WorldWideScience

Sample records for evoked potential elicited

  1. Pattern Visual Evoked Potentials Elicited by Organic Electroluminescence Screen

    Directory of Open Access Journals (Sweden)

    Celso Soiti Matsumoto

    2014-01-01

    Full Text Available Purpose. To determine whether organic electroluminescence (OLED screens can be used as visual stimulators to elicit pattern-reversal visual evoked potentials (p-VEPs. Method. Checkerboard patterns were generated on a conventional cathode-ray tube (S710, Compaq Computer Co., USA screen and on an OLED (17 inches, 320 × 230 mm, PVM-1741, Sony, Tokyo, Japan screen. The time course of the luminance changes of each monitor was measured with a photodiode. The p-VEPs elicited by these two screens were recorded from 15 eyes of 9 healthy volunteers (22.0 ± 0.8 years. Results. The OLED screen had a constant time delay from the onset of the trigger signal to the start of the luminescence change. The delay during the reversal phase from black to white for the pattern was 1.0 msec on the cathode-ray tube (CRT screen and 0.5 msec on the OLED screen. No significant differences in the amplitudes of P100 and the implicit times of N75 and P100 were observed in the p-VEPs elicited by the CRT and the OLED screens. Conclusion. The OLED screen can be used as a visual stimulator to elicit p-VEPs; however the time delay and the specific properties in the luminance change must be taken into account.

  2. Effects of diazepam on auditory evoked potentials of rats elicited in a ten-tone paradigm

    NARCIS (Netherlands)

    Jongsma, M.L.A.; Rijn, C.M. van; Schaijk, W.J. van; Coenen, A.M.L.; Dirksen, R.

    2000-01-01

    The effect of diazepam on sensory gating was studied in rats, by measuring diazepam effects on Auditory Evoked Potentials (AEPs) elicited in a ten-tone paradigm. Trains of 10 repetitive tone-pip stimuli were presented. Rats (n=8) received 4 mg.kg-1 diazepam s.c. or vehicle, counterbalanced over two

  3. Topography of synchronization of somatosensory evoked potentials elicited by stimulation of the sciatic nerve in rat

    Directory of Open Access Journals (Sweden)

    Xuefeng eQu

    2016-05-01

    Full Text Available Purpose: Traditionally, the topography of somatosensory evoked potentials (SEPs is generated based on amplitude and latency. However, this operation focuses on the physical morphology and field potential-power, so it suffers from difficulties in performing identification in an objective manner. In this study, measurement of the synchronization of SEPs is proposed as a method to explore brain functional networks as well as the plasticity after peripheral nerve injury. Method: SEPs elicited by unilateral sciatic nerve stimulation in twelve adult male Sprague-Dawley (SD rats in the normal group were compared with SEPs evoked after unilateral sciatic nerve hemisection in four peripheral nerve injured SD rats. The characterization of synchronized networks from SEPs was conducted using equal-time correlation, correlation matrix analysis, and comparison to randomized surrogate data. Eigenvalues of the correlation matrix were used to identify the clusters of functionally synchronized neuronal activity, and the participation index (PI was calculated to indicate the involvement of each channel in the cluster. The PI value at the knee point of the PI histogram was used as a threshold to demarcate the cortical boundary. Results: Ten out of the twelve normal rats showed only one synchronized brain network. The remaining two normal rats showed one strong and one weak network. In the peripheral nerve injured group, only one synchronized brain network was found in each rat. In the normal group, all network shapes appear regular and the network is largely contained in the posterior cortex. In the injured group, the network shapes appear irregular, the network extends anteriorly and posteriorly, and the network area is significantly larger. There are considerable individual variations in the shape and location of the network after peripheral nerve injury. Conclusion: The proposed method can detect functional brain networks. Compared to the results of the

  4. Relative efficacy of transcranial motor evoked potentials, mechanically-elicited electromyography, and evoked EMG to assess nerve root function during sustained retraction in a porcine model.

    Science.gov (United States)

    Lyon, Russ; Lieberman, Jeremy A; Feiner, John; Burch, Shane

    2009-07-15

    This is an animal experiment using transcranial motor evoked potentials (TcMEP), mechanically elicited electromyography (EMG), and evoked EMG during spinal nerve root retraction in a pig model. To compare the sensitivity of these 3 electrophysiological measures for a constant retraction force applied to an isolated lumbar nerve root for a specific duration of time. The incidence of nerve root injury during lumbar spine surgery ranges from 0.2% to 31%. Direct retraction of spinal nerve roots may cause these injuries, but the amount and duration of force that may safely be applied is not clear. Using an established porcine model, we examined the changes occurring to multimyotomal TcMEPs, mechanically elicited EMGs, and evoked EMGs during continuous retraction of a nerve root at a constant force applied over 10 minutes. TcMEP, mechanically elicited EMG, and evoked EMG responses were recorded from the tibialis anterior (TA) muscle in 10 experiments. The dominant root innervating the TA was determined with evoked EMG; preretraction TcMEP and nerve root stimulation threshold (NRT) was obtained. The dominant root was retracted at 2 Newton (N) for 10 minutes. TcMEP trials were elicited every minute during retraction. NRT was measured immediately after retraction. TcMEP and NRT were measured after 10 minutes of recovery. RESULTS.: During the 10 minutes of retraction at 2 N, the amplitude of the TA muscle progressively decreased in all trials in a highly significant curvilinear fashion. The mean TcMEP amplitude decreased 59% +/- 14% from baseline values. The mean NRT after 10 minutes of retraction at 2 N rose to 1.8 +/- 0.7 mA (P EMG activity was variable; tonic EMG was observed in only 2 nerve roots (20%). Three electrophysiologic methods were used intraoperatively to assess neural function during retraction of a single nerve root. Retraction produced consistent changes in TcMEPs and evoked EMG. These 2 methods show promise for assessing the limits on the force and duration

  5. Smooth pursuit eye movement preferentially facilitates motor-evoked potential elicited by anterior-posterior current in the brain.

    Science.gov (United States)

    Hiraoka, Koichi; Ae, Minori; Ogura, Nana; Komuratani, Sayo; Sano, Chisa; Shiomi, Keigo; Morita, Yuji; Yokoyama, Haruka

    2014-03-26

    Neural interaction between the eye and hand movement centers must be a critical part of the mechanism underlying eye-hand coordination. One of the previous findings supporting this view is smooth pursuit eye movement-induced suppression of motor-evoked potential (MEP) in the hand muscles. The purpose of this study was to determine which descending volleys contributing to MEP are preferentially modulated by smooth pursuit eye movement. MEP in the first dorsal interosseous muscle was elicited by different directions of current in the brain during the steady-state phase of smooth pursuit eye movement. Smooth pursuit eye movement facilitated MEP elicited by anterior-posterior (AP) current, but this effect was not seen in MEP elicited by lateromedial or posterior-anterior current. Latency of MEP elicited by AP current was significantly longer than latencies of MEPs elicited by other directions of current, indicating that AP current in the brain predominantly elicited later I-waves. We conclude that smooth pursuit eye movement in the steady-state phase preferentially facilitates MEP predominantly elicited by later I-waves generated by AP current in the brain.

  6. Modulation of sensory inhibition of motor evoked potentials elicited by TMS prior to movement?

    DEFF Research Database (Denmark)

    Leukel, Christian; Lundbye-Jensen, Jesper; Nielsen, Jens Bo

    Short latency afferent inhibition (SAI) refers to a decrement of the size of a motor evoked potential (MEP) by transcranial magnetic stimulation (TMS) after electrical stimulation of a peripheral afferent nerve (PNS) (Tokimura et al. 2000). Since SAI occurs when TMS is applied at the time...... to rest. In 9 healthy subjects (23 ± 3 years) MEPs were recorded in m. first dorsal interosseus (FDI) and m. abductor pollicis brevis (APB). To induce SAI, n. medianus was stimulated 20 ms prior to TMS over the motorcortex. In control trials, interstimulus intervals (ISIs) between afferent stimulation...... because the afferent information triggered the movement and therefore was important for motor performance. Alle et al. (2009). J Physiol 587:5163-5176 Chen et al. (1998). Ann Neurol 44:317-325 Tokimura et al. (2000). J Physiol 523 Pt 2:503-513...

  7. Spatial characteristics of evoked potentials elicited by a MEMS microelectrode array for suprachoroidal-transretinal stimulation in a rabbit.

    Science.gov (United States)

    Yan, Yan; Sui, Xiaohong; Liu, Wenjia; Lu, Yiliang; Cao, Pengjia; Ma, Zengguang; Chen, Yao; Chai, Xinyu; Li, Liming

    2015-09-01

    Suprachoroidal-transretinal stimulation (STS) can potentially restore vision. This study investigated the spatial characteristics of cortical electrical evoked potentials (EEPs) elicited by STS. A 4 × 4 thin-film platinum microelectrode stimulating array (200 μm electrode diameter and 400 μm center-to-center distance) was fabricated by a micro-electro-mechanical systems (MEMS) techniques and implanted into the suprachoroidal space of albino rabbits. The current threshold to elicit reliable EEPs by a single electrode was 41.6 ± 12.6 μA, corresponding to a 66.2 ± 20.1 μC · cm(-2) charge density per phase, which was lower than the reported safety limits. Spatially differentiated cortical responses could be evoked by STS through different rows or columns of electrical stimulation; furthermore, shifts in the location of the maximum cortical activities were consistent with cortical visuotopic maps; increasing the number of simultaneously stimulating electrodes increased the response amplitudes of EEPs and expanded the spatial spread as well. In addition, long-term implantation and electrical stimulation of the MEMS electrode array in suprachoroidal space are necessary to evaluate systematically the safety and biocompatibility of this approach. This study indicates that the STS approach by a MEMS-based platinum electrode array is a feasible alternative for visual restoration, and relatively high spatial discrimination may be achieved.

  8. Somatosensory evoked potentials elicited by dorsal penile and posterior tibial nerve stimulation.

    Science.gov (United States)

    Fitzpatrick, D F; Hendricks, S E; Graber, B; Balogh, S E; Wetzel, M

    1989-01-01

    SEPs were elicited by stimulation of the dorsal penile nerve (DPN) or posterior tibial nerve (PTN) under 3 conditions of stimulation: random and constant interstimulus intervals, and subject-initiated stimulation. Within these conditions, the effects of repeated stimulation were also examined. The latency of the N90 peak decreased with repeated stimulation. N90 amplitude decreased with increased foreknowledge as well as with repeated stimulation. Factors extracted by principal components analysis revealed similar effects. A difference between DPN and PTN stimulation was seen in a factor associated with the N90 peak, wherein the condition involving subject self-initiation of the stimulus reflected a significantly greater decrease in SEP amplitude when the DPN was stimulated. Morphological commonalities were observed in the SEPs elicited by DPN and PTN for a given subject.

  9. Ocular vestibular evoked myogenic potential elicited from binaural air-conducted stimulations: clinical feasibility in patients with peripheral vestibular dysfunction.

    Science.gov (United States)

    Iwasaki, Shinichi; Egami, Naoya; Inoue, Aki; Kinoshita, Makoto; Fujimoto, Chisato; Murofushi, Toshihisa; Yamasoba, Tatsuya

    2013-07-01

    Ocular vestibular evoked myogenic potentials (oVEMPs) to binaural air-conducted stimulation (ACS) may provide a convenient way of assessing the crossed vestibulo-ocular reflex in patients with vestibular dysfunction as well as in healthy subjects. To investigate the clinical feasibility of using oVEMPs in response to binaural ACS to assess normal subjects and patients with vestibular dysfunction. The study investigated 24 normal subjects (14 men and 10 women, aged from 23 to 60 years) and 14 patients with unilateral peripheral vestibular dysfunction. Each subject underwent oVEMP testing in response to monaural ACS and binaural ACS (500 Hz tone burst, 135 dBSPL). In normal subjects, bilateral oVEMPs were elicited in 75% of subjects in response to monaural ACS and in 91% in response to binaural ACS. Asymmetry ratios (ARs) of the responses to binaural ACS were significantly smaller than those of the responses to monaural ACS (p binaural ACS. Approximately 30% of patients showed reduced ARs to binaural ACS relative to monaural ACS, primarily due to contamination by uncrossed responses elicited in healthy ears.

  10. Effects of ketamine and propofol on motor evoked potentials elicited by intracranial microstimulation during deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Havan eFurmaga

    2014-05-01

    Full Text Available Few preclinical or clinical studies have evaluated the effect of anesthetics on motor evoked potentials (MEPs, either alone or in the presence of conditioning stimuli such as deep brain stimulation (DBS. In this study we evaluated the effect of two commonly used anesthetic agents, propofol and ketamine, on MEPs elicited by intra-cortical microstimulation of the motor cortex in a rodent model with and without DBS of the dentatothalamocortical (DTC pathway. The effects of propofol anesthesia on MEP amplitudes during DTC DBS were found to be highly dose dependent. Standard-, but not high-, dose propofol potentiated the facilitatory effects of 30 Hz DTC DBS on MEPs. This facilitation was sustained and phase-dependent, indicating that, compared to high dose propofol, standard dose propofol has a beta-band excitatory effect on cortical networks. In contrast, ketamine anesthetic demonstrated a monotonic relationship with increasing frequencies of stimulation, such that the highest frequency of stimulation resulted in the greatest MEP amplitude. Ketamine also showed phase dependency but less pronounced than standard dose propofol. The results underscore the importance of better understanding the complex effects of anesthetics on cortical networks and exogenous stimuli. Choice of anesthetic agents and dosing may significantly confound or even skew research outcomes, including experimentation in novel DBS indications and paradigms.

  11. Rise/fall and plateau time optimization for cervical vestibular-evoked myogenic potential elicited by short tone bursts of 500 Hz.

    Science.gov (United States)

    Singh, Niraj Kumar; Kumar, Prawin; Aparna, T H; Barman, Animesh

    2014-07-01

    Literature on clinical utility of cervical vestibular-evoked myogenic potential (cVEMP) has been increasing rapidly, though not without inconsistencies in spite of involving similar populations. Close examination of methods across studies exposed the use of variable stimulus parameters, especially rise/fall time (R/FT) and plateau time (PT) as the possible reason. However the effect of variation in R/FT and PT on cVEMP response parameters has been largely uncharted. The study aimed at evaluating the impact of R/FT and PT on cVEMPs elicited by 500-Hz short tone-bursts (STBs) at 95 dB nHL using R/FT from 1 to 4 ms and PT from 0 to 3 ms. 30 healthy individuals with normal audio-vestibular system. Significant prolongation of latencies with increasing R/FT and PT (p < 0.05) was noticed. The amplitude however varied significantly only for some R/FTs and PTs. R/FT of 2 ms, in combination with 1-ms PT, produced large amplitudes with lowest variability in amplitude and latency parameters. R/FT of 2 ms along with PT of 1 ms formed a good amalgamation and could be considered optimum for clinical recording of cVEMPs elicited by 500-Hz STBs, although slight deviances in these parameters might not impact the outcome significantly.

  12. Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses

    NARCIS (Netherlands)

    Journee, H. -L.; Polak, H. E.; De Kleuver, M.

    2007-01-01

    Introduction. - In spite of the use of multipulse, transcranial electrical stimulation (TES) is still insufficient in a subgroup of patients to elicit motor-evoked potentials during intraoperative neurophysiological monitoring (IONM). Classic facilitation methods used in awake patients are precluded

  13. On the use of information theory for the analysis of synchronous nociceptive withdrawal reflexes and somatosensory evoked potentials elicited by graded electrical stimulation.

    Science.gov (United States)

    Arguissain, Federico G; Biurrun Manresa, José A; Mørch, Carsten D; Andersen, Ole K

    2015-01-30

    To date, few studies have combined the simultaneous acquisition of nociceptive withdrawal reflexes (NWR) and somatosensory evoked potentials (SEPs). In fact, it is unknown whether the combination of these two signals acquired simultaneously could provide additional information on somatosensory processing at spinal and supraspinal level compared to individual NWR and SEP signals. By using the concept of mutual information (MI), it is possible to quantify the relation between electrical stimuli and simultaneous elicited electrophysiological responses in humans based on the estimated stimulus-response signal probability distributions. All selected features from NWR and SEPs were informative in regard to the stimulus when considered individually. Specifically, the information carried by NWR features was significantly higher than the information contained in the SEP features (pinformation carried by the combination of features showed an overall redundancy compared to the sum of the individual contributions. Comparison with existing methods MI can be used to quantify the information that single-trial NWR and SEP features convey, as well as the information carried jointly by NWR and SEPs. This is a model-free approach that considers linear and non-linear correlations at any order and is not constrained by parametric assumptions. The current study introduces a novel approach that allows the quantification of the individual and joint information content of single-trial NWR and SEP features. This methodology could be used to decode and interpret spinal and supraspinal interaction in studies modulating the responsiveness of the nociceptive system. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Sensory deficits of a nerve root lesion can be objectively documented by somatosensory evoked potentials elicited by painful infrared laser stimulations: a case study.

    OpenAIRE

    Lorenz, J.; HANSEN, H. C.; K. Kunze; Bromm, B

    1996-01-01

    Somatosensory evoked potentials (SEPs) in response to painful laser stimuli were measured in a patient with a unilateral sensory deficit due to radiculopathy at cervical levels C7 and C8. Laser evoked potentials (LEPs) were compared with SEPs using standard electrical stimulation of median and ulnar nerves at the wrist and mechanical stimulation of the fingertips by means of a mechanical stimulator. Early and late ulnar and median nerve SEPs were normal. Mechanical stimulation resulted in w s...

  15. International Evoked Potentials Symposium

    CERN Document Server

    1980-01-01

    The past decade has seen great progress in the measurement of evoked potentials in man; a steady increase in our understanding of their charac­ teristics, their origins and their usefulness; and a growing application in the field of clinical diagnosis. The topic is a truly multidisciplinary one. Important research contributions have been made by workers of many different backgrounds and clinical applications span the specialities. This book represents a revised and updated version of the work originally presented at the international evoked potential symposium held in Nottingham 4-6 1978. The Nottingham Symposium provided a forum for a state-of-the-art discussion amongst workers from many different disciplines and from many different countries. For each major topic in the field an expert review set the scene for discussion of current research presentations. This format is retained in the book: the chapters in Part A provide the context in which the research presented in Part B is set. The task of selecting m...

  16. Vestibular evoked myogenic potential

    Directory of Open Access Journals (Sweden)

    Felipe, Lilian

    2012-01-01

    Full Text Available Introduction: The Vestibular Evoked Myogenic Potential (VEMP is a promising test for the evaluation of the cholic descending vestibular system. This reflex depends of the integrity from the saccular macula, from the inferior vestibular nerve, the vestibular nuclei, the vestibule-spinal tract and effectors muscles. Objective: Perform a systematic review of the pertinent literature by means of database (COCHRANE, MEDLINE, LILACS, CAPES. Conclusion: The clinical application of the VEMP has expanded in the last years, as goal that this exam is used as complementary in the otoneurological evaluation currently used. But, methodological issues must be clarified. This way, this method when combined with the standard protocol, can provide a more widely evaluation from the vestibular system. The standardization of the methodology is fundamental criterion for the replicability and sensibility of the exam.

  17. Ocular Vestibular Evoked Myogenic Potentials

    Directory of Open Access Journals (Sweden)

    Felipe, Lilian

    2014-01-01

    Full Text Available Introduction Diagnostic testing of the vestibular system is an essential component of treating patients with balance dysfunction. Until recently, testing methods primarily evaluated the integrity of the horizontal semicircular canal, which is only a portion of the vestibular system. Recent advances in technology have afforded clinicians the ability to assess otolith function through vestibular evoked myogenic potential (VEMP testing. VEMP testing from the inferior extraocular muscles of the eye has been the subject of interest of recent research. Objective To summarize recent developments in ocular VEMP testing. Results Recent studies suggest that the ocular VEMP is produced by otolith afferents in the superior division of the vestibular nerve. The ocular VEMP is a short latency potential, composed of extraocular myogenic responses activated by sound stimulation and registered by surface electromyography via ipsilateral otolithic and contralateral extraocular muscle activation. The inferior oblique muscle is the most superficial of the six extraocular muscles responsible for eye movement. Therefore, measurement of ocular VEMPs can be performed easily by using surface electrodes on the skin below the eyes contralateral to the stimulated side. Conclusion This new variation of the VEMP procedure may supplement conventional testing in difficult to test populations. It may also be possible to use this technique to evaluate previously inaccessible information on the vestibular system.

  18. Evoked potentials in neuroinfections in children

    Directory of Open Access Journals (Sweden)

    V. N. Komantsev

    2013-01-01

    Full Text Available We present the results of the neurophysiological study in which 95 children with viral encephalitis and 30 children with meningitis (age from 2 up to 17 years undergo evoked potentials investigation. Some specific features of evoked potentials in neuroinfections have been shown to correlate with the course of disease and the age of the patients. We give a description of a logistic model of predicting outcomes in such patients by complex diagnostic method. We have found that evoked potentials may be successfully implemented in correcting the therapeutic strategies. Study of evoked potentials in neuroinfections in children can define the severity and extent of lesions and help to identify subclinical dysfunction and monitor the recovery processes under the therapy.

  19. Visual Evoked Potentials in Rett Syndrome

    Directory of Open Access Journals (Sweden)

    J. Gordon Millichap

    2015-11-01

    Full Text Available Investigators from the Boston Children's Hospital recorded pattern-reversal visual evoked potentials (VEPs in Mecp2 heterozygous female mice and in 34 girls with Rett syndrome (RTT.

  20. Auditory evoked fields elicited by spectral, temporal, and spectral-temporal changes in human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Hidehiko eOkamoto

    2012-05-01

    Full Text Available Natural sounds contain complex spectral components, which are temporally modulated as time-varying signals. Recent studies have suggested that the auditory system encodes spectral and temporal sound information differently. However, it remains unresolved how the human brain processes sounds containing both spectral and temporal changes. In the present study, we investigated human auditory evoked responses elicited by spectral, temporal, and spectral-temporal sound changes by means of magnetoencephalography (MEG. The auditory evoked responses elicited by the spectral-temporal change were very similar to those elicited by the spectral change, but those elicited by the temporal change were delayed by 30 – 50 ms and differed from the others in morphology. The results suggest that human brain responses corresponding to spectral sound changes precede those corresponding to temporal sound changes, even when the spectral and temporal changes occur simultaneously.

  1. Evoked potentials in pediatric cerebral malaria

    Directory of Open Access Journals (Sweden)

    Minal Bhanushali

    2011-08-01

    Full Text Available Cortical evoked potentials (EP provide localized data regarding brain function and may offer prognostic information and insights into the pathologic mechanisms of malariamediated cerebral injury. As part of a prospective cohort study, we obtained somatosensory evoked potentials (SSEPs and brainstem auditory EPs (AEPs within 24 hours of admission on 27 consecutive children admitted with cerebral malaria (CM. Children underwent follow-up for 12 months to determine if they had any long term neurologic sequelae. EPs were obtained in 27 pediatric CM admissions. Two children died. Among survivors followed an average of 514 days, 7/25 (28.0% had at least one adverse neurologic outcome. Only a single subject had absent cortical EPs on admission and this child had a good neurologic outcome. Among pediatric CM survivors, cortical EPs are generally intact and do not predict adverse neurologic outcomes. Further study is needed to determine if alterations in cortical EPs can be used to predict a fatal outcome in CM.

  2. [Personality dimensions and cerebral evoked potential].

    Science.gov (United States)

    Camposano, S; Alvarez, C; Lolas, F

    1994-12-01

    Eysenck's personality theory postulates 3 orthogonal dimensions of personality: extraversion (E), neuroticism (N) and psychoticism (P), predicting conductual and physiological predispositions to suffer mental illness. Biological bases of Eysenck's personality traits have been documented electrophysiologically. Psychoticism, the latest described dimension, is controverted, since there is some evidence of common factors with the other two. In order to assess the relation between Eysenck's dimensions and sensorial reactivity and information encoding processes we studied 20 healthy young subjects (mean age 28.5 years) with flash visual cortical evoked potentials (VEP, 3 intensities, peak to peak amplitude of III, IV-V-VI, VII components), and auditory cognitive evoked potentials (odd ball paradigm, P300 latency). There was a positive correlation between N and P dimensions (Spearman, r = 0.52), between N and VEP amplitude at high intensity (r = 0.58) and a negative correlation between E and P300 latency (r = 0.58). In short we found that P is not an independent dimension, but is related to sensorial reactivity. E dimension was related to encoding processes supporting Eysenck's observations about memory and learning differences.

  3. Long Latency Auditory Evoked Potentials during Meditation.

    Science.gov (United States)

    Telles, Shirley; Deepeshwar, Singh; Naveen, Kalkuni Visweswaraiah; Pailoor, Subramanya

    2015-10-01

    The auditory sensory pathway has been studied in meditators, using midlatency and short latency auditory evoked potentials. The present study evaluated long latency auditory evoked potentials (LLAEPs) during meditation. Sixty male participants, aged between 18 and 31 years (group mean±SD, 20.5±3.8 years), were assessed in 4 mental states based on descriptions in the traditional texts. They were (a) random thinking, (b) nonmeditative focusing, (c) meditative focusing, and (d) meditation. The order of the sessions was randomly assigned. The LLAEP components studied were P1 (40-60 ms), N1 (75-115 ms), P2 (120-180 ms), and N2 (180-280 ms). For each component, the peak amplitude and peak latency were measured from the prestimulus baseline. There was significant decrease in the peak latency of the P2 component during and after meditation (Pmeditation facilitates the processing of information in the auditory association cortex, whereas the number of neurons recruited was smaller in random thinking and non-meditative focused thinking, at the level of the secondary auditory cortex, auditory association cortex and anterior cingulate cortex. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  4. RECORDING OF VESTIBULAR EVOKED MYOGENIC POTENTIALS

    Directory of Open Access Journals (Sweden)

    A. A. Sazgar

    2006-05-01

    Full Text Available It has been shown recently that loud clicks evoke myogenic potentials in the tonically contracting sternocleidomastoid muscles. Studies have suggested that these potentials are of vestibular origin, especially of the saccule and inferior vestibular nerve. A pilot study was undertaken in our hospital to record vestibular evoked myogenic potentials (VEMP for the first time in Iran. Eighteen healthy volunteers (32 ears without history of otologic or vestibular disorders were subjected to the VEMP test. Twenty-one patients (26 ears with unilateral (6 patients and bilateral (5 patients high frequency sensorineural hearing loss with unknown etiology, acoustic neuroma (1 patient, Meniere’s disease (4 patients and unilateral low frequency sensorineural hearing loss without vestibular complaint (5 patients were also enrolled in this study. VEMP response to clicks was obtained from 84.4% of ears of healthy subjects. These subjects demonstrated short latency waves to click stimuli during tonic neck flexor activation. Mean latencies of first positive (p13 and first negative (n23 potentials in healthy subjects were 12.45 ± 1.9 ms and 20.8 ± 3.5 ms, respectively. Median latencies of these two potentials were 12.1 and 19.3 ms, respectively. We could record VEMP in 5 patients with unilateral and all patients with high and low frequency sensorineural hearing loss without vestibular complaint. In the patient with acoustic neuroma VEMP was absent on the affected side. This technique may offer a new method to evaluate otolith and sacculocollic pathways in human.

  5. New perspectives on vestibular evoked myogenic potentials.

    Science.gov (United States)

    Rosengren, Sally M; Kingma, Herman

    2013-02-01

    Although the vestibular evoked myogenic potential (VEMP) measured from the cervical muscles (cVEMP, cervical VEMP) is well described and has documented clinical utility, its analogue recorded from the extraocular muscles (oVEMP, ocular VEMP) has been described only recently and is currently emerging as an additional test of otolith function. This review will, therefore, summarize recent developments in VEMP research with a focus on the oVEMP. Recent studies suggest that the oVEMP is produced by otolith afferents in the superior vestibular nerve division, whereas the cVEMP evoked by sound is thought to be an inferior vestibular nerve reflex. Correspondingly, the oVEMP correlates better with caloric and subjective visual vertical tests than sound-cVEMPs. cVEMPs are more complicated than often thought, as shown by the presence of crossed responses and conflicting results of recent vibration studies. Altered inner ear mechanics produced by the vestibular diseases superior semicircular canal dehiscence and Ménière's disease lead to changes in the preferred frequency of the oVEMP and cVEMP. The oVEMP provides complementary diagnostic information to the cVEMP and is likely to be a useful addition to the diagnostic test battery in neuro-otology.

  6. Resting Heart Rate and Auditory Evoked Potential

    Directory of Open Access Journals (Sweden)

    Simone Fiuza Regaçone

    2015-01-01

    Full Text Available The objective of this study was to evaluate the association between rest heart rate (HR and the components of the auditory evoked-related potentials (ERPs at rest in women. We investigated 21 healthy female university students between 18 and 24 years old. We performed complete audiological evaluation and measurement of heart rate for 10 minutes at rest (heart rate monitor Polar RS800CX and performed ERPs analysis (discrepancy in frequency and duration. There was a moderate negative correlation of the N1 and P3a with rest HR and a strong positive correlation of the P2 and N2 components with rest HR. Larger components of the ERP are associated with higher rest HR.

  7. Visual evoked potentials in rubber factory workers.

    Science.gov (United States)

    Tandon, O P; Kumar, V

    1997-01-01

    Pattern reversal visual evoked potentials (pVEP) were studied in 39 male rubber factory workers in the age range of 18-55 years and 20 control subjects (aged 18-46 years) not exposed to the rubber factory environment. Results revealed that 20 (51%) rubber factory workers had abnormal latencies of wave P1 (dominant component of pVEP) as per accepted criteria of 99% tolerance limit set for the control group (i.e. any value above mean +3 SD of control was considered abnormal). The section-wise per cent distribution of abnormalities was vulcanization (83%), tubing (75%), calendering (60%), loading (38%) and mixing (14%). This study provides electrophysiological evidence that rubber factory environments affect the conduction processes in optical pathways from their origin in the retina to striate cortex. However, this study has its limitations in not identifying the specific chemical(s) causing these changes in VEP.

  8. Neural generators of the auditory evoked potential components P3a and P3b

    NARCIS (Netherlands)

    Wronka, E.; Kaiser, J.; Coenen, A.M.L.

    2012-01-01

    The aim of the present study was to define the scalp topography of the two subcomponents of the P3 component of the auditory evoked potential elicited in a three-stimulus oddball paradigm and to identify their cortical generators using the standardized low resolution electromagnetic tomography

  9. Sex differences in pudendal somatosensory evoked potentials.

    Science.gov (United States)

    Pelliccioni, G; Piloni, V; Sabbatini, D; Fioravanti, P; Scarpino, O

    2014-06-01

    Somatosensory evoked potentials (SEPs) of the pudendal nerve are a well-established diagnostic tool for the evaluation of pelvic floor disorders. However, the possible influence of sex differences on response latencies has not been established yet. The aim of this study was to standardize the procedures and to evaluate possible effects of gender differences on anal and penile/clitoral SEPs. The anal and dorsal penile/clitoral SEPs were recorded in 84 healthy subjects (40 males and 44 females; mean age 47.9 ± 16.6 years, range 16-81 years; mean height 168.3 ± 20.3 cm, range 155-187 cm). Pudendal SEPs were evoked with a bipolar surface electrode stimulating the clitoris or the base of the penis and the anal orifice and recorded using scalp electrodes. The latency of the first positive component (P1) was measured. The effect and possible interaction of (a) stimulation site and (b) gender on the two variables was explored by multivariate analysis of variance (MANOVA). The examination was well tolerated and a reproducible waveform of sufficient quality was obtained in all the subjects examined. In the female subjects, a mean cortical P1 latency of 37.0 ± 2.6 and 36.4 ± 3.2 ms for anal and clitoral stimulation, respectively, was found. In the male subjects, the cortical latencies were 38.0 ± 3.5 ms for the anal stimulation and 40.2 ± 3.7 ms for the penile stimulation. At MANOVA, a statistically significant main effect of stimulation site and gender as well as a significant interaction between the two variables was found. Anal and dorsal penile/clitoral SEPs represent a well-tolerated and reproducible method to assess the functional integrity of the sensory pathways in male and female subjects. Obtaining sex-specific reference data, by individual electrophysiological testing, is highly recommended because of significant latency differences between males and females, at least as far as penile/clitoral responses are concerned.

  10. Visual evoked potential study in slow learners.

    Science.gov (United States)

    Khaliq, Farah; Anjana, Yumnam; Vaney, Neelam

    2009-01-01

    Slow learners are individuals with low achievement and comparably low IQ scores. It may be a symptom reflecting a larger underlying problem in them. Sensory neural processing of visual information can be one of the contributory factors for their underachievement. The present study was undertaken to examine the integrity and function of visual pathway by means of Visual Evoked Potential (VEP). Pattern reversal VEP was performed on seventeen slow learners. Fifteen age and sex matched children with good school performance and normal IQ were taken as controls. There was significant prolongation of N75 component of VEP in slow learners. The latencies of P100 and N145 were also increased but could not reach the level of significance. Our findings are suggestive of the presence of a weaker VEP response in slow learners indicative of a deficit early in the visual processing. There is some abnormality in the geniculate afferents to V1 which is consistent with a defect in the magnocellular pathway at the level of Visual Area 1 or earlier.

  11. Evoked potentials and head injury. 1. Rating of evoked potential abnormality.

    Science.gov (United States)

    Rappaport, M; Hall, K; Hopkins, H K; Belleza, T

    1981-10-01

    This paper describes a method for rating the degree of abnormality of auditory, visual and somatosensory evoked potential patterns in head injury (HI) patients. Criteria for judging degree of EP abnormality are presented that allow assessment of the extent and severity of subcortical and cortical dysfunction associated with traumatic brain damage. Interrater reliability data based upon blind ratings of normal and HI patients are presented and shown to be highly significant. Tables of normative values of peak latencies and amplitudes are given and illustrations of EP patterns of different degrees of abnormality are presented.

  12. The pain-evoked P2 is not a P3a event-related potential.

    Science.gov (United States)

    Dowman, Robert

    2004-01-01

    The topographic pattern and latency of the P2 component of the somatosensory evoked potential elicited by painful electrical stimulation of the sural nerve was compared to the P3a event-related potential evoked by an infrequent task-irrelevant (deviant) innocuous sural nerve stimulus presented as part of the deviant-odd ball paradigm. Conditions typically used to record the sural nerve pain-evoked P2 (multiple stimulus levels, short fixed inter-stimulus intervals, and the subjects engaged in a pain rating task) did not elicit a P3a. The P3a was elicited when the painful stimuli were presented at a long and variable inter-stimulus interval. When present, the P3a occurred immediately following P2. These findings demonstrate that P2 is not a pain-evoked P3a. Rather, the response properties and latency of P2 present the possibility that it indexes a stimulus evaluation process where the sensory input is compared to an environmental template maintained by working memory.

  13. Flash visual evoked potentials in preterm infants.

    Science.gov (United States)

    Feng, Jing-Jing; Wang, Wei-Ping; Guo, Shu-Juan; Liu, Zhi-Wei; Xu, Xiu

    2013-03-01

    To describe the development of flash visual evoked potentials (FVEPs) in preterm infants from 1 to 18 months and to determine if the maturation of FVEPs is similar to that of term infants. Longitudinal follow-up study. Twenty very low birth weight (VLBW) preterm infants, 42 low birth weight (LBW) preterm infants, and 41 term infants underwent FVEP recordings and neurodevelopmental examinations at 1, 3, 6, 9, 12, and 18 months of corrected and chronological ages. The FVEP recordings were carried out with the VikingQuest-IV neuroelectrophysiological device (VikingQuest, Nicolet, WI), and neurodevelopmental assessments were made by the Development Screen Test and Bayley Scales of Infant Development, Second Edition. At 1, 3, 6, and 9 months of age, neurodevelopment was measured with the Mental Index and Developmental Quotient. At 12 and 18 months, neurodevelopment was assessed using the Mental Developmental Index and Psychomotor Developmental Index. Two FVEP values were analyzed: the P2 amplitude (peak to peak from the preceding N2 wave) and the latency of the P2 wave. There was no significant difference for age-dependent decreased pattern of FVEP P2 latency between preterm infants and the control group. This pattern consisted of a rapid decrease in the first 6 months of life, a gradual decline from 6 to 12 months of age, and a steady reduction from 12 to 18 months of age. The P2 latencies were prolonged significantly at all 6 recorded times in the VLBW group compared with the controls and showed a delay in the LBW group at 1 and 3 months of corrected age. The maturation of P2 latency in LBW infants is similar to that of the controls at 3 months of corrected age, but the maturation of P2 latency in VLBW children remained delayed when compared with the controls until 18 months of corrected age. Although the FVEP development pattern of preterm infants was similar to that of healthy full-term infants, the former had deficits in visual electrophysiologic maturation

  14. Distraction Reduces Both Early and Late Electrocutaneous Stimulus Evoked Potentials

    NARCIS (Netherlands)

    Blom, J.H.G.; Wiering, Caro H.; van der Lubbe, Robert Henricus Johannes

    2012-01-01

    Previous electroencephalography studies revealed mixed effects of sustained distraction on early negative and later positive event-related potential components evoked by electrocutaneous stimuli. In our study we further examined the influence of sustained distraction to clarify these discrepancies.

  15. Fast detection of unexpected sound intensity decrements as revealed by human evoked potentials.

    Directory of Open Access Journals (Sweden)

    Heike Althen

    Full Text Available The detection of deviant sounds is a crucial function of the auditory system and is reflected by the automatically elicited mismatch negativity (MMN, an auditory evoked potential at 100 to 250 ms from stimulus onset. It has recently been shown that rarely occurring frequency and location deviants in an oddball paradigm trigger a more negative response than standard sounds at very early latencies in the middle latency response of the human auditory evoked potential. This fast and early ability of the auditory system is corroborated by the finding of neurons in the animal auditory cortex and subcortical structures, which restore their adapted responsiveness to standard sounds, when a rare change in a sound feature occurs. In this study, we investigated whether the detection of intensity deviants is also reflected at shorter latencies than those of the MMN. Auditory evoked potentials in response to click sounds were analyzed regarding the auditory brain stem response, the middle latency response (MLR and the MMN. Rare stimuli with a lower intensity level than standard stimuli elicited (in addition to an MMN a more negative potential in the MLR at the transition from the Na to the Pa component at circa 24 ms from stimulus onset. This finding, together with the studies about frequency and location changes, suggests that the early automatic detection of deviant sounds in an oddball paradigm is a general property of the auditory system.

  16. Evoked cochlear potentials in the barn owl.

    Science.gov (United States)

    Köppl, Christine; Gleich, Otto

    2007-06-01

    Gross electrical responses to tone bursts were measured in adult barn owls, using a single-ended wire electrode placed onto the round window. Cochlear microphonic (CM) and compound action potential (CAP) responses were evaluated separately. Both potentials were physiologically vulnerable. Selective abolishment of neural responses at high frequencies confirmed that the CAP was of neural origin, while the CM remained unaffected. CAP latencies decreased with increasing stimulus frequency and CAP amplitudes were correlated with known variations in afferent fibre numbers from the different papillar regions. This suggests a local origin of the CAP along the tonotopic gradient within the basilar papilla. The audiograms derived from CAP and CM threshold responses both showed a broad frequency region of optimal sensitivity, very similar to behavioural and single-unit data, but shifted upward in absolute sensitivity. CAP thresholds rose above 8 kHz, while CM responses showed unchanged sensitivity up to 10 kHz.

  17. Modeling auditory evoked potentials to complex stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch

    cochlear compression would be of great benefit, as a more precise diagnose of the deficits underlying a potential hearing impairment in both infants and adults could be obtained. It was demonstrated in this thesis, via experimental recordings and supported by model simulations, that the growth of the ASSR....... Sensorineural hearing impairments is commonly associated with a loss of outer hair-cell functionality, and a measurable consequence is the decreased amount of cochlear compression at frequencies corresponding to the damaged locations in the cochlea. In clinical diagnostics, a fast and objective measure of local...... clinically and in research towards using realistic and complex stimuli, such as speech, to electrophysiologically assess the human hearing. However, to interpret the AEP generation to complex sounds, the potential patterns in response to simple stimuli needs to be understood. Therefore, the model was used...

  18. Human auditory evoked potentials. II - Effects of attention

    Science.gov (United States)

    Picton, T. W.; Hillyard, S. A.

    1974-01-01

    Attention directed toward auditory stimuli, in order to detect an occasional fainter 'signal' stimulus, caused a substantial increase in the N1 (83 msec) and P2 (161 msec) components of the auditory evoked potential without any change in preceding components. This evidence shows that human auditory attention is not mediated by a peripheral gating mechanism. The evoked response to the detected signal stimulus also contained a large P3 (450 msec) wave that was topographically distinct from the preceding components. This late positive wave could also be recorded in response to a detected omitted stimulus in a regular train and therefore seemed to index a stimulus-independent perceptual decision process.

  19. Visual evoked potentials in workers with chronic solvent encephalopathy

    NARCIS (Netherlands)

    Verberk, Maarten M.; Brons, Joke T.; Sallé, Herman J. A.

    2004-01-01

    Objectives. Two promising variations of visual evoked potentials (VEPs) were studied in solvent-exposed workers: the effect of a low-contrast stimulus in comparison with the usually applied high contrast, and the ability of pattern-onset VEP to reveal damage to specific visual cortical areas. In

  20. Single-sweep spectral analysis of contact heat evoked potentials

    DEFF Research Database (Denmark)

    Hansen, Tine M; Graversen, Carina; Frøkjaer, Jens B

    2015-01-01

    AIMS: The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single-sweep ch...

  1. Visual evoked potentials in patients after methanol poisoning.

    Science.gov (United States)

    Urban, Pavel; Zakharov, Sergey; Diblík, Pavel; Pelclová, Daniela; Ridzoň, Petr

    2016-01-01

    We report the results of the visual evoked potentials (VEP) examination in patients after severe poisoning by methanol. The group of 47 patients (38 males and 9 females) was assembled out of persons who survived an outbreak of poisoning by the methanol adulterated alcohol beverages, which happened in the Czech Republic in 2012-2013. The visual evoked potentials examination was performed using monocular checkerboard pattern-reversal stimulation. Two criteria of abnormality were chosen: missing evoked response, and wave P1 latency > 117 ms. Non-parametric statistical methods (median, range, and the median test) were used to analyze factors influencing the VEP abnormality. The visual evoked potential was abnormal in 20 patients (43%), 5 of them had normal visual acuity on the Snellen chart. The VEP abnormality did not correlate significantly with initial serum concentrations of methanol, formic acid or lactate; however, it showed statistically significant inverse relation to the initial serum pH: the subgroup with the abnormal VEP had significantly lower median pH in comparison with the subgroup with the normal VEP (7.16 vs. 7.34, p = 0.04). The abnormality was not related to chronic alcohol abuse. The visual evoked potentials examination appeared sensitive enough to detected even subclinical impairment of the optic system. Metabolic acidosis is likely to be the key factor related to the development of visual damage induced by methanol. The examination performed with a delay of 1-9 months after the poisoning documented the situation relatively early after the event. It is considered as a baseline for the planned long-term follow-up of the patients, which will make it possible to assess the dynamics of the observed changes, their reversibility, and the occurrence of potential late sequelae. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  2. Binocular interactions in the guinea pig's visual-evoked potentials.

    Science.gov (United States)

    Ates, Kahraman; Demirtas, Serdar; Goksoy, Cuneyt

    2006-12-13

    In this study, binocular interaction in guinea pigs is evaluated using bioelectrical activities. A difference potential, as evidence of an interaction, is calculated by subtracting the sum of visual-evoked potentials recorded by left and right monocular visual stimulations from the potential recorded by binocular stimulation. A negative monophasic wave with an average amplitude of 15.1 microV and an average latency of 106 ms is observed in the difference potential. This finding implies that the P100 is the main guinea pig visual-evoked potential wave that is affected by binocular interaction. Binocular interaction is also observed in the waves N75 and N140, although with a smaller amplitude. No interaction is observed in the segments of P55 and P200 waves.

  3. Comparison of the pattern reversal visual evoked potential mediated by separate cone systems

    DEFF Research Database (Denmark)

    Johnsen, B; Frederiksen, J.L.; Larsson, H.B.

    1995-01-01

    With the purpose of recording responses mediated by the 3 cone systems visual evoked potentials (VEPs) were elicited by the reversal of monochromatic checkerboards superimposed upon strong monochromatic backgrounds (yellow, purple and blue-green). The sensitivity to light of various wave lengths...... were measured as the reciprocal of the intensity necessary to elicit a VEP amplitude of 3 microV. The spectral sensitivity curves based on this VEP amplitude criterion in the presence of blue-green, purple and yellow adaptation showed peak sensitivities in the red, the green and the blue part...... of the spectrum, respectively. This indicates that the responses reflect separate modulation of the 3 different cone mechanisms. The potentials obtained with yellow adaptation differed from those obtained with purple and blue-green adaptation. The amplitude versus log intensity function was flatter...

  4. Multimodality evoked potentials in HTLV-I associated myelopathy.

    OpenAIRE

    Kakigi, R; Shibasaki, H; Kuroda, Y; Endo, C; Oda, K; Ikeda, A; Hashimoto, K

    1988-01-01

    Multimodality evoked potentials (EPs) consisting of somatosensory EPs (SEPs), visual EPs (VEPs) and brainstem auditory EPs (BAEPs) were studied in 16 cases with HTLV-I associated myelopathy (HAM). Median nerve SEPs were normal in all cases. In posterior tibial nerve SEPs, the potential recorded at the 12th thoracic spinal process was normal in every case but cortical components were significantly prolonged in 10 cases, although five of these showed no sensory impairment. BAEPs were normal in ...

  5. Normal postexercise facilitation and depression of motor evoked potentials in postpolio patients.

    Science.gov (United States)

    Samii, A; Lopez-Devine, J; Wasserman, E M; Dalakas, M C; Clark, K; Grafman, J; Hallett, M

    1998-07-01

    We studied the effects of exercise on motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation in healthy subjects and postpolio patients. Subjects performed repeated sets of isometric exercise until the muscle fatigued. In both groups, the mean MEP amplitude immediately after each exercise set was approximately twice that of the baseline amplitude, indicating similar postexercise facilitation, and after fatigue was approximately half that of the baseline amplitude, indicating similar postexercise depression. We conclude that the intracortical component of central fatigue is normal in postpolio patients.

  6. The effects of rise/fall time and plateau time on ocular vestibular evoked myogenic potentials.

    Science.gov (United States)

    Kantner, Claudia; Hapfelmeier, Alexander; Drexl, Markus; Gürkov, Robert

    2014-09-01

    Ocular vestibular evoked myogenic potentials (oVEMP) are strongly influenced by recording conditions and stimulus parameters. Throughout the published literature, a large variety of stimuli is used for eliciting oVEMP. Our objective was to determine the effects of different rise/fall times and plateau times on oVEMP amplitudes and latencies. 32 healthy subjects were enrolled in the study. 500 Hz air-conducted tone bursts with the parameters rise-plateau-fall time 0-4-0, 4-0-4, 2-2-2 and 2-4-2 ms were used for eliciting oVEMP. For all stimuli, response prevalences were 100 %. The 4-0-4 ms stimulus generated the smallest amplitudes, whereas the 2-2-2 and 0-4-0 ms stimuli achieved the largest amplitudes. n1 and p1 latencies were significantly shorter for the 0-4-0 ms than for the other stimuli, whereas latencies in response to the 4-0-4 ms stimulus were prolonged. Hence, a variety of stimuli is suitable for evoking oVEMP in healthy subjects. We recommend a 2-2-2 ms stimulus for clinical testing of oVEMP elicited by air conducted sound, because it reproducibly generates oVEMP without exposing the ear to unnecessary amounts of acoustic energy.

  7. Automatic classification of visual evoked potentials based on wavelet decomposition

    Science.gov (United States)

    Stasiakiewicz, Paweł; Dobrowolski, Andrzej P.; Tomczykiewicz, Kazimierz

    2017-04-01

    Diagnosis of part of the visual system, that is responsible for conducting compound action potential, is generally based on visual evoked potentials generated as a result of stimulation of the eye by external light source. The condition of patient's visual path is assessed by set of parameters that describe the time domain characteristic extremes called waves. The decision process is compound therefore diagnosis significantly depends on experience of a doctor. The authors developed a procedure - based on wavelet decomposition and linear discriminant analysis - that ensures automatic classification of visual evoked potentials. The algorithm enables to assign individual case to normal or pathological class. The proposed classifier has a 96,4% sensitivity at 10,4% probability of false alarm in a group of 220 cases and area under curve ROC equals to 0,96 which, from the medical point of view, is a very good result.

  8. Auditory evoked potentials in children and adolescents with Down syndrome.

    Science.gov (United States)

    Gregory, Letícia; Rosa, Rafael F M; Zen, Paulo R G; Sleifer, Pricila

    2018-01-01

    Down syndrome, or trisomy 21, is the most common genetic alteration in humans. The syndrome presents with several features, including hearing loss and changes in the central nervous system, which may affect language development in children and lead to school difficulties. The present study aimed to investigate group differences in the central auditory system by long-latency auditory evoked potentials and cognitive potential. An assessment of 23 children and adolescents with Down syndrome was performed, and a control group composed of 43 children and adolescents without genetic and/or neurological changes was used for comparison. All children underwent evaluation with pure tone and vocal audiometry, acoustic immitance measures, long-latency auditory evoked potentials, and cognitive potential. Longer latencies of the waves were found in the Down syndrome group than the control group, without significant differences in amplitude, suggesting that individuals with Down syndrome have difficulty in discrimination and auditory memory. It is, therefore, important to stimulate and monitor these children in order to enable adequate development and improve their life quality. We also emphasize the importance of the application of auditory evoked potentials in clinical practice, in order to contribute to the early diagnosis of hearing alterations and the development of more research in this area. © 2017 Wiley Periodicals, Inc.

  9. Long-latency components of somatosensory evoked potentials during passive tactile perception of gratings.

    Science.gov (United States)

    Genna, C; Artoni, F; Fanciullacci, C; Chisari, C; Oddo, C M; Micera, S

    2016-08-01

    Perception of tactile stimuli elicits Somatosensory Evoked Potentials (SEPs) that can be recorded via non-invasive electroencephalography (EEG). However, it is not yet clear how SEPs localization, shape and latency are modulated by different stimuli during mechanical tactile stimulation of fingertips. The aim of this work is thus to characterize SEPs generated by the tactile perception of gratings during dynamic passive stimulation of the dominant fingertip by means of a mechatronic platform. Results show that a random sequence of stimuli elicited SEPs with two long-latency components: (i) a negative deflection around 140 ms located in the frontal-central-parietal side in the contralateral hemisphere; (ii) a positive deflection around 250 ms located in the frontal-central midline. Time-frequency analysis revealed significant continuous bilateral desynchronization in the alpha band throughout the passive stimulation. These results are a fundamental step towards building a model of brain responses during perception of tactile stimuli for future benchmarking studies.

  10. Evoked potentials and head injury. 2. Clinical applications.

    Science.gov (United States)

    Rappaport, M; Hopkins, H K; Hall, K; Belleza, T

    1981-10-01

    The method of rating abnormality of evoked brain potential patterns and assessing the extent and severity of cortical and subcortical brain dysfunction in head injury patients described in Part I is applied in a clinical context. Evoked potential abnormality (EPA) scores are found to be significantly correlated both with admission and outcome disability approximately one year after head injury. Correlations increase with the increase in the number of sensory modalities tested. Correlations between EPA scores and clinical disability (measured by the Disability Rating Scale) decrease with time after injury. Significant correlations, however, persist for about 60 days after onset of injury. It was found that EP pattern abnormalities can reflect specific sensory (and at times motor) deficits in noncommunicative patients and thereby contribute significantly to early treatment and rehabilitation planning.

  11. Multimodality evoked potentials in occupational exposure to metallic mercury vapour.

    Science.gov (United States)

    Langauer-Lewowicka, H; Kazibutowska, Z

    1989-01-01

    Central nervous system dysfunction among workers exposed to metallic mercury was studied by measuring somatosensory evoked potentials (SSEPs) and visual evoked potentials (VEPs). The examinations were conducted in 28 workers suspected of chronic mercury intoxication. They were exposed to Hg for a period ranging from 4-34 years (mean 22.1) in an acetic aldehyde and chlorine manufacturing plant. The increase of amplitude of N20 SSEP (13 cases) and elongation of its latency were frequent abnormalities in the examined group. The latency of N20 was significantly longer in the exposed group in comparison with the control one, the amplitude of N20 was also significantly higher. Significantly prolonged latency of P100 VEP was found in the group exposed to Hg. These findings suggest the possibility of an adverse effect due to Hg on the central part of the somatosensory and visual pathway.

  12. Abdominal acupuncture reduces laser-evoked potentials in healthy subjects

    DEFF Research Database (Denmark)

    Pazzaglia, C.; Liguori, S.; Minciotti, I.

    2015-01-01

    Objective: Acupuncture is known to reduce clinical pain, although the exact mechanism is unknown. The aim of the current study was to investigate the effect of acupuncture on laser-evoked potential amplitudes and laser pain perception. Methods: In order to evaluate whether abdominal acupuncture...... is able to modify pain perception, 10 healthy subjects underwent a protocol in which laser-evoked potentials (LEPs) and laser pain perception were collected before the test (baseline), during abdominal acupuncture, and 15. min after needle removal. The same subjects also underwent a similar protocol...... in which, however, sham acupuncture without any needle penetration was used. Results: During real acupuncture, both N1 and N2/P2 amplitudes were reduced, as compared to baseline (p . < 0.01). The reduction lasted up to 15. min after needle removal. Furthermore, laser pain perception was reduced during...

  13. Establishing an evoked-potential vision-tracking system

    Science.gov (United States)

    Skidmore, Trent A.

    1991-01-01

    This paper presents experimental evidence to support the feasibility of an evoked-potential vision-tracking system. The topics discussed are stimulator construction, verification of the photic driving response in the electroencephalogram, a method for performing frequency separation, and a transient-analysis example. The final issue considered is that of object multiplicity (concurrent visual stimuli with different flashing rates). The paper concludes by discussing several applications currently under investigation.

  14. Perceptual learning of acoustic noise generates memory-evoked potentials.

    Science.gov (United States)

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-02

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Index finger somatosensory evoked potentials in blind Braille readers.

    Science.gov (United States)

    Giriyappa, Dayananda; Subrahmanyam, Roopakala Mysore; Rangashetty, Srinivasa; Sharma, Rajeev

    2009-01-01

    Traditionally, vision has been considered the dominant modality in our multi-sensory perception of the surrounding world. Sensory input via non-visual tracts becomes of greater behavioural relevance in totally blind individuals to enable effective interaction with the world around them. These include audition and tactile perceptions, leading to an augmentation in these perceptions when compared with normal sighted individuals. The objective of the present work was to study the index finger somatosensory evoked potentials (SEPs) in totally blind and normal sighted individuals. SEPs were recorded in 15 Braille reading totally blind females and compared with 15 age-matched normal sighted females. Latency and amplitudes of somatosensory evoked potential waveforms (N9, N13, and N20) were measured. Amplitude of N20 SEP (a cortical somatosensory evoked potential) was significantly larger in the totally blind than in normal sighted individuals (p Braille reading right index finger. Totally blind Braille readers have larger N20 amplitude, suggestive of greater somatosensory cortical representation of the Braille reading index finger.

  16. Long-term visuo-gustatory appetitive and aversive conditioning potentiate human visual evoked potentials

    DEFF Research Database (Denmark)

    Christoffersen, Gert R.J.; Laugesen, Jakob L.; Møller, Per

    2017-01-01

    and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared...

  17. Long-Term Visuo-Gustatory Appetitive and Aversive Conditioning Potentiate Human Visual Evoked Potentials

    DEFF Research Database (Denmark)

    Christoffersen, Gert Rene Juul; Laugesen, Jakob Lund; Møller, Per

    2017-01-01

    and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared...

  18. [Motor evoked potentials of the perineal floor. Preliminary results].

    Science.gov (United States)

    Opsomer, R J; Van Cangh, P J; Humblet, Y; Abi Aad, A; Rossini, P M

    1989-01-01

    Neuromotor pathways from the brain to the pelvic floor have been poorly documented. The recent development of Motor Evoked Potentials may well fill this gap in our basic knowledge. Our technique consists of transcutaneous stimulation of the motor cortex and sacral roots with a magnetic device while recording the evoked response from the bulbocavernosus muscle and anal sphincter. Cortical stimulation is performed first at rest and then during voluntary contraction of the examined muscles ("facilitation" procedure). Sacral root stimulation is performed at rest. Stimulation at 2 different levels allows measurement of the total transit time (brain to muscle transit time) and the peripheral transit time (sacral roots to muscle). By subtracting the latter from the former, the central transit time (brain to sacral roots) is obtained. The technique is painless, and to our knowledge no side effects have been reported. The authors present the preliminary results of this new technique.

  19. Human auditory evoked potentials. I - Evaluation of components

    Science.gov (United States)

    Picton, T. W.; Hillyard, S. A.; Krausz, H. I.; Galambos, R.

    1974-01-01

    Fifteen distinct components can be identified in the scalp recorded average evoked potential to an abrupt auditory stimulus. The early components occurring in the first 8 msec after a stimulus represent the activation of the cochlea and the auditory nuclei of the brainstem. The middle latency components occurring between 8 and 50 msec after the stimulus probably represent activation of both auditory thalamus and cortex but can be seriously contaminated by concurrent scalp muscle reflex potentials. The longer latency components occurring between 50 and 300 msec after the stimulus are maximally recorded over fronto-central scalp regions and seem to represent widespread activation of frontal cortex.

  20. The Electrically Evoked Compound Action Potential: From Laboratory to Clinic.

    Science.gov (United States)

    He, Shuman; Teagle, Holly F B; Buchman, Craig A

    2017-01-01

    The electrically evoked compound action potential (eCAP) represents the synchronous firing of a population of electrically stimulated auditory nerve fibers. It can be directly recorded on a surgically exposed nerve trunk in animals or from an intra-cochlear electrode of a cochlear implant. In the past two decades, the eCAP has been widely recorded in both animals and clinical patient populations using different testing paradigms. This paper provides an overview of recording methodologies and response characteristics of the eCAP, as well as its potential applications in research and clinical situations. Relevant studies are reviewed and implications for clinicians are discussed.

  1. Brainstem auditory evoked potentials in children with lead exposure

    Directory of Open Access Journals (Sweden)

    Katia de Freitas Alvarenga

    2015-02-01

    Full Text Available Introduction: Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. Objective: To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Methods: Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months. Results: The mean time-integrated cumulative blood lead index was 12 µg/dL (SD ± 5.7, range:2.433. All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. Conclusion: No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area.

  2. Brainstem auditory evoked potentials in children with lead exposure.

    Science.gov (United States)

    Alvarenga, Katia de Freitas; Morata, Thais Catalani; Lopes, Andrea Cintra; Feniman, Mariza Ribeiro; Corteletti, Lilian Cassia Bornia Jacob

    2015-01-01

    Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months). The mean time-integrated cumulative blood lead index was 12 μg/dL (SD ± 5.7, range: 2.433). All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  3. Somatosensory evoked magnetic fields elicited by dorsal penile, posterior tibial and median nerve stimulation.

    Science.gov (United States)

    Nakagawa, H; Namima, T; Aizawa, M; Uchi, K; Kaiho, Y; Yoshikawa, K; Orikasa, S; Nakasato, N

    1998-01-01

    The aim of this study is to localize the primary sensory cortex of urogenital organs in the human brain. Using a newly developed MRI-linked magnetoencephalography system, we measured somatosensory evoked magnetic fields (SEFs) for unilateral stimuli on the dorsal penile nerve (DPN), posterior tibial nerve (PTN) and median nerve (MN). In five healthy male subjects, SEFs were clearly observed. Peak latency of the first cortical components were 63.8 +/- 9.2 ms for DPN, 39.8 +/- 3.0 ms for PTN and 20.7 +/- 0.7 ms for MN stimuli. Peak amplitude of the first cortical components were 63.1 +/- 10.8 fT for DPN, 160.2 +/- 50.1 fT for PTN and 335.2 +/- 70.3 fT for MN stimuli. Isofield map for the peak latencies indicated a single dipolar pattern for DPN as well as for PTN and MN stimuli. Using a single current dipole model, all SEF sources were localized on the contralateral central sulcus to the stimuli, indicating the primary sensory cortex. The DPN sources were localized on the interhemispheric surfaces, corresponding to previous speculations by direct cerebral stimulation. This non-invasive SEF technique promises further brain functional mapping for the urogenital organs.

  4. Event-related potentials elicited by social commerce and electronic-commerce reviews.

    Science.gov (United States)

    Bai, Yan; Yao, Zhong; Cong, Fengyu; Zhang, Linlin

    2015-12-01

    There is an increasing interest regarding the use of electroencephalography (EEG) in social commerce and electronic commerce (e-commerce) research. There are several reviews in the field of social commerce or e-commerce; these have great potential value and mining them is fundamental and significant. To our knowledge, EEG is rarely applied to study these. In this study, we examined the neural correlates of social commerce reviews (SCRs) and e-commerce reviews (ECRs) by using them as stimuli to evoke event-related potentials. All SCRs were from friends through a social media platform, whereas ECRs were from strangers through an e-commerce platform. The experimental design was similar to that of a priming paradigm, and included 40 pairs of stimuli consisting of product information (prime stimulus) and reviews (target stimulus). The results showed that the P300 component was successfully evoked by SCR and ECR stimuli. Moreover, the P300 components elicited by SCRs had higher amplitudes than those elicited by ECRs. These findings indicate that participants paid more attention to SCRs than to ECRs. In addition, the associations between neural responses and reviews in social commerce have the potential to assist companies in studying consumer behaviors, thus permitting them to enhance their social commerce strategies.

  5. The neonatal development of the light flash visual evoked potential.

    Science.gov (United States)

    Kraemer, M; Abrahamsson, M; Sjöström, A

    1999-01-01

    To follow visual development longitudinally in the normal neonate using the flash visual evoked potential (VEP) and to find indications for a relationship between potential development and visual development. Twenty healthy infants, born at term, were included in the study. Flash and patterned flash VEPs were used. The first VEP was recorded the day of birth or just postnatally, and succeeding recordings were performed the following weeks and months. The data revealed different types of VEP in the neonatal period suggesting great variability in visual function on the day of birth. In the early development a potential of long latency and duration preceded the development of a more compound potential of shorter latency. The two types of responses seemed to coalesce during early development; the first late response was attenuated and was eventually integrated in the more mature VEP. At approximately five weeks of age changes in the VEP were simultaneous with the development of responsive smiling and another visual behaviour of the infants. The results showed many similarities between the VEP development in infants and in immature animals. In developing animals geniculo-cortical and extra-geniculate visual afferent pathways evoke two types of VEPs similar to those recorded in the present study. The early responses were also similar to previous recordings from children with lesions in the geniculo-striatal pathway or primary cortex. Our interpretation of the results was that the human VEP also consists of responses evoked by afferents running both in geniculo-cortical and extra-geniculate pathways and that the two types of responses could be separated in the VEP in the neonatal period. These findings are important for our understanding of conditions with a delay in visual maturation, for example intracranial haemorrhages, hydrocephalus, pre/dys-maturity and 'idiopathic' delayed visual maturation.

