the Schwarzschild rather than the Kerr space-time; the quantitative errors are smallest for motion with low binding energy. Included is a ready-to-use set of fluid equations in Schwarzschild space-time in Cartesian and radial coordinates.

  12. Discrete maximal regularity of time-stepping schemes for fractional evolution equations.

    Science.gov (United States)

    Jin, Bangti; Li, Buyang; Zhou, Zhi

    2018-01-01

    In this work, we establish the maximal [Formula: see text]-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text], [Formula: see text], in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735-758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157-176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems.

  13. Evolution equation for the B-meson distribution amplitude in the heavy-quark effective theory in coordinate space

    International Nuclear Information System (INIS)

    Kawamura, Hiroyuki; Tanaka, Kazuhiro

    2010-01-01

    The B-meson distribution amplitude (DA) is defined as the matrix element of a quark-antiquark bilocal light-cone operator in the heavy-quark effective theory, corresponding to a long-distance component in the factorization formula for exclusive B-meson decays. The evolution equation for the B-meson DA is governed by the cusp anomalous dimension as well as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-type anomalous dimension, and these anomalous dimensions give the ''quasilocal'' kernel in the coordinate-space representation. We show that this evolution equation can be solved analytically in the coordinate space, accomplishing the relevant Sudakov resummation at the next-to-leading logarithmic accuracy. The quasilocal nature leads to a quite simple form of our solution which determines the B-meson DA with a quark-antiquark light-cone separation t in terms of the DA at a lower renormalization scale μ with smaller interquark separations zt (z≤1). This formula allows us to present rigorous calculation of the B-meson DA at the factorization scale ∼√(m b Λ QCD ) for t less than ∼1 GeV -1 , using the recently obtained operator product expansion of the DA as the input at μ∼1 GeV. We also derive the master formula, which reexpresses the integrals of the DA at μ∼√(m b Λ QCD ) for the factorization formula by the compact integrals of the DA at μ∼1 GeV.

  14. Improved Minimum Entropy Filtering for Continuous Nonlinear Non-Gaussian Systems Using a Generalized Density Evolution Equation

    Directory of Open Access Journals (Sweden)

    Jinliang Xu

    2013-06-01

    Full Text Available This paper investigates the filtering problem for multivariate continuous nonlinear non-Gaussian systems based on an improved minimum error entropy (MEE criterion. The system is described by a set of nonlinear continuous equations with non-Gaussian system noises and measurement noises. The recently developed generalized density evolution equation is utilized to formulate the joint probability density function (PDF of the estimation errors. Combining the entropy of the estimation error with the mean squared error, a novel performance index is constructed to ensure the estimation error not only has small uncertainty but also approaches to zero. According to the conjugate gradient method, the optimal filter gain matrix is then obtained by minimizing the improved minimum error entropy criterion. In addition, the condition is proposed to guarantee that the estimation error dynamics is exponentially bounded in the mean square sense. Finally, the comparative simulation results are presented to show that the proposed MEE filter is superior to nonlinear unscented Kalman filter (UKF.

  15. How restrained eaters perceive the amount they eat.

    Science.gov (United States)

    Jansen, A

    1996-09-01

    The cognitive model of binge eating states that it is the awareness of a broken diet that disinhibits the restrained eater. It is, according to that model, the perception of having overeaten that triggers disinhibited eating. However, although the perception of the amount eaten plays a central role in cognitive restraint theory, it has never directly been tested how restrained subjects perceive the amount of food they eat. In the present studies, participants were given ad libitum access to large amounts of palatable food and both their perception of the amount eaten and their estimated caloric intake were compared with the amount they actually ate. The restrained participants in these studies ate more than the unrestrained participants. In the first and second studies, the restrained participants consumed 571 and 372 'forbidden' calories respectively, without having the feeling that they had eaten very much, let alone too much. Moreover in both studies, the restrained eaters underestimated their caloric intake, whereas unrestrained eaters estimated their caloric intake quite well. The potential implications of the present findings for the cognitive restraint model are discussed.

  16. Decrease of Fisher information and the information geometry of evolution equations for quantum mechanical probability amplitudes.

    Science.gov (United States)

    Cafaro, Carlo; Alsing, Paul M

    2018-04-01

    The relevance of the concept of Fisher information is increasing in both statistical physics and quantum computing. From a statistical mechanical standpoint, the application of Fisher information in the kinetic theory of gases is characterized by its decrease along the solutions of the Boltzmann equation for Maxwellian molecules in the two-dimensional case. From a quantum mechanical standpoint, the output state in Grover's quantum search algorithm follows a geodesic path obtained from the Fubini-Study metric on the manifold of Hilbert-space rays. Additionally, Grover's algorithm is specified by constant Fisher information. In this paper, we present an information geometric characterization of the oscillatory or monotonic behavior of statistically parametrized squared probability amplitudes originating from special functional forms of the Fisher information function: constant, exponential decay, and power-law decay. Furthermore, for each case, we compute both the computational speed and the availability loss of the corresponding physical processes by exploiting a convenient Riemannian geometrization of useful thermodynamical concepts. Finally, we briefly comment on the possibility of using the proposed methods of information geometry to help identify a suitable trade-off between speed and thermodynamic efficiency in quantum search algorithms.

  17. Decrease of Fisher information and the information geometry of evolution equations for quantum mechanical probability amplitudes

    Science.gov (United States)

    Cafaro, Carlo; Alsing, Paul M.

    2018-04-01

    The relevance of the concept of Fisher information is increasing in both statistical physics and quantum computing. From a statistical mechanical standpoint, the application of Fisher information in the kinetic theory of gases is characterized by its decrease along the solutions of the Boltzmann equation for Maxwellian molecules in the two-dimensional case. From a quantum mechanical standpoint, the output state in Grover's quantum search algorithm follows a geodesic path obtained from the Fubini-Study metric on the manifold of Hilbert-space rays. Additionally, Grover's algorithm is specified by constant Fisher information. In this paper, we present an information geometric characterization of the oscillatory or monotonic behavior of statistically parametrized squared probability amplitudes originating from special functional forms of the Fisher information function: constant, exponential decay, and power-law decay. Furthermore, for each case, we compute both the computational speed and the availability loss of the corresponding physical processes by exploiting a convenient Riemannian geometrization of useful thermodynamical concepts. Finally, we briefly comment on the possibility of using the proposed methods of information geometry to help identify a suitable trade-off between speed and thermodynamic efficiency in quantum search algorithms.

  18. On the initial conditions of time-dependent mean-field equations of evolution. Pt. 2

    International Nuclear Information System (INIS)

    Troudet, T.; Paris-11 Univ., 91 - Orsay

    1986-01-01

    We analyze the problem so far untouched of determining the initial mean-field wavefunction in the context of zero-temperature mean-field descriptions of time-dependent expectation values and quantum fluctuations of nuclear observables. The nucleus, at zero temperature, is taken to be in a low-lying excited many-body eigenstate and is approximated by the corresponding RPA wavefunction as a continuous superposition of coherent states (i.e. Slater determinants). A generating function Gsub(A)(lambda) for time-dependent expectation values and quantum fluctuations is constructed within the formalism of functional integration. By applying the saddle-point method to the functional action of Gsub(A)(lambda) and then taking its lambda-derivatives, we recover the well-known TDHF theory and propose a simple determination of the initial Slater determinant for an appropriate mean-field description of time-dependent expectation values. The analog mean-field description of quadratic-quantum fluctuations proceeds similarly and in addition includes the contribution of the uncorrelated TDHF-RPA phonons coupled to collective excitations of the initial (static) mean-field configuration. When the collective TDHF-RPA excitations are solely taken into account, we obtain an improved version of the Balian-Veneroni dispersion formula by showing how to determine the initial mean-field wavefunction. By first taking the lambda-derivatives of Gsub(A)(lambda) before applying the saddle-point method, the initial mean-field wavefunction is found to be non-linearly coupled to the mean-field dynamics themselves. In return, and in contrast to the first quantization scheme, these both depend non-trivially upon the observable A being measured so that approximations must be proposed to simplify the resulting mean-field equations. (orig.)

  19. Experimental Study of Damage Evolution in Circular Stirrup-Confined Concrete.

    Science.gov (United States)

    Li, Zuohua; Peng, Zhihan; Teng, Jun; Wang, Ying

    2016-04-08

    This paper presents an experimental study on circular stirrup-confined concrete specimens under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield strength usually causes larger confining pressures and slower concrete damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution. A plastic strain expression is obtained through curve fitting, and a damage evolution equation for circular stirrup-confined concrete is proposed by introducing a confinement factor ( C ) based on the experimental data. The comparison results demonstrate that the proposed damage evolution model can accurately describe the experimental results.

  20. Experimental Study of Damage Evolution in Circular Stirrup-Confined Concrete

    Science.gov (United States)

    Li, Zuohua; Peng, Zhihan; Teng, Jun; Wang, Ying

    2016-01-01

    This paper presents an experimental study on circular stirrup-confined concrete specimens under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield strength usually causes larger confining pressures and slower concrete damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution. A plastic strain expression is obtained through curve fitting, and a damage evolution equation for circular stirrup-confined concrete is proposed by introducing a confinement factor (C) based on the experimental data. The comparison results demonstrate that the proposed damage evolution model can accurately describe the experimental results. PMID:28773402

  1. Temporal attention for visual food stimuli in restrained eaters

    NARCIS (Netherlands)

    Neimeijer, Renate A. M.; de Jong, Peter J.; Roefs, Anne

    2013-01-01

    Although restrained eaters try to limit their food intake, they often fail and indulge in exactly those foods that they want to avoid. A possible explanation is a temporal attentional bias for food cues. It could be that for these people food stimuli are processed relatively efficiently and require

  2. New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear PDEs

    Science.gov (United States)

    Venturi, D.; Karniadakis, G. E.

    2012-08-01

    By using functional integral methods we determine new evolution equations satisfied by the joint response-excitation probability density function (PDF) associated with the stochastic solution to first-order nonlinear partial differential equations (PDEs). The theory is presented for both fully nonlinear and for quasilinear scalar PDEs subject to random boundary conditions, random initial conditions or random forcing terms. Particular applications are discussed for the classical linear and nonlinear advection equations and for the advection-reaction equation. By using a Fourier-Galerkin spectral method we obtain numerical solutions of the proposed response-excitation PDF equations. These numerical solutions are compared against those obtained by using more conventional statistical approaches such as probabilistic collocation and multi-element probabilistic collocation methods. It is found that the response-excitation approach yields accurate predictions of the statistical properties of the system. In addition, it allows to directly ascertain the tails of probabilistic distributions, thus facilitating the assessment of rare events and associated risks. The computational cost of the response-excitation method is order magnitudes smaller than the one of more conventional statistical approaches if the PDE is subject to high-dimensional random boundary or initial conditions. The question of high-dimensionality for evolution equations involving multidimensional joint response-excitation PDFs is also addressed.

  3. The modified alternative (G'/G)-expansion method to nonlinear evolution equation: application to the (1+1)-dimensional Drinfel'd-Sokolov-Wilson equation.

    Science.gov (United States)

    Akbar, M Ali; Mohd Ali, Norhashidah Hj; Mohyud-Din, Syed Tauseef

    2013-01-01

    Over the years, (G'/G)-expansion method is employed to generate traveling wave solutions to various wave equations in mathematical physics. In the present paper, the alternative (G'/G)-expansion method has been further modified by introducing the generalized Riccati equation to construct new exact solutions. In order to illustrate the novelty and advantages of this approach, the (1+1)-dimensional Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact traveling wave solutions are obtained in a uniform way. These solutions may be imperative and significant for the explanation of some practical physical phenomena. It is shown that the modified alternative (G'/G)-expansion method an efficient and advance mathematical tool for solving nonlinear partial differential equations in mathematical physics.

  4. Cognitive and weight-related correlates of flexible and rigid restrained eating behaviour

    DEFF Research Database (Denmark)

    Westenhoefer, Joachim; Engel, Daniel; Holst, Claus

    2013-01-01

    Examine the association between components of restrained eating, cognitive performance and weight loss maintenance.......Examine the association between components of restrained eating, cognitive performance and weight loss maintenance....

  5. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  6. Configuration Synthesis for Fully Restrained 7-Cable-Driven Manipulators

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Tang

    2012-10-01

    Full Text Available Cable distribution plays a vital role in Cable Driven Parallel Manipulators (CDPMs regarding tension and workspace quality, especially in fully restrained CDPMs. This paper focuses on three typical configurations of fully restrained CDPMs with 7 cables in order to introduce an approach for configuration synthesis. Firstly, the kinematic models of three types of CDPMs with 7 cables are set up. Then, in order to evaluate workspace quality, two new indices are proposed by using tensions along each cable, which are the All Cable Tension Distribution Index (ACTDI and Global Tension Distribution Index (GTDI. Next, the three types of CDPMs with 7 cables are analysed with the two indices. At the end, according to different performance requirements, the configurations of cable distribution are discussed and selected.

  7. Social ultrasonic vocalization in awake head-restrained mouse

    Directory of Open Access Journals (Sweden)

    Benjamin Weiner

    2016-12-01

    Full Text Available Numerous animal species emit vocalizations in response to various social stimuli. The neural basis of vocal communication has been investigated in monkeys, songbirds, rats, bats and invertebrates resulting in deep insights into motor control, neural coding and learning. Mice, which recently became very popular as a model system for mammalian neuroscience, also utilize ultrasonic vocalizations (USVs during mating behavior. However, our knowledge is lacking of both the behavior and its underlying neural mechanism. We developed a novel method for head-restrained male mice (HRMM to interact with non-restrained female mice (NRFM and show that mice can emit USVs in this context. We first recorded USVs in free arena with non-restrained male mice (NRMM and NRFM. Of the NRMM, which vocalized in the free arena, the majority could be habituated to also vocalize while head-restrained but only when a female mouse was present in proximity. The USVs emitted by HRMM are similar to the USVs of NRMM in the presence of a female mouse in their spectral structure, inter syllable interval distribution and USV sequence length, and therefore are interpreted as social USVs. By analyzing vocalizations of NRMM, we established criteria to predict which individuals are likely to vocalize while head fixed based on the USV rate and average syllable duration. To characterize the USVs emitted by HRMM, we analyzed the syllable composition of HRMM and NRMM and found that USVs emitted by HRMM have higher proportions of USVs with complex spectral representation, supporting previous studies showing that mice social USVs are context dependent. Our results suggest a way to study the neural mechanisms of production and control of social vocalization in mice using advanced methods requiring head fixation.

  8. Social Ultrasonic Vocalization in Awake Head-Restrained Mouse.

    Science.gov (United States)

    Weiner, Benjamin; Hertz, Stav; Perets, Nisim; London, Michael

    2016-01-01

    Numerous animal species emit vocalizations in response to various social stimuli. The neural basis of vocal communication has been investigated in monkeys, songbirds, rats, bats, and invertebrates resulting in deep insights into motor control, neural coding, and learning. Mice, which recently became very popular as a model system for mammalian neuroscience, also utilize ultrasonic vocalizations (USVs) during mating behavior. However, our knowledge is lacking of both the behavior and its underlying neural mechanism. We developed a novel method for head-restrained male mice (HRMM) to interact with non-restrained female mice (NRFM) and show that mice can emit USVs in this context. We first recorded USVs in a free arena with non-restrained male mice (NRMM) and NRFM. Of the NRMM, which vocalized in the free arena, the majority could be habituated to also vocalize while head-restrained but only when a female mouse was present in proximity. The USVs emitted by HRMM are similar to the USVs of NRMM in the presence of a female mouse in their spectral structure, inter-syllable interval distribution, and USV sequence length, and therefore are interpreted as social USVs. By analyzing the vocalizations of NRMM, we established criteria to predict which individuals are likely to vocalize while head fixed based on the USV rate and average syllable duration. To characterize the USVs emitted by HRMM, we analyzed the syllable composition of HRMM and NRMM and found that USVs emitted by HRMM have a higher proportion of USVs with complex spectral representation, supporting previous studies showing that mice social USVs are context dependent. Our results suggest a way to study the neural mechanisms of production and control of social vocalization in mice using advanced methods requiring head fixation.

  9. Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes

    KAUST Repository

    Auzinger, Winfried; Hofstä tter, Harald; Ketcheson, David I.; Koch, Othmar

    2016-01-01

    We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.

  10. Practical splitting methods for the adaptive integration of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes

    KAUST Repository

    Auzinger, Winfried

    2016-07-28

    We present a number of new contributions to the topic of constructing efficient higher-order splitting methods for the numerical integration of evolution equations. Particular schemes are constructed via setup and solution of polynomial systems for the splitting coefficients. To this end we use and modify a recent approach for generating these systems for a large class of splittings. In particular, various types of pairs of schemes intended for use in adaptive integrators are constructed.

  11. Dynamical Analysis and Simulation Validation of Incompletely Restrained Cable-Suspended Swinging System Driven by Two Cables

    Directory of Open Access Journals (Sweden)

    Naige Wang

    2016-01-01

    Full Text Available The flexibility of the suspension multicables and driven length difference between two cables cause the translation and rotation of the platform in the incompletely restrained cable-suspended system driven by two cables (IRCSWs2, which are theoretically investigated in this paper. The suspension cables are spatially discretized using the assumed modes method (AMM and the equations of motion are derived from Lagrange equations of the first kind. Considering all the geometric matching conditions are approximately linear with external actuator, the differential algebraic equations (DAEs are transformed to a system of ordinary differential equations (ODEs. Using linear boundary conditions of the suspension cable, the current method can obtain not only the accurate longitudinal displacements of cable and posture of the platform, but also the tension between the platform and cables, and the current method is verified by ADAMS simulation.

  12. BREIT code: Analytical solution of the balance rate equations for charge-state evolutions of heavy-ion beams in matter

    Energy Technology Data Exchange (ETDEWEB)

    Winckler, N., E-mail: n.winckler@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Rybalchenko, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Shevelko, V.P. [P.N. Lebedev Physical Institute, 119991 Moscow (Russian Federation); Al-Turany, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); CERN, European Organization for Nuclear Research, 1211 Geneve 23 (Switzerland); Kollegger, T. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Stöhlker, Th. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institute Jena, D-07743 Jena (Germany); Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, D-07743 Jena (Germany)

    2017-02-01

    A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.

  13. submitter BREIT code: Analytical solution of the balance rate equations for charge-state evolutions of heavy-ion beams in matter

    CERN Document Server

    Winckler, N; Shevelko, V P; Al-Turany, M; Kollegger, T; Stöhlker, Th

    2017-01-01

    A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.

  14. Dynamic model and workspace analysis of novel incompletely restrained cable-suspension swing system driven by two cables

    Directory of Open Access Journals (Sweden)

    Naige Wang

    2017-03-01

    Full Text Available The incompletely restrained cable-suspension swing system driven by two cables is introduced in this article. Based on wrench of forces theory and Lagrange’s equation of first kind, the static and dynamics models of incompletely restrained cable-suspension swing system driven by two cables are established, respectively. In order to obtain an intuitive understanding of the trajectory analysis, a dynamics model consisting of governing equation and geometric constraint conditions which is a set of the mixed differential-algebraic equation in mathematics is established. A typical feedback controller and an inverse model were set up to estimate the driving function. The effective workspace, which is used to guarantee an efficient swing process, mostly depends on the geometrical shape rather than the volume itself which was calculated by trajectory analysis. In order to estimate system features and ensure a limited range of tension in underconstrained spatial cable system, the probable location of unbalanced loading was evaluated by pointwise evaluation techniques during normal work.

  15. Thermal Behavior of Cylindrical Buckling Restrained Braces at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Elnaz Talebi

    2014-01-01

    Full Text Available The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core’s surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.

  16. Thermal behavior of cylindrical buckling restrained braces at elevated temperatures.

    Science.gov (United States)

    Talebi, Elnaz; Tahir, Mahmood Md; Zahmatkesh, Farshad; Yasreen, Airil; Mirza, Jahangir

    2014-01-01

    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.

  17. Strategy of restraining ripple error on surface for optical fabrication.

    Science.gov (United States)

    Wang, Tan; Cheng, Haobo; Feng, Yunpeng; Tam, Honyuen

    2014-09-10

    The influence from the ripple error to the high imaging quality is effectively reduced by restraining the ripple height. A method based on the process parameters and the surface error distribution is designed to suppress the ripple height in this paper. The generating mechanism of the ripple error is analyzed by polishing theory with uniform removal character. The relation between the processing parameters (removal functions, pitch of path, and dwell time) and the ripple error is discussed through simulations. With these, the strategy for diminishing the error is presented. A final process is designed and demonstrated on K9 work-pieces using the optimizing strategy with magnetorheological jet polishing. The form error on the surface is decreased from 0.216λ PV (λ=632.8  nm) and 0.039λ RMS to 0.03λ PV and 0.004λ RMS. And the ripple error is restrained well at the same time, because the ripple height is less than 6 nm on the final surface. Results indicate that these strategies are suitable for high-precision optical manufacturing.

  18. Evolution of magnetic field and atmospheric response. I - Three-dimensional formulation by the method of projected characteristics. II - Formulation of proper boundary equations. [stellar magnetohydrodynamics

    Science.gov (United States)

    Nakagawa, Y.

    1981-01-01

    The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.

  19. Time evolution of some quantum-mechanical systems. Wavefunction cloning in evolving rotating systems. Finite range boundary conditions for time dependent Schroedinger Equation

    International Nuclear Information System (INIS)

    Arvieu, R.; Carbonell, J.; Gignoux, C.; Mangin-Brinet, M.; Rozmej, P.

    1997-01-01

    The time evolution of coherent rotational wave packets associated to a diatomic molecule or to a deformed nucleus has been studied. Assuming a rigid body dynamics the J(J+1) law leads to a mechanism of cloning: the way function is divided into wave packets identical to the initial one at specific time. Applications are studied for a nuclear wave packed formed by Coulomb excitation. Exact boundary conditions at finite distance for the solution of the time-dependent Schroedinger equation are derived. A numerical scheme based on Crank-Nicholson method is proposed to illustrate its applicability in several examples. (authors)

  20. Fluid-structure interaction of a rolling restrained body of revolution at high angles of attack

    Science.gov (United States)

    Degani, D.; Ishay, M.; Gottlieb, O.

    2017-03-01

    The current work investigates numerically rolling instabilities of a free-to-roll slender rigid-body of revolution placed in a wind tunnel at a high angle of attack. The resistance to the roll moment is represented by a linear torsion spring and equivalent linear damping representing friction in the bearings of a simulated wind tunnel model. The body is subjected to a three-dimensional, compressible, laminar flow. The full Navier-Stokes equations are solved using the second-order implicit finite difference Beam-Warming scheme, adapted to a curvilinear coordinate system, whereas the coupled structural second order equation of motion for roll is solved by a fourth-order Runge-Kutta method. The body consists of a 3.5-diameter tangent ogive forebody with a 7.0-diameter long cylindrical afterbody extending aft of the nose-body junction to x/D = 10.5. We describe in detail the investigation of three angles of attack 20°, 40°, and 65°, at a Reynolds number of 30 000 (based on body diameter) and a Mach number of 0.2. Three distinct configurations are investigated as follows: a fixed body, a free-to-roll body with a weak torsion spring, and a free-to-roll body with a strong torsion spring. For each angle of attack the free-to-roll configuration portrays a distinct and different behavior pattern, including bi-stable limit-cycle oscillations. The bifurcation structure incorporates both large and small amplitude periodic roll oscillations where the latter lose their periodicity with increasing stiffness of the restraining spring culminating with distinct quasiperiodic oscillations. We note that removal of an applied upstream disturbance for a restrained body does not change the magnitude or complexity of the oscillations or of the flow patterns along the body. Depending on structure characteristics and flow conditions even a small rolling moment coefficient at the relatively low angle of attack of 20° may lead to large amplitude resonant roll oscillations.

  1. EXPERIMENTAL TESTING OF DRAW-BEAD RESTRAINING FORCE IN SHEET METAL FORMING

    Institute of Scientific and Technical Information of China (English)

    J.H. Yang; J. Chen; D.N. He; X. Y. Ruan

    2003-01-01

    Due to complexities of draw-bead restraining force calculated according to theory anddepending on sheet metal forming properties experiment testing system, a simplifiedmethod to calculate draw-bead restraining force is put forward by experimental methodin cup-shaped drawing process. The experimental results were compared with numer-ical results and proved agreement. It shows the method is effective.

  2. Restrained eating and self-esteem in premenopausal and postmenopausal women.

    Science.gov (United States)

    Drobnjak, Suzana; Atsiz, Semra; Ditzen, Beate; Tuschen-Caffier, Brunna; Ehlert, Ulrike

    2014-01-01

    There has been limited research about disordered eating in middle-aged women, and to date, few data exist about restrained eating behavior in postmenopausal women. Therefore, the aim of this study was to examine eating behavior with a specific focus on menopause as an associated factor in restrained eating. Beyond this, we were interested in how postmenopausal status and self-esteem would interact to determine eating patterns in women in middle age. We conducted an online survey in women aged between 40 and 66. Eating behavior was assessed with the Eating Disorder Examination-Questionnaire (EDE-Q) in premenopausal (N = 318) and postmenopausal women (N = 250). All participants rated their self-esteem using the Rosenberg Self-Esteem Scale (RSE) and reported their weight, height, waist circumference, and hip circumference. 15.7% of all participants showed clinically meaningful scores on restrained eating. Postmenopausal women showed significantly higher scores on the EDE-Q subscale of restrained eating as compared to premenopausal women, but when controlling for body mass index, however, this finding was no longer significant. Further exploratory analyses suggest that particularly low or high self-esteem levels are associated with restrained eating. Self-esteem might serve as a mediator between menopausal status and restrained eating, however results of these additional analyses were inconsistent. Restrained eating may appear in middle-aged women. Particularly in postmenopausal women, restrained eating might be associated with lower and higher self-esteem.