  6. Cortical modulation of short-latency TMS-evoked potentials

    Directory of Open Access Journals (Sweden)

    Domenica eVeniero

    2013-01-01

    Full Text Available Transcranial magnetic stimulation - electroencephalogram (TMS-EEG co-registration offers the opportunity to test reactivity of brain areas across distinct conditions through TMS-evoked potentials (TEPs. Several TEPs have been described, their functional meaning being largely unknown. In particular, short-latency potentials peaking at 5 (P5 and 8 (N8 ms after the TMS pulse have been recently described, but because of their huge amplitude, the problem of whether their origin is cortical or not has been opened. To gain information about these components, we employed a protocol that modulates primary motor cortex excitability (MI through an exclusively cortical phenomena: low frequency stimulation of premotor area (PMC. TMS was applied simultaneously with EEG recording from 70 electrodes. Amplitude of TEPs evoked by 200 single-pulses TMS delivered over MI at 110% of resting motor threshold was measured before and after applying 900 TMS conditioning stimuli to left premotor cortex with 1 Hz repetition rate. Single subject analyses showed reduction in TEPs amplitude after PMC conditioning in a sample of participants and increase in TEPs amplitude in two subjects. No effects were found on corticospinal excitability as recorded by motor evoked potentials (MEPs. Furthermore, correlation analysis showed an inverse relation between the effects of the conditioning protocol on P5-N8 complex amplitude and MEPs amplitude. Because the effects of the used protocol have been ascribed to a cortical interaction between premotor area and MI, we suggest that despite the sign of P5-N8 amplitude modulation is not consistent across participant, this modulation could indicate, at least in part, their cortical origin. We conclude that with an accurate experimental procedure early-latency components can be used to evaluate the reactivity of the stimulated cortex.

  7. Different brain potentials evoked at distinct phases of rule learning.

    Science.gov (United States)

    Li, Fuhong; Cao, Bihua; Gao, Heming; Kuang, Li; Li, Hong

    2012-09-01

    The neural mechanisms of rule learning are of interest to cognitive neuroscientists, but the time course of rule induction and the related brain potential remain unclear. In this study, event-related brain potentials (ERPs) were measured during the distinct phases of rule induction. Participants in two experiments were presented with a series of Arabic numbers and were asked to detect the hidden rules. The ERP results revealed that (a) the rule-discovery trials elicited a larger P3 component than the nondiscovery trials, reflecting the initial identification of the regularity of number series, and (b) when a new instance was incongruent with the previously acquired rule, a larger N2 and enhanced late positive component were elicited, reflecting the process of mismatch detection and the updating of working memory context. Copyright © 2012 Society for Psychophysiological Research.

  8. The division of attention and the human auditory evoked potential

    Science.gov (United States)

    Hink, R. F.; Van Voorhis, S. T.; Hillyard, S. A.; Smith, T. S.

    1977-01-01

    The sensitivity of the scalp-recorded, auditory evoked potential to selective attention was examined while subjects responded to stimuli presented to one ear (focused attention) and to both ears (divided attention). The amplitude of the N1 component was found to be largest to stimuli in the ear upon which attention was to be focused, smallest to stimuli in the ear to be ignored, and intermediate to stimuli in both ears when attention was divided. The results are interpreted as supporting a capacity model of attention.

  9. Estimation of evoked potentials using total least squares prony technique.

    Science.gov (United States)

    Akkin, T; Saliu, S

    1998-09-01

    The authors investigate the applicability of Prony modelling to the estimation of evoked potentials. Four types of total least squares (TLS) model are considered and their optimal parameters are defined based on ten visual averaged EPs. Simulations with various signal and noise characteristics show that the TLS-Prony estimation is superior to averaging for two of the models, namely the unconstrained and the stable models. Application of the TLS-Prony estimator as a post-processor to moderate averaging allows a reduction in the number of responses averaged, or equivalently of recording time, by a factor of two.

  10. Binaural interaction in auditory evoked potentials: Brainstem, middle- and long-latency components

    OpenAIRE

    McPherson, DL; Starr, A

    1993-01-01

    Binaural interaction occurs in the auditory evoked potentials when the sum of the monaural auditory evoked potentials are not equivalent to the binaural evoked auditory potentials. Binaural interaction of the early- (0-10 ms), middle- (10-50 ms) and long-latency (50-200 ms) auditory evoked potentials was studied in 17 normal young adults. For the early components, binaural interaction was maximal at 7.35 ms accounting for a reduction of 21% of the amplitude of the binaural evoked potentials. ...

  11. Effects of isoflurane and desflurane on neurogenic motor- and somatosensory-evoked potential monitoring for scoliosis surgery.

    Science.gov (United States)

    Bernard, J M; Péréon, Y; Fayet, G; Guihéneuc, P

    1996-11-01

    Most techniques used to monitor spinal cord tracts are sensitive to the effects of anesthesia, particularly to volatile anesthetic agents. The aim of this prospective study was to show that evoked potentials recorded from the peripheral nerves after spinal cord stimulation, so-called neurogenic motor evoked potentials, are resistant to clinical concentrations of isoflurane or desflurane, compared with somatosensory-evoked potentials. Twenty-three patients were studied during surgery to correct scoliosis. The background anesthetic consisted of a continuous infusion of propofol. Isoflurane (n = 12) or desflurane (n = 11) were then introduced to achieve 0.5 and 1.0 end-tidal minimum alveolar concentrations (MAC), both in 50% oxygen-nitrous oxide and in 100% oxygen. Somatosensory-evoked potentials were elicited and recorded using a standard method, defining cortical P40 and subcortical P29. Neurogenic motor-evoked potentials were elicited by electric stimulation of the spinal cord via needle electrodes placed by the surgeon in the rostral part of the surgical field. Responses were recorded from needle electrodes inserted in the right and left popliteal spaces close to the sciatic nerve. Stimulus intensity was adjusted to produce a supramaximal response; that is, an unchanged response in amplitude with subsequent increases in stimulus intensity. Measurements were obtained before introducing volatile agents and 20 min after obtaining a stable level of each concentration. Isoflurane and desflurane in both 50% oxygen-nitrous oxide and 100% oxygen were associated with a significant decrease in the amplitude and an increase in the latency of the cortical P40, whereas subcortical P29 latency did not vary significantly. Typical neurogenic motor-evoked potentials were obtained in all patients without volatile anesthetic agents, consisting of a biphasic wave, occurring 15 to 18 ms after stimulation, with an amplitude ranging from 1.3 to 4.1 microV. Latency or peak

  12. A New Measure for Monitoring Intraoperative Somatosensory Evoked Potentials

    Science.gov (United States)

    Jin, Seung-Hyun; Kim, Jeong Eun; Choi, Young Doo

    2014-01-01

    Objective To propose a new measure for effective monitoring of intraoperative somatosensory evoked potentials (SEP) and to validate the feasibility of this measure for evoked potentials (EP) and single trials with a retrospective data analysis study. Methods The proposed new measure (hereafter, a slope-measure) was defined as the relative slope of the amplitude and latency at each EP peak compared to the baseline value, which is sensitive to the change in the amplitude and latency simultaneously. We used the slope-measure for EP and single trials and compared the significant change detection time with that of the conventional peak-to-peak method. When applied to single trials, each single trial signal was processed with optimal filters before using the slope-measure. In this retrospective data analysis, 7 patients who underwent cerebral aneurysm clipping surgery for unruptured aneurysm middle cerebral artery (MCA) bifurcation were included. Results We found that this simple slope-measure has a detection time that is as early or earlier than that of the conventional method; furthermore, using the slope-measure in optimally filtered single trials provides warning signs earlier than that of the conventional method during MCA clipping surgery. Conclusion Our results have confirmed the feasibility of the slope-measure for intraoperative SEP monitoring. This is a novel study that provides a useful measure for either EP or single trials in intraoperative SEP monitoring. PMID:25628803

  13. A wireless system for monitoring transcranial motor evoked potentials.

    Science.gov (United States)

    Farajidavar, Aydin; Seifert, Jennifer L; Bell, Jennifer E S; Seo, Young-Sik; Delgado, Mauricio R; Sparagana, Steven; Romero, Mario I; Chiao, J-C

    2011-01-01

    Intraoperative neurophysiological monitoring (IONM) is commonly used as an attempt to minimize neurological morbidity from operative manipulations. The goal of IONM is to identify changes in the central and peripheral nervous system function prior to irreversible damage. Intraoperative monitoring also has been effective in localizing anatomical structures, including peripheral nerves and sensorimotor cortex, which helps guide the surgeon during dissection. As part of IONM, transcranial motor evoked potentials (TcMEPs), and somatosensory evoked potentials (SSEPs) are routinely monitored. However, current wired systems are cumbersome as the wires contribute to the crowded conditions in the operating room and in doing so not only it limits the maneuverability of the surgeon and assistants, but also places certain demand in the total anesthesia required during surgery, due to setup preoperative time needed for proper electrode placement, due to the number and length of the wires, and critical identification of the lead wires needed for stimulation and recording. To address these limitations, we have developed a wireless TcMEP IONM system as a first step toward a multimodality IONM system. Bench-top and animal experiments in rodents demonstrated that the wireless method reproduced with high fidelity, and even increased the frequency bandwidth of the TcMEP signals, compared to wired systems. This wireless system will reduce the preoperative time required for IONM setup, add convenience for surgical staff, and reduce wire-related risks for patients during the operation.

  14. Evoked brain potentials and disability in brain-damaged patients.

    Science.gov (United States)

    Rappaport, M; Hall, K; Hopkins, K; Belleza, T; Berrol, S; Reynolds, G

    1977-08-01

    Various measures of evoked brain potential abnormality (EPA) were correlated with disability ratings (DR) for 35 brain-damaged patients. EPA data consisted of judgements of abnormality of ipsilateral, contralateral and bilateral responses to auditory and visual stimuli reflecting activity in the brain stem, subcortex and cortex. DR data were obtained from a scale developed for this study to quantize and categorize patients with a wide range of disabilities from coma to normal functioning. EPA scores based on visual and auditory cortical responses showed significantly positive correlations with degree of disability. Visual response correlation was .49, auditory .38 and combined visual and auditory .51. It was concluded that EPA measures can reflect disability independently of clinical information. They are useful in assessing brain function in general and, specifically, in assessing impairment of sensory function. The evoked potential technique was particularly useful in patients who were not able to participate fully in their own examination. There were indications that the technique may also be valuable in monitoring progress and in predicting clinical outcome in brain-damaged patients.

  15. Characteristics and clinical applications of ocular vestibular evoked myogenic potentials.

    Science.gov (United States)

    Kantner, C; Gürkov, R

    2012-12-01

    Recently, ocular vestibular evoked myogenic potentials (oVEMPs) have been described and added to the neuro-otologic test battery as a new measure for the vestibulo-ocular reflex. oVEMPs represent extraocular muscle activity in response to otolith stimulation e.g. by air-conducted sound or bone-conducted vibration. In response to vestibular stimulation, electromyographic activity of the extraocular muscles can be recorded by means of surface electrodes placed beneath the contralateral eye. oVEMPs are likely to reflect predominantly utricular function, while the widely established cervical vestibular evoked myogenic potentials (cVEMPs) assess saccular function. Thus, measuring oVEMPs and cVEMPs in addition to caloric and head impulse testing provides further evaluation of the vestibular system and enables quick and cost-effective assessment of otolith function. This review summarizes the neurophysiological properties of oVEMPs, gives recommendations for recording conditions and discusses oVEMP alterations in various disorders of the vestibular system. With increasing insight into oVEMP characteristics in vestibular disorders, e.g. Menière's disease and superior semicircular canal dehiscence syndrome, oVEMPs are becoming a promising new diagnostic tool for evaluating utricular function. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Somatosensory evoked potentials in children with severe head trauma.

    Science.gov (United States)

    Schalamon, Johannes; Singer, Georg; Kurschel, Senta; Höllwarth, Michael E

    2005-07-01

    We evaluated the predictive value of somatosensory evoked potentials (SEP) in a series of children with severe traumatic brain injury (TBI). The prospective clinical investigation was performed in a Level I paediatric trauma centre. We included 26 consecutive comatose paediatric patients aged from 1 month to 17 years (median age 11 years) following severe TBI (initial Glasgow Coma Score (GCS) 8 or below). Besides SEP recordings, the intracranial pressure and the results of an initial cranial CT scan were filed. The Glasgow Outcome Scale (GOS) was used to assess outcome at discharge. Thirteen children had normal SEP measurements, three patients had abnormal SEP recordings and a cortical response was bilaterally absent in ten children. Out of 26 children, 10 died whereas two remained in a persistent vegetative state. Only one child suffered from significant neurological deficits (GOS 3) at discharge. Seven patients survived with a GOS of 4 and six children survived without neurological impairment (GOS 5). Normal SEP indicated a favourable outcome in most children but did not rule out the occurrence of death, while absence of SEP was related to unfavourable outcome in all cases. Measurement of somatosensory evoked potentials provides valuable data for determining the prognosis at early coma stages. Our data show that an unfavourable outcome can be predicted with higher precision than a favourable outcome.

  17. Visual evoked potentials, reaction times and eye dominance in cricketers.

    Science.gov (United States)

    Thomas, N G; Harden, L M; Rogers, G G

    2005-09-01

    Few studies have examined the physiology of cricket, including the difference in ability between batsmen to make controlled contact with a ball bowled at high speed. We therefore measured visual evoked potentials and choice reaction times with dominant eyes, non-dominant eyes, and both eyes together, in 15 elite batsmen and 10 elite bowlers (aged 20.9 SD 1.9 years) and 9 control subjects (aged 20.2 SD 1.5 years). The latency and amplitude of waves N70, P100 and N145 were determined for each visual evoked potential (VEP). In addition interpeak latencies and peak to peak amplitudes were measured. The subjects also completed a choice reaction test to a visual stimulus. We found that cricketers were not more likely to have crossed dominance (dominant eye contralateral to dominant hand) than controls. Cricketers had a faster latency for VEP wave N70 than controls (p=0.03). However reaction time was not different between cricketers and the control group. Across all subjects, in comparison to monocular testing, binocular testing led to a faster choice reaction time (p=0.02) and larger amplitudes of VEP wave N70 (p=0.01). Visual processing during the first 100(-1)50 ms of the balls flight together with binocular vision facilitates retinal activation in talented cricketers.

  18. Multimodality evoked potentials in HTLV-I associated myelopathy.

    Science.gov (United States)

    Kakigi, R; Shibasaki, H; Kuroda, Y; Endo, C; Oda, K; Ikeda, A; Hashimoto, K

    1988-08-01

    Multimodality evoked potentials (EPs) consisting of somatosensory EPs (SEPs), visual EPs (VEPs) and brainstem auditory EPs (BAEPs) were studied in 16 cases with HTLV-I associated myelopathy (HAM). Median nerve SEPs were normal in all cases. In posterior tibial nerve SEPs, the potential recorded at the 12th thoracic spinal process was normal in every case but cortical components were significantly prolonged in 10 cases, although five of these showed no sensory impairment. BAEPs were normal in every case whose hearing was intact, but VEPs were abnormal in two cases whose visual acuities were normal. The present results in HAM indicate predominant lesion in the thoracic cord, and might also suggest some subclinical lesion in the visual pathway.

  19. Minimal current intensity to elicit an evoked motor response cannot discern between needle-nerve contact and intraneural needle insertion.

    Science.gov (United States)

    Wiesmann, Thomas; Bornträger, Andreas; Vassiliou, Timon; Hadzic, Admir; Wulf, Hinnerk; Müller, Hans-Helge; Steinfeldt, Thorsten

    2014-03-01

    The ability of an evoked motor response (EMR) with nerve stimulation to detect intraneural needle placement reliably at low current intensity has recently been challenged. In this study, we hypothesized that current intensity is higher in needle-nerve contact than in intraneural needle placement. Brachial plexus nerves were exposed surgically in 6 anesthetized pigs. An insulated needle connected to a nerve stimulator was placed either with 1 mm distance to the nerve (control position), adjacent to nerve epineurium (needle-nerve contact position), or inside the nerve (intraneural position). Three pulse duration settings were applied in random fashion (0.1, 0.3, or 1.0 milliseconds) at each needle position. Starting at 0.0 mA, electrical current was increased until a minimal threshold current resulting in a specific EMR was observed. Fifty threshold current measurements were scheduled for each needle position-pulse duration setting. Four hundred-fifty threshold currents in 50 peripheral nerves were measured. Threshold current intensities (mA) to elicit EMR showed small differences between the needle-nerve contact position [median (25th-75th percentiles); 0.1 milliseconds: 0.12 (0.08-0.18) mA; 0.3 milliseconds: 0.10 (0.06-0.12) mA; 1.0 milliseconds: 0.06 (0.04-0.10) mA] and the intraneural position (0.1 milliseconds: 0.12 [0.10-0.16] mA; 0.3 milliseconds: 0.08 [0.06-0.10] mA; 1.0 milliseconds: 0.06 [0.06-0.08] mA) that are neither statistically significant nor clinically relevant. Regardless of the pulse duration that was applied, the 98.33% confidence interval revealed a difference of at most 0.02 mA. However, threshold current intensities to elicit EMR were lower for the needle-nerve contact position than for the control position (0.1 milliseconds: 0.28 [0.26-0.32] mA; 0.3 milliseconds: 0.20 [0.16-0.22] mA; 1.0 milliseconds: 0.12 [0.10-0.14] mA). The confidence interval for differences suggests minimal current intensity to elicit a motor response that cannot

  20. Assessment of visual disability using visual evoked potentials.

    Science.gov (United States)

    Jeon, Jihoon; Oh, Seiyul; Kyung, Sungeun

    2012-08-06

    The purpose of this study is to validate the use of visual evoked potential (VEP) to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9-42 years), 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19-36 years), 19 optic neuritis patients (19 eyes: ages 9-71 years), and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR) were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR) of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR) of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR) of 38 eyes from normal (right eyes) and amblyopic (amblyopic eyes) subjects were significant [y = -0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR)]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = -0.072x + 1.22 (-0.072). This resulted in a prediction reference of visual acuity associated with malingering vs. real

  1. The Intraoperative Effect of Methadone on Somatosensory Evoked Potentials.

    Science.gov (United States)

    Higgs, Maureen; Hackworth, Robert J; John, King; Riffenburgh, Robert; Tomlin, Jeffrey; Wamsley, Brian

    2017-04-01

    Evoked potentials (EP), both somatosensory evoked potentials (SSEP) and transcranial motor evoked potentials (TcMEP), are often used during complex spine surgery to monitor the integrity of spinal pathways during operations in or around the spine. Changes in these monitored EP signals (increased latency and decreased amplitude) may result from ischemia, direct surgical injury, changes in blood pressure, hypoxia, changes in CO2 tension, and anesthetic agents. Typically, a clinically significant change for SSEPs is defined as an increase in latency >10% or a decrease of amplitude >50%. A clinically significant change for TcMEPs is much more complex but is also described in terms of large signal loss or decrease. Opioids have been shown to both increase latency and decrease the amplitude of SSEPs, although this change is usually not clinically significant. There has been a renewed interest in methadone for use in spine and other complex surgeries. However, the effect of methadone on intraoperative monitoring of SSEPs and TcMEPs is unknown. We present the first study to directly look at the effects of methadone on SSEP and TcMEP monitoring during complex spine surgery. The goal of this study was to observe the effect of methadone on an unrandomized set of patients. The primary endpoint was methadone's effect on SSEPs, and the secondary endpoint was methadone's effect on TcMEPs. Adult patients undergoing spine surgery requiring intraoperative neuromonitoring were induced with general anesthesia and had a baseline set of SSEPs and TcMEPs recorded. Next, methadone dosed 0.2 mg/kg/lean body weight was given. Repeat SSEPs and TcMEPs were recorded at 5, 10, and 15 minutes, with the timing based on distribution half-life of methadone between 6 and 8 minutes. Postoperatively, adverse events from methadone administration were collected. There was a statistically significant difference found in SSEPs for N20 latency (95% confidence interval [CI], 0.17-0.53; P=0.028), P37 latency

  2. SOMATOSENSORY EVOKED POTENTIALS IN DIABETES MELLITUS TYPE - 2

    Directory of Open Access Journals (Sweden)

    Rekha

    2015-10-01

    Full Text Available Diabetes mellitus is the most common metabolic disorder affecting majority of population. It is estimated that over 400 million people throughout the world have diabetes. It has progressed to be a pandemic from an epidemic causing morbidity and mortality in the population. Among the many complications of diabetes, diabetic neuropathies contribute majorly to the morbidity associated with the disease. Axonal conduction is affected by elevated levels of protein kinase c causing neuronal ischemia; decreased ce llular myoinositol affecting sodium potassium ATPase pump leads to decreased nerve conduction; Somatosensory E voked P otentials (SSEPs reflect the activity of somatosensory pathways mediated through the dorsal columns of the spinal cord and the specific so matosensory cortex. Recording of Somatosensory Evoked Potentials in diabetics is done to assess the sensory involvement of spinal cord. Presence of SEPs provides clear evidence for axonal continuity and by using different stimulation sites, the rate of reg eneration can be determined. Both onset and peak latencies of all SEP components are prolonged in patients with diabetes. Present study is done to compare somatosensory evoked potentials in diabetics and normal subjects. MATERIALS AND METHOD S: The present study was undertaken at the Upgraded Department of Physiology, Osmania Medical College, Koti, Hyderabad. The study was conducted on subjects, both male and female in the age group of 45 to 55 years, suffering from type II diabetes excluding other neurologi cal disorders. Non - invasive method of estimation of nerve conduction studies using SFEMG/EP — Electromyography or evoked potential system (Nicolet systems — USA using surface electrodes with automated computerized monitor attached with printer is used. RESUL TS : ANOVA showed statistically significant N9 latency (right & left sides. Latencies of all the components of SSEPs were more significant than amplitudes in Diabetic

  3. Assessment of visual disability using visual evoked potentials

    Directory of Open Access Journals (Sweden)

    Jeon Jihoon

    2012-08-01

    Full Text Available Abstract Background The purpose of this study is to validate the use of visual evoked potential (VEP to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. Methods A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9–42 years, 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19–36 years, 19 optic neuritis patients (19 eyes: ages 9–71 years, and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Results Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR of 38 eyes from normal (right eyes and amblyopic (amblyopic eyes subjects were significant [y = −0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = −0.072x + 1.22 (−0.072. This resulted in a prediction

  4. An evoked potential mapping of transcallosal projections in the cat

    Directory of Open Access Journals (Sweden)

    A. Cukiert

    1989-03-01

    Full Text Available In ten adult cats anesthetized with ketamine hydrochloride the neocortex was exposed and rectangular pulses (1msec, 0.5 Hz and variable intensity were applied to discrete points of one side and transcallosal evoked potentials were recorded from the other. The stimulation and recording positions were determined on a cartesian map of most of the exposable neocortical areas and the potentials were analysed as to their components, voltage and latency. Passive spread and electrotonic potentials and the effects of increasing frequency were also analysed. The results showed large transcallosal potentials in some areas and an increase of potentials in the caudorostral direction, attaining the highest values in anteromedial areas of the suprasylvian gyrus. Confirming anatomical studies, a few silent spots were found in the motor and somesthetic cortex and in restricted posterior regions of the visual cortex, where small or zero voltages occurred. While causing weak contralateral potentials, stimulation of some posterior sites provoked high voltage potentials in anterior regions of the side being stimulated and in the corresponding area of the opposite site. These posterior sites are. poorly interconnected by the corpus callosum. The L-shaped indirect connection described in this work may be involved in some types of epilepsy and may explain the effectiveness of partial callosotomy in their treatment.

  5. Facilitation and refractoriness of the electrically evoked compound action potential.

    Science.gov (United States)

    Hey, Matthias; Müller-Deile, Joachim; Hessel, Horst; Killian, Matthijs

    2017-11-01

    In this study we aim to resolve the contributions of facilitation and refractoriness at very short pulse intervals. Measurements of the refractory properties of the electrically evoked compound action potential (ECAP) of the auditory nerve in cochlear implant (CI) users at inter pulse intervals below 300 μs are influenced by facilitation and recovery effects. ECAPs were recorded using masker pulses with a wide range of current levels relative to the probe pulse levels, for three suprathreshold probe levels and pulse intervals from 13 to 200 μs. Evoked potentials were measured for 21 CI patients by using the masked response extraction artifact cancellation procedure. During analysis of the measurements the stimulation current was not used as absolute value, but in relation to the patient's individual ECAP threshold. This enabled a more general approach to describe facilitation as a probe level independent effect. Maximum facilitation was found for all tested inter pulse intervals at masker levels near patient's individual ECAP threshold, independent from probe level. For short inter pulse intervals an increased N1P1 amplitude was measured for subthreshold masker levels down to 120 CL below patient's individual ECAP threshold in contrast to the recreated state. ECAPs recorded with inter pulse intervals up to 200 μs are influenced by facilitation and recovery. Facilitation effects are most pronounced for masker levels at or below ECAP threshold, while recovery effects increase with higher masker levels above ECAP threshold. The local maximum of the ECAP amplitude for masker levels around ECAP threshold can be explained by the mutual influence of maximum facilitation and minimal refractoriness. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Accuracy of measurement in electrically evoked compound action potentials.

    Science.gov (United States)

    Hey, Matthias; Müller-Deile, Joachim

    2015-01-15

    Electrically evoked compound action potentials (ECAP) in cochlear implant (CI) patients are characterized by the amplitude of the N1P1 complex. The measurement of evoked potentials yields a combination of the measured signal with various noise components but for ECAP procedures performed in the clinical routine, only the averaged curve is accessible. To date no detailed analysis of error dimension has been published. The aim of this study was to determine the error of the N1P1 amplitude and to determine the factors that impact the outcome. Measurements were performed on 32 CI patients with either CI24RE (CA) or CI512 implants using the Software Custom Sound EP (Cochlear). N1P1 error approximation of non-averaged raw data consisting of recorded single-sweeps was compared to methods of error approximation based on mean curves. The error approximation of the N1P1 amplitude using averaged data showed comparable results to single-point error estimation. The error of the N1P1 amplitude depends on the number of averaging steps and amplification; in contrast, the error of the N1P1 amplitude is not dependent on the stimulus intensity. Single-point error showed smaller N1P1 error and better coincidence with 1/√(N) function (N is the number of measured sweeps) compared to the known maximum-minimum criterion. Evaluation of N1P1 amplitude should be accompanied by indication of its error. The retrospective approximation of this measurement error from the averaged data available in clinically used software is possible and best done utilizing the D-trace in forward masking artefact reduction mode (no stimulation applied and recording contains only the switch-on-artefact). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Contact heat evoked potentials using simultaneous EEG and fMRI and their correlation with evoked pain

    Directory of Open Access Journals (Sweden)

    Atherton Duncan

    2008-12-01

    Full Text Available Abstract Background The Contact Heat Evoked Potential Stimulator (CHEPS utilises rapidly delivered heat pulses with adjustable peak temperatures to stimulate the differential warm/heat thresholds of receptors expressed by Aδ and C fibres. The resulting evoked potentials can be recorded and measured, providing a useful clinical tool for the study of thermal and nociceptive pathways. Concurrent recording of contact heat evoked potentials using electroencephalogram (EEG and functional magnetic resonance imaging (fMRI has not previously been reported with CHEPS. Developing simultaneous EEG and fMRI with CHEPS is highly desirable, as it provides an opportunity to exploit the high temporal resolution of EEG and the high spatial resolution of fMRI to study the reaction of the human brain to thermal and nociceptive stimuli. Methods In this study we have recorded evoked potentials stimulated by 51°C contact heat pulses from CHEPS using EEG, under normal conditions (baseline, and during continuous and simultaneous acquisition of fMRI images in ten healthy volunteers, during two sessions. The pain evoked by CHEPS was recorded on a Visual Analogue Scale (VAS. Results Analysis of EEG data revealed that the latencies and amplitudes of evoked potentials recorded during continuous fMRI did not differ significantly from baseline recordings. fMRI results were consistent with previous thermal pain studies, and showed Blood Oxygen Level Dependent (BOLD changes in the insula, post-central gyrus, supplementary motor area (SMA, middle cingulate cortex and pre-central gyrus. There was a significant positive correlation between the evoked potential amplitude (EEG and the psychophysical perception of pain on the VAS. Conclusion The results of this study demonstrate the feasibility of recording contact heat evoked potentials with EEG during continuous and simultaneous fMRI. The combined use of the two methods can lead to identification of distinct patterns of brain

  8. Mechanically evoked cortical potentials: A physiological approach to assessment of anorectal sensory pathways.

    Science.gov (United States)

    Carrington, E V; Evers, J; Scott, S M; Knowles, C H; O'Connell, P R; Jones, J F X

    2015-12-30

    Normal defaecation involves activation of anorectal mechanoreceptors responsive to pressure and stretch. The aim of this study was to develop selective anal and rectal mucosal light-touch stimulation suitable for measurement of cortical evoked potentials (EPs) in order to explore the sensory arm of these pathways. A novel device was manufactured to deliver selective rectal and/or anal light-touch stimulation using a shielded inter-dental brush mounted on a rotating stepper motor (1Hz, 1ms, 15° rotation). Resultant somatosensory EPs recorded with a 32-channel cortical multi-electrode array were compared to those elicited by electrical anorectal stimulation (2mm anal plug electrode [1Hz, 1ms, 10V]). Eighteen anaesthetized female Wistar rats (body mass 180-250g) were studied. Electrical and mechanical stimulation provoked similar maximal response amplitudes (electrical anorectal 39.0μV[SEM 5.5], mechanical anal 42.2μV[8.1], mechanical rectal 45.8μV[9.0]). Response latency was longer following mechanical stimulation (electrical anorectal 8.8ms[0.5], mechanical anal 16.4ms[1.1], mechanical rectal 18.3ms[2.5]). The extent of activated sensory cortex was smaller for mechanical stimulation. Sensory inferior rectal nerve activity was greater during anal compared to rectal mechanical in a subgroup of 4 rats. Evoked potentials were reproducible over 40min in a subgroup of 9 rats. Cortical EPs are typically recorded in response to non-physiological electrical stimuli. The use of a mechanical stimulus may provide a more localized physiological method of assessment. To the authors' knowledge these are the first selective brush-elicited anal and rectal EPs recorded in animals and provide a physiological approach to testing of anorectal afferent pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Clinical application of visual evoked potential in orbital cellulitis of infants

    Directory of Open Access Journals (Sweden)

    Xiao-Juan Jing

    2014-07-01

    Full Text Available AIM: To explore the visual evoked potential in infantile orbital cellulitis' clinical applications by monitoring the visual evoked potential changes in infantile orbital cellulitis before, during and after treatment.METHODS: Twenty-three cases of CT diagnosed single orbital cellulitis were examined by the visual evoked potentials. The affected eyes as observation group, and healthy eyes as control group. Comparative observation of visual evoked potential changes in amplitude and incubation period before, during and after the treatment. RESULTS: Compared with the control group, the observation group's visual evoked potential changes included reduced amplitude, extended incubation period. With the treatment progress, the observation group had gradual increase in amplitude, gradual reduction in incubation period. CONCLUSION: In infantile orbital cellulitis, the use of visual evoked potentials is a simple, feasible and effective method to monitoring the visual function during the treatment.

  10. Protocol to collect late latency auditory evoked potentials.

    Science.gov (United States)

    Ventura, Luzia Maria Pozzobom; Alvarenga, Kátia de Freitas; Costa Filho, Orozimbo Alves

    2009-01-01

    Long Latency Auditory Evoked Potentials (LLAEP) represents a number of electrical changes occurring in the central nervous system, resulting from stimulation of the auditory sensorial pathways. Many studies approach the use of these potentials controlling the artifact created by eye movement with the use of equipment with a large number of channels. However, what happens is very different in Brazilian clinical practice, where the equipment used has a very limited number of channels. to compare the two methods used to control the artifacts created by eye movements during LLAEP capture using two recording channels. this is a prospective study with the application of two LLAEP capturing methods (eye artifact subtraction and rejection limit control) in 10 normal hearing individuals. we did not observe statistically significant differences concerning the latency values obtained with the use of both methods, only concerning amplitude values. both methods were efficient to capture the LLAEP and to control the eye movement artifact. The rejection limit control method produced greater amplitude values.

  11. Vestibular evoked myogenic potentials in patients with ankylosing spondylitis.

    Science.gov (United States)

    Özgür, Abdulkadir; Serdaroğlu Beyazal, Münevver; Terzi, Suat; Coşkun, Zerrin Özergin; Dursun, Engin

    2016-10-01

    Ankylosing spondylitis (AS) is a chronic systemic inflammatory disease with unknown etiology. Although sacroiliac joint involvement is the classic sign along with the formed immune mediators, it may result in immune-mediated inner ear disease and may cause damage to the audiovestibular system. Vestibular evoked myogenic potentials (VEMP) is a clinical reflex test used in the diagnosis of vestibular diseases and is performed by recording and evaluating the muscle potentials resulting from the stimulation of the vestibular system with different stimuli. The aim of this study is to evaluate the cervical VEMP test results in AS patients without vestibular symptoms. Thirty-three patients with AS and a control group of 30 healthy volunteers with similar demographic characteristics were evaluated in the study. VEMP wave latency, P13-N23 wave amplitude, and VEMP asymmetry ratio (VAR) values were compared between the groups. The relationship between clinical and laboratory findings of the AS patients and VEMP data were also investigated. Compared with healthy people, this study shows the response rate of patients with ankylosing spondylitis was reduced in the VEMP test, and P13-N23 wave amplitude showed a decrease in AS patients who had VEMP response (p ankylosing spondylitis. The data obtained from this study suggest that AS may lead to decreased sensitivity of the vestibular system.

  12. Vestibular evoked myogenic potential findings in multiple sclerosis.

    Science.gov (United States)

    Escorihuela García, Vicente; Llópez Carratalá, Ignacio; Orts Alborch, Miguel; Marco Algarra, Jaime

    2013-01-01

    Multiple sclerosis is an inflammatory disease involving the occurrence of demyelinating, chronic neurodegenerative lesions in the central nervous system. We studied vestibular evoked myogenic potentials (VEMPs) in this pathology, to allow us to evaluate the saccule, inferior vestibular nerve and vestibular-spinal pathway non-invasively. There were 23 patients diagnosed with multiple sclerosis who underwent VEMP recordings, comparing our results with a control group consisting of 35 healthy subjects. We registered p13 and n23 wave latencies, interaural amplitude difference and asymmetry ratio between both ears. Subjects also underwent an otoscopy and audiometric examination. The prolongation of p13 and n23 wave latencies was the most notable characteristic, with a mean p13 wave latency of 19.53 milliseconds and a mean latency of 30.06 milliseconds for n23. In contrast, the asymmetry index showed no significant differences with our control group. In case of multiple sclerosis, the prolongation of the p13 and n23 VEMP wave latencies is a feature that has been attributed to slowing of conduction by demyelination of the vestibular-spinal pathway. In this regard, alteration of the response or lack thereof in these potentials has a locator value of injury to the lower brainstem. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  13. Influence of visual angle on pattern reversal visual evoked potentials

    Directory of Open Access Journals (Sweden)

    Ruchi Kothari

    2014-01-01

    Full Text Available Purpose: The aim of this study was to find whether the visual evoked potential (VEP latencies and amplitude are altered with different visual angles in healthy adult volunteers or not and to determine the visual angle which is the optimum and most appropriate among a wide range of check sizes for the reliable interpretation of pattern reversal VEPs (PRVEPs. Materials and Methods: The present study was conducted on 40 healthy volunteers. The subjects were divided into two groups. One group consisted of 20 individuals (nine males and 11 females in the age range of 25-57 years and they were exposed to checks subtending a visual angle of 90, 120, and 180 minutes of arc. Another group comprised of 20 individuals (10 males and 10 females in the age range of 36-60 years and they were subjected to checks subtending a visual angle of 15, 30, and 120 minutes of arc. The stimulus configuration comprised of the transient pattern reversal method in which a black and white checker board is generated (full field on a VEP Monitor by an Evoked Potential Recorder (RMS EMG. EPMARK II. The statistical analysis was done by One Way Analysis of Variance (ANOVA using EPI INFO 6. Results: In Group I, the maximum (max. P100 latency of 98.8 ± 4.7 and the max. P100 amplitude of 10.05 ± 3.1 μV was obtained with checks of 90 minutes. In Group II, the max. P100 latency of 105.19 ± 4.75 msec as well as the max. P100 amplitude of 8.23 ± 3.30 μV was obtained with 15 minutes. The min. P100 latency in both the groups was obtained with checks of 120 minutes while the min. P100 amplitude was obtained with 180 minutes. A statistically significant difference was derived between means of P100 latency for 15 and 30 minutes with reference to its value for 120 minutes and between the mean value of P100 amplitude for 120 minutes and that of 90 and 180 minutes. Conclusion: Altering the size of stimulus (visual angle has an effect on the PRVEP parameters. Our study found that the 120

  14. Neurogenic vestibular evoked potentials using a tone pip auditory stimulus.

    Science.gov (United States)

    Papathanasiou, E S; Zamba-Papanicolaou, E; Pantziaris, M; Kleopas, K; Kyriakides, T; Papacostas, S; Pattichis, C; Iliopoulos, I; Piperidou, C

    2004-01-01

    To obtain neurogenic vestibular evoked potentials (NVESTEPs) with surface scalp recording using a tone pip auditory stimulus. Fourteen neurologically normal volunteers (Age range 26-45 years, 10 females and 4 males), and two patients with sensorineural hearing loss and possible multiple sclerosis respectively, were examined. Two channel recordings were obtained, the first channel being P3 referred to Fpz, and the second channel being P4 referred to Fpz. A 1 kHz tone pip stimulus with two cycles was delivered via headphones monoaurally with contralateral masking noise. A consistent negative wave with a mean absolute latency of 4.72 msec was obtained, which we have named N5. 25% of the ears tested had better responses at the ipsilateral parietal electrode. In the patient with bilateral sensorineural hearing loss, NVESTEPs was present, suggesting that the NVESTEP is not a cochlear response. In the patient with possible multiple sclerosis, an abnormal NVESTEP response and a normal BAEP response were found. Use of a tone-pip rather than a click auditory stimulus allows a lower click intensity to be used in the production of NVESTEP responses, leads to a shorter testing time, and is therefore more comfortable for the patient. This study adds to our impression that the NVESTEP may be a physiological response that can be used to assess the vestibular system and is different from the BAEP response. Further testing in patients with symptoms of dizziness and with disorders specific for the vestibular nerve is required.

  15. A Subspace Method for Dynamical Estimation of Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Stefanos D. Georgiadis

    2007-01-01

    Full Text Available It is a challenge in evoked potential (EP analysis to incorporate prior physiological knowledge for estimation. In this paper, we address the problem of single-channel trial-to-trial EP characteristics estimation. Prior information about phase-locked properties of the EPs is assesed by means of estimated signal subspace and eigenvalue decomposition. Then for those situations that dynamic fluctuations from stimulus-to-stimulus could be expected, prior information can be exploited by means of state-space modeling and recursive Bayesian mean square estimation methods (Kalman filtering and smoothing. We demonstrate that a few dominant eigenvectors of the data correlation matrix are able to model trend-like changes of some component of the EPs, and that Kalman smoother algorithm is to be preferred in terms of better tracking capabilities and mean square error reduction. We also demonstrate the effect of strong artifacts, particularly eye blinks, on the quality of the signal subspace and EP estimates by means of independent component analysis applied as a prepossessing step on the multichannel measurements.

  16. Flash visual evoked potentials in diurnal birds of prey.

    Science.gov (United States)

    Dondi, Maurizio; Biaggi, Fabio; Di Ianni, Francesco; Dodi, Pier Luigi; Quintavalla, Fausto

    2016-01-01

    The objective of this pilot study was to evaluate the feasibility of Flash Visual Evoked Potentials (FVEPs) testing in birds of prey in a clinical setting and to describe the protocol and the baseline data for normal vision in this species. FVEP recordings were obtained from 6 normal adult birds of prey: n. 2 Harris's Hawks (Parabuteo unicinctus), n. 1 Lanner Falcon (Falco biarmicus), n. 2 Gyrfalcons (Falco rusticolus) and n. 1 Saker Falcon (Falco cherrug). Before carrying out VEP tests, all animals underwent neurologic and ophthalmic routine examination. Waveforms were analysed to identify reproducible peaks from random variation of baseline. At least three positive and negative peaks were highlighted in all tracks with elevated repeatability. Measurements consisted of the absolute and relative latencies of these peaks (P1, N1, P2, N2, P3, and N3) and their peak-to-peak amplitudes. Both the peak latency and wave morphology achieved from normal animals were similar to those obtained previously in other animal species. This test can be easily and safely performed in a clinical setting in birds of prey and could be useful for an objective assessment of visual function.

  17. Effect of pupil size on multifocal pattern visual evoked potentials.

    Science.gov (United States)

    Martins, Alessandra; Balachandran, Chandra; Klistorner, Alexander I; Graham, Stuart L; Billson, Francis A

    2003-08-01

    The purpose of this study was to investigate the influence of pupil diameter on the amplitude and latency of multifocal visual evoked potentials (mfVEP). The multifocal objective perimeter (Accumap; Objectivision) was used to stimulate the visual field at 56 sites extending to 32 degrees using a pseudo-random pattern stimulus. The mfVEP were recorded using bipolar occipital electrodes, 7 min/eye. Ten normal subjects were recruited from the community and one eye was randomly selected for testing. The mfVEP were recorded at four different pupil diameters (2 mm, 4 mm, 6 mm, 8 mm), obtained by applying tropicamide (0.5%) or pilocarpine (2%) in different dilutions. Appropriate refractive correction was provided to overcome cycloplegia and achieve a visual acuity of 6/7.5 or better. Analysis revealed that at most pupil diameters the normalized full field amplitude did not show significant variation, except at the most miotic pupil diameter (2 mm), where the amplitude became reduced, based on 2-way anova and Tukey's T method. There was, however, significant correlation between latency and pupil area (correlation coefficient: upper field -0.63, lower field -0.76). The results suggest that even in the presence of mydriatics or miotics, the mfVEP test can be used to assess diseases that affect amplitude, provided near correction is used. The interpretation of latency, however, must be made with caution, as a borderline conduction defect with a dilated pupil may appear normal.

  18. Vestibular evoked myogenic potential in noise-induced hearing loss

    Directory of Open Access Journals (Sweden)

    Kaushlendra Kumar

    2010-01-01

    Full Text Available Noise affects one′s hearing as well as balance mechanism. The hearing mechanism of the noise-exposed individuals has been extensively studied. However, in view of the poor research focus on the sacculo-collic reflexes, especially in this study area, the present study was undertaken to examine the vestibular evoked myogenic potentials (VEMP in subjects with noise-induced hearing loss (NIHL. A total of 30 subjects (55 ears with NIHL participated in the present study within the age range of 30-40 years. VEMP recordings were done at 99 dBnHL using IHS instrument. The results indicated that as the average pure tone hearing threshold increased, the VEMP latencies were prolonged and peak to peak amplitude was reduced in NIHL subjects. Out of the 55 ears, VEMP was absent in 16 (29.0% ears. The latency was prolonged and the peak to peak amplitude was reduced in 19 (34.6% ears. VEMP results were normal in 20 (36.4% ears. Therefore, VEMP was abnormal or absent in 67% of NIHL subjects in the present study. Hence it can be concluded that the possibility of vestibular dysfunction, specially the saccular pathway, is high in individuals with NIHL. VEMP, a non-invasive and user friendly procedure, can be employed in these individuals to assess sacculo-collic reflex.

  19. Ocular Vestibular Evoked Myogenic Potentials: Where Are We Now?

    Science.gov (United States)

    Dlugaiczyk, Julia

    2017-12-01

    Over the last decade, ocular vestibular evoked myogenic potentials (oVEMPs) have evolved as a new clinical test for dynamic otolith (predominantly utricular) function. The aim of this review is to give an update on the neurophysiological foundations of oVEMPs and their implications for recording and interpreting oVEMP responses in clinical practice. Different lines of anatomical, neurophysiological, and clinical evidence support the notion that oVEMPs measure predominantly contralateral utricular function, while cervical cVEMPs are an indicator of ipsilateral saccular function. Bone-conducted vibration (BCV) in the midline of the forehead at the hairline (Fz) or unilateral air-conducted sound (ACS) are commonly used as stimuli for oVEMPs. It is recommended to apply short stimuli with short rise times for obtaining optimal oVEMP responses. Finally, this review summarizes the clinical application and interpretation of oVEMPs, particularly for vestibular neuritis, Ménière's disease, superior canal dehiscence and "challenging" patients.

  20. Flash visual evoked potentials in diurnal birds of prey

    Directory of Open Access Journals (Sweden)

    Maurizio Dondi

    2016-07-01

    Full Text Available The objective of this pilot study was to evaluate the feasibility of Flash Visual Evoked Potentials (FVEPs testing in birds of prey in a clinical setting and to describe the protocol and the baseline data for normal vision in this species. FVEP recordings were obtained from 6 normal adult birds of prey: n. 2 Harris’s Hawks (Parabuteo unicinctus, n. 1 Lanner Falcon (Falco biarmicus, n. 2 Gyrfalcons (Falco rusticolus and n. 1 Saker Falcon (Falco cherrug. Before carrying out VEP tests, all animals underwent neurologic and ophthalmic routine examination. Waveforms were analysed to identify reproducible peaks from random variation of baseline. At least three positive and negative peaks were highlighted in all tracks with elevated repeatability. Measurements consisted of the absolute and relative latencies of these peaks (P1, N1, P2, N2, P3, and N3 and their peak-to-peak amplitudes. Both the peak latency and wave morphology achieved from normal animals were similar to those obtained previously in other animal species. This test can be easily and safely performed in a clinical setting in birds of prey and could be useful for an objective assessment of visual function.

  1. The effect of shoulder position on motor evoked and maximal muscle compound action potentials of the biceps brachii.

    Science.gov (United States)

    Collins, Brandon W; Button, Duane C

    2018-02-05

    The purpose of the study was to assess the effect of shoulder position, 0° versus 90° shoulder flexion, on stimulation intensity and maximal muscle compound action potentials (M max ) and motor evoked potentials (MEP) of the biceps brachii during both rest and 10% maximum voluntary contraction (MVC). Nine participants completed two experimental sessions with four conditions. During each condition, transcranial magnetic (TMS) and Erb's point stimulation were used to elicit MEPs and M max , respectively. During rest, the TMS intensity to elicit a MEP response (pshoulder-position and state-dependent, whereas MEP and M max amplitudes were only shoulder position-dependent. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Diagnostic accuracy of laser-evoked potentials in diabetic neuropathy.

    Science.gov (United States)

    Di Stefano, Giulia; La Cesa, Silvia; Leone, Caterina; Pepe, Alessia; Galosi, Eleonora; Fiorelli, Marco; Valeriani, Massimiliano; Lacerenza, Marco; Pergolini, Mario; Biasiotta, Antonella; Cruccu, Giorgio; Truini, Andrea

    2017-06-01

    Although the most widely agreed neurophysiological tool for investigating small fiber damage is laser-evoked potential (LEP) recording, no study has documented its diagnostic accuracy. In this clinical, neurophysiological, and skin biopsy study, we collected age-corrected LEP normative ranges, verified the association of LEPs with pinprick sensory disturbances in the typical diabetic mixed fiber polyneuropathy, and assessed the sensitivity and specificity of LEPs in diabetic small fiber neuropathy. From 288 LEP recordings from the face, hand, and foot in 73 healthy subjects, we collected age-corrected normative ranges for LEPs. We then selected 100 patients with mixed-fiber diabetic neuropathy and 25 patients with possible small-fiber diabetic neuropathy. In the 100 patients with mixed fiber neuropathy, we verified how LEP abnormalities were associated with clinically evident pinprick sensory disturbances. In the 25 patients with possible pure small fiber neuropathy, using the skin biopsy for assessing the intraepidermal nerve fiber density as a reference standard, we calculated LEP sensitivity and specificity. In healthy participants, age strongly influenced normative ranges for all LEP variables. By applying age-corrected normative ranges for LEPs, we found that LEPs were strongly associated with pinprick sensory disturbances. In relation to the skin biopsy findings, LEPs yielded 78% sensitivity and 81% specificity in the diagnosis of diabetic small fiber neuropathy. Our study, providing age-corrected normative ranges for the main LEP data and their diagnostic accuracy, helps to make LEPs more reliable as a clinical diagnostic tool, and proposes this technique as a less invasive alternative to skin biopsy for diagnosing diabetic small fiber neuropathy.

  3. EVALUATION OF BRAINSTEM AUDITORY EVOKED POTENTIAL IN MIGRAINE PATIENT

    Directory of Open Access Journals (Sweden)

    Sowmiya R, Vinodha R

    2015-10-01

    Full Text Available Background: Migraine is worldwide common, chronic, Neurovascular disorder, characterized by attacks of severe headache and an Aura involving neurologic symptoms. Its pathogenesis was incompletely understood whether of cortical or brainstem origin. Aim: The present study was undertaken to investigate brainstem auditory functions in Migraine patients. Materials and Methods: The subjects were recruited based on International Headache Society classification for Migraine. Subjects with episodes of headache for at least 2yrs, 2 attacks per month in last quarter year were included in the study. Forty subjects (16 Migraine with Aura & 24 cases – Migraine without aura & forty age / sex matched controls were selected. Brainstem auditory evoked potential was recorded using 4-Channel polygraph (Neuro perfect plus. Electrodes were placed according to 10 – 20 electrode placement system. Auditory stimulus in the form of click sound is delivered through the headphones. Clicks were delivered at a rate of 8-10 /sec. The intensity of the stimulus is set at 30db. About 100 averages were recorded. BAEP waveforms – Wave I, III & V latencies and the interpeak latencies were measured. The results were analysed statistically using student‘t’ test. Results: BAEP recording shows significant prolongation in latencies of Wave I, III & V and the Interpeak latency (IPL I-III, III-V & I-V in Migraine with aura. In Migraine without aura, there was significant prolongation of Wave I, III & V and III-V & I-VIPL (P<0.05. Conclusion: Prolongation suggests that there is involvement of brainstem structures in Migraine, thus BAEP can be used as an effective tool in evaluation of Migraine.

  4. Brainstem auditory-evoked potential in Boxer dogs

    Directory of Open Access Journals (Sweden)

    Mariana Isa Poci Palumbo

    2014-10-01

    Full Text Available Brainstem auditory-evoked potential (BAEP has been widely used for different purposes in veterinary practice and is commonly used to identify inherited deafness and presbycusis. In this study, 43 Boxer dogs were evaluated using the BAEP. Deafness was diagnosed in 3 dogs (2 bilateral and 1 unilateral allowing the remaining 40 Boxers to be included for normative data analysis including an evaluation on the influence of age on the BAEP. The animals were divided into 2 groups of 20 Boxers each based on age. The mean age was 4.54 years (range, 1-8 in group I, and 9.83 years (range, 8.5-12 in group II. The mean latency for I, III, and V waves were 1.14 (±0.07, 2.64 (±0.11, and 3.48 (±0.10 ms in group I, and 1.20 (±0.12, 2.73 (±0.15, and 3.58 (±0.22 ms in group II, respectively. The mean inter-peak latencies for the I-III, III-V and I-V intervals were 1.50 (±0.15, 0.84 (±0.15, and 2.34 (±0.11 ms in group I, and 1.53 (±0.16, 0.85 (±0.15, and 2.38 (±0.19 ms in group II, respectively. Latencies of waves I and III were significant different between group I and II. For the I-III, III-V and I-V intervals, no significant differences were observed between the 2 groups. As far as we know, this is the first normative study of BAEP obtained from Boxer dogs.

  5. Visual Evoked Potential to Assess Retinopathy in Gestational Diabetes Mellitus.

    Science.gov (United States)

    Hari Kumar, K V S; Ahmad, F M H; Sood, Sandeep; Mansingh, Sudhir

    2016-04-01

    We evaluated for early retinopathy using the visual evoked potential (VEP) in patients with gestational diabetes mellitus (GDM) and type 2 diabetes mellitus during pregnancy. All patients with GDM and type 2 diabetes seen between June and October of 2014 were included in this cross-sectional, observational study. Patients with secondary diabetes, ocular or major illness were excluded from the study. VEP was recorded in both eyes to derive prominent positive peak latency (P100), amplitude and initial negative deflection (N75) latency. The data were compared with 10 gestational age-matched controls with normal glucose tolerance. Appropriate statistical methods were used for comparison among the 3 groups. The study participants (40 with GDM, 10 with type 2 diabetes, 10 with normal glucose tolerance) had a median (25th to 75th interquartile range) age of 26 (24.3, 30) years, a gestational age of 24.5 (21, 27) weeks and weights of 66.8 (63.4, 71.5) kg. The P100 latencies were comparable among the 3 groups (p=0.0577). However, patients with any diabetes (GDM and type 2 diabetes) had prolonged P100 latencies (p=0.0139) and low P100 amplitudes (p=0.0391) in comparison to controls. P100 latency showed a direct correlation with hyperglycemia (p=0.0118). Our data showed that VEP abnormalities are detectable even in the short-term hyperglycemia of GDM and type 2 diabetes. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  6. Do resting brain dynamics predict oddball evoked-potential?

    Directory of Open Access Journals (Sweden)

    Lee Tien-Wen

    2011-11-01

    Full Text Available Abstract Background The oddball paradigm is widely applied to the investigation of cognitive function in neuroscience and in neuropsychiatry. Whether cortical oscillation in the resting state can predict the elicited oddball event-related potential (ERP is still not clear. This study explored the relationship between resting electroencephalography (EEG and oddball ERPs. The regional powers of 18 electrodes across delta, theta, alpha and beta frequencies were correlated with the amplitude and latency of N1, P2, N2 and P3 components of oddball ERPs. A multivariate analysis based on partial least squares (PLS was applied to further examine the spatial pattern revealed by multiple correlations. Results Higher synchronization in the resting state, especially at the alpha spectrum, is associated with higher neural responsiveness and faster neural propagation, as indicated by the higher amplitude change of N1/N2 and shorter latency of P2. None of the resting quantitative EEG indices predict P3 latency and amplitude. The PLS analysis confirms that the resting cortical dynamics which explains N1/N2 amplitude and P2 latency does not show regional specificity, indicating a global property of the brain. Conclusions This study differs from previous approaches by relating dynamics in the resting state to neural responsiveness in the activation state. Our analyses suggest that the neural characteristics carried by resting brain dynamics modulate the earlier/automatic stage of target detection.

  7. [Present situation and development of ocular vestibular-evoked myogenic potential].

    Science.gov (United States)

    Hu, Juan; Xu, Min; Zhang, Qing

    2013-04-01

    Myogenic potentials evoked by air conducted sound (ACS), bone conducted vibration (BCV) or galvanic pulses can be recorded with surface electrodes over contracted muscles. These myogenic potentials are of vestibular origin (utricle and saccule) and so these potentials are called vestibular evoked myogenic potentials (VEMPs). Since the vestibular system has projections to many muscle systems, there are many such VEMPs. In this review, we discuss the generated origin, response pathway, waveform characteristics and clinical application of ocular vestibular-evoked myogenic potential (oVEMP).

  8. The Nature and Process of Development in Averaged Visually Evoked Potentials: Discussion on Pattern Structure.

    Science.gov (United States)

    Izawa, Shuji; Mizutani, Tohru

    This paper examines the development of visually evoked EEG patterns in retarded and normal subjects. The paper focuses on the averaged visually evoked potentials (AVEP) in the central and occipital regions of the brain in eyes closed and eyes open conditions. Wave pattern, amplitude, and latency are examined. The first section of the paper reviews…

  9. The effect of changes in perilymphatic K+ on the vestibular evoked potential in the guinea pig

    NARCIS (Netherlands)

    Kingma, C. M.; Wit, H. P.

    2010-01-01

    To investigate the effect on the functioning of the vestibular system of a rupture of Reissner's membrane, artificial endolymph was injected in scala media of ten guinea pigs and vestibular evoked potentials (VsEPs), evoked by vertical acceleration pulses, were measured. Directly after injection of

  10. Direct motor evoked potentials and cortical mapping using the NIM® nerve monitoring system: A technical note.

    Science.gov (United States)

    Bharadwaj, Suparna; Haji, Faizal; Hebb, Matthew; Chui, Jason

    2017-04-01

    Motor evoked potentials (MEPs) are commonly used to prevent neurological injury when operating in close proximity to the motor cortex or corticospinal pathway. We report a novel application of the NIM® nerve monitoring system (Medtronic@ NIM response 3.0) for intraoperative direct cortical (dc)-MEPs monitoring. A 69-year-old female patient presented with a 4month history of progressive left hemiparesis resulting from a large right sided posterior frontal meningioma that abutted and compressed the motor cortex. Motor cortical mapping and MEPs were indicated. The patient was anesthetized and maintained on total intravenous anesthetics. Compound muscle action potentials (CMAP) of the right upper limb were monitored using the NIM system. After a craniotomy was performed, we first used the Ojemann stimulator (monopolar) for dc-stimulation and then switched to use the monopolar nerve stimulator probe of the NIM system. The CMAP response was successfully elicited using the NIM stimulating probe (pulse width=250s, train frequency=7pulses/s, current=20mA). A gross total resection of the tumor was achieved with intermittent cortical mapping of MEPs. There were no intraoperative complications and the patient's motor function was preserved after the surgery. In this case, we reported the successful use of the NIM nerve monitoring system to elicit dc-MEPs under general anesthesia. The advantages of using this system include a simple set up and application, neurosurgeon familiarity, wide availability and lower cost. dc-MEPs can be achieved using the NIM system. We conclude that the NIM nerve monitoring system is a feasible alternative to standard neurophysiological monitoring systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Modulation of Cortical Motor Evoked Potential After Stroke During Electrical Stimulation of the Lateral Cerebellar Nucleus.

    Science.gov (United States)

    Park, Hyun-Joo; Furmaga, Havan; Cooperrider, Jessica; Gale, John T; Baker, Kenneth B; Machado, Andre G

    2015-01-01

    Deep brain stimulation (DBS) targeting the dentato-thalamo-cortical (DTC) pathway at its origin in the lateral cerebellar nucleus (LCN) has been shown to enhance motor recovery in a rodent model of cortical ischemia. LCN DBS also yielded frequency-specific changes in motor cortex excitability in the normal brain, indexed by motor evoked potential (MEP) amplitude. To investigate the effect of cortical stroke on cortical motor excitability in a rodent ischemia model and to measure the effects of LCN DBS on post-ischemia excitability as a function of stimulation parameters. Adult Sprague-Dawley rats were divided into two groups: naïve and stroke, with cortical ischemia induced through multiple, unilateral endothelin-1 injections. All animals were implanted with a bipolar electrode in the LCN opposite the affected hemisphere. MEPs were elicited from the affected hemisphere using intracortical microstimulation (ICMS) techniques. Multiple LCN DBS parameters were examined, including isochronal stimulation at 20, 30, 50, and 100 Hz as well as a novel burst stimulation pattern. ICMS-evoked MEPs were reduced in stroke (n = 10) relative to naïve (n = 12) animals. However, both groups showed frequency-dependent augmentation of cortical excitability in response to LCN DBS. In the naïve group, LCN DBS increased MEPs by 22-58%, while in the stroke group, MEPs were enhanced by 9-41% compared to OFF-DBS conditions. Activation of the DTC pathway increases cortical excitability in both naïve and post-stroke animals. These effects may underlie, at least partially, functional reorganization and therapeutic benefits associated with chronic LCN DBS in post-stroke animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The potential for using visual elicitation in understanding preschool ...

    African Journals Online (AJOL)

    We explore the use of video and photo elicitation in a research study undertaken to understand the way in which preschool teachers perceive and construct their provision of children's educational experiences. We explore the value of visually elicited interviews based on video footage and photographs captured during ...

  13. [Auditory evoked potential and personality traits in chronic primary insomniacs].

    Science.gov (United States)

    Shen, Jian; Shui, Ren-de; Feng, Lei; Liu, Yu-Hong; He, Wei; Huang, Jing-Yi; Wang, Wei

    2009-05-01

    To investigate the personality traits and intensity dependence of auditory evoked potentials (AEPs) in chronic primary insomnia. Thirty-seven patients with chronic primary insomnia (insomnia group) and 44 healthy subjects (control group) were enrolled in the study. The AEPs were examined in insomnia and control groups; the personality traits were studied by Zuckerman's Sensation Seeking Scales (SSS) and Zuckerman-Kuhlman's Personality Questionnaire (ZKPQ); and the mood states by Plutchik-van Praag's Depression Inventory (PVP). The scores of neuroticism-anxiety and depression in insomnia group were significantly higher than those in control group (P<0.01); and the scores of impulsivity and aggression-hostility were also higher than those in control group (P<0.05); N1-P2 amplitude of AEP increased with stimulus intensity, which were significantly different in 70, 80, 90,100 dB (P<0.01). There were significant correlations between activity and N1 latency at 80 dB, activity and P2 latency at 100 dB (r=0.270, r=0.276, P<0.05); and between total scores of sensation seeking scale and N1-P2 amplitude (r=0.3746, r=0.35329, P<0.01) at 70 and 90 dB stimulus intensity in insomnia group. There were significant correlations among experience seeking and N1-P2 amplitude, experience seeking and slope rate (P<0.01) at 70, 80, 90, 100 dB stimulus intensity in insomnia group (r=0.539, r=0.3439, r=0.439, r=0.3278). There were significant correlations between sensation seeking of boredom susceptibility and slope rate (r=-0.282998, P<0.05) in insomnia group. There were significant correlations between thrill and adventure seeking and N1-P2 amplitude(r=0.2789, P<0.05) at 90 dB stimulus intensity in insomnia group; there were significant correlations between PVP and N1-P2 amplitude (r=-0.3434, r=-0.3158, P<0.05) at 70 dB and N1 latency at 80 dB in insomnia group. Chronic primary insomnia sufferers have higher levels of neuroticism-anxiety, depression, aggression-hostility and impulsivity

  14. Evaluation of Cervical Vestibular Evoked Myogenic Potential in Subjects with Chronic Noise Exposure.

    Science.gov (United States)

    Abd El Salam, Nehal Mamdouh; Ismail, Elshahat Ibrahem; El Saeed El Sharabasy, Ayman

    2017-12-14

    Noise has been recognized as a major cause of cochlear damage resulting in both tinnitus and hearing loss. On the other hand, damage to the vestibular system, especially the saccule, can be considered as a potential problem. The cervical vestibular-evoked myogenic potentials (cVEMPs) have been established as a clinical test of measuring both sac-cular and inferior vestibular nerve function. Therefore, it is thought to be sensitive to the noise-induced damage to the vestibular system. Accordingly, this study was designed to assess the vestibular system in subjects exposed to noise during work by using cVEMPs. This study was performed in over 60 adult males who were divided into a study group (consisting of 40 adult males) with history of chronic occupational noise exposure and with variable degree of hearing levels and a control group consisting of 20 healthy adults with normal peripheral hearing, with no history of noise exposure and no vestibular complaints. cVEMP recordings were elicited using 95dB nHL click stimuli. There was statistically significant prolonged cVEMP latency of the P13 and N23 waves of the study versus the control groups. As regard to the sense of imbalance, there were significant prolonged cVEMPs latencies in present versus absent sense of imbalance. However, there were statistically insignificant reduced cVEMP amplitudes in present versus absent sense of imbalance. Chronic noise exposure damages the vestibular system especially the saccule in addition to cochlear damage.

  15. A pilot study to record visual evoked potentials during prone spine surgery using the SightSaver™ photic visual stimulator.

    Science.gov (United States)

    Soffin, E M; Emerson, R G; Cheng, J; Mercado, K; Smith, K; Beckman, J D

    2017-12-20

    This is a pilot study to assess the clinical safety and efficacy of recording real-time flash visual evoked potentials (VEPs) using the SightSaver TM Visual Stimulator mask during prone spine surgery. A prospective, observational pilot study. Twenty patients presenting for spine surgery (microdiscectomy, 1-2 level lumbar fusion, or > 2 levels thoraco-lumbar fusion) were enrolled. The SightSaver™ Visual Stimulator™ was used to elicit VEPs throughout surgery. Somatosensory evoked potentials (SSEPs) were simultaneously recorded. All patients underwent general anesthesia with a combination of intravenous and inhaled agents. The presence, absence, and changes in VEP were qualitatively analyzed. Reproducible VEPs were elicited in 18/20 patients (36/40 eyes). VEPs were exquisitely sensitive to changes in anesthesia and decayed with rising MAC of isoflurane and/or N 2 O. Decrements in VEPs were observed without concomitant changes in SSEPs. The mask was simple to apply and use and was not associated with adverse effects. The SightSaver™ mask represents an emerging technology for monitoring developing visual insults during surgery. The definitive applications remain to be determined, but likely include use in select patients and/or surgeries. Here, we have validated the device as safe and effective, and show that VEPs can be recorded in real time under general anesthesia in the prone position. Future studies should be directed towards understanding the ideal anesthetic regimen to facilitate stable VEP recording during prone spine surgery.

  16. Analysis of facial motor evoked potentials for assessing a central mechanism in hemifacial spasm.

    Science.gov (United States)

    Wilkinson, Marshall F; Chowdhury, Tumul; Mutch, W Alan; Kaufmann, Anthony M

    2017-02-01

    OBJECTIVE Hemifacial spasm (HFS) is a cranial nerve hyperactivity disorder characterized by unique neurophysiological features, although the underlying pathophysiology remains disputed. In this study, the authors compared the effects of desflurane on facial motor evoked potentials (MEPs) from the spasm and nonspasm sides of patients who were undergoing microvascular decompression (MVD) surgery to test the hypothesis that HFS is associated with a central elevation of facial motor neuron excitability. METHODS Facial MEPs were elicited in 31 patients who were undergoing MVD for HFS and were administered total intravenous anesthesia (TIVA) with or without additional desflurane, an inhaled anesthetic known to centrally suppress MEPs. All measurements were completed before dural opening while a consistent mean arterial blood pressure was maintained and electroencephalography was performed. The activation threshold voltage and mean amplitudes of the MEPs from both sides of the face were compared. RESULTS There was a significantly lower mean activation threshold of facial MEPs on the spasm side than on the nonspasm side (mean ± SD 162.9 ± 10.1 vs 198.3 ± 10.1 V, respectively; p = 0.01). In addition, MEPs were also elicited more readily when single-pulse transcranial electrical stimulation was used on the spasm side (74% vs 31%, respectively; p = 0.03). Although desflurane (1 minimum alveolar concentration) suppressed facial MEPs on both sides, the suppressive effects of desflurane were less on the spasm side than on the nonspasm side (59% vs 79%, respectively; p = 0.03), and M waves recorded from the mentalis muscle remained unchanged, which indicates that desflurane did not affect the peripheral facial nerve or neuromuscular junction. CONCLUSIONS Centrally acting inhaled anesthetic agents can suppress facial MEPs and therefore might interfere with intraoperative monitoring. The elevated motor neuron excitability and differential effects of desflurane between the spasm

  17. Differences in early sensory-perceptual processing in synesthesia: a visual evoked potential study.

    Science.gov (United States)

    Barnett, Kylie J; Foxe, John J; Molholm, Sophie; Kelly, Simon P; Shalgi, Shani; Mitchell, Kevin J; Newell, Fiona N

    2008-11-15

    Synesthesia is a condition where stimulation of a single sensory modality or processing stream elicits an idiosyncratic, yet reliable perception in one or more other modalities or streams. Various models have been proposed to explain synesthesia, which have in common aberrant cross-activation of one cortical area by another. This has been observed directly in cases of linguistic-color synesthesia as cross-activation of the 'color area', V4, by stimulation of the grapheme area. The underlying neural substrates that mediate cross-activations in synesthesia are not well understood, however. In addition, the overall integrity of the visual system has never been assessed and it is not known whether wider differences in sensory-perceptual processing are associated with the condition. To assess whether fundamental differences in perceptual processing exist in synesthesia, we utilised high-density 128-channel electroencephalography (EEG) to measure sensory-perceptual processing using stimuli that differentially bias activation of the magnocellular and parvocellular pathways of the visual system. High and low spatial frequency gratings and luminance-contrast squares were presented to 15 synesthetes and 15 controls. We report, for the first time, early sensory-perceptual differences in synesthetes relative to non-synesthete controls in response to simple stimuli that do not elicit synesthetic color experiences. The differences are manifested in the early sensory components of the visual evoked potential (VEP) to stimuli that bias both magnocellular and parvocellular responses, but are opposite in direction, suggesting a differential effect on these two pathways. We discuss our results with reference to widespread connectivity differences as a broader phenotype of synesthesia.

  18. The potential for using visual elicitation in understanding preschool ...

    African Journals Online (AJOL)

    We explore the use of video and photo elicitation in a research study undertaken to ... text, since “photography remains closely tied to identity, memory, and presence” ... photographing … influences how the fieldworker is received in the field”.

  19. NLP-12 engages different UNC-13 proteins to potentiate tonic and evoked release.

    Science.gov (United States)

    Hu, Zhitao; Vashlishan-Murray, Amy B; Kaplan, Joshua M

    2015-01-21

    A neuropeptide (NLP-12) and its receptor (CKR-2) potentiate tonic and evoked ACh release at Caenorhabditis elegans neuromuscular junctions. Increased evoked release is mediated by a presynaptic pathway (egl-30 Gαq and egl-8 PLCβ) that produces DAG, and by DAG binding to short and long UNC-13 proteins. Potentiation of tonic ACh release persists in mutants deficient for egl-30 Gαq and egl-8 PLCβ and requires DAG binding to UNC-13L (but not UNC-13S). Thus, NLP-12 adjusts tonic and evoked release by distinct mechanisms. Copyright © 2015 the authors 0270-6474/15/351038-05$15.00/0.

  20. Steady-state visually evoked potential correlates of human body perception.

    Science.gov (United States)

    Giabbiconi, Claire-Marie; Jurilj, Verena; Gruber, Thomas; Vocks, Silja

    2016-11-01

    In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.

  1. Specific neck training induces sustained corticomotor hyperexcitability as assessed by motor evoked potentials.

    Science.gov (United States)

    Rittig-Rasmussen, Bjarne; Kasch, Helge; Fuglsang-Frederiksen, Anders; Jensen, Troels S; Svensson, Peter

    2013-07-15

    Experimental investigation of short-term and long-term corticomotor effects of specific neck training, coordination training, and no training. To determine the effects of different training programs on the motor neurons controlling the neck muscles as well as the effects of training on muscle strength and muscle fatigue, and the correlations between corticomotor control and motor learning. Training is usually recommended for unspecific neck pain and consists of neck and upper body coordination, strengthening, and endurance exercises. However, it is unclear which type of training is the most effective. No studies have previously investigated the neural effect of neck training and the possible differential effect of specific versus coordination training on corticomotor control. Transcranial magnetic stimulation and electromyography were used to elicit and monitor motor evoked potentials (MEPs) from the trapezius and thumb muscles before and 30 minutes, 1 hour, and 7 days after training. Parameters measured were MEP amplitude, MEP latency, strength, learning effects, and muscle fatigue. Only specific neck training yielded a 67% increase in MEP amplitudes for up to 7 days after training compared with baseline (P coordination training, no training, and in the within-subject control muscle. The mean muscle strength increased immediately after specific neck training from 56.6 to 61 kg (P fatigue were observed. Specific neck training induced a sustained hyperexcitability of motor neurons controlling the neck muscles compared with coordination training and controls. These findings may prove valuable in the process of developing more effective clinical training programs for unspecific neck pain.

  2. Preservation of motor maps with increased motor evoked potential amplitude threshold in RMT determination.

    Science.gov (United States)

    Lucente, Giuseppe; Lam, Steven; Schneider, Heike; Picht, Thomas

    2018-02-01

    Non-invasive pre-surgical mapping of eloquent brain areas with navigated transcranial magnetic stimulation (nTMS) is a useful technique linked to the improvement of surgical planning and patient outcomes. The stimulator output intensity and subsequent resting motor threshold determination (rMT) are based on the motor-evoked potential (MEP) elicited in the target muscle with an amplitude above a predetermined threshold of 50 μV. However, a subset of patients is unable to achieve complete relaxation in the target muscles, resulting in false positives that jeopardize mapping validity with conventional MEP determination protocols. Our aim is to explore the feasibility and reproducibility of a novel mapping approach that investigates how an increase of the MEP amplitude threshold to 300 and 500 μV affects subsequent motor maps. Seven healthy subjects underwent motor mapping with nTMS. RMT was calculated with the conventional methodology in conjunction with experimental 300- and 500-μV MEP amplitude thresholds. Motor mapping was performed with 105% of rMT stimulator intensity using the FDI as the target muscle. Motor mapping was possible in all patients with both the conventional and experimental setups. Motor area maps with a conventional 50-μV threshold showed poor correlation with 300-μV (α = 0.446, p motor area maps (α = 0.974, p motor area mapping with nTMS without losing precision.

  3. Interaction of Musicianship and Aging: A Comparison of Cortical Auditory Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Jennifer L. O’Brien

    2015-01-01

    Full Text Available Objective. The goal of this study was to begin to explore whether the beneficial auditory neural effects of early music training persist throughout life and influence age-related changes in neurophysiological processing of sound. Design. Cortical auditory evoked potentials (CAEPs elicited by harmonic tone complexes were examined, including P1-N1-P2, mismatch negativity (MMN, and P3a. Study Sample. Data from older adult musicians (n=8 and nonmusicians (n=8 (ages 55–70 years were compared to previous data from young adult musicians (n=40 and nonmusicians (n=20 (ages 18–33 years. Results. P1-N1-P2 amplitudes and latencies did not differ between older adult musicians and nonmusicians; however, MMN and P3a latencies for harmonic tone deviances were earlier for older musicians than older nonmusicians. Comparisons of P1-N1-P2, MMN, and P3a components between older and young adult musicians and nonmusicians suggest that P1 and P2 latencies are significantly affected by age, but not musicianship, while MMN and P3a appear to be more sensitive to effects of musicianship than aging. Conclusions. Findings support beneficial influences of musicianship on central auditory function and suggest a positive interaction between aging and musicianship on the auditory neural system.

  4. Neural generators of the auditory evoked potential components P3a and P3b.

    Science.gov (United States)

    Wronka, Eligiusz; Kaiser, Jan; Coenen, Anton M L

    2012-01-01

    The aim of the present study was to define the scalp topography of the two subcomponents of the P3 component of the auditory evoked potential elicited in a three-stimulus oddball paradigm and to identify their cortical generators using the standardized low resolution electromagnetic tomography (sLORETA). Subjects were presented with a random sequence of auditory stimuli and instructed to respond to an infrequently occurring target stimulus inserted into a sequence of frequent standard and rare non-target stimuli. Results show that the magnitude of the frontal P3a is determined by the relative physical difference among stimuli, as it was larger for the stimulus more deviant from the standard. Major neural generators of the P3a were localized within frontal cortex and anterior cingulate gyrus. In contrast to this, the P3b, showing maximal amplitude at parietal locations, was larger for stimuli demanding a response than for the rare non-target. Major sources of the P3b included the superior parietal lobule and the posterior part of the cingulate gyrus. Our findings are in line with the hypothesis that P3a is related to alerting activity during the initial allocation of attention, while P3b is related to activation of a posterior network when the neuronal model of perceived stimulation is compared with the attentional trace.

  5. Evaluation of an automated analysis for pain-related evoked potentials

    Directory of Open Access Journals (Sweden)

    Wulf Michael

    2017-09-01

    Full Text Available This paper presents initial steps towards an auto-mated analysis for pain-related evoked potentials (PREP to achieve a higher objectivity and non-biased examination as well as a reduction in the time expended during clinical daily routines. While manually examining, each epoch of an en-semble of stimulus-locked EEG signals, elicited by electrical stimulation of predominantly intra-epidermal small nerve fibers and recorded over the central electrode (Cz, is in-spected for artifacts before calculating the PREP by averag-ing the artifact-free epochs. Afterwards, specific peak-latencies (like the P0-, N1 and P1-latency are identified as certain extrema in the PREP’s waveform. The proposed automated analysis uses Pearson’s correlation and low-pass differentiation to perform these tasks. To evaluate the auto-mated analysis’ accuracy its results of 232 datasets were compared to the results of the manually performed examina-tion. Results of the automated artifact rejection were compa-rable to the manual examination. Detection of peak-latencies was more heterogeneous, indicating some sensitivity of the detected events upon the criteria used during data examina-tion.

  6. Intraoperative tractography and motor evoked potential (MEP) monitoring in surgery for gliomas around the corticospinal tract.

    Science.gov (United States)

    Maesawa, Satoshi; Fujii, Masazumi; Nakahara, Norimoto; Watanabe, Tadashi; Wakabayashi, Toshihiko; Yoshida, Jun

    2010-07-01

    Our goal is to indicate the importance of combining intraoperative tractography with motor-evoked potential (MEP) monitoring for glioma surgery in motor eloquent areas. Tumor removal was performed in 28 patients with gliomas in and around the corticospinal tract (CST), in an operation theater equipped with an integrated high-field intraoperative magnetic resonance imaging and a neuronavigation system. Diffusion-tensor imaging-based tractography of the CST was implemented preoperatively and intraoperatively. When the surgically manipulated area came close to the corticospinal pathway, MEP responses were elicited by subcortical stimulation. Responsive areas were compared with the locations of fibers traced by preoperative and intraoperative tractography. Imaging and functional outcomes were reviewed. Intraoperative tractography demonstrated significant inward or outward shift during surgery. MEP responses were observed around the tract at various intensities, and the distance between MEP responsive sites and intraoperative tractography was significantly correlated with the stimulation intensity (P MEP monitoring can enhance the quality of surgery for gliomas in motor eloquent areas. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Quantifying interhemispheric symmetry of somatosensory evoked potentials with the intraclass correlation coefficient

    NARCIS (Netherlands)

    van de Wassenberg, Wilma J. G.; van der Hoeven, Johannes H.; Leenders, Klaus L.; Maurits, Natasha M.

    Although large intersubject variability is reported for cortical somatosensory evoked potentials (SEPs), variability between hemispheres within one subject is thought to be small. Therefore, interhemispheric comparison of SEP waveforms might be clinically useful to detect unilateral abnormalities in

  8. Clinical Evaluation of the Vestibular Nerve Using Vestibular Evoked Myogenic Potentials.

    Science.gov (United States)

    Bogle, Jamie M

    2018-01-01

    Vestibular evoked myogenic potentials are currently the most clinically accessible method to evaluate the otolith reflex pathways. These responses provide unique information regarding the status of the utriculo-ocular and sacculo-collic reflex pathways, information that has previously been unavailable. Vestibular evoked myogenic potentials are recorded from tonically contracted target muscles known to be innervated by these respective otolith organs. Diagnosticians can use vestibular evoked myogenic potentials to better evaluate the overall integrity of the inner ear and neural pathways; however, there are specific considerations for each otolith reflex protocol. In addition, specific patient populations may require protocol variations to better evaluate atypical function of the inner ear organs, vestibular nerve transmission, or subsequent reflex pathways. This is a review of the clinical application and interpretation of cervical and ocular vestibular evoked myogenic potentials.

  9. Visual evoked potentials in Negro carriers of the gene for tyrosinase positive oculocutaneous albinism.

    Science.gov (United States)

    Castle, D; Kromberg, J; Kowalsky, R; Moosa, R; Gillman, N; Zwane, E; Fritz, V

    1988-01-01

    Visual evoked potential testing was performed on 15 Negro carriers of the gene for tyrosinase positive oculocutaneous albinism in order to detect whether they have the same visual pathway decussation anomalies as do homozygotes. No subject showed 01-02 asymmetry on monocular testing, indicating that decussation follows the normal pattern. It is concluded that visual evoked potential testing is probably not useful in the detection of Negroes heterozygous for the gene for tyrosinase positive oculocutaneous albinism. PMID:3148727

  10. Awareness during anaesthesia for surgery requiring evoked potential monitoring: A pilot study

    Directory of Open Access Journals (Sweden)

    Pritish J Korula

    2017-01-01

    Full Text Available Background: Evoked potential monitoring such as somatosensory-evoked potential (SSEP or motor-evoked potential (MEP monitoring during surgical procedures in proximity to the spinal cord requires minimising the minimum alveolar concentrations (MACs below the anaesthetic concentrations normally required (1 MAC to prevent interference in amplitude and latency of evoked potentials. This could result in awareness. Our primary objective was to determine the incidence of awareness while administering low MAC inhalational anaesthetics for these unique procedures. The secondary objective was to assess the adequacy of our anaesthetic technique from neurophysiologist′s perspective. Methods: In this prospective observational pilot study, 61 American Society of Anesthesiologists 1 and 2 patients undergoing spinal surgery for whom intraoperative evoked potential monitoring was performed were included; during the maintenance phase, 0.7-0.8 MAC of isoflurane was targeted. We evaluated the intraoperative depth of anaesthesia using a bispectral (BIS index monitor as well as the patients response to surgical stimulus (PRST scoring system. Post-operatively, a modified Bruce questionnaire was used to verify awareness. The adequacy of evoked potential readings was also assessed. Results: Of the 61 patients, no patient had explicit awareness. Intraoperatively, 19 of 61 patients had a BIS value of above sixty at least once, during surgery. There was no correlation with PRST scoring and BIS during surgery. Fifty-four out of 61 patient′s evoked potential readings were deemed ′good′ or ′fair′ for the conduct of electrophysiological monitoring. Conclusions: This pilot study demonstrates that administering low MAC inhalational anaesthetics to facilitate evoked potential monitoring does not result in explicit awareness. However, larger studies are needed to verify this. The conduct of SSEP electrophysiological monitoring was satisfactory with the use of this

  11. Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals.

    Science.gov (United States)

    Sayenko, Dimitry G; Angeli, Claudia; Harkema, Susan J; Edgerton, V Reggie; Gerasimenko, Yury P

    2014-03-01

    Epidural stimulation (ES) of the lumbosacral spinal cord has been used to facilitate standing and voluntary movement after clinically motor-complete spinal-cord injury. It seems of importance to examine how the epidurally evoked potentials are modulated in the spinal circuitry and projected to various motor pools. We hypothesized that chronically implanted electrode arrays over the lumbosacral spinal cord can be used to assess functionally spinal circuitry linked to specific motor pools. The purpose of this study was to investigate the functional and topographic organization of compound evoked potentials induced by the stimulation. Three individuals with complete motor paralysis of the lower limbs participated in the study. The evoked potentials to epidural spinal stimulation were investigated after surgery in a supine position and in one participant, during both supine and standing, with body weight load of 60%. The stimulation was delivered with intensity from 0.5 to 10 V at a frequency of 2 Hz. Recruitment curves of evoked potentials in knee and ankle muscles were collected at three localized and two wide-field stimulation configurations. Epidural electrical stimulation of rostral and caudal areas of lumbar spinal cord resulted in a selective topographical recruitment of proximal and distal leg muscles, as revealed by both magnitude and thresholds of the evoked potentials. ES activated both afferent and efferent pathways. The components of neural pathways that can mediate motor-evoked potentials were highly dependent on the stimulation parameters and sensory conditions, suggesting a weight-bearing-induced reorganization of the spinal circuitries.

  12. Evoked Potentials in Motor Cortical Local Field Potentials Reflect Task Timing and Behavioral Performance

    Science.gov (United States)

    Confais, Joachim; Ponce-Alvarez, Adrián; Diesmann, Markus; Riehle, Alexa

    2010-01-01

    Evoked potentials (EPs) are observed in motor cortical local field potentials (LFPs) during movement execution (movement-related potentials [MRPs]) and in response to relevant visual cues (visual evoked potentials [VEPs]). Motor cortical EPs may be directionally selective, but little is known concerning their relation to other aspects of motor behavior, such as task timing and performance. We recorded LFPs in motor cortex of two monkeys during performance of a precued arm-reaching task. A time cue at the start of each trial signaled delay duration and thereby the pace of the task and the available time for movement preparation. VEPs and MRPs were strongly modulated by the delay duration, VEPs being systematically larger in short-delay trials and MRPs larger in long-delay trials. Despite these systematic modulations related to the task timing, directional selectivity was similar in short and long trials. The behavioral reaction time was positively correlated with MRP size and negatively correlated with VEP size, within sessions. In addition, the behavioral performance improved across sessions, in parallel with a slow decrease in the size of VEPs and MRPs. Our results clearly show the strong influence of the behavioral context and performance on motor cortical population activity during movement preparation and execution. PMID:20884766

  13. Characterization of Motor and Somatosensory Evoked Potentials in the Yucatan Micropig Using Transcranial and Epidural Stimulation.

    Science.gov (United States)

    Benavides, Francisco D; Santamaria, Andrea J; Bodoukhin, Nikita; Guada, Luis G; Solano, Juan P; Guest, James D

    2017-09-15

    Yucatan micropigs have brain and spinal cord dimensions similar to humans and are useful for certain spinal cord injury (SCI) translational studies. Micropigs are readily trained in behavioral tasks, allowing consistent testing of locomotor loss and recovery. However, there has been little description of their motor and sensory pathway neurophysiology. We established methods to assess motor and sensory cortical evoked potentials in the anesthetized, uninjured state. We also evaluated epidurally evoked motor and sensory stimuli from the T6 and T9 levels, spanning the intended contusion injury epicenter. Response detection frequency, mean latency and amplitude values, and variability of evoked potentials were determined. Somatosensory evoked potentials were reliable and best detected during stimulation of peripheral nerve and epidural stimulation by referencing the lateral cortex to midline Fz. The most reliable hindlimb motor evoked potential (MEP) occurred in tibialis anterior. We found MEPs in forelimb muscles in response to thoracic epidural stimulation likely generated from propriospinal pathways. Cranially stimulated MEPs were easier to evoke in the upper limbs than in the hindlimbs. Autopsy studies revealed substantial variations in cortical morphology between animals. This electrophysiological study establishes that neurophysiological measures can be reliably obtained in micropigs in a time frame compatible with other experimental procedures, such as SCI and transplantation. It underscores the need to better understand the motor control pathways, including the corticospinal tract, to determine which therapeutics are suitable for testing in the pig model.

  14. Long-Term Visuo-Gustatory Appetitive and Aversive Conditioning Potentiate Human Visual Evoked Potentials.

    Science.gov (United States)

    Christoffersen, Gert R J; Laugesen, Jakob L; Møller, Per; Bredie, Wender L P; Schachtman, Todd R; Liljendahl, Christina; Viemose, Ida

    2017-01-01

    Human recognition of foods and beverages are often based on visual cues associated with flavors. The dynamics of neurophysiological plasticity related to acquisition of such long-term associations has only recently become the target of investigation. In the present work, the effects of appetitive and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared before and 1 day after the pairings. In electrodes located over posterior visual cortex areas, the following changes were observed after conditioning: the amplitude from the N2-peak to the P3-peak increased and the N2 peak delay was reduced. The percentage increase of N2-to-P3 amplitudes was asymmetrically distributed over the posterior hemispheres despite the fact that the images were bilaterally symmetrical across the two visual hemifields. The percentage increases of N2-to-P3 amplitudes in each experimental subject correlated with the subject's evaluation of positive or negative hedonic valences of the two juices. The results from 118 scalp electrodes gave surface maps of theta power distributions showing increased power over posterior visual areas after the pairings. Source current distributions calculated from swLORETA revealed that visual evoked currents rose as a result of conditioning in five cortical regions-from primary visual areas and into the inferior temporal gyrus (ITG). These learning-induced changes were seen after both appetitive and aversive training while a sham trained control group showed no changes. It is concluded that long-term visuo-gustatory conditioning potentiated the N2-P3 complex, and it is suggested that the changes are regulated by the perceived hedonic valence of the US.

  15. Slow excitatory synaptic potentials evoked by distension in myenteric descending interneurones of guinea-pig ileum

    Science.gov (United States)

    Thornton, P D J; Bornstein, J C

    2002-01-01

    The functional significance of the slow excitatory synaptic potentials (EPSPs) in myenteric neurones is unknown. We investigated this using intracellular recording from myenteric neurones in guinea-pig ileum, in vitro. In all, 121 neurones responded with fast EPSPs to distension of the intestine oral to the recording site. In 28 of these neurones, distension also evoked depolarizations similar to the slow EPSPs evoked by electrical stimulation in the same neurones. Intracellular injection of biocytin and immunohistochemistry revealed that neurones responding to distension with slow EPSPs were descending interneurones, which were immunoreactive for nitric oxide synthase (NOS). Other neurones, including inhibitory motor neurones and interneurones lacking NOS, did not respond to distension with slow EPSPs, but many had slow EPSPs evoked electrically. Slow EPSPs evoked electrically or by distension in NOS-immunoreactive descending interneurones were resistant to blockade of NK1 or NK3 tachykinin receptors (SR 140333, 100 nm; SR 142801, 100 nm, respectively) and group I metabotropic glutamate receptors (PHCCC, 10–30 μm), when the antagonists were applied in the recording chamber of a two-chambered organ bath. However, slow EPSPs evoked electrically in inhibitory motor neurones were substantially depressed by SR 140333 (100 nm). Blockade of synaptic transmission in the stimulation chamber of the organ bath abolished slow EPSPs evoked by distension, indicating that they arose from activity in interneurones, and not from anally directed, intrinsic sensory neurones. Thus, distension evokes slow EPSPs in a subset of myenteric neurones, which may be important for intestinal motility. PMID:11882690

  16. Somatosensory evoked potential recovery in kii amyotrophic lateral sclerosis/parkinsonism-dementia complex (kii AlS/PDC).

    Science.gov (United States)

    Machii, Katsuyuki; Ugawa, Yoshikazu; Kokubo, Yasumasa; Sasaki, Ryogen; Kuzuhara, Shigeki

    2003-03-01

    To evaluate the recovery function of the sensory cortex in patients with Kii amyotrophic lateral sclerosis/parkinsonism-dementia complex (Kii ALS/PDC) using somatosensory evoked potentials (SEPs) elicited by paired stimuli of the median nerve at the wrist. Five patients with Kii ALS/PDC were compared with 5 patients with classical ALS, 5 with Parkinson's disease (PD), and 7 healthy normal volunteers. SEPs were recorded from the hand sensory area contralateral to the side of stimulation. Recovery functions of N20-P25 and P25-N33 components were evaluated by comparing the second SEPs elicited by paired pulse stimuli at various interstimulus intervals (ISIs, 20-300 ms) with the SEPs elicited by single stimuli. Conventional SEPs to a single stimulus had a normal latency and size in all patients. The recovery function of the N20-P25 and P25-N33 components showed significantly less suppression at short ISIs without any facilitation at long ISIs in Kii ALS/PDC patients than in normal subjects, classical ALS or PD patients. In Kii ALS/PDC, the sensory cortex is disinhibited or hyperexcitable. These abnormalities may reflect cortical pathology in the sensory cortex and may be partly due to a secondary effect on the sensory cortex from the primary parkinsonian pathological changes.

  17. Somatosensory evoked potentials in the telencephalon of Atlantic salmon (Salmo salar) following galvanic stimulation of the tail.

    Science.gov (United States)

    Nordgreen, Janicke; Horsberg, Tor Einar; Ranheim, Birgit; Chen, Andrew C N

    2007-12-01

    Electric activity in the brain which is time-locked to a given stimulation of the somatosensory system can be recorded as a somatosensory evoked potential (SEP). We investigated whether a galvanic stimulation of the tail base in Atlantic salmon (Salmo salar) would elicit a SEP in the telencephalon. The telencephalon is central in learning and memory, and activity here may be a prerequisite for processing of external stimuli on a cognitive or emotional level. Anaesthetized salmon (n = 11) were subjected to craniotomy and a recording electrode was inserted into the telencephalon. The fish were given stimulations of four intensities, i.e., 2, 5, 10 and 20 mA. A SEP was elicited in the contralateral dorsal telencephalon for all intensities. This result agrees with findings in other fish species. Furthermore, there was a significant difference between the maximum peak amplitude and mean amplitude of the SEP elicited by putative non-noxious (2 mA) and putative noxious (20 mA) stimulation intensities (P stimulation intensities also tend to introduce longer-latencies components in the SEP. The results added to the body of literature indicates that the exteroceptive senses are represented by processing within the telencephalon of the fish.

  18. [The use of short-latency auditory evoked potentials in the diagnosis of acoustic neurinomas].

    Science.gov (United States)

    Baliazin, V A; Bakhtin, O M; Bu Khaled, Kh E; Filatova, V S

    1993-01-01

    The short-latent acoustic evoked potentials in patients with unilateral neurosensory hypoacusis due to the tumor of the acoustic nerve or other etiology were recorded. It was found that the patients had no potential in the diseased area in monaural sound stimulation, but binaural sound stimulation enabled these potentials to be recorded. With this, the short-latent acoustic evoked potentials in patients with verified neurinoma showed a reduction in the third wave to the point of its disappearance. Those in patients whose neurosensory hypoacusis were unassociated with the development of neoplasms in the area of the acoustic nerve involve the third wave whose magnitude did not differ from that recorded in the examinees with otologically normal hearing. The authors propose to measure the third wave of the short-latent acoustic evoked potential recorded in binaural sound stimulation as a possible screening of persons at a high risk for neurinoma among patients with unilateral neurosensory hypoacusis.

  19. Pattern-reversal visual evoked potentials as a diagnostic tool for ocular malingering

    Directory of Open Access Journals (Sweden)

    Tarciana de Souza Soares

    Full Text Available ABSTRACT Purpose: To investigate the contributions of transient pattern-reversal visual evoked potentials in the diagnosis of ocular malingering at a Brazilian university hospital. Methods: Adult patients with suspected malingering in one or both eyes were referred for visual evoked potential testing. Data from patients' medical records were reviewed and analyzed retrospectively. Data analysis included the distance optotype visual acuity based on a ETDRS retro-illuminated chart and the transient pattern-reversal visual evoked potential parameters of latency (milliseconds and amplitude (microvolts for the P100 component, using checkerboards with visual subtenses of 15' and 60'. Motivations for malingering were noted. Results: The 20 subjects included 11 (55% women. Patient ages ranged from 21 to 61 years (mean= 45.05 ± 11.76 years; median= 49 years. In 8 patients (6 women, both eyes exhibited reduced visual acuity with normal pattern-reversal visually evoked potential parameters (pure malingerers. The remaining 12 patients (7 men exhibited reduced vision in only 1 eye, with simulated reduced vision in the contralateral eye (exaggerators. Financial motivation was noted in 18 patients (9 men. Conclusion: Normal pattern-reversal visually evoked potential parameters with suspected ocular malingering were observed in a 20 patient cohort. This electrophysiological technique appeared to be useful as a measure of visual pathway integrity in this specific population.

  20. Test-Retest of Long Latency Auditory Evoked Potentials (P300) with Pure Tone and Speech Stimuli.

    Science.gov (United States)

    Perez, Ana Paula; Ziliotto, Karin; Pereira, Liliane Desgualdo

    2017-04-01

    Introduction Long latency auditory evoked potentials, especially P300, have been used for clinical evaluation of mental processing. Many factors can interfere with Auditory Evoked Potential - P300 results, suggesting large intra and inter-subject variations. Objective The objective of the study was to identify the reliability of P3 components (latency and amplitude) over 4-6 weeks and the most stable auditory stimulus with the best test-retest agreement. Methods Ten normal-hearing women participated in the study. Only subjects without auditory processing problems were included. To determine the P3 components, we elicited long latency auditory evoked potential (P300) by pure tone and speech stimuli, and retested after 4-6 weeks using the same parameters. We identified P300 latency and amplitude by waveform subtraction. Results We found lower coefficient of variation values in latency than in amplitude, with less variability analysis when speech stimulus was used. There was no significant correlation in latency measures between pure tone and speech stimuli, and sessions. There was a significant intrasubject correlation between measures of latency and amplitude. Conclusion These findings show that amplitude responses are more robust for the speech stimulus when compared with its pure tone counterpart. The P300 indicated stability for latency and amplitude measures when the test-retest was applied. Reliability was higher for amplitude than for latency, with better agreement when the pure tone stimulus was used. However, further research with speech stimulus is needed to clarify how these stimuli are processed by the nervous system.

  1. Increased Evoked Potentials to Arousing Auditory Stimuli during Sleep: Implication for the Understanding of Dream Recall.

    Science.gov (United States)

    Vallat, Raphael; Lajnef, Tarek; Eichenlaub, Jean-Baptiste; Berthomier, Christian; Jerbi, Karim; Morlet, Dominique; Ruby, Perrine M

    2017-01-01

    High dream recallers (HR) show a larger brain reactivity to auditory stimuli during wakefulness and sleep as compared to low dream recallers (LR) and also more intra-sleep wakefulness (ISW), but no other modification of the sleep macrostructure. To further understand the possible causal link between brain responses, ISW and dream recall, we investigated the sleep microstructure of HR and LR, and tested whether the amplitude of auditory evoked potentials (AEPs) was predictive of arousing reactions during sleep. Participants (18 HR, 18 LR) were presented with sounds during a whole night of sleep in the lab and polysomnographic data were recorded. Sleep microstructure (arousals, rapid eye movements (REMs), muscle twitches (MTs), spindles, KCs) was assessed using visual, semi-automatic and automatic validated methods. AEPs to arousing (awakenings or arousals) and non-arousing stimuli were subsequently computed. No between-group difference in the microstructure of sleep was found. In N2 sleep, auditory arousing stimuli elicited a larger parieto-occipital positivity and an increased late frontal negativity as compared to non-arousing stimuli. As compared to LR, HR showed more arousing stimuli and more long awakenings, regardless of the sleep stage but did not show more numerous or longer arousals. These results suggest that the amplitude of the brain response to stimuli during sleep determine subsequent awakening and that awakening duration (and not arousal) is the critical parameter for dream recall. Notably, our results led us to propose that the minimum necessary duration of an awakening during sleep for a successful encoding of dreams into long-term memory is approximately 2 min.

  2. Predictive Value of Intraoperative Facial Motor Evoked Potentials in Vestibular Schwannoma Surgery Under 2 Anesthesia Protocols.

    Science.gov (United States)

    Ling, Miao; Tao, Xiaorong; Ma, Siyuan; Yang, Xiaocui; Liu, Li; Fan, Xing; Jia, Guijun; Qiao, Hui

    2017-12-16

    We sought to validate the feasibility of facial motor evoked potential (FMEP) in facial nerve (FN) monitoring during vestibular schwannoma (VS) surgery under 2 anesthesia protocols and to examine its value for postoperative prognosis. This prospective study included 106 patients with VS who underwent microsurgical excision between May 2014 and November 2016 at the Beijing Tiantan Hospital, Capital Medical University, China. All patients were investigated for FMEP elicited by transcranial electrical stimulation in the contralateral facial motor cortex. The patients randomly received total intravenous anesthesia or combined intravenous-inhalation anesthesia. Postoperative FN function was evaluated 7-10 days after surgery (short-term) and at the last follow-up (long-term) using the House-Brackmann (HB) grading system. HB grades 1 and 2 were deemed satisfactory, whereas HB grades 3-6 were deemed unsatisfactory. The value of the final-to-start FMEP ratio for predicting short-term and long-term postoperative FN functions was examined. Valid FMEPs were obtained in 97 patients, which were recorded from the mentalis muscle. The FMEP amplitude ratio was significantly correlated with short-term and long-term postoperative FN functions. Receiver operating characteristic curve analysis showed that the FMEP ratio cut-off values of 77.4% (area under the curve = 0.797) and 56.9% (area under the curve = 0.900) predicted satisfactory FN function 7-10 days after surgery and at the last follow-up, respectively. No statistically significant difference was found in FMEP quantitative parameters between the 2 anesthesia protocols. The FMEP amplitude ratio is a valuable predictor for postoperative FN function. FMEP ratio ≥57% is predictive of satisfactory long-term FN function. Copyright © 2017. Published by Elsevier Inc.

  3. Effects of rotation on the sleep state-dependent midlatency auditory evoked P50 potential in the human

    Science.gov (United States)

    Dornhoffer, John L.; Mamiya, N.; Bray, P.; Skinner, Robert D.; Garcia-Rill, Edgar

    2002-01-01

    Sopite syndrome, characterized by loss of initiative, sensitivity to normally innocuous sensory stimuli, and impaired concentration amounting to a sensory gating deficit, is commonly associated with Space Motion Sickness (SMS). The amplitude of the P50 potential is a measure of level of arousal, and a paired-stimulus paradigm can be used to measure sensory gating. We used the rotary chair to elicit the sensory mismatch that occurs with SMS by overstimulating the vestibular apparatus. The effects of rotation on the manifestation of the P50 midlatency auditory evoked response were then assessed as a measure of arousal and distractibility. Results showed that rotation-induced motion sickness produced no change in the level of arousal but did produce a significant deficit in sensory gating, indicating that some of the attentional and cognitive deficits observed with SMS may be due to distractibility induced by decreased habituation to repetitive stimuli.

  4. The origin of pattern reversal short latency visual evoked potential as determined by dynamic topography and the dipole tracing method.

    Science.gov (United States)

    Kawashima, S; Kobayashi, Y; Nishikiori, O; Tabuchi, A

    1996-01-01

    The generator sites of the parietal P59 and occipital N26 components elicited by hemi-field pattern reversal stimuli were investigated. The topographic distribution of the occipital N26 component showed a paradoxical lateralization, whereas that of the parietal P59 component exhibited an anatomical lateralization. The equivalent dipoles of both occipital N26 and parietal P59 components were situated on the deep mesial surface of the functioning occipital lobe. The differences in these locations were not statistically significant, but the vector moment of the parietal P59 component projected toward the functioning parieto-occipital region and one of the occipital N26 components projected away from the functioning occipital region. The generator sites of the short latency component were considered to differ from those of the middle latency visual evoked potential. Therefore both the occipital pole and the deep cerebral structure, i.e., the lateral geniculate nucleus, may play a role in the generation of equivalent dipoles.

  5. Motor-Evoked Potential Confirmation of Functional Improvement by Transplanted Bone Marrow Mesenchymal Stem Cell in the Ischemic Rat Brain

    Directory of Open Access Journals (Sweden)

    Dong-Kyu Jang

    2011-01-01

    Full Text Available This study investigated the effect of bone marrow mesenchymal stem cells (BMSCs on the motor pathway in the transient ischemic rat brain that were transplanted through the carotid artery, measuring motor-evoked potential (MEP in the four limbs muscle and the atlantooccipital membrane, which was elicited after monopolar and bipolar transcortical stimulation. After monopolar stimulation, the latency of MEP was significantly prolonged, and the amplitude was less reduced in the BMSC group in comparison with the control group (<.05. MEPs induced by bipolar stimulation in the left forelimb could be measured in 40% of the BMSC group and the I wave that was not detected in the control group was also detected in 40% of the BMSC group. Our preliminary results imply that BMSCs transplanted to the ischemic rat brain mediate effects on the functional recovery of the cerebral motor cortex and the motor pathway.

  6. Classification of Auditory Evoked Potentials based on the wavelet decomposition and SVM network

    Directory of Open Access Journals (Sweden)

    Michał Suchocki

    2015-12-01

    Full Text Available For electrophysiological hearing assessment and diagnosis of brain stem lesions, the most often used are auditory brainstem evoked potentials of short latency. They are characterized by successively arranged maxima as a function of time, called waves. Morphology of the course, in particular, the timing and amplitude of each wave, allow a neurologist to make diagnose, what is not an easy task. A neurologist should be experienced, concentrated, and should have very good perception. In order to support his diagnostic process, the authors have developed an algorithm implementing the automated classification of auditory evoked potentials to the group of pathological and physiological cases, the sensitivity and specificity determined for an independent test group (of 50 cases of respectively 84% and 88%.[b]Keywords[/b]: biomedical engineering, brainstem auditory evoked potentials, wavelet decomposition, support vector machine

  7. An indirect component in the evoked compound action potential of the vagal nerve

    Science.gov (United States)

    Ordelman, Simone C. M. A.; Kornet, Lilian; Cornelussen, Richard; Buschman, Hendrik P. J.; Veltink, Peter H.

    2010-12-01

    The vagal nerve plays a vital role in the regulation of the cardiovascular system. It not only regulates the heart but also sends sensory information from the heart back to the brain. We hypothesize that the evoked vagal nerve compound action potential contains components that are indirect via the brain stem or coming via the neural network on the heart. In an experimental study of 15 pigs, we identified four components in the evoked compound action potentials. The fourth component was found to be an indirect component, which came from the periphery. The latency of the indirect component increased when heart rate and contractility were decreased by burst stimulation (P = 0.01; n = 7). When heart rate and contractility were increased by dobutamine administration, the latency of the indirect component decreased (P = 0.01; n = 9). This showed that the latency of the indirect component of the evoked compound action potentials may relate to the state of the cardiovascular system.

  8. Predictability of painful stimulation modulates the somatosensory-evoked potential in the rat

    NARCIS (Netherlands)

    Schaap, M.W.H.|info:eu-repo/dai/nl/314411488; van Oostrom, H.|info:eu-repo/dai/nl/340414634; Doornenbal, A.; Baars, A.M.; Arndt, S.S.|info:eu-repo/dai/nl/30483615X; Hellebrekers, L.J.|info:eu-repo/dai/nl/073499234

    2013-01-01

    Abstract Somatosensory-evoked potentials (SEPs) are used in humans and animals to increase knowledge about nociception and pain. Since the SEP in humans increases when noxious stimuli are administered unpredictably, predictability potentially influences the SEP in animals as well. To assess the

  9. Exploring the methods of data analysis in multifocal visual evoked potentials

    DEFF Research Database (Denmark)

    Malmqvist, Lasse; Santiago de Abreu, Lucimar; Fraser, C.

    2016-01-01

    Purpose: The multifocal visual evoked potential (mfVEP) provides a topographical assessment of visual function, which has already shown potential for use in patients with glaucoma and multiple sclerosis. However, the variability in mfVEP measurements has limited its broader application. The purpose...

  10. Effects of single cycle binaural beat duration on auditory evoked potentials.

    Science.gov (United States)

    Mihajloski, Todor; Bohorquez, Jorge; Özdamar, Özcan

    2014-01-01

    Binaural beat (BB) illusions are experienced as continuous central pulsations when two sounds with slightly different frequencies are delivered to each ear. It has been shown that steady-state auditory evoked potentials (AEPs) to BBs can be captured and investigated. The authors recently developed a new method of evoking transient AEPs to binaural beats using frequency modulated stimuli. This methodology was able to create single BBs in predetermined intervals with varying carrier frequencies. This study examines the effects of the BB duration and the frequency modulating component of the stimulus on the binaural beats and their evoked potentials. Normal hearing subjects were tested with a set of four durations (25, 50, 100, and 200 ms) with two stimulation configurations, binaural dichotic (binaural beats) and diotic (frequency modulation). The results obtained from the study showed that out of the given durations, the 100 ms beat, was capable of evoking the largest amplitude responses. The frequency modulation effect showed a decrease in peak amplitudes with increasing beat duration until their complete disappearance at 200 ms. Even though, at 200 ms, the frequency modulation effects were not present, the binaural beats were still perceived and captured as evoked potentials.

  11. Anticancer potential evoked by Pleurotus florida and Calocybe ...

    African Journals Online (AJOL)

    The therapeutic potential of the two medicinal mushroom varieties, P. florida and C. indica against T24 urinary bladder cancer cell lines were determined by the MTT assay and DNA fragmentation assay. The results obtained from the MTT assay and DNA fragmentation assay in this study showed the anti-tumour potential of ...

  12. Effects of etidocaine administered epidurally on changes in somatosensory evoked potentials after dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1991-01-01

    The effect of lumbar epidural anesthesia with similar volumes (approximately 20 ml) of 1% and 1.5% etidocaine on early (less than 0.5 seconds) somatosensory evoked potentials (SEPs) to electrical stimulation of the S1, L1, and T10 dermatomes was examined in two groups of ten patients in a randomi......The effect of lumbar epidural anesthesia with similar volumes (approximately 20 ml) of 1% and 1.5% etidocaine on early (less than 0.5 seconds) somatosensory evoked potentials (SEPs) to electrical stimulation of the S1, L1, and T10 dermatomes was examined in two groups of ten patients...

  13. Transient brain activity explains the spectral content of steady-state visual evoked potentials.

    Science.gov (United States)

    Gaume, Antoine; Vialatte, François; Dreyfus, Gérard

    2014-01-01

    Steady-state visual evoked potentials (SSVEPs) are widely used in the design of brain-computer interfaces (BCIs). A lot of effort has therefore been devoted to find a fast and reliable way to detect SSVEPs. We study the link between transient and steady-state VEPs and show that it is possible to predict the spectral content of a subject's SSVEPs by simulating trains of transient VEPs. This could lead to a better understanding of evoked potentials as well as to better performances of SSVEP-based BCIs, by providing a tool to improve SSVEP detection algorithms.

  14. Selecting the smoothing parameter for estimation of slowly changing evoked potential signals.

    Science.gov (United States)

    Raz, J; Turetsky, B; Fein, G

    1989-09-01

    Brain evoked potential (EP) data consist of a true response ("signal") and random background activity ("noise"), which are observed over repeated stimulus presentations ("trials"). A signal that changes slowly from trial to trial can be estimated by smoothing across trials and over time within trials. We present a method for selecting the smoothing parameter by minimizing an estimate of the mean average squared error (MASE). We evaluate the performance of this method using simulated EP data, and apply the method to an example set of real flash evoked potentials.

  15. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...... contralateral to stimulus side and additionally an unexpected 20 Hz activity was observed slightly lateralized in the frontal central region. The gamma phase locking may be a manifestation of early somatosensory feature integration. The analyses suggest that the high frequency activity consists of two distinct...

  16. Visual acuity of the midland banded water snake estimated from evoked telencephalic potentials.

    Science.gov (United States)

    Baker, Robert A; Gawne, Timothy J; Loop, Michael S; Pullman, Sheena

    2007-08-01

    The visual acuity of seven midland banded water snakes was measured by recording evoked responses from telencephalon to temporally modulated square wave grating patterns. Using conventional electrophysiological techniques and signal averaging, high contrast square wave gratings of different spatial frequencies were presented. Acuity was estimated by extrapolating relative response amplitude/log(10) spatial frequency functions which yielded an average acuity of 4.25 cycles/degree. Refractive state was also estimated by recording evoked potentials to intermediate spatial frequencies with different lenses in front of the eye. Polynomial fits indicated that under the experimental conditions the snakes were around 6.4 diopters hyperopic suggesting a corrected acuity of 4.89 cycles/degree. Reduction of grating luminance resulted in a reduction in evoked potential acuity measurements. These results indicate that the spatial resolution of midland banded water snakes is the equal of cat; about 20/120 in human clinical terms.

  17. Predictability of painful stimulation modulates the somatosensory-evoked potential in the rat.

    Directory of Open Access Journals (Sweden)

    Manon W H Schaap

    Full Text Available Somatosensory-evoked potentials (SEPs are used in humans and animals to increase knowledge about nociception and pain. Since the SEP in humans increases when noxious stimuli are administered unpredictably, predictability potentially influences the SEP in animals as well. To assess the effect of predictability on the SEP in animals, classical fear conditioning was applied to compare SEPs between rats receiving SEP-evoking electrical stimuli either predictably or unpredictably. As in humans, the rat's SEP increased when SEP-evoking stimuli were administered unpredictably. These data support the hypothesis that the predictability of noxious stimuli plays a distinctive role in the processing of these stimuli in animals. The influence of predictability should be considered when studying nociception and pain in animals. Additionally, this finding suggests that animals confronted with (unpredictable noxious stimuli can be used to investigate the mechanisms underlying the influence of predictability on central processing of noxious stimuli.

  18. Minocycline inhibits D-amphetamine-elicited action potential bursts in a central snail neuron.

    Science.gov (United States)

    Chen, Y-H; Lin, P-L; Wong, R-W; Wu, Y-T; Hsu, H-Y; Tsai, M-C; Lin, M-J; Hsu, Y-C; Lin, C-H

    2012-10-25

    Minocycline is a second-generation tetracycline that has been reported to have powerful neuroprotective properties. In our previous studies, we found that d-amphetamine (AMPH) elicited action potential bursts in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. This study sought to determine the effects of minocycline on the AMPH-elicited action potential pattern changes in the central snail neuron, using the two-electrode voltage clamping method. Extracellular application of AMPH at 300 μM elicited action potential bursts in the RP4 neuron. Minocycline dose-dependently (300-900 μM) inhibited the action potential bursts elicited by AMPH. The inhibitory effects of minocycline on AMPH-elicited action potential bursts were restored by forskolin (50 μM), an adenylate cyclase activator, and by dibutyryl cAMP (N(6),2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate; 1mM), a membrane-permeable cAMP analog. Co-administration of forskolin (50 μM) plus tetraethylammonium chloride (TEA; 5mM) or co-administration of TEA (5mM) plus dibutyryl cAMP (1mM) also elicited action potential bursts, which were prevented and inhibited by minocycline. In addition, minocycline prevented and inhibited forskolin (100 μM)-elicited action potential bursts. Notably, TEA (50mM)-elicited action potential bursts in the RP4 neuron were not affected by minocycline. Minocycline did not affect steady-state outward currents of the RP4 neuron. However, minocycline did decrease the AMPH-elicited steady-state current changes. Similarly, minocycline decreased the effects of forskolin-elicited steady-state current changes. Pretreatment with H89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride; 10 μM), a protein kinase A inhibitor, inhibited AMPH-elicited action potential bursts and decreased AMPH-elicited steady-state current changes. These results suggest that the cAMP-protein kinase A signaling pathway and the steady-state current are involved in

  19. The efficiency of simultaneous binaural ocular vestibular evoked myogenic potentials: a comparative study with monaural acoustic stimulation in healthy subjects.

    Science.gov (United States)

    Kim, Min-Beom; Ban, Jae Ho

    2012-12-01

    To evaluate the test-retest reliability and convenience of simultaneous binaural acoustic-evoked ocular vestibular evoked myogenic potentials (oVEMP). Thirteen healthy subjects with no history of ear diseases participated in this study. All subjects underwent oVEMP test with both separated monaural acoustic stimulation and simultaneous binaural acoustic stimulation. For evaluating test-retest reliability, three repetitive sessions were performed in each ear for calculating the intraclass correlation coefficient (ICC) for both monaural and binaural tests. We analyzed data from the biphasic n1-p1 complex, such as latency of peak, inter-peak amplitude, and asymmetric ratio of amplitude in both ears. Finally, we checked the total time required to complete each test for evaluating test convenience. No significant difference was observed in amplitude and asymmetric ratio in comparison between monaural and binaural oVEMP. However, latency was slightly delayed in binaural oVEMP. In test-retest reliability analysis, binaural oVEMP showed excellent ICC values ranging from 0.68 to 0.98 in latency, asymmetric ratio, and inter-peak amplitude. Additionally, the test time was shorter in binaural than monaural oVEMP. oVEMP elicited from binaural acoustic stimulation yields similar satisfactory results as monaural stimulation. Further, excellent test-retest reliability and shorter test time were achieved in binaural than in monaural oVEMP.

  20. Vestibular-evoked myogenic potentials in miniature pigs

    Directory of Open Access Journals (Sweden)

    Xi Shi

    2016-06-01

    Conclusion: The latencies and thresholds of VEMPs recorded from the neck extensor muscle and the masseter muscle appear to be comparable in normal adult Bama miniature pigs, although the amplitude recorded from the neck extensor muscle seems to be higher than that from the masseter muscle. However, because of their usually relatively superficial and easily accessible location, as well as their large volume and strong contractions, masseter muscles may be better target muscles for recording myogenic potentials.

  1. Brainstem Auditory Evoked Potentials in Patients with Subarachnoid Haemorrhage

    Directory of Open Access Journals (Sweden)

    Mikhail Matveev

    2009-10-01

    Full Text Available Objective. The aim of the present study is to typify BAEPs configurations of patients with different location of lesions caused by subarachnoid haemorrhage (SAH and the ensuing complications, in view of assessing the auditory-brainstem system disturbance.Methods. The typization was performed by comparing BAEPs with standard patterns from two sets of types of BAEPs by ipsilateral and binaural stimulation and by cross-stimulation.Results. 94 BAEPs were used for collection of normal referential values: for the absolute latencies and the absolute amplitudes of waves I, II, III, IV and V; for inter-peak latencies I-III, II-III, III-V, I-V and II-V; for amplitude ratios I/V and III/V. 146 BAEPs of patients with mild SAH and 55 from patients with severe SAH, were typified. In 5 types of BAEPs out of a total of 11, the percentage of the potentials in patients with mild SAH and severe SAH differed significantly (p<0.01.Conclusions. The use of sets of types of BAEPs by ipsilateral, binaural and cross-stimulation correctly classifies the potentials in patients with mild and severe SAH.

  2. Sensory gating of auditory evoked potentials in rats: Effects of repetitive stimulation and the interstimulus interval

    NARCIS (Netherlands)

    Bruin, N.M.W.J. de; Ellenbroek, B.A.; Schaijk, W.J. van; Cools, A.R.; Coenen, A.M.L.; Luijtelaar, E.L.J.M. van

    2001-01-01

    In the P50 gating or conditioning-testing (C-T) paradigm, the P50 response, a small positive midlatency (~50 ms after stimulus onset) component of the human auditory evoked potential (AEP), is reduced towards the second click (S2) as compared to the response to the first click (S1). This phenomenon

  3. Sensory gating of auditory evoked potentials in rats: effects of repetitive stimulation and the interstimulus interval.

    NARCIS (Netherlands)

    Bruin, N.M.W.J. de; Ellenbroek, B.A.; Schaijk, W.J. van; Cools, A.R.; Coenen, A.M.L.; Luijtelaar, E.L.J.M. van

    2001-01-01

    In the P50 gating or conditioning-testing (C-T) paradigm, the P50 response, a small positive midlatency ( approximately 50 ms after stimulus onset) component of the human auditory evoked potential (AEP), is reduced towards the second click (S2) as compared to the response to the first click (S1).

  4. Effect of surgery on sensory threshold and somatosensory evoked potentials after skin stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1990-01-01

    We have studied the effect of surgical injury on cutaneous sensitivity and somatosensory evoked potentials (SSEP) to dermatomal electrical stimulation in 10 patients undergoing hysterectomy. Forty-eight hours after surgery, sensory threshold increased from 2.2 (SEM 0.3) mA to 4.4 (1.1) mA (P less...

  5. Effect of epidural 0.25% bupivacaine on somatosensory evoked potentials to dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1989-01-01

    The effect of lumbar epidural analgesia with similar volumes (about 25 ml) of 0.25% and 0.5% bupivacaine on early (less than 0.5 seconds) somatosensory evoked potentials (SEPs) to electrical stimulation of the S1, L1, and T10 dermatomes was examined in two groups of ten patients. Level of sensory...

  6. The influence of diazepam on the electroencephalogram-evoked potential interrelation in rats

    NARCIS (Netherlands)

    Jongsma, M.L.A.; Rijn, C.M. van; Egmond, J. van; Schaijk, W.J. van; Sambeth, A.; Coenen, A.M.L.

    2000-01-01

    Though being a sedative increases b-activity in the electroencephalogram (EEG). Diazepam also affects auditory evoked potentials (AEPs). We investigated if the effect of diazepam on AEPs could be ascribed to its b-increasing effect. Eight rats received vehicle and diazepam counterbalanced. AEPs were

  7. Influence of rotating shift work on visual reaction time and visual evoked potential.

    Science.gov (United States)

    R V, Hemamalini; N, Krishnamurthy; A, Saravanan

    2014-10-01

    The present day life style is changing the circadian rhythm of the body especially in rotating night shift workers. The impact of this prolongs their reaction time. Night shift also interferes with the circadian variation of pupil size which may affect the visual evoked potential. To compare the visual reaction time, visual evoked potential (VEP) in rotating night shift workers & day workers and also to correlate the changes in visual reaction time with visual evoked potential. Forty healthy male security guards & staff (25 - 35 y) who did rotating night shifts at least for six months & 40 d workers (25 - 35 y) who did not do night shift in last two years were involved in the study. Visual reaction time and the latency & amplitude of VEP were recorded. Kolmogorov- Smirnov test for normalcy showed the latencies & amplitude of VEP to be normally distributed. Student's unpaired t test showed significant difference (ptime and in the latencies of VEP between night shift & day workers. There was no significant difference in the amplitude of VEP. Night shift workers who are prone to circadian rhythm alteration will have prolonged visual reaction time & visual evoked potential abnormalities. Implementation of Bright Light Therapy would be beneficial to the night shift worker.

  8. Analysis of gender based differences in auditory evoked potentials among healthy elderly population

    Directory of Open Access Journals (Sweden)

    Sharat Gupta

    2014-01-01

    Full Text Available Background: Influence of gender on auditory evoked potentials is contentious. Although there are quite a few studies documenting the gender as an influencing factor on auditory evoked potentials in younger subjects, but there is a lack of similar studies among elderly population. The present study was conducted to find out the pattern of gender based differences in auditory evoked potentials among healthy elderly subjects. Materials and Methods: A cross-sectional study was conducted on age matched, healthy males (n = 35 and females (n = 34, aged 50-70 years. The measures included latencies of waves I-V and interpeak latencies (IPL I-III, III-V and I-V separately for both ears. Data was analyzed statistically using Students unpaired t-test, using Statistical Package for Social Sciences software v13.0. Results: The values of all the latencies and IPL for both the ears were non-significantly higher (P > 0.05 in males as compared to females. These results may be attributed to the differences in head circumference between both the genders and to the changed hormonal milieu of sex hormones after menopause. Conclusions: Statistical insignificance of latencies among male and female elderly subjects excludes gender as an influencing factor on auditory evoked potentials in this age group.

  9. Influence of Rotating Shift Work on Visual Reaction Time and Visual Evoked Potential

    OpenAIRE

    R.V., Hemamalini; N, Krishnamurthy; A, Saravanan

    2014-01-01

    Background: The present day life style is changing the circadian rhythm of the body especially in rotating night shift workers. The impact of this prolongs their reaction time. Night shift also interferes with the circadian variation of pupil size which may affect the visual evoked potential.

  10. A Steady State Visually Evoked Potential Investigation of Memory and Ageing

    Science.gov (United States)

    Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard

    2009-01-01

    Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and…

  11. Effect of extradural morphine on somatosensory evoked potentials to dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Selmar, P; Hansen, O B

    1987-01-01

    The effect of the extradural (L2-3) administration of morphine 6 mg on early (less than 0.5 s) somatosensory evoked cortical potentials (SEP) to electrical stimulation of the L1- and S1-dermatomes was examined in eight patients. Extradural morphine did not influence SEP amplitude. SEP latency did...

  12. Multimodal evoked potentials follow up in multiple sclerosis patients under fingolimod therapy

    DEFF Research Database (Denmark)

    Iodice, R; Carotenuto, A; Dubbioso, R

    2016-01-01

    BACKGROUND: Clinical trials have shown the therapeutic effect of fingolimod in reducing disease activity in relapsing-remitting multiple sclerosis (RR-MS), but its influence on nervous conduction assessed by evoked potentials (EPs) has not been previously investigated. METHODS: EP data of 20...

  13. Feasibility and performance evaluation of generating and recording visual evoked potentials using ambulatory Bluetooth based system.

    Science.gov (United States)

    Ellingson, Roger M; Oken, Barry

    2010-01-01

    Report contains the design overview and key performance measurements demonstrating the feasibility of generating and recording ambulatory visual stimulus evoked potentials using the previously reported custom Complementary and Alternative Medicine physiologic data collection and monitoring system, CAMAS. The methods used to generate visual stimuli on a PDA device and the design of an optical coupling device to convert the display to an electrical waveform which is recorded by the CAMAS base unit are presented. The optical sensor signal, synchronized to the visual stimulus emulates the brain's synchronized EEG signal input to CAMAS normally reviewed for the evoked potential response. Most importantly, the PDA also sends a marker message over the wireless Bluetooth connection to the CAMAS base unit synchronized to the visual stimulus which is the critical averaging reference component to obtain VEP results. Results show the variance in the latency of the wireless marker messaging link is consistent enough to support the generation and recording of visual evoked potentials. The averaged sensor waveforms at multiple CPU speeds are presented and demonstrate suitability of the Bluetooth interface for portable ambulatory visual evoked potential implementation on our CAMAS platform.

  14. Use of epidurally derived evoked potentials for quantification of caudal nociception in ponies

    NARCIS (Netherlands)

    van Loon, J.P.A.M.; Stienen, P.J.; Doornenbal, A.; Hellebrekers, L.J.

    2009-01-01

    Am J Vet Res. 2009 Jul;70(7):813-9. Use of epidurally derived evoked potentials for quantification of caudal nociception in ponies. van Loon JP, Stienen PJ, Doornenbal A, Hellebrekers LJ. Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The

  15. Nociception-related somatosensory evoked potentials in awake dogs recorded after intra epidermal electrical stimulation

    NARCIS (Netherlands)

    van Oostrom, H.; Stienen, P.J.; Doornenbal, A.; Hellebrekers, L.J.

    2009-01-01

    Eur J Pain. 2009 Feb;13(2):154-60. Epub 2008 May 16. Nociception-related somatosensory evoked potentials in awake dogs recorded after intra epidermal electrical stimulation. van Oostrom H, Stienen PJ, Doornenbal A, Hellebrekers LJ. Department of Clinical Sciences of Companion Animals, Division

  16. Rhythmic context influences the auditory evoked potentials of musicians and nonmusicians

    NARCIS (Netherlands)

    Jongsma, M.L.A.; Desain, P.W.M.; Honing, H.J.

    2004-01-01

    In this study, we investigated how rhythms are processed in the brain by measuring both behaviourally obtained ratings and auditory evoked potentials (AEPs) from the EEG. We presented probe beats on seven positions within a test bar. Two bars of either a duple- or triple meter rhythm preceded probe

  17. Facilitation of soleus but not tibialis anterior motor evoked potentials before onset of antagonist contraction

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Zuur, Abraham Theodore; Nielsen, Jens Bo

    2008-01-01

    as evidenced by a depression of the soleus H-reflex. The objective of this study was to investigate if motor evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS) show a similar depression prior to and at the onset of contraction of muscles that are antagonists to the muscle in which......Objective: It is well documented that corticospinal projections to motoneurons of one muscle inhibit antagonist motoneurons through collaterals to reciprocally organized spinal inhibitory interneurons. During and just prior to dorsiflexion of the ankle, soleus motoneurons are thus inhibited...... the MEP is evoked. Methods: Seated subjects (n=11) were instructed to react to an auditory cue by contracting either the tibialis anterior (TA) or soleus muscle of the left ankle to 30% of their maximal dorsiflexion voluntary contraction (MVC) or plantar flexion MVC, respectively. Focal TMS at 1.2 x motor...