  3. Response, thermal regulatory threshold and thermal breakdown threshold of restrained RF-exposed mice at 905 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, S [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland); Eom, S J [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland); Schuderer, J [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstrasse 43, 8004 Zurich (Switzerland); Apostel, U [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Tillmann, T [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Dasenbrock, C [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Kuster, N [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland)

    2005-11-07

    The objective of this study was the determination of the thermal regulatory and the thermal breakdown thresholds for in-tube restrained B6C3F1 and NMRI mice exposed to radiofrequency electromagnetic fields at 905 MHz. Different levels of the whole-body averaged specific absorption rate (SAR 0, 2, 5, 7.2, 10, 12.6 and 20 W kg{sup -1}) have been applied to the mice inside the 'Ferris Wheel' exposure setup at 22 {+-} 2 {sup 0}C and 30-70% humidity. The thermal responses were assessed by measurement of the rectal temperature prior, during and after the 2 h exposure session. For B6C3F1 mice, the thermal response was examined for three different weight groups (20 g, 24 g, 29 g), both genders and for pregnant mice. Additionally, NMRI mice with a weight of 36 g were investigated for an interstrain comparison. The thermal regulatory threshold of in-tube restrained mice was found at SAR levels between 2 W kg{sup -1} and 5 W kg{sup -1}, whereas the breakdown of regulation was determined at 10.1 {+-} 4.0 W kg{sup -1}(K = 2) for B6C3F1 mice and 7.7 {+-} 1.6 W kg{sup -1}(K = 2) for NMRI mice. Based on a simplified power balance equation, the thresholds show a clear dependence upon the metabolic rate and weight. NMRI mice were more sensitive to thermal stress and respond at lower SAR values with regulation and breakdown. The presented data suggest that the thermal breakdown for in-tube restrained mice, whole-body exposed to radiofrequency fields, may occur at SAR levels of 6 W kg{sup -1}(K = 2) at laboratory conditions.

  4. Stress-induced release of GUT peptides in young women classified as restrained or unrestrained eaters.

    Science.gov (United States)

    Hilterscheid, Esther; Laessle, Reinhold

    2015-12-01

    Basal release of GUT peptides has been found to be altered in restrained eaters. Stress-induced secretion, however, has not yet been described, but could be a biological basis of overeating that exposes restrained eaters to a higher risk of becoming obese. The aim of the present study was to compare restrained and unrestrained eaters with respect to stress-induced release of the GUT peptides ghrelin and PYY. 46 young women were studied. Blood sampling for peptides was done before and after the Trier Social Stress Test. Ghrelin secretion after stress was significantly elevated in the restrained eaters, whereas no significant differences were detected for PYY. Stress-induced release of GUT peptides can be interpreted as a cause as well as a consequence of restrained eating.

  5. Using some results about the Lie evolution of differential operators to obtain the Fokker-Planck equation for non-Hamiltonian dynamical systems of interest

    Science.gov (United States)

    Bianucci, Marco

    2018-05-01

    Finding the generalized Fokker-Planck Equation (FPE) for the reduced probability density function of a subpart of a given complex system is a classical issue of statistical mechanics. Zwanzig projection perturbation approach to this issue leads to the trouble of resumming a series of commutators of differential operators that we show to correspond to solving the Lie evolution of first order differential operators along the unperturbed Liouvillian of the dynamical system of interest. In this paper, we develop in a systematic way the procedure to formally solve this problem. In particular, here we show which the basic assumptions are, concerning the dynamical system of interest, necessary for the Lie evolution to be a group on the space of first order differential operators, and we obtain the coefficients of the so-evolved operators. It is thus demonstrated that if the Liouvillian of the system of interest is not a first order differential operator, in general, the FPE structure breaks down and the master equation contains all the power of the partial derivatives, up to infinity. Therefore, this work shed some light on the trouble of the ubiquitous emergence of both thermodynamics from microscopic systems and regular regression laws at macroscopic scales. However these results are very general and can be applied also in other contexts that are non-Hamiltonian as, for example, geophysical fluid dynamics, where important events, like El Niño, can be considered as large time scale phenomena emerging from the observation of few ocean degrees of freedom of a more complex system, including the interaction with the atmosphere.

  6. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2015-08-01

    Full Text Available The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34 immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA, placental growth factor (PLGF, and VEGF receptor 2 (VEGFR2 were also tested. Serum levels of homocysteine (Hcy, follicle stimulating hormone (FSH, luteinizing hormone (LH, prolactin (PRL, progesterone (P4, and estradiol (E2 were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR and estrogen receptor α (ERα were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.

  7. Applications of the leading-order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations to the combined HERA data on deep inelastic scattering

    International Nuclear Information System (INIS)

    Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.

    2011-01-01

    We recently derived explicit solutions of the leading-order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations for the Q 2 evolution of the singlet structure function F s (x,Q 2 ) and the gluon distribution G(x,Q 2 ) using very efficient Laplace transform techniques. We apply our results here to a study of the HERA data on deep inelastic ep scattering as recently combined by the H1 and ZEUS groups. We use initial distributions F 2 γp (x,Q 0 2 ) and G(x,Q 0 2 ) determined for x s (x,Q 0 2 ) from F 2 γp (x,Q 0 2 ) using small nonsinglet quark distributions taken from either the CTEQ6L or the MSTW2008LO analyses, evolve F s and G to arbitrary Q 2 , and then convert the results to individual quark distributions. Finally, we show directly from a study of systematic trends in a comparison of the evolved F 2 γp (x,Q 2 ) with the HERA data that the assumption of leading-order DGLAP evolution is inconsistent with those data.

  8. Development of nonperturbative nonlinear optics models including effects of high order nonlinearities and of free electron plasma: Maxwell–Schrödinger equations coupled with evolution equations for polarization effects, and the SFA-like nonlinear optics model

    International Nuclear Information System (INIS)

    Lorin, E; Bandrauk, A D; Lytova, M; Memarian, A

    2015-01-01

    This paper is dedicated to the exploration of non-conventional nonlinear optics models for intense and short electromagnetic fields propagating in a gas. When an intense field interacts with a gas, usual nonlinear optics models, such as cubic nonlinear Maxwell, wave and Schrödinger equations, derived by perturbation theory may become inaccurate or even irrelevant. As a consequence, and to include in particular the effect of free electrons generated by laser–molecule interaction, several heuristic models, such as UPPE, HOKE models, etc, coupled with Drude-like models [1, 2], were derived. The goal of this paper is to present alternative approaches based on non-heuristic principles. This work is in particular motivated by the on-going debate in the filamentation community, about the effect of high order nonlinearities versus plasma effects due to free electrons, in pulse defocusing occurring in laser filaments [3–9]. The motivation of our work goes beyond filamentation modeling, and is more generally related to the interaction of any external intense and (short) pulse with a gas. In this paper, two different strategies are developed. The first one is based on the derivation of an evolution equation on the polarization, in order to determine the response of the medium (polarization) subject to a short and intense electromagnetic field. Then, we derive a combined semi-heuristic model, based on Lewenstein’s strong field approximation model and the usual perturbative modeling in nonlinear optics. The proposed model allows for inclusion of high order nonlinearities as well as free electron plasma effects. (paper)

  9. Seismic response of elastically restrained single bellows expansion joint in lateral mode

    International Nuclear Information System (INIS)

    Kameswara Rao, C.; Radhakrishna, M.

    2003-01-01

    The present paper attempts to derive an exact solution for the seismic response of U type of single bellows that are considered elastically restrained against rotation to classical fixed-fixed case considered by Morishita et al. (author)

  10. EXPERIMENTAL TESTING OF DRAW—BEAD RESTRAINING FORCE IN SHEET METAL FORMING

    Institute of Scientific and Technical Information of China (English)

    J.H.Yang; J.Chen; 等

    2003-01-01

    Due to complexities of draw-bead restraining force calculated according to theory and depending on sheet metal forming properties experiment testing system,a simplified method to calculate draw-bead restraining force is put forward by experimental method in cup-shaped drawing process.The experimental results were compared with numer-ical results and proved agreement.It shows the method is effective.

  11. Patient restraining device for the pinhole collimator and gamma scintillation camera

    International Nuclear Information System (INIS)

    Kay, T.D.

    1977-01-01

    A patient restraining device for use with the pinhole collimator of a conventional Gamma Scintillation Camera, the restraining device being made of an adapter ring and a patient holder. The adapter ring is secured directly to the pinhole collimator while the holder is adjustably mounted on the adapter. The adapter ring is so designed to accommodate a variety of holders so as to enable the scanning of many different areas of a patient's anatomy by the scintillation camera

  12. Thermal stress estimation in relation to spalling of HSC restrained with steel rings at high temperatures

    Directory of Open Access Journals (Sweden)

    Tanibe T.

    2013-09-01

    Full Text Available This paper reports on an experimental study regarding the behavior of steel ring-restrained concrete in response to fire exposure. The study was conducted to enable estimation of thermal stress based on steel ring strain in such concrete under the conditions of a RABT 30 heating curve. The specimens used were made from high-strength concrete (Fc: 80 MPa restrained using steel rings with thicknesses of 0.5, 8 and 18 mm.

  13. Restrained eating and self-esteem in premenopausal and postmenopausal women

    OpenAIRE

    Drobnjak, Suzana; Atsiz, Semra; Ditzen, Beate; Tuschen-Caffier, Brunna; Ehlert, Ulrike

    2014-01-01

    BACKGROUND: There has been limited research about disordered eating in middle-aged women, and to date, few data exist about restrained eating behavior in postmenopausal women. Therefore, the aim of this study was to examine eating behavior with a specific focus on menopause as an associated factor in restrained eating. Beyond this, we were interested in how postmenopausal status and self-esteem would interact to determine eating patterns in women in middle age. METHODS: We conducted an online...

  14. Smoking for weight control: effect of priming for body image in female restrained eaters.

    Science.gov (United States)

    McKee, Sherry A; Nhean, Siphannay; Hinson, Riley E; Mase, Tricia

    2006-12-01

    Women are more likely than men to believe that smoking helps to control their weight, and this relationship may be more pronounced in those with eating disturbances, such as eating restraint. Restrained eaters have been shown to be more susceptible to media portrayals of idealized body image, like those used in tobacco advertising. The primary aim of this study was to examine the effect of an implicit prime for body image on expectations that smoking can control weight in restrained and non-restrained eaters. Participants were 40 females, who smoked an average of 7.65 (S.D.=4.38) cigarettes per day. Participants were presented with a bogus task of rating slides; either participants viewed 30 slides of nature scenes (neutral prime); or viewed 30 slides depicting fashion models (body image prime). Participants then completed questionnaires that assessed smoking expectancies, smoking history, and eating restraint. As hypothesized, restrained eaters who viewed the slides depicting models had greater likelihood ratings that smoking helps to control appetite and manage weight, in comparison to restrained eaters who viewed the control slides and non-restrained eaters who viewed either type of slides. There were no other group differences across the remaining smoking expectancy factors. Images similar to those used in tobacco advertising targeting women had the ability to elicit stronger beliefs that smoking is beneficial for weight control in a group of women who are at heightened risk for such beliefs.

  15. The Evolution of Sulfide in Shallow Aquatic Ecosystem Sediments: An Analysis of the Roles of Sulfate, Organic Carbon, and Iron and Feedback Constraints Using Structural Equation Modeling

    Science.gov (United States)

    Pollman, C. D.; Swain, E. B.; Bael, D.; Myrbo, A.; Monson, P.; Shore, M. D.

    2017-11-01

    The generation of elevated concentrations of sulfide in sediment pore waters that are toxic to rooted macrophytes is problematic in both marine and freshwaters. In marine waters, biogeochemical conditions that lead to toxic levels of sulfide generally relate to factors that affect oxygen dynamics or the sediment iron concentration. In freshwaters, increases in surface water sulfate have been implicated in decline of Zizania palustris (wild rice), which is important in wetlands across the Great Lakes region of North America. We developed a structural equation (SE) model to elucidate key variables that govern the evolution of sulfide in pore waters in shallow aquatic habitats that are potentially capable of supporting wild rice. The conceptual basis for the model is the hypothesis that dissimilatory sulfate reduction is limited by the availability of both sulfate and total organic carbon (TOC) in the sediment. The conceptual model also assumes that pore water sulfide concentrations are constrained by the availability of pore water iron and that sediment iron supports the supply of dissolved iron to the pore water. A key result from the SE model is that variations in three external variables (sulfate, sediment TOC, and sediment iron) contribute nearly equally to the observed variations in pore water sulfide. As a result, management efforts to mitigate against the toxic effects of pore water sulfide on macrophytes such as wild rice should approach defining a protective sulfate threshold as an exercise tailored to the geochemistry of each site that quantitatively considers the effects of ambient concentrations of sediment Fe and TOC.

  16. Research of large-amplitude waves evolution in the framework of shallow water equations and their implication for people's safety in extreme situations

    Science.gov (United States)

    Pelinovsky, Efim; Chaikovskaia, Natalya; Rodin, Artem

    2015-04-01

    The paper presents the analysis of the formation and evolution of shock wave in shallow water with no restrictions on its amplitude in the framework of the nonlinear shallow water equations. It is shown that in the case of large-amplitude waves appears a new nonlinear effect of reflection from the shock front of incident wave. These results are important for the assessment of coastal flooding by tsunami waves and storm surges. Very often the largest number of victims was observed on the coastline where the wave moved breaking. Many people, instead of running away, were just looking at the movement of the "raging wall" and lost time. This fact highlights the importance of researching the problem of security and optimal behavior of people in situations with increased risk. Usually there is uncertainty about the exact time, when rogue waves will impact. This fact limits the ability of people to adjust their behavior psychologically to the stressful situations. It concerns specialists, who are busy both in the field of flying activity and marine service as well as adults, young people and children, who live on the coastal zone. The rogue wave research is very important and it demands cooperation of different scientists - mathematicians and physicists, as well as sociologists and psychologists, because the final goal of efforts of all scientists is minimization of the harm, brought by rogue waves to humanity.

  17. Time evolution of some quantum-mechanical systems. Wavefunction cloning in evolving rotating systems. Finite range boundary conditions for time dependent Schroedinger Equation; Evolution temporelle de quelques systemes quantiques. Le clonage de la fonction d`onde dans l`evolution au cours du temps de systemes tournants. Formulation de conditions aux limites a distance finie pour l`equation de Schroedinger dependante du temps

    Energy Technology Data Exchange (ETDEWEB)

    Arvieu, R.; Carbonell, J.; Gignoux, C.; Mangin-Brinet, M. [Inst. des Sciences Nucleaires, Grenoble-1 Univ., 38 (France); Rozmej, P. [Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland)

    1997-12-31

    The time evolution of coherent rotational wave packets associated to a diatomic molecule or to a deformed nucleus has been studied. Assuming a rigid body dynamics the J(J+1) law leads to a mechanism of cloning: the way function is divided into wave packets identical to the initial one at specific time. Applications are studied for a nuclear wave packed formed by Coulomb excitation. Exact boundary conditions at finite distance for the solution of the time-dependent Schroedinger equation are derived. A numerical scheme based on Crank-Nicholson method is proposed to illustrate its applicability in several examples. (authors) 3 refs.

  18. Abstract methods in partial differential equations

    CERN Document Server

    Carroll, Robert W

    2012-01-01

    Detailed, self-contained treatment examines modern abstract methods in partial differential equations, especially abstract evolution equations. Suitable for graduate students with some previous exposure to classical partial differential equations. 1969 edition.

  19. Simplified elastic-plastic analysis of reinforced concrete structures - design method for self-restraining stress

    International Nuclear Information System (INIS)

    Aihara, S.; Atsumi, K.; Ujiie, K.; Satoh, S.

    1981-01-01

    Self-restraining stresses generate not only moments but also axial forces. Therefore the moment and force equilibriums of cross section are considered simultaneously, in combination with other external forces. Thus, under this theory, two computer programs are prepared for. Using these programs, the design procedures which considered the reduction of self-restraining stress, become easy if the elastic design stresses, which are separated normal stresses and self-restraining stresses, are given. Numerical examples are given to illustrate the application of the simplified elastic-plastic analysis and to study its effectiveness. First this method is applied to analyze an upper shielding wall in MARK-2 type's Reactor building. The results are compared with those obtained by the elastic-plastic analysis of Finite Element Method. From this comparison it was confirmed that the method described, had adequate accuracy for re-bar design. As a second example, Mat slab of Reactor building is analyzed. The quantity of re-bars calculated by this method, comes to about two third of re-bars less than those required when self-restraining stress is considered as normal stress. Also, the self-restraining stress reduction factor is about 0.5. (orig./HP)

  20. Restraining and neck cutting or stunning and neck cutting of veal calves.

    Science.gov (United States)

    Lambooij, E; van der Werf, J T N; Reimert, H G M; Hindle, V A

    2012-05-01

    Brain and heart activities were measured in 31 veal calves during restraining and rotating followed by neck cutting with or without stunning to evaluate welfare. After neck cutting correlation dimension analyses and %power of EEG beta wave fraction decreased gradually to lower values resulting in an induction of unconsciousness lasting on average 80s. Corneal reflex response ceased 135±57s after neck cutting. The CD scores and the %power of beta waves fell immediately after post-cut captive bolt and pre-cut electrical stunning to levels indicating unconsciousness. Heart rate in lairage increased upon entrance to the restrainer and again after rotation, heart rate variability decreased. Rotating the restrainer 90°, 120° or 180° compromised veal calf welfare and should be avoided. It is recommended to use post-cut captive bolt stunning or pre-cut electrical stunning inducing immediate unconsciousness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Mere exposure to palatable food cues reduces restrained eaters' physical effort to obtain healthy food.

    Science.gov (United States)

    van Koningsbruggen, Guido M; Stroebe, Wolfgang; Aarts, Henk

    2012-04-01

    We examined whether exposure to cues of attractive food reduces effortful behavior toward healthy foods for restrained eaters. After manipulating food pre-exposure, we recorded handgrip force while presenting participants with pictures of healthy food objects. Because participants were led to expect that they could obtain each object (not specified beforehand) by squeezing the handgrip as forcefully as possible while the object was displayed on the screen, the recorded handgrip force constitutes a measure of spontaneous effortful behavior. Results show that restrained eaters, but not unrestrained eaters, displayed less forceful action toward healthy food objects (i.e., lower exertion of force) when pre-exposed to tempting food cues. No effects were found on palatability perceptions of the healthy foods. The results provide further insight into why restrained eaters have difficulties in maintaining a low-calorie diet in food-rich environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Effect of aggregate type, casting, thickness and curing condition on restrained strain of mass concrete

    Directory of Open Access Journals (Sweden)

    Pongsak Choktaweekarn

    2010-08-01

    Full Text Available In this paper, a three-dimensional finite element analysis is used for computing temperature and restrained strain inmass concrete. The model takes into account time, material properties, and mix proportion dependent behavior of concrete.The hydration heat and thermal properties used in the finite element analysis are obtained from our previously proposedadiabatic temperature rise model and are used as the input in the analysis. The analysis was done by varying size of massconcrete (especially thickness and the casting method in order to explain their effect on temperature and restrained strain inmass concrete. The casting methods used in the analysis are continuous and discontinuous casting. The discontinuouscasting consists of layer casting and block casting. Different types of aggregate were used in the analysis for studying theeffect of thermal properties of aggregate on temperature and restrained strain in mass concrete. Different conditions of curing(insulation and normal curing were also studied and compared. It was found from the analytical results that the maximumtemperature increases with the increase of the thickness of structure. The use of layer casting is more effective for thermalcracking control of mass concrete. The insulation curing method is preferable for mass concrete. Aggregate with low coefficientof thermal expansion is beneficial to reduce the restrained strain.

  3. Disarming Batterers through Restraining Orders: The Promise and the Reality in California

    Science.gov (United States)

    Seave, Paul L.

    2006-01-01

    Laws that prohibit persons under a domestic violence restraining order from purchasing or possessing a firearm are a primary way to keep guns out of the hands of batterers. In July 2005, the California Attorney General's Task Force on the Local Criminal Justice Response to Domestic Violence issued a report called Keeping the Promise: Victim Safety…

  4. Healthy cognition: Processes of self-regulatory success in restrained eating

    NARCIS (Netherlands)

    Papies, Esther K.; Stroebe, Wolfgang; Aarts, Henk

    2008-01-01

    Two studies examined self-regulatory success in dieting. Previous research has indicated that restrained eaters (i.e., chronic dieters) might fail in their attempts at weight control because the perception of attractive food cues triggers hedonic thoughts about food and inhibits their dieting goal.

  5. High-disinhibition restrained eaters are disinhibited by self-regulatory depletion in the food-related inhibitory control.

    Science.gov (United States)

    Zhou, Yizhou; Gao, Xiao; Chen, Hong; Kong, Fanchang

    2017-08-01

    Restrained eating for weight control and loss is becoming highly prevalent in many affluent societies, while most of the restrained eaters are rather unsuccessful in the long term. According to the strength model of self-control, the disinhibition effect of restrained eaters may occur after the depletion of self-control resources. However, no work has examined the direct impact of self-control resources on inhibitory control ability of restrained eaters. This study investigated the influences of self-control resources on the food-related inhibitory control among high-restraint/low-disinhibition restrained eaters, high-restraint/high-disinhibition restrained eaters and unrestrained eaters using stop signal task. Results reveal that there's no difference of food-related inhibitory control between three groups when the self-control resources are non-depleted, while high-restraint/high-disinhibition restrained eaters showing a decrease of food-related inhibitory control after ego-depletion. This disinhibition effect only seems to occur in samples of restrained eaters with a high tendency toward overeating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  7. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  8. Orthorexic and restrained eating behaviour in vegans, vegetarians, and individuals on a diet.

    Science.gov (United States)

    Barthels, Friederike; Meyer, Frank; Pietrowsky, Reinhard

    2018-04-01

    Orthorexic eating behaviour, restrained eating, and veganism/vegetarianism are food selection strategies sharing several characteristics. Since there are no studies investigating their interrelationships, aim of the present study was to analyse orthorexic and restrained eating behaviour in (1) a sample of vegans and vegetarians and (2) a sample of individuals on a diet to lose weight. Division of samples according to pre-defined criteria in (1) vegans (n = 114), vegetarians (n = 63), individuals with rare meat consumption (n = 83) and individuals with frequent meat consumption (n = 91) and in (2) participants on a diet with dietary change (n = 104), without dietary change (n = 37) and a control group of individuals not on a diet (n = 258). Orthorexic eating behaviour was assessed with the Düsseldorfer Orthorexie Skala and restrained eating was assessed with the Restraint Eating Scale. Vegans and vegetarians do not differ in orthorexic eating behaviour, but both groups score higher in orthorexic eating behaviour than individuals consuming red meat. There are no differences regarding restrained eating. Individuals on a diet with dietary change score higher in both orthorexic and restrained eating, than individuals without dietary change and individuals not on a diet. Individuals who restrict their eating behaviour, either predominantly due to ethical reasons or with the intention to lose weight, display more orthorexic eating behaviour than individuals not limiting their food consumption. Further research is needed to investigate whether veganism, vegetarianism, or frequent dieting behaviour serve as risk factors for orthorexia. Level V, cross-sectional descriptive study.

  9. Relationship of dieting and restrained eating to self-reported caloric intake in female college freshmen.

    Science.gov (United States)

    Goldstein, Stephanie P; Katterman, Shawn N; Lowe, Michael R

    2013-04-01

    Evidence indicates that restrained eaters do not eat less than unrestrained eaters in the natural environment. However, no study has examined caloric intake in those who are currently dieting to lose, or avoid gaining, weight. The current study examined caloric intake using 24-hour food recalls among individuals dieting to lose weight, dieting to avoid weight gain, restrained nondieters, and unrestrained nondieters. Participants were 246 female college students participating in a weight gain prevention trial. The predicted significant difference in caloric intake across the four groups was found for beverage but not for food intake. Results reinforce past literature indicating that dieting/restraint status does not reflect hypo-caloric intake in naturalistic settings. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The research of SSR which can be restrained by photovoltaic grid connected

    Science.gov (United States)

    Li, Kuan; Liu, Meng; Zheng, Wei; Li, Yudun; Wang, Xin

    2018-02-01

    Utilization of photovoltaic power generation has attracted considerable attention, and it is growing rapidly due to its environmental benefits. The series capacitive compensation is needed to be introduced into the lines which could improve the transmission capacity. However, the series capacitive compensation may lead to sub-synchronous resonance(SSR). This paper proposes a method to restrain the SSR based on photovoltaic grid connected which is caused by series capacitive compensation. Sub-synchronous oscillation damping controller (SSDC) is designed based on complex torque coefficient approach, and the SSDC is added to the PV power station’s main controller to damp SSR. IEEE Second benchmark model is used as simulation model based on PSCAD/EMTDC. The results show that the designed SSDC could restrain SSR and improve stability in PV grid connected effectively.

  11. The AGL equation from the dipole picture

    International Nuclear Information System (INIS)

    Gay Ducati, M.B.; Goncalves, V.P.

    1999-01-01

    The AGL equation includes all multiple pomeron exchanges in the double logarithmic approximation (DLA) limit, leading to a unitarized gluon distribution in the small x regime. This equation was originally obtained using the Glauber-Mueller approach. We demonstrate in this paper that the AGL equation and, consequently, the GLR equation, can also be obtained from the dipole picture in the double logarithmic limit, using an evolution equation, recently proposed, which includes all multiple pomeron exchanges in the leading logarithmic approximation. Our conclusion is that the AGL equation is a good candidate for a unitarized evolution equation at small x in the DLA limit

  12. Personality and Cognitive Abilities: Predictors of Restrained, Uncontrolled and Emotional Eating Behaviours?

    OpenAIRE

    Howard, Kirstie

    2014-01-01

    Abstract The psychology of eating behaviour merits more attention, due to the increasing prevalence of eating disorders, obesity and other eating related issues. There is a need for a more grounded understanding of the behavioural, emotional and cognitive aspects of dietary habits. Aim: To examine the relationship between personality, cognitive abilities and eating behaviours; Restrained Eating (RE), Uncontrolled Eating (UE) and Emotional Eating (EE). This was based on a series of pre...