  18. Motor evoked potentials and compound muscle action potentials as prognostic tools for neonates with spina bifida.

    Science.gov (United States)

    Cuppen, Inge; Geerdink, Niels; Rotteveel, Jan J; Mullaart, Reinier; Roeleveld, Nel; Pasman, Jaco W

    2013-03-01

    MEPs and CMAPs as prognostic tools for spina bifida. The aim of this prospective study was to determine the prognostic value of neurophysiological investigations compared to clinical neurological examination in infants with spina bifida. Thirty-six neonates born with spina bifida between 2002 and 2007 were evaluated and followed for 2 years. Lumbar motor evoked potentials (MEPs) and compound muscle action potentials (CMAPs) were obtained at the median age of 2 days old before surgical closure of the spinal anomaly. MEPs were recorded from the quadriceps femoris, tibialis anterior, and gastrocnemius muscles and CMAPs from the latter two muscles. Areas under the curve and latencies of the MEPs and CMAPs were measured. Clinical neurological outcome at the age of 2 years was described using Muscle Function Classes (MFCs) and ambulation status. The areas under the curve of MEPs and CMAPs in the legs were associated with lower neonatal levels of motor and sensory impairment. Better muscle function class of the lower limbs at 2 years of age was associated with larger MEP and CMAP areas of the gastrocnemius and tibialis anterior muscles at neonatal age. MEPs and CMAPs of the gastrocnemius and tibialis anterior muscles are of prognostic value for clinical neurological outcome in neonates born with spina bifida. Copyright © 2012 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  19. Auditory evoked potentials in patients with dementia of the Alzheimer type.

    Science.gov (United States)

    Grimes, A M; Grady, C L; Pikus, A

    1987-06-01

    Dementia of the Alzheimer type (DAT) disrupts the function of the central auditory nervous system as a result of temporal lobe pathology. Auditory brain stem response (ABR) and middle latency responses (MLR) were studied in a group of patients with DAT to determine whether a correlate of dementia existed in these electrophysiological potentials. Comparison of absolute and interwave latencies on ABR, and absolute latency and amplitude of the MLR in patients with DAT and normal aged controls showed no significant differences between groups for any measure. Further, no relationship with degree of dementia or temporal lobe involvement, as assessed through dichotic speech recognition studies, and auditory evoked potentials could be demonstrated. It was concluded that the temporal lobe atrophy and hypometabolism seen in DAT is not generally sufficient to disrupt the generating of ABR and MLR potentials; however, slow cortical and cognitive evoked potentials may be more sensitive to central auditory nervous system impairment in DAT.

  20. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation.

    Science.gov (United States)

    Kammermeier, Stefan; Singh, Arun; Bötzel, Kai

    2017-01-01

    Human multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation. 14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording. Vestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects ("grand average") bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study. Galvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level. Differential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.

  1. Intermediate Latency-Evoked Potentials of Multimodal Cortical Vestibular Areas: Galvanic Stimulation

    Directory of Open Access Journals (Sweden)

    Stefan Kammermeier

    2017-11-01

    Full Text Available IntroductionHuman multimodal vestibular cortical regions are bilaterally anterior insulae and posterior opercula, where characteristic vestibular-related cortical potentials were previously reported under acoustic otolith stimulation. Galvanic vestibular stimulation likely influences semicircular canals preferentially. Galvanic stimulation was compared to previously established data under acoustic stimulation.Methods14 healthy right-handed subjects, who were also included in the previous acoustic potential study, showed normal acoustic and galvanic vestibular-evoked myogenic potentials. They received 2,000 galvanic binaural bipolar stimuli for each side during EEG recording.ResultsVestibular cortical potentials were found in all 14 subjects and in the pooled data of all subjects (“grand average” bilaterally. Anterior insula and posterior operculum were activated exclusively under galvanic stimulation at 25, 35, 50, and 80 ms; frontal regions at 30 and 45 ms. Potentials at 70 ms in frontal regions and at 110 ms at all of the involved regions could also be recorded; these events were also found using acoustic stimulation in our previous study.ConclusionGalvanic semicircular canal stimulation evokes specific potentials in addition to those also found with acoustic otolith stimulation in identically located regions of the vestibular cortex. Vestibular cortical regions activate differently by galvanic and acoustic input at the peripheral sensory level.SignificanceDifferential effects in vestibular cortical-evoked potentials may see clinical use in specific vertigo disorders.

  2. Motor nervous pathway function is impaired after treatment of childhood acute lymphoblastic leukemia: a study with motor evoked potentials.

    Science.gov (United States)

    Harila-Saari, A H; Huuskonen, U E; Tolonen, U; Vainionpää, L K; Lanning, B M

    2001-03-01

    The objective was to evaluate whether motor nervous pathways are affected when patients are treated for childhood acute lymphoblastic leukemia (ALL). Thirty-two children with ALL were studied at the end of treatment by means of motor evoked potentials (MEPs) elicited by magnetic stimulation (MS) transcranially and peripherally and underwent a detailed neurological examination. Thirty-two healthy children matched with them for age, sex, and height served as a control group. The latencies of the MEPs were significantly prolonged along the entire motor nervous pathway in the patients with ALL compared with the healthy controls, indicating demyelination in the thick motor fibres. The MEP amplitudes of the distal extremities elicited by stimulation at the brachial plexus and LV spinal level were significantly lowered in the patients treated for ALL, also indicating anatomical or functional loss of descending motor fibres and/or muscle fibres. The MEP amplitudes elicited by cortical MS showed wider variation and no clear abnormalities were found. Neurological signs and symptoms were common after treatment: 41% of the patients had depressed deep tendon reflexes, 31% had fine motor difficulties and 63% gross motor difficulties, and 34% had dysdiadochokinesia. The conduction delay within the peripheral nerve was related to the post-therapeutic interval after administration of vincristine and the lesions within the CNS to the number of injections of intrathecal methotrexate. The present results show adverse effects of the ALL treatment on the entire motor nervous pathways. In our experience, the measurement of MEPs by MS provides an objective, painless, and practical tool for assessing the treatment-related neurotoxicity in both the CNS and the peripheral nerves. These disturbances in the motor nervous pathways at the end of treatment raise the question of the long-term effects of ALL treatment on the motor nerve tracts, and have led us to employ MEPs to study these effects

  3. Role of motor evoked potentials in diagnosis of cauda equina and lumbosacral cord lesions.

    Science.gov (United States)

    Di Lazzaro, V; Pilato, F; Oliviero, A; Saturno, E; Dileone, M; Tonali, P A

    2004-12-28

    To determine the diagnostic value of motor evoked potentials (MEPs) in the diagnosis of lumbosacral cord disorders. MEPs in 37 patients with sensory and motor deficits in the lower limbs were studied. MRI demonstrated spinal cord involvement in 10 patients and cauda equina lesions in 27 patients. A double determination of central motor conduction time (CMCT), calculated as the difference between the latencies of responses evoked by cortical and paravertebral magnetic stimulation and as the difference between the latency of cortical MEP and the total peripheral conduction time calculated from the F-wave latency, enabled discrimination between a delay along the proximal root and a delay along the corticospinal tract. An abnormality of the CMCT calculated with both techniques is indicative of central motor pathway damage, whereas an abnormality of the CMCT calculated from the latency of responses evoked by paravertebral magnetic stimulation associated with a normal CMCT calculated from the F-wave latency suggests a cauda equina lesion. Neurophysiologic findings strongly correlated with the lesion site documented by MRI (cauda equina or lumbosacral cord). All patients with MR evidence of cord involvement had an abnormality of CMCT calculated with both methods, suggesting a lesion of central motor pathways. Clinical examination often failed to document a spinal cord lesion, suggesting pure peripheral involvement in 5 of the 10 patients with MR evidence of cord lesion. Motor evoked potential recording is an accurate and easily applicable test for the diagnosis of lumbosacral spinal cord lesions.

  4. Auditory-evoked potentials during coma: do they improve our prediction of awakening in comatose patients?

    Science.gov (United States)

    Rodriguez, Rosendo A; Bussière, Miguel; Froeschl, Michael; Nathan, Howard J

    2014-02-01

    The mismatch negativity (MMN), an auditory event-related potential, has been identified as a good indicator of recovery of consciousness during coma. We explored the predictive value of the MMN and other auditory-evoked potentials including brainstem and middle-latency potentials for predicting awakening in comatose patients after cardiac arrest or cardiogenic shock. Auditory brainstem, middle-latency (Pa wave), and event-related potentials (N100 and MMN waves) were recorded in 17 comatose patients and 9 surgical patients matched by age and coronary artery disease. Comatose patients were followed up daily to determine recovery of consciousness and classified as awakened and nonawakened. Among the auditory-evoked potentials, the presence or absence of MMN best discriminated between patients who awakened or those who did not. Mismatch negativity was present during coma in all patients who awakened (7/7) and in 2 of those (2/10) who did not awaken. In patients who awakened and in whom MMN was detected, 3 of those awakened between 2 and 3 days and 4 between 9 and 21 days after evoked potential examination. All awakened patients had intact N100 waves and identifiable brainstem and middle-latency waves. In nonawakened patients, N100 and Pa waves were detected in 5 cases (50%) and brainstem waves in 9 (90%). The MMN is a good predictor of awakening in comatose patients after cardiac arrest and cardiogenic shock and can be measured days before awakening encouraging ongoing life support. © 2013.

  5. Vestibular Dysfunctions in Cochlear Implant Patients; A Vestibular Evoked Myogenic Potential Study

    Directory of Open Access Journals (Sweden)

    Masoud Motasaddi Zarandy

    2011-12-01

    Full Text Available Background and Aim: Vestibular evoked myogenic potential in response to click or short tone burst stimuli have been used as a clinical test for distinguish saccule and inferior vestibular nerve diseases. Different studies show that cochlear implant could have inverse effects on vestibular structures. We aimed to investigate vestibular evoked myogenic potential in unilateral cochlear implanted individuals in compare to normal individuals.Methods: Thirty-three unilateral cochlear implanted patients (mean age 19.96 years and 30 normal hearing individuals (mean age 24-27 years as control group were enrolled in this cross- sectional study. Absolute latencies and amplitudes of myogenic potential responses were measured and compared in both groups.Results: Myogenic potential recorded in both ears of all controls were normal. No response could be recorded in 16 patients (48.48% from both ears. In three patients, responses were recorded in both ears though the amplitude of waves was reduced in implanted ear. Unilateral response could be recorded in 14 patients only in their non-implanted ear.Conclusion: Vestibular evoked myogenic potential test is a useful tool for assessing saccular function in cochlear implant patients. Damages of osseous spiral lamina and basilar membrane after cochlear implantation could result in dysfunctions of vestibular organs specially saccule. It seems that saccule could be easily damaged after cochlear implantation. This would cause absence or reduced amplitudes in myogenic potential.

  6. Electrocochleography potentials evoked by condensation and rarefaction clicks independently derived by a new numerical filtering approach.

    Science.gov (United States)

    Sparacino, G; Milani, S; Magnavita, V; Arslan, E

    2000-01-01

    The cochlear microphonic potential (CM) and the compound action potential (CAP) cannot be measured separately but only in combination. In the literature their individual estimates are conventionally recovered by the so-called CM cancellation technique. This method averages the potential obtained in response to rarefaction and condensation clicks under the assumption that changing the polarity of the clicks only affects the CM sign and does not alter the CAP in any way. However, both theory and evidence suggest that these hypotheses can be critical. In addition, recent contributions in the electrocochleography (ECochG) literature suggested that assessing the influence of stimulus polarity on the evoked CAP may constitute an indicator of clinical usefulness which the CM cancellation method cannot supply. In this work we propose a new algorithm to estimate the cochlear potentials evoked from positive clicks, CAP+ and CM+, and those evoked from negative clicks, CAP- and CM-, by processing the same kind and amount of data employed in the CM cancellation method. The application to real data taken from 3 subjects exhibiting quantitatively and qualitatively different ECochG responses at various levels of stimulation intensity is presented. In addition, simulated problems where the true CAP and CM are known are studied to permit a fair assessment of the proposed technique. Results suggest that the new algorithm is potentially able to point out small differences between CAP+ and CAP-. This encourages its further employment on a larger scale. Copyright 2000 S. Karger AG, Basel

  7. Does filtering and smoothing of average evoked potentials really pay? A statistical comparison.

    Science.gov (United States)

    Möcks, J; Gasser, T; Köhler, W; De Weerd, J P

    1986-11-01

    Averaging of sweeps to obtain evoked potentials provides an unsatisfactory reduction of the background activity for a small number of stimuli. A posteriori Wiener filtering, time varying filtering, and smoothing of the average EP have been proposed to meet this problem. As to a posteriori Wiener filtering, a controversy regarding its merits has been going on for several years. The present paper gives a statistical comparison of the above methods, based on real data of two groups of subjects (flash evoked potentials in 41 subjects, pattern reversal evoked potentials in 9 subjects). It is shown that most of the improvement of the filtering approaches was due to an attenuation effect, without any improvement in smoothness of the potentials. The strength of the attenuation introduced by the filtering approaches depended on the specific underlying signal-to-noise ratio. This effect led to an artificially enhanced interindividual variability and could intraindividually lead to biased topographical distribution, when several electrodes are considered. The smoothing method did not show this undesired feature, but, when applying strong smoothing, this method also rendered sizable distortions of the potentials.

  8. Pain-related middle-latency somatosensory evoked potentials in the prognosis of post anoxic coma: a preliminary report.

    Science.gov (United States)

    Zanatta, P; Messerotti Benvenuti, S; Baldanzi, F; Bosco, E

    2012-07-01

    Regarding hypoxic-ischemic encephalopathy, while the bilateral absence of N20/P25 somatosensory evoked potentials (SEPs) is considered to be the best indicator of adverse outcomes, the presence of middle latency evoked potentials (MLCEPs) is associated with a favourable neurological prognosis. The main aim of the present study was to investigate whether painful electrical stimulation might be considered a provocative test in producing MLCEPs and predictor of patient's outcomes after cardiac arrest. Retrospective pilot study. SEPs with and without pain-related electrical stimulation in both median nerves were recorded in 17 patients with post anoxic coma after cardiac arrest. Glasgow Coma Scale, electroencephalograms, heart rate and blood pressure changes were also recorded at the same time. Three months after cardiac arrest the same measures with inclusion of Glasgow Outcome Scale Extended were also performed only in the remaining patients with severe neurological outcome. No one intervention was made. Patients who showed MLCEPs had a good outcome, while patients without N20/P25 SEPs but with increases in blood pressure remained in a vegetative state. Patients who did not show N20/P25 SEPs and increase in blood pressure died within one week. Only one patient who showed N20/P25 SEPs was minimally conscious. These preliminary data suggest that MLCEPs elicited by painful electrical stimulation seem to be a sensitive method to predict the neurological outcome of patients in the acute phase of coma. Blood pressure response might be a prognostic physiological measure of survival in the vegetative state in patients without N20/P25 SEPs.

  9. Does navigated transcranial stimulation increase the accuracy of tractography? A prospective clinical trial based on intraoperative motor evoked potential monitoring during deep brain stimulation.

    Science.gov (United States)

    Forster, Marie-Therese; Hoecker, Alexander Claudius; Kang, Jun-Suk; Quick, Johanna; Seifert, Volker; Hattingen, Elke; Hilker, Rüdiger; Weise, Lutz Martin

    2015-06-01

    Tractography based on diffusion tensor imaging has become a popular tool for delineating white matter tracts for neurosurgical procedures. To explore whether navigated transcranial magnetic stimulation (nTMS) might increase the accuracy of fiber tracking. Tractography was performed according to both anatomic delineation of the motor cortex (n = 14) and nTMS results (n = 9). After implantation of the definitive electrode, stimulation via the electrode was performed, defining a stimulation threshold for eliciting motor evoked potentials recorded during deep brain stimulation surgery. Others have shown that of arm and leg muscles. This threshold was correlated with the shortest distance between the active electrode contact and both fiber tracks. Results were evaluated by correlation to motor evoked potential monitoring during deep brain stimulation, a surgical procedure causing hardly any brain shift. Distances to fiber tracks clearly correlated with motor evoked potential thresholds. Tracks based on nTMS had a higher predictive value than tracks based on anatomic motor cortex definition (P < .001 and P = .005, respectively). However, target site, hemisphere, and active electrode contact did not influence this correlation. The implementation of tractography based on nTMS increases the accuracy of fiber tracking. Moreover, this combination of methods has the potential to become a supplemental tool for guiding electrode implantation.

  10. Long latency auditory evoked potentials in children with cochlear implants: systematic review.

    Science.gov (United States)

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Matas, Carla Gentile; Carvalho, Ana Claudia Martinho de

    2013-11-25

    The aim of this study was to analyze the findings on Cortical Auditory Evoked Potentials in children with cochlear implant through a systematic literature review. After formulation of research question and search of studies in four data bases with the following descriptors: electrophysiology (eletrofisiologia), cochlear implantation (implante coclear), child (criança), neuronal plasticity (plasticidade neuronal) and audiology (audiologia), were selected articles (original and complete) published between 2002 and 2013 in Brazilian Portuguese or English. A total of 208 studies were found; however, only 13 contemplated the established criteria and were further analyzed; was made data extraction for analysis of methodology and content of the studies. The results described suggest rapid changes in P1 component of Cortical Auditory Evoked Potentials in children with cochlear implants. Although there are few studies on the theme, cochlear implant has been shown to produce effective changes in central auditory path ways especially in children implanted before 3 years and 6 months of age.

  11. Increased Evoked Potentials to Arousing Auditory Stimuli during Sleep: Implication for the Understanding of Dream Recall

    OpenAIRE

    Vallat, Raphael; Lajnef, Tarek; Eichenlaub, Jean-Baptiste; Berthomier, Christian; Jerbi, Karim; Morlet, Dominique; Ruby, Perrine M.

    2017-01-01

    High dream recallers (HR) show a larger brain reactivity to auditory stimuli during wakefulness and sleep as compared to low dream recallers (LR) and also more intra-sleep wakefulness (ISW), but no other modification of the sleep macrostructure. To further understand the possible causal link between brain responses, ISW and dream recall, we investigated the sleep microstructure of HR and LR, and tested whether the amplitude of auditory evoked potentials (AEPs) was predictive of arousing react...

  12. Influence of electrode site and size on variability of magnetic evoked potentials.

    Science.gov (United States)

    Dunnewold, R J; van der Kamp, W; van den Brink, A M; Stijl, M; van Dijk, J G

    1998-12-01

    Successive magnetic evoked potentials (MEPs) concern varying motor neurons. We investigated whether this MEP-specific source of variability depends on electrode site and size. Amplitude variability (standard deviation) was largest over the center of the hypothenar muscles. Latencies were longer at distal and proximal sites than at the center site. Large electrodes (10 cm2) did not decrease this source of amplitude variability compared with EEG electrodes, in contrast to other sources of variability.

  13. Biomedical signal acquisition with streaming wireless communication for recording evoked potentials.

    Science.gov (United States)

    Thie, Johnson; Klistorner, Alexander; Graham, Stuart L

    2012-10-01

    Commercial electrophysiology systems for recording evoked potentials always connect patients to the acquisition unit via long wires. Wires guarantee timely transfer of signals for synchronization with the stimuli, but they are susceptible to electromagnetic and electrostatic interferences. Though wireless solutions are readily available (e.g. Bluetooth), they introduce high delay variability that will distort the evoked potential traces. We developed a complete wireless acquisition system with a fixed delay. The system supports up to 4 bipolar channels; each is amplified by 20,000× and digitized to 24 bits. The system incorporates the "driven-right-leg" circuit to lower the common noise. Data are continuously streamed using radio-frequency transmission operating at 915 MHz and then tagged with the stimulus SYNC signal at the receiver. The delay, noise level and transmission error rate were measured. Flash visual evoked potentials were recorded monocularly from both eyes of six adults with normal vision. The signals were acquired via wireless and wired transmissions simultaneously. The recording was repeated on some participants within 2 weeks. The delay was constant at 20 ms. The system noise was white and Gaussian (2 microvolts RMS). The transmission error rate was about one per million packets. The VEPs recorded with wireless transmission were consistent with those with wired transmission. The VEP amplitudes and shapes showed good intra-session and inter-session reproducibility and were consistent across eyes. The wireless acquisition system can reliably record visual evoked potentials. It has a constant delay of 20 ms and very low error rate.

  14. EEG sources of noise in intraoperative somatosensory evoked potential monitoring during propofol anesthesia.

    Science.gov (United States)

    Joutsen, Atte; Puumala, Pasi; Lyytikäinen, Leo-Pekka; Pajulo, Olli; Etelämäki, Aira; Eskola, Hannu; Jäntti, Ville

    2009-08-01

    It was hypothesized that somato- sensory evoked potentials can be achieved faster by selective averaging during periods of low spontaneous electroen- cephalographic (EEG) activity. We analyzed the components of EEG that decrease the signal-to-noise ratio of somatosensory evoked potential (SEP) recordings during propofol anesthesia. Patient EEGs were recorded with a high sampling frequency during deep anesthesia, when EEGs were in burst suppression. EEGs were segmented visually into bursts, spindles, suppressions, and artifacts. Tibial somatosensory evoked potentials (tSEPs) were averaged offline separately for burst, suppression, and spindle segments using a signal bandwidth of 30-200 Hz. Averages achieved with 2, 4, 8, 16, 64, 128, and 256 responses were compared both visually, and by calculating the signal-to-noise ratios. During bursts and spindles, the noise levels were similar and significantly higher than during suppressions. Four to eight times more responses had to be averaged during bursts and spindles than during suppressions in order to achieve a similar response quality. Averaging selectively during suppressions can therefore yield reliable tSEPs in approximately one-fifth of the time required during bursts. The major source of EEG noise in tSEP recordings is the mixed frequency activity of the slow waves of bursts that occur during propofol anesthesia. Spindles also have frequency components that increase noise levels, but these are less important, as the number of spindles is fewer. The fastest way to obtain reliable tSEPs is by averaging selectively during suppressions.

  15. Lack of habituation of evoked visual potentials in analytic information processing style: evidence in healthy subjects.

    Science.gov (United States)

    Buonfiglio, Marzia; Toscano, M; Puledda, F; Avanzini, G; Di Clemente, L; Di Sabato, F; Di Piero, V

    2015-03-01

    Habituation is considered one of the most basic mechanisms of learning. Habituation deficit to several sensory stimulations has been defined as a trait of migraine brain and also observed in other disorders. On the other hand, analytic information processing style is characterized by the habit of continually evaluating stimuli and it has been associated with migraine. We investigated a possible correlation between lack of habituation of evoked visual potentials and analytic cognitive style in healthy subjects. According to Sternberg-Wagner self-assessment inventory, 15 healthy volunteers (HV) with high analytic score and 15 HV with high global score were recruited. Both groups underwent visual evoked potentials recordings after psychological evaluation. We observed significant lack of habituation in analytical individuals compared to global group. In conclusion, a reduced habituation of visual evoked potentials has been observed in analytic subjects. Our results suggest that further research should be undertaken regarding the relationship between analytic cognitive style and lack of habituation in both physiological and pathophysiological conditions.

  16. Temporal processing and long-latency auditory evoked potential in stutterers

    Directory of Open Access Journals (Sweden)

    Raquel Prestes

    Full Text Available Abstract Introduction: Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. Objective: To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. Methods: The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n = 20 and non-stutters (n = 21, compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Results: Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Conclusion: Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components.

  17. Suboccipital craniotomy for Chiari I results in evoked potential conduction changes

    Science.gov (United States)

    Chen, Jason A.; Coutin-Churchman, Pedro E.; Nuwer, Marc R.; Lazareff, Jorge A.

    2012-01-01

    Background: Management of Chiari I is controversial, in part because there is no widely used quantitative measurement of decompression. It has been demonstrated that brainstem auditory evoked responses (BAER) and somatosensory evoked potentials (SSEP) have decreased conduction latencies after wide craniectomy. We analyzed these parameters in a suboccipital craniectomy/craniotomy procedure. Methods: Thirteen consecutive patients underwent suboccipital decompression for treatment of symptomatic Chiari I. Craniectomy was restricted to the inferior aspect of the nuchal line, and in most cases the bone flap was replaced. Neuronal conduction was monitored continuously with median nerve somatosensory evoked potentials (M-SEP), posterior tibial nerve somatosensory evoked potentials (T-SEP), BAER, or a combination. The M-SEP N20, T-SEP P37, and BAER V latencies were recorded at four milestones – preoperatively, following craniotomy, following durotomy, and following closure. Results: Five males and eight females, with average age of 9 years, were studied. Clinical improvement was noted in all 13 patients. M-SEP N20 latency decreased from a mean of 18.55 at baseline to 17.75 ms after craniotomy (P = 0.01); to 17.06 ms after durotomy (P = 0.01); and to 16.68 ms after closing (P = 0.02). T-SEP P37 latency did not change significantly. BAER V latency decreased from a mean of 6.25 ms at baseline to 6.14 ms after craniotomy (P = 0.04); to 5.98 ms after durotomy (P = 0.01); and to 5.95 ms after closing (P = 0.45). Conclusion: Significant improvements in conduction followed both craniectomy and durotomy. Bone replacement did not affect these results. PMID:23372981

  18. Neonatal Cortical Auditory Evoked Potentials Are Affected by Clinical Conditions Occurring in Early Prematurity.

    Science.gov (United States)

    Suppiej, Agnese; Cainelli, Elisa; Cappellari, Ambra; Ermani, Mario; Sartori, Stefano; Bisiacchi, Patrizia S

    2015-10-01

    Cortical auditory evoked potentials may serve as an early indicator of developmental problems in the auditory cortex. The aim of the study was to determine the effect on neonatal cortical auditory processing of clinical conditions occurring in early prematurity. Sixty-seven preterm infants born at 29 weeks mean gestational age (range, 23-34 weeks) were recorded at a mean postconception age of 35 weeks, before discharge from the third level neonatal intensive care unit. The average of 330 responses to standard 1000 Hz pure tones delivered in an oddball paradigm was recorded at frontal location. Data of 45 of 67 recruited premature infants were available for analysis. Mean amplitudes calculated from the data points of 30 milliseconds centered on P1 and N2 peaks in the waveforms of each subject were measured. The effect of perinatal clinical factors on cortical auditory evoked responses was evaluated. The amplitude of P1 component was significantly lower in infants with bronco-pulmonary dysplasia (P = 0.004) and retinopathy of prematurity (P = 0.03). The multivariate analysis, done to evaluate the relative weight of gestational age and bronco-pulmonary dysplasia and/or retinopathy of prematurity on cortical auditory evoked potentials components, showed an effect of clinical factors on P1 (P = 0.005) and of gestational age on N2 (P = 0.02). Cortical auditory processing seems to be influenced by clinical conditions complicating extremely preterm birth.

  19. Human cerebrocortical potentials evoked by stimulation of the dorsal nerve of the penis.

    Science.gov (United States)

    Bradley, W E; Farrell, D F; Ojemann, G A

    1998-01-01

    Cortical evoked potentials resulting from stimulation of the dorsal nerve of the penis (DNP) provide a unique opportunity to document the cortical localization of sexual sensory representation in man. The DNP supplies sensory axons to the major portion of the human phallus, including the penile shaft and glans. Animal and human studies indicate that this nerve plays a crucial role in erection and ejaculation. Direct cortical evoked responses to DNP electrical stimulation were recorded in patients undergoing preoperative evaluation for resection of epileptic foci. These studies provided evidence that the primary sensory cortex contains a large area of cortex devoted to the afferent fibers of the DNP and that the sensory field is in a different location than previously described. The location and distribution of this response indicated the need for revision of the traditional concept of the sensory cortical homunculus.

  20. Evaluation of Antioxidant and Antibacterial Potentials of Nigella sativa L. Suspension Cultures under Elicitation

    Directory of Open Access Journals (Sweden)

    Hera Chaudhry

    2015-01-01

    Full Text Available Nigella sativa L. (family Ranunculaceae is an annual herb of immense medicinal properties because of its major active components (i.e., thymoquinone (TQ, thymohydroquinone (THQ, and thymol (THY. Plant tissue culture techniques like elicitation, Agrobacterium mediated transformation, hairy root culture, and so on, are applied for substantial metabolite production. This study enumerates the antibacterial and antioxidant potentials of N. sativa epicotyl suspension cultures under biotic and abiotic elicitation along with concentration optimization of the elicitors for enhanced TQ and THY production. Cultures under different concentrations of pectin and manganese chloride (MnCl2 elicitation (i.e., 5 mg/L, 10 mg/L, and 15 mg/L showed that the control, MnCl2 10 mg/L, and pectin 15 mg/L suspension extracts greatly inhibited the growth of E. coli, S. typhimurium, and S. aureus (MIC against E. coli, i.e., 2.35±0.8, 2.4±0.2, and 2.46±0.5, resp.. Elicitation decreased SOD enzyme activity whereas CAT enzyme activity increased remarkably under MnCl2 elicitation. MnCl2 10 mg/L and pectin 15 mg/L elicitation enhanced the DPPH radical inhibition ability, but ferric scavenging activity was comparable to the control. TQ and THY were quantified by LC-MS/MS in the cultures with high bioactive properties revealing maximum content under MnCl2 10 mg/L elicitation. Therefore, MnCl2 elicitation can be undertaken on large scale for sustainable metabolite production.

  1. Effect of neck flexion on somatosensory and motor evoked potentials in Hirayama disease.

    Science.gov (United States)

    Abraham, A; Gotkine, M; Drory, V E; Blumen, S C

    2013-11-15

    Hirayama disease (HD) is a rare motor disorder mainly affecting young men, characterized by atrophy and weakness of forearm and hand muscles corresponding to a C7-T1 myotome distribution. The weakness is usually unilateral or asymmetric and progression usually stops within several years. The etiology of HD is not well understood. One hypothesis, mainly based on MRI findings, is that the weakness is a consequence of cervical flexion myelopathy. The aim of this study was to explore the function of corticospinal and ascending somatosensory pathways during neck flexion using evoked responses. 15 men with HD and 7 age-matched control male subjects underwent somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) studies with the neck in neutral position and fully flexed. SSEP studies included electrical stimulation of median and ulnar nerves at the wrist, and tibial nerve at the ankle with recording over the ipsilateral Erb's point, cervical spine, and contralateral sensory cortex. MEP recordings were obtained by magnetic stimulation of the motor cortex and the cervical lower spinal roots; the evoked responses were recorded from the contralateral thenar and abductor hallucis muscles. MEP recordings demonstrated significant lower amplitudes, and slightly prolonged latencies in HD patients on cervical stimulation, compared to control subjects. During neck flexion, MEP studies also demonstrated a statistically significant drop in mean upper limb amplitude on cervical stimulation in HD patients, as well as in control subjects, although to a lesser degree. In contrast, no significant differences were found in SSEP studies in HD patients compared to control subjects, or between neutral and flexed position in these groups. The study shows a negative effect of cervical flexion on MEP amplitudes in HD patients as well as in control subjects, requiring more studies to investigate its significance. Neck flexion did not have an influence on any SSEP parameters in

  2. Ecstasy and methamphetamine elicit action potential bursts via different mechanisms in a central snail neuron.

    Science.gov (United States)

    Lin, Pei-Lin; Tsai, Ming-Cheng; Lu, Guan-Ling; Lu, Dah-Yuu; Chuang, Chieh-Min; Yang, Han-Yin; Huang, Shiang-Suo; Chen, Yi-Hung

    2010-01-01

    This study sought to determine the effects of (+) methamphetamine (METH) and its ring-substituted analog (+/-)3,4-methylenedioxymethamphetamine (MDMA; ecstasy) on electrophysiological behavior and their relationships to second messenger systems in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. Extracellular application of MDMA at 1mM and METH at 3mM elicited action potential bursts that were not blocked after immersing the neurons in Ca(2+)-free solution. Notably, MDMA- (1mM) elicited action potential bursts were blocked by pretreatment with the protein kinase C (PKC) inhibitors chelerythrine (20 microM) and Ro 31-8220 (20 microM), but not by the PKA inhibitors KT-5720 (10 microM) and H89 (10 microM). The PKC activator phorbol 12,13-dibutyrate (PDBu; 3 microM), but not the PKA activator forskolin (50 microM), facilitated the induction of bursts elicited by MDMA at a lower concentration (0.3mM). In contrast, METH- (3mM) elicited action potential bursts were blocked by pretreatment with KT-5720 (10 microM) and H89 (10 microM), but not by chelerythrine (20 microM) and Ro 31-8220 (20 microM). Forskolin (50 microM), but not PDBu (3 microM) facilitated the induction of bursts elicited by METH at a lower concentration (1mM). Tetraethylammonium chloride (TEA), a blocker of the delayed rectifying K(+) current (I(KD)), did not elicit bursts at a concentration of 5mM but did facilitate the induction of action potential bursts elicited by both METH and MDMA. Voltage clamp studies revealed that both METH and MDMA decreased the TEA-sensitive I(KD) of the RP4 neuron. Forskolin (50 microM) or dibutyryl cAMP (1mM), a membrane-permeable cAMP analog, alone did not elicit action potential bursts. However, co-administration with forskolin (50 microM) and TEA (5mM) or co-administration with dibutyryl cAMP (1mM) and TEA (50mM) elicited action potential bursts in the presence of the PKC inhibitor chelerythrine (20 microM). Similarly, PDBu (10 microM) or phorbol

  3. A novel threshold criterion in transcranial motor evoked potentials during surgery for gliomas close to the motor pathway.

    Science.gov (United States)

    Abboud, Tammam; Schaper, Miriam; Dührsen, Lasse; Schwarz, Cindy; Schmidt, Nils Ole; Westphal, Manfred; Martens, Tobias

    2016-10-01

    OBJECTIVE Warning criteria for monitoring of motor evoked potentials (MEP) after direct cortical stimulation during surgery for supratentorial tumors have been well described. However, little is known about the value of MEP after transcranial electrical stimulation (TES) in predicting postoperative motor deficit when monitoring threshold level. The authors aimed to evaluate the feasibility and value of this method in glioma surgery by using a new approach for interpreting changes in threshold level involving contra- and ipsilateral MEP. METHODS Between November 2013 and December 2014, 93 patients underwent TES-MEP monitoring during resection of gliomas located close to central motor pathways but not involving the primary motor cortex. The MEP were elicited by transcranial repetitive anodal train stimulation. Bilateral MEP were continuously evaluated to assess percentage increase of threshold level (minimum voltage needed to evoke a stable motor response from each of the muscles being monitored) from the baseline set before dural opening. An increase in threshold level on the contralateral side (facial, arm, or leg muscles contralateral to the affected hemisphere) of more than 20% beyond the percentage increase on the ipsilateral side (facial, arm, or leg muscles ipsilateral to the affected hemisphere) was considered a significant alteration. Recorded alterations were subsequently correlated with postoperative neurological deterioration and MRI findings. RESULTS TES-MEP could be elicited in all patients, including those with recurrent glioma (31 patients) and preoperative paresis (20 patients). Five of 73 patients without preoperative paresis showed a significant increase in threshold level, and all of them developed new paresis postoperatively (transient in 4 patients and permanent in 1 patient). Eight of 20 patients with preoperative paresis showed a significant increase in threshold level, and all of them developed postoperative neurological deterioration

  4. the variability in P300 cognitive evoked potential amplitude in the auditory oddball paradigm

    Directory of Open Access Journals (Sweden)

    Biševac B.

    2015-01-01

    Full Text Available One of the best-studied responses of cognitive evoked potentials is a so-called 'P300', the late positive wave complex that occurs about 300-500 ms after the stimulus. It is obtained when the subject's attention is focused on a signal that is rare, especially if the signal has a motivational or emotional meaning. In the study of P300 potential, we followed the variations of potential amplitude and latency, so the objective was to examine whether there is a difference in Fz and Cz amplitudes of auditory induced cognitive evoked P300 potential depending on the performance of oddball tasks, both in male and female subjects. The study included 60 subjects (30 female respondents and 30 male respondents. P300 potential is induced by the auditory 'oddball' paradigm with 80% of non-target and 20% of target stimuli that are presented to the patient through headphones. The target tones are high tones of 2000 Hz. The standard, 1000 Hz tones the respondent should ignore but when he hears the target tones the respondent should press the button on the special handle. The value of Fz and Cz amplitudes both in male and female subjects obtained in the classical 'oddball' paradigm when the subject reacted to the signal by pressing the key with the dominant (right arm were statistically significantly lower (p>0,05 than the values of Fz and Cz amplitudes obtained when the key was pressed by the non-dominant hand. Based on this experiment it can be concluded that both in male and female subjects the performance of oddball tasks does not affect the amplitude of P300 cognitive evoked potentials.

  5. Evaluation of Visual Evoked Potentials in Patient with Angelmans Syndrome - Case Report

    Directory of Open Access Journals (Sweden)

    Tatjana Knezevic

    2013-06-01

    Full Text Available Background: Angelman syndrome (AS is a genetic disorder with varying degrees of neurological impairment. It is often associated with ocular involvement. Case Report: We present a child diagnosed with AS who had a deletion on the short arm of chromosome 15. The child seemed to be happy, with developmental delay, speech problem, and altering strabismus. To assess the potential presence and degree of damage in the visual pathway, we recorded monocular flash visual evoked potentials (VEPs. Our results revealed the presence of severe central afferent dysfunction in both optical pathways. Conclusion: VEPs can be used in patients with AS and visual disturbances to assess the integrity of the visual system.

  6. Action potential bursts in central snail neurons elicited by procaine: roles of ionic currents.

    Science.gov (United States)

    Lin, Chia-Hsien; Lin, Pei-Lin; Tsai, Ming-Cheng; Hsu, Hui-Yu; Yang, Han-Yin; Chuang, Chieh-Min; Chen, Yi-Hung

    2010-10-31

    The role of ionic currents on procaine-elicited action potential bursts was studied in an identifiable RP1 neuron of the African snail, Achatina fulica Ferussac, using the two-electrode voltage clamp method. The RP1 neuron generated spontaneous action potentials and bath application of procaine at 10 mM reversibly elicited action potential bursts in a concentration-dependent manner. Voltage clamp studies revealed that procaine at 10 mM decreased [1] the Ca2+ current, [2] the Na+ current, [3] the delayed rectifying K+ current I(KD), and [4] the fast-inactivating K+ current (I(A)). Action potential bursts were not elicited by 4-aminopyridine (4-AP), an inhibitor of I(A), whereas they were seen after application of tetraethylammonium chloride (TEA), a blocker of the I(K)(Ca) and I(KD) currents, and tacrine, an inhibitor of I(KD). Pretreatment with U73122, a phospholipase C inhibitor, blocked the action potential bursts elicited by procaine. U73122 did not affect the I(KD) of the RP1 neuron; however, U73122 decreased the inhibitory effect of procaine on the I(KD). Tacrine decreased the TEA-sensitive I(KD) of RP1 neuron but did not significantly affect the I(A). Tacrine also successfully induced action potential bursts in the RP1 neuron. It is concluded that the inhibition on the I(KD) is responsible for the generation of action potential bursts in the central snail RP1 neuron. Further, phospholipase C activity is involved in the procaine-elicited I(KD) inhibition and action potential bursts.

  7. The vestibular evoked-potential profile of Ménière's disease.

    Science.gov (United States)

    Taylor, Rachael L; Wijewardene, Ayanthi A; Gibson, William P R; Black, Deborah A; Halmagyi, G Michael; Welgampola, Miriam S

    2011-06-01

    To define the ocular and cervical vestibular evoked myogenic potential (oVEMP and cVEMP) profile in Ménière's Disease (MD), we studied air-conducted (AC) sound and bone-conducted vibration (BCV)-evoked responses in 77 patients and 35 controls. oVEMPs were recorded from unrectified infra-orbital surface electromyography (EMG) during upward gaze. cVEMPs were recorded from rectified and unrectified sternocleidomastoid EMG during head elevation against gravity. Responses to AC clicks delivered via headphones and BC forehead taps delivered with a mini-shaker (bone-conduction vibrator) and a triggered tendon-hammer were recorded. In clinically definite unilateral MD (n=60), the prevalence of unilateral VEMP abnormalities was 50.0%, 10.2% and 11.9% for click, minitap and tendon-hammer evoked oVEMPs, 40.0%, 22.8% and 10.7% for click, minitap and tendon-hammer evoked cVEMPs. The most commonly observed profile was abnormality to AC stimulation alone (33.3%), followed by abnormalities to both AC and BCV stimuli (26.7%). Isolated abnormalities to BCV stimuli were rare (5%) and limited to the minitap cVEMP. The prevalence of abnormalities for each of the AC VEMPs was significantly higher than for any one BCV VEMP. For click cVEMP, click oVEMP and minitap cVEMP, average Reflex Asymmetry Ratios (AR) were significantly higher in MD compared with controls. Test results for AC cVEMP, AC oVEMP, minitap cVEMP and caloric asymmetry were significantly correlated with hearing loss. Predominance of abnormalities in oVEMP and cVEMP responses to AC sound is characteristic of MD and indicative of saccular involvement. This pattern of VEMP abnormalities may enable separation of Ménière's disease from other peripheral vestibulopathies. Copyright © 2010 International Federation of Clinical Neurophysiology. All rights reserved.

  8. Comparison of binaural auditory brainstem responses and the binaural difference potential evoked by chirps and clicks.

    Science.gov (United States)

    Riedel, Helmut; Kollmeier, Birger

    2002-07-01

    Rising chirps that compensate for the dispersion of the travelling wave on the basilar membrane evoke larger monaural brainstem responses than clicks. In order to test if a similar effect applies for the early processing stages of binaural information, monaurally and binaurally evoked auditory brainstem responses were recorded for clicks and chirps for levels from 10 to 60 dB nHL in steps of 10 dB. Ten thousand sweeps were collected for every stimulus condition from 10 normal hearing subjects. Wave V amplitudes are significantly larger for chirps than for clicks for all conditions. The amplitude of the binaural difference potential, DP1-DN1, is significantly larger for chirps at the levels 30 and 40 dB nHL. Both the binaurally evoked potential and the binaural difference potential exhibit steeper growth functions for chirps than for clicks for levels up to 40 dB nHL. For higher stimulation levels the chirp responses saturate approaching the click evoked amplitude. For both stimuli the latency of DP1 is shorter than the latency of the binaural wave V, which in turn is shorter than the latency of DN1. The amplitude ratio of the binaural difference potential to the binaural response is independent of stimulus level for clicks and chirps. A possible interpretation is that with click stimulation predominantly binaural interaction from high frequency regions is seen which is compatible with a processing by contralateral inhibitory and ipsilateral excitatory (IE) cells. Contributions from low frequencies are negligible since the responses from low frequencies are not synchronized for clicks. The improved synchronization at lower frequencies using chirp stimuli yields contributions from both low and high frequency neurons enlarging the amplitudes of the binaural responses as well as the binaural difference potential. Since the constant amplitude ratio of the binaural difference potential to the binaural response makes contralateral and ipsilateral excitatory interaction

  9. Selectivity of conventional electrodes for recording motor evoked potentials: An investigation with high-density surface electromyography.

    Science.gov (United States)

    Gallina, Alessio; Peters, Sue; Neva, Jason L; Boyd, Lara A; Garland, S Jayne

    2017-06-01

    The objective of this study was to determine whether motor evoked potentials (MEPs) elicited with transcranial magnetic stimulation and measured with conventional bipolar electromyography (EMG) are influenced by crosstalk from non-target muscles. MEPs were recorded in healthy participants using conventional EMG electrodes placed over the extensor carpi radialis muscle (ECR) and high-density surface EMG (HDsEMG). Fifty MEPs at 120% resting and active motor threshold were recorded. To determine the contribution of ECR to the MEPs, the amplitude distribution across HDsEMG channels was correlated with EMG activity recorded during a wrist extension task. Whereas the conventional EMG identified MEPs from ECR in >90% of the stimulations, HDsEMG revealed that spatial amplitude distribution representative of ECR activation was observed less frequently at rest than while holding a contraction (P < 0.001). MEPs recorded with conventional EMG may contain crosstalk from non-target muscles, especially when the stimulation is applied at rest. Muscle Nerve 55: 828-834, 2017. © 2016 Wiley Periodicals, Inc.

  10. Reliability of the diaphragmatic compound muscle action potential evoked by cervical magnetic stimulation and recorded via chest wall surface EMG.

    Science.gov (United States)

    Welch, Joseph F; Mildren, Robyn L; Zaback, Martin; Archiza, Bruno; Allen, Grayson P; Sheel, A William

    2017-09-01

    Stimulation of the phrenic nerve via cervical magnetic stimulation (CMS) elicits a compound muscle action potential (CMAP) that allows for assessment of diaphragm activation. The reliability of CMS to evoke the CMAP recorded by chest wall surface EMG has yet to be comprehensively examined. CMS was performed on healthy young males (n=10) and females (n=10). Surface EMG electrodes were placed on the right and left hemi-diaphragm between the 6-8th intercostal spaces. CMAPs were analysed for: latency, duration, peak-to-peak amplitude, and area. Reliability within and between experimental sessions was assessed using intraclass correlation coefficients (ICC). Bilateral (right-left) and sex-based (male-female) comparisons were also made (independent samples t-test). All CMAP characteristics demonstrated high reproducibility within (ICCs>0.96) and between (ICCs>0.89) experimental sessions. No statistically significant bilateral or sex-based differences were found (p>0.05). CMS is a reliable and non-invasive method to evaluate phrenic nerve conduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Athletic training in badminton players modulates the early C1 component of visual evoked potentials: a preliminary investigation.

    Science.gov (United States)

    Jin, Hua; Xu, Guiping; Zhang, John X; Ye, Zuoer; Wang, Shufang; Zhao, Lun; Lin, Chong-De; Mo, Lei

    2010-12-01

    One basic question in brain plasticity research is whether individual life experience in the normal population can affect very early sensory-perceptual processing. Athletes provide a possible model to explore plasticity of the visual cortex as athletic training in confrontational ball games is quite often accompanied by training of the visual system. We asked professional badminton players to watch video clips related to their training experience and predict where the ball would land and examined whether they differed from non-player controls in the elicited C1, a visual evoked potential indexing V1 activity. Compared with controls, the players made judgments significantly more accurately, albeit not faster. An early ERP component peaking around 65 ms post-stimulus with a scalp topography centering at the occipital pole (electrode Oz) was observed in both groups and interpreted as the C1 component. With comparable latency, amplitudes of this component were significantly enhanced for the players than for the non-players, suggesting that it can be modulated by long-term physical training. The results present a clear case of experience-induced brain plasticity in primary visual cortex for very early sensory processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Indicaciones médicas y quirúrgicas de los potenciales evocados Medical and surgical indications of evoked potentials

    Directory of Open Access Journals (Sweden)

    Oscar Papazian

    2007-01-01

    Full Text Available Los potenciales evocados (PE son procedimientos neurofisiológicos más sensibles que específicos, objetivos, fidedignos, reproducibles y seguros que se emplean para evaluar la integridad de las vías sensoriales y motoras periféricas y centrales. La integridad de estas vías se determina midiendo la latencia de los eventos eléctricos producidos por estímulos adecuados y registrados después de ser promediados digitalmente. Las indicaciones médicas y quirúrgicas incluyen condiciones en las cuales el diagnóstico, la determinación del riesgo de secuelas neurológicas en pacientes comatosos y anestesiados y la determinación del curso de la enfermedad y respuesta al tratamiento no se pueden definir con el examen neurológico y otras pruebas neurodiagnósticas.Evoked potentials (EP are more sensitive than specific, safe, objective and reproducible neurophysiologic techniques to assess integrity of peripheral and central sensory and motor pathways. The integrity of pathways are determined by measurement the latency of the recorded and digitally averaged electrical events elicited after adequate stimulation. EP are medically and surgically recommended in conditions in which the diagnoses, determination of neurological outcome in comatose and under anesthesia patients, and determination of the course and evaluation of treatment are uncertain with neurologic examination and other neurodiagnostic studies.

  13. Intra-oral orthosis vs amitriptyline in chronic tension-type headache: a clinical and laser evoked potentials study

    Directory of Open Access Journals (Sweden)

    Sardaro Michele

    2006-05-01

    Full Text Available Abstract Background In the present study, we examined clinical and laser-evoked potentials (LEP features in two groups of chronic tension-type headache (CTTH patients treated with two different approaches: intra-oral appliance of prosthesis, aiming to reduce muscular tenderness, and 10 mg daily amitriptyline. Methods Eighteen patients with diagnosed CTTH participated in this open label, controlled study. A baseline evaluation was performed for clinical features, Total Tenderness Score (TTS and a topographic analysis of LEPs obtained manually and the pericranial points stimulation in all patients vs. healthy subjects. Thereafter, patients were randomly assigned to a two-month treatment by either amitriptyline or intra-oral appliance. Results and discussion Both the intra-oral appliance and amitriptyline significantly reduced headache frequency. The TTS was significantly reduced in the group treated with the appliance. The amplitude of P2 response elicited by stimulation of pericranial zones showed a reduction after amitriptyline treatment. Both therapies were effective in reducing headache severity, the appliance with a prevalent action on the pericranial muscular tenderness, amitriptyline reducing the activity of the central cortical structures subtending pain elaboration Conclusion The results of this study may suggest that in CTTH both the interventions at the peripheral and central levels improve the outcome of headache.

  14. Olfactory Cerebral Evoked Potentials for Pleasant and Unpleasant Smells in Humans

    Directory of Open Access Journals (Sweden)

    Tomohiko Igasaki

    2011-10-01

    Full Text Available The relationship between sensory estimation and evoked potential when pleasant or unpleasant smell delivered to human nose was investigated. Ten healthy men participated. First, the subject was presented gamma-undecalactone (pleasant smell or isovaleric acid (unpleasant smell, and instructed to estimate the odor magnitude and pleasantness/unpleasantness (sensory test session. Then, evoked potentials of the subject were measured from 19 scalp electrodes when pleasant or unpleasant smell were delivered 100 times to the subject, respectively (EEG measurement session. In the sensory test session, both the evaluation of odor magnitude and pleasantness/unpleasantness were significantly changed according to the concentration of smells. On the Pz scalp electrode, the positive potentials at the latency of 610 ms and 450 ms were observed in the pleasant and unpleasant stimulation, respectively. Statistically, it was found that the variance of the positive potential latency in unpleasant stimulation was significantly smaller than that in pleasant stimulation. It was also found that the positive potential latency in unpleasant stimulation was significantly earlier than that in pleasant stimulation. The small variance of latency and the earlier latency for unpleasant smell could be considered to reflect human behavior, such as quick reaction for avoiding dangerous odor to save one's life.

  15. Cortical somatosensory-evoked potentials during spine surgery in patients with neuromuscular and idiopathic scoliosis under propofol-remifentanil anaesthesia

    NARCIS (Netherlands)

    Hermanns, H.; Lipfert, P.; Meier, S.; Jetzek-Zader, M.; Krauspe, R.; Stevens, M. F.

    2007-01-01

    BACKGROUND: Intraoperative monitoring of the spinal cord via cortical somatosensory-evoked potentials (SSEP) is a routine during spinal surgery. However, especially in neuromuscular scoliosis, the reliability of cortical SSEP has been questioned. Therefore, we compared the feasibility of cortical

  16. Theatre Elicitation: developing a potentially child-friendly method with children aged 8–12

    NARCIS (Netherlands)

    Evers, Sandra J.T.M.; Roerig, S.

    2017-01-01

    This article discusses the growing body of literature published in Children Geographies on the importance of involving children in research processes. Inspired by participatory creative methods such as photo elicitation and popular/forum theatre, we have developed a potentially child-friendly tool

  17. Cold Saline Injection Attenuates Motor-evoked Potential in the Spinal Cord by Cortical Electrical Stimulation in the Dog

    OpenAIRE

    Kumagai, Hajime; Sugawara, Yuji; Isaka, Mitsuhiro; Okada, Kenji; Orihashi, Kazumasa; Sueda, Taijiro

    2005-01-01

    Changes in the motor-evoked potential of the spinal cord with transcranial stimulation are monitored for spinal cord function during thoracoabdominal aortic aneurysm surgeries. We examined the effects of changes in motor-evoked potential with cold saline injected into the clamped segment of the aorta, and compared the effects to lidocaine and warm saline injection.   Eighteen dogs were divided into three groups according to the injected agents: Warm saline group (37°C, 20 ml), Cold saline...

  18. Changes in brainstem auditory evoked potentials among North Indian females with Type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Pooja Baweja

    2013-01-01

    Full Text Available Background: Diabetes mellitus is a complex metabolic disorder whose detrimental effects on various organ systems, including the nervous system are well known. Aim: This study was conducted to determine the changes in the brainstem auditory evoked potentials (BAEP in patients with type 2 diabetes mellitus. Materials and Methods: In this case-control study, 116 females with type 2 diabetes and 100 age matched, healthy female volunteers were selected. The brainstem auditory evoked potentials (BAEP were recorded with RMS EMG EP Marc-II Channel machine. The measures included latencies of waves I, II, III, IV, V and Interpeak latencies (IPL I-III, III-V and I-V separately for both ears. Data was analysed statistically with SPSS software v13.0. Results: It was found that IPL I-III was significantly delayed (P = 0.028 only in the right ear, while the latency of wave V and IPL I-V showed a significant delay bilaterally (P values for right ear being 0.021 and 0.0381 respectively while those for left ear being 0.028 and 0.016 respectively, in diabetic females. However, no significant difference (P > 0.05 was found between diabetic and control subjects as regards to the latencies of waves I, II, III, IV and IPL III-V bilaterally and IPL I-III unilaterally in the left ear. Also, none of the BAEP latencies were significantly correlated with either the duration of disease or with fasting blood glucose levels in diabetics. Conclusions: Therefore, it could be concluded that diabetes patients have an early involvement of central auditory pathway, which can be detected quite accurately with the help of auditory evoked potential studies.

  19. Flash visual evoked potential monitoring of optic tract function during macroelectrode-based pallidotomy.

    Science.gov (United States)

    Bonaroti, E A; Rose, R D; Kondziolka, D; Baser, S; Lunsford, L D

    1997-03-15

    Posteroventral pallidotomy (PVP) has received renewed interest as an ablative procedure for the symptomatic treatment of Parkinson's disease. In previous reports, the proximity of the optic tract to the lesion target in the globus pallidus internus has resulted in the occurrence of visual field deficits in as much as 14% of patients. The authors have used intraoperative visual evoked potentials (VEPs) during PVP to reduce this risk. All procedures were performed in awake patients. Flash stimuli were delivered to each eye via fiberoptic sources. Baseline flash VEPs were recorded at O1/Cz (left visual cortex to vertex), Oz/Cz (midline visual cortex to vertex), and O2/Cz (right visual cortex to vertex) for OS, OU, and OD stimulation. Epochs were acquired before and after localization, after macroelectrode stimulation, after temporary thermal lesioning, and after permanent thermal lesioning. Forty-seven patients underwent a total of 59 procedures. Visual evoked potentials were recorded reproducibly in all patients. In 11 procedures, VEP changes were reported, including six amplitude changes (10-80%), six latency shifts (3-10 msec), and one report of "variability." In four procedures, VEP changes prompted a change in target coordinates. One false-positive and one false-negative VEP change were encountered. The only confirmed visual deficit was a superior quadrantanopsia, present on formal fields, but clinically asymptomatic. The authors conclude that VEPs may be useful for procedures performed in the awake patient because of the lack of anesthetic-induced variability. The 1.7% visual morbidity reported here (one in 59 patients) compares favorably with other series using microelectrodes. Visual evoked potentials may be a useful monitoring technique to reduce the incidence of clinically significant visual morbidity during pallidotomy, especially during formal lesioning of the ventral pallidum adjacent to the optic tract.

  20. The investigation of cortical auditory evoked potentials responses in young adults having musical education.

    Science.gov (United States)

    Polat, Zahra; Ataş, Ahmet

    2014-12-01

    In the literature, music education has been shown to enhance auditory perception for children and young adults. When compared to young adult non-musicians, young adult musicians demonstrate increased auditory processing, and enhanced sensitivity to acoustic changes. The evoked response potentials associated with the interpretation of sound are enhanced in musicians. Studies show that training also changes sound perception and cortical responses. The earlier training appears to lead to larger changes in the auditory cortex. Most cortical studies in the literature have used pure tones or musical instrument sounds as stimuli signals. The aim of those studies was to investigate whether musical education would enhance auditory cortical responses when speech signals were used. In this study, the speech sounds extracted from running speech were used as sound stimuli. Non-randomized controlled study. The experimental group consists of young adults up to 21 years-old, all with a minimum of 4 years of musical education. The control group was selected from young adults of the same age without any musical education. The experiments were conducted by using a cortical evoked potential analyser and /m/, /t/ /g/ sound stimulation at the level of 65 dB SPL. In this study, P1 / N1 / P2 amplitude and latency values were measured. Significant differences were found in the amplitude values of P1 and P2 (p0.05). The results obtained in our study indicate that musical experience has an effect on the nervous system and this can be seen in cortical auditory evoked potentials recorded when the subjects hear speech.

  1. Brain evoked potential use in a physical medicine and rehabilitation setting.

    Science.gov (United States)

    Rappaport, M; Hopkins, K; Hall, K; Belleza, T; Berrol, S

    1978-01-01

    The objective of this effort was to explore the use of evoked potential (EP) procedure on a head injury unit in a Department of Physical Medicine and Rehabilitation. The method employed both auditory and visual stimulation presented bilaterally to various patients. Recordings of the brain's responses to such stimulation were obtained. Results permitted evaluation of brain stem, subcortical and cortical functioning, ipsilaterally, contralaterally, and bilaterally. EP data provided useful information for patient assessment and rehabilitation planning for head injured patients--particularly for those who were unable to cooperate in their own examination.

  2. [Manifestations of the genotypic causality of human evoked potentials during perception of various visual stimuli].

    Science.gov (United States)

    Mariutina, T M; Ivoshina, T G

    1984-01-01

    Intrapair resemblance of the wave form and amplitude-temporal parameters of evoked potentials (EPs) to flashes, chess field, house image, the word "house" and a series of other stimuli was evaluated in 20 pairs of monozygotic and 20 pairs of homosexual dizygotic adult twins. In the occipital area the maximum of genetic dependence was characteristic of EPs to flashes, the minimum--of EPs--to the word "house". In vertex EPs parameters genotypic effects were manifest irrespectively of the stimulus type. Genotypic dependence differed for the amplitudes and latencies of separate EP components.

  3. Assessment of an ICA-based noise reduction method for multi-channel auditory evoked potentials

    Science.gov (United States)

    Mirahmadizoghi, Siavash; Bell, Steven; Simpson, David

    2015-03-01

    In this work a new independent component analysis (ICA) based method for noise reduction in evoked potentials is evaluated on for auditory late responses (ALR) captured with a 63-channel electroencephalogram (EEG) from 10 normal-hearing subjects. The performance of the new method is compared with a single channel alternative in terms of signal to noise ratio (SNR), the number of channels with an SNR above an empirically derived statistical critical value and an estimate of hearing threshold. The results show that the multichannel signal processing method can significantly enhance the quality of the signal and also detected hearing thresholds significantly lower than with the single channel alternative.

  4. Effect of epidural clonidine on somatosensory evoked potentials to dermatomal stimulation

    DEFF Research Database (Denmark)

    Lund, C; Hansen, O B; Kehlet, H

    1989-01-01

    The effect of lumbar epidural clonidine 150 micrograms on early (less than 0.5 s) somatosensory evoked potentials (SEP) to electrical stimulation of the L1 and S1 dermatomes was examined in twelve cancer patients. Epidural clonidine led to a minor but significant decrease in amplitude of two...... systolic and diastolic blood pressures decreased from 118 +/- 4/72 +/- 5 mmHg to 99 +/- 5/60 +/- 3 mmHg (P less than 0.01), respectively. It is concluded that epidural clonidine has a minor effect on the early SEPs to electrical dermatomal stimulation. Additionally, a pronounced effect on cancer pain...

  5. [Forensic application of brainstem auditory evoked potential in patients with brain concussion].

    Science.gov (United States)

    Zheng, Xing-Bin; Li, Sheng-Yan; Huang, Si-Xing; Ma, Ke-Xin

    2008-12-01

    To investigate changes of brainstem auditory evoked potential (BAEP) in patients with brain concussion. Nineteen patients with brain concussion were studied with BAEP examination. The data was compared to the healthy persons reported in literatures. The abnormal rate of BAEP for patients with brain concussion was 89.5%. There was a statistically significant difference between the abnormal rate of patients and that of healthy persons (Pbrain concussion was 73.7%, indicating dysfunction of the brainstem in those patients. BAEP might be helpful in forensic diagnosis of brain concussion.

  6. Proprioceptive evoked potentials in man: cerebral responses to changing weight loads on the hand

    DEFF Research Database (Denmark)

    Arnfred, S; He, Chen; Eder, D

    2000-01-01

    We studied cerebral evoked potentials on the scalp to the stimulation of the right hand from a change in weight of 400-480 g in ten subjects. Rise-time was 20g/10 ms, Inter Stimulus Interval 2s and stimulus duration was 100 ms. The cerebral activations were a double positive contralateral C3'/P70......). Further studies of the PEP are needed to assess the influence of load manipulations and of muscle contraction and to explore the effect of attentional manipulation....

  7. A Case Report of Intraoperative Monitoring During the Spinal Surgery by Means of Somatosensory Evoked Potentials

    Directory of Open Access Journals (Sweden)

    S.K. Shakoori

    2006-01-01

    Full Text Available Introduction : To prevent spinal lesions during surgery we can use somatosensory evoked potentials (SSEP to monitor the patients who are under surgery particularly the ones under the spinal cord surgery. Case Report: The following case refers to the monitoring of a 23 year – old youth with the use of Intraoperative SSEP who has been under the operation of tumor removal with the diagnosis of space occupying mass in the conous region of spine in Tabriz Shohada Hospital. Conclusion: SSEP study for left tibial nerve after surgery was the same as before surgery. Pathology diagnosis was epandymom. Patient gave recovery process in few days.

  8. The influence of anesthetic depth on motor evoked potential response during awake craniotomy

    OpenAIRE

    Ohtaki, Shunya

    2016-01-01

    術中のMEP(motor evoked potential)の振幅および潜時は麻酔深度に影響される. またMEP振幅のdeviationに関しても麻酔深度と相関し, 覚醒下ではdeviationが小さい. 覚醒下手術におけるMEPの測定は, 術中の運動機能評価をより正確に行うことが出来る可能性が示唆される.

  9. Unmasking of an early laser evoked potential by a point localization task

    DEFF Research Database (Denmark)

    Valeriani, M.; Restuccia, D.; Le Pera, D.

    2000-01-01

    dorsum, and the subjects were asked to identify the stimulated area. The mean error rate in point localization was 4.5%. (2) Non-task condition: laser pulses were delivered on the first intermetacarpal space, and the subject was asked to count the number of stimuli. The mean error rate in counting was 5......Objectives: The investigation of the CO2 laser evoked potential (LEP) modifications following a point localization task. Methods: LEPs were recorded from 10 healthy subjects in two different conditions. (1) Task condition: laser stimuli were shifted among 3 different locations on the right hand...

  10. Control of humanoid robot via motion-onset visual evoked potentials

    Directory of Open Access Journals (Sweden)

    Wei eLi

    2015-01-01

    Full Text Available This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP to code people’s mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task.

  11. Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials.