  13. Evolution in time of an N-atom system. I. A physical basis set for the projection of the master equation

    International Nuclear Information System (INIS)

    Freedhoff, Helen

    2004-01-01

    We study an aggregate of N identical two-level atoms (TLA's) coupled by the retarded interatomic interaction, using the Lehmberg-Agarwal master equation. First, we calculate the entangled eigenstates of the system; then, we use these eigenstates as a basis set for the projection of the master equation. We demonstrate that in this basis the equations of motion for the level populations, as well as the expressions for the emission and absorption spectra, assume a simple mathematical structure and allow for a transparent physical interpretation. To illustrate the use of the general theory in emission processes, we study an isosceles triangle of atoms, and present in the long wavelength limit the (cascade) emission spectrum for a hexagon of atoms fully excited at t=0. To illustrate its use for absorption processes, we tabulate (in the same limit) the biexciton absorption frequencies, linewidths, and relative intensities for polygons consisting of N=2,...,9 TLA's

  14. An experimental study of an energy absorbing restrainer for piping systems

    International Nuclear Information System (INIS)

    Sone, A.; Suzuki, K.

    1989-01-01

    Recently, in the seismic design methodology of the piping systems in nuclear power plants, new and improved design criteria and calculation techniques which will lead to more reliable and cost saving design products have been investigated. For instance, problems for reducing the snubbers in nuclear power plants which provide high costs for their inspections and maintenances and related flexible design problems for the dynamic piping systems have been investigated. Thus, in order to replace snubbers, various types of alternative supporting devices such as dynamic absorbers, gapped support and energy absorbing support devices have been proposed. A number of energy absorbing restrainers have been designed in Japan and United-States by allowing yield to occur during strong earthquakes. Advantages and disadvantages of these restrainers were examined analytically and experimentally. In order to overcome the disadvantages, the authors introduced new absorbing material LSPZ (laminated super plastic zinc) in which SPZ is expected to have reliable ductility and also efficient energy absorbability still under the normal temperature condition. This paper is devoted to an experimental works for this updated absorbing restrainer

  15. Upgrading the seismic capacity of existing RC buildings using buckling restrained braces

    Directory of Open Access Journals (Sweden)

    Hamdy Abou-Elfath

    2017-06-01

    Full Text Available Many existing RC buildings do not meet the lateral strength requirements of current seismic codes and are vulnerable to significant damage or collapse in the event of future earthquakes. In the past few decades, buckling-restrained braces have become increasingly popular as a lateral force resisting system because of their capability of improving the strength, the stiffness and the energy absorbing capacity of structures. This study evaluates the seismic upgrading of a 6-story RC-building using single diagonal buckling restrained braces. Seismic evaluation in this study has been carried out by static pushover analysis and time history earthquake analysis. Ten ground motions with different PGA levels are used in the analysis. The mean plus one standard deviation values of the roof-drift ratio, the maximum story drift ratio, the brace ductility factors and the member strain responses are used as the basis for the seismic performance evaluations. The results obtained in this study indicate that strengthening of RC buildings with buckling restrained braces is an efficient technique as it significantly increases the PGA capacity of the RC buildings. The results also indicate the increase in the PGA capacity of the RC building with the increase in the amount of the braces.

  16. Restrained Shrinkage Cracking of Fiber-Reinforced High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Ashkan Saradar

    2018-02-01

    Full Text Available Concrete shrinkage and volume reduction happens due to the loss of moisture, which eventually results in cracks and more concrete deformation. In this study, the effect of polypropylene (PP, steel, glass, basalt, and polyolefin fibers on compressive and flexural strength, drying shrinkage, and cracking potential, using the ring test at early ages of high-strength concrete mixtures, was investigated. The restrained shrinkage test was performed on concrete ring specimens according to the ASTM C1581 standard. The crack width and age of restrained shrinkage cracking were the main parameters studied in this research. The results indicated that the addition of fiber increases the compressive strength by 16%, 20%, and 3% at the age of 3, 7, and 28 days, respectively, and increases the flexural toughness index up to 7.7 times. Steel and glass fibers had a better performance in flexural strength, but relatively poor action in the velocity reduction and cracking time of the restrained shrinkage. Additionally, cracks in all concrete ring specimens except for the polypropylene-containing mixture, was developed to a full depth crack. The mixture with polypropylene fiber indicated a reduction in crack width up to 62% and an increasing age cracking up to 84%.

  17. EXACT TRAVELLING WAVE SOLUTIONS TO BBM EQUATION

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Abundant new travelling wave solutions to the BBM (Benjamin-Bona-Mahoni) equation are obtained by the generalized Jacobian elliptic function method. This method can be applied to other nonlinear evolution equations.

  18. Polygons of differential equations for finding exact solutions

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.; Demina, Maria V.

    2007-01-01

    A method for finding exact solutions of nonlinear differential equations is presented. Our method is based on the application of polygons corresponding to nonlinear differential equations. It allows one to express exact solutions of the equation studied through solutions of another equation using properties of the basic equation itself. The ideas of power geometry are used and developed. Our approach has a pictorial interpretation, which is illustrative and effective. The method can be also applied for finding transformations between solutions of differential equations. To demonstrate the method application exact solutions of several equations are found. These equations are: the Korteveg-de Vries-Burgers equation, the generalized Kuramoto-Sivashinsky equation, the fourth-order nonlinear evolution equation, the fifth-order Korteveg-de Vries equation, the fifth-order modified Korteveg-de Vries equation and the sixth-order nonlinear evolution equation describing turbulent processes. Some new exact solutions of nonlinear evolution equations are given

  19. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    Science.gov (United States)

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  20. Comparison of oxygen saturation values obtained from fingers on physically restrained or unrestrained sides of the body.

    Science.gov (United States)

    Korhan, Esra Akin; Yönt, Gülendam Hakverdioğlu; Khorshid, Leyla

    2011-01-01

    The aim of this study was to compare semiexperimentally the pulse oximetry values obtained from a finger on restrained or unrestrained sides of the body. The pulse oximeter provides a noninvasive measurement of the oxygen saturation of hemoglobin in arterial blood. One of the procedures most frequently applied to patients in intensive care units is the application of physical restraint. Circulation problems are the most important complication in patients who are physically restrained. Evaluation of oxygen saturation from body parts in which circulation is impeded or has deteriorated can cause false results. The research sample consisted of 30 hospitalized patients who participated in the study voluntarily and who were concordant with the inclusion criteria of the study. Patient information and patient follow-up forms were used for data collection. Pulse oximetry values were measured simultaneously using OxiMax Nellcor finger sensors from fingers on the restrained and unrestrained sides of the body. Numeric and percentile distributions were used in evaluating the sociodemographic properties of patients. A significant difference was found between the oxygen saturation values obtained from a finger of an arm that had been physically restrained and a finger of an arm that had not been physically restrained. The mean oxygen saturation value measured from a finger of an arm that had been physically restrained was found to be 93.40 (SD, 2.97), and the mean oxygen saturation value measured from a finger of an arm that had not been physically restrained was found to be 95.53 (SD, 2.38). The results of this study indicate that nurses should use a finger of an arm that is not physically restrained when evaluating oxygen saturation values to evaluate them correctly.

  1. Lorentz-force equations as Heisenberg equations for a quantum system in the euclidean space

    International Nuclear Information System (INIS)

    Rodriguez D, R.

    2007-01-01

    In an earlier work, the dynamic equations for a relativistic charged particle under the action of electromagnetic fields were formulated by R. Yamaleev in terms of external, as well as internal momenta. Evolution equations for external momenta, the Lorentz-force equations, were derived from the evolution equations for internal momenta. The mapping between the observables of external and internal momenta are related by Viete formulae for a quadratic polynomial, the characteristic polynomial of the relativistic dynamics. In this paper we show that the system of dynamic equations, can be cast into the Heisenberg scheme for a four-dimensional quantum system. Within this scheme the equations in terms of internal momenta play the role of evolution equations for a state vector, whereas the external momenta obey the Heisenberg equation for an operator evolution. The solutions of the Lorentz-force equation for the motion inside constant electromagnetic fields are presented via pentagonometric functions. (Author)

  2. Mass and energy-capital conservation equations to study the price evolution of non-renewable energy resources. Part II-Extension to resources sold to the market

    International Nuclear Information System (INIS)

    Gori, F.

    2006-01-01

    The time evolution of the price of resources sold to the market and of the price difference, between sold and extracted resources, is investigated in case of no accumulation of the resources; i.e. when the resources are extracted and sold to the market at the same mass flow rate. The price evolution of sold resources varies with time according to the relation between the price increase factor, PIF, of sold and extracted resources. The price evolutions of sold resources and price difference are investigated according to the relation between extraction rate and interest rate of extracted and sold resources. The price of sold resources and the price difference increase with time if the PIF of sold resources is greater than the PIF of extracted resources and the initial price is greater than the critical price of sold resources, which depends on the initial price of extracted resources and the interest rate of non-extracted and extracted resources. The price of sold resources and the price difference decrease with time if the PIF of sold resources is greater than the PIF of extracted resources and the initial price is smaller than the critical price of sold resources. The other cases are discussed extensively in the paper. (author)

  3. Psychotropic Drug Use in Physically Restrained, Critically Ill Adults Receiving Mechanical Ventilation.

    Science.gov (United States)

    Guenette, Melanie; Burry, Lisa; Cheung, Alexandra; Farquharson, Tara; Traille, Marlene; Mantas, Ioanna; Mehta, Sangeeta; Rose, Louise

    2017-09-01

    Restraining therapies (physical or pharmacological) are used to promote the safety of both patients and health care workers. Some guidelines recommend nonpharmacological or pharmacological interventions be used before physical restraints in critically ill patients. To characterize psychotropic drug interventions before and after use of physical restraints in critically ill adults receiving mechanical ventilation. A single-center, prospective, observational study documenting psychotropic drug use and Sedation-Agitation Scale (SAS) scores in the 2 hours before and the 6 hours after application of physical restraints. Ninety-three patients were restrained for a median of 21 hours (interquartile range, 9-70 hours). Thirty percent of patients did not receive a psychotropic drug or had a drug stopped or decreased before physical restraints were applied. More patients received a psychotropic drug intervention after use of physical restraints than before (86% vs 56%, P = .001). Administration of opioids was more common after the use of physical restraints (54% vs 20% of patients, P = .001) and accounted for more drug interventions (45% vs 29%, P = .001). Fifty patients had SAS scores from both time periods; 16% remained oversedated, 24% were appropriately sedated, and 16% remained agitated in both time periods. Patients became oversedated (20%), more agitated (10%), less agitated (8%), and less sedated (6%) after restraint use. Psychotropic drug interventions (mostly using opioids) were more common after use of physical restraints. Some patients may be physically restrained for anticipated treatment interference without consideration of pharmacological options and without documented agitation. ©2017 American Association of Critical-Care Nurses.

  4. Differential Equations as Actions

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    We extend a conventional action system with a primitive action consisting of a differential equation and an evolution invariant. The semantics is given by a predicate transformer. The weakest liberal precondition is chosen, because it is not always desirable that steps corresponding to differential...... actions shall terminate. It is shown that the proposed differential action has a semantics which corresponds to a discrete approximation when the discrete step size goes to zero. The extension gives action systems the power to model real-time clocks and continuous evolutions within hybrid systems....

  5. Nonlinear Evolution of Alfvenic Wave Packets

    Science.gov (United States)

    Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.

    1998-01-01

    Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.

  6. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  7. Attractors for equations of mathematical physics

    CERN Document Server

    Chepyzhov, Vladimir V

    2001-01-01

    One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For a number of basic evolution equations of mathematical physics, it was shown that the long time behavior of their soluti

  8. Peukert-Equation-Based State-of-Charge Estimation for LiFePO4 Batteries Considering the Battery Thermal Evolution Effect

    Directory of Open Access Journals (Sweden)

    Jiale Xie

    2018-05-01

    Full Text Available To achieve accurate state-of-charge (SoC estimation for LiFePO4 (lithium iron phosphate batteries under harsh conditions, this paper resorts to the Peukert’s law to accommodate different temperatures and load excitations. By analyzing battery heat generation and dissipation, a thermal evolution model (TEM is elaborated and exploited for on-line parameter identification of the equivalent circuit model (ECM. Then, a SoC estimation framework is proposed based on the Adaptive Extended Kalman Filter (AEKF algorithm. Experimental results on a LiFePO4 pack subject to the Federal Urban Driving Schedule (FUDS profile under different temperatures and initial states suggest that the proposed SoC estimator provides good robustness and accuracy against changing temperature and highly dynamic loads.

  9. The relation of hedonic hunger and restrained eating to lateralized frontal activation.

    Science.gov (United States)

    Winter, S R; Feig, E H; Kounios, J; Erickson, B; Berkowitz, S; Lowe, M R

    2016-09-01

    Asymmetrical alpha activation in the prefrontal cortex (frontal asymmetry) in electroencephalography (EEG) has been related to eating behavior. Prior studies linked dietary restraint with right frontal asymmetry [1] and disinhibition with left frontal asymmetry [2]. The current study simultaneously assessed restrained eating and hedonic hunger (drive for food reward in the absence of hunger) in relation to frontal asymmetry. Resting-state EEG and measures of restrained eating (Revised Restraint Scale; RRS) and hedonic hunger (Power of Food Scale; PFS) were assessed in 61 non-obese adults. Individually, hedonic hunger predicted left asymmetry. However, PFS and RRS were correlated (r=0.48, phunger exhibited left asymmetry irrespective of RRS scores; among those low in PFS, only those high in RRS showed right asymmetry. Results were consistent with literature linking avoidant behaviors (restraint) with right-frontal asymmetry and approach behaviors (binge eating) with left-frontal asymmetry. It appears that a strong drive toward palatable foods predominates at a neural level even when restraint is high. Findings suggest that lateralized frontal activity is an indicator of motivation both to consume and to avoid consuming highly palatable foods. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Influence of Nutrition Claims on Appetite Sensations according to Sex, Weight Status, and Restrained Eating

    Science.gov (United States)

    Doucet, Éric; Pomerleau, Sonia

    2016-01-01

    Nutrition claims may help people to adopt healthier eating habits, but little is known about the potential cognitive effects of such claims on appetite sensations. The main purpose of this study was to evaluate the impact of nutrition claims and individual factors on perceived appetite sensations. According to a three (“healthy” versus “diet” (i.e., satiating) versus “hedonic”) by two (restrained or not restrained) by two (normal-weight or overweight/obese) by two (men versus women) factorial design, 164 males and 188 females aged 18–65 were invited to taste an oatmeal-raisin snack in a blinded and ad libitum context. Visual analog scales (150 mm) were used to evaluate appetite sensations before and over 1 h after consumption period. BMI and Restraint Scale were used to categorize participants according to their weight and restraint status. No main condition effect was observed for any of the four appetite sensations. However, subgroups analysis revealed significant differences among specific subgroups. A main effect of sex was also observed for all appetite sensations with men reporting higher levels of desire to eat, hunger and prospective food consumption, and lower levels of fullness than women. These findings highlight the importance of considering individual characteristics in interaction when studying appetite sensations. PMID:27725885

  11. Influence of Nutrition Claims on Appetite Sensations according to Sex, Weight Status, and Restrained Eating

    Directory of Open Access Journals (Sweden)

    Geneviève Painchaud Guérard

    2016-01-01

    Full Text Available Nutrition claims may help people to adopt healthier eating habits, but little is known about the potential cognitive effects of such claims on appetite sensations. The main purpose of this study was to evaluate the impact of nutrition claims and individual factors on perceived appetite sensations. According to a three (“healthy” versus “diet” (i.e., satiating versus “hedonic” by two (restrained or not restrained by two (normal-weight or overweight/obese by two (men versus women factorial design, 164 males and 188 females aged 18–65 were invited to taste an oatmeal-raisin snack in a blinded and ad libitum context. Visual analog scales (150 mm were used to evaluate appetite sensations before and over 1 h after consumption period. BMI and Restraint Scale were used to categorize participants according to their weight and restraint status. No main condition effect was observed for any of the four appetite sensations. However, subgroups analysis revealed significant differences among specific subgroups. A main effect of sex was also observed for all appetite sensations with men reporting higher levels of desire to eat, hunger and prospective food consumption, and lower levels of fullness than women. These findings highlight the importance of considering individual characteristics in interaction when studying appetite sensations.

  12. [Tests and scales: restrains to use them by general practitioners. Descriptive transversal study].

    Science.gov (United States)

    Cario, Camille; Levesque, Jean-Louis; Bouche, Gauthier

    2010-12-20

    Tests, even though recommended, are only few used by general practitioners (GP's). The aim of this study was to understand the reasons of this underuse. Descriptive transversal study, to explore knowledge, use and restrains to using ten tests related in the first 50 results of consultation in general practice. We questioned 121 GP's from Charente, selected ad random. The oldest tests (MMS, MNA, Fagerström, mini-GDS, IPSS, depression) are known by more than half of the GP's. Only one third is familiar with more recent tests devoted to ambulatory care (TSTS, FACE, venous thromboembolic risk), which are also used less (20% at most). Systematic use of all tests mixed up, never exceeds 30% of all GP's. The principal restrain to use these tests is lack of training (53%), which seems indeed to be inefficient in this domain; 20 to 60% of GP's who know the tests, do not use them, mainly because of doubts regarding their usefulness (38%). What really is the utility of these tests in ambulatory care? Their validity in general practice shows some gaps: their validation results seldom on studies conducted in primary care, impact studies to evaluate the benefits for patients are lacking, and tests designed for specific use by GP's are rare and lacking in validity. Development of research in primary care in this field would be desirable in order to develop relevant, feasible and acceptable tools to help decision making in general practice.

  13. Neurofeedback reduces overeating episodes in female restrained eaters: a randomized controlled pilot-study.

    Science.gov (United States)

    Schmidt, Jennifer; Martin, Alexandra

    2015-12-01

    Overeating episodes, despite of intentions to control weight, are a common problem among women. Recurring episodes of overeating and dietary failure have been reported to result in higher Body Mass Indexes and to induce severe distress even in non-clinical groups. Based on findings from physiological research on eating behavior and craving, as well as previous biofeedback studies, we derived a cue exposure based EEG neurofeedback protocol to target overeating episodes. The treatment was evaluated in a randomized controlled trial, comparing a neurofeedback group (NFG; n = 14) with a waiting list control group (WLG; n = 13) in a sub-clinical sample of female restrained eaters. At post-treatment, the number of weekly overeating episodes and subsequent distress were significantly reduced in the NFG compared to the WLG (p  .50). In a 3 month follow-up, effects in the NFG remained stable. As secondary outcomes, perceived dieting success was enhanced after the treatment. At follow-up, additional beneficial effects on trait food craving were observed. Altogether, we found preliminary evidence for the cue exposure neurofeedback against overeating episodes in female restrained eaters, although specific effects and underlying mechanisms still have to be explored in future research.

  14. Responsiveness to healthy advertisements in adults: An experiment assessing beyond brand snack selection and the impact of restrained eating.

    Science.gov (United States)

    Dovey, Terence M; Torab, Tina; Yen, Dorothy; Boyland, E J; Halford, Jason C G

    2017-05-01

    The objective of this study was to explore the impact of different advertising messages on adults' snack choice. Eighty participants (18-24 years old) were offered the choice between two snack packs following exposure to one of three advertising conditions. The snack packs contained either healthy or high fat, sugar or salt (HFSS) foods. Participants were exposed to commercials containing either non-food products, healthy food products or HFSS food products and their subsequent choice of snack pack was recorded. The Dutch Eating Behaviour Questionnaire (DEBQ) was used to assess the impact of external, restrained and emotional eating behaviour on snack pack selection following exposure to advertisements. The majority of unrestrained participants preferentially choose the HFSS snack pack irrespective of advertisement condition. In contrast, high restrained individuals exposed to the healthy eating advertisement condition preferentially selected the healthy snack pack while those in other advertisement conditions refused to take either snack pack. The healthy eating message, when distributed through mass media, resonated with restrained eaters only. Exposure to healthy food adverts provoked restrained eaters into choosing a snack pack; while exposure to other messages results in restrained eaters refusing to take any foods. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Make up your mind about food: A healthy mindset attenuates attention for high-calorie food in restrained eaters.

    Science.gov (United States)

    Werthmann, Jessica; Jansen, Anita; Roefs, Anne

    2016-10-01

    Attention bias for food could be a cognitive pathway to overeating in obesity and restrained eating. Yet, empirical evidence for individual differences (e.g., in restrained eating and body mass index) in attention bias for food is mixed. We tested experimentally if temporarily induced health versus palatability mindsets influenced attention bias for food, and whether restrained eating moderated this relation. After manipulating mindset (health vs. palatability) experimentally, food-related attention bias was measured by eye-movements (EM) and response latencies (RL) during a visual probe task depicting high-calorie food and non-food. Restrained eating was assessed afterwards. A significant interaction of mindset and restrained eating on RL bias emerged, β = 0.36, t(58) = 2.05, p = 0.045: A health mindset - as compared to a palatability mindset - attenuated attention bias for high-caloric food only in participants with higher eating restraint. No effects were observed on EM biases. The current results demonstrate that state differences in health versus palatability mindsets can cause attenuated attention bias for high-calorie food cues in participants with higher eating restraint. Our findings add to emerging evidence that state differences in mindsets can bias attention for food, above the influence of trait differences. Copyright © 2016. Published by Elsevier Ltd.

  16. The forced nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Kaup, D.J.; Hansen, P.J.

    1985-01-01

    The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)

  17. Evolution of the phase-space density and the Jeans scale for dark matter derived from the Vlasov-Einstein equation

    International Nuclear Information System (INIS)

    Piattella, O.F.; Rodrigues, D.C.; Fabris, J.C.; Pacheco, J.A. de Freitas

    2013-01-01

    We discuss solutions of Vlasov-Einstein equation for collisionless dark matter particles in the context of a flat Friedmann universe. We show that, after decoupling from the primordial plasma, the dark matter phase-space density indicator Q = ρ/(σ 1D 2 ) 3/2 remains constant during the expansion of the universe, prior to structure formation. This well known result is valid for non-relativistic particles and is not ''observer dependent'' as in solutions derived from the Vlasov-Poisson system. In the linear regime, the inclusion of velocity dispersion effects permits to define a physical Jeans length for collisionless matter as function of the primordial phase-space density indicator: λ J = (5π/G) 1/2 Q −1/3 ρ dm −1/6 . The comoving Jeans wavenumber at matter-radiation equality is smaller by a factor of 2-3 than the comoving wavenumber due to free-streaming, contributing to the cut-off of the density fluctuation power spectrum at the lowest scales. We discuss the physical differences between these two scales. For dark matter particles of mass equal to 200 GeV, the derived Jeans mass is 4.3 × 10 −6 M ⊙

  18. SGS Analysis of the Evolution Equations of the Mixture Fraction and the Progress Variable Variances in the Presence of Spray Combustion

    Directory of Open Access Journals (Sweden)

    H. Meftah

    2010-03-01

    Full Text Available In this paper, direct numerical simulation databases have been generated to analyze the impact of the propagation of a spray flame on several subgrid scales (SGS models dedicated to the closure of the transport equations of the subgrid fluctuations of the mixture fraction Z and the progress variable c. Computations have been carried out starting from a previous inert database [22] where a cold flame has been ignited in the center of the mixture when the droplet segregation and evaporation rate were at their highest levels. First, a RANS analysis has shown a brutal increase of the mixture fraction fluctuations due to the fuel consumption by the flame. Indeed, local vapour mass fraction reaches then a minimum value, far from the saturation level. It leads to a strong increase of the evaporation rate, which is also accompanied by a diminution of the oxidiser level. In a second part of this paper, a detailed evaluation of the subgrid models allowing to close the variance and the dissipation rates of the mixture fraction and the progress variable has been carried out. Models that have been selected for their efficiency in inert flows have shown a very good behaviour in the framework of reactive flows.

  19. Antishadowing effects in the unitarized BFKL equation

    International Nuclear Information System (INIS)

    Ruan Jianhong; Shen Zhenqi; Yang Jifeng; Zhu Wei

    2007-01-01

    A unitarized BFKL equation incorporating shadowing and antishadowing corrections of the gluon recombination is proposed. This equation reduces to the Balitsky-Kovchegov evolution equation near the saturation limit. We find that the antishadowing effects have a sizable influence on the gluon distribution function in the preasymptotic regime

  20. Antishadowing effects in the unitarized BFKL equation

    Energy Technology Data Exchange (ETDEWEB)

    Ruan Jianhong [Department of Physics, East China Normal University, Shanghai 200062 (China); Shen Zhenqi [Department of Physics, East China Normal University, Shanghai 200062 (China); Yang Jifeng [Department of Physics, East China Normal University, Shanghai 200062 (China); Zhu Wei [Department of Physics, East China Normal University, Shanghai 200062 (China)]. E-mail: weizhu@mail.ecnu.edu.cn

    2007-01-01

    A unitarized BFKL equation incorporating shadowing and antishadowing corrections of the gluon recombination is proposed. This equation reduces to the Balitsky-Kovchegov evolution equation near the saturation limit. We find that the antishadowing effects have a sizable influence on the gluon distribution function in the preasymptotic regime.

  1. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  2. The effect of brand and caloric information on flavor perception and food consumption in restrained and unrestrained eaters.

    Science.gov (United States)

    Cavanagh, Kevin V; Kruja, Blina; Forestell, Catherine A

    2014-11-01

    The goal of the current study was to determine whether provision of brand and caloric information affects sensory perception and consumption of a food in restrained (n=84) and unrestrained eaters (n=104). Using a between-subjects 2 × 2 × 3 design, female restrained and unrestrained eaters were asked to taste and rate a cookie that was labeled with a brand associated with healthful eating (Kashi(®)) or one associated with unhealthful eating (Nabisco(®)). Additionally, some participants were presented with a nutrition label alongside the brand name indicating that one serving contained 130 calories (Low-Calorie Condition), or 260 calories (High-Calorie Condition). The remaining participants were not shown a nutrition label (No Label Condition). Results indicated that those in the No Label or the High-Calorie Condition perceived the healthful branded cookie to have a better flavor than those who received the unhealthful branded cookie regardless of their restraint status. However, restrained eaters in the No Label Condition consumed more of the healthful than the unhealthful branded cookie, whereas those in the Low-Calorie Condition consumed more of the unhealthful than the healthful branded cookie. In contrast, unrestrained eaters ate more of the healthful branded cookie regardless of the caloric information provided. Thus, although restrained and unrestrained eaters' perceptions are similarly affected by branding and caloric information, brands and caloric information interact to affect restrained eaters' consumption. This study reveals that labeling foods as low calorie may create a halo effect which may lead to over-consumption of these foods in restrained eaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Nonparametric study of the evolution of the cosmological equation of state with SNeIa, BAO, and high-redshift GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Postnikov, S. [Nuclear Theory Center, Indiana University, Bloomington, IN (United States); Dainotti, M. G. [Physics Department, Stanford University, Via Pueblo Mall 382, Stanford, CA (United States); Hernandez, X. [Instituto de Astronomía, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Capozziello, S., E-mail: spostnik@indiana.edu, E-mail: mdainott@stanford.edu, E-mail: dainotti@oa.uj.edu.pl, E-mail: xavier@astros.unam.mx, E-mail: capozziello@na.infn.it [Dipartimento di Fisica, Universitá di Napoli " Federico II," Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy)

    2014-03-10

    We study the dark energy equation of state as a function of redshift in a nonparametric way, without imposing any a priori w(z) (ratio of pressure over energy density) functional form. As a check of the method, we test our scheme through the use of synthetic data sets produced from different input cosmological models that have the same relative errors and redshift distribution as the real data. Using the luminosity-time L{sub X} -T{sub a} correlation for gamma-ray burst (GRB) X-ray afterglows (the Dainotti et al. correlation), we are able to utilize GRB samples from the Swift satellite as probes of the expansion history of the universe out to z ≈ 10. Within the assumption of a flat Friedmann-Lemaître-Robertson-Walker universe and combining supernovae type Ia (SNeIa) data with baryonic acoustic oscillation constraints, the resulting maximum likelihood solutions are close to a constant w = –1. If one imposes the restriction of a constant w, we obtain w = –0.99 ± 0.06 (consistent with a cosmological constant) with the present-day Hubble constant as H {sub 0} = 70.0 ± 0.6km s{sup –1} Mpc{sup –1} and density parameter as Ω{sub Λ0} = 0.723 ± 0.025, while nonparametric w(z) solutions give us a probability map that is centered at H {sub 0} = 70.04 ± 1km s{sup –1} Mpc{sup –1} and Ω{sub Λ0} = 0.724 ± 0.03. Our chosen GRB data sample with a full correlation matrix allows us to estimate the amount, as well as quality (errors), of data needed to constrain w(z) in the redshift range extending an order of magnitude beyond the farthest SNeIa measured.

  4. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  5. Design of steel energy-absorbing restrainers and their incorporation into nuclear power plants for enhanced safety. Progress report

    International Nuclear Information System (INIS)

    1980-03-01

    This program for the development of steel energy-absorbing restrainers originated as a five year multi-institutional, interdisciplinary program. The resources of the University of California, Berkeley (UCB), the Earthquake Engineering Research Center, Richmond (EERC), Massachusetts Institute of Technology (MIT), and Battelle Pacific Northwestern Laboratories (BPNL) are utilized as well as advisors from industry, the utilities and the US Nuclear Regulatory Commission. The present progress report involves the areas of experimental testing on the shaking table at the EERC, restrainer device design and testing, structural analyses and materials testing

  6. Vanillin restrains non-enzymatic glycation and aggregation of albumin by chemical chaperone like function.

    Science.gov (United States)

    Awasthi, Saurabh; Saraswathi, N T

    2016-06-01

    Vanillin a major component of vanilla bean extract is commonly used a natural flavoring agent. Glycation is known to induce aggregation and fibrillation of globular proteins such as albumin, hemoglobin. Here we report the inhibitory potential of vanillin toward early and advanced glycation modification and amyloid like aggregation of albumin based on the determination of both early and advanced glycation and conformational changes in albumin using circular dichroism. Inhibition of aggregation and fibrillation of albumin was determined based on amyloid specific dyes i.e., Congo red and Thioflavin T and microscopic imaging. It was evident that vanillin restrains glycation of albumin and exhibits protective effect toward its native conformation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Nuclear energy contribution to restraining greenhouse gas emissions and long-term energy production

    International Nuclear Information System (INIS)

    Khoda-Bakhsh, R.

    2004-01-01

    An important source of greenhouse gases, in particular Co 2 , is fossil fuel combustion for energy applications. Since nuclear power is an energy source that does not produce Co 2 , nuclear energy is already making a contribution to restraining greenhouse gas emissions. Because it has been internationally decided to reduce carbon dioxide emission before the year 2005 in order to avoid the green house catastrophy of the earth's atmosphere, and since there is an urgent need of energy especially in the developing countries, there is now a strong demand for alternative energy sources. While the established low cost energy production by light water nuclear fission reactors could be a solution for a period of transition (limited by resources of the light Uranium isotope), fusion energy is of interest for long- term and large scale energy production to provide the increased energy demand

  8. Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate

    Science.gov (United States)

    Ren, Jingli; Yuan, Qigang

    2017-08-01

    A three dimensional microbial continuous culture model with a restrained microbial growth rate is studied in this paper. Two types of dilution rates are considered to investigate the dynamic behaviors of the model. For the unforced system, fold bifurcation and Hopf bifurcation are detected, and numerical simulations reveal that the system undergoes degenerate Hopf bifurcation. When the system is periodically forced, bifurcation diagrams for periodic solutions of period-one and period-two are given by researching the Poincaré map, corresponding to different bifurcation cases in the unforced system. Stable and unstable quasiperiodic solutions are obtained by Neimark-Sacker bifurcation with different parameter values. Periodic solutions of various periods can occur or disappear and even change their stability, when the Poincaré map of the forced system undergoes Neimark-Sacker bifurcation, flip bifurcation, and fold bifurcation. Chaotic attractors generated by a cascade of period doublings and some phase portraits are given at last.

  9. A plastic collapse method for evaluating rotation capacity of full-restrained steel moment connections

    Directory of Open Access Journals (Sweden)

    Lee Kyungkoo

    2008-01-01

    Full Text Available An analytical method to model failure of steel beam plastic hinges due to local buckling and low-cycle fatigue is proposed herein. This method is based on the plastic collapse mechanism approach and a yield-line plastic hinge (YLPH model whose geometry is based on buckled shapes of beam plastic hinges observed in experiments. Two limit states, strength degradation failure induced by local buckling and low-cycle fatigue fracture, are considered. The proposed YLPH model was developed for FEMA-350 WUF-W, RBS and Free Flange connections and validated in comparisons to experimental data. This model can be used to estimate the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions.

  10. How to restrain electroplex emission and enhance red emission intensity of Eu 3+ complex?

    Science.gov (United States)

    Zhang, Fujun; Zhao, Suling; Xu, Zheng; Huang, Jinzhao; Yuan, Guancai; Li, Yuan; Wang, Yong; Xu, Xurong

    2007-11-01

    The electroluminescence (EL) of lanthanide complex profits from the intramolecular energy transfer from the triplet state of ligand to Ln (III) ions, but electroplex emission between ligand and host material may occur when the energy transfer is inefficient. The electroplex emission is completely restrained when 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7,-tetramethyljulolidy-9-enyl)-4Hpyran (DCJTB) and Eu(o-BBA)3(phen) are co-doped in poly (N-vinycarbzaole) (PVK). There are great spectra overlapping between electroplex emission and the excitation of DCJTB. The chromaticity coordinates of EL of co-doped device is kept constant (x = 0.55, y = 0.37) under different driving voltage.

  11. Numerical simulation and experiments of precision bar cutting based on high speed and restrained state

    International Nuclear Information System (INIS)

    Song, J.L.; Li, Y.T.; Liu, Z.Q.; Fu, J.H.; Ting, K.L.

    2009-01-01

    According to the disadvantages of conventional bar cutting technology such as low-cutting speed, inferior section quality, high-processing cost and so on, a kind of novel precision bar cutting technology has been proposed. The cutting mechanism has also been analyzed. Finite element numerical simulation of the bar cutting process under different working conditions has been carried out with DEFORM. The stress and strain fields at different cutting speed and the variation curves of the cutting force and appropriate cutting parameters have been obtained. Scanning electron microscopy analysis of the cutting surface showed that the finite-element simulation result is correct and better cutting quality can be obtained with the developed bar cutting technology and equipment based on high speed and restrained state

  12. Dicer Is Required for Normal Cerebellar Development and to Restrain Medulloblastoma Formation.

    Directory of Open Access Journals (Sweden)

    Frederique Zindy

    Full Text Available Dicer, a ribonuclease III enzyme, is required for the maturation of microRNAs. To assess its role in cerebellar and medulloblastoma development, we genetically deleted Dicer in Nestin-positive neural progenitors and in mice lacking one copy for the Sonic Hedgehog receptor, Patched 1. We found that conditional loss of Dicer in mouse neural progenitors induced massive Trp53-independent apoptosis in all proliferative zones of the brain and decreased proliferation of cerebellar granule progenitors at embryonic day 15.5 leading to abnormal cerebellar development and perinatal lethality. Loss of one copy of Dicer significantly accelerated the formation of mouse medulloblastoma of the Sonic Hedgehog subgroup in Patched1-heterozygous mice. We conclude that Dicer is required for proper cerebellar development, and to restrain medulloblastoma formation.

  13. When exercise does not pay: Counterproductive effects of impending exercise on energy intake among restrained eaters.

    Science.gov (United States)

    Sim, Aaron Y; Lee, Li Ling; Cheon, Bobby K

    2018-04-01

    Evidence suggests people may overestimate the effectiveness of future positive behaviour, leading to counterproductive behaviours in the present. Applied to weight-management, we hypothesize that inaccurate expectations about impending exercise may impede weight management by promoting overconsumption prior to exercise. This study aimed to determine how expectations about impending exercise and its potential ability to expend energy may influence i) energy intake before exercise and ii) overall energy balance (energy intake minus energy expended via exercise). Using a randomised, counterbalanced design, 21 inactive, overweight males, following a baseline session, completed two experimental trials: i) ad-libitum snack meal (potato-crisps) followed by an exercise session (SE) and ii) ad-libitum snack meal only (SO). There was no main effect of condition (SE vs. SO) on ad-libitum snack intake (p = .917). However, after accounting for dietary restraint (covariate), a difference in snack intake between SE and SO was revealed (p = .050). Specifically, participants who scored higher in dietary restraint consumed more in the SE (vs. SO) session (162 ± 359 kcal more) compared with participants who scored lower in dietary restraint (89 ± 135 kcal less). Among restrained eaters, the relative (net) energy consumed after accounting for energy expended from exercise in SE was not different from the energy consumed in the SO condition, suggesting that energy expended via exercise in SE does not appear to negate extra energy consumed in this condition compared with SO. Of interest, desire to eat and prospective food consumption ratings at the start of the trial were greater (p ≤ .029) in SE compared with SO. Findings suggest that restrained-eaters are at risk of adopting compensatory eating behaviour that may impede negative energy balance typically resulting from exercise (i.e. expending insufficient energy to negate compensatory energy intake

  14. Evolution of restraint in a structured rock–paper–scissors community

    Science.gov (United States)

    Nahum, Joshua R.; Harding, Brittany N.; Kerr, Benjamin

    2011-01-01

    It is not immediately clear how costly behavior that benefits others evolves by natural selection. By saving on inherent costs, individuals that do not contribute socially have a selective advantage over altruists if both types receive equal benefits. Restrained consumption of a common resource is a form of altruism. The cost of this kind of prudent behavior is that restrained individuals give up resources to less-restrained individuals. The benefit of restraint is that better resource management may prolong the persistence of the group. One way to dodge the problem of defection is for altruists to interact disproportionately with other altruists. With limited dispersal, restrained individuals persist because of interaction with like types, whereas it is the unrestrained individuals that must face the negative long-term consequences of their rapacity. Here, we study the evolution of restraint in a community of three competitors exhibiting a nontransitive (rock–paper–scissors) relationship. The nontransitivity ensures a form of negative feedback, whereby improvement in growth of one competitor has the counterintuitive consequence of lowering the density of that improved player. This negative feedback generates detrimental long-term consequences for unrestrained growth. Using both computer simulations and evolution experiments with a nontransitive community of Escherichia coli, we find that restrained growth can evolve under conditions of limited dispersal in which negative feedback is present. This research, thus, highlights a set of ecological conditions sufficient for the evolution of one form of altruism. PMID:21690371

  15. Evolution of restraint in a structured rock-paper-scissors community.

    Science.gov (United States)

    Nahum, Joshua R; Harding, Brittany N; Kerr, Benjamin

    2011-06-28

    It is not immediately clear how costly behavior that benefits others evolves by natural selection. By saving on inherent costs, individuals that do not contribute socially have a selective advantage over altruists if both types receive equal benefits. Restrained consumption of a common resource is a form of altruism. The cost of this kind of prudent behavior is that restrained individuals give up resources to less-restrained individuals. The benefit of restraint is that better resource management may prolong the persistence of the group. One way to dodge the problem of defection is for altruists to interact disproportionately with other altruists. With limited dispersal, restrained individuals persist because of interaction with like types, whereas it is the unrestrained individuals that must face the negative long-term consequences of their rapacity. Here, we study the evolution of restraint in a community of three competitors exhibiting a nontransitive (rock-paper-scissors) relationship. The nontransitivity ensures a form of negative feedback, whereby improvement in growth of one competitor has the counterintuitive consequence of lowering the density of that improved player. This negative feedback generates detrimental long-term consequences for unrestrained growth. Using both computer simulations and evolution experiments with a nontransitive community of Escherichia coli, we find that restrained growth can evolve under conditions of limited dispersal in which negative feedback is present. This research, thus, highlights a set of ecological conditions sufficient for the evolution of one form of altruism.

  16. Effective equations for the quantum pendulum from momentous quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Hector H.; Chacon-Acosta, Guillermo [Universidad Autonoma de Chihuahua, Facultad de Ingenieria, Nuevo Campus Universitario, Chihuahua 31125 (Mexico); Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120 (Mexico)

    2012-08-24

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  17. Cone restraining and head-only electrical stunning in broilers: Effects on physiological responses and meat quality

    NARCIS (Netherlands)

    Lambooij, E.; Reimert, H.G.M.; Verhoeven, M.T.W.; Hindle, V.A.

    2014-01-01

    Two experiments were conducted to evaluate a new electrical stunning system for broilers. The objective of the first experiment was to evaluate the behavioral, neural, and physiological responses of 27 broilers after head-only electrical stunning while their bodies were restrained in cone-shaped

  18. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Science.gov (United States)

    2010-10-01

    ... load restraining value of a friction mat, determined? 393.108 Section 393.108 Transportation Other... load restraining value of a friction mat, determined? (a) The working load limit (WLL) of a tiedown... load limits. (g) Friction mats which are not marked or rated by the manufacturer shall be considered to...

  19. Stellar structure and evolution

    International Nuclear Information System (INIS)

    Kippernhahn, R.; Weigert, A.

    1990-01-01

    This book introduces the theory of the internal structure of stars and their evolution in time. It presents the basic physics of stellar interiors, methods for solving the underlying equations, and the most important results necessary for understanding the wide variety of stellar types and phenomena. The evolution of stars is discussed from their birth through normal evolution to possibly spectacular final stages. Chapters on stellar oscillations and rotation are included

  20. A nudge in a healthier direction: How environmental cues help restrained eaters pursue their weight-control goal.

    Science.gov (United States)

    Stämpfli, Aline E; Stöckli, Sabrina; Brunner, Thomas A

    2017-03-01

    Losing weight is a goal for many people, but it is hard to pursue. However, dieting cues in the environment hold promise for improving individuals' eating behavior. For example, exposure to thin, human-like sculptures by the artist Alberto Giacometti has been found to promote healthy snack choices at a vending machine. Whether health- or weight-related processes drive such effects has not yet been determined. However, a detailed understanding of the content-related drivers of environmental cues' effects provides the first indications regarding a cue's possible use. Therefore, two laboratory studies were conducted. They examined the Giacometti sculptures' effects on unhealthy and healthy food intake (Study 1) and on the completion of weight- and health-related fragmented words (Study 2). Study 1 indicated that the sculptures are weight-related by showing that they reduced food intake independent of food healthiness. Furthermore, the "Giacometti effect" was moderated by restrained eating. Restrained eaters, who are known for their weight-control goal, ate less after having been exposed to the thin sculptures. The results of Study 2 pointed in the same direction. Restrained eaters completed more weight-related words after being exposed to the sculptures. Overall, these studies suggest that the thin sculptures are primarily weight-related cues and particularly helpful for restrained eaters. Environmental weight-control cues such as the Giacometti sculptures could act as a counterforce to our obesogenic environment and help restrained eaters pursue their weight-control goal. In this way, they could nudge food decisions in a healthier direction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Bernoulli's Equation

    Indian Academy of Sciences (India)

    regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.

  2. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  3. Lattice Wigner equation

    Science.gov (United States)

    Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2018-01-01

    We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.

  4. Comportamento de restrição alimentar e obesidade Restrained eating behavior and obesity

    Directory of Open Access Journals (Sweden)

    Fabiana Bernardi

    2005-02-01

    Full Text Available A obesidade é uma doença de alta prevalência no mundo e é responsável por sérias repercussões orgânicas e psicossociais, desde a infância até a vida adulta. O comportamento alimentar tem bases biológicas e sociais e, associado, à obesidade, torna-se um processo ainda mais complexo pelos aspectos psicológicos envolvidos, os quais se expressam por meio de humor depressivo, ansiedade, sentimento de culpa e, também, por mecanismos fisiológicos, como a resistência ao jejum na vigência de dietas restritivas. Há evidências de que, em indivíduos obesos, comportamentos de compulsão alimentar e ou restrição são mais freqüentes e parecem ser, em parte, responsáveis pelos fracassos observados no tratamento da obesidade. As restrições e auto-imposições das pessoas que fazem dieta, parecem ter um efeito rebote, resultando em compulsão alimentar, a qual pode associar-se a conseqüências psicológicas, como a perda da auto-estima, mudanças de humor e distração. As reflexões desta revisão sugerem que os programas para redução de peso corporal devem enfocar as bases do comportamento alimentar e desenvolver, efetivamente, ações interdisciplinares que permitam obter resultados eficazes no tratamento da obesidade.Obesity is a widespread disease in the world, responsible for serious organic and psychosocial repercussions, from infancy to adulthood. Eating behavior has biological as well as social bases. Associated to obesity, it becomes an even more complex process, since it is accompanied by psychological aspects showing symptoms such as depressive moods, anxiety, feelings of guilt, and physiological mechanisms as, for instance, the resistance to fast during restrictive diets. Obese individuals prevalently present behaviors such as binge or restrained eating, both leading to failure in the treatment of obesity. Restrained eating refers to the tendency to restrict food intake consciously, in order to prevent weight gain or to

  5. Protection of children restrained in child safety seats in side impact crashes.

    Science.gov (United States)

    Arbogast, Kristy B; Locey, Caitlin M; Zonfrillo, Mark R; Maltese, Matthew R

    2010-10-01

    The performance of child restraint systems (CRS) in side impact motor vehicle crashes has been under study due to the injury and fatality burden of these events. Although previous research has quantified injury risk or described injured body regions, safety advances require an understanding of injury causation. Therefore, the objective was to delineate injury causation scenarios for CRS-restrained children in side impacts and document probable contact points in the vehicle interior. Two in-depth crash investigation databases, the Crash Injury Research and Engineering Network and the Partners for Child Passenger Safety Study, were queried for rear-seated, CRS-restrained children in side impact crashes who sustained Abbreviated Injury Scale 2+ injury. These cases were reviewed by a multidisciplinary team of physicians and engineers to describe injury patterns, injury causation, and vehicle components that contributed to the injuries. Forty-one occupants (average age, 2.6 years) met the inclusion criteria. Twenty-four were near side to the crash, 7 were far side, and 10 were center seated. The most common injuries were to the skull and brain with an increasing proportion of skull fracture as age increased. Head and spine injuries without evidence of head contact were rare but present. All thoracic injuries were lung contusions and no rib fractures occurred. Near-side head and face contacts points were along the rear vertical plane of the window and the horizontal plane of the window sill. Head and face contact points for center- and far-side occupants were along the edges of the front seat back and front seat head restraint. Head injuries are the target for injury prevention for children in CRS in side impact crashes. Most of these injuries are due to the contact; for near-side occupants, contact with the CRS structure and the door interior, for far- or center-seated occupants, contact with the front seat back. These data are useful in developing both educational and

  6. A generalized advection dispersion equation

    Indian Academy of Sciences (India)

    This paper examines a possible effect of uncertainties, variability or heterogeneity of any dynamic system when being included in its evolution rule; the notion is illustrated with the advection dispersion equation, which describes the groundwater pollution model. An uncertain derivative is defined; some properties of.

  7. Hilbert space methods in partial differential equations

    CERN Document Server

    Showalter, Ralph E

    1994-01-01

    This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.

  8. Design and Trajectory Analysis of Incompletely Restrained Cable-Suspension Swing System Driven by Two Cables

    Directory of Open Access Journals (Sweden)

    Naige Wang

    2015-12-01

    Full Text Available In order to simulate the swing conditions of a suspended platform of a construction shaft, marine ships, cars, etc., an incompletely restrained cable-suspension swing system driven by two cables (IRCSWs2 was designed and parameter trajectories of displacements, angles and tensions were systematically investigated. Firstly, the motion mechanism of the IRCSWs2 is described and the corresponding kinematic model is established. For further evaluating the analytical expressions, the ADAMS simulation model and the physical prototype experimental model were developed. The basic consistency and slight difference among the three models are illustrated by a comparison of different parameters. The approximately linear relationship between the driving displacements of two cables and the swing angles of the platform was obtained. Finally, the effects of various parameters on displacements, angles and tensions were analysed, and the results indicate that the translation of a suspended platform is slight during its swing and that the novel IRCSWs2 can be used to drive heavy loads using a relatively small driving force, which is useful for simulating swing environmental conditions long-term, in addition to being cost-effective.

  9. The role of tobacco promoting and restraining factors in smoking intentions among Ghanaian youth.

    Science.gov (United States)

    Doku, David; Raisamo, Susanna; Wiium, Nora

    2012-08-15

    In Western countries, the relationship between smoking intentions and smoking behaviour is well established. However, youth smoking intentions and associated factors in developing countries are largely unexplored and the former may occur for a variety of reasons. We investigated youth smoking intentions in Ghana with regard to several tobacco promoting and restraining factors, including environmental, familial, attitudinal and knowledge measures. A school-based survey of a representative sample of 12-20-year-olds was conducted in 2008 in Ghana (N = 1338, response rate 89.7%). In a bivariate model, both among ever and never smokers, allowing smoking on school compound, exposure to tobacco advertisement and parental smoking were associated with future intention to smoke. Compared to those who agreed that smoking is harmful to health, smoking is difficult to quit and that tobacco should not be sold to minors, those who disagreed or were not sure were more likely to have an intention to smoke. In the multivariate analyses, these associations persisted, except that the attitude measures concerning the difficulty of quitting smoking once started and tobacco sales ban were no longer significantly associated with smoking intentions. These findings underscore the importance of school smoking policy, parental smoking behaviour and knowledge of the harmful effects of tobacco use in determining Ghanaian youths' future smoking intentions. Because current high percentages of smoking intentions may turn into high smoking rates in the future, the introduction of effective tobacco control measures at all levels of society to prevent youth smoking in Ghana may be essential.

  10. Neuropharmacological Manipulation of Restrained and Free-flying Honey Bees, Apis mellifera.

    Science.gov (United States)

    Søvik, Eirik; Plath, Jenny A; Devaud, Jean-Marc; Barron, Andrew B

    2016-11-26

    Honey bees demonstrate astonishing learning abilities and advanced social behavior and communication. In addition, their brain is small, easy to visualize and to study. Therefore, bees have long been a favored model amongst neurobiologists and neuroethologists for studying the neural basis of social and natural behavior. It is important, however, that the experimental techniques used to study bees do not interfere with the behaviors being studied. Because of this, it has been necessary to develop a range of techniques for pharmacological manipulation of honey bees. In this paper we demonstrate methods for treating restrained or free-flying honey bees with a wide range of pharmacological agents. These include both noninvasive methods such as oral and topical treatments, as well as more invasive methods that allow for precise drug delivery in either systemic or localized fashion. Finally, we discuss the advantages and disadvantages of each method and describe common hurdles and how to best overcome them. We conclude with a discussion on the importance of adapting the experimental method to the biological questions rather than the other way around.

  11. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance.

    Science.gov (United States)

    Ping, Linquan; Hou, Peng-Xiang; Liu, Chang; Li, Jincheng; Zhao, Yang; Zhang, Feng; Ma, Chaoqun; Tai, Kaiping; Cong, Hongtao; Cheng, Hui-Ming

    2017-06-22

    A vertically aligned carbon nanotube (VACNT) array is a promising candidate for a high-performance thermal interface material in high-power microprocessors due to its excellent thermal transport property. However, its rough and entangled free tips always cause poor interfacial contact, which results in serious contact resistance dominating the total thermal resistance. Here, we employed a thin carbon cover to restrain the disorderly growth of the free tips of a VACNT array. As a result, all the free tips are seamlessly connected by this thin carbon cover and the top surface of the array is smoothed. This unique structure guarantees the participation of all the carbon nanotubes in the array in the heat transport. Consequently the VACNT array grown on a Cu substrate shows a record low thermal resistance of 0.8 mm 2 K W -1 including the two-sided contact resistances, which is 4 times lower than the best result previously reported. Remarkably, the VACNT array can be easily peeled away from the Cu substrate and act as a thermal pad with excellent flexibility, adhesive ability and heat transport capability. As a result the CNT array with a thin carbon cover shows great potential for use as a high-performance flexible thermal interface material.