    Science.gov (United States)

    Niazi, Imran Khan; Mrachacz-Kersting, Natalie; Jiang, Ning; Dremstrup, Kim; Farina, Dario

    2012-07-01

    This paper proposes the development and experimental tests of a self-paced asynchronous brain-computer interfacing (BCI) system that detects movement related cortical potentials (MRCPs) produced during motor imagination of ankle dorsiflexion and triggers peripheral electrical stimulations timed with the occurrence of MRCPs to induce corticospinal plasticity. MRCPs were detected online from EEG signals in eight healthy subjects with a true positive rate (TPR) of 67.15 ± 7.87% and false positive rate (FPR) of 22.05 ±9.07%. The excitability of the cortical projection to the target muscle (tibialis anterior) was assessed before and after the intervention through motor evoked potentials (MEP) using transcranial magnetic stimulation (TMS). The peak of the evoked potential significantly (P=0.02) increased after the BCI intervention by 53 ± 43% (relative to preintervention measure), although the spinal excitability (tested by stretch reflexes) did not change. These results demonstrate for the first time that it is possible to alter the corticospinal projections to the tibialis anterior muscle by using an asynchronous BCI system based on online motor imagination that triggered peripheral stimulation. This type of repetitive proprioceptive feedback training based on self-generated brain signal decoding may be a requirement for purposeful skill acquisition in intact humans and in the rehabilitation of persons with brain damage.

  12. Analytical approaches to estimation of temporal frequency preference from visual evoked potentials

    Science.gov (United States)

    Wierzbicka, Agnieszka; Kordecka, Katarzyna; Żygierewicz, Jarosław; Waleszczyk, Wioletta

    2017-08-01

    There are various ways to study neuronal processing of information about temporal frequency content of visual stimuli. The two most fundamental methods are 1) direct measurement of response amplitude, e.g. an amplitude of averaged visual evoked potential, and 2) assessment of response magnitude after transformation of electrophysiological signal from time to frequency domain. In our study we found it impossible to use the same paradigm to analyze the whole spectrum of temporal frequencies in local field potentials recorded during visual electrophysiology experiments performed on anesthetized rats. Visual responses were recorded from all layers of primary visual cortex in response to flashing light with temporal frequency in the range of 0.5 - 15 Hz. We found that for frequencies lower than 2 Hz it is difficult to draw conclusions based on power spectrum alone, while for high frequencies (> 2 Hz) the evoked potential in time domain could not be observed. We discuss possible physiological reasons of these difficulties and the advantages of the Welch method instead of the periodogram to analyze signals in the frequency domain.

  13. Negative brain potentials elicited by an unexpected color patch or word.

    Science.gov (United States)

    Katayama, J; Yagi, A

    1992-10-01

    The purpose of this study was to examine whether a physical stimulus that deviates from a semantic context can elicit the N400 component of event-related brain potentials (ERPs). ERPs were recorded while 12 students judged the veracity of a simple statement (e.g., red/is not/blue) presented with the order of subject (S), object (O), and verb (V), which is normal in Japanese grammar. In one condition, S was a color patch and O was a word representing the color, while in the other condition, S was a color name and O was a patch. In both conditions, a late additional negative potential was elicited by the O stimulus when it was mismatched with S. In addition, the negativities elicited by the incongruous color patch and word had the same morphology and scalp distribution. The results indicate that not only a word but a physical stimulus which deviates from a semantic context can elicit the N400 component.

  14. [Effect of stimulating pulse width on the threshold of electrically evoked compound action potential].

    Science.gov (United States)

    Yu, Zhongde; Xiao, Ling; Li, Ping; Meng, Li; Zi, Rui; Fei, Xingbo

    2014-12-01

    This paper discusses the relationship between stimulating pulse width and the threshold of electrically evoked compound action potential (ECAP). Firstly, the rheobase and chronaxy from strength-duration curve of nerve fiber was computed using the shepherd's experiment results. Secondly, based on the relationship between ECAP and the action potential of nerve fiber, a mathematical expression to describe the relationship between stimulating pulse width and ECAP threshold was proposed. Thirdly, the parameters were obtained and the feasibility was proved to the expression with the results of experiment using guinea pigs. Research result showed that with ECAP compared to the action potential of nerve fiber, their threshold function relationship with stimulating pulse width was similar, and rheobase from the former was an order smaller in the magnitude than the latter, but the chronaxy was close to each other. These findings may provide meaningful guidance to clinical ECAP measurement and studying speech processing strategies of cochlear implant.

  15. Visual evoked potentials with CRT and LCD monitors: when newer is not better.

    Science.gov (United States)

    Husain, Aatif M; Hayes, Susan; Young, Margaret; Shah, Dharmen

    2009-01-13

    The stimulus for pattern reversal visual evoked potentials (PRVEP) has traditionally been delivered by a cathode ray tube (CRT) monitor. Liquid crystal display (LCD) monitors have become more affordable and are being used instead of CRT monitors for many applications. We tested the hypothesis that LCD monitors were equivalent to CRT monitors when used for PRVEP. Monocular, full field PRVEP with a 32' check size were obtained in six normal subjects with a CRT monitor and LCD monitors having 2 msec, 8 msec, and 30 msec response times. The average P100 latency with the CRT screen was compared to the latencies with the LCD screens. The mean P100 latency of the CRT monitor was 107.7 (+/-6.6) ms, for the LCD 2 msec monitor was 115.7 (+/-6.9; p LCD 8 msec monitor was 118.5 (+/-6.5; p LCD 30 msec monitor was 156.8 (+/-6.8; p LCD) monitors do not provide data comparable to cathode ray tube (CRT) monitors. LCD monitors cannot replace CRT monitors for pattern reversal visual evoked potentials unless new normative data are obtained.

  16. Diagnostic use of dermatomal somatosensory-evoked potentials in spinal disorders: Case series

    Science.gov (United States)

    Dikmen, Pinar Yalinay; Oge, A. Emre

    2013-01-01

    Objective/Context Dermatomal somatosensory-evoked potentials (dSEPs) may be valuable for diagnostic purposes in selected cases with spinal disorders. Design Reports on cases with successful use of dSEPs. Findings Cases 1 and 2 had lesions causing multiple root involvement (upper to middle lumbar region in Case 1 and lower sacral region in Case 2). Cystic lesions in both cases seemed to compress more than one nerve root, and stimulation at the center of the involved dermatomes in dSEPs helped to reveal the functional abnormality. Cases 3 and 4 had lesions involving the spinal cord with or without nerve root impairment. In Case 3, an magnetic resonance imaging (MRI)-verified lesion seemed to occupy a considerable volume of the lower spinal cord, causing only very restricted clinical sensory and motor signs. In Case 4, a cervical MRI showed a small well-circumscribed intramedullary lesion at right C2 level. All neurophysiological investigations were normal in the latter two patients (motor, tibial, and median somatosensory-evoked potentials in Case 3, and electromyography in both) except for the dSEPs. Conclusions Objectifying the presence and degree of sensory involvement in spinal disorders may be helpful for establishing diagnoses and in therapeutic decision-making. Valuable information could be provided by dSEPs in selected patients with multiple root or spinal cord involvement. PMID:24089995

  17. Test-retest reliability of contact heat-evoked potentials from cervical dermatomes.

    Science.gov (United States)

    Kramer, John L K; Taylor, Philippa; Haefeli, Jenny; Blum, Julia; Zariffa, Jose; Curt, Armin; Steeves, John

    2012-02-01

    The purpose of this study was to investigate the test-retest reliability of contact heat-evoked potentials (CHEPs) in neurologically healthy subjects from cervical dermatomes (C4-C8). Seventeen individuals underwent test-retest examination of cervical CHEPs. Peak latencies and peak-to-peak amplitude of N2-P2 and ratings of perceived intensity were analyzed using test-retest reliability statistics (intraclass correlation coefficients [ICCs] and Bland-Altman confidence parameters). For comparison, a group of similar age and gender was also examined with dermatomal somatosensory-evoked potentials (dSSEPs, n = 17). The ICC values for CHEP latency and amplitude parameters were significant (P dermatomes. The coefficients of repeatability (i.e., 2SD of the difference between examinations) confirm that CHEPs and dSSEPs are reliable according to measures of latency. Superior peak-to-peak amplitude test-retest reliability was found for CHEPs. In conclusion, the test-retest reliability of dSSEP and CHEP parameters supports the fact that these outcomes can be used to objectively track changes in spinal conduction in the dorsal column and spinothalamic tract, respectively. The reliable acquisition of CHEPs may depend on the intensity of the sensation reported by the subject for a given area of skin stimulated.

  18. Cortical Evoked Potentials and Hearing Aids in Individuals with Auditory Dys-Synchrony.

    Science.gov (United States)

    Yuvaraj, Pradeep; Mannarukrishnaiah, Jayaram

    2015-12-01

    The purpose of the present study was to investigate the relationship between cortical processing of speech and benefit from hearing aids in individuals with auditory dys-synchrony. Data were collected from 38 individuals with auditory dys-synchrony. Participants were selected based on hearing thresholds, middle ear reflexes, otoacoustic emissions, and auditory brain stem responses. Cortical-evoked potentials were recorded for click and speech. Participants with auditory dys-synchrony were fitted with bilateral multichannel wide dynamic range compression hearing aids. Aided and unaided speech identification scores for 40 words were obtained for each participant. Hierarchical cluster analysis using Ward's method clearly showed four subgroups of participants with auditory dys-synchrony based on the hearing aid benefit score (aided minus unaided speech identification score). The difference in the mean aided and unaided speech identification scores was significantly different in participants with auditory dys-synchrony. However, the mean unaided speech identification scores were not significantly different between the four subgroups. The N2 amplitude and P1 latency of the speech-evoked cortical potentials were significantly different between the four subgroups formed based on hearing aid benefit scores. The results indicated that subgroups of individuals with auditory dys-synchrony who benefit from hearing aids exist. Individuals who benefitted from hearing aids showed decreased N2 amplitudes compared with those who did not. N2 amplitude is associated with greater suppression of background noise while processing speech.

  19. Diminished N1 auditory evoked potentials to oddball stimuli in misophonia patients

    Directory of Open Access Journals (Sweden)

    Arjan eSchröder

    2014-04-01

    Full Text Available Misophonia (hatred of sound is a newly defined psychiatric condition in which ordinary human sounds, such as breathing and eating, trigger impulsive aggression. In the current study we investigated if a dysfunction in the brain’s early auditory processing system could be present in misophonia. We screened 20 patients with misophonia with the diagnostic criteria for misophonia, and 14 matched healthy controls without misophonia, and investigated any potential deficits in auditory processing of misophonia patients using auditory event-related potentials (ERPs during an oddball task.Subjects watched a neutral silent movie while being presented a regular frequency of beep sounds in which oddball tones of 250 Hz and 4000 Hz were randomly embedded in a stream of repeated 1000 Hz standard tones. We examined the P1, N1 and P2 components locked to the onset of the tones.For misophonia patients, the N1 peak evoked by the oddball tones had a smaller mean peak amplitude than the control group. However, no significant differences were found in P1 and P2 components evoked by the oddball tones. There were no significant differences between the misophonia patients and their controls in any of the ERP components to the standard tones.The diminished N1 component to oddball tones in misophonia patients suggests an underlying neurobiological deficit in misophonia patients. This reduction might reflect a basic impairment in auditory processing in misophonia patients.

  20. Objective detection of auditory steady-state evoked potentials based on mutual information.

    Science.gov (United States)

    Bidelman, Gavin M; Bhagat, Shaum P

    2016-01-01

    Recently, we developed a metric to objectively detect human auditory evoked potentials based on the mutual information (MI) between neural responses and stimulus spectrograms. Here, the MI algorithm is evaluated further for validity in testing the auditory steady-state response (ASSR), a sustained potential used in objective audiometry. MI was computed between spectrograms of ASSRs and their evoking stimuli to quantify the shared time-frequency information between neuroelectric activity and stimulus acoustics. MI was compared against two traditional ASSR detection metrics: F-test and magnitude-squared coherence (MSC). Using an empirically derived threshold (⊖MI=1.45), MI was applied as a binary classifier to distinguish actual biological responses recorded in human participants (n=11) from sham recordings, containing only EEG noise (i.e., non-stimulus-control condition). MI achieved high overall accuracy (>90%) in identifying true ASSRs from sham recordings, with true positive/true negative rates of 82/100%. During online averaging, comparison with two other indices (F-test, MSC) indicated that MI could detect ASSRs in roughly half the number of trials (i.e., ∼400 sweeps) as the MSC and performed comparably to the F-test, but showed slightly better signal detection performance. MI provides an alternative, more flexible metric for efficient and automated ASSR detection.

  1. Comparing the vestibular evoked myogenic potentials in patients with type Ι diabetes mellitus and normal people

    Directory of Open Access Journals (Sweden)

    Behnoush Kamali

    2013-05-01

    Full Text Available Background and Aim: Patients with type I diabetes mellitus commonly complain about dizziness, floating sensation, tinnitus, weakness, and sweating. The aim of this study was comparing vestibular evoked myogenic potentials (VEMPs between these patients and normal people. Methods: Twenty-four patients with type I diabetes mellitus and twenty-four healthy volunteers with the age range of 15-40 years were enrolled in this study. A tone burst of 500 Hz, with the intensity of 95 dB nHL, was delivered through a insert earphone and vestibular evoked myogenic potential was recorded. The t-test was used to compare the results between the two groups. To investigate the effect of glycated hemoglobin (HbA1c on VEMP responses (latency, absolute and relative amplitude, the regression analysis was used. Results: The mean p13 and n23 latency were significantly more in patients with type Ι diabetes mellitus (for P13 latency, p=0.013 in right and p=0.010 in left ear, and for n23 latency, p0.050. There was no correlation between VEMPs and HbA1c in patients with type 1 diabetes mellitus (p>0.05. Conclusion: Prolonged latencies of the VEMP in patients with type 1 diabetes mellitus suggest lesions in the retrolabyrinthine, especially in the vestibulospinal tract. Nevertheless, due to the limited number of examined samples, further investigation with more patients should be performed.

  2. Effect of color of flash stimulus on variability of flash visual evoked potential latencies.

    Science.gov (United States)

    Subramanian, Senthil Kumar; Gaur, Giriwar Singh; Narayan, Sunil K

    2012-01-01

    Visual Evoked Potentials (VEPs) are evoked potentials generated in response to visual stimuli. The flash VEP (FVEP) is used less frequently than pattern-reversal VEP (PR-VEP) because; it shows great variations in both latency and amplitude in normal subjects. The advantage of FVEP is its feasibility in non-cooperative subjects, which circumvents the major limitation of PR-VEP. The present study was undertaken to assess the effect of change of color of flashlight on variability of FVEP latencies. Healthy subjects in the age group of 18-30 years underwent the standard stimulus using white light, followed by altered stimuli done with red and blue light. 2 trials were given for each eye, for each type of stimulus. The same set of studies was repeated at the same clock time the following day. The inter-individual and intra-individual variability in the peak latency of P2 and N2 waveforms was assessed using coefficient of variation (COV). Both inter-individual and intra-individual variability was less when monochromatic light was used. Between red and blue FVEP, inter-individual variability was less in blue FVEP and the results of intra-individual variability was inconclusive. Monochromatic stimulation preferably with blue light reduced both inter-individual and intra-individual variability seen in latency of P2 and N2 waveforms in FVEP and hence recommended in preference to standard white stimulus for FVEP recording.

  3. Color vision in attention-deficit/hyperactivity disorder: a pilot visual evoked potential study.

    Science.gov (United States)

    Kim, Soyeon; Banaschewski, Tobias; Tannock, Rosemary

    2015-01-01

    Individuals with attention-deficit/hyperactivity disorder (ADHD) are reported to manifest visual problems (including ophthalmological and color perception, particularly for blue-yellow stimuli), but findings are inconsistent. Accordingly, this study investigated visual function and color perception in adolescents with ADHD using color Visual Evoked Potentials (cVEP), which provides an objective measure of color perception. Thirty-one adolescents (aged 13-18), 16 with a confirmed diagnosis of ADHD, and 15 healthy peers, matched for age, gender, and IQ participated in the study. All underwent an ophthalmological exam, as well as electrophysiological testing color Visual Evoked Potentials (cVEP), which measured the latency and amplitude of the neural P1 response to chromatic (blue-yellow, red-green) and achromatic stimuli. No intergroup differences were found in the ophthalmological exam. However, significantly larger P1 amplitude was found for blue and yellow stimuli, but not red/green or achromatic stimuli, in the ADHD group (particularly in the medicated group) compared to controls. Larger amplitude in the P1 component for blue-yellow in the ADHD group compared to controls may account for the lack of difference in color perception tasks. We speculate that the larger amplitude for blue-yellow stimuli in early sensory processing (P1) might reflect a compensatory strategy for underlying problems including compromised retinal input of s-cones due to hypo-dopaminergic tone. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  4. Automatic Recruitment of the Motor System by Undetected Graspable Objects: A Motor-evoked Potential Study.

    Science.gov (United States)

    McNair, Nicolas A; Behrens, Ashleigh D; Harris, Irina M

    2017-11-01

    Previous behavioral and neuroimaging studies have suggested that the motor properties associated with graspable objects may be automatically accessed when people passively view these objects. We directly tested this by measuring the excitability of the motor pathway when participants viewed pictures of graspable objects that were presented during the attentional blink (AB), when items frequently go undetected. Participants had to identify two briefly presented objects separated by either a short or long SOA. Motor-evoked potentials were measured from the right hand in response to a single TMS pulse delivered over the left primary motor cortex 250 msec after the onset of the second target. Behavioral results showed poorer identification of objects at short SOA compared with long SOA, consistent with an AB, which did not differ between graspable and nongraspable objects. However, motor-evoked potentials measured during the AB were significantly higher for graspable objects than for nongraspable objects, irrespective of whether the object was successfully identified or undetected. This provides direct evidence that the motor system is automatically activated during visual processing of objects that afford a motor action.

  5. Changes in visual-evoked potential habituation induced by hyperventilation in migraine.

    Science.gov (United States)

    Coppola, Gianluca; Currà, Antonio; Sava, Simona Liliana; Alibardi, Alessia; Parisi, Vincenzo; Pierelli, Francesco; Schoenen, Jean

    2010-12-01

    Hyperventilation is often associated with stress, an established trigger factor for migraine. Between attacks, migraine is associated with a deficit in habituation to visual-evoked potentials (VEP) that worsens just before the attack. Hyperventilation slows electroencephalographic (EEG) activity and decreases the functional response in the occipital cortex during visual stimulation. The neural mechanisms underlying deficient-evoked potential habituation in migraineurs remain unclear. To find out whether hyperventilation alters VEP habituation, we recorded VEPs before and after experimentally induced hyperventilation lasting 3 min in 18 healthy subjects and 18 migraine patients between attacks. We measured VEP P100 amplitudes in six sequential blocks of 100 sweeps and habituation as the change in amplitude over the six blocks. In healthy subjects, hyperventilation decreased VEP amplitude in block 1 and abolished the normal VEP habituation. In migraine patients, hyperventilation further decreased the already low block 1 amplitude and worsened the interictal habituation deficit. Hyperventilation worsens the habituation deficit in migraineurs possibly by increasing dysrhythmia in the brainstem-thalamo-cortical network.

  6. Movement gating of beta/gamma oscillations involved in the N30 somatosensory evoked potential.

    Science.gov (United States)

    Cebolla, Ana Maria; De Saedeleer, Caty; Bengoetxea, Ana; Leurs, Françoise; Balestra, Costantino; d'Alcantara, Pablo; Palmero-Soler, Ernesto; Dan, Bernard; Cheron, Guy

    2009-05-01

    Evoked potential modulation allows the study of dynamic brain processing. The mechanism of movement gating of the frontal N30 component of somatosensory evoked potentials (SEP) produced by the stimulation of the median nerve at wrist remains to be elucidated. At rest, a power enhancement and a significant phase-locking of the electroencephalographic (EEG) oscillation in the beta/gamma range (25-35 Hz) are related to the emergence of the N30. The latter was also perfectly identified in presence of pure phase-locking situation. Here, we investigated the contribution of these rhythmic activities to the specific gating of the N30 component during movement. We demonstrated that concomitant execution of finger movement of the stimulated hand impinges such temporal concentration of the ongoing beta/gamma EEG oscillations and abolishes the N30 component throughout their large topographical extent on the scalp. This also proves that the phase-locking phenomenon is one of the main actors for the N30 generation. These findings could be explained by the involvement of neuronal populations of the sensorimotor cortex and other related areas, which are unable to respond to the phasic sensory activation and to phase-lock their firing discharges to the external sensory input during the movement. This new insight into the contribution of phase-locked oscillation in the emergence of the N30 and in its gating behavior calls for a reappraisal of fundamental and clinical interpretation of the frontal N30 component. (c) 2008 Wiley-Liss, Inc.

  7. Modeling neural correlates of auditory attention in evoked potentials using corticothalamic feedback dynamics.

    Science.gov (United States)

    Trenado, Carlos; Haab, Lars; Strauss, Daniel J

    2007-01-01

    Auditory evoked cortical potentials (AECP) are well established as diagnostic tool in audiology and gain more and more impact in experimental neuropsychology, neuro-science, and psychiatry, e.g., for the attention deficit disorder, schizophrenia, or for studying the tinnitus decompensation. The modulation of AECP due to exogenous and endogenous attention plays a major role in many clinical applications and has experimentally been studied in neuropsychology. However the relation of corticothalamic feedback dynamics to focal and non-focal attention and its large-scale effect reflected in AECPs is far from being understood. In this paper, we model neural correlates of auditory attention reflected in AECPs using corticothalamic feedback dynamics. We present a mapping of a recently developed multiscale model of evoked potentials to the hearing path and discuss for the first time its neurofunctionality in terms of corticothalamic feedback loops related to focal and non-focal attention. Our model reinforced recent experimental results related to online attention monitoring using AECPs with application as objective tinnitus decompensation measure. It is concluded that our model presents a promising approach to gain a deeper understanding of the neurodynamics of auditory attention and might be use as an efficient forward model to reinforce hypotheses that are obtained from experimental paradigms involving AECPs.

  8. Can a finding of cervical vestibular evoked myogenic potentials contribute to vestibular migraine diagnostics?

    Directory of Open Access Journals (Sweden)

    Tihana Vešligaj

    2016-02-01

    Full Text Available Aim To investigate differences in vestibular evoked myogenic potentials (VEMP results with patients suffering from vestibular migraine and healthy people, taking into consideration values of threshold and latency of occurrence of the characteristic wave complex, size of amplitude, and interaural amplitude ratio. According to the results, determine the importance and usefulness of VEMP in vestibular migraine diagnostics. Methods A total number of 62 subjects were included in the study, 32 of them belonging to a group of patients suffering from vestibular migraine (VM, while other 30 were in a control group of healthy subjects. Information was collected during the diagnostic evaluation. General and otoneurological history of patients and bedside tests, audiological results, videonystagmography and cervical vestibular evoked myogenic potentials (cVEMP were made. Results There was a difference in an interaural ratio of amplitudes in the experimental and control groups, but it was not found to be clinically significant. By ToneBurst 500 Hz method, the interaural amplitude ratio higher than 35% was measured in 46.97% subjects, while the response was totally unilaterally missing in 28.8% patients. Conclusion Even the sophisticated method as cVEMP does not give the ultimate result confirming the vestibular migraine diagnosis, and neither do other diagnostic methods. cVEMP result can contribute to the completion of full mosaic of vestibular migraine diagnostics.

  9. Effects of stimulation intensity, gender and handedness upon auditory evoked potentials

    Directory of Open Access Journals (Sweden)

    Susana Camposano

    1992-03-01

    Full Text Available Left handers and women show less anatomical brain asymmetry, larger corpus callosum and more bilateral representation of specific functions. Sensory and cognitive components of cortical auditory evoked potentials (AEF have been shown to be asymmetric in right handed males and to be influenced by stimulus intensity. In this study the influence of sex, handedness and stimulus intensity upon AEP components is investigated under basal conditions of passive attention. 14 right handed males, 14 right handed females, 14 left handed males, and 14 left handed females were studied while lying awake and paying passive attention to auditory stimulation (series of 100 binaural clicks, duration 1 msec, rate 1/sec, at four intensities. Cz, C3 and C4 referenced to linked mastoids and right EOG were recorded. Analysis time was 400 msec, average evoked potentials were based on 100 clicks. Stimulus intensity and gender affect early sensory components (P1N1 and N1P2 at central leads, asymmetry is influenced only by handedness, right handers showing larger P1N1 amplitudes over the right hemisphere.

  10. [Recommendations for the clinical use of motor evoked potentials in multiple sclerosis].

    Science.gov (United States)

    Fernández, V; Valls-Sole, J; Relova, J L; Raguer, N; Miralles, F; Dinca, L; Taramundi, S; Costa-Frossard, L; Ferrandiz, M; Ramió-Torrentà, Ll; Villoslada, P; Saiz, A; Calles, C; Antigüedad, A; Alvarez-Cermeño, J C; Prieto, J M; Izquierdo, G; Montalbán, X; Fernández, O

    2013-09-01

    To establish clinical guidelines for the clinical use and interpretation of motor evoked potentials (MEP) in diagnosing and monitoring patients with multiple sclerosis (MS). Recommendations for MEP use and interpretation will help us rationalise and optimise resources used in MS patient diagnosis and follow up. We completed an extensive literature review and pooled our own data to produce a consensus statement with recommendations for the clinical use of MEPs in the study of MS. MEPs, in addition to spinal and cranial magnetic resonance imaging (MRI), help us diagnose and assess MS patients whose disease initially presents as spinal cord syndrome and those with non-specific brain MRI findings, or a normal brain MRI and clinical signs of MS. Whenever possible, a multimodal evoked potential study should be performed on patients with suspected MS in order to demonstrate involvement of the motor pathway which supports a diagnosis of dissemination in space. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  11. Late auditory event-related evoked potential (P300) in Down's syndrome patients.

    Science.gov (United States)

    César, Carla Patrícia Hernandez Alves Ribeiro; Caovilla, Heloisa Helena; Munhoz, Mário Sérgio Lei; Ganança, Maurício Malavasi

    2010-01-01

    Down syndrome is caused by a trisomy of chromosome 21 and is associated with central auditory processing deficit, learning disability and, probably, early-onset Alzheimer's disease. To evaluate the latencies and amplitudes of evoked late auditory potential related to P300 events and their changes in young adults with Down's syndrome. Prospective case study. P300 test latency and amplitudes were evaluated in 17 individuals with Down's syndrome and 34 healthy individuals. RESULTS The P300 latency (N1, P2, N2 and P3) was longer and the N2-P3 amplitude was lower in individuals with Down syndrome when compared to those in the control group. In young adults with Down syndrome, N1, P2, N2 and P3 latencies of late auditory evoked potential related to P300 events were prolonged, and N2 - P3 amplitudes were significantly reduced, suggesting integration impairment between the auditory association area and cortical and subcortical areas of the central nervous system.

  12. Visual evoked potentials in diagnostics of optic neuropathy associated with renal failure

    Directory of Open Access Journals (Sweden)

    Małgorzata Jurys

    2017-01-01

    Full Text Available Chronic renal failure is associated with many neurological complications. Due to accumulation of uremic neurotoxins axonal degeneration with its secondary demyelination occurs, which results in development of polineuropathy in 60-100% of patients with chronic renal failure. One of the most severe peripheral neuropathy is optic neuropathy. It is associated with visual deterioration and reduction in quality of life. Symptoms of the optic neuropathy may appear either before or after dialysis therapy. They often worsen after renal transplant, probably due to immunosuppressive regimen. Early diagnostics of the optic neuropathy became possible by using visual evoked potentials (VEP. This reliable, sensitive and noninvasive technique provides a direct measure of subclinical impairment of visual pathways. Among hemodialysed or immunosupressed patients one can observe abnormal VEP parameters – especially prolonged latency of the P100 component, less often fluctuation of its amplitude. These alterations are pronounced even if clinical examination reveals no abnormalities. This review presents a summary of current use of visual evoked potentials in monitoring of patients with chronic renal failure.

  13. Normal visual evoked potentials in preschool children born small for gestational age.

    Science.gov (United States)

    Nilsson, Josefin; Dahlgren, Jovanna; Karlsson, Ann-Katrine; Grönlund, Marita Andersson

    2011-08-01

    Previous studies have shown visual evoked potential (VEP) abnormalities in infants and animals born small for gestational age (SGA) compared with controls. The current exploratory study aims to investigate whether VEP abnormalities persist in older ages. Pattern VEP latencies were obtained in 21 children (11 girls, 10 boys), born SGA and moderately preterm, at an average age of 5 years and 8 months. Fifty-one children (24 girls, 27 boys, mean age of 5 years and 7 months), also born moderately preterm but with normal height and weight at birth, served as controls Visual evoked potential results showed no significant differences in latency between children born SGA and controls born appropriate for gestational age (AGA) for either binocular stimulation, right eye or left eye stimulation. Our findings do not indicate any differences in VEP latency at preschool age for children born SGA compared with children born AGA. The results may support previous studies, suggesting that children born SGA show accelerated neurophysiologic maturation during their first year of life and that previously delayed VEP latencies after catch-up stay unchanged compared with controls. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  14. Low luminance/eyes closed and monochromatic stimulations reduce variability of flash visual evoked potential latency.

    Science.gov (United States)

    Subramanian, Senthil Kumar; Gaur, Giriwar Singh; Narayan, Sunil K

    2013-10-01

    Visual evoked potentials are useful in investigating the physiology and pathophysiology of the human visual system. Flash visual evoked potential (FVEP), though technically easier, has less clinical utility because it shows great variations in both latency and amplitude for normal subjects. To study the effect of eye closure, low luminance, and monochromatic stimulation on the variability of FVEPs. Subjects in self-reported good health in the age group of 18-30 years were divided into three groups. All participants underwent FVEP recording with eyes open and with white light at 0.6 J luminance (standard technique). Next recording was done in group 1 with closed eyes, group 2 with 1.2 and 20 J luminance, and group 3 with red and blue lights, while keeping all the other parameters constant. Two trials were given for each eye, for each technique. The same procedure was repeated at the same clock time on the following day. Variation in FVEP latencies between the individuals (interindividual variability) and the variations within the same individual for four trials (intraindividual variability) were assessed using coefficient of variance (COV). The technique with lower COV was considered the better method. Recording done with closed eyes, 0.6 J luminance, and monochromatic light (blue > red) showed lower interindividual and intraindividual variability in P2 and N2 as compared to standard techniques. Low luminance flash stimulations and monochromatic light will reduce FVEP latency variability and may be clinically useful modifications of FVEP recording technique.

  15. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit

    Science.gov (United States)

    Yamauchi, Yasuyuki; Franco, Luisa M.; Jackson, Douglas J.; Naber, John F.; Ofer Ziv, R.; Rizzo, Joseph F., III; Kaplan, Henry J.; Enzmann, Volker

    2005-03-01

    The aim of the study was to directly compare the threshold electrical charge density of the retina (retinal threshold) in rabbits for the generation of electrical evoked potentials (EEP) by delivering electrical stimulation with a custom-made microelectrode array (MEA) implanted into either the subretinal or suprachoroidal space. Nine eyes of seven Dutch-belted rabbits were studied. The electroretinogram (ERG), visual evoked potentials (VEP) and EEP were recorded. Electrodes for the VEP and EEP were placed on the dura mater overlying the visual cortex. The EEP was recorded following electrical stimulation of the MEA placed either subretinally beneath the visual streak of the retina or in the suprachoroidal space in the rabbit eye. An ab externo approach was used for placement of the MEA. Liquid perfluorodecaline (PFCL; 0.4 ml) was placed within the vitreous cavity to flatten the neurosensory retina on the MEA after subretinal implantation. The retinal threshold for generation of an EEP was determined for each MEA placement by three consecutive measurements consisting of 100 computer-averaged recordings. Animals were sacrificed at the conclusion of the experiment and the eyes were enucleated for histological examination. The retinal threshold to generate an EEP was 9 ± 7 nC (0.023 ± 0.016 mC cm-2) within the subretinal space and 150 ± 122 nC (0.375 ± 0.306 mC cm-2) within the suprachoroidal space. Histology showed disruption of the outer retina with subretinal but not suprachoroidal placement. The retinal threshold to elicit an EEP is significantly lower with subretinal placement of the MEA compared to suprachoroidal placement (P < 0.05). The retinal threshold charge density with a subretinal MEA is well below the published charge limit of 1 mC cm-2, which is the level below which chronic stimulation of the retina is considered necessary to avoid tissue damage (Shannon 1992 IEEE Trans. Biomed. Eng. 39 424-6). Supported in part by The Charles D Kelman, MD

  16. Optimal parameters of transcranial electrical stimulation for intraoperative monitoring of motor evoked potentials of the tibialis anterior muscle during pediatric scoliosis surgery.

    Science.gov (United States)

    Azabou, E; Manel, V; Andre-obadia, N; Fischer, C; Mauguiere, F; Peiffer, C; Lofaso, F; Shils, J L

    2013-10-01

    Transcranial electric stimulation elicited muscle motor evoked potentials (TESmMEPs) is one of the best methods for corticospinal tract's function monitoring during spine and spinal cord surgeries. A train of multipulse electric stimulation is required for eliciting TESmMEPs under general anaesthesia. Here, we investigated the best stimulation parameters for eliciting and recording tibialis anterior's TESmMEPs during paediatric scoliosis surgery. Numbers of pulses (NOP), inter-stimulus intervals (ISI) and current intensities allowing the best size tibialis anterior muscle's TESmMEPs under general anaesthesia, were tested and collected during 77 paediatric scoliosis surgery monitoring procedures in our hospital. Individual pulse duration was kept at 0.5 ms and stimulating electrodes were positioned at C1 and C2 (International 10-20-EEG-System) during all the tests. The NOP used for eliciting the best tibialis anterior TESmMEPs response was 5, 6, and 7 respectively in 21 (27%), 47 (61%) and 9 (12%) out of the 77 patients. The ISI was 2, 3 and 4 ms respectively in 13 (17%), 55 (71%) and 9 (12%) of them. The current intensity used varied from 300 to 700 V (mean: 448±136 V). Most patients had 6 as best NOP (61%) and 3 ms as best ISI (71%). These findings support that a NOP of 6 and an ISI of 3 ms should be preferentially used as optimal stimulation settings for intraoperative tibialis anterior muscle's TESmMEPs eliciting and recording during paediatric scoliosis surgery. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Role of the Frontal Sinus in Mediating Ocular Vestibular-Evoked Myogenic Potentials by Bone Vibration Stimuli Applied to the Forehead.

    Science.gov (United States)

    Lin, Kuei-You; Yeh, Te-Huei; Jaw, Fu-Shan; Young, Yi-Ho

    2018-01-18

    This study investigated ocular vestibular-evoked myogenic potential (oVEMP) tests via Fpz and Fz taps to assess the role of the frontal sinus in mediating oVEMP elicitation. Forty healthy subjects and 80 patients with Ménière disease (MD) underwent a series of oVEMP tests via a minishaker tapping at the Fpz and Fz sites in a randomized order. Response rates of oVEMP test via various tapping sites were compared. Dimensions of the frontal sinus were measured via CT scan. A significantly negative correlation between the age and height of the frontal sinus was noted, and the cutoff age for discriminating present and absent Fpz oVEMPs in MD patients was 52 years. Additionally, oVEMPs by Fpz tapping were more efficiently presented in males than females, likely because of the greater resonance by the larger height of the frontal sinus in males (3.88 ± 0.68 cm) than females (3.42 ± 0.67 cm). In conclusion, the height of the frontal sinus plays a role in mediating the elicitation of oVEMPs. The oVEMPs could be easily elicited by the first-order bone vibration (Fpz/Fz tapping) coupled with the second-order resonance effect (with a high extent of the frontal sinus). Thus, initial tapping at the Fpz site is suggested. If it fails, try the Fz site for screening the oVEMPs. © 2018 S. Karger AG, Basel.

  18. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, T. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fujii, K. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fukui, M. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Mizushima, A. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Matsumoto, S. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Hasuo, K. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Yamamoto, T. [Dept. of Otolaryngology, Kyushu Univ. Fukuoka (Japan); Tobimatsu, S. [Dept. of Clinical Neurophysiology, Neurological Inst., Kyushu Univ., Fukuoka (Japan)

    1995-10-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  19. Hemispheric asymmetries for visual and auditory temporal processing: an evoked potential study.

    Science.gov (United States)

    Nicholls, Michael E R; Gora, John; Stough, Con K K

    2002-04-01

    Lateralization for temporal processing was investigated using evoked potentials to an auditory and visual gap detection task in 12 dextral adults. The auditory stimuli consisted of 300-ms bursts of white noise, half of which contained an interruption lasting 4 or 6 ms. The visual stimuli consisted of 130-ms flashes of light, half of which contained a gap lasting 6 or 8 ms. The stimuli were presented bilaterally to both ears or both visual fields. Participants made a forced two-choice discrimination using a bimanual response. Manipulations of the task had no effect on the early evoked components. However, an effect was observed for a late positive component, which occurred approximately 300-400 ms following gap presentation. This component tended to be later and lower in amplitude for the more difficult stimulus conditions. An index of the capacity to discriminate gap from no-gap stimuli was gained by calculating the difference waveform between these conditions. The peak of the difference waveform was delayed for the short-gap stimuli relative to the long-gap stimuli, reflecting decreased levels of difficulty associated with the latter stimuli. Topographic maps of the difference waveforms revealed a prominence over the left hemisphere. The visual stimuli had an occipital parietal focus whereas the auditory stimuli were parietally centered. These results confirm the importance of the left hemisphere for temporal processing and demonstrate that it is not the result of a hemispatial attentional bias or a peripheral sensory asymmetry.

  20. A Preclinical Study of Laryngeal Motor-Evoked Potentials as a Marker Vagus Nerve Activation.

    Science.gov (United States)

    Grimonprez, Annelies; Raedt, Robrecht; De Taeye, Leen; Larsen, Lars Emil; Delbeke, Jean; Boon, Paul; Vonck, Kristl

    2015-12-01

    Vagus nerve stimulation (VNS) is a treatment for refractory epilepsy and depression. Previous studies using invasive recording electrodes showed that VNS induces laryngeal motor-evoked potentials (LMEPs) through the co-activation of the recurrent laryngeal nerve and subsequent contractions of the laryngeal muscles. The present study investigates the feasibility of recording LMEPs in chronically VNS-implanted rats, using a minimally-invasive technique, to assess effective current delivery to the nerve and to determine optimal VNS output currents for vagal fiber activation. Three weeks after VNS electrode implantation, signals were recorded using an electromyography (EMG) electrode in the proximity of the laryngeal muscles and a reference electrode on the skull. The VNS output current was gradually ramped up from 0.1 to 1.0 mA in 0.1 mA steps. In 13/27 rats, typical LMEPs were recorded at low VNS output currents (median 0.3 mA, IQR 0.2-0.3 mA). In 11/27 rats, significantly higher output currents were required to evoke electrophysiological responses (median 0.7 mA, IQR 0.5-0.7 mA, p vagus nerve. Furthermore, our results suggest that low output currents are sufficient to activate vagal fibers.

  1. Nutritional and Antioxidant Potential of Lentil Sprouts Affected by Elicitation with Temperature Stress.

    Science.gov (United States)

    Świeca, Michał; Baraniak, Barbara

    2014-04-09

    The influences of temperature stress on antioxidant potential and nutritional quality of lentil sprouts were studied. Temperature treatments (TC, 1 h at 4 °C; TH, 1 h at 40 °C) significantly improved the nutraceutical potential without any negative effect on nutritional quality. In comparison to control, elicited sprouts were characterized by elevated content of condensed tannins, flavonoids, and total phenolics. The highest content of total phenolics and flavonoids was determined for 6-day-old TH sprouts -23.7 ± 0.87 and 2.50 ± 0.07 mg/(g of dry weight (DW)), respectively. The general trend of antiradical, lipid preventing, and reducing properties in elicited sprouts indicates a significantly improvement of these activities. The highest reducing power was determined for 6-day-old sprouts induced at TH (0.43 ± 0.02 mmol of Trolox/(g of DW)), while the lowest for 3-day-old sprouts elicited at TC (0.29 ± 0.02 mmol of Trolox/(g of DW)). Both modifications effectively elevated the ability to prevent lipids against oxidation (in 3-day-old sprouts a 3.3- and 4-fold increase for TC and TH, respectively).

  2. Least-squares (LS) deconvolution of a series of overlapping cortical auditory evoked potentials: a simulation and experimental study.

    Science.gov (United States)

    Bardy, Fabrice; Van Dun, Bram; Dillon, Harvey; Cowan, Robert

    2014-08-01

    To evaluate the viability of disentangling a series of overlapping 'cortical auditory evoked potentials' (CAEPs) elicited by different stimuli using least-squares (LS) deconvolution, and to assess the adaptation of CAEPs for different stimulus onset-asynchronies (SOAs). Optimal aperiodic stimulus sequences were designed by controlling the condition number of matrices associated with the LS deconvolution technique. First, theoretical considerations of LS deconvolution were assessed in simulations in which multiple artificial overlapping responses were recovered. Second, biological CAEPs were recorded in response to continuously repeated stimulus trains containing six different tone-bursts with frequencies 8, 4, 2, 1, 0.5, 0.25 kHz separated by SOAs jittered around 150 (120-185), 250 (220-285) and 650 (620-685) ms. The control condition had a fixed SOA of 1175 ms. In a second condition, using the same SOAs, trains of six stimuli were separated by a silence gap of 1600 ms. Twenty-four adults with normal hearing (<20 dB HL) were assessed. Results showed disentangling of a series of overlapping responses using LS deconvolution on simulated waveforms as well as on real EEG data. The use of rapid presentation and LS deconvolution did not however, allow the recovered CAEPs to have a higher signal-to-noise ratio than for slowly presented stimuli. The LS deconvolution technique enables the analysis of a series of overlapping responses in EEG. LS deconvolution is a useful technique for the study of adaptation mechanisms of CAEPs for closely spaced stimuli whose characteristics change from stimulus to stimulus. High-rate presentation is necessary to develop an understanding of how the auditory system encodes natural speech or other intrinsically high-rate stimuli.

  3. Vestibular evoked myogenic potentials: an overview Potencial evocado miogênico vestibular: uma visão geral

    Directory of Open Access Journals (Sweden)

    Renato Cal

    2009-06-01

    Full Text Available The vestibular evoked myogenic potential (VEMP test is a relatively new diagnostic tool that is in the process of being investigated in patients with specific vestibular disorders. Briefly, the VEMP is a biphasic response elicited by loud clicks or tone bursts recorded from the tonically contracted sternocleidomastoid muscle, being the only resource available to assess the function of the saccule and the lower portion of the vestibular nerve. AIM: In this review, we shall highlight the history, methods, current VEMP status, and discuss its specific application in the diagnosis of the Ménière's Syndrome.O teste do potencial evocado miogênico vestibular (PEMV é um instrumento diagnóstico relativamente novo e ainda em processo de validação em estudos com pacientes portadores de desordens vestibulares específicas. De forma resumida, o PEMV é uma resposta bifásica em resposta a estímulos sonoros gravados a partir de contrações do músculo esternocleidomastóideo e é o único recurso existente para avaliar a função do sáculo e da divisão inferior do nervo vestibular. OBJETIVO: Nesta revisão iremos destacar a história, método de realização, situação atual da pesquisa envolvendo o PEMV, além de discutir as suas aplicações específicas no diagnóstico da síndrome de Ménière.

  4. The N2-P3 complex of the evoked potential and human performance

    Science.gov (United States)

    Odonnell, Brian F.; Cohen, Ronald A.

    1988-01-01

    The N2-P3 complex and other endogenous components of human evoked potential provide a set of tools for the investigation of human perceptual and cognitive processes. These multidimensional measures of central nervous system bioelectrical activity respond to a variety of environmental and internal factors which have been experimentally characterized. Their application to the analysis of human performance in naturalistic task environments is just beginning. Converging evidence suggests that the N2-P3 complex reflects processes of stimulus evaluation, perceptual resource allocation, and decision making that proceed in parallel, rather than in series, with response generation. Utilization of these EP components may provide insights into the central nervous system mechanisms modulating task performance unavailable from behavioral measures alone. The sensitivity of the N2-P3 complex to neuropathology, psychopathology, and pharmacological manipulation suggests that these components might provide sensitive markers for the effects of environmental stressors on the human central nervous system.

  5. The application of somatosensory evoked potentials in spinal cord injury rehabilitation.

    Science.gov (United States)

    Caizhong, Xie; Chunlei, Shan; Beibei, Liu; Zhiqing, Ding; Qinneng, Ding; Tong, Wang

    2014-01-01

    For a therapeutic intervention after spinal cord injury (SCI), it is important to take accurate and objective assessment tools. To explore the practicability of somatosensory evoked potentials (SEPs) and Modified Barthel Index (MBI) scale and describe the rehabilitation value of SEPs in different degrees of SCI. Thirty-six SCI patients were enrolled in this study. All the patients received comprehensive rehabilitation treatment, such as physical therapy, occupational therapy, functional electrical stimulation, and psychotherapy. The nerve function of the spinal cord was assessed by SEPs, the activities of daily living (ADL) was evaluated by MBI scale, and SEP recordings and MBI scores were obtained before and after treatment. There were statistically significant differences in SEPs latency among different grades of SCI before treatment. The SEPs latency after treatment was better than that before treatment in every grade (p rehabilitation value varies in different grades of SCI.

  6. Phenothiazine effects on cerebral-evoked potentials and eye movements in acute schizophrenics.

    Science.gov (United States)

    Rappaport, M; Hopkins, H K; Hall, K; Belleza, T

    1975-01-01

    An investigation was made of the effects of phenothiazine medication on the averaged visual-evoked potentials (AVEP) and on eye movements in hospitalized, young, acute schizophrenic patients. These results were compared with those of normal subjects who were not given medication. AVEP measures included maximum amplitude (Am), frequency of peaks (FOP'S), variability (V) and peak latencies for an early negative peak (N1) and a later positive peak (P6). Eye movement measures included percent of time looking at a stimulus slide, percent of time looking at a figure on the slide, the number of fixations and the percent of cells entered in which fixations occurred. For schizophrenics off and on phenothiazine medication, there were no consistently significant drug effects on any measure except frequency of peaks. Schizophrenics compared to normals had lower amplitudes, greater frequency of peaks, greater variability and lower eye movement scores.

  7. Normal Amplitude of Electroretinography and Visual Evoked Potential Responses in AβPP/PS1 Mice.

    Science.gov (United States)

    Leinonen, Henri; Lipponen, Arto; Gurevicius, Kestutis; Tanila, Heikki

    2016-01-01

    Alzheimer's disease has been shown to affect vision in human patients and animal models. This may pose the risk of bias in behavior studies and therefore requires comprehensive investigation. We recorded electroretinography (ERG) under isoflurane anesthesia and visual evoked potentials (VEP) in awake amyloid expressing AβPPswe/PS1dE9 (AβPP/PS1) and wild-type littermate mice at a symptomatic age. The VEPs in response to patterned stimuli were normal in AβPP/PS1 mice. They also showed normal ERG amplitude but slightly shortened ERG latency in dark-adapted conditions. Our results indicate subtle changes in visual processing in aged male AβPP/PS1 mice specifically at a retinal level.

  8. [Increase in intracranial pressure in monitoring brain stem auditory evoked potentials using headphones].

    Science.gov (United States)

    Schwarz, G; Pfurtscheller, G; Tritthart, H; List, W F

    1988-11-01

    Ten measurements of intracranial pressure (ICP) (ventricular n = 5, epidural n = 3) in 8 patients (3 after aneurysm surgery, 5 with head trauma) were performed before and after application of conventional headphones for stimulating brainstem auditory evoked potentials (BAEP). The effects of miniature earphones and sound tubes on ICP were also studied. In 7 of 10 measurements after application of headphones a reversible increase of ICP (mean 26 +/- 19% in patients with ICP greater than 10 mmHg was recorded; in 3 patients (ICP less than or equal to 10 mgHg) no changes of ICP were seen. Using miniature earphones and sound tubes no increase of ICP was noted in any patient, and hence these can be recommended for stimulating BAEP in case of increased ICP.

  9. Does athletic training in volleyball modulate the components of visual evoked potentials? A preliminary investigation.

    Science.gov (United States)

    Zwierko, Teresa; Lubiński, Wojciech; Lesiakowski, Piotr; Steciuk, Hanna; Piasecki, Leszek; Krzepota, Justyna

    2014-01-01

    This longitudinal study investigated visual evoked potentials (VEPs) in 11 young female volleyball players who participated in extensive training for 2 years. The control group consisted of 7 age-matched female students who were not involved in any regular sports activity. Recordings of VEPs were performed twice: baseline recording (i.e., before training began) and after 2 years of systematic, volleyball-specific athletic training. The effect of athletic training on visual signal conductivity was assessed by recording the latency of N75, P100 and N135 components of the VEPs waveform. Extensive experience with volleyball training reduced signal conductivity time through visual pathway. Specifically, the latency of P100 was reduced on average by 2.2 ms during binocular viewing. Moreover, athletes had reduced N75 latency (difference of 3.3 ms) for visual stimuli that generated greater response from peripheral retina. These results indicate that sport training can affect very early sensory processing in athletes.

  10. [Evoked potentials and the prediction of the efficacy of psychopharmaceutical agents].

    Science.gov (United States)

    Kolomaznik, M; Komzák, F; Haloupková, L; Seidl, I; Hronek, J

    1988-01-01

    The authors have studied early brain stem auditory evoked potentials (EPs) registered after a single intramuscular administration of 2.5 mg of haloperidol in 32 healthy volunteers and 14 schizophrenic patients. Haloperidol led to a significant decrease in the latency of wave V of brain stem auditory EPs in patients with schizophrenia and to its increase in normal subjects. A diminution in wave V of brain stem auditory EPs directly correlated with a reduction of psychopathology expressed in points of the Overall-Gorham scale (BPRS) and observed after one-month haloperidol treatment. The authors discuss the possibility of using changes in brain stem auditory EPs after a single administration of various psychotropics to select an optimal drug for a given patient and also as a possible supplementary diagnostic criterion.

  11. Effect of nitric oxide on spinal evoked potentials and survival rate in rats with decompression sickness

    DEFF Research Database (Denmark)

    Randsøe, Thomas; Meehan, Claire Francesca; Broholm, Helle

    2015-01-01

    Nitric oxide (NO) releasing agents have, in experimental settings, been shown to decrease intravascular nitrogen bubble formation and to increase the survival rate during decompression sickness (DCS) from diving. The effect has been ascribed to a possible removal of preexisting micronuclei...... evaluated by means of spinal evoked potentials (SEPs). Anesthetized rats were decompressed from a 1-h hyperbaric air dive at 506.6 kPa (40 m of seawater) for 3 min and 17 s, and spinal cord conduction was studied by measurements of SEPs. Histological samples of the spinal cord were analyzed for lesions...... GTN (group 6) during the dive, before decompression. In all groups, decompression caused considerable intravascular bubble formation. The ISMN groups showed no difference compared with the control group, whereas the GTN groups showed a tendency toward faster SEP disappearance and shorter survival...

  12. Postoperative changes in visual evoked potentials and cognitive function tests following sevoflurane anaesthesia.

    LENUS (Irish Health Repository)

    Iohom, G

    2012-02-03

    We tested the hypothesis that minor disturbance of the visual pathway persists following general anaesthesia even when clinical discharge criteria are met. To test this, we measured visual evoked potentials (VEPs) in 13 ASA I or II patients who did not receive any pre-anaesthetic medication and underwent sevoflurane anaesthesia. VEPs were recorded on four occasions, before anaesthesia and at 30, 60, and 90 min after emergence from anaesthesia. Patients completed visual analogue scales (VAS) for sedation and anxiety, a Trieger Dot Test (TDT) and a Digit Symbol Substitution Test (DSST) immediately before each VEP recording. These results were compared using Student\\'s t-test. P<0.05 was considered significant. VEP latency was prolonged (P<0.001) and amplitude diminished (P<0.05) at 30, 60, and 90 min after emergence from anaesthesia, when VAS scores for sedation and anxiety, TDT, and DSST had returned to pre-anaesthetic levels.

  13. Neurotoxic effects of rubber factory environment. An auditory evoked potential study.

    Science.gov (United States)

    Kumar, V; Tandon, O P

    1997-01-01

    The effects of rubber factory environment on functional integrity of auditory pathway have been studied in forty rubber factory workers using Brainstem Auditory Evoked Potentials (BAEPs) technique to detect early subclinical impairments. Results indicate that 47 percent of the workers showed abnormalities in prolongations of either peak latencies or interpeak latencies when compared with age and sex matched control subjects not exposed to rubber factory environment. The percent distribution of abnormalities (ears affected) were in the order of extrusion and calendering (75%) > vulcanising (41.66%) > mixing (28.57%) > loading and dispatch (23.07%) > tubing (18.75%) sections of the factory. This incidence of abnormalities may be attributed to solvents being used in these units of rubber factory. These findings suggest that rubber factory environment does affect auditory pathway in the brainstem.

  14. Effects of diabetes mellitus type Ι with or without neuropathy on vestibular evoked myogenic potentials.

    Science.gov (United States)

    Kamali, Behnoush; Hajiabolhassan, Fahimeh; Fatahi, Jamileh; Nasli Esfahani, Ensieh; Sarrafzadeh, Javad; Faghihzadeh, Soghrat

    2013-03-16

    Diabetes mellitus type Ι is a metabolic disorder that affects multiple systems including the inner ear. Patients with diabetes mellitus commonly complain about dizziness, floating sensation, tinnitus and sweating. The aim of this study was to compare vestibular evoked myogenic potentials (VEMPs) between diabetic patients with or without neuropathy. Subjects included 14 patients with diabetes mellitus type Ι with polyneuropathy, 10 patients with diabetes mellitus type Ι without polyneuropathy and 24 healthy volunteers. Range of age in participants was 15-40 years old. The VEMPs were recorded with 500 Hz tone bursts with intensity at 95 dB. There was statistically significant difference between the groups in P13 and N23 latencies (P<0.05). There was no statistically significant difference between groups in absolute and relative amplitudes. Prolonged latencies of the VEMP suggest lesions in the retrolabyrinthine, especially in the vestibulospinal tract.

  15. Effects of Diabetes Mellitus Type Ι with or without Neuropathy on Vestibular Evoked Myogenic Potentials

    Directory of Open Access Journals (Sweden)

    Behnoush Kamali

    2013-02-01

    Full Text Available Diabetes mellitus type Ι is a metabolic disorder that affects multiple systems including the inner ear. Patients with diabetes mellitus commonly complain about dizziness, floating sensation, tinnitus and sweating. The aim of this study was to compare vestibular evoked myogenic potentials (VEMPs between diabetic patients with or without neuropathy. Subjects included 14 patients with diabetes mellitus type Ι with polyneuropathy, 10 patients with diabetes mellitus type Ι without polyneuropathy and 24 healthy volunteers. Range of age in participants was 15-40 years old. The VEMPs were recorded with 500 Hz tone bursts with intensity at 95 dB. There was statistically significant difference between the groups in P13 and N23 latencies (P<0.05. There was no statistically significant difference between groups in absolute and relative amplitudes. Prolonged latencies of the VEMP suggest lesions in the retrolabyrinthine, especially in the vestibulospinal tract.

  16. Visually Evoked Potentials in a Patient with a Fyodorov-Zuev Keratoprosthesis

    Directory of Open Access Journals (Sweden)

    Roy Schwartz

    2015-01-01

    Full Text Available Purpose: To describe a visually evoked potential (VEP examination performed on a patient with a keratoprosthesis. Methods: We report the case of a 60-year-old patient with a Fyodorov-Zuev keratoprosthesis in the right eye complained of gradual visual deterioration in that eye. His past medical history consisted of failed corneal graft procedures due to corneal dystrophy and an Ahmed valve implantation due to secondary glaucoma. A clinical examination and an ultrasound demonstrated vitreal opacities. In order to assess the visual status, a flash VEP test was conducted. Results: VEP recorded from the right eye consisted of a broadened and poorly formed positive P1 wave, with a subnormal amplitude, but a normal latency. Consequently, the patient underwent a pars plana vitrectomy. Conclusion: This case demonstrates the viability of VEP exams in patients with keratoprostheses.

  17. Visually evoked potentials in a patient with a fyodorov-zuev keratoprosthesis.

    Science.gov (United States)

    Schwartz, Roy; Barak, Adiel; Newman, Hadas

    2015-01-01

    To describe a visually evoked potential (VEP) examination performed on a patient with a keratoprosthesis. We report the case of a 60-year-old patient with a Fyodorov-Zuev keratoprosthesis in the right eye complained of gradual visual deterioration in that eye. His past medical history consisted of failed corneal graft procedures due to corneal dystrophy and an Ahmed valve implantation due to secondary glaucoma. A clinical examination and an ultrasound demonstrated vitreal opacities. In order to assess the visual status, a flash VEP test was conducted. VEP recorded from the right eye consisted of a broadened and poorly formed positive P1 wave, with a subnormal amplitude, but a normal latency. Consequently, the patient underwent a pars plana vitrectomy. This case demonstrates the viability of VEP exams in patients with keratoprostheses.

  18. Visual evoked potential estimation by adaptive noise cancellation with neural-network-based fuzzy inference system.

    Science.gov (United States)

    Zeng, Y; Zhang, J; Yin, H; Pan, Y

    2007-01-01

    Visual evoked potentials (VEPs) are time-varying signals typically buried in relatively large background noise known as the electroencephalogram (EEG). In this paper, an adaptive noise cancellation with neural network-based fuzzy inference system (NNFIS) was used and the NNFIS was carefully designed to model the VEP signal. It is assumed that VEP responses can be modelled by NNFIS with the centres of its membership functions evenly distributed over time. The weights of NNFIS are adaptively determined by minimizing the variance of the error signal using the least mean squares (LMS) algorithm. As the NNFIS is dynamic to any change of VEP, the non-stationary characteristics of VEP can be tracked. Thus, this method should be able to track the VEP. Four sets of simulated data indicate that the proposed method is appropriate to estimate VEP. A total of 150 trials are processed to demonstrate the superior performance of the proposed method.

  19. Learned control over spinal nociception reduces supraspinal nociception as quantified by late somatosensory evoked potentials.

    Science.gov (United States)

    Ruscheweyh, Ruth; Bäumler, Maximilian; Feller, Moritz; Krafft, Stefanie; Sommer, Jens; Straube, Andreas

    2015-12-01

    We have recently shown that subjects can learn to use cognitive-emotional strategies to suppress their spinal nociceptive flexor reflex (RIII reflex) under visual RIII feedback and proposed that this reflects learned activation of descending pain inhibition. Here, we investigated whether learned RIII suppression also affects supraspinal nociception and whether previous relaxation training increases success. Subjects were trained over 3 sessions to reduce their RIII size by self-selected cognitive-emotional strategies. Two groups received true RIII feedback (with or without previous relaxation training) and a sham group received false feedback (15 subjects per group). RIII reflexes, late somatosensory evoked potentials (SEPs), and F-waves were recorded and pain intensity ratings collected. Both true feedback groups achieved significant (P nociception as quantified by SEPs, although effects on pain ratings were less clear. Lower motor neuron excitability as quantified by F-waves was not affected. Previous relaxation training did not significantly improve RIII feedback training success.

  20. Visual evoked potentials show strong positive association with intracranial pressure in patients with cryptococcal meningitis

    Directory of Open Access Journals (Sweden)

    Marcelo Adriano da Cunha Silva Vieira

    2015-04-01

    Full Text Available Objective : To verify the relationship between intracranial pressure and flash visual evoked potentials (F-VEP in patients with cryptococcal meningitis. Method The sample included adults diagnosed with cryptococcal meningitis admitted at a reference hospital for infectious diseases. The patients were subjected to F-VEP tests shortly before lumbar puncture. The Pearson’s linear correlation coefficient was calculated and the linear regression analysis was performed. Results : Eighteen individuals were subjected to a total of 69 lumbar punctures preceded by F-VEP tests. At the first lumbar puncture performed in each patient, N2 latency exhibited a strong positive correlation with intracranial pressure (r = 0.83; CI = 0.60 - 0.94; p < 0.0001. The direction of this relationship was maintained in subsequent punctures. Conclusion : The intracranial pressure measured by spinal tap manometry showed strong positive association with the N2 latency F-VEP in patients with cryptococcal meningitis.

  1. Early impairment of somatosensory evoked potentials in very young children with achondroplasia with foramen magnum stenosis.

    Science.gov (United States)

    Fornarino, Stefania; Rossi, Daniela Paola; Severino, Mariasavina; Pistorio, Angela; Allegri, Anna Elsa Maria; Martelli, Simona; Doria Lamba, Laura; Lanteri, Paola

    2017-02-01

    To evaluate the contribution of somatosensory evoked potentials after median nerve (MN-SEPs) and posterior tibial nerve (PTN-SEPs) stimulation in functional assessment of cervical and lumbar spinal stenosis in children with achondroplasia. We reviewed MN-SEPs, PTN-SEPs, and spinal magnetic resonance imaging (MRI) examinations performed in 58 patients with achondroplasia (25 males, 33 females; age range 21d-16y 10mo; mean age 4y 3mo [SD 4y 1mo]). Patients were subdivided into four age categories: achondroplasia, the cortical component of PTN-SEPs is more sensitive than the cortical component and central conduction time of MN-SEPs in detection of cervical spinal cord compression at early ages. © 2016 Mac Keith Press.

  2. Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment

    DEFF Research Database (Denmark)

    Westergren, Nicolai; Bendtsen, Rasmus L.; Kjær, Troels W.

    2016-01-01

    decline is important. Cognitive decline may be detected using fullyautomated computerized assessment. Such systems will provide inexpensive and widely available screenings of cognitive ability. The aim of this pilot study is to develop a real time steady state visual evoked potential (SSVEP) based brain-computer...... interface (BCI) for neurological cognitive assessment. It is intended for use by patients who suffer from diseases impairing their motor skills, but are still able to control their gaze. Results are based on 11 healthy test subjects. The system performance have an average accuracy of 100% ± 0%. The test...... subjects achieved an information transfer rate (ITR) of 14:64 bits/min ± 7:63 bits=min and a subject test performance of 47:22% ± 34:10%. This study suggests that BCI may be applicable in practice as a computerized cognitive assessment tool. However, many improvements are required for the system...

  3. Timing of evoked potentials forecasting the prognosis of severe stroke patients

    Directory of Open Access Journals (Sweden)

    Shu-ying XIAO

    2015-12-01

    Full Text Available Objective To investigate the best assessment time of short-latency somatosensory-evoked potential (SLSEP and brain stem auditory-evoked potential (BAEP in predicting the prognosis of patients with acute severe stroke. Methods Fifty-two patients who were diagnosed as supratentorial massive cerebral infarction or large-volume cerebral hemorrhage by brain CT and/or MRI examination with Glasgow Coma Scale (GCS ≤ 12 were selected as observation subjects. GCS, SLSEP and BAEP were recorded at 1-3 and 4-7 d after onset. Outcomes were examined 6 months later using the modified Rankin Scale (mRS. A mRS score of 0-4 was considered as favorable outcome while a score of 5-6 was considered as unfavorable. The correlation between different predictive indexes (GCS, SLSEP and BAEP and outcome (mRS was analyzed. The predictive accuracy was also analyzed. Results At 1-3 d after onset, there was no correlation between all the predictors and outcome (P > 0.05, for all. At 4-7 d after onset, SLSEP and BAEP were significantly correlated with mRS (P < 0.01, for all; C > 0.400. At 4-7 d after onset, the prognostic sensitivity of SLSEP and BAEP Ⅴ wave was 85.71%-97.62% ; prognostic specificity of BAEP was 80.00%-90.00%; positive predictive value of all predictors was 89.13%-96.88%; negative predictive value of SLSEP was 83.33%-85.71% ; total predictive accuracy of SLSEP was 88.46%-90.38%. The predictive accuracy of both SLSEP and BAEP achieved the clinical expectation, and the former is better than the latter. Conclusions SLSEP and BAEP have a high accuracy rate in predicting the unfavorable prognosis of patients with acute severe stroke 4-7 d after onset. DOI: 10.3969/j.issn.1672-6731.2015.12.004

  4. Broad-Band Visually Evoked Potentials: Re(convolution in Brain-Computer Interfacing.

    Directory of Open Access Journals (Sweden)

    Jordy Thielen

    Full Text Available Brain-Computer Interfaces (BCIs allow users to control devices and communicate by using brain activity only. BCIs based on broad-band visual stimulation can outperform BCIs using other stimulation paradigms. Visual stimulation with pseudo-random bit-sequences evokes specific Broad-Band Visually Evoked Potentials (BBVEPs that can be reliably used in BCI for high-speed communication in speller applications. In this study, we report a novel paradigm for a BBVEP-based BCI that utilizes a generative framework to predict responses to broad-band stimulation sequences. In this study we designed a BBVEP-based BCI using modulated Gold codes to mark cells in a visual speller BCI. We defined a linear generative model that decomposes full responses into overlapping single-flash responses. These single-flash responses are used to predict responses to novel stimulation sequences, which in turn serve as templates for classification. The linear generative model explains on average 50% and up to 66% of the variance of responses to both seen and unseen sequences. In an online experiment, 12 participants tested a 6 × 6 matrix speller BCI. On average, an online accuracy of 86% was reached with trial lengths of 3.21 seconds. This corresponds to an Information Transfer Rate of 48 bits per minute (approximately 9 symbols per minute. This study indicates the potential to model and predict responses to broad-band stimulation. These predicted responses are proven to be well-suited as templates for a BBVEP-based BCI, thereby enabling communication and control by brain activity only.

  5. Visual Acuity and Contrast Sensitivity Development in Children: Sweep Visually Evoked Potential and Psychophysics.

    Science.gov (United States)

    Almoqbel, Fahad M; Irving, Elizabeth L; Leat, Susan J

    2017-08-01

    The purpose of this study was to investigate the development of visual acuity (VA) and contrast sensitivity in children as measured with objective (sweep visually evoked potential) and subjective, psychophysical techniques, including signal detection theory (SDT), which attempts to control for differences in criterion or behavior between adults and children. Furthermore, this study examines the possibility of applying SDT methods with children. Visual acuity and contrast thresholds were measured in 12 children 6 to 7 years old, 10 children 8 to 9 years old, 10 children 10 to 12 years old, and 16 adults. For sweep visually evoked potential measurements, spatial frequency was swept from 1 to 40 cpd to measure VA, and contrast of sine-wave gratings (1 or 8 cpd) was swept from 0.33 to 30% to measure contrast thresholds. For psychophysical measurements, VA and contrast thresholds (1 or 8 cpd) were measured using a temporal two-alternative forced-choice staircase procedure and also with a yes-no SDT procedure. Optotype (logMAR [log of the minimum angle of resolution]) VA was also measured. The results of the various procedures were in agreement showing that there are age-related changes in threshold values and logMAR VA after the age of 6 years and that these visual functions do not become adult-like until the age of 8 to 9 years at the earliest. It was also found that children can participate in SDT procedures and do show differences in criterion compared with adults in psychophysical testing. These findings confirm a slightly later development of VA and contrast sensitivity (8 years or older) and indicate the importance of using SDT or forced-choice procedures in any developmental study to attempt to overcome the effect of criterion in children.

  6. Low luminance/eyes closed and monochromatic stimulations reduce variability of flash visual evoked potential latency

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Subramanian

    2013-01-01

    Full Text Available Context: Visual evoked potentials are useful in investigating the physiology and pathophysiology of the human visual system. Flash visual evoked potential (FVEP, though technically easier, has less clinical utility because it shows great variations in both latency and amplitude for normal subjects. Aim: To study the effect of eye closure, low luminance, and monochromatic stimulation on the variability of FVEPs. Subjects and Methods: Subjects in self-reported good health in the age group of 18-30 years were divided into three groups. All participants underwent FVEP recording with eyes open and with white light at 0.6 J luminance (standard technique. Next recording was done in group 1 with closed eyes, group 2 with 1.2 and 20 J luminance, and group 3 with red and blue lights, while keeping all the other parameters constant. Two trials were given for each eye, for each technique. The same procedure was repeated at the same clock time on the following day. Statistical Analysis: Variation in FVEP latencies between the individuals (interindividual variability and the variations within the same individual for four trials (intraindividual variability were assessed using coefficient of variance (COV. The technique with lower COV was considered the better method. Results: Recording done with closed eyes, 0.6 J luminance, and monochromatic light (blue > red showed lower interindividual and intraindividual variability in P2 and N2 as compared to standard techniques. Conclusions: Low luminance flash stimulations and monochromatic light will reduce FVEP latency variability and may be clinically useful modifications of FVEP recording technique.

  7. Medical technology assessment EEG and evoked potentials in the intensive care unit.

    Science.gov (United States)

    Guérit, J M

    1999-09-01

    We review the principal aspects of EEG and evoked potential (EP) neuromonitoring in the intensive care unit. The electrophysiological methods allow functional assessment of comatose patients and can be used (a) as a help to diagnose the origin of coma, (b) as a means to predict outcome, and (c) for monitoring purposes. The combination of the EEG and long-, middle-, and short-latency EPs allows widespread assessment of the cerebral cortex, the brain-stem, and the spinal cord. The EEG and the EP interpretation first requires taking into account non-neurological factors that may interfere with the recorded activities (sensory pathologies, toxic or metabolic problems, body temperature). The sensitivity and the specificity of any neurophysiological technique depend on the etiology of coma. Anoxic comas are associated with a predominantly cortical involvement, while the cortical and brain-stem functions are to be taken into account to interpret the EEG and the EPs in head trauma. The EEG and the EPs can be used to differentiate the comas due to structural lesions from those of metabolic origin, to confirm brain death and help to diagnose psychogenic unresponsiveness or a de-efferented state. While the prognostic value of the EEG is markedly hampered by the widespread use of sedative drugs, it has been possible to design efficient systems based on early- and middle-latency multimodality evoked potentials in anoxic and traumatic comas and, more generally, in all comas associated with an increase of the intracranial pressure. Continuous neuromonitoring techniques are currently under development. They have already been proven useful for the early detection and for the prevention of subclinical seizures, transtentorial herniation, vasospasm, and other causes of brain or spinal-cord ischemia.

  8. Impact of Elicitation on Antioxidant and Potential Antihypertensive Properties of Lentil Sprouts.

    Science.gov (United States)

    Peñas, Elena; Limón, Rocío I; Martínez-Villaluenga, Cristina; Restani, Patrizia; Pihlanto, Anne; Frias, Juana

    2015-12-01

    The aim of this study was to investigate the application of elicitors (500 μM ascorbic acid, 50 μM folic acid, 5 mM glutamic acid and 50 ppm chitosan in 5 mM glutamic acid) during lentil germination up to 8 days as a strategy to increase germination rate and to enhance the accumulation of γ-aminobutyric acid (GABA) and phenolic compounds. The effect of elicitation on the protein profile and antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of sprouted lentils was also evaluated. The application of elicitors did not negatively affect the germination yield of lentils and no significant changes on the protein pattern of lentils germinated in the presence of elicitors were observed. Chitosan/glutamic acid increased by 1.6-fold the GABA content in lentil sprouts, whilst ascorbic and folic acids as well as chitosan/glutamic acid were highly effective to enhance the total content of phenolic compounds and the antioxidant activity of sprouted lentils. All elicited lentil sprouts showed ability to inhibit ACE activity (IC50: 9.5-11.9 μg peptides/mL). Therefore, elicitation can be considered a promising approach to improve the content of compounds with antioxidant and potential antihypertensive activities in lentil sprouts.

  9. Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials

    DEFF Research Database (Denmark)

    Epp, Bastian; Yasin, Ifat; Verhey, Jesko L.

    2013-01-01

    The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound...... in a masking release (i: binaural masking level difference; ii: comodulation masking release) compared to a condition where those cues are not present. Late auditory evoked potentials (N1, P2) were recorded for the stimuli at a constant masker level, but different signal levels within the same set of listeners...

  10. Multimodal evoked potentials in spinocerebellar ataxia types 1, 2, and 3

    Directory of Open Access Journals (Sweden)

    Vijay Chandran

    2014-01-01

    Full Text Available Aims: Spinocerebellar ataxias (SCA are a clinically heterogeneous group of disorders that are characterized by ataxia and an autosomal dominant pattern of inheritance. The aim of our study was to describe the findings of evoked potentials (EPs among genetically proven SCA types 1, 2, and 3 and to additionally evaluate if EPs can be used to differentiate between them. Materials and Methods: Forty-three cases of genetically proven SCA (SCA1 = 19, SCA2 = 13, and SCA3 = 11 were evaluated with median somatosensory-EP (mSSEP, visual-EP (VEP, and brainstem auditory-evoked response (BAER by standard procedures and compared with normative laboratory data. An EP was considered abnormal if latency was prolonged (>mean + 3 standard deviation (SD of laboratory control data or the waveform was absent or poorly defined. The waves studied were as follows: mSSEP - N20, VEP - P100 and BAER - interpeak latency 1-3 and 3-5. Results: EPs were abnormal in at least one modality in 90.9% of patients. The most common abnormality was of BAER (86.1% followed by VEP (34.9% and mSSEP (30.2%. The degree of abnormality in VEP, mSSEP, and BAER among patients with SCA1 was 42.1, 41.2, and 73.3%, respectively; among patients with SCA2 was 38.5, 27.3, and 100%, respectively; and among patients with SCA3 was 18.2, 37.5, and 88.9%, respectively. The differences between the subgroups of SCAs were not statistically significant. Conclusions: BAER was the most frequent abnormality in SCA types 1, 2, and 3; abnormalities of mSSEP were comparable in the three SCAs; whereas, abnormality of VEP was less often noted in SCA3.

  11. Prognostic value of somatosensory-evoked potentials and CT scan evaluation in acute traumatic brain injury.

    Science.gov (United States)

    Bosco, Enrico; Zanatta, Paolo; Ponzin, Diego; Marton, Elisabetta; Feletti, Alberto; Scarpa, Bruno; Longatti, Pierluigi; Paolin, Adolfo

    2014-10-01

    The aim of this study is to assess whether a complete analysis of all early cortical somatosensory-evoked potentials (SEPs) components and computed tomography (CT) scan features can provide a better prognostic measure than the early cortical component N20/P25 alone, in patients with severe head injury. We studied 81 consecutive patients admitted to intensive care unit with diagnosis of severe head injury. All patients underwent neurophysiological assessment with SEPs and electroencephalography within the first 6 days after trauma. The marginal effect of each variable on Glasgow Outcome Scale score was evaluated by using univariate measures of association. We fit a cumulative logit model by maximum likelihood, and the partial effect of each variable was assessed by likelihood ratio test. We performed variable selection by forward stepwise, according to the Akaike information criterion. Our final cumulative logit model including SEPs primary complex (pN20/fP20/cP22), SEPs middle latency (N30/P45/N60), and CT scan hypodensity values showed a significantly increased predictive power of Glasgow Outcome Scale, compared with pN20 alone (P<0.0001). Statistical analysis revealed a highly significant (P<0.0001) improvement in outcome prediction when the model includes a pool of amplitudes and latencies referred to different early-evoked components pN20, pP25, fP20, cP22, N30, P45, and N60, associated to CT scan hypodensity values, compared with the use of the cortical parietal N20/P25 alone.

  12. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex.

    Science.gov (United States)

    Kajikawa, Yoshinao; Smiley, John F; Schroeder, Charles E

    2017-10-18

    Prior studies have reported "local" field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be "contaminated" by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such "far-field" activity, in addition to, or in absence of, local synaptic responses.SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the

  13. Long-latency auditory evoked potentials with verbal and nonverbal stimuli,

    Directory of Open Access Journals (Sweden)

    Sheila Jacques Oppitz

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Long-latency auditory evoked potentials represent the cortical activity related to attention, memory, and auditory discrimination skills. Acoustic signal processing occurs differently between verbal and nonverbal stimuli, influencing the latency and amplitude patterns. OBJECTIVE: To describe the latencies of the cortical potentials P1, N1, P2, N2, and P3, as well as P3 amplitude, with different speech stimuli and tone bursts, and to classify them in the presence and absence of these data. METHODS: A total of 30 subjects with normal hearing were assessed, aged 18-32 years old, matched by gender. Nonverbal stimuli were used (tone burst; 1000 Hz - frequent and 4000 Hz - rare; and verbal (/ba/ - frequent; /ga/, /da/, and /di/ - rare. RESULTS: Considering the component N2 for tone burst, the lowest latency found was 217.45 ms for the BA/DI stimulus; the highest latency found was 256.5 ms. For the P3 component, the shortest latency with tone burst stimuli was 298.7 with BA/GA stimuli, the highest, was 340 ms. For the P3 amplitude, there was no statistically significant difference among the different stimuli. For latencies of components P1, N1, P2, N2, P3, there were no statistical differences among them, regardless of the stimuli used. CONCLUSION: There was a difference in the latency of potentials N2 and P3 among the stimuli employed but no difference was observed for the P3 amplitude.

  14. Vagal sensory evoked potentials disappear under the neuromuscular block - an experimental study.

    Science.gov (United States)

    Leutzow, Bianca; Lange, Jörn; Gibb, Andreas; Schroeder, Henry; Nowak, Andreas; Wendt, Michael; Usichenko, Taras I

    2013-09-01

    Transcutaneous vagal nerve stimulation is a promising treatment modality in patients suffering mood disorders and chronic pain, however, the mechanisms are still to be elucidated. A recently developed technique of EEG responses to electrical stimulation of the inner side of the tragus suggests that these responses are far field potentials, generated in the vagal system - Vagal Sensory Evoked Potentials (VSEP). To reproduce the VSEP technique free from myogenic artifacts. Fourteen ASA I-II patients scheduled for elective surgery in standardized Total Intravenous Anesthesia (TIVA) were enrolled. Transcutaneous electrical stimulation was applied to the inner side of the right tragus. Averaged EEG responses were recorded from the electrode positions C4-F4 and T4-O2 before and after induction of TIVA, during the maximal effect of the non-depolarizing muscle relaxing agent, cis-atracurium (C-AR) and after recovery from C-AR under TIVA. Typical response curves with P1, N1 and P2 peaks could be reproduced in all patients before and after anesthesia induction. The response curves disappeared during the C-AR action and re-appeared after recovery from C-AR under TIVA. The disappearance of the scalp responses to electrical tragus stimulation under the neuromuscular block suggests a muscular origin of these potentials. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. VISUAL EVOKED POTENTIALS AND „PATTERN” ELECTRORETINOGRAM IN HIGH MYOPIA

    Directory of Open Access Journals (Sweden)

    Stojanka Djurić

    2004-12-01

    Full Text Available In patients with high myopia one can notice characteristic degenerative changes of eye base that affect, in the initial phase, the posterior side of the eye, and in the developed form, the peripheral parts of retina. This paper points to the potential of application of electrophysiological methods, visual evoked potentials and PERG in assessment of the degree of the degenerative disease and following of its progression.n 15 eyes with high myopia we performed testing by means of visual evoked potentials and „pattern” electroretinogram and compared the received results with the values obtained from the controls. Structured VEP and „pattern” electroretinogram (PERG was performed on Mistral-Medelec computerized machine; with angle of stimulation CHESS of 30 minutes, screen angle of 15–19 degrees and maximal CHESS contrast. We performed a total of 128 stimulations with use of surface skin electrodes and stimulus frequency of 2 Hz.In patients with high myopia, visual acuity was between 1.0 and 0.1. The average latency value of P-100 waves of PVEP in patients with high myopia was 119.4 msec and was in correlation with the reduction of visual acuity of the researched eye (p<0.05.The average values of P-100 waves amplitudes were statistically significantly lower compared to the control group (3.9 msec.The amplitude values P1 and N2 of PERG were significantly lower compared to the values from the control group (p<0.01. The decrease in amplitude value was in correlation with the decline of visual acuity and the degree of degenerative changes at eye base. Latency values of P1and N2 waves of PERG were slightly prolonged without any statistical significance.Considering that „pattern” electroretinogram maintains electrical activity of inner layers of retina, most of all of ganglion cells, and PVEP records the electrical response of ganglion cells which mostly originate from macula, these methods can, therefore, give us an insight as to the degree

  16. Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings

    Science.gov (United States)

    Singh, Nilkamal; Telles, Shirley

    2015-01-01

    Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control. PMID:26137479

  17. Influence of delta9-tetrahydrocannabinol and cannabidiol on photically evoked after-discharge potentials.

    Science.gov (United States)

    Turkanis, S A; Chiu, P; Borys, H K; Karler, R

    1977-04-29

    Two cannabinoids, delta9-tetrahydrocannabinol and cannabidiol, and several reference drugs were compared relative to their effects in a recently developed anticonvulsant test system, the after-discharge potentials of the visually evoked response; the potentials were recorded electrophysiologically from electrodes permanently mounted over the visual cortices of conscious rats. In anticonvulsant doses, trimethadione and ethosuximide produced an extensive depression of after-discharge activity, whereas diphenylhydantoin and cannabidiol exerted no such effect. In contrast, anticonvulsant doses of delta9-tetrahydrocannabinol and subconvulsant doses of pentylenetetrazol markedly increased after-discharge activity, which may represent a manifestation of their central nervous system excitatory properties. The data from the present study support our previously published ovservations from several other anticonvulsant tests that indicate the anticonvulsant characteristics of cannabidiol resemble those of diphenylhydantoin rather than those of trimethadione and that the central excitatory properties of delta9-tetrahydrocannabinol distinguish it from cannabidiol. The results consistently suggest that the cannabinoids will be effective against grand mal but not absence seizures.

  18. Change in body surface temperature as an ancillary measurement to motor evoked potentials.

    Science.gov (United States)

    Yang, J H; Suh, S W; Park, Y-S; Lee, J-H; Park, B K; Ham, C H; Choi, J W

    2015-11-01

    Experimental study. To study the role of surface temperature as an adjunct to motor evoked potentials (MEPs) in rabbit spinal cord injury (SCI) model. Department of Orthopedics, Korea University Guro Hospital, Seoul, Korea. Rabbits (n =18) were divided into Complete (n = 9) and Incomplete (n = 9) SCI groups. Complete SCI was defined as being non-responsive to a wake-up test with loss of MEPs after transection of spinal cord. Incomplete SCI was defined as being responsive to a wake-up test with significant attenuation (⩾ 80%) of MEPs after impaction on spinal cord. Surface temperature of upper and lower extremities, core temperature and MEPs signals were checked before, during and after SCI for 20 min. A wake-up test was conducted and spinal cord was histologicaly evaluated. Experimental conditions between the two groups were statistically similar (P > 0.005 for all values). After SCI, upper extremity temperatures did not change in either group (P > 0.005); however, the surface temperature of the lower extremities in the Complete SCI Group elevated to 1.7 ± 0.5°C in comparison to 0.5 ± 0.1°C in the Incomplete SCI Group (P surface temperature of the lower extremities can be potentially used to identify the completeness of SCI in a rabbit model.

  19. Sensitivity of offset and onset cortical auditory evoked potentials to signals in noise.

    Science.gov (United States)

    Baltzell, Lucas S; Billings, Curtis J

    2014-02-01

    The purpose of this study was to determine the effects of SNR and signal level on the offset response of the cortical auditory evoked potential (CAEP). Successful listening often depends on how well the auditory system can extract target signals from competing background noise. Both signal onsets and offsets are encoded neurally and contribute to successful listening in noise. Neural onset responses to signals in noise demonstrate a strong sensitivity to signal-to-noise ratio (SNR) rather than signal level; however, the sensitivity of neural offset responses to these cues is not known. We analyzed the offset response from two previously published datasets for which only the onset response was reported. For both datasets, CAEPs were recorded from young normal-hearing adults in response to a 1000-Hz tone. For the first dataset, tones were presented at seven different signal levels without background noise, while the second dataset varied both signal level and SNR. Offset responses demonstrated sensitivity to absolute signal level in quiet, SNR, and to absolute signal level in noise. Offset sensitivity to signal level when presented in noise contrasts with previously published onset results. This sensitivity suggests a potential clinical measure of cortical encoding of signal level in noise.

  20. Normative data for the segmental acquisition of contact heat evoked potentials in cervical dermatomes.

    Science.gov (United States)

    Jutzeler, Catherine R; Rosner, Jan; Rinert, Janosch; Kramer, John L K; Curt, Armin

    2016-10-06

    Contact heat evoked potentials (CHEPs) represent a neurophysiological approach to assess conduction in the spinothalamic tract. The aim of this study was to establish normative values of CHEPs acquired from cervical dermatomes (C4, C6, C8) and examine the potential confounds of age, sex, and height. 101 (49 male) healthy subjects of three different age groups (18-40, 41-60, and 61-80 years) were recruited. Normal (NB, 35-52 °C) followed by increased (IB, 42-52 °C) baseline stimulation protocols were employed to record CHEPs. Multi-variate linear models were used to investigate the effect of age, sex, and height on the CHEPs parameters (i.e., N2 latency, N2P2 amplitude, rating of perceived intensity). Compared to NB, IB stimulation reduced latency jitter within subjects, yielding larger N2P2 amplitudes, and decreased inter-subject N2 latency variability. Age was associated with reduced N2P2 amplitude and prolonged N2 latency. After controlling for height, male subjects had significantly longer N2 latencies than females during IB stimulation. The study provides normative CHEPs data in a large cohort of healthy subjects from segmentally examined cervical dermatomes. Age and sex were identified as important factors contributing to N2 latency and N2P2 amplitude. The normative data will improve the diagnosis of spinal cord pathologies.

  1. The timing of visual evoked potential activity in human area V4.

    Science.gov (United States)

    Buchner, H; Weyen, U; Frackowiak, R S; Romaya, J; Zeki, S

    1994-07-22

    Studies of human occipital visual cortex have demonstrated functional specializations for colour and for motion, with a pivotal area for colour processing (area V4) being located in the fusiform gyrus. To study the timing of arrival of signals in area V4 we have recorded multi-channel visual evoked potentials (VEPS) to colour and grey 'Mondrian' stimuli, spatio-temporal dipole source analysis being computed on two independent group averages of five and six subjects respectively. Three active brain regions were identified, which we interpret to correspond to areas V1, V2 and V4; they showed sequential but overlapping activity in time with no difference in magnitude between colour and grey stimulated VEPs. Source analysis of the difference potentials, colour minus grey, isolated source activity resulting from colour stimulation and located it in the region of area V4. Activity in area V4 started at 100 ms and peaked at 135 ms after the onset of the visual stimulus.

  2. Cognitive Evoked Potential Measurement, P300, in a group of healthy Colombian individuals

    Directory of Open Access Journals (Sweden)

    Natalia Gutiérrez Giraldo

    2013-05-01

    Full Text Available Cognitive evoked potentials are electrophysiological measurements of cognitive functions. Cognitivepotential P300 is specifically related to attention processes. Objetive: the aim of this studywas to establish reference values for latency and amplitude of P300 wave in the Colombian population and determine their variability with age, gender and education of the subjects. Methods:we studied 122 healthy subjects between 6 and 80 years, are practical potential measurementmethodology as odd-ball, in leads Cz and Pz. Results: we were able to establish reference valuesfor different age groups, and statistical significance was found with which the latency of P300wave increases with the age of individuals, and instead thereof the amplitude tends to decrease.Similarly to correlate latency and amplitude was shown an inverse relationship between them.Conclusions: no differences were found for latency and wave amplitude, gender-related or schoolsubjects as well as no difference was found when measuring the Pz derivation obtained comparedwith the wave in lead Cz.

  3. Research on steady-state visual evoked potentials in 3D displays

    Science.gov (United States)

    Chien, Yu-Yi; Lee, Chia-Ying; Lin, Fang-Cheng; Huang, Yi-Pai; Ko, Li-Wei; Shieh, Han-Ping D.

    2015-05-01

    Brain-computer interfaces (BCIs) are intuitive systems for users to communicate with outer electronic devices. Steady state visual evoked potential (SSVEP) is one of the common inputs for BCI systems due to its easy detection and high information transfer rates. An advanced interactive platform integrated with liquid crystal displays is leading a trend to provide an alternative option not only for the handicapped but also for the public to make our lives more convenient. Many SSVEP-based BCI systems have been studied in a 2D environment; however there is only little literature about SSVEP-based BCI systems using 3D stimuli. 3D displays have potentials in SSVEP-based BCI systems because they can offer vivid images, good quality in presentation, various stimuli and more entertainment. The purpose of this study was to investigate the effect of two important 3D factors (disparity and crosstalk) on SSVEPs. Twelve participants participated in the experiment with a patterned retarder 3D display. The results show that there is a significant difference (p-valuefuture.

  4. Face-evoked steady-state visual potentials: effects of presentation rate and face inversion.

    Science.gov (United States)

    Gruss, L Forest; Wieser, Matthias J; Schweinberger, Stefan R; Keil, Andreas

    2012-01-01

    Face processing can be explored using electrophysiological methods. Research with event-related potentials has demonstrated the so-called face inversion effect, in which the N170 component is enhanced in amplitude and latency to inverted, compared to upright, faces. The present study explored the extent to which repetitive lower-level visual cortical engagement, reflected in flicker steady-state visual evoked potentials (ssVEPs), shows similar amplitude enhancement to face inversion. We also asked if inversion-related ssVEP modulation would be dependent on the stimulation rate at which upright and inverted faces were flickered. To this end, multiple tagging frequencies were used (5, 10, 15, and 20 Hz) across two studies (n = 21, n = 18). Results showed that amplitude enhancement of the ssVEP for inverted faces was found solely at higher stimulation frequencies (15 and 20 Hz). By contrast, lower frequency ssVEPs did not show this inversion effect. These findings suggest that stimulation frequency affects the sensitivity of ssVEPs to face inversion.

  5. [Reaction times (RTS) and cognitive visual evoked potentials during reading--a compared study].

    Science.gov (United States)

    Dionisie, B; Luca, Veronica

    2011-01-01

    The main aim of the experiment is to prove the Paivio's theory about the concrete-abstract effect. A psychoverbal stimulation interface, created by us, was experimented as an IT extension of an EEG/EMG device dedicated for the human brain Evoked Potentials acquisitions (EPs) and reaction times techniques in reading mechanisms assessment. The shortest reaction time was achieved in tests at which the reading has no access to the meaning of words, for concrete word, in both hemisphere. But, in left hemisphere the reaction times for abstract words was shorter than for the abstract word in right hemisphere. EPs acquisition exhibits more negativity of N400 for concrete word and more reverberation of P650-N750 for abstract words. The difference in mean reaction times sustain the Paivio's theory and the difference in amplitude of N400, P650-N750 for concrete and abstract nouns show that the electric activities of brain are correlated in time and in amplitude with the same effort of processing the words. The psycho-verbal stimulation interface can be used as a medical research tool for studying and assessment the cognitive processes of reading, memory or learning using the endogenous visual event related potentials and the psychometric reaction times.

  6. The locus of color sensation: cortical color loss and the chromatic visual evoked potential.

    Science.gov (United States)

    Crognale, Michael A; Duncan, Chad S; Shoenhard, Hannah; Peterson, Dwight J; Berryhill, Marian E

    2013-08-28

    Color losses of central origin (cerebral achromatopsia and dyschromatopsia) can result from cortical damage and are most commonly associated with stroke. Such cases have the potential to provide useful information regarding the loci of the generation of the percept of color. One available tool to examine this issue is the chromatic visual evoked potential (cVEP). The cVEP has been used successfully to objectively quantify losses in color vision capacity in both congenital and acquired deficiencies of retinal origin but has not yet been applied to cases of color losses of cortical origin. In addition, it is not known with certainty which cortical sites are responsible for the generation of the cVEP waveform components. Here we report psychophysical and electrophysiological examination of a patient with color deficits resulting from a bilateral cerebral infarct in the ventral occipitotemporal region. Although this patient demonstrated pronounced color losses of a general nature, the waveform of the cVEP remains unaffected. Contrast response functions of the cVEP are also normal for this patient. The results suggest that the percept of color arises after the origin of the cVEP and that normal activity in those areas that give rise to the characteristic negative wave of the cVEP are not sufficient to provide for the normal sensation of color.

  7. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    Science.gov (United States)

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. © 2016 Elsevier B.V. All rights reserved.

  8. The use of somatosensory evoked potentials for detection of neuropraxia during shoulder arthroscopy.

    Science.gov (United States)

    Pitman, M I; Nainzadeh, N; Ergas, E; Springer, S

    1988-01-01

    With the increase in the use of shoulder arthroscopy in the past decade, there has been an increased awareness of complications. Reports of the occurrence of transient neuropraxia indicate an incidence of 10%-30%. The recording of somatosensory evoked potentials (SEP) for the study and functional monitoring of the sensory pathway is well accepted as a reproducible method of monitoring peripheral nerve and spinal cord function during surgery. SEPs were recorded during shoulder arthroscopy in 20 patients to monitor the musculocutaneous nerve, ulnar nerve, and either the median or radial nerve. In all 20 cases, abnormal SEPs of the musculocutaneous nerve were demonstrated. In 16 cases, this was produced upon initial joint distention, and in 15 cases, by traction; in 11, by longitudinal traction of greater than or equal to 12 lb, and in six by perpendicular traction of greater than or equal to 7 lb. In 10 patients, there were varying combinations of median, ulnar, and radial nerve involvement. There were two cases of clinical neuropraxia in this series. One resolved in 24 h and one in 48 h. The conclusion is that there is a real potential for neurologic damage during shoulder arthroscopy and that the musculocutaneous nerve is the most vulnerable. Factors responsible include joint distention, excessive traction, and extravasation of fluid. The use of SEPs provides a reliable means for monitoring the neurologic status of the extremity during shoulder arthroscopy.

  9. Intraoperative subdural low-noise EEG recording of the high frequency oscillation in the somatosensory evoked potential.

    Science.gov (United States)

    Fedele, Tommaso; Schönenberger, Claudio; Curio, Gabriel; Serra, Carlo; Krayenbühl, Niklaus; Sarnthein, Johannes

    2017-10-01

    The detectability of high frequency oscillations (HFO, >200Hz) in the intraoperative ECoG is restricted by their low signal-to-noise ratio (SNR). Using the somatosensory evoked HFO, we quantify how HFO detectability can benefit from a custom-made low-noise amplifier (LNA). In 9 patients undergoing tumor surgery in the central region, subdural strip electrodes were placed for intraoperative neurophysiological monitoring. We recorded the somatosensory evoked potential (SEP) simultaneously by custom-made LNA and by a commercial device (CD). We varied the stimulation rate between 1.3 and 12.7Hz to tune the SNR of the N20 component and the evoked HFO and quantified HFO detectability at the single trial level. In three patients we compared Propofol® and Sevoflurane® anesthesia. In the average, amplitude decreased in both in N20 and evoked HFO amplitude with increasing stimulation rate (pnoise amplification improves the detection of the evoked HFO in recordings with subdural electrodes with low impedance. Low-noise EEG might critically improve the detectability of interictal spontaneous HFO in subdural and possibly in scalp recordings. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  10. Abnormal Cervical Vestibular-Evoked Myogenic Potentials Predict Evolution of Isolated Recurrent Vertigo into Meniere's Disease.

    Science.gov (United States)

    Lee, Sun-Uk; Kim, Hyo-Jung; Choi, Jeong-Yoon; Koo, Ja-Won; Kim, Ji-Soo

    2017-01-01

    Vestibular-evoked myogenic potentials (VEMPs) can be abnormal in patients with idiopathic recurrent spontaneous vertigo. We aimed to determine whether abnormal cervical vestibular-evoked myogenic potentials (cVEMPs) can predict evolution of isolated recurrent vertigo into Meniere's disease (MD). We had followed up 146 patients with isolated recurrent vertigo and an evaluation of cVEMPs for 0-142 months [median = 6, interquartile range (IQR) = 0-29] at the Dizziness Clinic of Seoul National University Bundang Hospital from June 2003 to May 2014. We defined the variables associated with a progression into MD and calculated cumulative progression rates. Among the 94 patients with recurrent vertigo and abnormal cVEMPs, 18 (18/94, 19%) showed an evolution into MD while only 2 of the 50 (4%) patients with normal cVEMPs evolved into MD during the follow-up (p = 0.01). The interval between onset of vertigo and development of cochlear symptoms ranged from 1 month to 13.6 years (median = 3 years, IQR = 0.5-4.5 years). Overall, pure tone audiometry (PTA) threshold at 0.25 kHz [hazard ratio (HR) = 1.1, 95% confidence interval (CI) = 1.0-1.2] and abnormalities of cVEMPs (HR = 5.6, 95% CI = 1.3-25.5) were found to be significantly associated with a later conversion into MD. The cumulative progression rate was 12% (95% CI = 5-18) at 1 year, 18% (8-26) at 2 years, and 22% (11-32) at 3 years. Abnormal cVEMPs may be an indicator for evolution of isolated recurrent vertigo into MD. Patients with isolated recurrent vertigo may be better managed conforming to MD when cVEMPs are abnormal.

  11. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity - A study of 145 patients

    NARCIS (Netherlands)

    Langeloo, DD; Lelivelt, A; Journee, HL; Slappendel, R; de Kleuver, M

    2003-01-01

    Study Design. A descriptive historic cohort study was conducted. Objectives. To determine intraoperative response amplitude criteria for transcranial electrical motor-evoked potential monitoring that warn of neurologic damage, and to determine the additional value of monitoring six instead of two

  12. Ipsilesional Motor-Evoked Potential Absence in Pediatric Hemiparesis Impacts Tracking Accuracy of the Less Affected Hand

    OpenAIRE

    Cassidy, Jessica M.; Carey, James R.; Lu, Chiahao; Krach, Linda E.; Feyma, Tim; Durfee, William K.; GILLICK, BERNADETTE T

    2015-01-01

    This study analyzed the relationship between electrophysiological responses to transcranial magnetic stimulation (TMS), finger tracking accuracy, and volume of neural substrate in children with congenital hemiparesis. Nineteen participants demonstrating an ipsilesional motor-evoked potential (MEP) were compared with eleven participants showing an absent ipsilesional MEP response. Comparisons of finger tracking accuracy from the affected and less affected hands and ipsilesional/contralesional ...

  13. Stimulus-response characteristics of motor evoked potentials and silent periods in proximal and distal upper-extremity muscles.

    NARCIS (Netherlands)

    Kuijk, A.A. van; Anker, L.C.; Pasman, J.W.; Hendriks, J.C.M.; Elswijk, G.A.F. van; Geurts, A.C.H.

    2009-01-01

    OBJECTIVE: To compare stimulus-response characteristics of both motor evoked potentials (MEP) and silent periods (SP) induced by transcranial magnetic stimulation (TMS) in proximal and distal upper-extremity muscles. METHODS: Stimulus-response curves of MEPs and SPs were obtained from the biceps

  14. Analysis of electrically evoked compound action potential of the auditory nerve in children with bilateral cochlear implants.

    Science.gov (United States)

    Caldas, Fernanda Ferreira; Cardoso, Carolina Costa; Barreto, Monique Antunes de Souza Chelminski; Teixeira, Marina Santos; Hilgenberg, Anacléia Melo da Silva; Serra, Lucieny Silva Martins; Bahmad Junior, Fayez

    2016-01-01

    The cochlear implant device has the capacity to measure the electrically evoked compound action potential of the auditory nerve. The neural response telemetry is used in order to measure the electrically evoked compound action potential of the auditory nerve. To analyze the electrically evoked compound action potential, through the neural response telemetry, in children with bilateral cochlear implants. This is an analytical, prospective, longitudinal, historical cohort study. Six children, aged 1-4 years, with bilateral cochlear implant were assessed at five different intervals during their first year of cochlear implant use. There were significant differences in follow-up time (p=0.0082) and electrode position (p=0.0019) in the T-NRT measure. There was a significant difference in the interaction between time of follow-up and electrode position (p=0.0143) when measuring the N1-P1 wave amplitude between the three electrodes at each time of follow-up. The electrically evoked compound action potential measurement using neural response telemetry in children with bilateral cochlear implants during the first year of follow-up was effective in demonstrating the synchronized bilateral development of the peripheral auditory pathways in the studied population. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  15. Comparative Sensitivity of Intraoperative Motor Evoked Potential Monitoring in Predicting Postoperative Neurologic Deficits: Nondegenerative versus Degenerative Myelopathy

    OpenAIRE

    Clark, Aaron J.; Safaee, Michael; Chou, Dean; Weinstein, Philip R.; Molinaro, Annette M.; Clark, John P.; Mummaneni, Praveen V.

    2015-01-01

    Study Design ?Retrospective review. Objective ?Intraoperative motor evoked potential (MEP) monitoring in spine surgery may assist surgeons in taking corrective measures to prevent neurologic deficits. The efficacy of monitoring MEPs intraoperatively in patients with myelopathy from nondegenerative causes has not been quantified. We compared the sensitivity and specificity of intraoperative MEP monitoring in patients with myelopathy caused by nondegenerative processes to patients with degenera...

  16. Criteria for transcranial electrical motor evoked potential monitoring during spinal deformity surgery - A review and discussion of the literature

    NARCIS (Netherlands)

    Langeloo, D. -D.; Journee, H. -L.; de Kleuver, M.; Grotenhuis, J. A.

    2007-01-01

    Transcranial electrical stimulated motor evoked potential monitoring (TES-MEP) has proven to be a successful and reliable neuromonitoring technique during spinal correction surgery. However, three criteria for TES-MEP monitoring have been described in the literature. This study aims at discussing

  17. [The vestibulocollic reflex: assessment and characteristics of vestibular-evoked myogenic potentials analysed by age groups].

    Science.gov (United States)

    Gonzalez-Garcia, E; Piqueras-Del Rey, A; Martin-Alba, V; Parra-Escorihuela, S; Soler-Algarra, S; Chumillas, M J; Perez-Guillen, V; Perez-Garrigues, H; Morera-Perez, C

    Obtaining vestibular-evoked myogenic potentials (VEMP) by means of the vestibulocollic reflex is a readily available technique that provides an image of vestibular functioning and is useful for evaluating the pathologies that involve compromise of the anatomical pathway of the reflex. Although normal patterns do exist, responses vary at different ages. To obtain reference values of the vestibulocollic reflex according to different age groups. We studied 40 volunteers with no symptoms of auditory or vestibular compromise. Each ear was stimulated separately by a series of clicks (sounds lasting 0.1 s; 3 pps; intensities of 100 dB nHL and 85 dB nHL) and recordings were made in the sternocleidomastoid muscles by means of surface electrodes as patients who were lying on their backs contracted these muscles as they lifted their heads. We studied the latency of the initial p13-n23 positive-negative potential and the peak-to-peak amplitude. The existence of later n34-p44 potentials was evaluated. No statistically significant differences were found between genders or between the two ears. We did not find any differences between the latencies of the waves according to the intensity of the stimulus, but there is a relationship between the amplitude of the p13-n23 potential and the intensity of the stimulus. The latencies of the responses in children under 10 years of age differ from those of the other groups, but no differences were found among those over the age of 11. The VEMP display steady and easily identifiable latencies. We obtained different reference values for latency in children under the age of 10 and those over 11 years old. The amplitude decreases with the intensity of the stimulus.

  18. Auditory Evoked Potentials with Different Speech Stimuli: a Comparison and Standardization of Values

    Directory of Open Access Journals (Sweden)

    Didoné, Dayane Domeneghini

    2016-02-01

    Full Text Available Introduction Long Latency Auditory Evoked Potentials (LLAEP with speech sounds has been the subject of research, as these stimuli would be ideal to check individualś detection and discrimination. Objective The objective of this study is to compare and describe the values of latency and amplitude of cortical potentials for speech stimuli in adults with normal hearing. Methods The sample population included 30 normal hearing individuals aged between 18 and 32 years old with ontological disease and auditory processing. All participants underwent LLAEP search using pairs of speech stimuli (/ba/ x /ga/, /ba/ x /da/, and /ba/ x /di/. The authors studied the LLAEP using binaural stimuli at an intensity of 75dBNPS. In total, they used 300 stimuli were used (∼60 rare and 240 frequent to obtain the LLAEP. Individuals received guidance to count the rare stimuli. The authors analyzed latencies of potential P1, N1, P2, N2, and P300, as well as the ampleness of P300. Results The mean age of the group was approximately 23 years. The averages of cortical potentials vary according to different speech stimuli. The N2 latency was greater for /ba/ x /di/ and P300 latency was greater for /ba/ x /ga/. Considering the overall average amplitude, it ranged from 5.35 and 7.35uV for different speech stimuli. Conclusion It was possible to obtain the values of latency and amplitude for different speech stimuli. Furthermore, the N2 component showed higher latency with the / ba / x / di / stimulus and P300 for /ba/ x / ga /.

  19. Comparison of retinal nerve fibre layer thickness with visual evoked potential and visual field in patients with multiple sclerosis.

    Science.gov (United States)

    Alpay, Atilla; Guney, Tuncer; Unal, Aysun; Ugurbas, Suat H

    2012-01-01

    To evaluate retinal nerve fibre layer thickness and to compare results with visual evoked potentials and visual field in patients with multiple sclerosis. A prospective, case-control study, university hospital setting. Seventy-three eyes of 37 multiple sclerosis patients and 74 eyes of 37 healthy subjects. All patients underwent a complete neurological and ophthalmological examination and peri-papillary retinal nerve fibre layer thickness was evaluated using scanning laser polarimetry (GDx). Furthermore, visual evoked potential and visual field testing were performed. The χ(2) test, Student's t-test, Mann-Whitney U-test and Pearson's correlation coefficient analysis of the GDx, visual evoked potential and visual field testing parameters. GDx measurements showed significantly more retinal nerve fibre layer damage in the patients than in the control groups. Comparison of the GDx parameters between patients with optic neuritis and non-optic neuritis demonstrated a statistically significant difference in symmetry (P = 0.046) and superior/nasal parameters (P = 0.009). A correlation was found between the number, superior and inferior ratio parameters, and P100 amplitude obtained with visual evoked potential in patients with non-optic neuritis. Additionally, there was a correlation between the number, inferior ratio and superior/nasal parameters, and the mean deviation of visual field in the non-optic neuritis group. For retinal nerve fibre layer thickness measurements in multiple sclerosis patients, the GDx, along with other techniques, such as visual evoked potential, can be used as a diagnostic and follow-up criterion, particularly in patients without optic neuritis. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.

  20. The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG-fMRI study

    Directory of Open Access Journals (Sweden)

    Gounot Daniel

    2003-09-01

    Full Text Available Abstract Background The integration of EEG and fMRI is attractive because of their complementary precision regarding time and space. But the relationship between the indirect hemodynamic fMRI signal and the more direct EEG signal is uncertain. Event-related EEG responses can be analyzed in two different ways, reflecting two different kinds of brain activity: evoked, i.e. phase-locked to the stimulus, such as evoked potentials, or induced, i.e. non phase-locked to the stimulus such as event-related oscillations. In order to determine which kind of EEG activity was more closely related with fMRI, EEG and fMRI signals were acquired together, while subjects were presented with two kinds of rare events intermingled with frequent distractors. Target events had to be signaled by pressing a button and Novel events had to be ignored. Results Both Targets and Novels triggered a P300, of larger amplitude in the Novel condition. On the opposite, the fMRI BOLD response was stronger in the Target condition. EEG event-related oscillations in the gamma band (32–38 Hz reacted in a way similar to the BOLD response. Conclusions The reasons for such opposite differential reactivity between oscillations / fMRI on the one hand, and evoked potentials on the other, are discussed in the paper. Those results provide further arguments for a closer relationship between fast oscillations and the BOLD signal, than between evoked potentials and the BOLD signal.

  1. [Relationship between magnocellular function and reading skills in children: a study using visual evoked potentials].

    Science.gov (United States)

    Kobayashi, Tomoka; Inagaki, Masumi; Yamazaki, Hiroko; Kita, Yosuke; Kaga, Makiko; Oka, Akira

    2014-11-01

    Developmental dyslexia (DD) is a neurodevelopmental disorder that is characterized by difficulties with accurate and/or fluent word recognition and by poor spelling and decoding abilities. The magnocellular deficit theory is one of several hypotheses that have been proposed to explain the pathophysiology of DD. In this study, we investigated magnocellular system dysfunction in Japanese dyslexic children. Subjects were 19 dyslexic children (DD group) and 19 aged-matched healthy children (TD group). They were aged between 7 and 16 years. Reversed patterns of black and white sinusoidal gratings generated at a low spatial frequency, high reversal frequency of 7.5 Hz, and low contrasts were used specifically to stimulate the magnocellular system. We recorded visual evoked potentials (VEP) from the occipital area and examined their relationship with reading and naming tasks, such as the time to read hiragana characters, rapid automatized naming of pictured objects, and phonological manipulation. Compared to the TD group, the DD group showed a significantly lower peak amplitude of VEPs through the complex demodulation method. Structural equation modeling showed that VEP peak amplitudes were related to the rapid automatized naming of pictured objects, and better rapid automatized naming resulted in higher reading skills. There was no correlation between VEP findings and the capacity for phonological manipulation. VEPs in response to the magnocellular system are useful for understanding the pathophysiology of DD. Single phonological deficit may not be sufficient to cause DD.

  2. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Milla; Lehtonen, Liisa; Lapinleimu, Helena [Turku University Central Hospital, Department of Paediatrics, Turku (Finland); Parkkola, Riitta [Turku University Central Hospital, Department of Radiology and Turku PET Centre, Turku (Finland); Johansson, Reijo [Turku University Central Hospital, Department of Otorhinolaryngology, Turku (Finland); Jaeaeskelaeinen, Satu K. [Turku University Central Hospital, Department of Clinical Neurophysiology, Turku (Finland); Kujari, Harry [Turku University Central Hospital, Department of Pathology, Turku (Finland); Haataja, Leena [Turku University Central Hospital, Department of Paediatric Neurology, Turku (Finland)

    2009-08-15

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants. (orig.)

  3. Amphibious auditory evoked potentials in four North American Testudines genera spanning the aquatic-terrestrial spectrum.

    Science.gov (United States)

    Zeyl, Jeffrey N; Johnston, Carol E

    2015-10-01

    Animals exhibit unique hearing adaptations in relation to the habitat media in which they reside. This study was a comparative analysis of auditory specialization in relation to habitat medium in Testudines, a taxon that includes both highly aquatic and fully terrestrial members. Evoked potential audiograms were collected in four species groups representing diversity along the aquatic-terrestrial spectrum: terrestrial and fossorial Gopherus polyphemus, terrestrial Terrapene carolina carolina, and aquatic Trachemys scripta and Sternotherus (S. odoratus and S. minor). Additionally, underwater sensitivity was tested in T. c. carolina, T. scripta, and Sternotherus with tympana submerged just below the water surface. In aerial audiograms, T. c. carolina were most sensitive, with thresholds 18 dB lower than Sternotherus. At 100-300 Hz, thresholds in T. c. carolina, G. polyphemus, and T. scripta were similar to each other. At 400-800 Hz, G. polyphemus thresholds were elevated to 11 dB above T. c. carolina. The underwater audiograms of T. c. carolina, T. scripta, and Sternotherus were similar. The results suggest aerial hearing adaptations in emydids and high-frequency hearing loss associated with seismic vibration detection in G. polyphemus. The underwater audiogram of T. c. carolina could reflect retention of ancestral aquatic auditory function.

  4. Effects of different doses of epidural midazolam on spinal somatosensory evoked potentials.

    Science.gov (United States)

    Ciçek, S; Attar, A; Tuna, H; Keçik, Y; Egemen, N

    2000-01-01

    The aim of this study is to find out the effects of different doses of midazolam, when used epidurally, on somatosensory evoked potentials (SEP) by delaying neuronal conduction. Thirty two New Zeland albino male rabbits were divided into four groups. All rabbits were anesthetised with ketamine and xylasine combination and atracurium was used as muscle relaxant. 10 mg/kg/hr ketamine infusion was used for maintenance of anesthesia. After insertion of the epidural catheter surgically; Group 1 received 1.5 ml isotonic saline (Control), Group 2 received 150 microg/kg, Group 3 received 250 microg/kg, and Group 4 received 500 microg/kg midazolam epidurally. With the stimulation of sciatic nerve. SEP records were recorded from the epidural space. Records were received before the injection of the drug, and 20, 40, 60 minutes after injection of the drug. "Latency" results were increased according to control in all groups (including isotonic saline-control-group). Increase in latency in the control group was interpreted as due to the effect of temperature mismatch of the saline and the rabbits. While in the first and second group amplitudes showed no differences, group 3 and 4 showed decreases of up to 50%. Epidurally administered midazolam up to 150 microg/kg caused no change in SEP records, but 250 and 500 microg/kg doses caused decreases in SEP records which can lead to misinterpretation as neurological damage.

  5. Combined visual and motor evoked potentials predict multiple sclerosis disability after 20 years.

    Science.gov (United States)

    Schlaeger, Regina; Schindler, Christian; Grize, Leticia; Dellas, Sophie; Radue, Ernst W; Kappos, Ludwig; Fuhr, Peter

    2014-09-01

    The development of predictors of multiple sclerosis (MS) disability is difficult due to the complex interplay of pathophysiological and adaptive processes. The purpose of this study was to investigate whether combined evoked potential (EP)-measures allow prediction of MS disability after 20 years. We examined 28 patients with clinically definite MS according to Poser's criteria with Expanded Disability Status Scale (EDSS) scores, combined visual and motor EPs at entry (T0), 6 (T1), 12 (T2) and 24 (T3) months, and a cranial magnetic resonance imaging (MRI) scan at T0 and T2. EDSS testing was repeated at year 14 (T4) and year 20 (T5). Spearman rank correlation was used. We performed a multivariable regression analysis to examine predictive relationships of the sum of z-transformed EP latencies (s-EPT0) and other baseline variables with EDSST5. We found that s-EPT0 correlated with EDSST5 (rho=0.72, pdisability in MS. © The Author(s) 2014.

  6. A MISO-ARX-Based Method for Single-Trial Evoked Potential Extraction

    Directory of Open Access Journals (Sweden)

    Nannan Yu

    2017-01-01

    Full Text Available In this paper, we propose a novel method for solving the single-trial evoked potential (EP estimation problem. In this method, the single-trial EP is considered as a complex containing many components, which may originate from different functional brain sites; these components can be distinguished according to their respective latencies and amplitudes and are extracted simultaneously by multiple-input single-output autoregressive modeling with exogenous input (MISO-ARX. The extraction process is performed in three stages: first, we use a reference EP as a template and decompose it into a set of components, which serve as subtemplates for the remaining steps. Then, a dictionary is constructed with these subtemplates, and EPs are preliminarily extracted by sparse coding in order to roughly estimate the latency of each component. Finally, the single-trial measurement is parametrically modeled by MISO-ARX while characterizing spontaneous electroencephalographic activity as an autoregression model driven by white noise and with each component of the EP modeled by autoregressive-moving-average filtering of the subtemplates. Once optimized, all components of the EP can be extracted. Compared with ARX, our method has greater tracking capabilities of specific components of the EP complex as each component is modeled individually in MISO-ARX. We provide exhaustive experimental results to show the effectiveness and feasibility of our method.

  7. Dominant Eye and Visual Evoked Potential of Patients with Myopic Anisometropia.

    Science.gov (United States)

    Wang, Qing; Wu, Yili; Liu, Wenwen; Gao, Lin

    2016-01-01

    A prospective nonrandomized controlled study was conducted to explore the association between ocular dominance and degree of myopia in patients with anisometropia and to investigate the character of visual evoked potential (VEP) in high anisometropias. 1771 young myopia cases including 790 anisometropias were recruited. We found no significant relation between ocular dominance and spherical equivalent (SE) refraction in all subjects. On average for subjects with anisometropia 1.0-1.75 D, there was no significant difference in SE power between dominant and nondominant eyes, while, in SE anisometropia ≥1.75 D group, the degree of myopia was significantly higher in nondominant eyes than in dominant eyes. The trend was more significant in SE anisometropia ≥2.5 D group. There was no significant difference in higher-order aberrations between dominant eye and nondominant eye either in the whole study candidates or in any anisometropia groups. In anisometropias >2.0 D, the N75 latency of nondominant eye was longer than that of dominant eye. Our results suggested that, with the increase of anisometropia, nondominant eye had a tendency of higher refraction and N75 wave latency of nondominant eye was longer than that of dominant eye in high anisometropias.

  8. Dominant Eye and Visual Evoked Potential of Patients with Myopic Anisometropia

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2016-01-01

    Full Text Available A prospective nonrandomized controlled study was conducted to explore the association between ocular dominance and degree of myopia in patients with anisometropia and to investigate the character of visual evoked potential (VEP in high anisometropias. 1771 young myopia cases including 790 anisometropias were recruited. We found no significant relation between ocular dominance and spherical equivalent (SE refraction in all subjects. On average for subjects with anisometropia 1.0–1.75 D, there was no significant difference in SE power between dominant and nondominant eyes, while, in SE anisometropia ≥1.75 D group, the degree of myopia was significantly higher in nondominant eyes than in dominant eyes. The trend was more significant in SE anisometropia ≥2.5 D group. There was no significant difference in higher-order aberrations between dominant eye and nondominant eye either in the whole study candidates or in any anisometropia groups. In anisometropias >2.0 D, the N75 latency of nondominant eye was longer than that of dominant eye. Our results suggested that, with the increase of anisometropia, nondominant eye had a tendency of higher refraction and N75 wave latency of nondominant eye was longer than that of dominant eye in high anisometropias.

  9. [Pattern visual evoked potentials in normal-vision eyes of post-therapy amblyopia].

    Science.gov (United States)

    Xiao, Manyi; Wei, Xin; Li, Yunping; Xiong, Wei; Xu, Shuxian

    2013-07-01

    To evaluate the clinical significance of pattern visual evoked potential (P-VEP) parameters on amblyopic patients with normal-vision after pleoptic therapy. We investigated 60 amblyopic children (8-12 years old) who gained normal-vision after pleoptic therapy. These patients were assigned to a unilateral amblyopia group (40 patients) and a bilateral amblyopia group (20 patients). Another 20 healthy children served as a control group. All patients underwent a full initial ophthalmologic and orthoptic evaluation. P-VEP test was performed in all. Amplitude and latencies were analyzed and compared among groups. The latencies of P100 waves in the amblyopic eyes were used to generate a multiple linear regression formula from sex, first treatment age, baseline visual acuity, and cycloplegic refraction. There was no significant difference in the mean levels of best-corrected visual acuity among groups (P>0.05). A significant prolongation of the latency and a decrease of amplitude of P100 waves were observed in the unilateral amblyopia group and the bilateral amblyopia group compared with the healthy control group (Pamblyopia group were abnormal compared with the healthy control group (Ptreatment age, baseline visual acuity, and cycloplegic refraction (R(2)= 0.52, Ptreatment age, baseline visual acuity, and cycloplegic refraction. Traditional amblyopic therapy may be not enough for vision function recovery.

  10. The reproducibility of binocular pattern reversal visual evoked potentials: a single subject design.

    Science.gov (United States)

    Mellow, Tessa B; Liasis, Alki; Lyons, Ruth; Thompson, Dorothy A

    2011-06-01

    This study aimed to investigate the within-participant variability over time of both amplitude and peak latency measures of pattern reversal visual evoked potentials (pVEPs). As a large number of factors are known to contribute to the variability of the pVEPs (such as fixation instability and drowsiness), testing was conducted in controlled conditions with two co-operative participants. PVEPs were recorded during 24 sessions, over an eight-week period using the same equipment and recording settings. The participants viewed a plasma monitor binocularly from a distance of 1 meter. High contrast (97%), black and white checks of side subtense 50', 25', and 12.5' pattern reversed 3/s in a 28 degree test field. The different sized checks were presented in a pseudo-random order. Three runs, each of 100 trials, were acquired to each stimulus from an active electrode placed at Oz referred to aFz. The amplitude of N80-P100 and the latency of P100 were measured. P100 amplitude and latency were stable across sessions and did not depend upon the order of check size presentation. As expected, variation in amplitude was greater than peak latency. The coefficients of variation for different check sizes and participants were 9-14% for pVEP amplitude, but only 1-2% for P100 latency.

  11. Steady-state visual evoked potentials as a research tool in social affective neuroscience.

    Science.gov (United States)

    Wieser, Matthias J; Miskovic, Vladimir; Keil, Andreas

    2016-12-01

    Like many other primates, humans place a high premium on social information transmission and processing. One important aspect of this information concerns the emotional state of other individuals, conveyed by distinct visual cues such as facial expressions, overt actions, or by cues extracted from the situational context. A rich body of theoretical and empirical work has demonstrated that these socioemotional cues are processed by the human visual system in a prioritized fashion, in the service of optimizing social behavior. Furthermore, socioemotional perception is highly dependent on situational contexts and previous experience. Here, we review current issues in this area of research and discuss the utility of the steady-state visual evoked potential (ssVEP) technique for addressing key empirical questions. Methodological advantages and caveats are discussed with particular regard to quantifying time-varying competition among multiple perceptual objects, trial-by-trial analysis of visual cortical activation, functional connectivity, and the control of low-level stimulus features. Studies on facial expression and emotional scene processing are summarized, with an emphasis on viewing faces and other social cues in emotional contexts, or when competing with each other. Further, because the ssVEP technique can be readily accommodated to studying the viewing of complex scenes with multiple elements, it enables researchers to advance theoretical models of socioemotional perception, based on complex, quasinaturalistic viewing situations. © 2016 Society for Psychophysiological Research.

  12. Steady state visually evoked potential (SSVEP) topography changes associated with cocoa flavanol consumption.

    Science.gov (United States)

    Camfield, D A; Scholey, A; Pipingas, A; Silberstein, R; Kras, M; Nolidin, K; Wesnes, K; Pase, M; Stough, C

    2012-02-28

    In a randomized, double-blind placebo controlled trial, 63 middle-aged volunteers aged between 40 and 65 years were administered a daily chocolate drink containing 250 mg or 500 mg cocoa flavanols versus a low cocoa flavanol (placebo) drink over a 30-day period. Participants were tested at baseline as well as at the end of the treatment period on a test of Spatial Working Memory. Steady State Probe Topography (SST) was used to assess neurocognitive changes associated with cocoa flavanol supplementation during the completion of the Spatial Working Memory task. SST is an electrophysiological technique which utilizes a 13 Hz diffuse visual flicker in order to generate a steady state visually evoked potential (SSVEP). Changes in the amplitude and phase of the SSVEP response after 30 days were compared between treatment groups. Behavioral measures of accuracy and reaction time were not found to be significantly different between treatment groups, while average SSVEP amplitude and phase differences at a number of posterior parietal and centro-frontal sites were found to be significantly different between groups during memory encoding, the working memory hold period and retrieval. In the absence of significant behavioral effects, these differences in brain activation can be interpreted as evidence of increased neural efficiency in spatial working memory function associated with chronic cocoa flavanol consumption. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Impact of loudness dependency of auditory evoked potentials on the panic response to CCK-4.

    Science.gov (United States)

    Eser, Daniela; Leicht, Gregor; Baghai, Thomas; Pogarell, Oliver; Schüle, Cornelius; Karch, Susanne; Nothdurfter, Caroline; Rupprecht, Rainer; Mulert, Christoph

    2009-01-01

    Experimental panic induction with cholecystokinin-tetrapeptide (CCK-4) has been established as a model to study the pathophysiology of panic disorder. In line with the serotonin (5-HT)-hypothesis of panic disorder it has been suggested that the panicogenic effects of CCK-4 are mediated in part through the 5-HT system. The analysis of the loudness dependency of the auditory evoked potentials (LDAEP) is a valid non-invasive indicator of central serotonergic activity. We investigated the correlation between LDAEP and behavioral, cardiovascular and neuroendocrine panic responses to CCK-4in 77 healthy volunteers and explored whether differences in LDAEP paralleled subjective panic severity. Behavioral panic responses were measured with the panic symptom scale (PSS). Heart rate and ACTH/cortisol plasma concentrations were assessed concomitantly. LDAEP did not differ between panickers and nonpanickers. Furthermore, LDAEP did not correlate with the behavioral panic response. However, a significant positive correlation between LDAEP and CCK-4 induced HPA-axis activation, which was uniform in panickers and nonpanickers, could be detected. The psychological effects of CCK-4 rather are mediated by neurotransmitters others than the endogenous 5-HT system. However, the extent of the neuroendocrine activation related to the CCK-4 panic provocation was correlated with the LDAEP, thereby suggesting that central 5-HT mechanisms are involved in the HPA-axis activation during this challenge paradigm.

  14. Cholinergic pairing with visual activation results in long-term enhancement of visual evoked potentials.

    Directory of Open Access Journals (Sweden)

    Jun Il Kang

    Full Text Available Acetylcholine (ACh contributes to learning processes by modulating cortical plasticity in terms of intensity of neuronal activity and selectivity properties of cortical neurons. However, it is not known if ACh induces long term effects within the primary visual cortex (V1 that could sustain visual learning mechanisms. In the present study we analyzed visual evoked potentials (VEPs in V1 of rats during a 4-8 h period after coupling visual stimulation to an intracortical injection of ACh analog carbachol or stimulation of basal forebrain. To clarify the action of ACh on VEP activity in V1, we individually pre-injected muscarinic (scopolamine, nicotinic (mecamylamine, alpha7 (methyllycaconitine, and NMDA (CPP receptor antagonists before carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation significantly increased VEP amplitude (56% during a 6 h period. Pre-treatment with scopolamine, mecamylamine and CPP completely abolished this long-term enhancement, while alpha7 inhibition induced an instant increase of VEP amplitude. This suggests a role of ACh in facilitating visual stimuli responsiveness through mechanisms comparable to LTP which involve nicotinic and muscarinic receptors with an interaction of NMDA transmission in the visual cortex.

  15. Ketamine-Based Anesthetic Protocols and Evoked Potential Monitoring: A Risk/Benefit Overview

    Directory of Open Access Journals (Sweden)

    Nicoleta eStoicea

    2016-02-01

    Full Text Available Since its discovery, ketamine, a noncompetitive N-methyl D-aspartate (NMDA receptor antagonist related to phencyclidine, has been linked to multiple adverse reactions sometimes described as out of body and near death experiences, including emergence phenomena, delusions, hallucinations, delirium, and confusion. Due to these effects, ketamine has been withdrawn from mainstream anesthetic use in adult patients. Evoked potentials (EPs are utilized to monitor neural pathways during surgery, detect intraoperative stress or damage, detect and define the level of neural lesions, and define abnormalities. Unfortunately, many of the volatile anesthetics commonly used during spinal and neurologic procedures suppress EP amplitude and monitoring.. Ketamine has been found in several preclinical and clinical studies to actually increase EP amplitude and thus has been used as an analgesic adjunct in procedures where EP monitoring is critical. Once the gap in our knowledge of ketamine’s risks has been sufficiently addressed in animal models, informed clinical trials should be conducted in order to properly incorporate ketamine-based anesthetic regimens during EP-monitored neurosurgeries.