  12. The transcription factor KLF2 restrains CD4⁺ T follicular helper cell differentiation.

    Science.gov (United States)

    Lee, June-Yong; Skon, Cara N; Lee, You Jeong; Oh, Soohwan; Taylor, Justin J; Malhotra, Deepali; Jenkins, Marc K; Rosenfeld, M Geoffrey; Hogquist, Kristin A; Jameson, Stephen C

    2015-02-17

    T follicular helper (Tfh) cells are essential for efficient B cell responses, yet the factors that regulate differentiation of this CD4(+) T cell subset are incompletely understood. Here we found that the KLF2 transcription factor serves to restrain Tfh cell generation. Induced KLF2 deficiency in activated CD4(+) T cells led to increased Tfh cell generation and B cell priming, whereas KLF2 overexpression prevented Tfh cell production. KLF2 promotes expression of the trafficking receptor S1PR1, and S1PR1 downregulation is essential for efficient Tfh cell production. However, KLF2 also induced expression of the transcription factor Blimp-1, which repressed transcription factor Bcl-6 and thereby impaired Tfh cell differentiation. Furthermore, KLF2 induced expression of the transcription factors T-bet and GATA3 and enhanced Th1 differentiation. Hence, our data indicate KLF2 is pivotal for coordinating CD4(+) T cell differentiation through two distinct and complementary mechanisms: via control of T cell localization and by regulation of lineage-defining transcription factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Gun Violence Restraining Orders: Alternative or Adjunct to Mental Health-Based Restrictions on Firearms?

    Science.gov (United States)

    Frattaroli, Shannon; McGinty, Emma E; Barnhorst, Amy; Greenberg, Sheldon

    2015-06-01

    The gun violence restraining order (GVRO) is a new tool for preventing gun violence. Unlike traditional approaches to prohibiting gun purchase and possession, which rely on a high threshold (adjudication by criminal justice or mental health systems) before intervening, the GVRO allows family members and intimate partners who observe a relative's dangerous behavior and believe it may be a precursor to violence to request a GVRO through the civil justice system. Once issued by the court, a GVRO authorizes law enforcement to remove any guns in the respondent's possession and prohibits the respondent from purchasing new guns. In September 2014, California's governor signed AB1014 into law, making California the first U.S. state to enact a GVRO law. This article describes the GVRO and the rationale behind the concept, considers case examples to assess the potential impact of the GVRO as a strategy for preventing gun violence, and reviews the content of the California law. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Design of focused and restrained subsets from extremely large virtual libraries.

    Science.gov (United States)

    Jamois, Eric A; Lin, Chien T; Waldman, Marvin

    2003-11-01

    With the current and ever-growing offering of reagents along with the vast palette of organic reactions, virtual libraries accessible to combinatorial chemists can reach sizes of billions of compounds or more. Extracting practical size subsets for experimentation has remained an essential step in the design of combinatorial libraries. A typical approach to computational library design involves enumeration of structures and properties for the entire virtual library, which may be unpractical for such large libraries. This study describes a new approach termed as on the fly optimization (OTFO) where descriptors are computed as needed within the subset optimization cycle and without intermediate enumeration of structures. Results reported herein highlight the advantages of coupling an ultra-fast descriptor calculation engine to subset optimization capabilities. We also show that enumeration of properties for the entire virtual library may not only be unpractical but also wasteful. Successful design of focused and restrained subsets can be achieved while sampling only a small fraction of the virtual library. We also investigate the stability of the method and compare results obtained from simulated annealing (SA) and genetic algorithms (GA).

  15. Early age damage quantification of actively restrained concrete using inverse analysis

    Science.gov (United States)

    Albanna, Ali

    Early-age cracking can be a significant problem in concrete pavements, floors, and bridge decks. Cracking occurs when the volumetric changes associated with drying, hydration, and temperature reduction are prevented. Good knowledge about the characteristics of early age concrete is necessary to achieve reliable crack control. Volumetric changes due to shrinkage depend on the type of concrete and its components. It has been found that light weight aggregates can work as internal reservoir to supply the concrete matrix with water that is needed during the early age; this process is called internal curing. Also fibers can give more ductility to the concrete and produce less shrinkage. There is a need to better understand the effects of early age uniaxial restraint on long term concrete mechanical performance. In this study, two types of concrete were studied (high performance fiber reinforced concrete and ordinary concrete) under actively restrained loading conditions to assess the effect on the long term fracture toughness and energy. Single edge notched specimens having dimensions of 250 mm x 150 mm x 75 mm and a notch to depth ratio of 0.33 were caste and used in both direct tension and three point bending. The direct tension tests were carried out on a direct tension loading frame constructed in house that was supplied with two mechanical jacks and load cell.

  16. Deformation Characteristics of Ultrahigh-Strength Concrete under Unrestrained and Restrained States

    Directory of Open Access Journals (Sweden)

    Joo-Ha Lee

    2017-01-01

    Full Text Available As structures like skyscrapers and long-span bridges become larger, the demand for higher strength of concrete is increasing. However, research on ultrahigh-strength concrete (UHSC is still in its infancy. In particular, UHSC is known to have a considerably higher level of autogenous shrinkage than normal strength concrete (NSC, and the possibility of cracking at an early age is very high. Therefore, in this study, shrinkage and cracking behavior of high-strength concrete (HSC, very-high-strength concrete (VHSC, and UHSC were evaluated through unrestrained shrinkage test and restrained shrinkage test (ring test. The primary experimental variables are the compressive strength level according to the water-to-binder ratio (W/B, fly ash content, and concrete specimen thickness. The experimental results demonstrated that the drying shrinkage decreased as the W/B ratio and the fly ash replacement ratio increased, and the restraint cracks appeared to be the earliest and most brittle in the UHSC with the smallest W/B. Increased concrete thickness and incorporation of fly ash were observed to inhibit crack initiation effectively.

  17. Assessment of early-age cracking of high-performance concrete in restrained ring specimens

    Directory of Open Access Journals (Sweden)

    Quang-phu Nguyen

    2010-03-01

    Full Text Available High-performance concrete (HPC is stronger and more durable than conventional concrete. However, shrinkage and shrinkage cracking are common phenomena in HPC, especially early-age cracking. This study assessed early-age cracking of HPC for two mixtures using restrained ring tests. The two mixtures were produced with water/binder mass ratio (mW/mB of 0.22 and 0.40, respectively. The results show that, with greater steel thickness, the higher degree of restraint resulted in a higher interface pressure and earlier cracking. With steel thickness of 6 mm, 19 mm, and 30 mm, the age of cracking were, respectively, 12 days, 8 days, and 5.4 days with the mW/mB = 0.22 mixture; and 22.5 days, 12.6 days, and 7.1 days with the mW/mB = 0.40 mixture. Cases of the same steel thickness show that the ring specimens with a thicker concrete wall crack later. With the mW/mB = 0.22 mixture, concrete walls with thicknesses of 37.5 mm, 75 mm, and 112.5 mm cracked at 3.4 days, 8.0 days, and 9.8 days, respectively; with the mW/mB = 0.40 mixture, the ages of cracking were 7.1 days, 12.6 days, and 16.0 days, respectively.

  18. Executive control resources and snack food consumption in the presence of restraining versus facilitating cues.

    Science.gov (United States)

    Hall, Peter A; Lowe, Cassandra; Vincent, Corita

    2014-08-01

    Prior studies have documented a negative relationship between strength of executive control resources (ECRs) and frequency of snack food consumption. However, little is known about what effect environmental cues (restraining versus facilitating) have on the engagement of such control resources. We presented 88 healthy adults with standardized tests of ECRs followed by a bogus taste test for three appetitive snack foods. Participants were randomly assigned to receive instructions to eat the bare minimum to make their ratings ("restraint condition"), eat as much as they like ("facilitation condition") or no special instructions. We surreptitiously measured the weight of food consumed during the taste test. Findings revealed a main effect of treatment condition, such that those in the restraint condition ate significantly less than those in either of the other conditions; however, this main effect was qualified by an ECR by treatment condition interaction. Specifically, those in the facilitation condition showed a strong negative association between ECR strength and amount of food consumed, whereas those in the restraint and control conditions did not. Findings suggest that the effect of ECR strength on consumption of snack food varies substantially by the characteristics of contextual cues.

  19. Hemin-Graphene Derivatives with Increased Peroxidase Activities Restrain Protein Tyrosine Nitration.

    Science.gov (United States)

    Xu, Huan; Yang, Zhen; Li, Hailing; Gao, Zhonghong

    2017-12-14

    Protein tyrosine nitration is implicated in the occurrence and progression of pathological conditions involving free radical reactions. It is well recognized that hemin can catalyze protein tyrosine nitration in the presence of nitrite and hydrogen peroxide. Generally, the catalytic efficiency is positively correlated to its peroxidase activity. In this study, however, it is found that the efficiency of hemin in catalyzing protein tyrosine nitration is largely suppressed after functionalization with graphene derivatives, even though its peroxidase-like activity is more than quadrupled. Further studies show that the oxidation of tyrosine is still observed for these composites; dityrosine formation, however, is greatly inhibited. Furthermore, these composites also exhibit strong effects on the oxidation of nitrite into nitrate. Therefore, we propose a mechanism in which hemin-graphene derivatives facilitate the oxidation of tyrosine and nitrite to produce tyrosyl radicals and nitrogen dioxide radicals in the presence of hydrogen peroxide, but graphene interlayers serve as barriers that hinder radical-radical coupling reactions; consequently, protein tyrosine nitration is restrained. This property of hemin-graphene derivatives, by which they catalyze substrate oxidation but suppress radical-radical coupling reactions, shows their great potential in selective oxidation procedures for byproduct removal. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations

    KAUST Repository

    Lorz, Alexander; Mirrahimi, Sepideh; Perthame, Benoî t

    2011-01-01

    simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.

  1. Restraining approach for the spurious kinematic modes in hybrid equilibrium element

    Science.gov (United States)

    Parrinello, F.

    2013-10-01

    The present paper proposes a rigorous approach for the elimination of spurious kinematic modes in hybrid equilibrium elements, for three well known mesh patches. The approach is based on the identification of the dependent equations in the set of inter-element and boundary equilibrium equations of the sides involved in the spurious kinematic mode. Then the kinematic variables related to the dependent equations are reciprocally constrained and, by application of master slave elimination method, the set of inter-element equilibrium equations is reduced to full rank. The elastic solutions produced by means of the proposed approach verify the homogeneous, the inter-element and the boundary equilibrium equations. Hybrid stress formulation is developed in a rigorous mathematical setting. The results of linear elastic analysis obtained by the proposed approach and by classical displacement based method are compared for some structural examples.

  2. Integrable systems of partial differential equations determined by structure equations and Lax pair

    International Nuclear Information System (INIS)

    Bracken, Paul

    2010-01-01

    It is shown how a system of evolution equations can be developed both from the structure equations of a submanifold embedded in three-space as well as from a matrix SO(6) Lax pair. The two systems obtained this way correspond exactly when a constraint equation is selected and imposed on the system of equations. This allows for the possibility of selecting the coefficients in the second fundamental form in a general way.

  3. Associations between Restrained Eating and the Size and Frequency of Overall Intake, Meal, Snack and Drink Occasions in the UK Adult National Diet and Nutrition Survey

    Science.gov (United States)

    Olea López, Ana Lorena; Johnson, Laura

    2016-01-01

    Obesity is a global public health priority. Restrained eating is related to obesity and total energy intake but associations with the eating patterns are unclear. We examined the associations of restrained eating with the size and frequency of intake occasions among 1213 British adult (19–64 y) participants in a cross-sectional analysis of the UK National Diet and Nutrition Survey 2000. The Dutch Eating Behaviour Questionnaire assessed restrained eating. Overall intake occasions were all energy consumed in a 60 min period. A food-based classification separated intake occasions into meals, snacks, or drinks from seven-day weighed food diaries. Average daily frequency and size (kcal) of overall intake, meal, snack and drink occasions were calculated and associations with restrained eating were modelled using multiple linear regression including under-reporting of energy intake, age, gender, BMI, emotional eating, external eating and physical activity as covariates. Restrained eating was very weakly positively correlated with overall intake (r = 0.08, psnack or drink frequency (r = 0.02 and -0.02 respectively). Adjusted regressions showed a one-point change in restrained eating was associated with 0.07 (95% CI 0.03, 0.11) more meal occasions/day and 0.13 (95% CI 0.01, 0.25) extra overall intake occasions/day. Overall intake occasion size was weakly negatively correlated with restrained eating regardless of type (r = -0.16 to -0.20, all psnacks or overall intake occasions. Among a national sample of UK adults, greater restrained eating was associated with smaller and slightly more frequent eating, suggesting that restrained eaters restrict their energy intake by reducing meal/drink size rather than skipping snacks. PMID:27227409

  4. Associations between Restrained Eating and the Size and Frequency of Overall Intake, Meal, Snack and Drink Occasions in the UK Adult National Diet and Nutrition Survey.

    Science.gov (United States)

    Olea López, Ana Lorena; Johnson, Laura

    2016-01-01

    Obesity is a global public health priority. Restrained eating is related to obesity and total energy intake but associations with the eating patterns are unclear. We examined the associations of restrained eating with the size and frequency of intake occasions among 1213 British adult (19-64 y) participants in a cross-sectional analysis of the UK National Diet and Nutrition Survey 2000. The Dutch Eating Behaviour Questionnaire assessed restrained eating. Overall intake occasions were all energy consumed in a 60 min period. A food-based classification separated intake occasions into meals, snacks, or drinks from seven-day weighed food diaries. Average daily frequency and size (kcal) of overall intake, meal, snack and drink occasions were calculated and associations with restrained eating were modelled using multiple linear regression including under-reporting of energy intake, age, gender, BMI, emotional eating, external eating and physical activity as covariates. Restrained eating was very weakly positively correlated with overall intake (r = 0.08, pmeal frequency (r = 0.10, pfrequency (r = 0.02 and -0.02 respectively). Adjusted regressions showed a one-point change in restrained eating was associated with 0.07 (95% CI 0.03, 0.11) more meal occasions/day and 0.13 (95% CI 0.01, 0.25) extra overall intake occasions/day. Overall intake occasion size was weakly negatively correlated with restrained eating regardless of type (r = -0.16 to -0.20, all pmeals (-15 kcal 95% CI -5.9, -24.2) and drinks (-4 kcal 95%CI -0.1, -8), but not snacks or overall intake occasions. Among a national sample of UK adults, greater restrained eating was associated with smaller and slightly more frequent eating, suggesting that restrained eaters restrict their energy intake by reducing meal/drink size rather than skipping snacks.

  5. An implementation of the maximum-caliber principle by replica-averaged time-resolved restrained simulations.

    Science.gov (United States)

    Capelli, Riccardo; Tiana, Guido; Camilloni, Carlo

    2018-05-14

    Inferential methods can be used to integrate experimental informations and molecular simulations. The maximum entropy principle provides a framework for using equilibrium experimental data, and it has been shown that replica-averaged simulations, restrained using a static potential, are a practical and powerful implementation of such a principle. Here we show that replica-averaged simulations restrained using a time-dependent potential are equivalent to the principle of maximum caliber, the dynamic version of the principle of maximum entropy, and thus may allow us to integrate time-resolved data in molecular dynamics simulations. We provide an analytical proof of the equivalence as well as a computational validation making use of simple models and synthetic data. Some limitations and possible solutions are also discussed.

  6. The Sierra de Cabral range: a restraining bend related to the Sierra Ballena shear zone in Dom Feliciano belt

    International Nuclear Information System (INIS)

    Masquelin, H.

    2010-01-01

    Restraining and releasing bends occurring in all crustal environments are common but enigmatic features of strike-slip fault systems. They can be reported in all scales of observation. Regional-scale restraining bends are sites of mountain building, transpressional deformation and basement exhumation. Releasing bends are sites of subsidence, transtensional deformation and pull-apart basins. The Dom Feliciano Belt of Southern Uruguay has two main structures observed from the outer space: (i) the Sierra Ballena Shear Zone and (ii) the Sierra de Cabral flexure located to the SW of the former. Although a transpressional regime is commonly accepted for the Dom Feliciano Belt, the available tectonic models do not provide satisfactory explanations for its building mechanism. A restraining bend is proposed at the SW termination of Sierra Ballena strike-slip ductile shear zone. In a key-area (Alvariza Range) the relationship between the Zanja del Tigre volcanic-detritic and the calcareous succession shows three en-échelon upright bends of the same quartzite hanging-wall between two sub-vertical strike-slip faults, suggesting the existence of a shortened strike-slip duplex operating in viscous-elastic rheology. The deformation partitioning includes strike-slip and dip-slip simple-shear components as well as one contractional pure-shear component. Because restraining bends were scarcely described in Neoproterozoic low-grade regional exhumation conditions, this structural framework would be a natural laboratory to study fault kinematics, fault dynamics, their associated deformation and the tectonic and erosion constraints related to the exhumation of many crystalline terrains

  7. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  8. Perturbation theory for continuous stochastic equations

    International Nuclear Information System (INIS)

    Chechetkin, V.R.; Lutovinov, V.S.

    1987-01-01

    The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probability distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes, stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion-controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and non-equilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + X → A (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered. (author)

  9. Singularities in the nonisotropic Boltzmann equation

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Martiarena, M.L.; Zanette, D.

    1987-09-01

    We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs

  10. Mood and restrained eating moderate food-associated response inhibition in obese individuals with binge eating disorder.

    Science.gov (United States)

    Loeber, Sabine; Rustemeier, Martina; Paslakis, Georgios; Pietrowsky, Reinhard; Müller, Astrid; Herpertz, Stephan

    2018-03-30

    Recent research suggests that obese individuals with binge eating disorder (BED) show deficits in response inhibition, but findings are not consistent, especially when food-associated stimuli are presented. The aim of the present study was to assess the role of moderating factors by taking into account restrained eating and mood. Seventeen obese women with BED, 20 obese women without BED and 20 normal-weight controls (NW) were recruited. A go/no-go task with food-associated and control stimuli and questionnaires were administered. Obese BED showed less impairment of response inhibition to food-associated than to control stimuli, while this pattern was reversed in NW; no differences were observed for obese participants. Interestingly, group differences were moderated by the interaction of restrained eating and mood, and obese BED made the most commission errors to food-associated stimuli when they were restrained eaters and in a very positive mood at the time of testing. Our results might explain why some studies did not observe deficits in response inhibition to food-associated cues in BED. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Tobacco use and exposure to tobacco promoting and restraining factors among adolescents in a developing country.

    Science.gov (United States)

    Doku, D; Koivusilta, L; Raisamo, S; Rimpelä, A

    2012-08-01

    With a long history of tobacco cultivation, adolescents in Ghana are at relatively high risk of the emerging tobacco epidemic in developing countries. This study explored exposure to tobacco promoting/restraining factors and their associations with smoking and tawa (traditional smokeless tobacco) use among 13-18-year-old Ghanaians. School-based representative data were collected in 2008 (n = 1165). Prevalence rates of tobacco use, smoking and tawa use were 9.1% (11.5% boys and 6.4% girls), 6.6% (8.0% boys and 4.7% girls) and 5.7% (7.3% boys and 3.9% girls), respectively. Four percent of the respondents attended schools without a smoking ban, 66% had been taught about the harmful effects of smoking in the current school year, and 53% had been exposed to tobacco advertising. Fifty-three percent of adolescents who had tried to purchase tobacco products were not refused because of their age. Multivariate analyses found that attendance at a school where smoking was allowed, not having been taught about the harmful effects of smoking, exposure to tobacco advertising and parental smoking were positively associated with tobacco use, and knowledge that smoking is harmful to health and difficult to quit were negatively associated with tobacco use. Both smoking and tawa use were relatively low among Ghanaian adolescents. Exposure to tobacco advertising was high. There is no tobacco legislation in Ghana, but societal norms or cultural values seem to restrict smoking in schools and access to tobacco products. Copyright © 2012 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  12. Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments.

    Directory of Open Access Journals (Sweden)

    Rong Shen

    2015-10-01

    Full Text Available The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels, each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good

  13. Triangularly arranged heat exchanger bundles to restrain wind effects on natural draft dry cooling system

    International Nuclear Information System (INIS)

    Liao, H.T.; Yang, L.J.; Du, X.Z.; Yang, Y.P.

    2016-01-01

    Highlights: • Triangularly arranged heat exchanger around the dry-cooling tower is proposed. • By coupling condenser with dry cooling system, TACHE performance is obtained. • At low wind speeds, cooling performance with TACHE is inferior to that with CACHE. • Better performance can be achieved for cooling system with TACHE at high wind speeds. • TACHE can be applied to the region with the strong prevailing wind all year around. - Abstract: It has been commonly recognized that the crosswind may deteriorate the cooling performance of the natural draft dry cooling system with vertically arranged heat exchanger bundles around the circumference of dry-cooling tower. With the purpose for restraining the adverse effects of ambient winds, a novel triangular configuration of heat exchanger bundles is proposed in this work. The air-side flow and heat transfer models coupled with the circulating water heat transfer process are developed for two kinds of natural draft dry cooling systems with the conventional circularly arranged and novel triangularly arranged heat exchanger bundles, by which the flow and temperature fields, mass flow rate of cooling air, outlet water temperature of heat exchanger and turbine back pressure are obtained. Three wind directions of 0°, 90°, and 180° are investigated at various wind speeds for the natural draft dry cooling system with triangularly arranged heat exchanger bundles, which are compared with the conventional system with circularly arranged heat exchanger bundles. The results show that the thermo-flow performances of the natural draft dry cooling system with triangularly arranged heat exchanger get improved significantly at high wind speeds and in the wind direction of 180°, thus a low turbine back pressure can be achieved, which is of benefit to the energy efficiency of the power generating unit. The natural draft dry cooling system with triangularly arranged heat exchanger is recommended to apply to the regions with

  14. Toward making the constraint hypersurface an attractor in free evolution

    International Nuclear Information System (INIS)

    Fiske, David R.

    2004-01-01

    When constructing numerical solutions to systems of evolution equations subject to a constraint, one must decide what role the constraint equations will play in the evolution system. In one popular choice, known as free evolution, a simulation is treated as a Cauchy problem, with the initial data constructed to satisfy the constraint equations. This initial data are then evolved via the evolution equations with no further enforcement of the constraint equations. The evolution, however, via the discretized evolution equations introduce constraint violating modes at the level of truncation error, and these constraint violating modes will behave in a formalism dependent way. This paper presents a generic method for incorporating the constraint equations into the evolution equations so that the off-constraint dynamics are biased toward the constraint satisfying solutions

  15. Quantum adiabatic Markovian master equations

    International Nuclear Information System (INIS)

    Albash, Tameem; Zanardi, Paolo; Boixo, Sergio; Lidar, Daniel A

    2012-01-01

    We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state. (paper)

  16. Kinetic equations for an unstable plasma; Equations cinetiques d'un plasma instable

    Energy Technology Data Exchange (ETDEWEB)

    Laval, G; Pellat, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    In this work, we establish the plasma kinetic equations starting from the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of equations. We demonstrate that relations existing between correlation functions may help to justify the truncation of the hierarchy. Then we obtain the kinetic equations of a stable or unstable plasma. They do not reduce to an equation for the one-body distribution function, but generally involve two coupled equations for the one-body distribution function and the spectral density of the fluctuating electric field. We study limiting cases where the Balescu-Lenard equation, the quasi-linear theory, the Pines-Schrieffer equations and the equations of weak turbulence in the random phase approximation are recovered. At last we generalise the H-theorem for the system of equations and we define conditions for irreversible behaviour. (authors) [French] Dans ce travail nous etablissons les equations cinetiques d'un plasma a partir des equations de la recurrence de Bogoliubov, Born, Green, Kirkwood et Yvon. Nous demontrons qu'entre les fonctions de correlation d'un plasma existent des relations qui permettent de justifier la troncature de la recurrence. Nous obtenons alors les equations cinetiques d'un plasma stable ou instable. En general elles ne se reduisent pas a une equation d'evolution pour la densite simple, mais se composent de deux equations couplees portant sur la densite simple et la densite spectrale du champ electrique fluctuant. Nous etudions le cas limites ou l'on retrouve l'equation de Balescu-Lenard, les equations de la theorie quasi-lineaire, les equations de Pines et Schrieffer et les equations de la turbulence faible dans l'approximation des phases aleatoires. Enfin, nous generalisons le theoreme H pour ce systeme d'equations et nous precisons les conditions d'evolution irreversible. (auteurs)

  17. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis.