  16. Effect of caffeine on cervical vestibular-evoked myogenic potential in healthy individuals

    Directory of Open Access Journals (Sweden)

    Ana Maria Almeida de Sousa

    2014-06-01

    Full Text Available INTRODUCTION: Caffeine is the most common psychoactive drug in use around the world and is found at different concentrations in a variety of common food items. Clinically, a strong association between caffeine consumption and diseases of the vestibular system has been established. Cervical vestibular-evoked myogenic potential (cVEMP is an electrophysiological test that is used to assess the sacculocollic pathway by measuring changes in the vestialibulocollic reflex. AIM: The present study aimed to evaluate the effect of an acute dose of caffeine on the vestibulocollic reflex by using cVEMP. METHOD: A prospective experimental study was performed in which healthy volunteers were submitted to the test before and after the intake of 420 mg of caffeine. The following parameters were compared: p13 and n23 latencies and p13-n23 amplitude. RESULT: No statistically significant difference was found in the test results before and after caffeine use. CONCLUSION: The vestibulocollic reflex is not altered by caffeine intake.

  17. Background noise can enhance cortical auditory evoked potentials under certain conditions

    Science.gov (United States)

    Papesh, Melissa A.; Billings, Curtis J.; Baltzell, Lucas S.

    2017-01-01

    Objective To use cortical auditory evoked potentials (CAEPs) to understand neural encoding in background noise and the conditions under which noise enhances CAEP responses. Methods CAEPs from 16 normal-hearing listeners were recorded using the speech syllable/ba/presented in quiet and speech-shaped noise at signal-to-noise ratios of 10 and 30 dB. The syllable was presented binaurally and monaurally at two presentation rates. Results The amplitudes of N1 and N2 peaks were often significantly enhanced in the presence of low-level background noise relative to quiet conditions, while P1 and P2 amplitudes were consistently reduced in noise. P1 and P2 amplitudes were significantly larger during binaural compared to monaural presentations, while N1 and N2 peaks were similar between binaural and monaural conditions. Conclusions Methodological choices impact CAEP peaks in very different ways. Negative peaks can be enhanced by background noise in certain conditions, while positive peaks are generally enhanced by binaural presentations. Significance Methodological choices significantly impact CAEPs acquired in quiet and in noise. If CAEPs are to be used as a tool to explore signal encoding in noise, scientists must be cognizant of how differences in acquisition and processing protocols selectively shape CAEP responses. PMID:25453611

  18. Sensory gating revisited: relation between brain oscillations and auditory evoked potentials in schizophrenia.

    Science.gov (United States)

    Brockhaus-Dumke, Anke; Mueller, Ralf; Faigle, Ulrich; Klosterkoetter, Joachim

    2008-02-01

    Disturbances of auditory information processing have repeatedly been shown in schizophrenia. To contribute to a better understanding of the neurophysiological underpinnings of habituation in auditory processing and its disturbance in schizophrenia we used three different approaches to analyze auditory evoked responses, namely phase-locking (PL) analyses, single trial amplitudes, and averaged event-related potentials (P50 and N100). Given that brain oscillations reflect the neuronal correlates of information processing we hypothesized that PL and amplitudes reflect even more essential parts of auditory processing than the averaged ERP responses. In 32 schizophrenia patients and 32 matched controls EEG was continuously recorded using an auditory paired click paradigm. PL of the lower frequency bands (alpha and theta) was significantly reduced in patients whereas no significant differences were present in higher frequencies (gamma and beta). Alpha and theta PL and amplitudes showed a marked increase after the first click and to a minor degree after the second one. This habituation was more prominent in controls whereas in schizophrenia patients the response to both clicks differed only slightly. N100 suppression was significantly reduced in schizophrenia patients whereas no group differences were present with respect to the P50. This corresponded to the finding that gamma mostly contributed to the prediction of the P50 response and theta mostly to the N100 response. Our data showed that analyzing phase and amplitude in single trials provides more information on auditory information processing and reflects differences between schizophrenia patients and controls better than analyzing the averaged ERP responses.

  19. Otoacoustic emissions, auditory evoked potentials, and traits related to sex and sexual orientation.

    Science.gov (United States)

    Loehlin, John C; McFadden, Dennis

    2003-04-01

    A number of trait measures, possibly reflective of prenatal hormonal effects, were obtained in studies of otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) carried out with male and female heterosexual and homosexual/bisexual college students. Most of the measures were from a self-report questionnaire; others were from experimenters' ratings or cognitive tests (Mental Rotation Test and Water Level Test). The questionnaire, test, and rating measures included physical characteristics (e.g., height, body type, eye color); spatial abilities; sex roles and sexual orientation; childhood gender nonconformity; and, in the OAE study, presence of homosexuality or bisexuality among relatives. Correlations with sexual orientation were most often consistent with the hypothesis that male homosexuals were undermasculinized and female homosexuals overmasculinized. Some correlations of the questionnaire, test, and rating measures with auditory measures were observed, but most of these were reduced or eliminated by statistically controlling for sex. In supplementary analyses, pigmentation measures appeared to be unrelated to OAEs, and data relevant to several hypotheses in the sexual orientation literature were briefly examined, including childhood gender nonconformity, X-linkage, handedness, and the tendency of homosexuality to run in families.

  20. Development and evaluation of the piecewise Prony method for evoked potential analysis.

    Science.gov (United States)

    Garoosi, V; Jansen, B H

    2000-12-01

    A new method is presented to decompose nonstationary signals into a summation of oscillatory components with time varying frequency, amplitude, and phase characteristics. This method, referred to as piecewise Prony method (PPM), is an improvement over the classical Prony method, which can only deal with signals containing components with fixed frequency, amplitude and phase, and monotonically increasing or decreasing rate of change. PPM allows the study of the temporal profile of post-stimulus signal changes in single-trial evoked potentials (EPs), which can lead to new insights in EP generation. We have evaluated this method on simulated data to test its limitations and capabilities, and also on single-trial EPs. The simulation experiments showed that the PPM can detect amplitude changes as small as 10%, rate changes as small as 10%, and 0.15 Hz of frequency changes. The capabilities of the PPM were demonstrated using single electroencephalogram/EP trials of flash visual EPs recorded from one normal subject. The trial-by-trial results confirmed that the stimulation drastically attenuates the alpha activity shortly after stimulus presentation, with the alpha activity returning about 0.5 s later. The PPM results also provided evidence that delta activity undergoes phase alignment following stimulus presentation.

  1. Chromatic spatial contrast sensitivity estimated by visual evoked cortical potential and psychophysics.

    Science.gov (United States)

    Barboni, M T S; Gomes, B D; Souza, G S; Rodrigues, A R; Ventura, D F; Silveira, L C L

    2013-02-01

    The purpose of the present study was to measure contrast sensitivity to equiluminant gratings using steady-state visual evoked cortical potential (ssVECP) and psychophysics. Six healthy volunteers were evaluated with ssVECPs and psychophysics. The visual stimuli were red-green or blue-yellow horizontal sinusoidal gratings, 5° × 5°, 34.3 cd/m2 mean luminance, presented at 6 Hz. Eight spatial frequencies from 0.2 to 8 cpd were used, each presented at 8 contrast levels. Contrast threshold was obtained by extrapolating second harmonic amplitude values to zero. Psychophysical contrast thresholds were measured using stimuli at 6 Hz and static presentation. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. ssVECP and both psychophysical contrast sensitivity functions (CSFs) were low-pass functions for red-green gratings. For electrophysiology, the highest contrast sensitivity values were found at 0.4 cpd (1.95 ± 0.15). ssVECP CSF was similar to dynamic psychophysical CSF, while static CSF had higher values ranging from 0.4 to 6 cpd (P psychophysical methods (P psychophysical thresholds, mainly if the same temporal properties are applied to the stimulus. For blue-yellow CSF, correlation between electrophysiology and psychophysics was poor at high spatial frequency, possibly due to a greater effect of chromatic aberration on this kind of stimulus.

  2. Ocular vestibular evoked myogenic potentials: skull taps can cause a stimulus direction dependent double-peak.

    Science.gov (United States)

    Holmeslet, Berit; Westin, Magnus; Brantberg, Krister

    2011-02-01

    To explore the mechanisms for skull tap induced ocular vestibular evoked myogenic potentials (oVEMP). An electro-mechanical "skull tapper" was used to test oVEMP in response to four different stimulus sites (forehead, occiput and above each ear) in healthy subjects (n=20) and in patients with unilateral loss of vestibular function (n=10). In normals, the oVEMP in response to forehead taps and the contra-lateral oVEMP to taps above the ears were similar. These responses had typical oVEMP features, i.e. a short-latency negative peak (n10) followed by a positive peak (p15). In contrast, the ipsi-lateral oVEMP to the laterally directed skull taps, as well as the oVEMP to occiput taps, had an initial double negative peak (n10+n10b). In patients with unilateral loss of vestibular function, the crossed responses from the functioning labyrinth were very similar to the corresponding oVEMP in normals. The present data support a theory that skull tapping may cause both a response that is more stimulus direction dependent and one that is less so. Whereas the stimulus direction dependent occurrence of the negative double-peak might reveal the functional status of one part of the labyrinth, the rather stimulus direction-independent response might reveal the functional status of other parts. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Test-retest reliability of infant event related potentials evoked by faces.

    Science.gov (United States)

    Munsters, N M; van Ravenswaaij, H; van den Boomen, C; Kemner, C

    2017-04-05

    Reliable measures are required to draw meaningful conclusions regarding developmental changes in longitudinal studies. Little is known, however, about the test-retest reliability of face-sensitive event related potentials (ERPs), a frequently used neural measure in infants. The aim of the current study is to investigate the test-retest reliability of ERPs typically evoked by faces in 9-10 month-old infants. The infants (N=31) were presented with neutral, fearful and happy faces that contained only the lower or higher spatial frequency information. They were tested twice within two weeks. The present results show that the test-retest reliability of the face-sensitive ERP components is moderate (P400 and Nc) to substantial (N290). However, there is low test-retest reliability for the effects of the specific experimental manipulations (i.e. emotion and spatial frequency) on the face-sensitive ERPs. To conclude, in infants the face-sensitive ERP components (i.e. N290, P400 and Nc) show adequate test-retest reliability, but not the effects of emotion and spatial frequency on these ERP components. We propose that further research focuses on investigating elements that might increase the test-retest reliability, as adequate test-retest reliability is necessary to draw meaningful conclusions on individual developmental trajectories of the face-sensitive ERPs in infants. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Early visual evoked potentials are modulated by eye position in humans induced by whole body rotations

    Directory of Open Access Journals (Sweden)

    Petit Laurent

    2004-09-01

    Full Text Available Abstract Background To reach and grasp an object in space on the basis of its image cast on the retina requires different coordinate transformations that take into account gaze and limb positioning. Eye position in the orbit influences the image's conversion from retinotopic (eye-centered coordinates to an egocentric frame necessary for guiding action. Neuroimaging studies have revealed eye position-dependent activity in extrastriate visual, parietal and frontal areas that is along the visuo-motor pathway. At the earliest vision stage, the role of the primary visual area (V1 in this process remains unclear. We used an experimental design based on pattern-onset visual evoked potentials (VEP recordings to study the effect of eye position on V1 activity in humans. Results We showed that the amplitude of the initial C1 component of VEP, acknowledged to originate in V1, was modulated by the eye position. We also established that putative spontaneous small saccades related to eccentric fixation, as well as retinal disparity cannot explain the effects of changing C1 amplitude of VEP in the present study. Conclusions The present modulation of the early component of VEP suggests an eye position-dependent activity of the human primary visual area. Our findings also evidence that cortical processes combine information about the position of the stimulus on the retinae with information about the location of the eyes in their orbit as early as the stage of primary visual area.

  5. Preserved motor-evoked potentials but without good motor recovery in a patient with decerebrate rigidity

    Directory of Open Access Journals (Sweden)

    Chuen-Der Kao

    2011-01-01

    Full Text Available The corticospinal tract is not incriminated in decerebrate rigidity (DR. However, this has not yet been proven in humans. We applied transcranial magnetic stimulation (TMS in a decerebrate patient to support the hypothesis. A patient suffering from pontine hemorrhage with the fourth ventricular extension was admitted unconscious and in a decerebrate posture. Five days later, she regained consciousness but remained in a decerebrate posture. Motor-evoked potentials (MEPs to TMS were measured 1 week after she had regained consciousness, and this provoked muscle responses in her hands and feet bilaterally. During the follow-up, the patient’s muscle tone became persistently flaccid, although her strength increased to varying degrees in different body and limb muscles. She remained bedridden for 3 years after the stroke and could neither turn on the bed by herself nor perform skilled movements using her hands. The findings of TMS confirmed the animal studies in that the mechanism of decerebrate rigidity did not come through a damage of the corticospinal pathway. This also implies that a preserved corticospinal tract function cannot guarantee a good motor recovery in a stroke patient.

  6. Preserved motor-evoked potentials but without good motor recovery in a patient with decerebrate rigidity.

    Science.gov (United States)

    Kao, Chuen-Der; Lin, Kon-Ping; Chen, Jen-Tse; Chang, Jiun-Bin; Guo, Wan-Yuo; Lin, Yung-Yang; Liao, Kwong-Kum

    2011-01-01

    The corticospinal tract is not incriminated in decerebrate rigidity (DR). However, this has not yet been proven in humans. We applied transcranial magnetic stimulation (TMS) in a decerebrate patient to support the hypothesis. A patient suffering from pontine hemorrhage with the fourth ventricular extension was admitted unconscious and in a decerebrate posture. Five days later, she regained consciousness but remained in a decerebrate posture. Motor-evoked potentials (MEPs) to TMS were measured 1 week after she had regained consciousness, and this provoked muscle responses in her hands and feet bilaterally. During the follow-up, the patient's muscle tone became persistently flaccid, although her strength increased to varying degrees in different body and limb muscles. She remained bedridden for 3 years after the stroke and could neither turn on the bed by herself nor perform skilled movements using her hands. The findings of TMS confirmed the animal studies in that the mechanism of decerebrate rigidity did not come through a damage of the corticospinal pathway. This also implies that a preserved corticospinal tract function cannot guarantee a good motor recovery in a stroke patient. Copyright © 2011. Published by Elsevier B.V.

  7. A lower limb exoskeleton control system based on steady state visual evoked potentials

    Science.gov (United States)

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2015-10-01

    Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.

  8. Wavelet denoising of EEG signals and identification of evoked response potentials

    Science.gov (United States)

    Carmona, Rene A.; Hudgins, Lonnie H.

    1994-10-01

    The purpose of this study is to apply a recently developed wavelet based de-noising filter to the analysis of human electroencephalogram (EEG) signals, and measure its performance. The data used contained subject EEG responses to two different stimuli using the `odd-ball' paradigm. Electrical signals measured at standard locations on the scalp were processed to detect and identify the Evoked Response Potentials (ERP's). First, electrical artifacts emitting from the eyes were identified and removed. Second, the mean signature for each type of response was extracted and used as a matched filter to define baseline detector performance for the noisy data. Third, a nonlinear filtering procedure based on the wavelet extrema representation was used to de-noise the signals. Overall detection rates for the de-noised signals were then compared to the baseline performance. It was found that while the filtered signals have significantly lower noise than the raw signals, detector performance remains comparable. We therefore conclude that all of the information that is important to matched filter detection is preserved by the filter. The implication is that the wavelet based filter eliminates much of the noise while retaining ERP's.

  9. Ketamine-Based Anesthetic Protocols and Evoked Potential Monitoring: A Risk/Benefit Overview

    Science.gov (United States)

    Stoicea, Nicoleta; Versteeg, Gregory; Florescu, Diana; Joseph, Nicholas; Fiorda-Diaz, Juan; Navarrete, Víctor; Bergese, Sergio D.

    2016-01-01

    Since its discovery, ketamine, a non-competitive N-methyl D-aspartate (NMDA) receptor antagonist related to phencyclidine, has been linked to multiple adverse reactions sometimes described as “out of body” and “near death experiences,” including emergence phenomena, delusions, hallucinations, delirium, and confusion. Due to these effects, ketamine has been withdrawn from mainstream anesthetic use in adult patients. Evoked potentials (EPs) are utilized to monitor neural pathways during surgery, detect intraoperative stress or damage, detect and define the level of neural lesions, and define abnormalities. Unfortunately, many of the volatile anesthetics commonly used during spinal and neurologic procedures suppress EP amplitude and monitoring. Ketamine has been found in several preclinical and clinical studies to actually increase EP amplitude and thus has been used as an analgesic adjunct in procedures where EP monitoring is critical. Once the gap in our knowledge of ketamine's risks has been sufficiently addressed in animal models, informed clinical trials should be conducted in order to properly incorporate ketamine-based anesthetic regimens during EP-monitored neurosurgeries. PMID:26909017

  10. Modulation of the N30 generators of the somatosensory evoked potentials by the mirror neuron system.

    Science.gov (United States)

    Cebolla, A M; Palmero-Soler, E; Dan, B; Cheron, G

    2014-07-15

    The N30 component of the somatosensory evoked potential is known to be modulated by sensory interference, motor action, movement ideation and observation. We introduce a new paradigm in which the observation task of another person's hand movement triggers the somatosensory stimulus, inducing the N30 response in participants. In order to identify the possible contribution of the mirror neuron network (MNN) to this early sensorimotor processing, we analyzed the N30 topography, the event-related spectral perturbation and the inter-trial coherence on single electroencephalogram (EEG) trials, and we applied swLORETA to localize the N30 sources implicated in the time-frequency domain at rest and during observation, as well as the generators differentiating these two contextual brain states. We found that N30 amplitude increase correlated with increased contralateral precentral alpha, frontal beta, and contralateral frontal gamma power spectrum, and with central and precentral alpha and parietal beta phase-locking of ongoing EEG signals. We demonstrate specific activation of the contralateral post-central and parietal cortex where the angular gyrus (BA39), an important MNN node, is implicated in this enhancement during observation. We conclude that this part of the MNN, involved in proprioceptive processing and more complex body-action representations, is already active prior to somatosensory input and may enhance N30. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Do Event-Related Evoked Potentials Reflect Apathy Tendency and Motivation?

    Science.gov (United States)

    Takayoshi, Hiroyuki; Onoda, Keiichi; Yamaguchi, Shuhei

    2018-01-01

    Apathy is a mental state of diminished motivation. Although the reward system as the foundation of the motivation in the human brain has been studied extensively with neuroimaging techniques, the electrophysiological correlates of motivation and apathy have not been fully explored. Thus, in 14 healthy volunteers, we examined whether event-related evoked potentials (ERP) obtained during a simple number discrimination task with/without rewards reflected apathy tendency and a reward-dependent tendency, which were assessed separately using the apathy scale and the temperament and character inventory (TCI). Participants were asked to judge the size of a number, and received feedback based on their performance in each trial. The P3 amplitudes related to the feedback stimuli increased only in the reward condition. Furthermore, the P2 amplitudes related to the negative feedback stimuli in the reward condition had a positive correlation with the reward-dependent tendency in TCI, whereas the P3 amplitudes related to the positive feedback stimuli had a negative correlation with the apathy score. Our result suggests that the P2 and P3 ERPs to reward-related feedback stimuli are modulated in a distinctive manner by the motivational reward dependence and apathy tendency, and thus the current paradigm may be useful for investigating the brain activity associated with motivation.

  12. Language plasticity in aphasics after recovery: evidence from slow evoked potentials.

    Science.gov (United States)

    Spironelli, Chiara; Angrilli, Alessandro; Pertile, Marco

    2008-04-01

    With the present experiment we sought to investigate brain plasticity underlying language recovery in a group of seventeen patients with non-fluent aphasia mainly caused by stroke. Patients were screened along three domains of measures: analysis of linguistic components by the Aachener Aphasie Test, combined mapping of their lesion from CT/MRI scans, and functional measure of the reorganized linguistic processes by means of mapping of slow evoked potentials. The spatial dimension and temporal dynamics of word processing were measured in three tasks, Phonological, Semantic and Orthographic. Compared with the matched control group, patients showed relative inhibition (decreased negativity) of left central regions in perisylvian areas, which were damaged in most subjects. In addition, reorganization of linguistic functions occurred within the left hemisphere both at frontal and posterior sites corresponding to spared brain regions. Correlations between linguistic lateralization in the three tasks and AAT subtests point to functional reorganization of phonological processes over left frontal sites and dysfunctional reorganization of semantic processing over left posterior regions.

  13. Pattern visual evoked potential in varying degrees hyperopic refractive amblyopic children

    Directory of Open Access Journals (Sweden)

    Liang Qi

    2013-09-01

    Full Text Available AIM: To observe pattern visual evoked potential(P-VEPof varying degrees hyperopic refractive amblyopic children. METHODS: We did P-VEP examination for the hyperopic refractive children from May 2011 to August 2012. We divided these children into three groups according to different best corrected vision(BCV: better than 0.5 amblyopic group, 0.3-0.5 amblyopic group and lower than 0.3 amblyopic group. Their P100 latency and amplitude were measured and compared with normal children group. RESULTS: The healthy eye's P100 latency was 101.43±6.82ms, P100 amplitude was 11.27±5.38μV. P100 latency delay and P100 amplitude decline in amblyopic group. Better than 0.5 amblyopic group, 110.54±8.47ms, 9.94±5.28μV; 0.3-0.5 amblyopic group 118.76±6.21ms, 8.57±7.21μV; and lower than 0.3 amblyopic group 124.54±7.36ms, 7.49±5.07μV. P100 latency and amplitude have significant different between groups(PCONCLUSION: P100 latency delay and P100 amplitude decline in hyperopic refractive amblyopia and the changes are associated with degree of amblyopia.

  14. Color vision and color pattern visual evoked cortical potentials in a patient with acquired cerebral dyschromatopsia.

    Science.gov (United States)

    Adachi-Usami, E; Tsukamoto, M; Shimada, Y

    1995-01-01

    We examined a 74-year-old man because of difficulty seeing green and the presence of prosopagnosia. His visual acuity was 0.8 in both eyes. He was not congenitally color blind, and there was no family history of color blindness. A left superior homonymous quadrantanopsia was found. The dyschromatopsia ws identical in both eyes. The patient showed red-green deficiency on testing with Ishihara plates a deutan defect with Tokyo Medical College plates, strong blue-yellow defects and medium red-green defects with Standard Pseudochromatic Plates II and a tritan defect with the Panel D-15. He failed the New Color separation test with scores of 160 and could not carry out the Farnsworth-Munsell 100-hue test, but his color naming test results were normal. Visual evoked cortical potentials to black-and-white checkerboard and color pattern reversal (Red and Blue-Green, Green and Red-Purple, Purple and Yellow-Green: isochromatic paired checks) stimuli were normal. Bilateral inferior occipital lesions were found by computed tomography and T2-weighted magnetic resonance imaging. Our findings suggested that luminance and color channels up to area 17 in our patient were intact. We believe that our patient's acquired cerebral dyschromatopsia is rare.

  15. The effects of stimulus parameters on auditory evoked potentials of Carassius auratus.

    Science.gov (United States)

    Garabon, Jessica R; Higgs, Dennis M

    2017-11-01

    Whole-brain responses to sound are easily measured through auditory evoked potentials (AEP), but it is unclear how differences in experimental parameters affect these responses. The effect of varying parameters is especially unclear in fish studies, the majority of which use simple sound types and then extrapolate to natural conditions. The current study investigated AEPs in goldfish (Carassius auratus) using sounds of different durations (5, 10, and 20 ms) and frequencies (200, 500, 600 and 700 Hz) to test stimulus effects on latency and thresholds. We quantified differences in latency and threshold in comparison to a 10-ms test tone, a duration often used in AEP fish studies. Both response latency and threshold were significantly affected by stimulus duration, with latency patterning suggesting that AEP fires coincident with a decrease in stimulus strength. Response latency was also significantly affected by presentation frequency. These results show that stimulus type has important effects on AEP measures of hearing and call for clearer standards across different measures of AEP. Duration effects also suggest that AEP measures represent summed responses of duration-detecting neural circuit, but more effort is needed to understand the neural drivers of this commonly used technique.

  16. Evoked potential and EEG study of the neurotoxicity of hydramethylnon in rats.

    Science.gov (United States)

    Strain, George M

    2017-10-31

    The objective of the study was to assess the neurotoxicity, using electrodiagnostic tests, of hydramethylnon (Amdro, AC 217,300), an insecticide marketed for the treatment of red imported fire ants, cockroaches, and other insects. Animals were male Fisher 344 albino rats and Long-Evans hooded rats. Brainstem auditory, visual, and somatosensory evoked potentials (BAER, VEP, SEP) and electroencephalograms (EEG) were recorded from implanted screw electrodes before and at multiple time points through day 10 after a single oral dose of hydramethylnon (at 50% or 75% of the LD50) plus vehicle, or vehicle alone. No evidence of nervous system toxicity was detected with either BAER, VEP, or SEP recordings. Spectral analysis of EEGs recorded over 7days demonstrated a time-limited increase in power at low frequencies and decrease at high frequencies, reflecting a sedative effect. A dose-dependent weight loss was observed. Single-exposure poisonings with AC 217,300 can be expected to produce anorexia and CNS depression, but not lethality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of mastication on human somatosensory processing: A study using somatosensory-evoked potentials.

    Science.gov (United States)

    Nakata, Hiroki; Aoki, Mai; Sakamoto, Kiwako

    2017-04-01

    The aim of the present study was to investigate the effects of mastication on somatosensory processing using somatosensory-evoked potentials (SEPs). Fourteen healthy subjects received a median nerve stimulation at the right wrist under two conditions: Mastication and Control. SEPs were recorded in five sessions for approximately seven minutes: Pre, Post 1, 2, 3, and 4. Subjects were asked to chew gum for five minutes after one session in Mastication. Control included the same five sessions. The amplitudes and latencies of P14, N20, P25, N35, P45, and N60 components at C3', frontal N30 component at Fz, and P100 and N140 components at Pz were analyzed. The amplitude of P45-N60 was significantly smaller at Post 1, 2, 3, and 4 than at Pre in Control, but not in Mastication. The latency of P25 was significantly longer at Post 2, 3, and 4 than at Pre in Control, but not in Mastication. The latency of P100 was significantly longer at Post 2 than at Pre in Control, but not in Mastication. These results suggest the significant effects of mastication on the neural activity of human somatosensory processing. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  18. Simultaneous recording of cervical and ocular vestibular-evoked myogenic potentials.

    Science.gov (United States)

    Oh, Sun-Young; Shin, Hyun-June; Boegle, Rainer; Ertl, Matthias; Eulenburg, Peter Zu; Kim, Ji-Soo; Dieterich, Marianne

    2018-01-16

    To increase clinical application of vestibular-evoked myogenic potentials (VEMPs) by reducing the testing time by evaluating whether a simultaneous recording of ocular and cervical VEMPs can be achieved without a loss in diagnostic sensitivity and specificity. Simultaneous recording of ocular and cervical VEMPs on each side during monaural stimulation, bilateral simultaneous recording of ocular VEMPs and cervical VEMPs during binaural stimulation, and conventional sequential recording of ocular and cervical VEMPs on each side using air-conducted sound (500 Hz, 5-millisecond tone burst) were compared in 40 healthy participants (HPs) and 20 patients with acute vestibular neuritis. Either simultaneous recording during monaural and binaural stimulation effectively reduced the recording time by ≈55% of that for conventional sequential recordings in both the HP and patient groups. The simultaneous recording with monaural stimulation resulted in latencies and thresholds of both VEMPs and the amplitude of cervical VEMPs similar to those found during the conventional recordings but larger ocular VEMP amplitudes (156%) in both groups. In contrast, compared to the conventional recording, simultaneous recording of each VEMP during binaural stimulation showed reduced amplitudes (31%) and increased thresholds for cervical VEMPs in both groups. The results of simultaneous recording of cervical and ocular VEMPs during monaural stimulation were comparable to those obtained from the conventional recording while reducing the time to record both VEMPs on each side. NCT03049683. Copyright © 2017 American Academy of Neurology.

  19. Superior canal dehiscence syndrome : Diagnosis with vestibular evoked myogenic potentials and fremitus nystagmus.

    Science.gov (United States)

    Gürkov, R; Jerin, C; Flatz, W; Maxwell, R

    2017-12-14

    Superior canal dehiscence syndrome (SCDS) is a relatively rare neurotological disorder that is characterized by a heterogeneous clinical picture. Recently, vestibular evoked myogenic potential (VEMP) measurement was established for the diagnosis of SCDS. In the present study, a case series of patients with SCDS were analyzed, with a focus on VEMP. Four patients with SCDS were prospectively examined with ocular VEMP (oVEMP) and cervical VEMP (cVEMP). The clinical features and the standard audiovestibular test battery results are summarized and analyzed. The diagnostic accuracy of VEMP testing is evaluated. The increased oVEMP amplitudes had a specificity of 100% in this patient population. All patients had normal caloric function and head impulse testing. The Tullio sign was observed in two patients. Three patients had autophony. The air-bone gap was not greater than 10 dB in any of the patients. Two patients had marked fremitus nystagmus. All patients had a bony dehiscence of the superior semicircular canal on computed tomography imaging. The subjective and clinical features in this case series of SCDS patients were heterogeneous. However, objective oVEMP testing had the highest diagnostic value. Furthermore, we describe a new diagnostic clinical sign: fremitus nystagmus.

  20. Anterior Cervical Disc Fusion Does not Affect the Presence of Cervical Vestibular-Evoked Myogenic Potential.

    Science.gov (United States)

    Kastanioudakis, Ioannis; Saravakos, Panagiotis; Zigouris, Andreas; Ragos, Vasileios; Reichel, Oliver; Ziavra, Nafsika

    2017-12-14

    Cervical spondylosis and cervical disk herniation are the most frequent forms of degenerative disease in the cervical spine. Surgical treatment mainly includes anterior cervical disk fusion. However, information concerning vestibular-evoked myogenic potential (VEMP) recording in patients undergoing cervical spine surgery is limited. The present prospective study aimed to investigate the effect of anterior disk fusion surgery on cervical VEMP (cVEMP) parameters. Twenty-five patients were enrolled in this study, and 20 patients (10 men and 10 women) completed cVEMP testing. Patient ages ranged from 29 to 76 y (mean, 52 y). Patients with conductive hearing loss or vestibular dysfunction were excluded. The cVEMP test was recorded preoperatively and 1 and 4 months postoperatively. Air-conducted tone-bursts of 500 Hz were used. We found no statistically significant difference between the preoperative and postoperative cVEMP values. Cervical spine surgery (anterior cervical disk fusion) for treating cervical spondylosis does not appear to affect the presence of cVEMP or the parameters of cVEMP, when using air-conducted tone-bursts of 500 Hz. Moreover, cVEMP testing can be used in the postoperative phase for evaluating vertigo in patients who have undergone anterior cervical disk fusion.

  1. Bone-conducted Vestibular-evoked Myogenic Potentials Before and After Stapes Surgery.

    Science.gov (United States)

    Akazawa, Kazuyuki; Ohta, Shigeto; Tsuzuki, Kenzo; Sakagami, Masafumi

    2018-01-01

    To identify whether stapes surgery causes otolith dysfunction using bone-conducted vestibular-evoked myogenic potentials (VEMPs). Prospective study. Hyogo College of Medicine Hospital. Twenty primary ears (19 otosclerosis, 1 congenital stapes fixation) in 17 patients (2 men, 15 women; mean age 51 yr, range 20-68 yr) who had normal cervical VEMP (cVEMP) and ocular VEMP (oVEMP) results with bone-conducted stimulation were included. Stapes surgery. Both VEMP tests with bone-conducted stimulation were performed before and after stapes surgery. The normalized p13-n23 amplitude of cVEMPs and the nI-pI amplitude of oVEMPs were measured within 3 months after stapes surgery. Then, the asymmetry ratio (AR) was calculated to examine the effect of surgery on otolith function. Seven patients complained of temporary dizziness postoperatively, but their symptoms disappeared within approximately a week. Deterioration of VEMPs of the operated ear was not seen in any ears. Significantly greater amplitude compared with the opposite ear was found for cVEMP in one ear and oVEMP in two ears after the surgery. Their VEMP results recovered to the normal range at 6 months postoperatively. These findings suggest that stapes surgery causes no or undetectably small otolith dysfunction from the perspective of VEMP evaluation.

  2. Relationship between vitamin D deficiency and visually evoked potentials in multiple sclerosis.

    Science.gov (United States)

    López-Méndez, P; Sosa-Henríquez, M; Ruiz-Pérez, Á

    2016-05-01

    To evaluate the possible relationship between serum 25-OH vitamin D levels and visually evoked potentials (VEP) in patients with multiple sclerosis (MS), residents in the south zone of Gran Canaria. The study included 49 patients with MS, on whom 25-OH-vitamin D was determined, along with VEP, and a neurological examination to determine incapacity. Clinical variables, such as a history of optic neuritis were recorded. The mean value of 25-OH-vitamin D of the patients was 28.1±9.5ng/ml. The VEP latency was 119.1±23.2ms and the amplitude, 8.5±4.4 μV. Patients with a higher 25-OH-vitamin D had a greater number of outbreaks in the year prior to the study (P=.049), and those with vitamin D deficiency and previous optic neuritis showed no reduction in the amplitude of the VEP (P=.006). Patients with vitamin D deficiency have lower clinical activity of the MS and show no axonal involvement in VEP after having suffered optic neuritis. These relationships, although statistically significant, do not seem clinically plausible, thus new studies are needed to try and confirm this possible relationship. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Short-term food deprivation increases amplitudes of heartbeat-evoked potentials.

    Science.gov (United States)

    Schulz, André; Ferreira de Sá, Diana S; Dierolf, Angelika M; Lutz, Annika; van Dyck, Zoé; Vögele, Claus; Schächinger, Hartmut

    2015-05-01

    Nutritional state (i.e., fasting or nonfasting) may affect the processing of interoceptive signals, but mechanisms underlying this effect remain unclear. We investigated 16 healthy women on two separate days: when satiated (standardized food intake) and after an 18-h food deprivation period. On both days, heartbeat-evoked potentials (HEPs) and cardiac and autonomic nervous system activation indices (heart rate, normalized low frequency heart rate variability [nLF HRV]) were assessed. The HEP is an EEG pattern that is considered an index of cortical representation of afferent cardiovascular signals. Average HEP activity (R wave +455-595 ms) was enhanced during food deprivation compared to normal food intake. Cardiac activation did not differ between nutritional conditions. Our results indicate that short-term food deprivation amplifies an electrophysiological correlate of the cortical representation of visceral-afferent signals originating from the cardiovascular system. This effect could not be attributed to increased cardiac activation, as estimated by heart rate and nLF HRV, after food deprivation. © 2014 Society for Psychophysiological Research.

  4. A convolutional neural network for steady state visual evoked potential classification under ambulatory environment

    Science.gov (United States)

    Kwak, No-Sang; Müller, Klaus-Robert

    2017-01-01

    The robust analysis of neural signals is a challenging problem. Here, we contribute a convolutional neural network (CNN) for the robust classification of a steady-state visual evoked potentials (SSVEPs) paradigm. We measure electroencephalogram (EEG)-based SSVEPs for a brain-controlled exoskeleton under ambulatory conditions in which numerous artifacts may deteriorate decoding. The proposed CNN is shown to achieve reliable performance under these challenging conditions. To validate the proposed method, we have acquired an SSVEP dataset under two conditions: 1) a static environment, in a standing position while fixated into a lower-limb exoskeleton and 2) an ambulatory environment, walking along a test course wearing the exoskeleton (here, artifacts are most challenging). The proposed CNN is compared to a standard neural network and other state-of-the-art methods for SSVEP decoding (i.e., a canonical correlation analysis (CCA)-based classifier, a multivariate synchronization index (MSI), a CCA combined with k-nearest neighbors (CCA-KNN) classifier) in an offline analysis. We found highly encouraging SSVEP decoding results for the CNN architecture, surpassing those of other methods with classification rates of 99.28% and 94.03% in the static and ambulatory conditions, respectively. A subsequent analysis inspects the representation found by the CNN at each layer and can thus contribute to a better understanding of the CNN’s robust, accurate decoding abilities. PMID:28225827

  5. A convolutional neural network for steady state visual evoked potential classification under ambulatory environment.

    Science.gov (United States)

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2017-01-01

    The robust analysis of neural signals is a challenging problem. Here, we contribute a convolutional neural network (CNN) for the robust classification of a steady-state visual evoked potentials (SSVEPs) paradigm. We measure electroencephalogram (EEG)-based SSVEPs for a brain-controlled exoskeleton under ambulatory conditions in which numerous artifacts may deteriorate decoding. The proposed CNN is shown to achieve reliable performance under these challenging conditions. To validate the proposed method, we have acquired an SSVEP dataset under two conditions: 1) a static environment, in a standing position while fixated into a lower-limb exoskeleton and 2) an ambulatory environment, walking along a test course wearing the exoskeleton (here, artifacts are most challenging). The proposed CNN is compared to a standard neural network and other state-of-the-art methods for SSVEP decoding (i.e., a canonical correlation analysis (CCA)-based classifier, a multivariate synchronization index (MSI), a CCA combined with k-nearest neighbors (CCA-KNN) classifier) in an offline analysis. We found highly encouraging SSVEP decoding results for the CNN architecture, surpassing those of other methods with classification rates of 99.28% and 94.03% in the static and ambulatory conditions, respectively. A subsequent analysis inspects the representation found by the CNN at each layer and can thus contribute to a better understanding of the CNN's robust, accurate decoding abilities.

  6. Instrumentation to Record Evoked Potentials for Closed-Loop Control of Deep Brain Stimulation

    Science.gov (United States)

    Kent, Alexander R.; Grill, Warren M.

    2012-01-01

    Closed-loop deep brain stimulation (DBS) systems offer promise in relieving the clinical burden of stimulus parameter selection and improving treatment outcomes. In such a system, a feedback signal is used to adjust automatically stimulation parameters and optimize the efficacy of stimulation. We explored the feasibility of recording electrically evoked compound action potentials (ECAPs) during DBS for use as a feedback control signal. A novel instrumentation system was developed to suppress the stimulus artifact and amplify the small magnitude, short latency ECAP response during DBS with clinically relevant parameters. In vitro testing demonstrated the capabilities to increase the gain by a factor of 1,000x over a conventional amplifier without saturation, reduce distortion of mock ECAP signals, and make high fidelity recordings of mock ECAPs at latencies of only 0.5 ms following DBS pulses of 50 to 100 μs duration. Subsequently, the instrumentation was used to make in vivo recordings of ECAPs during thalamic DBS in cats, without contamination by the stimulus artifact. The signal characteristics were similar across three experiments, suggesting common neural activation patterns. The ECAP recordings enabled with this novel instrumentation may provide insight into the type and spatial extent of neural elements activated during DBS, and could serve as feedback control signals for closed-loop systems. PMID:22255894

  7. Motor-evoked potentials (MEP) during brainstem surgery to preserve corticospinal function.

    Science.gov (United States)

    Sarnthein, Johannes; Bozinov, Oliver; Melone, Angelina Graziella; Bertalanffy, Helmut

    2011-09-01

    Brainstem surgery bears a risk of damage to the corticospinal tract (CST). Motor-evoked potentials (MEPs) are used intraoperatively to monitor CST function in order to detect CST damage at a reversible stage and thus impede permanent neurological deficits. While the method of MEP is generally accepted, warning criteria in the context of brainstem surgery still have to be agreed on. We analyzed 104 consecutive patients who underwent microsurgical resection of lesions affecting the brainstem. Motor grade was documented prior to surgery, early postoperatively and at discharge. A baseline MEP stimulation intensity threshold was defined and intraoperative testing aimed to keep MEP response amplitude constant. MEPs were considered deteriorated and the surgical team was notified whenever the threshold was elevated by ≥20 mA or MEP response fell under 50%. On the first postoperative day, 18 patients experienced new paresis that resolved by discharge in 11. MEPs deteriorated in 39 patients, and 16 of these showed new postoperative paresis, indicating a 41% risk of new paresis. In the remaining 2/18 patients, intraoperative MEPs were stable, although new paresis appeared postoperatively. In one of these patients, intraoperative hemorrhage caused postoperative swelling, and the new motor deficit persisted until discharge. Of all 104 patients, 7 deteriorated in motor grade at discharge, 92 remained unchanged, and 5 patients have improved. Adjustment of surgical strategy contributed to good motor outcome in 33/39 patients. MEP monitoring may help significantly to prevent motor deficits during demanding neurosurgical procedures on the brainstem.

  8. Distinct Somatic Discrimination Reflected by Laser-Evoked Potentials Using Scalp EEG Leads.

    Science.gov (United States)

    Hsueh, Jen-Jui; Chen, Jia-Jin Jason; Shaw, Fu-Zen

    Discrimination is an important function in pain processing of the somatic cortex. The involvement of the somatic cortex has been studied using equivalent dipole analysis and neuroimaging, but the results are inconsistent. Scalp electroencephalography (EEG) can reflect functional changes of particular brain regions underneath a lead. However, the responses of EEG leads close to the somatic cortex in response to pain have not been systematically evaluated. The present study applied CO2 laser stimulation to the dorsum of the left hand. Laser-evoked potentials (LEPs) of C4, T3, and T4 leads and pain ratings in response to four stimulus intensities were analyzed. LEPs started earlier at the C4 and T4 leads. The onset latency and peak latency of LEPs for C4 and T4 leads were the same. Only 10 of 22 subjects (45 %) presented equivalent current dipoles within the primary somatosensory or motor cortices. LEP amplitudes of these leads increased as stimulation intensity increased. The stimulus-response pattern of the C4 lead was highly correlated with pain rating. In contrast, an S-shaped stimulus-response curve was obtained for the T3 and T4 leads. The present study provides supporting evidence that particular scalp channels are able to reflect the functional characteristics of their underlying cortical areas. Our data strengthen the clinical application of somatic-cortex-related leads for pain discrimination.

  9. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens.

    Science.gov (United States)

    Cone, Barbara; Whitaker, Richard

    2013-07-01

    Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: (1) further knowledge of auditory development above the level of the brainstem during the first year of life; (2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and (3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. 36 infants, between the ages of 4 and 12 months (mean=8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. Infant CAEP component latencies were prolonged by 100-150 ms in comparison to adults. CAEP latency

  10. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

    Science.gov (United States)

    Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

    2017-10-01

    During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017

  11. EEG-based classification of video quality perception using steady state visual evoked potentials (SSVEPs)

    Science.gov (United States)

    Acqualagna, Laura; Bosse, Sebastian; Porbadnigk, Anne K.; Curio, Gabriel; Müller, Klaus-Robert; Wiegand, Thomas; Blankertz, Benjamin

    2015-04-01

    Objective. Recent studies exploit the neural signal recorded via electroencephalography (EEG) to get a more objective measurement of perceived video quality. Most of these studies capitalize on the event-related potential component P3. We follow an alternative approach to the measurement problem investigating steady state visual evoked potentials (SSVEPs) as EEG correlates of quality changes. Unlike the P3, SSVEPs are directly linked to the sensory processing of the stimuli and do not require long experimental sessions to get a sufficient signal-to-noise ratio. Furthermore, we investigate the correlation of the EEG-based measures with the outcome of the standard behavioral assessment. Approach. As stimulus material, we used six gray-level natural images in six levels of degradation that were created by coding the images with the HM10.0 test model of the high efficiency video coding (H.265/MPEG-HEVC) using six different compression rates. The degraded images were presented in rapid alternation with the original images. In this setting, the presence of SSVEPs is a neural marker that objectively indicates the neural processing of the quality changes that are induced by the video coding. We tested two different machine learning methods to classify such potentials based on the modulation of the brain rhythm and on time-locked components, respectively. Main results. Results show high accuracies in classification of the neural signal over the threshold of the perception of the quality changes. Accuracies significantly correlate with the mean opinion scores given by the participants in the standardized degradation category rating quality assessment of the same group of images. Significance. The results show that neural assessment of video quality based on SSVEPs is a viable complement of the behavioral one and a significantly fast alternative to methods based on the P3 component.

  12. Frontal phasic and oscillatory generators of the N30 somatosensory evoked potential.

    Science.gov (United States)

    Cebolla, A M; Palmero-Soler, E; Dan, B; Cheron, G

    2011-01-15

    The N30 component of somatosensory evoked potentials has been recognized as a crucial index of brain sensorimotor processing and has been increasingly used clinically. Previously, we have shown that the N30 is accompanied by both an increase of the power spectrum of the ongoing beta-gamma EEG (event related synchronization, ERS) and by a reorganization (phase-locking) of the spontaneous phase of this rhythm (inter-trials coherency, ITC). In order to localize its sources taking into account both the phasic and oscillatory aspects of the phenomenon, we here apply swLORETA methods on averaged signals of the event-related potential (ERP) from a 128 scalp-electrodes array in time domain and also on raw EEG signals in frequency domain at the N30 peak latency. We demonstrate that the two different mechanisms that generate the N30 component power increase (ERS) and phase locking (ITC) across EEG trials are spatially localized in overlapping areas in the precentral cortex, namely the motor cortex (BA4) and the premotor cortex (BA6). From this common region, the generator of the N30 event-related potential expands toward the posterior part of BA4, the anterior part of BA6 and the prefrontal cortex (BA9). These latter areas also present significant ITC sources in the beta-gamma frequency range, but without significant power increase of this rhythm. This demonstrates that N30 results from network activity that depends on distinct oscillating and phasic generators localized in the frontal cortex. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Penile and perianal pudendal nerve somatosensory evoked potentials in the diagnosis of erectile dysfunction.

    Science.gov (United States)

    Kaiser, T; Jost, W H; Osterhage, J; Derouet, H; Schimrigk, K

    2001-04-01

    Neurophysiologic examinations in differential diagnosis of erectile dysfunction comprise electromyogramme of the pelvic floor, pudendal nerve terminal motor latency (PNTML) and evaluation of pudendal somatosensory evoked potentials (SSEP). We focused our interest on comparing diagnostic importance of penile and perianal pudendal nerve SSEP. We examined 20 patients suffering from erectile dysfunction and 20 patients without any manifestation of impotence. The stimulus was administered using penile ring electrodes at the base of the penis (cathode) and distally on the penis shaft (anode), as well as a perianal surface electrode applied at 3 o'clock in lithotomy position and 5 cm laterally on the gluteal skin. The potentials were recorded with intradermal needle electrodes at C(z)-2 cm (different) and F(z) (indifferent). 500 stimuli were averaged for a single tracing. The stimulus strength was set at an average of 3-4 times the stimulus threshold. Cortical latency of P 40 ranged from 39.0 to 45.6 ms (penile) and from 33.6 to 43.2 ms (perianal) in the control group, in the patient group latencies ranged from 38.8 to 51.6 (penile) and 34.0 to 44.8 ms (perianal). In two patients no potential was recordable after perianal stimulation, one patient showed a marked prolongation of the penile response with a normal perianal latency. Penile and perianal latencies of P 40 were significantly prolonged in the patient group compared to the control group (Ppenile and perianal pudendal SSEP may provide valuable additional information in differential diagnosis of erectile dysfunction, especially allowing to identify different sites of neurogenic lesions. In contrast to perianal pudendal SSEP, penile stimulation may help to discover pathologic changes in the distal course of the pudendal nerve, especially the dorsal nerve of the penis.

  14. The effectiveness of FES-evoked EMG potentials to assess muscle force and fatigue in individuals with spinal cord injury.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M

    2014-07-14

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population.

  15. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Morufu Olusola Ibitoye

    2014-07-01

    Full Text Available The evoked electromyographic signal (eEMG potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05 between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI population.

  16. Effects of multiple doses of organophosphates on evoked potentials in mouse diaphragm.

    Science.gov (United States)

    Kelly, S S; de Blaquière, G E; Williams, F M; Blain, P G

    1997-02-01

    1. Male albino mice were injected s.c. with an organophosphate (mipafox, ecothiopate or paraoxon). Treatments were either a single injection or multiple daily injections with lower doses for 5 or 8 days. At 3 h after injection the activity of brain and diaphragm acetylcholinesterase and of brain neuropathy target esterase (NTE) was measured. Also measured in the diaphragm at 3 h post dose was the duration of spontaneous miniature endplate potentials (eMEPPs), recorded extracellularly. 2. At 7 and 28 days after dosing action potentials and evoked endplate potentials, produced by stimulating the phrenic nerve at 30 Hz, were recorded in diaphragm muscle. The amplitudes, time-course and latencies of these potentials were measured and the variability of latencies (jitter) was calculated. 3. Single doses of mipafox (20 mg/kg), ecothiopate (0.192 mg/kg) or paraoxon (0.415 mg/kg) in the mouse produced ca. 70% inhibition of diaphragm acetylcholinesterase at 3 h after dosing. All three OPs produced a prolongation of the half-decay times of eMEPPs. 4. All three OPs in the above single doses produced increased muscle action potential (postjunctional) jitter but only mipafox produced an increase in endplate potential (prejunctional) jitter. Mipafox in a slightly reduced single dose (17.5 mg/kg) had no effect on prejunctional or postjunctional jitter. 5. Multiple dosing with mipafox (8 mg/kg daily for 5 days) increased both postjunctional and prejunctional jitter at both 7 and 28 days after the end of dosing. After multiple dosing with mipafox (5 mg/kg daily for 5 days) postjunctional (but not prejunctional) jitter was increased. Multiple doses of paraoxon (0.166 mg/kg daily for 5 days) or ecothiopate (0.76 mg/kg daily for 5 days) increased prejunctional and postjunctional jitter. 6. Depending on the dosing regime, all three OPs tested were capable of increasing both prejunctional and postjunctional jitter. Neither ecothiopate nor paraoxon inhibited NTE, so this prejunctional

  17. Gating of the vertex somatosensory and auditory evoked potential P50 and the correlation to skin conductance orienting response in healthy men

    DEFF Research Database (Denmark)

    Arnfred, S M; Eder, D N; Hemmingsen, R P

    2001-01-01

    A defect in auditory evoked potential (AEP) P50 gating supports the theory of information-processing deficits in schizophrenia. The relationship between gating of the mid-latency evoked potentials (EP) in the somatosensory and the auditory modalities has not been studied together before. In schiz...

  18. [Loss of brain stem auditory evoked potential waves I and II during controlled hypotension].

    Science.gov (United States)

    Papadopoulos, G; Lang, M; Link, J; Schäfer, M; Schaffartzik, W; Eyrich, K; Bornfeld, N; Foerster, M H

    1995-11-01

    For surgical removal of a malignant choroid melanoma, it is necessary to reduce systolic blood pressure to around 50-60 mmHg in order to prevent choroidal haemorrhages. However, blood pressure reduction is associated with the risk of cerebral ischaemia. We report a patient with a malignant choroid melanoma in whom waves I and II of the brainstem auditory evoked potentials (BAEP) disappeared during surgery under controlled arterial hypotension and hypothermia (31.1 degrees C). The waves could be recorded again immediately after the mean arterial pressure was increased from 48 to 77 mmHg. The oesophageal temperature had dropped by 0.3 degrees C at this time. The 2-channel electroencephalogram (EEG) showed no irregularities during this time period. A bilateral, reversible, apparently blood-pressure-dependent loss of waves I and II during arterial hypotension despite a normal EEG has to our knowledge not been previously described in the literature. The isolated loss of waves I and II with maintenance of waves III, IV, and V is unusual. The literature contains reports of acoustic neurinoma patients in whom only wave V could be recorded. This is regarded as an indication of continued impulse conduction despite the loss of waves I to IV. Others have observed a patient with temporary and reversible loss of BAEP wave I due to vasospasm of the internal auditory artery that apparently occurred during or shortly after manipulation of the internal auditory meatus. Assuming anatomic peculiarities in the blood supply to the generators of the BAEP waves, a stenosis of the basilar artery could be considered as the cause of the bilateral reversible loss of waves I and II. Another potential source could be induced hypothermia, but this does not seem very likely because the patient's temperature was 0.3 degrees C lower at the return of the waves than at their loss.

  19. Segmental somatosensory-evoked potentials as a diagnostic tool in chronic inflammatory demyelinating polyneuropathies, and other sensory neuropathies.

    Science.gov (United States)

    Koutlidis, R M; Ayrignac, X; Pradat, P-F; Le Forestier, N; Léger, J-M; Salachas, F; Maisonobe, T; Fournier, E; Viala, K

    2014-09-01

    Somatosensory-evoked potentials with segmental recordings were performed with the aim of distinguishing chronic inflammatory demyelinating polyneuropathy from other sensory neuropathies. Four groups of 20 subjects each corresponded to patients with (1) possible sensory chronic inflammatory demyelinating polyneuropathy, (2) patients with sensory polyneuropathy of unknown origin, (3) patients with amyotrophic lateral sclerosis and (4) normal subjects. The patients selected for this study had preserved sensory potentials on electroneuromyogram and all waves were recordable in evoked potentials. Somatosensory-evoked potentials evaluations were carried out by stimulation of the posterior tibial nerve at the ankle, recording peripheral nerve potential in the popliteal fossa, radicular potential and spinal potential at the L4-L5 and T12 levels, and cortical at C'z, with determination of distal conduction time, proximal and radicular conduction time and central conduction time. In the group of chronic inflammatory demyelinating polyneuropathy, 80% of patients had abnormal conduction in the N8-N22 segment and 95% had abnormal N18-N22 conduction time. In the group of neuropathies, distal conduction was abnormal in most cases, whereas 60% of patients had no proximal abnormality. None of the patients in the group of amyotrophic lateral sclerosis had an abnormal N18-N22 conduction time. Somatosensory-evoked potentials with segmental recording can be used to distinguish between atypical sensory chronic inflammatory demyelinating polyneuropathy and other sensory neuropathies, at the early stage of the disease. Graphical representation of segmental conduction times provides a rapid and accurate visualization of the profile of each patient. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. A fast visual evoked potential method for functional assessment and follow-up of childhood optic gliomas.

    Science.gov (United States)

    Trisciuzzi, Maria Teresa S; Riccardi, Riccardo; Piccardi, Marco; Iarossi, Giancarlo; Buzzonetti, Luca; Dickmann, Anna; Colosimo, Cesare; Ruggiero, Antonio; Di Rocco, Concezio; Falsini, Benedetto

    2004-01-01

    To evaluate a fast technique of visual evoked potentials (VEPs) recording, in response to steady-state luminance stimuli (SS-LVEPs), for functional assessment and follow-up of childhood optic gliomas (OGs). Eighteen OG patients (age range: 3.5-18 years), with different degrees of optic pathway damage severity, were examined. Sixteen age-matched normal subjects served as controls. Ten of the 18 OG patients were re-tested 1-3 months after the first examination. SS-LVEPs were elicited by a sinusoidally-modulated flickering (8 Hz) uniform field, generated by a light emitting diode (LED)-array and presented monocularly in a mini-ganzfeld. Amplitude and phase of the Fourier-analyzed response fundamental (1F) and second harmonic (2F) were measured. The full VEP protocol had a median duration of 6 min (range: 4-12). When compared to normal control values, median 1F and 2F SS-LVEP amplitudes of OG patients were reduced (P<0.01), with a borderline increase in 2F phase lag (P<0.05). In 11 OG patients with asymmetric optic pathway damage in between-eye comparisons, median 1F amplitude losses were greater (P<0.01) in fellow eyes with more severe damage. No significant interocular difference was observed in control subjects. Median test-retest changes of 1F and 2F component were <20% and 30 degrees for amplitude and phase, respectively. In individual OG patients, 1F and 2F amplitudes were positively correlated (P<0.01) with visual acuity. 1F amplitude losses were correlated (P=0.01) with the severity of optic disc atrophy. Considering both 1F and 2F abnormalities, diagnostic sensitivity of SS-LVEP in detecting OG-induced optic pathways damage was 83.3%. The present findings support the use of this technique, as an alternative to pattern VEPs, for functional assessment and follow-up of OG in uncooperative children.

  1. Gap detection measured with electrically evoked auditory event-related potentials and speech-perception abilities in children with auditory neuropathy spectrum disorder.

    Science.gov (United States)

    He, Shuman; Grose, John H; Teagle, Holly F B; Woodard, Jennifer; Park, Lisa R; Hatch, Debora R; Buchman, Craig A

    2013-01-01

    This study aimed (1) to investigate the feasibility of recording the electrically evoked auditory event-related potential (eERP), including the onset P1-N1-P2 complex and the electrically evoked auditory change complex (EACC) in response to temporal gaps, in children with auditory neuropathy spectrum disorder (ANSD); and (2) to evaluate the relationship between these measures and speech-perception abilities in these subjects. Fifteen ANSD children who are Cochlear Nucleus device users participated in this study. For each subject, the speech-processor microphone was bypassed and the eERPs were elicited by direct stimulation of one mid-array electrode (electrode 12). The stimulus was a train of biphasic current pulses 800 msec in duration. Two basic stimulation conditions were used to elicit the eERP. In the no-gap condition, the entire pulse train was delivered uninterrupted to electrode 12, and the onset P1-N1-P2 complex was measured relative to the stimulus onset. In the gapped condition, the stimulus consisted of two pulse train bursts, each being 400 msec in duration, presented sequentially on the same electrode and separated by one of five gaps (i.e., 5, 10, 20, 50, and 100 msec). Open-set speech-perception ability of these subjects with ANSD was assessed using the phonetically balanced kindergarten (PBK) word lists presented at 60 dB SPL, using monitored live voice in a sound booth. The eERPs were recorded from all subjects with ANSD who participated in this study. There were no significant differences in test-retest reliability, root mean square amplitude or P1 latency for the onset P1-N1-P2 complex between subjects with good (>70% correct on PBK words) and poorer speech-perception performance. In general, the EACC showed less mature morphological characteristics than the onset P1-N1-P2 response recorded from the same subject. There was a robust correlation between the PBK word scores and the EACC thresholds for gap detection. Subjects with poorer speech

  2. Transoesophageal spinal cord stimulation for motor-evoked potentials monitoring: feasibility, safety and stability.

    Science.gov (United States)

    Tsuda, Kazumasa; Shiiya, Norihiko; Takahashi, Daisuke; Ohkura, Kazuhiro; Yamashita, Katsushi; Kando, Yumi

    2015-08-01

    Specificity of transcranial motor-evoked potentials (MEPs) is low because amplitude fluctuation is common, which seems due to several technical and fundamental reasons including difficulty in electrodes positioning and fixation for transcranial stimulation and susceptibility to anaesthesia. This study aimed to investigate the feasibility, safety and stability of our novel technique of transoesophageal spinal cord stimulation to improve the stability of MEPs. Ten anaesthetized adult beagle dogs were used. Transoesophageal stimulation was performed between the oesophageal luminal surface electrode (cathode) and a subcutaneous needle electrode (anode) at the fourth to fifth thoracic vertebra level. Stimulation was achieved with a train of five pulses delivered at 2.0-ms intervals. Compound muscle action potentials were recorded from four limbs and external anal sphincter muscles. Stability to anaesthetic agents was tested at varying speeds of propofol and remifentanil, and effects of varying concentration of sevoflurane inhalation were also evaluated. Transoesophageal MEPs could be recorded without difficulty in all dogs. Fluoroscopic evaluation showed that electrodes misalignment up to 5 cm cranially or caudally could be tolerated. Stimulus intensity to achieve maximum amplitude of hindlimb muscle potentials on both sides was significantly lower by transoesophageal stimulation than by transcranial stimulation (383 ± 41 vs 533 ± 121 V, P = 0.02) and had less interindividual variability. Latency of transoesophageal MEPs was shorter than that of transcranial MEPs at every recording point. No arrhythmia was provoked during stimulation. Animals that were allowed to recover showed no neurological abnormality. In the two sacrificed animals, the explanted oesophagus showed no mucosal injury. Stability to varying dose of anaesthetic agents was similar between transoesophageal and transcranial stimulation, except for the potentials of forelimbs by transoesophageal

  3. Long-latency TMS-evoked potentials during motor execution and inhibition

    Directory of Open Access Journals (Sweden)

    Kentaro eYamanaka

    2013-11-01

    Full Text Available Transcranial magnetic stimulation (TMS has often been used in conjunction with electroencephalography (EEG, which is effective for the direct demonstration of cortical reactivity and corticocortical connectivity during cognitive tasks through the spatio-temporal pattern of long-latency TMS-evoked potentials (TEPs. However, it remains unclear what pattern is associated with the inhibition of a planned motor response. Therefore, we performed TMS-EEG recording during a go/stop task, in which participants were instructed to click a computer mouse with a right index finger when an indicator that was moving with a constant velocity reached a target (go trial or to avoid the click when the indicator randomly stopped just before it reached the target (stop trial. Single-pulse TMS to the left (contralateral or right (ipsilateral motor cortex was applied 500 ms before or just at the target time. TEPs related to motor execution and inhibition were obtained by subtractions between averaged EEG waveforms with and without TMS. As a result, in TEPs induced by both contralateral and ipsilateral TMS, small oscillations were followed by a prominent negative deflection around the TMS site peaking at approximately 100 ms post-TMS (N100, and a less pronounced later positive component (LPC over the broad areas that was centered at the midline-central site in both go and stop trials. However, compared to the pattern in go and stop trials with TMS at 500 ms before the target time, N100 and LPC were differently modulated in the go and stop trials with TMS just at the target time. The amplitudes of both N100 and LPC decreased in go trials, while the amplitude of LPC decreased and the latency of LPC was delayed in both go and stop trials. These results suggested that TMS-induced neuronal reactions in the motor cortex and subsequent their propagation to surrounding cortical areas might change functionally according to task demand when executing and inhibiting a motor

  4. Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces

    Science.gov (United States)

    Abu-Alqumsan, Mohammad; Peer, Angelika

    2016-06-01

    Objective. Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain-computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. Approach. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. Main results. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Significance. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably.

  5. Assessment of brainstem auditory evoked potentials (BAEPs) in patients with acromegaly.

    Science.gov (United States)

    Pilecki, Witold; Bolanowski, Marek; Janocha, Anna; Daroszewski, Jacek; Kałuzny, Marcin; Sebzda, Tadeusz; Kałka, Dariusz; Sobieszczańska, Małgorzata

    2008-06-01

    Acromegaly is associated by various systemic complications, involving also the nervous system. Other studies revealed peripheral but not central nervous system impairment with somatosensory evoked potentials examinations in acromegaly. Aim of the present study was to assess whether brainstem transmission in acromegaly is disturbed. The study was carried out in 37 patients. The control group consisted of 47 healthy persons. In all of the subjects, peripheral transmission, reflected by peak I latency, and brainstem transmission, tested by interpeak latency I-V (IPL I-V), were examined. Peak I latency was delayed in 6 out of 37 patients (1 - bilaterally, 2 - right side, 3 - left side). The group-mean latency of peak I was 1.53 msec and 1.56 msec, for the right and left side, respectively. There were found no statistically significant differences between the right and left side, likewise in comparison with control group. In turn, as compared with the controls, IPL I-V was disturbed in 25 out of 37 patients: in most of the cases IPL I-V prolongation was observed (8 - bilateral prolongation, 11 - right side, 6 - left side). Moreover, the statistically significant difference between the brainstem sides (4.27 vs. 4.11 msec; p<0.05) was observed. In the examined patients with acromegaly, there was no peripheral disturbance in transmission, as examined by BAEPs registrations. Conversely, in nearly half of the patients with acromegaly, brainstem transmission was found to be delayed, and significant difference between responses from the both sides of the brainstem were noted.

  6. Deconvolution of overlapping cortical auditory evoked potentials recorded using short stimulus onset-asynchrony ranges.