    Science.gov (United States)

    Van Impe, Katrien; Bethuyne, Jonas; Cool, Steven; Impens, Francis; Ruano-Gallego, David; De Wever, Olivier; Vanloo, Berlinda; Van Troys, Marleen; Lambein, Kathleen; Boucherie, Ciska; Martens, Evelien; Zwaenepoel, Olivier; Hassanzadeh-Ghassabeh, Gholamreza; Vandekerckhove, Joël; Gevaert, Kris; Fernández, Luis Ángel; Sanders, Niek N; Gettemans, Jan

    2013-12-13

    Aberrant turnover of the actin cytoskeleton is intimately associated with cancer cell migration and invasion. Frequently however, evidence is circumstantial, and a reliable assessment of the therapeutic significance of a gene product is offset by lack of inhibitors that target biologic properties of a protein, as most conventional drugs do, instead of the corresponding gene. Proteomic studies have demonstrated overexpression of CapG, a constituent of the actin cytoskeleton, in breast cancer. Indirect evidence suggests that CapG is involved in tumor cell dissemination and metastasis. In this study, we used llama-derived CapG single-domain antibodies or nanobodies in a breast cancer metastasis model to address whether inhibition of CapG activity holds therapeutic merit. We raised single-domain antibodies (nanobodies) against human CapG and used these as intrabodies (immunomodulation) after lentiviral transduction of breast cancer cells. Functional characterization of nanobodies was performed to identify which biochemical properties of CapG are perturbed. Orthotopic and tail vein in vivo models of metastasis in nude mice were used to assess cancer cell spreading. With G-actin and F-actin binding assays, we identified a CapG nanobody that binds with nanomolar affinity to the first CapG domain. Consequently, CapG interaction with actin monomers or actin filaments is blocked. Intracellular delocalization experiments demonstrated that the nanobody interacts with CapG in the cytoplasmic environment. Expression of the nanobody in breast cancer cells restrained cell migration and Matrigel invasion. Notably, the nanobody prevented formation of lung metastatic lesions in orthotopic xenograft and tail-vein models of metastasis in immunodeficient mice. We showed that CapG nanobodies can be delivered into cancer cells by using bacteria harboring a type III protein secretion system (T3SS). CapG inhibition strongly reduces breast cancer metastasis. A nanobody-based approach offers

  18. Adsorption characteristics of sulfur powder by bamboo charcoal to restrain sulfur allergies

    Directory of Open Access Journals (Sweden)

    Wanxi Peng

    2017-01-01

    Full Text Available Exposures to particulate matter with a diameter of 2.5 μm or less (PM2.5 may influence the risk of birth defects and make you allergic, which causes serious harm to human health. Bamboo charcoal can adsorb harmful substances,that was of benefitto people’s health. In order to figure out the optimal adsorbtion condition and the intrinsic change of bamboo charcoal, five chemicals were adsorbed by bamboo charcoal and were analyzed by FT-IR. The optimal blast time was 80 min of Na2SO3, 100 min of Na2S2O8, 20 min of Na2SO4, 120 min of Fe2(SO43 and 60 min or 100 min of S. FT-IR spectra showed that bamboo charcoal had five characteristic peaks of SS stretch, H2O stretch, OH stretch, CO stretch or CC stretch, and NO2 stretch at 3850 cm−1, 3740 cm−1, 3430 cm−1, 1630 cm−1 and 1530 cm−1, respectively. For Na2SO3, the peaks at 3850 cm−1, 3740 cm−1, 3430 cm−1, 1630 cm−1 and 1530 cm−1 achieved the maximum at 20 min. For Na2S2O8, the peaks at 3850 cm−1, 3740 cm−1, 3430 cm−1 and 1530 cm−1 achieved the maximum at 40 min. For Na2SO4, the peaks at 3850 cm−1, 3740 cm−1 and 1530 cm−1 achieved the maximum at 40 min. For Fe2(SO43, the peaks at 3850 cm−1, 3740 cm−1, 1630 cm−1 and 1530 cm−1 achieved the maximum at 120 min. For S, the peaks at 3850 cm−1 and 3740 cm−1 achieved the maximum at 40 min, the peaks at 1630 cm−1 and 1530 cm−1 achieved the maximum at 40 min. It proved that bamboo charcoal could remove sulfur powder from air to restrain sulfur allergies.

  19. Attitudes towards child restrains and seat belts usage in the learned population of Karachi, Pakistan.

    Science.gov (United States)

    Siddiqui, Emaduddin; Ejaz, Kiran; Waheed, Shahan; Kazi, Ghazala Irfan; Khursheed, Munawar

    2014-01-01

    Motor vehicles crashes (MVCs) are the leading cause of injury related morbidity and mortality in developed countries. Recent evidence proves that properly used child seat belts can dramatically reduce the risk of severe and life-threatening injury from MVCs. There are rarities of thought and inspiration regarding the use of child seat belts in our society and region, therefore we lack of data regarding factors and paucity of usage of child seat belts in motor vehicles. This study aimed to assess the knowledge and attitudes of child seat belt usage among the educated population in Karachi, Pakistan. Altogether 304 employees were investigated. They were employees of Aga Khan University who were using their cars and having children younger than 10 years old. A cross sectional observational study was designed, and a 36-item questionnaire in English was used to collect data on participants' demographic details, designation, educational level, economic status, validity of driving license, number of children and cars, availability of adult seat belts and child seat belts along with their functionality, awareness, knowledge and attitude toward its use, and reason of not using these devices. SPSS version 20 for Windows was used to analyze the data and the Chi-square test was used. Totally 290 participants were recruited with a response rate of 72% (212). Of 212 participants, 126 (59%) were male. 154 (72.6%) participants had valid driver licenses, and 154 (72.6%) had adult seat belts in their vehicles. Only 32 (15%) reported regular use of adult seat belts. Although 168 (79.2%) participants had some knowledge about child restrains (CRs), only 65 (22%) had CRs in their cars. Eighty-two (38.7%) participants got the knowledge about CRs and seat belts from media. Mothers were more concerned about the use of CRs than fathers. Only 14 (6.6%) parents were found to use both adult and child seat belts all the time. Of the 157 parents who did not us use CRs, 42 considered unnecessary

  20. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation.

    Directory of Open Access Journals (Sweden)

    Naomie Turgeon

    . Thus, epithelial HDAC1 and HDAC2 restrain the intestinal inflammatory response, by regulating intestinal epithelial cell proliferation and differentiation.

  1. Hyperbolicity and constrained evolution in linearized gravity

    International Nuclear Information System (INIS)

    Matzner, Richard A.

    2005-01-01

    Solving the 4-d Einstein equations as evolution in time requires solving equations of two types: the four elliptic initial data (constraint) equations, followed by the six second order evolution equations. Analytically the constraint equations remain solved under the action of the evolution, and one approach is to simply monitor them (unconstrained evolution). Since computational solution of differential equations introduces almost inevitable errors, it is clearly 'more correct' to introduce a scheme which actively maintains the constraints by solution (constrained evolution). This has shown promise in computational settings, but the analysis of the resulting mixed elliptic hyperbolic method has not been completely carried out. We present such an analysis for one method of constrained evolution, applied to a simple vacuum system, linearized gravitational waves. We begin with a study of the hyperbolicity of the unconstrained Einstein equations. (Because the study of hyperbolicity deals only with the highest derivative order in the equations, linearization loses no essential details.) We then give explicit analytical construction of the effect of initial data setting and constrained evolution for linearized gravitational waves. While this is clearly a toy model with regard to constrained evolution, certain interesting features are found which have relevance to the full nonlinear Einstein equations

  2. Parabolized stability equations

    Science.gov (United States)

    Herbert, Thorwald

    1994-01-01

    The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.

  3. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  4. Restrained shrinkage experiments on coated particle fuel compacts in the temperature range 600-1200 deg C

    International Nuclear Information System (INIS)

    Blackstone, R.; Veringa, H.J.; Loelgen, R.

    1976-05-01

    Information on irradiation induced creep in reactor graphite and in fuel compact material is an essential ingredient in the design of any reactor core layout, because the creep plasticity of these materials diminishes the stresses which are built up in the fuel element during reactor operation. The restrained shrinkage method in which the shrinkage of a dumbbell shaped creep specimen is restrained by a graphite material which shows less irradiation shrinkage, offers a good possibility of performing a large series of tensile creep experiments in a limited irradiation volume. The irradiations, evaluations and the results of a series of restrained shrinkage experiments in which six different materials were tested, of which five were dummy coated particle compacts and one pure matrix material are described and discussed. These materials were irradiated in the High Flux Reactor of the Euratom Joint Research Centre in Petten/Netherlands. The irradiations were performed in three successive capsules at irradiation temperatures of 600 deg C, 900 deg C, 1050 deg C and 1200 deg C up to a neutron fluence of maximum 3x10 21 n.cm 2 (DNE). The post-irradiation examinations yielded plastic strains up to 2,3%, and values for the radiation creep coefficient were calculated, ranging from 4 to 8.10 -12 at 600 deg C and 8 to 30.10 -12 at 1200 deg C always given per dyn.cm -2 tensile stresses and per 10 20 n.cm -2 fluence units. Generally it was found that the creep behavior of these materials and the temperature dependence of the creep process could be compared with those for normal reactor graphites

  5. DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth

    Directory of Open Access Journals (Sweden)

    DiAntonio Aaron

    2007-08-01

    Full Text Available Abstract Background The growth of new synapses shapes the initial formation and subsequent rearrangement of neural circuitry. Genetic studies have demonstrated that the ubiquitin ligase Highwire restrains synaptic terminal growth by down-regulating the MAP kinase kinase kinase Wallenda/dual leucine zipper kinase (DLK. To investigate the mechanism of Highwire action, we have identified DFsn as a binding partner of Highwire and characterized the roles of DFsn in synapse development, synaptic transmission, and the regulation of Wallenda/DLK kinase abundance. Results We identified DFsn as an F-box protein that binds to the RING-domain ubiquitin ligase Highwire and that can localize to the Drosophila neuromuscular junction. Loss-of-function mutants for DFsn have a phenotype that is very similar to highwire mutants – there is a dramatic overgrowth of synaptic termini, with a large increase in the number of synaptic boutons and branches. In addition, synaptic transmission is impaired in DFsn mutants. Genetic interactions between DFsn and highwire mutants indicate that DFsn and Highwire collaborate to restrain synaptic terminal growth. Finally, DFsn regulates the levels of the Wallenda/DLK kinase, and wallenda is necessary for DFsn-dependent synaptic terminal overgrowth. Conclusion The F-box protein DFsn binds the ubiquitin ligase Highwire and is required to down-regulate the levels of the Wallenda/DLK kinase and restrain synaptic terminal growth. We propose that DFsn and Highwire participate in an evolutionarily conserved ubiquitin ligase complex whose substrates regulate the structure and function of synapses.

  6. Numerical Methods for Partial Differential Equations

    CERN Document Server

    Guo, Ben-yu

    1987-01-01

    These Proceedings of the first Chinese Conference on Numerical Methods for Partial Differential Equations covers topics such as difference methods, finite element methods, spectral methods, splitting methods, parallel algorithm etc., their theoretical foundation and applications to engineering. Numerical methods both for boundary value problems of elliptic equations and for initial-boundary value problems of evolution equations, such as hyperbolic systems and parabolic equations, are involved. The 16 papers of this volume present recent or new unpublished results and provide a good overview of current research being done in this field in China.

  7. Numerical Model of a Hybrid Damping System Composed of a Buckling Restrained Brace with a Magneto Rheological Damper

    Directory of Open Access Journals (Sweden)

    Filip-Vacarescu Norin

    2016-03-01

    Full Text Available This paper discusses the concept of a hybrid damper made from a combination of two dissipative devices. A passive hysteretic device like steel Buckling Restrained Brace (BRB can be combined with a magneto-rheological (MR Fluid Damper in order to obtain a hybrid dissipative system. This system can work either as a semi-active system, if the control unit is available, or as a passive system, tuned for working according to performance based seismic engineering (PBSE scale of reference parameters (i.e. interstory drift.

  8. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    International Nuclear Information System (INIS)

    Yuan Wujie; Luo Xiaoshu; Jiang Pinqun

    2007-01-01

    In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  9. Helicity evolution at small x

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.

    2016-01-01

    We construct small-x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the g 1 structure function. These evolution equations resum powers of α s ln 2  (1/x) in the polarization-dependent evolution along with the powers of α s ln (1/x) in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-N c and large-N c   N f limits. As a cross-check, in the ladder approximation, our equations map onto the same ladder limit of the infrared evolution equations for the g 1 structure function derived previously by Bartels, Ermolaev and Ryskin http://dx.doi.org/10.1007/s002880050285.

  10. Differential equations, mechanics, and computation

    CERN Document Server

    Palais, Richard S

    2009-01-01

    This book provides a conceptual introduction to the theory of ordinary differential equations, concentrating on the initial value problem for equations of evolution and with applications to the calculus of variations and classical mechanics, along with a discussion of chaos theory and ecological models. It has a unified and visual introduction to the theory of numerical methods and a novel approach to the analysis of errors and stability of various numerical solution algorithms based on carefully chosen model problems. While the book would be suitable as a textbook for an undergraduate or elementary graduate course in ordinary differential equations, the authors have designed the text also to be useful for motivated students wishing to learn the material on their own or desiring to supplement an ODE textbook being used in a course they are taking with a text offering a more conceptual approach to the subject.

  11. Generalized equations of gravitational field

    International Nuclear Information System (INIS)

    Stanyukovich, K.P.; Borisova, L.B.

    1985-01-01

    Equations for gravitational fields are obtained on the basis of a generalized Lagrangian Z=f(R) (R is the scalar curvature). Such an approach permits to take into account the evolution of a gravitation ''constant''. An expression for the force Fsub(i) versus the field variability is obtained. Conservation laws are formulated differing from the standard ones by the fact that in the right part of new equations the value Fsub(i) is present that goes to zero at an ultimate passage to the standard Einstein theory. An equation of state is derived for cosmological metrics for a particular case, f=bRsup(1+α) (b=const, α=const)

  12. Crash characteristics and injury patterns of restrained front seat occupants in far-side impacts.

    Science.gov (United States)

    Yoganandan, Narayan; Arun, Mike W J; Halloway, Dale E; Pintar, Frank A; Maiman, Dennis J; Szabo, Aniko; Rudd, Rodney W

    2014-01-01

    The study was conducted to determine the association between vehicle-, crash-, and demographic-related factors and injuries to front seat far-side occupants in modern environments. Field data were obtained from the NASS-CDS database for the years 2009-2012. Inclusion factors included the following: adult restrained front outboard-seated occupants, no ejection or rollovers, and vehicle model years less than 10 years old at the time of crash. Far-side crashes were determined by using collision deformation classification. Injuries were scored using the Abbreviated Injury Scale (AIS). Injuries (MAIS 2+, MAIS 3+, M denotes maximum score) were examined based on demographics, change in velocity, vehicle type, direction of force, extent zone, collision partner, and presence of another occupant in the front seat. Only weighted data were used in the analysis. Injuries to the head and face, thorax, abdomen, pelvis, and upper and lower extremity regions were studied. Odds ratios and upper and lower confidence intervals were estimated from multivariate analysis. Out of 519,195 far-side occupants, 17,715 were MAIS 2+ and 4,387 were MAIS 3+ level injured occupants. The mean age, stature, total body mass, and body mass index (BMI) were 40.7 years, 1.7 m, 77.2 kg, and 26.8 kg/m2, respectively. Of occupants with MAIS 2+ injuries, 51% had head and 19% had thorax injuries. Of occupants with MAIS 3+ injuries, 50% had head and 69% had thorax injuries. The cumulative distribution of changes in velocities at the 50th percentile for the struck vehicle for all occupants and occupants with MAIS 2+ and MAIS 3+ injuries were 19, 34, and 42 km/h, respectively. Furthermore, 73% of MAIS 2+ injuries and 86% of MAIS 3+ injuries occurred at a change in velocity of 24 km/h or greater. Odds of sustaining MAIS 2+ and MAIS 3+ injuries increased with each unit increase in change in velocity, stature, and age, with one exception. Odds of sustaining injuries were higher with the presence of an occupant in

  13. Focusing on media body ideal images triggers food intake among restrained eaters: a test of restraint theory and the elaboration likelihood model.

    Science.gov (United States)

    Boyce, Jessica A; Kuijer, Roeline G

    2014-04-01

    Although research consistently shows that images of thin women in the media (media body ideals) affect women negatively (e.g., increased weight dissatisfaction and food intake), this effect is less clear among restrained eaters. The majority of experiments demonstrate that restrained eaters - identified with the Restraint Scale - consume more food than do other participants after viewing media body ideal images; whereas a minority of experiments suggest that such images trigger restrained eaters' dietary restraint. Weight satisfaction and mood results are just as variable. One reason for these inconsistent results might be that different methods of image exposure (e.g., slideshow vs. film) afford varying levels of attention. Therefore, we manipulated attention levels and measured participants' weight satisfaction and food intake. We based our hypotheses on the elaboration likelihood model and on restraint theory. We hypothesised that advertent (i.e., processing the images via central routes of persuasion) and inadvertent (i.e., processing the images via peripheral routes of persuasion) exposure would trigger differing degrees of weight dissatisfaction and dietary disinhibition among restrained eaters (cf. restraint theory). Participants (N = 174) were assigned to one of four conditions: advertent or inadvertent exposure to media or control images. The dependent variables were measured in a supposedly unrelated study. Although restrained eaters' weight satisfaction was not significantly affected by either media exposure condition, advertent (but not inadvertent) media exposure triggered restrained eaters' eating. These results suggest that teaching restrained eaters how to pay less attention to media body ideal images might be an effective strategy in media-literary interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Nonadiabatic quantum Vlasov equation for Schwinger pair production

    International Nuclear Information System (INIS)

    Kim, Sang Pyo; Schubert, Christian

    2011-01-01

    Using Lewis-Riesenfeld theory, we derive an exact nonadiabatic master equation describing the time evolution of the QED Schwinger pair-production rate for a general time-varying electric field. This equation can be written equivalently as a first-order matrix equation, as a Vlasov-type integral equation, or as a third-order differential equation. In the last version it relates to the Korteweg-de Vries equation, which allows us to construct an exact solution using the well-known one-soliton solution to that equation. The case of timelike delta function pulse fields is also briefly considered.

  15. Evolution of complex dynamics

    Science.gov (United States)

    Wilds, Roy; Kauffman, Stuart A.; Glass, Leon

    2008-09-01

    We study the evolution of complex dynamics in a model of a genetic regulatory network. The fitness is associated with the topological entropy in a class of piecewise linear equations, and the mutations are associated with changes in the logical structure of the network. We compare hill climbing evolution, in which only mutations that increase the fitness are allowed, with neutral evolution, in which mutations that leave the fitness unchanged are allowed. The simple structure of the fitness landscape enables us to estimate analytically the rates of hill climbing and neutral evolution. In this model, allowing neutral mutations accelerates the rate of evolutionary advancement for low mutation frequencies. These results are applicable to evolution in natural and technological systems.

  16. Axisymmetric buckling analysis of laterally restrained thick annular plates using a hybrid numerical method

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P. [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir; Ouji, A. [Department of Civil Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Islamic Azad University, Larestan Branch, Larestan (Iran, Islamic Republic of)

    2008-11-15

    The buckling analysis of annular thick plates with lateral supports such as two-parameter elastic foundations or ring supports is investigated using an elasticity based hybrid numerical method. For this purpose, firstly, the displacement components are perturbed around the pre-buckling state, which is located using the elasticity theory. Then, by decomposing the plate into a set of sub-domain in the form of co-axial annular plates, the buckling equations are discretized through the radial direction using global interpolation functions in conjunction with the principle of virtual work. The resulting differential equations are solved using the differential quadrature method. The method has the capability of modeling the arbitrary boundary conditions either at the inner and outer edges of thin-to-thick plates and with different types of lateral restraints. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its accuracy and versatility for thin-to-thick plates.

  17. The evolution of tensor polarization

    International Nuclear Information System (INIS)

    Huang, H.; Lee, S.Y.; Ratner, L.

    1993-01-01

    By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake

  18. Identifying Armed Respondents to Domestic Violence Restraining Orders and Recovering Their Firearms: Process Evaluation of an Initiative in California

    Science.gov (United States)

    Frattaroli, Shannon; Claire, Barbara E.; Vittes, Katherine A.; Webster, Daniel W.

    2014-01-01

    Objectives. We evaluated a law enforcement initiative to screen respondents to domestic violence restraining orders for firearm ownership or possession and recover their firearms. Methods. The initiative was implemented in San Mateo and Butte counties in California from 2007 through 2010. We used descriptive methods to evaluate the screening process and recovery effort in each county, relying on records for individual cases. Results. Screening relied on an archive of firearm transactions, court records, and petitioner interviews; no single source was adequate. Screening linked 525 respondents (17.7%) in San Mateo County to firearms; 405 firearms were recovered from 119 (22.7%) of them. In Butte County, 88 (31.1%) respondents were linked to firearms; 260 firearms were recovered from 45 (51.1%) of them. Nonrecovery occurred most often when orders were never served or respondents denied having firearms. There were no reports of serious violence or injury. Conclusions. Recovering firearms from persons subject to domestic violence restraining orders is possible. We have identified design and implementation changes that may improve the screening process and the yield from recovery efforts. Larger implementation trials are needed. PMID:24328660

  19. Altered frontal inter-hemispheric resting state functional connectivity is associated with bulimic symptoms among restrained eaters.

    Science.gov (United States)

    Chen, Shuaiyu; Dong, Debo; Jackson, Todd; Su, Yanhua; Chen, Hong

    2016-01-29

    Theory and research have indicated that restrained eating (RE) increases risk for binge-eating and eating disorder symptoms. According to the goal conflict model, such risk may result from disrupted hedonic-feeding control and its interaction with reward-driven eating. However, RE-related alterations in functional interactions among associated underlying brain regions, especially between the cerebral hemispheres, have rarely been examined directly. Therefore, we investigated inter-hemispheric resting-state functional connectivity (RSFC) among female restrained eaters (REs) (n=23) and unrestrained eaters (UREs) (n=24) following food deprivation as well as its relation to overall bulimia nervosa (BN) symptoms using voxel-mirrored homotopic connectivity (VMHC). Seed-based RSFC associated with areas exhibiting significant VMHC differences was also assessed. Compared to UREs, REs showed reduced VMHC in the dorsal-lateral prefrontal cortex (DLPFC), an area involved in inhibiting hedonic overeating. REs also displayed decreased RSFC between the right DLPFC and regions associated with reward estimation--the ventromedial prefrontal cortex (VMPFC) and posterior cingulate cortex (PCC). Finally, bulimic tendencies had a negative correlation with VMHC in the DLPFC and a positive correlation with functional connectivity (DLPFC and VMPFC) among REs but not UREs. Findings suggested that reduced inter-hemispheric functional connectivity in appetite inhibition regions and altered functional connectivity in reward related regions may help to explain why some REs fail to control hedonically-motivated feeding and experience higher associated levels of BN symptomatology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Foxo4- and Stat3-dependent IL-10 production by progranulin in regulatory T cells restrains inflammatory arthritis

    Science.gov (United States)

    Fu, Wenyu; Hu, Wenhuo; Shi, Lei; Mundra, Jyoti Joshi; Xiao, GuoZhi; Dustin, Michael L.; Liu, Chuan-ju

    2017-01-01

    Progranulin (PGRN) restrains inflammation and is therapeutic against inflammatory arthritis; however, the underlying immunological mechanism remains unknown. In this study, we demonstrated that anti-inflammatory cytokine IL-10 was a critical mediator for PGRN-mediated anti-inflammation in collagen-induced arthritis by using PGRN and IL-10 genetically modified mouse models. IL-10 green fluorescent protein reporter mice revealed that regulatory T (Treg) cells were the predominant source of IL-10 in response to PGRN. In addition, PGRN-mediated expansion and activation of Treg cells, as well as IL-10 production, depends on JNK signaling, but not on known PGRN-activated ERK and PI3K pathways. Furthermore, microarray and chromatin immunoprecipitation sequencing screens led to the discovery of forkhead box protein O4 and signal transducer and activator of transcription 3 as the transcription factors required for PGRN induction of IL-10 in Treg cells. These findings define a previously unrecognized signaling pathway that underlies IL-10 production by PGRN in Treg cells and present new insights into the mechanisms by which PGRN resolves inflammation in inflammatory conditions and autoimmune diseases, particularly inflammatory arthritis.—Fu, W., Hu, W., Shi, L., Mundra, J. J. Xiao, G., Dustin, M. L., Liu, C. Foxo4- and Stat3-dependent IL-10 production by progranulin in regulatory T cells restrains inflammatory arthritis. PMID:28011648

  1. Monge-Ampere equations and tensorial functors

    International Nuclear Information System (INIS)

    Tunitsky, Dmitry V

    2009-01-01

    We consider differential-geometric structures associated with Monge-Ampere equations on manifolds and use them to study the contact linearization of such equations. We also consider the category of Monge-Ampere equations (the morphisms are contact diffeomorphisms) and a number of subcategories. We are chiefly interested in subcategories of Monge-Ampere equations whose objects are locally contact equivalent to equations linear in the second derivatives (semilinear equations), linear in derivatives, almost linear, linear in the second derivatives and independent of the first derivatives, linear, linear and independent of the first derivatives, equations with constant coefficients or evolution equations. We construct a number of functors from the category of Monge-Ampere equations and from some of its subcategories to the category of tensorial objects (that is, multi-valued sections of tensor bundles). In particular, we construct a pseudo-Riemannian metric for every generic Monge-Ampere equation. These functors enable us to establish effectively verifiable criteria for a Monge-Ampere equation to belong to the subcategories listed above.

  2. Pseudodifferential equations over non-Archimedean spaces

    CERN Document Server

    Zúñiga-Galindo, W A

    2016-01-01

    Focusing on p-adic and adelic analogues of pseudodifferential equations, this monograph presents a very general theory of parabolic-type equations and their Markov processes motivated by their connection with models of complex hierarchic systems. The Gelfand-Shilov method for constructing fundamental solutions using local zeta functions is developed in a p-adic setting and several particular equations are studied, such as the p-adic analogues of the Klein-Gordon equation. Pseudodifferential equations for complex-valued functions on non-Archimedean local fields are central to contemporary harmonic analysis and mathematical physics and their theory reveals a deep connection with probability and number theory. The results of this book extend and complement the material presented by Vladimirov, Volovich and Zelenov (1994) and Kochubei (2001), which emphasize spectral theory and evolution equations in a single variable, and Albeverio, Khrennikov and Shelkovich (2010), which deals mainly with the theory and applica...

  3. Equating error in observed-score equating

    NARCIS (Netherlands)

    van der Linden, Willem J.

    2006-01-01

    Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of

  4. Constrained evolution in numerical relativity

    Science.gov (United States)

    Anderson, Matthew William

    The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.

  5. Dilation of non-quasifree dissipative evolution

    Energy Technology Data Exchange (ETDEWEB)

    Varilly, J C [Costa Rica Univ., San Jose. Escuela de Matematica

    1981-03-01

    A semigroup evolution for the 1/2-spin which admits a conservative dilation is known to be governed by a Bloch equation in a standard form. Here we construct a conservative dilation directly from the Bloch equation, thus yielding an example of a dilation scheme for an evolution which is not quasifree. Moreover, we show that this conservative evolution is never ergodic in the non-quasifree case.

  6. Minimal length, Friedmann equations and maximum density

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Adel [Center for Theoretical Physics, British University of Egypt,Sherouk City 11837, P.O. Box 43 (Egypt); Department of Physics, Faculty of Science, Ain Shams University,Cairo, 11566 (Egypt); Ali, Ahmed Farag [Centre for Fundamental Physics, Zewail City of Science and Technology,Sheikh Zayed, 12588, Giza (Egypt); Department of Physics, Faculty of Science, Benha University,Benha, 13518 (Egypt)

    2014-06-16

    Inspired by Jacobson’s thermodynamic approach, Cai et al. have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar-Cai derivation http://dx.doi.org/10.1103/PhysRevD.75.084003 of Friedmann equations to accommodate a general entropy-area law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure p(ρ,a) leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature k. As an example we study the evolution of the equation of state p=ωρ through its phase-space diagram to show the existence of a maximum energy which is reachable in a finite time.

  7. New application of Exp-function method for improved Boussinesq equation

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Department of Physics, Faculty of Education for Girls, Science Departments, King Khalid University, Bisha (Saudi Arabia)], E-mail: m_abdou_eg@yahoo.com; Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish) Suez Canal University, AL-Arish 45111 (Egypt); Department of Mathematics, Teacher' s College (Bisha), King Khalid University, Bisha, PO Box 551 (Saudi Arabia)], E-mail: asoliman_99@yahoo.com; El-Basyony, S.T. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt)

    2007-10-01

    The Exp-function method is used to obtain generalized solitary solutions and periodic solutions for nonlinear evolution equations arising in mathematical physics with the aid of symbolic computation method, namely, the improved Boussinesq equation. The method is straightforward and concise, and its applications is promising for other nonlinear evolution equations in mathematical physics.

  8. A generalized simplest equation method and its application to the Boussinesq-Burgers equation.

    Science.gov (United States)

    Sudao, Bilige; Wang, Xiaomin

    2015-01-01

    In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.

  9. CIME course on Control of Partial Differential Equations

    CERN Document Server

    Alabau-Boussouira, Fatiha; Glass, Olivier; Le Rousseau, Jérôme; Zuazua, Enrique

    2012-01-01

    The term “control theory” refers to the body of results - theoretical, numerical and algorithmic - which have been developed to influence the evolution of the state of a given system in order to meet a prescribed performance criterion. Systems of interest to control theory may be of very different natures. This monograph is concerned with models that can be described by partial differential equations of evolution. It contains five major contributions and is connected to the CIME Course on Control of Partial Differential Equations that took place in Cetraro (CS, Italy), July 19 - 23, 2010.  Specifically, it covers the stabilization of evolution equations, control of the Liouville equation, control in fluid mechanics, control and numerics for the wave equation, and Carleman estimates for elliptic and parabolic equations with application to control. We are confident this work will provide an authoritative reference work for all scientists who are interested in this field, representing at the same time a fri...

  10. Exact traveling wave solutions of modified KdV-Zakharov-Kuznetsov equation and viscous Burgers equation.

    Science.gov (United States)

    Islam, Md Hamidul; Khan, Kamruzzaman; Akbar, M Ali; Salam, Md Abdus

    2014-01-01

    Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modified KDV-ZK equation and viscous Burgers equation by using an enhanced (G '/G) -expansion method. A number of traveling wave solutions in terms of unknown parameters are obtained. Derived traveling wave solutions exhibit solitary waves when special values are given to its unknown parameters. 35C07; 35C08; 35P99.

  11. Capacitive Sensing for Non-Invasive Breathing and Heart Monitoring in Non-Restrained, Non-Sedated Laboratory Mice

    Directory of Open Access Journals (Sweden)

    Carlos González-Sánchez

    2016-07-01

    Full Text Available Animal testing plays a vital role in biomedical research. Stress reduction is important for improving research results and increasing the welfare and the quality of life of laboratory animals. To estimate stress we believe it is of great importance to develop non-invasive techniques for monitoring physiological signals during the transport of laboratory animals, thereby allowing the gathering of information on the transport conditions, and, eventually, the improvement of these conditions. Here, we study the suitability of commercially available electric potential integrated circuit (EPIC sensors, using both contact and contactless techniques, for monitoring the heart rate and breathing rate of non-restrained, non-sedated laboratory mice. The design has been tested under different scenarios with the aim of checking the plausibility of performing contactless capture of mouse heart activity (ideally with an electrocardiogram. First experimental results are shown.

  12. Capacitive Sensing for Non-Invasive Breathing and Heart Monitoring in Non-Restrained, Non-Sedated Laboratory Mice.

    Science.gov (United States)

    González-Sánchez, Carlos; Fraile, Juan-Carlos; Pérez-Turiel, Javier; Damm, Ellen; Schneider, Jochen G; Zimmermann, Heiko; Schmitt, Daniel; Ihmig, Frank R

    2016-07-07

    Animal testing plays a vital role in biomedical research. Stress reduction is important for improving research results and increasing the welfare and the quality of life of laboratory animals. To estimate stress we believe it is of great importance to develop non-invasive techniques for monitoring physiological signals during the transport of laboratory animals, thereby allowing the gathering of information on the transport conditions, and, eventually, the improvement of these conditions. Here, we study the suitability of commercially available electric potential integrated circuit (EPIC) sensors, using both contact and contactless techniques, for monitoring the heart rate and breathing rate of non-restrained, non-sedated laboratory mice. The design has been tested under different scenarios with the aim of checking the plausibility of performing contactless capture of mouse heart activity (ideally with an electrocardiogram). First experimental results are shown.

  13. Neuropeptide Y and nestin expression in the hippocampal CA3 region following restrained and inverted stress in rats

    Institute of Scientific and Technical Information of China (English)

    Guogang Sun; Ailing Li; Bo Chen; Guangbi Fan; Hongwen Xiao; Yue Chen; Jie Xu; Ye Nie; Bing Zhang; Lin Gong

    2011-01-01

    Our preliminary study demonstrated that neuropeptide Y (NPY)/nestin-positive cells exhibit a consistent spatial distribution in the hippocampus of normal adult rats. However, following severe acute and chronic stress-induced impaired learning and memory, synchronous decreased expression of nestin and NPY takes place in the hippocampus, and the underlying mechanisms remain unclear. In the present study, acute and chronic stress rat models were established using combined restrained and inverted stress. Results showed that learning and memory significantly decreased in acute and chronic stress rats. In addition, hippocampal cells were damaged, in particular in the acute stress rats, and nestin and NPY expression, as well as the number of NPY/nestin-positive cells in the CA3 region, significantly decreased. Furthermore, mature neurofilament 200-positive neurons were absent in the chronic stress rats. The NPY and cytoskeletal protein system equally contributed to stress-induced early learning and memory deficits, as well as sustained cerebral injury in the adult hippocampus.

  14. Workspace quality analysis and application for a completely restrained 3-Dof planar cable-driven parallel manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoqiang; Tang, Lewei; Wang, Jinsong [Tsinghua University, Beijing (China); Sun, Dengfeng [Purdue University, West Lafayette (United States)

    2013-08-15

    With the advantage of large workspace, low energy consumption and small inertia, the cable-driven parallel manipulator (CDPM) is suitable for heavy workpieces in rapid velocity and acceleration. We present a workspace analysis approach to solve force and torque equilibriums of completely restrained CDPMs. By this approach, not only the distribution but also the value of tensions driven by cables is investigated together. Two new indices, all cable tension distribution index (ACTDI) and area of the global quality workspace (AG) are proposed to evaluate the quality of the workspace. By concentrating on the workspace and its quality combined with the tension characteristics, these criteria are used to determine the optimal workspace in CDPMs. To verify the capacity of the proposed method, simulation examples are presented and the results demonstrate the approach's effectiveness. In the end, the dimensional design for a planar CDPM is discussed with the indices of workspace quality.

  15. Workspace quality analysis and application for a completely restrained 3-Dof planar cable-driven parallel manipulator

    International Nuclear Information System (INIS)

    Tang, Xiaoqiang; Tang, Lewei; Wang, Jinsong; Sun, Dengfeng

    2013-01-01

    With the advantage of large workspace, low energy consumption and small inertia, the cable-driven parallel manipulator (CDPM) is suitable for heavy workpieces in rapid velocity and acceleration. We present a workspace analysis approach to solve force and torque equilibriums of completely restrained CDPMs. By this approach, not only the distribution but also the value of tensions driven by cables is investigated together. Two new indices, all cable tension distribution index (ACTDI) and area of the global quality workspace (AG) are proposed to evaluate the quality of the workspace. By concentrating on the workspace and its quality combined with the tension characteristics, these criteria are used to determine the optimal workspace in CDPMs. To verify the capacity of the proposed method, simulation examples are presented and the results demonstrate the approach's effectiveness. In the end, the dimensional design for a planar CDPM is discussed with the indices of workspace quality.

  16. Kinetic equation solution by inverse kinetic method

    International Nuclear Information System (INIS)

    Salas, G.

    1983-01-01

    We propose a computer program (CAMU) which permits to solve the inverse kinetic equation. The CAMU code is written in HPL language for a HP 982 A microcomputer with a peripheral interface HP 9876 A ''thermal graphic printer''. The CAMU code solves the inverse kinetic equation by taking as data entry the output of the ionization chambers and integrating the equation with the help of the Simpson method. With this program we calculate the evolution of the reactivity in time for a given disturbance

  17. Chemical Equation Balancing.

    Science.gov (United States)

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  18. Handbook of integral equations

    CERN Document Server

    Polyanin, Andrei D

    2008-01-01

    This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.

  19. The equations icons of knowledge

    CERN Document Server

    Bais, Sander

    2005-01-01

    For thousands of years mankind has tried to understand nature. Exploring the world on all scales with instruments of ever more ingenuity, we have been able to unravel some of the great mysteries that surround us. While collecting an overwhelming multitude of observational facts, we discovered fundamental laws that govern the structure and evolution of physical reality. We know that nature speaks to us in the language of mathematics. In this language most of our basic understanding of the physical world can be expressed in an unambiguous and concise way. The most artificial language turns out to be the most natural of all. The laws of nature correspond to equations. These equations are the icons of knowledge that mark crucial turning points in our thinking about the world we happen to live in. They form the symbolic representation of most of what we know, and as such constitute an important and robust part of our culture.

  20. Slave equations for spin models

    International Nuclear Information System (INIS)

    Catterall, S.M.; Drummond, I.T.; Horgan, R.R.

    1992-01-01

    We apply an accelerated Langevin algorithm to the simulation of continuous spin models on the lattice. In conjunction with the evolution equation for the spins we use slave equations to compute estimators for the connected correlation functions of the model. In situations for which the symmetry of the model is sufficiently strongly broken by an external field these estimators work well and yield a signal-to-noise ratio for the Green function at large time separations more favourable than that resulting from the standard method. With the restoration of symmetry, however, the slave equation estimators exhibit an intrinsic instability associated with the growth of a power law tail in the probability distributions for the measured quantities. Once this tail has grown sufficiently strong it results in a divergence of the variance of the estimator which then ceases to be useful for measurement purposes. The instability of the slave equation method in circumstances of weak symmetry breaking precludes its use in determining the mass gap in non-linear sigma models. (orig.)

  1. Trajectory attractors of equations of mathematical physics

    International Nuclear Information System (INIS)

    Vishik, Marko I; Chepyzhov, Vladimir V

    2011-01-01

    In this survey the method of trajectory dynamical systems and trajectory attractors is described, and is applied in the study of the limiting asymptotic behaviour of solutions of non-linear evolution equations. This method is especially useful in the study of dissipative equations of mathematical physics for which the corresponding Cauchy initial-value problem has a global (weak) solution with respect to the time but the uniqueness of this solution either has not been established or does not hold. An important example of such an equation is the 3D Navier-Stokes system in a bounded domain. In such a situation one cannot use directly the classical scheme of construction of a dynamical system in the phase space of initial conditions of the Cauchy problem of a given equation and find a global attractor of this dynamical system. Nevertheless, for such equations it is possible to construct a trajectory dynamical system and investigate a trajectory attractor of the corresponding translation semigroup. This universal method is applied for various types of equations arising in mathematical physics: for general dissipative reaction-diffusion systems, for the 3D Navier-Stokes system, for dissipative wave equations, for non-linear elliptic equations in cylindrical domains, and for other equations and systems. Special attention is given to using the method of trajectory attractors in approximation and perturbation problems arising in complicated models of mathematical physics. Bibliography: 96 titles.

  2. Perceived parental control of food intake is related to external, restrained and emotional eating in 7–12-year-old boys and girls

    NARCIS (Netherlands)

    Strien, T. van; Bazelier, F.G.

    2007-01-01

    This study examined the prevalence of external, restrained and emotional eating and the relationship of these disturbed types of eating behaviours with perceived parental control of food intake (pressure to eat and restriction) in a group of 7- to 12-year-old boys and girls (n=596). External eating

  3. A kinetic equation for irreversible aggregation

    International Nuclear Information System (INIS)

    Zanette, D.H.

    1990-09-01

    We introduce a kinetic equation for describing irreversible aggregation in the ballistic regime, including velocity distributions. The associated evolution for the macroscopic quantities is studied, and the general solution for Maxwell interaction models is obtained in the Fourier representation. (author). 23 refs

  4. Integrable boundary conditions and modified Lax equations

    International Nuclear Information System (INIS)

    Avan, Jean; Doikou, Anastasia

    2008-01-01

    We consider integrable boundary conditions for both discrete and continuum classical integrable models. Local integrals of motion generated by the corresponding 'transfer' matrices give rise to time evolution equations for the initial Lax operator. We systematically identify the modified Lax pairs for both discrete and continuum boundary integrable models, depending on the classical r-matrix and the boundary matrix

  5. New exact solutions to the generalized KdV equation with ...

    Indian Academy of Sciences (India)

    is reduced to an ordinary differential equation with constant coefficients ... Application to generalized KdV equation with generalized evolution ..... [12] P F Byrd and M D Friedman, Handbook of elliptic integrals for engineers and physicists.

  6. Equation of motion for estimation fidelity of monitored oscillating qubits

    CSIR Research Space (South Africa)

    Bassa, H

    2017-08-01

    Full Text Available We study the convergence properties of state estimates of an oscillating qubit being monitored by a sequence of discrete, unsharp measurements. Our method derives a differential equation determining the evolution of the estimation fidelity from a...

  7. Final state dipole showers and the DGLAP equation

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2009-01-01

    We study a parton shower description, based on a dipole picture, of the final state in electron-positron annihilation. In such a shower, the distribution function describing the inclusive probability to find a quark with a given energy depends on the shower evolution time. Starting from the exclusive evolution equation for the shower, we derive an equation for the evolution of the inclusive quark energy distribution in the limit of strong ordering in shower evolution time of the successive parton splittings. We find that, as expected, this is the DGLAP equation. This paper is a response to a recent paper of Dokshitzer and Marchesini that raised troubling issues about whether a dipole based shower could give the DGLAP equation for the quark energy distribution.

  8. Classification of exact solutions to the generalized Kadomtsev-Petviashvili equation

    International Nuclear Information System (INIS)

    Pandir, Yusuf; Gurefe, Yusuf; Misirli, Emine

    2013-01-01

    In this paper, we study the Kadomtsev-Petviashvili equation with generalized evolution and derive some new results using the approach called the trial equation method. The obtained results can be expressed by the soliton solutions, rational function solutions, elliptic function solutions and Jacobi elliptic function solutions. In the discussion, we give a new version of the trial equation method for nonlinear differential equations.

  9. Introduction to differential equations

    CERN Document Server

    Taylor, Michael E

    2011-01-01

    The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen

  10. A simple model for binary star evolution

    International Nuclear Information System (INIS)

    Whyte, C.A.; Eggleton, P.P.

    1985-01-01

    A simple model for calculating the evolution of binary stars is presented. Detailed stellar evolution calculations of stars undergoing mass and energy transfer at various rates are reported and used to identify the dominant physical processes which determine the type of evolution. These detailed calculations are used to calibrate the simple model and a comparison of calculations using the detailed stellar evolution equations and the simple model is made. Results of the evolution of a few binary systems are reported and compared with previously published calculations using normal stellar evolution programs. (author)

  11. A new formulation of equations of compressible fluids by analogy with Maxwell's equations

    International Nuclear Information System (INIS)

    Kambe, Tsutomu

    2010-01-01

    A compressible ideal fluid is governed by Euler's equation of motion and equations of continuity, entropy and vorticity. This system can be reformulated in a form analogous to that of electromagnetism governed by Maxwell's equations with source terms. The vorticity plays the role of magnetic field, while the velocity field plays the part of a vector potential and the enthalpy (of isentropic flows) plays the part of a scalar potential in electromagnetism. The evolution of source terms of fluid Maxwell equations is determined by solving the equations of motion and continuity. The equation of sound waves can be derived from this formulation, where time evolution of the sound source is determined by the equation of motion. The theory of vortex sound of aeroacoustics is included in this formulation. It is remarkable that the forces acting on a point mass moving in a velocity field of an inviscid fluid are analogous in their form to the electric force and Lorentz force in electromagnetism. The significance of the reformulation is interpreted by examples taken from fluid mechanics. This formulation can be extended to viscous fluids without difficulty. The Maxwell-type equations are unchanged by the viscosity effect, although the source terms have additional terms due to viscosities.

  12. The two modes extension to the Berk-Breizman equation: Delayed differential equations and asymptotic solutions

    International Nuclear Information System (INIS)

    Marczynski, Slawomir

    2011-01-01

    The integro-differential Berk-Breizman (BB) equation, describing the evolution of particle-driven wave mode is transformed into a simple delayed differential equation form ν∂a(τ)/∂τ=a(τ) -a 2 (τ- 1) a(τ- 2). This transformation is also applied to the two modes extension of the BB theory. The obtained solutions are presented together with the derived asymptotic analytical solutions and the numerical results.

  13. Benney's long wave equations

    International Nuclear Information System (INIS)

    Lebedev, D.R.

    1979-01-01

    Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown

  14. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  15. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  16. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  17. Relations between nonlinear Riccati equations and other equations in fundamental physics

    International Nuclear Information System (INIS)

    Schuch, Dieter

    2014-01-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract ''quantizations'' such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown

  18. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  19. The Approach to Equilibrium: Detailed Balance and the Master Equation

    Science.gov (United States)

    Alexander, Millard H.; Hall, Gregory E.; Dagdigian, Paul J.

    2011-01-01

    The approach to the equilibrium (Boltzmann) distribution of populations of internal states of a molecule is governed by inelastic collisions in the gas phase and with surfaces. The set of differential equations governing the time evolution of the internal state populations is commonly called the master equation. An analytic solution to the master…

  20. A note on the three dimensional sine--Gordon equation

    OpenAIRE

    Shariati, Ahmad

    1996-01-01

    Using a simple ansatz for the solutions of the three dimensional generalization of the sine--Gordon and Toda model introduced by Konopelchenko and Rogers, a class of solutions is found by elementary methods. It is also shown that these equations are not evolution equations in the sense that solution to the initial value problem is not unique.

  1. Perfect fluid cosmological Universes: One equation of state and the ...

    Indian Academy of Sciences (India)

    Anadijiban Das

    2018-01-04

    Jan 4, 2018 ... equation of state, one may calculate the geometric vari- ables, such as the ... connected by any analytic function ψ, the evolutions equations, mainly ... [3] J E Marsden and A J Tromba, Vector calculus, 3rd edn. (W. H. Freeman ...

  2. A Hamiltonian structure for the linearized Einstein vacuum field equations

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1991-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained (Author)

  3. From the Hartree dynamics to the Vlasov equation

    DEFF Research Database (Denmark)

    Benedikter, Niels Patriz; Porta, Marcello; Saffirio, Chiara

    2016-01-01

    We consider the evolution of quasi-free states describing N fermions in the mean field limit, as governed by the nonlinear Hartree equation. In the limit of large N, we study the convergence towards the classical Vlasov equation. For a class of regular interaction potentials, we establish precise...

  4. Restrained Proton Indicator in Combined Quantum-Mechanics/Molecular-Mechanics Dynamics Simulations of Proton Transfer through a Carbon Nanotube.

    Science.gov (United States)

    Duster, Adam W; Lin, Hai

    2017-09-14

    Recently, a collective variable "proton indicator" was purposed for tracking an excess proton solvated in bulk water in molecular dynamics simulations. In this work, we demonstrate the feasibility of utilizing the position of this proton indicator as a reaction coordinate to model an excess proton migrating through a hydrophobic carbon nanotube in combined quantum-mechanics/molecular-mechanics simulations. Our results indicate that applying a harmonic restraint to the proton indicator in the bulk solvent near the nanotube pore entrance leads to the recruitment of water molecules into the pore. This is consistent with an earlier study that employed a multistate empirical valence bond potential and a different representation (center of excess charge) of the proton. We attribute this water recruitment to the delocalized nature of the solvated proton, which prefers to be in high-dielectric bulk solvent. While water recruitment into the pore is considered an artifact in the present simulations (because of the artificially imposed restraint on the proton), if the proton were naturally restrained, it could assist in building water wires prior to proton transfer through the pore. The potential of mean force for a proton translocation through the water-filled pore was computed by umbrella sampling, where the bias potentials were applied to the proton indicator. The free energy curve and barrier heights agree reasonably with those in the literature. The results suggest that the proton indicator can be used as a reaction coordinate in simulations of proton transport in confined environments.

  5. Parametric Assessment of Stress Development and Cracking in Internally Cured Restrained Mortars Experiencing Autogenous Deformations and Thermal Loading

    Directory of Open Access Journals (Sweden)

    Kambiz Raoufi

    2011-01-01

    Full Text Available A finite element model is used to examine how the properties of cementitious mortar are related to the stress development in the dual ring test. The results of this investigation are used to explain the thermal cracking behavior of mixtures containing prewetted lightweight aggregates (LWA by quantifying the contribution of several material properties individually. In addition to the beneficial effects of using the LWA as an internal curing agent to reduce the autogenous shrinkage of concrete, the LWA also helps to reduce the potential for thermal cracking due to a lower elastic modulus and increased stress relaxation. The rate of stress development, age of cracking, and magnitude of the temperature drop necessary to induce cracking in a dual ring specimen are dependent on a variety of factors, including the coefficient of thermal expansion of both the cementitious mortar and the restraining rings, elastic modulus of the mortar, creep effect of the mortar, and rate of thermal loading. Depending on the rate of cooling, cracking may or may not occur. The slowest rate of cooling (2.5∘C/h minimizes the effects of creep while cooling rates faster than 8∘C/h can produce a thermal gradient through the mortar cross-section that needs to be considered.

  6. Expression of executive control in situational context: Effects of facilitating versus restraining cues on snack food consumption.

    Science.gov (United States)

    Hall, Peter; Tran, Betty; Lowe, Cassandra; Vincent, Corita; Mourtzakis, Marina; Liu-Ambrose, Teresa; Prapavessis, Harry; Gidron, Yori

    2015-05-01

    To examine the effects of executive function (EF) on objectively measured high-calorie snack food consumption in 2 age groups and to explore the moderating influence of environmental cues. In Study 1, 43 older adults (M(age) = 74.81) and in Study 2, 79 younger adults (M(age) = 18.71) completed measures of EF and subsequently participated in a bogus taste-test paradigm wherein they were required to rate 3 highly appetitive (but high-calorie) snack foods on taste and texture. Grams of snack food consumed was measured covertly in the presence randomly assigned contextual cues (explicit semantic cues in Study 1; implicit visual cues in Study 2) that were facilitating or restraining in nature. Findings indicated that in both age groups, stronger EF predicted lower consumption of snack foods across conditions, and the effects of EF were most pronounced in the presence of facilitating cues. Older and younger adults with weaker EF tend to consume more high-calorie snack food compared with their stronger EF counterparts. These tendencies appear to be especially amplified in the presence of facilitating cues. (c) 2015 APA, all rights reserved).

  7. A method to restrain the charging effect on an insulating substrate in high energy electron beam lithography

    Science.gov (United States)

    Mingyan, Yu; Shirui, Zhao; Yupeng, Jing; Yunbo, Shi; Baoqin, Chen

    2014-12-01

    Pattern distortions caused by the charging effect should be reduced while using the electron beam lithography process on an insulating substrate. We have developed a novel process by using the SX AR-PC 5000/90.1 solution as a spin-coated conductive layer, to help to fabricate nanoscale patterns of poly-methyl-methacrylate polymer resist on glass for phased array device application. This method can restrain the influence of the charging effect on the insulating substrate effectively. Experimental results show that the novel process can solve the problems of the distortion of resist patterns and electron beam main field stitching error, thus ensuring the accuracy of the stitching and overlay of the electron beam lithography system. The main characteristic of the novel process is that it is compatible to the multi-layer semiconductor process inside a clean room, and is a green process, quite simple, fast, and low cost. It can also provide a broad scope in the device development on insulating the substrate, such as high density biochips, flexible electronics and liquid crystal display screens.

  8. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    Energy Technology Data Exchange (ETDEWEB)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.; Shyamala, G.; Moses, Harold L.; Barcellos-Hoff, Mary Helen

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha} co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.

  9. Effective Schroedinger equations on submanifolds

    Energy Technology Data Exchange (ETDEWEB)

    Wachsmuth, Jakob

    2010-02-11

    In this thesis the time dependent Schroedinger equation is considered on a Riemannian manifold A with a potential that localizes a certain class of states close to a fixed submanifold C, the constraint manifold. When the potential is scaled in the directions normal to C by a small parameter epsilon, the solutions concentrate in an epsilon-neighborhood of the submanifold. An effective Schroedinger equation on the submanifold C is derived and it is shown that its solutions, suitably lifted to A, approximate the solutions of the original equation on A up to errors of order {epsilon}{sup 3} vertical stroke t vertical stroke at time t. Furthermore, it is proved that, under reasonable conditions, the eigenvalues of the corresponding Hamiltonians below a certain energy coincide upto errors of order {epsilon}{sup 3}. These results holds in the situation where tangential and normal energies are of the same order, and where exchange between normal and tangential energies occurs. In earlier results tangential energies were assumed to be small compared to normal energies, and rather restrictive assumptions were needed, to ensure that the separation of energies is maintained during the time evolution. The most important consequence of this thesis is that now constraining potentials that change their shape along the submanifold can be treated, which is the typical situation in applications like molecular dynamics and quantum waveguides.

  10. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  11. New exact solutions of the mBBM equation

    International Nuclear Information System (INIS)

    Zhang Zhe; Li Desheng

    2013-01-01

    The enhanced modified simple equation method presented in this article is applied to construct the exact solutions of modified Benjamin-Bona-Mahoney equation. Some new exact solutions are derived by using this method. When some parameters are taken as special values, the solitary wave solutions can be got from the exact solutions. It is shown that the method introduced in this paper has general significance in searching for exact solutions to the nonlinear evolution equations. (authors)

  12. A new Riccati equation rational expansion method and its application to (2 + 1)-dimensional Burgers equation

    International Nuclear Information System (INIS)

    Wang Qi; Chen Yong; Zhang Hongqing

    2005-01-01

    In this paper, we present a new Riccati equation rational expansion method to uniformly construct a series of exact solutions for nonlinear evolution equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recover some known solutions, but also find some new and general solutions. The solutions obtained in this paper include rational triangular periodic wave solutions, rational solitary wave solutions and rational wave solutions. The efficiency of the method can be demonstrated on (2 + 1)-dimensional Burgers equation

  13. Elliptic equation rational expansion method and new exact travelling solutions for Whitham-Broer-Kaup equations

    International Nuclear Information System (INIS)

    Chen Yong; Wang Qi; Li Biao

    2005-01-01

    Based on a new general ansatz and a general subepuation, a new general algebraic method named elliptic equation rational expansion method is devised for constructing multiple travelling wave solutions in terms of rational special function for nonlinear evolution equations (NEEs). We apply the proposed method to solve Whitham-Broer-Kaup equation and explicitly construct a series of exact solutions which include rational form solitary wave solution, rational form triangular periodic wave solutions and rational wave solutions as special cases. In addition, the links among our proposed method with the method by Fan [Chaos, Solitons and Fractals 2004;20:609], are also clarified generally

  14. Comparison of Thoracic Injury Risk in Frontal Car Crashes for Occupant Restrained without Belt Load Limiters and Those Restrained with 6 kN and 4 kN Belt Load Limiters.

    Science.gov (United States)

    Foret-Bruno, J Y; Trosseille, X; Page, Y; Huère, J F; Le Coz, J Y; Bendjellal, F; Diboine, A; Phalempin, T; Villeforceix, D; Baudrit, P; Guillemot, H; Coltat, J C

    2001-11-01

    In France, as in other countries, accident research studies show that a large proportion of restrained occupants who sustain severe or fatal injuries are involved in frontal impacts (65% and 50%, respectively). In severe frontal impacts with restrained occupants and where intrusion is not preponderant, the oldest occupants very often sustain severe thoracic injuries due to the conventional seat belt. As we have been observing over the last years, we will expect in the coming years developments which include more solidly-built cars, as offset crash test procedures are widely used to evaluate the passive safety of production vehicles. The reduction of intrusion for the most severe frontal impacts, through optimization of car deformation, usually translates into an increase in restraint forces and hence thoracic injury risk with a conventional retractor seat belt for a given impact severity. It is, therefore essential to limit the restraint forces exerted by the seat belt on the thorax in order to reduce the number of road casualties. In order to address thoracic injury risk in frontal impact, Renault cars have been equipped with the Programmed Restraint System (PRS) since 1995. The PRS is a restraint system that combines belt load limitation and pyrotechnic belt pretension. In an initial design of the Programmed Restraint System (PRS1), the belt load limiter was a steel component designed to shear at a given shoulder force, namely 6 kN. It was mounted between the retractor and the lower anchorage point of the belt. The design of the PRS was modified in 1998 (PRS2), but the principle of load limitation was maintained. The threshold was decreased to 4 kN and this lower belt belt-force limiter has been combined with a specially designed airbag. This paper reports on 347 real-world frontal accidents where the EES (Equivalent Energy Speed) ranged from 35 to 75 km/h. One hundred and ninety-eight (198) of these accidents involved cars equipped with the 6 kN load limiter

  15. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  16. Functional equations with causal operators

    CERN Document Server

    Corduneanu, C

    2003-01-01

    Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.

  17. On the propagation of Einstein's equations with quasi-Maxwellian equations of gravity

    International Nuclear Information System (INIS)

    Novello, M.; Salim, J.M.

    1985-01-01

    It is proved that an affirmation proposed in a recent paper of Lesche and Som in which they argue about the non equivalence in the use of Weyl conformal tensor instead of the fuel curvature tensor in Bianchi identities regarded as the equation of evolution is wrong. (L.C.) [pt

  18. ERC Workshop on Geometric Partial Differential Equations

    CERN Document Server

    Novaga, Matteo; Valdinoci, Enrico

    2013-01-01

    This book is the outcome of a conference held at the Centro De Giorgi of the Scuola Normale of Pisa in September 2012. The aim of the conference was to discuss recent results on nonlinear partial differential equations, and more specifically geometric evolutions and reaction-diffusion equations. Particular attention was paid to self-similar solutions, such as solitons and travelling waves, asymptotic behaviour, formation of singularities and qualitative properties of solutions. These problems arise in many models from Physics, Biology, Image Processing and Applied Mathematics in general, and have attracted a lot of attention in recent years.

  19. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  20. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  1. Differential equations for dummies

    CERN Document Server

    Holzner, Steven

    2008-01-01

    The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

  2. Worry or craving? A selective review of evidence for food-related attention biases in obese individuals, eating-disorder patients, restrained eaters and healthy samples.

    Science.gov (United States)

    Werthmann, Jessica; Jansen, Anita; Roefs, Anne

    2015-05-01

    Living in an 'obesogenic' environment poses a serious challenge for weight maintenance. However, many people are able to maintain a healthy weight indicating that not everybody is equally susceptible to the temptations of this food environment. The way in which someone perceives and reacts to food cues, that is, cognitive processes, could underlie differences in susceptibility. An attention bias for food could be such a cognitive factor that contributes to overeating. However, an attention bias for food has also been implicated with restrained eating and eating-disorder symptomatology. The primary aim of the present review was to determine whether an attention bias for food is specifically related to obesity while also reviewing evidence for attention biases in eating-disorder patients, restrained eaters and healthy-weight individuals. Another aim was to systematically examine how selective attention for food relates (causally) to eating behaviour. Current empirical evidence on attention bias for food within obese samples, eating-disorder patients, and, even though to a lesser extent, in restrained eaters is contradictory. However, present experimental studies provide relatively consistent evidence that an attention bias for food contributes to subsequent food intake. This review highlights the need to distinguish not only between different (temporal) attention bias components, but also to take different motivations (craving v. worry) and their impact on attentional processing into account. Overall, the current state of research suggests that biased attention could be one important cognitive mechanism by which the food environment tempts us into overeating.

  3. Inspiration or deflation? Feeling similar or dissimilar to slim and plus-size models affects self-evaluation of restrained eaters.

    Science.gov (United States)

    Papies, Esther K; Nicolaije, Kim A H

    2012-01-01

    The present studies examined the effect of perceiving images of slim and plus-size models on restrained eaters' self-evaluation. While previous research has found that such images can lead to either inspiration or deflation, we argue that these inconsistencies can be explained by differences in perceived similarity with the presented model. The results of two studies (ns=52 and 99) confirmed this and revealed that restrained eaters with high (low) perceived similarity to the model showed more positive (negative) self-evaluations when they viewed a slim model, compared to a plus-size model. In addition, Study 2 showed that inducing in participants a similarities mindset led to more positive self-evaluations after viewing a slim compared to a plus-size model, but only among restrained eaters with a relatively high BMI. These results are discussed in the context of research on social comparison processes and with regard to interventions for protection against the possible detrimental effects of media images. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Solutions and Conservation Laws of a (2+1-Dimensional Boussinesq Equation

    Directory of Open Access Journals (Sweden)

    Letlhogonolo Daddy Moleleki

    2013-01-01

    Full Text Available We study a nonlinear evolution partial differential equation, namely, the (2+1-dimensional Boussinesq equation. For the first time Lie symmetry method together with simplest equation method is used to find the exact solutions of the (2+1-dimensional Boussinesq equation. Furthermore, the new conservation theorem due to Ibragimov will be utilized to construct the conservation laws of the (2+1-dimensional Boussinesq equation.

  5. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  6. Solving Ordinary Differential Equations

    Science.gov (United States)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  7. Reactimeter dispersion equation

    OpenAIRE

    A.G. Yuferov

    2016-01-01

    The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...

  8. Differential equations I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.

  9. An effective simplified model of composite compression struts for partially-restrained steel frame with reinforced concrete infill walls

    Science.gov (United States)

    Sun, Guohua; Chuang-Sheng, Walter Yang; Gu, Qiang; DesRoches, Reginald

    2018-04-01

    To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained (PR) steel frames with solid reinforced concrete (RC) infill walls, an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution, load transferring mechanism, and failure modes of RC infill walls filled in PR steel frame. The proposed composite compression struts model for the solid RC infill walls is composed of α inclined struts and main diagonal struts. The α inclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface, while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls. This study derives appropriate formulas for the effective widths of the α inclined strut and main diagonal strut, respectively. An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated. The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results, and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%. This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.

  10. High energy evolution of soft gluon cascades

    International Nuclear Information System (INIS)

    Shuvaev, A.; Wallon, S.

    2006-01-01

    In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that this equation has the same form as the BFKL equation in the forward case. An explicit expression for the total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of the colored source wavefunction turns out to be responsible for the reggeization of the source. (orig.)

  11. High energy evolution of soft gluon cascades

    Energy Technology Data Exchange (ETDEWEB)

    Shuvaev, A. [St. Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg district (Russian Federation); Wallon, S. [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)

    2006-04-15

    In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that this equation has the same form as the BFKL equation in the forward case. An explicit expression for the total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of the colored source wavefunction turns out to be responsible for the reggeization of the source. (orig.)

  12. Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations

    KAUST Repository

    Lorz, Alexander

    2011-01-17

    Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses coexist? We will explain how these questions relate to the so-called "constrained Hamilton-Jacobi equation" and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional. Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.

  13. Equational type logic

    NARCIS (Netherlands)

    Manca, V.; Salibra, A.; Scollo, Giuseppe

    1990-01-01

    Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either

  14. Alternative equations of gravitation

    International Nuclear Information System (INIS)

    Pinto Neto, N.

    1983-01-01

    It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt

  15. Reduced Braginskii equations

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite {beta} that we solve the perpendicular component of Ohm`s law to conserve the physical energy while ensuring the relation {del} {center_dot} j = 0.

  16. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that we solve the perpendicular component of Ohm's law to conserve the physical energy while ensuring the relation ∇ · j = 0

  17. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1994-01-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that the perpendicular component of Ohm's law be solved to ensure ∇·j=0 for energy conservation

  18. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  19. The Wouthuysen equation

    NARCIS (Netherlands)

    M. Hazewinkel (Michiel)

    1995-01-01

    textabstractDedication: I dedicate this paper to Prof. P.C. Baayen, at the occasion of his retirement on 20 December 1994. The beautiful equation which forms the subject matter of this paper was invented by Wouthuysen after he retired. The four complex variable Wouthuysen equation arises from an

  20. The generalized Fermat equation

    NARCIS (Netherlands)

    Beukers, F.

    2006-01-01

    This article will be devoted to generalisations of Fermat’s equation xn + yn = zn. Very soon after the Wiles and Taylor proof of Fermat’s Last Theorem, it was wondered what would happen if the exponents in the three term equation would be chosen differently. Or if coefficients other than 1 would

  1. Properties of quantum Markovian master equations

    International Nuclear Information System (INIS)

    Gorini, V.; Frigerio, A.; Verri, M.; Kossakowski, A.; Sudarshan, E.C.G.

    1976-11-01

    An essentially self-contained account is given of some general structural properties of the dynamics of quantum open Markovian systems. Some recent results regarding the problem of the classification of quantum Markovian master equations and the limiting conditions under which the dynamical evolution of a quantum open system obeys an exact semigroup law (weak coupling limit and singular coupling limit are reviewed). A general form of quantum detailed balance and its relation to thermal relaxation and to microreversibility is discussed

  2. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2004-01-01

    This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...

  3. Schumpeter's Evolution

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    reworking of his basic theory of economic evolution in Development from 1934, and this reworking was continued in Cycles from 1939. Here Schumpeter also tried to handle the statistical and historical evidence on the waveform evolution of the capitalist economy. Capitalism from 1942 modified the model...

  4. Galactic evolution

    International Nuclear Information System (INIS)

    Pagel, B.

    1979-01-01

    Ideas are considered concerning the evolution of galaxies which are closely related to those of stellar evolution and the origin of elements. Using information obtained from stellar spectra, astronomers are now able to consider an underlying process to explain the distribution of various elements in the stars, gas and dust clouds of the galaxies. (U.K.)

  5. Darwinian evolution

    NARCIS (Netherlands)

    Jagers op Akkerhuis, Gerard A.J.M.; Spijkerboer, Hendrik Pieter; Koelewijn, Hans Peter

    2016-01-01

    Darwinian evolution is a central tenet in biology. Conventionally, the defi nition of Darwinian evolution is linked to a population-based process that can be measured by focusing on changes in DNA/allele frequencies. However, in some publications it has been suggested that selection represents a

  6. Embedded solitons in the third-order nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pal, Debabrata; Ali, Sk Golam; Talukdar, B

    2008-01-01

    We work with a sech trial function with space-dependent soliton parameters and envisage a variational study for the nonlinear Schoedinger (NLS) equation in the presence of third-order dispersion. We demonstrate that the variational equations for pulse evolution in this NLS equation provide a natural basis to derive a potential model which can account for the existence of a continuous family of embedded solitons supported by the third-order NLS equation. Each member of the family is parameterized by the propagation velocity and co-efficient of the third-order dispersion

  7. Cnoidal waves governed by the Kudryashov–Sinelshchikov equation

    International Nuclear Information System (INIS)

    Randrüüt, Merle; Braun, Manfred

    2013-01-01

    The evolution equation for waves propagating in a mixture of liquid and gas bubbles as proposed by Kudryashov and Sinelshchikov allows, in a special case, the propagation of solitary waves of the sech 2 type. It is shown that these waves represent the solitary limit separating two families of periodic waves. One of them consists of the same cnoidal waves that are solutions of the Korteweg–de Vries equation, while the other one does not have a corresponding counterpart. It is pointed out how the ordinary differential equations governing traveling-wave solutions of the Kudryashov–Sinelshchikov and the Korteweg–de Vries equations are related to each other.

  8. Cnoidal waves governed by the Kudryashov–Sinelshchikov equation

    Energy Technology Data Exchange (ETDEWEB)

    Randrüüt, Merle, E-mail: merler@cens.ioc.ee [Tallinn University of Technology, Faculty of Mechanical Engineering, Department of Mechatronics, Ehitajate tee 5, 19086 Tallinn (Estonia); Braun, Manfred [University of Duisburg–Essen, Chair of Mechanics and Robotics, Lotharstraße 1, 47057 Duisburg (Germany)

    2013-10-30

    The evolution equation for waves propagating in a mixture of liquid and gas bubbles as proposed by Kudryashov and Sinelshchikov allows, in a special case, the propagation of solitary waves of the sech{sup 2} type. It is shown that these waves represent the solitary limit separating two families of periodic waves. One of them consists of the same cnoidal waves that are solutions of the Korteweg–de Vries equation, while the other one does not have a corresponding counterpart. It is pointed out how the ordinary differential equations governing traveling-wave solutions of the Kudryashov–Sinelshchikov and the Korteweg–de Vries equations are related to each other.

  9. Hamilton's equations for a fluid membrane

    International Nuclear Information System (INIS)

    Capovilla, R; Guven, J; Rojas, E

    2005-01-01

    Consider a homogeneous fluid membrane described by the Helfrich-Canham energy, quadratic in the mean curvature of the membrane surface. The shape equation that determines equilibrium configurations is fourth order in derivatives and cubic in the mean curvature. We introduce a Hamiltonian formulation of this equation which dismantles it into a set of coupled first-order equations. This involves interpreting the Helfrich-Canham energy as an action; equilibrium surfaces are generated by the evolution of space curves. Two features complicate the implementation of a Hamiltonian framework. (i) The action involves second derivatives. This requires treating the velocity as a phase-space variable and the introduction of its conjugate momentum. The canonical Hamiltonian is constructed on this phase space. (ii) The action possesses a local symmetry-reparametrization invariance. The two labels we use to parametrize points on the surface are themselves physically irrelevant. This symmetry implies primary constraints, one for each label, that need to be implemented within the Hamiltonian. The two Lagrange multipliers associated with these constraints are identified as the components of the acceleration tangential to the surface. The conservation of the primary constraints implies two secondary constraints, fixing the tangential components of the momentum conjugate to the position. Hamilton's equations are derived and the appropriate initial conditions on the phase-space variables are identified. Finally, it is shown how the shape equation can be reconstructed from these equations

  10. Exact Solutions of Atmospheric (2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations

    Science.gov (United States)

    Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua

    2016-12-01

    Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205

  11. A New Method for Constructing Travelling Wave Solutions to the modified Benjamin–Bona–Mahoney Equation

    International Nuclear Information System (INIS)

    Jun-Mao, Wang; Miao, Zhang; Wen-Liang, Zhang; Rui, Zhang; Jia-Hua, Han

    2008-01-01

    We present a new method to find the exact travelling wave solutions of nonlinear evolution equations, with the aid of the symbolic computation. Based on this method, we successfully solve the modified Benjamin–Bona–Mahoney equation, and obtain some new solutions which can be expressed by trigonometric functions and hyperbolic functions. It is shown that the proposed method is direct, effective and can be used for many other nonlinear evolution equations in mathematical physics. (general)

  12. Evolution of gluon TMDs from small to moderate x

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Andrey [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    Recently we obtained an evolution equation of gluon TMDs, which addresses a problem of unification of different kinematic regimes. It describes evolution in the whole range of Bjorken $x_B$ and the whole range of transverse momentum $k_\\perp$. In this notes I study different limits of this evolution equation and show how it yields several well-known and some previously unknown results.

  13. Partial Differential Equations and Solitary Waves Theory

    CERN Document Server

    Wazwaz, Abdul-Majid

    2009-01-01

    "Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II w...

  14. Baicklund transformation and multiple soliton solutions for the (3+1)-dimensional Jimbo-Miwa equation

    Institute of Scientific and Technical Information of China (English)

    张解放; 吴锋民

    2002-01-01

    We study an approach to constructing multiple soliton solutions of the (3+1)-dimensional nonlinear evolution equation. We take the (3+1)-dimensional Jimbo-Miwa (JM) equation as an example. Using the extended homogeneous balance method, one can find a Backlund transformation to decompose the (3+1)-dimensional JM equation into a linear partial differential equation and two bilinear partial differential equations. Starting from these linear and bilinear partial differential equations, some multiple soliton solutions for the (3+1)-dimensional JM equation are obtained by introducing a class of formal solutions.

  15. A dark past, a restrained present, and an apocalyptic future: time perspective, personality, and life satisfaction among anorexia nervosa patients

    Directory of Open Access Journals (Sweden)

    Danilo Garcia

    2017-09-01

    only the past positive and present hedonistic time dimensions predicted life satisfaction among patients. Conclusion Anorexia patients were less satisfied with life despite being more conscientious, social, and agreeable than controls. Moreover, compared to controls, patients had an unbalanced time perspective: a dark view of the past (i.e., high past negative, a restrained present (i.e., low present hedonistic and an apocalyptic view of the future (i.e., high present fatalistic. It is plausible to suggest that, therapeutic interventions should focus on empowering patients to cultivate a sentimental and positive view of the past (i.e., high past positive and the desire to experience pleasure without concern for future consequences (i.e., high present hedonistic so that they can make self-directed and flexible choices for their own well-being. Such interventions might have effects on life satisfaction beyond the patients’ temperamental disposition.

  16. A dark past, a restrained present, and an apocalyptic future: time perspective, personality, and life satisfaction among anorexia nervosa patients.

    Science.gov (United States)

    Garcia, Danilo; Granjard, Alexandre; Lundblad, Suzanna; Archer, Trevor

    2017-01-01

    time dimensions predicted life satisfaction among patients. Anorexia patients were less satisfied with life despite being more conscientious, social, and agreeable than controls. Moreover, compared to controls, patients had an unbalanced time perspective: a dark view of the past (i.e., high past negative), a restrained present (i.e., low present hedonistic) and an apocalyptic view of the future (i.e., high present fatalistic). It is plausible to suggest that, therapeutic interventions should focus on empowering patients to cultivate a sentimental and positive view of the past (i.e., high past positive) and the desire to experience pleasure without concern for future consequences (i.e., high present hedonistic) so that they can make self-directed and flexible choices for their own well-being. Such interventions might have effects on life satisfaction beyond the patients' temperamental disposition.

  17. Glycogen synthase kinase 3β promotes liver innate immune activation by restraining AMP-activated protein kinase activation.

    Science.gov (United States)

    Zhou, Haoming; Wang, Han; Ni, Ming; Yue, Shi; Xia, Yongxiang; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2018-02-13

    patients. Gsk3β promotes innate proinflammatory immune activation by restraining AMPK activation. Glycogen synthase kinase 3β promotes macrophage inflammatory activation by inhibiting the immune regulatory signalling of AMP-activated protein kinase and the induction of small heterodimer partner. Therefore, therapeutic targeting of glycogen synthase kinase 3β enhances innate immune regulation and protects liver from ischaemia and reperfusion injury. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  18. Solution of the chemical master equation by radial basis functions approximation with interface tracking

    NARCIS (Netherlands)

    Kryven, I.; Röblitz, S; Schütte, C.

    2015-01-01

    Background: The chemical master equation is the fundamental equation of stochastic chemical kinetics. This differential-difference equation describes temporal evolution of the probability density function for states of a chemical system. A state of the system, usually encoded as a vector, represents

  19. The auxiliary elliptic-like equation and the exp-function method

    Indian Academy of Sciences (India)

    exact solutions of the nonlinear evolution equations are derived with the aid of auxiliary elliptic-like equation. ... (NEE) have been paid attention by many researchers, especially the investigations of exact solutions for ... elliptic-like equation with the aid of the travelling wave reduction are introduced. The exact solutions of ...

  20. Linear and nonlinear analogues of the Schroedinger equation in the contextual approach in quantum mechanics

    International Nuclear Information System (INIS)

    Khrennikov, A.Yu.

    2005-01-01

    One derived the general evolutionary differential equation within the Hilbert space describing dynamics of the wave function. The derived contextual model is more comprehensive in contrast to a quantum one. The contextual equation may be a nonlinear one. Paper presents the conditions ensuring linearity of the evolution and derivation of the Schroedinger equation [ru

  1. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  2. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  3. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  4. Supersymmetric quasipotential equations

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1981-01-01

    A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru

  5. Local instant conservation equations

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    Local instant conservation equations for two-phase flow are derived. Derivation of the equation starts from the recording of integral laws of conservation for a fixed reference volume, containing both phases. Transformation of the laws, using the Leibniz rule and Gauss theory permits to obtain the sum of two integrals as to the volume and integral as to the surface. Integrals as to the volume result in local instant differential equations, in particular derivatives for each phase, and integrals as to the surface reflect local instant conditions of a jump on interface surface

  6. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  7. Ordinary differential equations

    CERN Document Server

    Miller, Richard K

    1982-01-01

    Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,

  8. Uncertain differential equations

    CERN Document Server

    Yao, Kai

    2016-01-01

    This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.

  9. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  10. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2015-01-01

    This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs.  Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...

  11. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  12. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  13. Equations For Rotary Transformers

    Science.gov (United States)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  14. Problems in differential equations

    CERN Document Server

    Brenner, J L

    2013-01-01

    More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.

  15. Applied partial differential equations

    CERN Document Server

    DuChateau, Paul

    2012-01-01

    Book focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included.

  16. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  17. Modern nonlinear equations

    CERN Document Server

    Saaty, Thomas L

    1981-01-01

    Covers major types of classical equations: operator, functional, difference, integro-differential, and more. Suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." - Math Reviews. 1964 edition.

  18. SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER

    Science.gov (United States)

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1960-05-10

    A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.

  19. Structural Equations and Causation

    OpenAIRE

    Hall, Ned

    2007-01-01

    Structural equations have become increasingly popular in recent years as tools for understanding causation. But standard structural equations approaches to causation face deep problems. The most philosophically interesting of these consists in their failure to incorporate a distinction between default states of an object or system, and deviations therefrom. Exploring this problem, and how to fix it, helps to illuminate the central role this distinction plays in our causal thinking.

  20. Equations of radiation hydrodynamics

    International Nuclear Information System (INIS)

    Mihalas, D.

    1982-01-01

    The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is esential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations; and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved will be presented