    Science.gov (United States)

    Bardy, Fabrice; Van Dun, Bram; Dillon, Harvey; McMahon, Catherine M

    2014-04-01

    The first aim of this study is to validate the theoretical framework of least-squares (LS) deconvolution on experimental data. The second is to investigate the waveform morphology of the cortical auditory evoked potential (CAEP) for five stimulus onset-asynchronies (SOAs) and effects of alternating stimulus frequency in normally hearing adults. Eleven adults (19-55 years) with normal hearing were investigated using tone-burst stimuli of 500 and 2000 Hz with SOAs jittered around 150, 250, 450, and 850 ms in a paired-interval paradigm with fixed or alternating stimulus frequency. The LS deconvolution technique disentangled the overlapping responses, which then provided the following insights. The CAEP amplitude reached a minimum value for SOAs jittered around 450 ms, in contrast with significantly larger amplitudes for SOAs jittered around 150 and 850 ms. Despite this, longer latencies of N1 and P2 consistently occurred for decreasing SOAs. Alternating stimulus frequency significantly increased the amplitude of the CAEP response and decreased latencies for SOAs jittered around 150 ms. Effects of SOAs and alternating stimuli on CAEP amplitude can be modelled using a quantitative model of latent inhibition. LS deconvolution allows correction for cortical response overlap. The amplitude of the CAEP is sensitive to SOA and stimulus frequency alternation. CAEPs are emerging as an important tool in the objective evaluation of hearing aid and cochlear implant fittings. Responses to closely spaced stimuli provide objective information about integration and inhibition mechanisms in the auditory cortex. Copyright © 2013 International Federation of Clinical Neurophysiology. All rights reserved.

  7. Normative data for vestibular evoked myogenic potential in different age groups among a heterogeneous Indian population.

    Science.gov (United States)

    Khan, Feroze K; Balraj, Achamma; Lepcha, Anjali

    2014-06-01

    To establish normative data of vestibular evoked myogenic potential in different age groups among a heterogeneous Indian population. Prospective study design using a sample of convenience. Eighty five normal controls ranging between the ages 7 and 71 years were asked to provide a written signed consent for the study. Demographic characteristics of the patients were summarized using descriptive statistical methods using SPSS-17 analysing software. The outcome variable (VEMP recording) was expressed in percentiles as function of age. In all patients the stimulus which gave the best response was 95 dB (97.7 %) and 100 dB (95 %). The mean of wave latencies (p1 & n1) for 95-VEMP were, 11.2 ± 3.2 and 17.3 ± 4.7 ms on the right and 11.0 ± 2.8 and 17.0 ± 4.2 ms on the left respectively. The amplitude was 45.1 ± 54 mV on right and 46.9 ± 61.6 mV on the left. The mean of latency difference was 0.87 ms. The VEMP is a relatively simple test. The VEMP response rate was maximum in the younger age group; the optimum intensity was 95 dB. The asymmetry ratio interpretation should be done according to the age specific values.

  8. Differences in spinothalamic function of cervical and thoracic dermatomes: insights using contact heat evoked potentials.

    Science.gov (United States)

    Haefeli, Jenny S; Blum, Julia; Steeves, John D; Kramer, John L K; Curt, Armin E P

    2013-06-01

    After spinal cord injury, contact heat evoked potentials (CHEPs) may represent a means to refine the clinical assessment of sensory function from each spinal cord segment by quantifying nociception, including conduction along the spinothalamic tract. The influence of stimulation site (i.e., dermatomes) on CHEPs and thermal thresholds in 19 healthy subjects (mean age, 45.2 ± 18.3 years) divided into 2 age classes (younger subjects, n = 10; mean age, 28.8 ± 5.2 years; older subjects, n = 9; mean age, 63.4 ± 3.4 years) at 5 different dermatomes (C4, C5, C6, C8, and T4) was assessed. In terms of distance from the body midline (i.e., spinal cord entry), there was a reduction in CHEP amplitudes from proximal (C4 and T4) to distal (C6 and C8) dermatomes with a corresponding reduction in nociceptive perception (i.e., pain threshold and rating). Within primary and secondary cortical sensory areas, including areas associated with affective noxious processing, the cortical source density analysis showed a similar current density distribution between C4 and C8 dermatomes but consistent higher current densities for C4. The study supports CHEPs as a feasible tool for assessing discrete dermatomes corresponding to spinal cord segments. The results suggest that the proximodistal pattern in the intensity of perceived pain and CHEP amplitudes is likely attributable to the distribution of heat nociceptors and the increase in conduction distance from proximal to distal dermatomes. The present findings emphasize on the importance that if patients are assessed segment by segment, the underlying topographical differences need to be accounted for.

  9. Early clinical and subclinical visual evoked potential and Humphrey's visual field defects in cryptococcal meningitis.

    Directory of Open Access Journals (Sweden)

    Anand Moodley

    Full Text Available Cryptococcal induced visual loss is a devastating complication in survivors of cryptococcal meningitis (CM. Early detection is paramount in prevention and treatment. Subclinical optic nerve dysfunction in CM has not hitherto been investigated by electrophysiological means. We undertook a prospective study on 90 HIV sero-positive patients with culture confirmed CM. Seventy-four patients underwent visual evoked potential (VEP testing and 47 patients underwent Humphrey's visual field (HVF testing. Decreased best corrected visual acuity (BCVA was detected in 46.5% of patients. VEP was abnormal in 51/74 (68.9% right eyes and 50/74 (67.6% left eyes. VEP P100 latency was the main abnormality with mean latency values of 118.9 (±16.5 ms and 119.8 (±15.7 ms for the right and left eyes respectively, mildly prolonged when compared to our laboratory references of 104 (±10 ms (p<0.001. Subclinical VEP abnormality was detected in 56.5% of normal eyes and constituted mostly latency abnormality. VEP amplitude was also significantly reduced in this cohort but minimally so in the visually unimpaired. HVF was abnormal in 36/47 (76.6% right eyes and 32/45 (71.1% left eyes. The predominant field defect was peripheral constriction with an enlarged blind spot suggesting the greater impact by raised intracranial pressure over that of optic neuritis. Whether this was due to papilloedema or a compartment syndrome is open to further investigation. Subclinical HVF abnormalities were minimal and therefore a poor screening test for early optic nerve dysfunction. However, early optic nerve dysfunction can be detected by testing of VEP P100 latency, which may precede the onset of visual loss in CM.

  10. Biliverdin-induced brainstem auditory evoked potential abnormalities in the jaundiced Gunn rat.

    Science.gov (United States)

    Rice, Ann C; Shapiro, Steven M

    2006-08-30

    Brainstem auditory evoked potential (BAEP) abnormalities occur in jaundiced Gunn rats given sulfadimethoxine to displace bilirubin bound to serum albumin, releasing it into the tissues. One problem with the model is that after displacement, plasma bilirubin levels drop and do not correlate with neurological dysfunction. In this report, we administered biliverdin, the immediate precursor of bilirubin, in 15- to 17-day-old Gunn rat pups to create an improved model of bilirubin-induced neurological dysfunction. Total plasma bilirubin (TB) levels were measured with a Leica bilirubinometer. Biliverdin (40 mg/kg) or phosphate-buffered saline (PBS) was administered either once and BAEPs recorded 8 h later or twice, 12 h apart, and BAEPs recorded 24 h after the initial injection. A single biliverdin injection produced a significantly decreased amplitude of BAEP wave III, 1.21+/-0.25 vs. 0.49+/-0.27 microV (control vs. biliverdin). The two-injection paradigm resulted in a significantly elevated TB (9.9+/-1.2 vs. 14.9+/-3.1 mg/dl; control vs. biliverdin), significant increases in I-II (1.15+/-0.08 vs. 1.42+/-0.09 ms) and I-III (2.17+/-0.08 vs. 2.5+/-0.13 ms) interwave intervals and a decrease in the amplitude of wave III (1.36+/-0.30 vs. 0.38+/-0.26 microV). Additionally, there were significant correlations between TB and the amplitude of wave III (r2=0.74) and TB and the I-III interwave interval (r2=0.51). In summary, biliverdin administration in jaundiced Gunn rat pups produces BAEP abnormalities consistent with those observed in the sulfadimethoxine model and human newborn hyperbilirubinemia and resulted in increased plasma bilirubin levels that correlate with the degree of neurological dysfunction.

  11. Steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) performance under different perturbations.

    Science.gov (United States)

    İşcan, Zafer; Nikulin, Vadim V

    2018-01-01

    Brain-computer interface (BCI) paradigms are usually tested when environmental and biological artifacts are intentionally avoided. In this study, we deliberately introduced different perturbations in order to test the robustness of a steady state visual evoked potential (SSVEP) based BCI. Specifically we investigated to what extent a drop in performance is related to the degraded quality of EEG signals or rather due to increased cognitive load. In the online tasks, subjects focused on one of the four circles and gave feedback on the correctness of the classification under four conditions randomized across subjects: Control (no perturbation), Speaking (counting loudly and repeatedly from one to ten), Thinking (mentally counting repeatedly from one to ten), and Listening (listening to verbal counting from one to ten). Decision tree, Naïve Bayes and K-Nearest Neighbor classifiers were used to evaluate the classification performance using features generated by canonical correlation analysis. During the online condition, Speaking and Thinking decreased moderately the mean classification accuracy compared to Control condition whereas there was no significant difference between Listening and Control conditions across subjects. The performances were sensitive to the classification method and to the perturbation conditions. We have not observed significant artifacts in EEG during perturbations in the frequency range of interest except in theta band. Therefore we concluded that the drop in the performance is likely to have a cognitive origin. During the Listening condition relative alpha power in a broad area including central and temporal regions primarily over the left hemisphere correlated negatively with the performance thus most likely indicating active suppression of the distracting presentation of the playback. This is the first study that systematically evaluates the effects of natural artifacts (i.e. mental, verbal and audio perturbations) on SSVEP-based BCIs. The

  12. Fractal Dimension Analysis of Transient Visual Evoked Potentials: Optimisation and Applications.

    Science.gov (United States)

    Boon, Mei Ying; Henry, Bruce Ian; Chu, Byoung Sun; Basahi, Nour; Suttle, Catherine May; Luu, Chi; Leung, Harry; Hing, Stephen

    2016-01-01

    The visual evoked potential (VEP) provides a time series signal response to an external visual stimulus at the location of the visual cortex. The major VEP signal components, peak latency and amplitude, may be affected by disease processes. Additionally, the VEP contains fine detailed and non-periodic structure, of presently unclear relevance to normal function, which may be quantified using the fractal dimension. The purpose of this study is to provide a systematic investigation of the key parameters in the measurement of the fractal dimension of VEPs, to develop an optimal analysis protocol for application. VEP time series were mathematically transformed using delay time, τ, and embedding dimension, m, parameters. The fractal dimension of the transformed data was obtained from a scaling analysis based on straight line fits to the numbers of pairs of points with separation less than r versus log(r) in the transformed space. Optimal τ, m, and scaling analysis were obtained by comparing the consistency of results using different sampling frequencies. The optimised method was then piloted on samples of normal and abnormal VEPs. Consistent fractal dimension estimates were obtained using τ = 4 ms, designating the fractal dimension = D2 of the time series based on embedding dimension m = 7 (for 3606 Hz and 5000 Hz), m = 6 (for 1803 Hz) and m = 5 (for 1000Hz), and estimating D2 for each embedding dimension as the steepest slope of the linear scaling region in the plot of log(C(r)) vs log(r) provided the scaling region occurred within the middle third of the plot. Piloting revealed that fractal dimensions were higher from the sampled abnormal than normal achromatic VEPs in adults (p = 0.02). Variances of fractal dimension were higher from the abnormal than normal chromatic VEPs in children (p = 0.01). A useful analysis protocol to assess the fractal dimension of transformed VEPs has been developed.

  13. Time jitter of somatosensory evoked potentials in recovery from hypoxic-ischemic brain injury.

    Science.gov (United States)

    Ma, Ying; Hu, Yong; Valentin, Nicolas; Geocadin, Romergryko G; Thakor, Nitish V; Jia, Xiaofeng

    2011-10-15

    Impaired neural conductivity shown by delayed latency and reduced amplitude of characteristic peaks in somatosensory evoked potentials (SSEPs), has been used to monitor hypoxic-ischemic brain injury after cardiac arrest (CA). However, rather than characteristic peak deferral and suppression, the time jitter of the peak in SSEP related with time-variant neurological abnormalities is diminished by the commonly used ensemble average method. This paper utilizes the second order blind identification (SOBI) technique to extract characteristic peak information from one trial of SSEPs. Sixteen male Wistar rats were subjected to 7 or 9 min of asphyxial CA (n=8 per group). The SSEPs from median nerve stimulation were recorded for 4h after CA and then for 15 min periods at 24, 48 and 72 h. Neurological outcomes were evaluated by neurologic deficit score (NDS) at 72 h post-CA. The SSEP signal was analyzed offline with SOBI processing in Matlab. The N10 feature of SSEP was compared between good (NDS≥50) and bad (NDS<50) outcomes. After processed by SOBI, the N10 detection rate was significantly increased (p<0.001) from 90 min post-CA. Statistical difference of the latency variance of the N10 between good and bad outcome groups existed at 24, 48 and 72 h post-CA (p≤0.001). Our study is the first application using SOBI detecting variance in neural signals like SSEP. N10 latency variance, related with neurophysiological dysfunction, increased after hypoxic-ischemic injury. The SOBI technique is an efficient method in the identification of peak detection and offers a favorable alternative to reveal the neural transmission variation. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Somatosensory evoked potentials assess the efficacy of circumcision for premature ejaculation.

    Science.gov (United States)

    Xia, J-D; Jiang, H-S; Zhu, L-L; Zhang, Z; Chen, H; Dai, Y-T

    2016-07-01

    To assess the efficacy and mechanism of circumcision in the treatment of premature ejaculation (PE) with redundant prepuce, we enrolled a total of 81 PE patients who received circumcision. The patients' ejaculatory ability and sexual performances were evaluated before and after circumcision by using questionnaires (Intravaginal ejaculation latency time (IELT), Chinese Index of PE with 5 questions (CIPE-5) and International Index of Erectile function- 5 (IIEF-5)). Furthermore, somatosensory evoked potentials (SEPs) including dorsal nerve (DNSEP) and glans penis (GPSEP) of the patients were also measured. The mean IELTs of preoperation and post operation were 1.10±0.55 and 2.48±2.03 min, respectively (PIELT after operation was 2.16 min, compared with the baseline 1.07 min before the operation, the fold increase of the IELT was 2.02. Compared with the uncircumcised status, scores of CIPE-5 showed a significant increase after circumcision (P<0.001). The mean latencies (and amplitudes) of GPSEP and DNSEP were 38.1±4.0 ms (3.0±1.9 uV) and 40.5±3.4 ms (2.8±1.6 uV) before circumcision, respectively; and 42.8±3.3 ms (2.8±1.6 uV) and 40.5±4.1 ms (2.4±1.2 uV) in the follow-up end point after circumcision. Only the latencies of GPSEP showed significant prolongation before and after circumcision (P<0.001). The ejaculation time improvement after circumcision is so small, and equal to placebo response, therefore it could not be interpreted as a therapeutic method in men with PE.

  15. Electrically evoked compound action potentials artefact rejection by independent component analysis: procedure automation.

    Science.gov (United States)

    Akhoun, Idrick; McKay, Colette; El-Deredy, Wael

    2015-01-15

    Independent-components-analysis (ICA) successfully separated electrically-evoked compound action potentials (ECAPs) from the stimulation artefact and noise (ECAP-ICA, Akhoun et al., 2013). This paper shows how to automate the ECAP-ICA artefact cancellation process. Raw-ECAPs without artefact rejection were consecutively recorded for each stimulation condition from at least 8 intra-cochlear electrodes. Firstly, amplifier-saturated recordings were discarded, and the data from different stimulus conditions (different current-levels) were concatenated temporally. The key aspect of the automation procedure was the sequential deductive source categorisation after ICA was applied with a restriction to 4 sources. The stereotypical aspect of the 4 sources enables their automatic classification as two artefact components, a noise and the sought ECAP based on theoretical and empirical considerations. The automatic procedure was tested using 8 cochlear implant (CI) users and one to four stimulus electrodes. The artefact and noise sources were successively identified and discarded, leaving the ECAP as the remaining source. The automated ECAP-ICA procedure successfully extracted the correct ECAPs compared to standard clinical forward masking paradigm in 22 out of 26 cases. ECAP-ICA does not require extracting the ECAP from a combination of distinct buffers as it is the case with regular methods. It is an alternative that does not have the possible bias of traditional artefact rejections such as alternate-polarity or forward-masking paradigms. The ECAP-ICA procedure bears clinical relevance, for example as the artefact rejection sub-module of automated ECAP-threshold detection techniques, which are common features of CI clinical fitting software. Copyright © 2014. Published by Elsevier B.V.

  16. Steady-state sweep visual evoked potential processing denoised by wavelet transform

    Science.gov (United States)

    Weiderpass, Heinar A.; Yamamoto, Jorge F.; Salomão, Solange R.; Berezovsky, Adriana; Pereira, Josenilson M.; Sacai, Paula Y.; de Oliveira, José P.; Costa, Marcio A.; Burattini, Marcelo N.

    2008-03-01

    Visually evoked potential (VEP) is a very small electrical signal originated in the visual cortex in response to periodic visual stimulation. Sweep-VEP is a modified VEP procedure used to measure grating visual acuity in non-verbal and preverbal patients. This biopotential is buried in a large amount of electroencephalographic (EEG) noise and movement related artifact. The signal-to-noise ratio (SNR) plays a dominant role in determining both systematic and statistic errors. The purpose of this study is to present a method based on wavelet transform technique for filtering and extracting steady-state sweep-VEP. Counter-phase sine-wave luminance gratings modulated at 6 Hz were used as stimuli to determine sweep-VEP grating acuity thresholds. The amplitude and phase of the second-harmonic (12 Hz) pattern reversal response were analyzed using the fast Fourier transform after the wavelet filtering. The wavelet transform method was used to decompose the VEP signal into wavelet coefficients by a discrete wavelet analysis to determine which coefficients yield significant activity at the corresponding frequency. In a subsequent step only significant coefficients were considered and the remaining was set to zero allowing a reconstruction of the VEP signal. This procedure resulted in filtering out other frequencies that were considered noise. Numerical simulations and analyses of human VEP data showed that this method has provided higher SNR when compared with the classical recursive least squares (RLS) method. An additional advantage was a more appropriate phase analysis showing more realistic second-harmonic amplitude value during phase brake.

  17. Toward Optimizing Vestibular Evoked Myogenic Potentials: Normalization Reduces the Need for Strong Neck Muscle Contraction.

    Science.gov (United States)

    Noij, Kimberley S; Herrmann, Barbara S; Rauch, Steven D; Guinan, John J

    2018-01-12

    The cervical vestibular evoked myogenic potential (cVEMP) represents an inhibitory reflex of the saccule measured in the ipsilateral sternocleidomastoid muscle (SCM) in response to acoustic or vibrational stimulation. Since the cVEMP is a modulation of SCM electromyographic (EMG) activity, cVEMP amplitude is proportional to muscle EMG amplitude. We sought to evaluate muscle contraction influences on cVEMP peak-to-peak amplitudes (VEMPpp), normalized cVEMP amplitudes (VEMPn), and inhibition depth (VEMPid). cVEMPs at 500 Hz were measured in 25 healthy subjects for 3 SCM EMG contraction ranges: 45-65, 65-105, and 105-500 μV root mean square (r.m.s.). For each range, we measured cVEMP sound level functions (93-123 dB peSPL) and sound off, meaning that muscle contraction was measured without acoustic stimulation. The effect of muscle contraction amplitude on VEMPpp, VEMPn, and VEMPid and the ability to distinguish cVEMP presence/absence were evaluated. VEMPpp amplitudes were significantly greater at higher muscle contractions. In contrast, VEMPn and VEMPid showed no significant effect of muscle contraction. Cohen's d indicated that for all 3 cVEMP metrics contraction amplitude variations produced little change in the ability to distinguish cVEMP presence/absence. VEMPid more clearly indicated saccular output because when no acoustic stimulus was presented the saccular inhibition estimated by VEMPid was zero, unlike those by VEMPpp and VEMPn. Muscle contraction amplitude strongly affects VEMPpp amplitude, but contractions 45-300 μV r.m.s. produce stable VEMPn and VEMPid values. Clinically, there may be no need for subjects to exert high contraction effort. This is especially beneficial in patients for whom maintaining high SCM contraction amplitudes is challenging. © 2018 S. Karger AG, Basel.

  18. Evaluation of brain stem auditory evoked potentials in stable patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Gupta Prem

    2008-01-01

    Full Text Available Though there are few studies addressing brainstem auditory evoked potentials (BAEP in patients with chronic obstructive pulmonary disease (COPD, subclinical BAEP abnormalities in stable COPD patients have not been studied. The present study aimed to evaluate the BAEP abnormalities in this study group. Materials and Methods : In the present study, 80 male subjects were included: COPD group comprised 40 smokers with stable COPD with no clinical neuropathy; 40 age-matched healthy volunteers served as the control group. Latencies of BAEP waves I, II, III, IV, and V, together with interpeak latencies (IPLs of I-III, I-V, and III-V, and amplitudes of waves I-Ia and V-Va were studied in both the groups to compare the BAEP abnormalities in COPD group; the latter were correlated with patient characteristics and Mini-Mental Status Examination Questionnaire (MMSEQ scores to seek any significant correlation. Results: Twenty-six (65% of the 40 COPD patients had BAEP abnormalities. We observed significantly prolonged latencies of waves I, III, V over left ear and waves III, IV, V over right ear; increased IPLs of I-V, III-V over left ear and of I-III, I-V, III-V over right side. Amplitudes of waves I-Ia and V-Va were decreased bilaterally. Over left ear, the latencies of wave I and III were significantly correlated with FEV 1 ; and amplitude of wave I-Ia, with smoking pack years. A weak positive correlation between amplitude of wave I-Ia and duration of illness; and a weak negative correlation between amplitude of wave V-Va and MMSEQ scores were seen over right side. Conclusions : We observed significant subclinical BAEP abnormalities on electrophysiological evaluation in studied stable COPD male patients having mild-to-moderate airflow obstruction.

  19. Enhanced speech perception in noise and cortical auditory evoked potentials in professional musicians.

    Science.gov (United States)

    Meha-Bettison, Kiriana; Sharma, Mridula; Ibrahim, Ronny K; Mandikal Vasuki, Pragati Rao

    2018-01-01

    The current research investigated whether professional musicians outperformed non-musicians on auditory processing and speech-in-noise perception as assessed using behavioural and electrophysiological tasks. Spectro-temporal processing skills were assessed using a psychoacoustic test battery. Speech-in-noise perception was measured using the Listening in Spatialised Noise - Sentences (LiSN-S) test and Cortical Auditory Evoked Potentials (CAEPs) recorded to the speech syllable/da/presented in quiet and in 8-talker babble noise at 0, 5, and 10 dB signal-to-noise ratios (SNRs). Ten professional musicians and 10 non-musicians participated in this study. Musicians significantly outperformed non-musicians in the frequency discrimination task and low-cue condition of the LiSN-S test. Musicians' N1 amplitude showed no difference between 5 dB and 0 dB SNR conditions while non-musicians showed significantly lower N1 amplitude at 0 dB SNR compared to 5 dB SNR. Brain-behaviour correlation for musicians showed a significant association between CAEPs at 5 dB SNR and the low-cue condition of the LiSN-S test at 30-70 ms. Time-frequency analysis indicated musicians had significantly higher alpha power desynchronisation in the 0 dB SNR condition indicating involvement of attention. Through the use of behavioural and electrophysiological data, the results provide converging evidence for improved speech recognition in noise in musicians.

  20. Prandial states modify the reactivity of the gustatory cortex using gustatory evoked potentials in humans

    Directory of Open Access Journals (Sweden)

    Agnès eJACQUIN-PIQUES

    2016-01-01

    Full Text Available Previous functional Magnetic Resonance Imaging studies evaluated the role of satiety on cortical taste area activity and highlighted decreased activation in the orbito-frontal cortex when food was eaten until satiation. The modulation of orbito-frontal neurons (secondary taste area by ad libitum food intake has been associated with the pleasantness of the food’s flavor. The insula and frontal operculum (primary taste area are also involved in reward processing. The aim was to compare human gustatory evoked potentials (GEP recorded in the primary and secondary gustatory cortices in a fasted state with those after food intake. Fifteen healthy volunteers were enrolled in this observational study. In each of two sessions, two GEP recordings were performed (at 11:00 am and 1:30 pm in response to sucrose gustatory stimulation, and a sucrose-gustatory threshold was determined. During one session, a standard lunch was provided between the two GEP recordings. During the other session, subjects had nothing to eat. Hunger sensation, wanting, liking and the perception of the solution’s intensity were evaluated with visual analogue scales. GEP latencies measured in the Pz (p<0.001, Cz (p<0.01, Fz (p<0.001 recordings (primary taste area were longer after lunch than in the pre-prandial condition. Fp1 and Fp2 latencies (secondary taste area tended to be longer after lunch, but the difference was not significant. No difference was observed for the sucrose-gustatory threshold regardless of the session and time. Modifications in the primary taste area activity during the post-prandial period occurred regardless of the nature of the food eaten and could represent the activity of the frontal operculum and insula, which was recently shown to be modulated by gut signals (GLP-1, CCK, ghrelin, or insulin through vagal afferent neurons or metabolic changes of the internal milieu after nutrient absorption. This trial was registered at clinicalstrials.gov as NCT

  1. Spontaneous emotion regulation: differential effects on evoked brain potentials and facial muscle activity.

    Science.gov (United States)

    Baur, Ramona; Conzelmann, Annette; Wieser, Matthias J; Pauli, Paul

    2015-04-01

    Late positive potentials (LPPs) were found to be decreased during down-regulation and increased during up-regulation of positive and negative emotions. However, previous studies lack ecological validity, since they explicitly instructed their participants to use certain regulation strategies. The goal of our study was to test an ecologically more valid paradigm of emotion regulation. We therefore investigated the effects of freely chosen emotion regulation strategies on LPPs and additionally assessed facial EMG responses and valence and arousal ratings as control variables. Responses to positive IAPS pictures were marked by pleasant valence ratings and high activations of M. zygomaticus major, negative pictures elicited unpleasant valence ratings and high activations of M. corrugator supercilii, and both, positive and negative pictures, went along with increased arousal ratings and LPPs. Importantly, ratings and EMG activity were intensified through up-regulation and attenuated through down-regulation of emotions, while LPPs were increased through both up-and down-regulation. We conclude that LPPs in paradigms with free choice of emotion regulation strategies might be a marker of attentional resources required for the selection of adequate emotion up- and down-regulation strategies, while LPP effects following emotion regulation with specific, instructed strategies reflect modulated arousal processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials.

    Science.gov (United States)

    Fecchio, Matteo; Pigorini, Andrea; Comanducci, Angela; Sarasso, Simone; Casarotto, Silvia; Premoli, Isabella; Derchi, Chiara-Camilla; Mazza, Alice; Russo, Simone; Resta, Federico; Ferrarelli, Fabio; Mariotti, Maurizio; Ziemann, Ulf; Massimini, Marcello; Rosanova, Mario

    2017-01-01

    Transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) can excite both cortico-cortical and cortico-spinal axons resulting in TMS-evoked potentials (TEPs) and motor-evoked potentials (MEPs), respectively. Despite this remarkable difference with other cortical areas, the influence of motor output and its amplitude on TEPs is largely unknown. Here we studied TEPs resulting from M1 stimulation and assessed whether their waveform and spectral features depend on the MEP amplitude. To this aim, we performed two separate experiments. In experiment 1, single-pulse TMS was applied at the same supra-threshold intensity on primary motor, prefrontal, premotor and parietal cortices and the corresponding TEPs were compared by means of local mean field power and time-frequency spectral analysis. In experiment 2 we stimulated M1 at resting motor threshold in order to elicit MEPs characterized by a wide range of amplitudes. TEPs computed from high-MEP and low-MEP trials were then compared using the same methods applied in experiment 1. In line with previous studies, TMS of M1 produced larger TEPs compared to other cortical stimulations. Notably, we found that only TEPs produced by M1 stimulation were accompanied by a late event-related desynchronization (ERD-peaking at ~300 ms after TMS), whose magnitude was strongly dependent on the amplitude of MEPs. Overall, these results suggest that M1 produces peculiar responses to TMS possibly reflecting specific anatomo-functional properties, such as the re-entry of proprioceptive feedback associated with target muscle activation.

  3. Development and Experimental Validation of a Dry Non-Invasive Multi-Channel Mouse Scalp EEG Sensor through Visual Evoked Potential Recordings

    Directory of Open Access Journals (Sweden)

    Donghyeon Kim

    2017-02-01

    Full Text Available In this paper, we introduce a dry non-invasive multi-channel sensor for measuring brainwaves on the scalps of mice. The research on laboratory animals provide insights to various practical applications involving human beings and other animals such as working animals, pets, and livestock. An experimental framework targeting the laboratory animals has the potential to lead to successful translational research when it closely resembles the environment of real applications. To serve scalp electroencephalography (EEG research environments for the laboratory mice, the dry non-invasive scalp EEG sensor with sixteen electrodes is proposed to measure brainwaves over the entire brain area without any surgical procedures. We validated the proposed sensor system with visual evoked potential (VEP experiments elicited by flash stimulations. The VEP responses obtained from experiments are compared with the existing literature, and analyzed in temporal and spatial perspectives. We further interpret the experimental results using time-frequency distribution (TFD and distance measurements. The developed sensor guarantees stable operations for in vivo experiments in a non-invasive manner without surgical procedures, therefore exhibiting a high potential to strengthen longitudinal experimental studies and reliable translational research exploiting non-invasive paradigms.

  4. Development and Experimental Validation of a Dry Non-Invasive Multi-Channel Mouse Scalp EEG Sensor through Visual Evoked Potential Recordings.

    Science.gov (United States)

    Kim, Donghyeon; Yeon, Chanmi; Kim, Kiseon

    2017-02-09

    In this paper, we introduce a dry non-invasive multi-channel sensor for measuring brainwaves on the scalps of mice. The research on laboratory animals provide insights to various practical applications involving human beings and other animals such as working animals, pets, and livestock. An experimental framework targeting the laboratory animals has the potential to lead to successful translational research when it closely resembles the environment of real applications. To serve scalp electroencephalography (EEG) research environments for the laboratory mice, the dry non-invasive scalp EEG sensor with sixteen electrodes is proposed to measure brainwaves over the entire brain area without any surgical procedures. We validated the proposed sensor system with visual evoked potential (VEP) experiments elicited by flash stimulations. The VEP responses obtained from experiments are compared with the existing literature, and analyzed in temporal and spatial perspectives. We further interpret the experimental results using time-frequency distribution (TFD) and distance measurements. The developed sensor guarantees stable operations for in vivo experiments in a non-invasive manner without surgical procedures, therefore exhibiting a high potential to strengthen longitudinal experimental studies and reliable translational research exploiting non-invasive paradigms.

  5. Thoracic and thoracoabdominal aortic aneurysm repair : use of evoked potential monitoring in 118 patients

    NARCIS (Netherlands)

    van Dongen, E.P.; Schepens, M A; Morshuis, W J; ter Beek, H T; Aarts, L P; de Boer, A; Boezeman, E H

    2001-01-01

    PURPOSE: Paraplegia is the most dreaded and severe complication of surgery on the descending thoracic aorta (TAA) and thoracoabdominal aorta (TAAA). The functional integrity of the spinal cord can be monitored by means of intraoperative recording of myogenic-evoked responses after transcranial

  6. Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation

    DEFF Research Database (Denmark)

    Rector, D M; Poe, G R; Kristensen, Morten Pilgaard

    1997-01-01

    We assessed relationships of evoked electrical and light scattering changes from cat dorsal hippocampus following Schaeffer collateral stimulation. Under anesthesia, eight stimulating electrodes were placed in the left hippocampal CA field and an optic probe, coupled to a photodiode or a charge-c...

  7. Climbing fiber-evoked endocannabinoid signaling heterosynaptically suppresses presynaptic cerebellar long-term potentiation

    NARCIS (Netherlands)

    B.J. van Beugen (Boeke); R.Y. Nagaraja (Raghavendra); C.R.W. Hansel (Christian)

    2006-01-01

    textabstractEndocannabinoid signaling has been demonstrated to mediate depolarization-induced suppression of excitation at climbing fiber (CF) and parallel fiber (PF) synapses onto cerebellar Purkinje cells. Here, we show that CF-evoked release of cannabinoids (CBs) additionally suppresses a

  8. Color vision versus pattern visual evoked potentials in the assessment of subclinical optic pathway involvement in multiple sclerosis

    OpenAIRE

    Gundogan, Fatih C.; Ahmet Tas; Salih Altun; Oguzhan Oz; Uzeyir Erdem; Gungor Sobaci

    2013-01-01

    Background: Optic pathway involvement in multiple sclerosis is frequently the initial sign in the disease process. In most clinical applications, pattern visual evoked potential (PVEP) is used in the assessment of optic pathway involvement. Objective: To question the value of PVEP against color vision assessment in the diagnosis of subclinical optic pathway involvement. Materials and Methods: This prospective, cross-sectional study included 20 multiple sclerosis patients without a history of ...

  9. Waveform Similarity Analysis: A Simple Template Comparing Approach for Detecting and Quantifying Noisy Evoked Compound Action Potentials.

    Directory of Open Access Journals (Sweden)

    Jason Robert Potas

    Full Text Available Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for

  10. Video outside versus video inside the web: do media setting and image size have an impact on the emotion-evoking potential of video?

    NARCIS (Netherlands)

    Verleur, R.; Verhagen, Pleunes Willem; Crawford, Margaret; Simonson, Michael; Lamboy, Carmen

    2001-01-01

    To explore the educational potential of video-evoked affective responses in a Web-based environment, the question was raised whether video in a Web-based environment is experienced differently from video in a traditional context. An experiment was conducted that studied the affect-evoking power of

  11. Correlation of pattern reversal visual evoked potential parameters with the pattern standard deviation in primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Ruchi Kothari

    2014-04-01

    Full Text Available AIM:To evaluate whether glaucomatous visual field defect particularly the pattern standard deviation (PSD of Humphrey visual field could be associated with visual evoked potential (VEP parameters of patients having primary open angle glaucoma (POAG.METHODS:Visual field by Humphrey perimetry and simultaneous recordings of pattern reversal visual evoked potential (PRVEP were assessed in 100 patients with POAG. The stimulus configuration for VEP recordings consisted of the transient pattern reversal method in which a black and white checker board pattern was generated (full field and displayed on VEP monitor (colour 14” by an electronic pattern regenerator inbuilt in an evoked potential recorder (RMS EMG EP MARK II.RESULTS:The results of our study indicate that there is a highly significant (P<0.001 negative correlation of P100 amplitude and a statistically significant (P<0.05 positive correlation of N70 latency, P100 latency and N155 latency with the PSD of Humphrey visual field in the subjects of POAG in various age groups as evaluated by Student’s t-test.CONCLUSION:Prolongation of VEP latencies were mirrored by a corresponding increase of PSD values. Conversely, as PSD increases the magnitude of VEP excursions were found to be diminished.

  12. Seeing One's Own Painful Hand Positioned in the Contralateral Space Reduces Subjective Reports of Pain and Modulates Laser Evoked Potentials.

    Science.gov (United States)

    Valentini, Elia; Koch, Katharina; Aglioti, Salvatore Maria

    2015-06-01

    Studies report that viewing the body or keeping one's arms crossed while receiving painful stimuli may have an analgesic effect. Interestingly, changes in ratings of pain are accompanied by a reduction of brain metabolism or of laser evoked potentials amplitude. What remains unknown is the link between visual analgesia and crossed-arms related analgesia. Here, we investigated pain perception and laser evoked potentials in 3 visual contexts while participants kept their arms in a crossed or uncrossed position during vision of 1) one's own hand, 2) a neutral object in the same spatial location, and 3) a fixation cross placed in front of the participant. We found that having vision of the affected body part in the crossed-arms position was associated with a significant reduction in pain reports. However, no analgesic effect of having vision of the hand in an uncrossed position or of crossing the arms alone was found. The increase of the late vertex laser evoked potential P2 amplitude indexed a general effect of vision of the hand. Our results hint at a complex interaction between cross-modal input and body representation in different spatial frames of reference and at the same time question the effect of visual analgesia and crossed-arms analgesia alone. We found that nociceptive stimuli delivered to the hand in a crossed-arms position evoke less pain than in a canonical anatomic position. Yet we report no significant analgesic effect of vision or crossing the arms on their own. These findings foster the integration of visuospatial and proprioceptive information in rehabilitation protocols. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  13. Dysfunction in the fellow eyes of strabismic and anisometropic amblyopic children assessed by visually evoked potentials

    Directory of Open Access Journals (Sweden)

    Eric Pinheiro Andrade

    Full Text Available ABSTRACT Purpose: To evaluate visual acuity and transient pattern reversal (PR visual evoked potentials (VEPs in the fellow eyes of children with strabismic and/or anisometropic amblyopia. Methods: Children diagnosed with strabismic and/or anisometropic amblyopia were recruited for electrophysiological assessment by VEPs. Monocular grating and optotype acuity were measured using sweep-VEPs and an Early Treatment Diabetic Retinopathy Study chart, respectively. During the same visit, transient PR-VEPs of each eye were recorded using stimuli subtending with a visual angle of 60', 15', and 7.5'. Parameters of amplitude (in μV and latency (in ms were determined from VEP recordings. Results: A group of 40 strabismic and/or anisometropic amblyopic children (22 females: 55%, mean age= 8.7 ± 2.2 years, median= 8 years was examined. A control group of 19 healthy children (13 females: 68.4%, mean age= 8.2 ± 2.6 years, median= 8 years was also included. The fellow eyes of all amblyopes had significantly worse optotype acuity (p=0.021 than the control group, regardless of whether they were strabismic (p=0.040 or anisometropic (p=0.048. Overall, grating acuity was significantly worse in the fellow eyes of amblyopes (p=0.016 than in healthy controls. Statistically prolonged latency for visual angles of 15' and 7.5' (p=0.018 and 0.002, respectively was found in the strabismic group when compared with the control group. For the smaller visual stimulus (7.5', statistically prolonged latency was found among all fellow eyes of amblyopic children (p<0.001. Conclusions: The fellow eyes of amblyopic children showed worse optotype and grating acuity, with subtle abnormalities in the PR-VEP detected as prolonged latencies for smaller size stimuli when compared with eyes of healthy children. These findings show the deleterious effects of amblyopia in several distinct visual functions, mainly those related to spatial vision.

  14. Acoustic Features and Cortical Auditory Evoked Potentials according to Emotional Statues of /u/, /a/, /i/ Vowels.

    Science.gov (United States)

    Kim, Chunhyeok; Lee, Seungwan; Jin, Inki; Kim, Jinsook

    2018-01-05

    Although Ling 6 sounds are often used in the rehabilitation process, its acoustic features have not been fully analyzed and represented in cortical responses. Current study was aimed to analyze acoustic features according to gender and emotional statuses of core vowels of Ling 6 sounds, /u/, /a/, and /i/. Cortical auditory evoked potentials (CAEPs) were also observed in those vowels. Vowel sounds /u/, /a/, and /i/ out of Ling 6 sounds representing low, middle and high frequencies were recorded from normal 20 young adults. The participants watched relevant videos for 4-5 minutes in order for them to sympathize emotions with anger (A), happiness (H), and sadness (S) before producing vowels. And without any emotional salience, neutrally production was performed. The recording was extracted for 500 ms to select pure vowel portion of production. For analysis of CAEP, the latencies and amplitudes of P1, N1, P2, N2, N1-P2 were analyzed. Intensities of /u/, /a/, and /i/ were 61.47, 63.38, and 60.55 dB. The intensities of neutral (N), H, A, S were 60.60, 65.43, 64.21, and 55.75 dB for vowel /u/, vowel /a/ were 61.80, 68.98, 66.50, and 56.23 dB, and vowel /i/ were 59.34, 64.90, 61.90, and 56.05 dB. The statistical significances for vowel and emotion were found but not for gender. The fundamental frequency (F0) of vowels for N, A, H, and S were 168.04, 174.93, 182.72, and 149.76 Hz and the first formant were 743.75, 815.59, 823.32, and 667.62 Hz. The statistical significance of F0 was found by vowel, emotion, and gender. The latencies and amplitudes of CAEP components did not show any statistical significance according to vowel. Ling 6 sounds should be produced consistently in the rehabilitation process for considering their difference of intensities and frequencies according to speaker's emotions and gender. The vowels seemed to be interpreted as tonal stimuli for CAEP components of this study with similar acoustic features among them. Careful selection of materials is

  15. Color Doppler imaging and pattern visual evoked potential in normal tension glaucoma and hypertension glaucoma.

    Science.gov (United States)

    Zhong, Yisheng; Min, Yingjun; Jiang, Ying; Cheng, Yu; Qin, Jiao; Shen, Xi

    2009-12-01

    To compare the differences in color Doppler imaging (CDI) and pattern visual evoked potential (P-VEP) examinations between normal tension glaucoma (NTG) and hypertension primary open angle glaucoma (HTG) patients, and investigate the relation between flow velocities measured by CDI and P-VEP examination in NTG and HTG patients. Sixty NTG patients, 66 HTG patients and 44 control subjects underwent CDI evaluation of the ophthalmic artery (OA), short posterior ciliary artery (SPCA) and central retinal arteries (CRA). The peak systolic velocities (PSV) and end-diastolic velocities (EDV) and resistive index (RI) of all retrobulbar vessels were measured. The latency and amplitude of P100 in P-VEP were recorded from the three groups. The differences of CDI and P-VEP parameters among NTG group, HTG group and control group were compared by one-way analysis of variance. The correlations between CDI parameters and visual field indices, P-VEP and visual field indices, P-VEP and CDI parameters in NTG and HTG patients were evaluated by Pearson's correlation analysis. NTG and HTG patients had the lower EDV and higher RI in the OA, CRA and SPCA comparing with that of control subjects. NTG and HTG patients also had lower PSV in OA and CRA comparing with that of control subjects. There was no significant difference in the blood flow velocities and RI of all retrobulbar vessels between NTG and HTG patients. The latency of P100 in VEP delayed and the amplitude of P100 decreased in the NTG and HTG patients comparing with that of the control group. There was no significant difference in the latency and amplitude of P100 between the NTG and HTG patients. The RI of OA and SPCA were negatively correlated with the mean deviation (MD) values in the NTG and HTG patients. The RI of OA was positively correlated with the PSD value in the NTG and HTG patients. The MD values in the NTG and HTG patients were negatively correlated with the latency time of P100. The RI of OA was positively correlated

  16. Case of acute zonal occult outer retinopathy with abnormal pattern visual evoked potentials

    Directory of Open Access Journals (Sweden)

    Chai Y

    2011-09-01

    Full Text Available Yuzhu Chai1, Hiroko Yamazaki1, Kaoru Fujinami2, Kazushige Tsunoda2, Shuichi Yamamoto31Department of Ophthalmology, Kohnodai Hospital, National Center for Global Health and Medicine, Chiba, Japan; 2National Institute of Sensory Organs, Tokyo, Japan; 3Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, JapanAbstract: Electrophysiological and morphological findings were studied in a case of acute zonal occult outer retinopathy (AZOOR showing abnormal pattern visual evoked potentials (VEPs at the onset and significant functional recovery in the natural course.  A 21-year-old woman presented with acute onset of photopsia and a large scotoma in the right eye of 2 weeks duration. Her visual acuity was 20/20 in both eyes with no ophthalmoscopic and fluorescein angiographic abnormalities. However, a relative afferent pupillary defect and an enlarged blind spot were found in the right eye. The pattern VEPs were severely reduced when the right eye was stimulated. The amplitudes of both rod and cone full-field electroretinographics (ERGs were reduced in the right eye. The amplitudes of the multifocal ERGs were reduced in the area of the enlarged blind spot. Irregularities in the inner segment/outer segment (IS/OS line of the photoreceptors were observed over the nasal fovea by optical coherence tomography (OCT. The patient was followed without treatment. The enlarged blind spot disappeared in 3 months after the onset. At 5 months, reappearance of the IS/OS line was detected by OCT. At 6 months, the P100 recovered to normal values. At 1 year, the reduced full-field ERGs were almost normal size and the multifocal ERGs in the area corresponding to the enlarged blind spot were also improved. ERG findings are crucial for differentiating AZOOR from retrobulbar neuritis, especially in patients with abnormal pattern VEPs. The pattern VEPs, full-field ERGs, multifocal ERGs, and OCT images can be abnormal in the early

  17. Effect of Different References on Auditory-Evoked Potentials in Children with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Maojin Liang

    2017-12-01

    Full Text Available Background: Nose reference (NR, mastoid reference (MR, and montage average reference (MAR are usually used in auditory event-related potential (AEP studies with a recently developed reference electrode standardization technique (REST, which may reduce the reference effect. For children with cochlear implants (CIs, auditory deprivation may hinder normal development of the auditory cortex, and the reference effect may be different between CIs and a normal developing group.Methods: Thirteen right-side-CI children were recruited, comprising 7 males and 6 females, ages 2–5 years, with CI usage of ~1 year. Eleven sex- and age-matched healthy children were recruited for normal controls; 1,000 Hz pure tone evoked AEPs were recorded, and the data were re-referenced to NR, left mastoid reference (LMR, which is the opposite side of the implanted cochlear, MAR, and REST. CI artifact and P1–N1 complex (latency, amplitudes at Fz were analyzed.Results: Confirmed P1–N1 complex could be found in Fz using NR, LMR, MAR, and REST with a 128-electrode scalp. P1 amplitude was larger using LMR than MAR and NR, while no statistically significant difference was found between NR and MAR in the CI group; REST had no significant difference with the three other references. In the control group, no statistically significant difference was found with different references. Group difference of P1 amplitude could be found when using MR, MAR, and REST. For P1 latency, no significant difference among the four references was shown, whether in the CI or control group. Group difference in P1 latency could be found in MR and MAR. N1 amplitude in LMR was significantly lower than NR and MAR in the control group. LMR, MAR, and REST could distinguish the difference in the N1 amplitude between the CI and control group. Contralateral MR or MAR was found to be better in differentiating CI children versus controls. No group difference was found for the artifact component

  18. The detection of infant cortical auditory evoked potentials (CAEPs) using statistical and visual detection techniques.

    Science.gov (United States)

    Carter, Lyndal; Golding, Maryanne; Dillon, Harvey; Seymour, John

    2010-05-01

    With the advent of newborn hearing screening programs, the need to verify the fit of hearing aids in young infants has increased. The recording of cortical auditory evoked potentials (CAEPs) for this purpose is quite feasible, but rapid developmental changes that affect response morphology and the presence of electrophysiological noise can make subjective response detection challenging. The purpose of this study was to investigate the effectiveness of an automated statistic versus experienced examiners in detecting the presence of infant CAEPs when stimuli were present and reporting the absence of CAEPs when no stimuli were present. A repeated-measures design was used where infant-generated CAEPs were interpreted by examiners and an automated statistic. There were nine male and five female infants (mean age, 12 mo; SD, 3.4) who completed behavioral and electrophysiological testing using speech-based stimuli. In total, 87 infant CAEPs were recorded to three sensation levels, 10, 20 and 30 dB relative to the behavioral thresholds and to nonstimulus trials. Three examiners were presented with these responses: (1) "in series," where waveforms were presented in order of decreasing stimulus presentation levels, and (2) "nonseries," where waveforms were randomized completely and presented as independent waveforms. The examiners were given no information about the stimulus levels and were asked to determine whether responses to auditory stimulation could be observed and their degree of certainty in making their decision. Data from the CAEP responses were also converted to multiple dependent variables and analyzed using Hotelling's T(2). Results from both methods of response detection were analyzed using a repeated measures ANOVA (analysis of variance) and parameters of signal detection theory known as d-prime (d') and the area under the receiver operating characteristic (ROC) curve. Results showed that as the stimulus level increased, the sensitivity index, d', increased

  19. Acceptance of background noise, working memory capacity, and auditory evoked potentials in subjects with normal hearing.

    Science.gov (United States)

    Brännström, K Jonas; Zunic, Edita; Borovac, Aida; Ibertsson, Tina

    2012-01-01

    The acceptable noise level (ANL) test is a method for quantifying the amount of background noise that subjects accept when listening to speech. Large variations in ANL have been seen between normal-hearing subjects and between studies of normal-hearing subjects, but few explanatory variables have been identified. To explore a possible relationship between a Swedish version of the ANL test, working memory capacity (WMC), and auditory evoked potentials (AEPs). ANL, WMC, and AEP were tested in a counterbalanced order across subjects. Twenty-one normal-hearing subjects participated in the study (14 females and 7 males; aged 20-39 yr with an average of 25.7 yr). Reported data consists of age, pure-tone average (PTA), most comfortable level (MCL), background noise level (BNL), ANL (i.e., MCL - BNL), AEP latencies, AEP amplitudes, and WMC. Spearman's rank correlation coefficient was calculated between the collected variables to investigate associations. A principal component analysis (PCA) with Varimax rotation was conducted on the collected variables to explore underlying factors and estimate interactions between the tested variables. Subjects were also pooled into two groups depending on their results on the WMC test, one group with a score lower than the average and one with a score higher than the average. Comparisons between these two groups were made using the Mann-Whitney U-test with Bonferroni correction for multiple comparisons. A negative association was found between ANL and WMC but not between AEP and ANL or WMC. Furthermore, ANL is derived from MCL and BNL, and a significant positive association was found between BNL and WMC. However, no significant associations were seen between AEP latencies and amplitudes and the demographic variables, MCL, and BNL. The PCA identified two underlying factors: One that contained MCL, BNL, ANL, and WMC and another that contained latency for wave Na and amplitudes for waves V and Na-Pa. Using the variables in the first factor

  20. Vestibular evoked myogenic potentials and digital vectoelectronystagmography's study in patients with benign paroxysmal positional vertigo

    Directory of Open Access Journals (Sweden)

    Lira-Batista, Marta Maria da Silva

    2013-04-01

    Full Text Available Introduction: Benign Paroxysmal Positional Vertigo (BPPV is a very common vestibular disorder characterized by brief but intense attacks of rotatory vertigo triggered by simple rapid movement of the head. The integrity of the vestibular pathways can be assessed using tests such as digital vectoelectronystagmography (VENG and vestibular evoked myogenic potentials (VEMP. Aim: This study aimed to determine the VEMP findings with respect to latency, amplitude, and waveform peak to peak and the results of the oculomotor and vestibular components of VENG in patients with BPPV. Method: Although this otoneurological condition is quite common, little is known of the associated VEMP and VENG changes, making it important to research and describe these results. Results: We examined the records of 4438 patients and selected 35 charts after applying the inclusion and exclusion criteria. Of these, 26 patients were women and 9 men. The average age at diagnosis was 52.7 years, and the most prevalent physiological cause, accounting for 97.3% of cases, was ductolithiasis. There was a statistically significant association between normal hearing and mild contralateral sensorineural hearing loss. The results of the oculomotor tests were within the normal reference ranges for all subjects. Patients with BPPV exhibited symmetrical function of the semicircular canals in their synergistic pairs (p < 0.001. The caloric test showed statistically normal responses from the lateral canals. The waveforms of all patients were adequate, but the VEMP results for the data-crossing maneuver with positive positioning showed a trend toward a relationship for the left ear Lp13. There was also a trend towards an association between normal reflexes in the caloric test and the inter-peak VEMP of the left ear. It can be concluded that although there are some differences between the average levels of the VENG and VEMP results, these differences were not statistically significant

  1. Intraoperative subcortical motor evoked potential stimulation: how close is the corticospinal tract?

    Science.gov (United States)

    Shiban, Ehab; Krieg, Sandro M; Haller, Bernhard; Buchmann, Niels; Obermueller, Thomas; Boeckh-Behrens, Tobias; Wostrack, Maria; Meyer, Bernhard; Ringel, Florian

    2015-09-01

    Subcortical stimulation is a method used to evaluate the distance from the stimulation site to the corticospinal tract (CST) and to decide whether the resection of an adjacent lesion should be terminated to prevent damage to the CST. However, the correlation between stimulation intensity and distance to the CST has not yet been clearly assessed. The objective of this study was to investigate the appropriate correlation between the subcortical stimulation pattern and the distance to the CST. Monopolar subcortical motor evoked potential (MEP) mapping was performed in addition to continuous MEP monitoring in 37 consecutive patients with lesions located in motor-eloquent locations. The proximity of the resection cavity to the CST was identified by subcortical MEP mapping. At the end of resection, the point at which an MEP response was still measurable with minimal subcortical MEP intensity was marked with a titanium clip. At this location, different stimulation paradigms were executed with cathodal or anodal stimulation at 0.3-, 0.5-, and 0.7-msec pulse durations. Postoperatively, the distance between the CST as defined by postoperative diffusion tensor imaging fiber tracking and the titanium clip was measured. The correlation between this distance and the subcortical MEP electrical charge was calculated. Subcortical MEP mapping was successful in all patients. There were no new permanent motor deficits. Transient new postoperative motor deficits were observed in 14% (5/36) of cases. Gross-total resection was achieved in 75% (27/36) and subtotal resection (> 80% of tumor mass) in 25% (9/36) of cases. Stimulation intensity with various pulse durations as well as current intensity was plotted against the measured distance between the CST and the titanium clip on postoperative MRI using diffusion-weighted imaging fiberitracking tractography. Correlational and regression analyses showed a nonlinear correlation between stimulation intensity and the distance to the CST

  2. Assessment of visual evoked potentials in stable COPD patients with no visual impairment

    Directory of Open Access Journals (Sweden)

    Gupta Prem

    2010-01-01

    Full Text Available Objective : To assess whether patients having stable chronic obstructive pulmonary disease (COPD with no clinical evidence of visual impairment or peripheral neuropathy have visual evoked potentials (VEP abnormalities on electrophysiologic evaluation. Methods : In the present study, 80 male subjects with no clinical neuropathy or visual impairment were included; 40 COPD patients and 40 age-matched healthy volunteers. The characteristics of subjects including age, quantum of smoking, duration of illness (in COPD patients only, and spirometric indices {forced expiratory volume in first second (FEV 1 , FEV 1 /forced vital capacity (FVC %, and peak expiratory flow rate (PEFR} were assessed. The mental status was assessed using a questionnaire Mini-Mental State Examination (MMSE Questionnaire. Electrophysiologic studies for the evaluation of VEP were carried out on computerized equipment. Latency and amplitude of P100 wave were analyzed from the VEP wave patterns obtained through a standardized protocol in both the groups to detect abnormalities in the COPD group. For the COPD group, correlations of P100 parameters with patient characteristics, spirometric indices, and MMSE scores were assessed. Significant abnormality was defined as a variation beyond healthy volunteer mean ΁ 3 standard deviation. Results : We observed significantly prolonged latency and decreased amplitude of P100 in both eyes of the patients in COPD group compared with healthy volunteers. Twenty-two of the 40 COPD patients (55% had significant abnormalities in P100 latency, and three COPD patients (7.5% had abnormalities in P100 amplitude. The latency of P100 on the right side had statistically significant inverse correlation with FEV 1 /FVC% and MMSE score. Conclusions : Twenty-three of the 40 stable COPD patients (compared with healthy volunteers were observed to have significant VEP abnormality detected on electrophysiologic evaluation: 21/40 having prolonged P100 latency and

  3. Visual evoked potentials in examining the visual analyzer in patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    S. M. Karpov

    2014-01-01

    Full Text Available Objective: to study the neurophysiological features of the visual analyzer in patients with multiple sclerosis (MS to optimize the early diagnosis of the disease.Patients and methods. Seventy-nine patients (57 women and 22 men, mean age 34.31±4.7 years diagnosed as having MS were examined. The mean duration of the disease with consideration for its clinical form was 3.3±2.2 years in relapsing-remitting MS (RRMS, 9.1±4.2 years in secondary progressive MS (SPMS, and 2.7±1.9 years in primary progressive MS (PPMS.Results and discussion. The neurophysiological examination indicated that demyelination processes in MS proceeded differently in response to dissimilar lights in the structures of the visual analyzer. The most marked significant (p<0.01 deviations in the values of visual evoked potentials (VEPs to the black-white tessellated pattern (TP were observed in the patients with SPMS and in those with PPMS. The latency of the P100 wave increased dramatically and differed significantly (p<0.001 from those in the control group (127.09 msec for RRMS, 128.3 msec for SPMS, 124.5 msec for PPMS, and 106.1 msec in the control. Amplitude analysis could reveal a significant decrease in the force of a N75–N100 wave response to the black-white stimulus in all the clinical groups, averaging 3.3 μW (8.5 μW in the control. The latency of the P100 wave to the red-yellow TP increased considerably and differed significantly (p<0.001 from that in the control group, by comprising147.29±1.19 msec for RRMS, 150.23±1.49 msec for SPMS, and 144.38±2.11 msec for PPMS. There were the same changes that to the greenblack TP. Examination of 25 patients with MS established higher levels of IgG antibodies against myelin basic protein. The most significant latency increase occurs in response to the color spectrum of visible light against the black-white background, which may serve as an early diagnostic criterion for MS. These changes lead to a sharp

  4. Cortical somatosensory evoked potentials from lumbosacral dermatomes: airpuff versus electrical stimulation.

    Science.gov (United States)

    Schimsheimer, R J; Boejharat, K R; van der Sluijs, J C; Stijnen, T; Gryz, E

    1995-01-01

    Cortical potentials were elicited by airpuff stimulation of the L5 and S1 dermatome in a group of 24 healthy volunteers. The results were compared with the SEPs obtained by conventional electrical stimulation. Both stimulus modalities produce stable and good reproducible cortical responses of similar waveform. The most stable second negative peak, labeled N2, was used in this study. Mean latencies (in msec) were: N2 L5 air = 67.1 +/- 3.3, N2 L5 electr. = 55.7 +/- 3.7 N2 S1 air = 67.2 +/- 3.9, and N2 S1 electr. = 55.1 +/- 2.9 The maximum R/L difference (mean + 3 SD) was 5.7 msec, 5.9 msec, 7.2 msec and 7.2 msec for respectively N2 L5 air, N2 L5 electrical, N2 S1 air and N2 S1 electrical. Single regression analysis showed a significant influence of height, but not age upon all latencies. Multiple regression analysis with height and age as independent variables showed a significant influence of height and age together upon the latencies of the electrical SEP (both L5 and S1). For the airpuff SEP only height was significant. Gender had no effect on the cortical components. The amplitude of peak N2 after electrical stimulation of the S1 dermatome was significant higher than after airpuff stimulation, 2.9 and 1.7 microvolt respectively. For the L5 dermatome both types of stimuli produced responses of nearly equal amplitude, 2.5 and 2.1 microvolt for electrical and airpuff stimulation respectively. Airpuff SEPs may provide a good alternative for electrical stimulation.

  5. BAER - brainstem auditory evoked response

    Science.gov (United States)

    ... auditory potentials; Brainstem auditory evoked potentials; Evoked response audiometry; Auditory brainstem response; ABR; BAEP ... Normal results vary. Results will depend on the person and the instruments used to perform the test.

  6. Vestibular Evoked Myogenic Potential Produced by Bone-Conducted Stimuli: A Study on its Basics and Clinical Applications in Patients With Conductive and Sensorineural Hearing Loss and a Group With Vestibular Schawannoma

    Directory of Open Access Journals (Sweden)

    Parvane Mahdi

    2013-06-01

    Full Text Available Introduction: Vestibular evoked myogenic potential (VEMP has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients.   Materials and Methods: We performed a cross sectional analysis on 20 healthy volunteers with normal pure-tone audiometry as a control group; and on a group of patients consisted of 20 participants with conductive hearing loss, five with bilateral sensorineural hearing loss and four with vestibular schawannoma. AC and BC-VEMP were performed in all participants.   Results: In control group the VEMP responses to both kinds of stimuli had an acceptable morphology and consisted of p13 and n23 waves. Latency value of these main components in each type of stimulus was not significantly different (P>0.05. However, the mean amplitude was larger in BC modality than AC stimulation (P=0.025. In the group with conductive hearing loss, the VEMP response was absent in fifteen (46.87% of the 32 ears using the AC method, whereas all (100% displayed positive elicitability of VEMP by BC method. Normal VEMP responses in both stimuli were evoked in all patients with sensorineural hearing loss. In patients with unilateral vestibular schwannomas (VS, 2 (50.00% had neither AC-VEMP nor BC-VEMP. Conclusion:  Auditory stimuli delivered by bone conduction can evoke VEMP response. These responses are of vestibular origin and can be used in vestibular evaluation of patients with conductive hearing loss.

  7. The potential for using visual elicitation in understanding preschool teachers' beliefs of appropriate educational practices

    Directory of Open Access Journals (Sweden)

    Rose Ruto-Korir

    2012-01-01

    Full Text Available We explore the use of video and photo elicitation in a research study undertaken to understand the way in which preschool teachers perceive and construct their provision of children's educational experiences. We explore the value of visually elicited interviews based on video footage and photographs captured during teaching and learning in four classrooms in two preschool settings in Kenya. Through visually elicited interviews, both the teachers and the researcher constructed meaningful conversations (interviews to explore preschool teachers' practical experiences and their beliefs, understanding and interpretation of developmentally appropriate educational practices. This paper targets the possible value ofand contribution made by visual data generation procedures, as well as their inherent challenges, in order to add to the body of knowledge on visually elicited interviews.

  8. Influence of elicitation with H₂O₂ on phenolics content, antioxidant potential and nutritional quality of Lens culinaris sprouts.

    Science.gov (United States)

    Świeca, Michał; Baraniak, Barbara

    2014-02-01

    The use of lentil sprouts as bioreactors for obtaining low-processed food with modified composition and biological activity was studied. Special emphasis was placed on the nutritional quality. Sprouts metabolism was elicited with 20 mmol L⁻¹ and 200 mmol L⁻¹ H₂O₂. The polyphenolics content and antioxidative abilities at different germination stages of lentil were studied. Both sprouting and elicitation significantly influenced the nutritional and nutraceutical quality of sprouts. In comparison to control conditions both treatments gave an increase in caffeic, salicylic acid and genistein contents in 4-day-old sprouts and p-hydroxybenzoic, chlorogenic, o-coumaric, p-coumaric acids and naringenin, (+)-catechin contents for 6-day-old sprouts. Elicitation significantly increased the ability to prevent lipid against peroxidation. The antioxidant potential was the most effectively elevated in 6-day-old sprouts. Elicitation caused a significant decrease in protein content associated with a significant elevation in the non-protein nitrogen content. Induction of sprout metabolism caused a decrease of bioavailable starch and subsequent elevation of resistant starch content. The significantly elevated antioxidant potential, high content of resistant starch and low starch bioaccessibility of sprouts elicited with H₂O₂ indicated that this technology allows the production of functional food products with particular characteristics. © 2013 Society of Chemical Industry.

  9. Age-related changes in ocular vestibular-evoked myogenic potentials via galvanic vestibular stimulation and bone-conducted vibration modes.

    Science.gov (United States)

    Chang, Chih-Ming; Young, Yi-Ho; Cheng, Po-Wen

    2012-12-01

    The age-related changes in ocular vestibular-evoked myogenic potentials (oVEMPs) elicited by galvanic vestibular stimulation (GVS) and bone-conducted vibration (BCV) might be attributed to the morphological degeneration of the vestibular system. This study employed GVS and BCV modes for eliciting oVEMPs in healthy subjects to explore the effect of aging on the vestibulo-ocular reflex (VOR) pathway. Sixty-nine healthy subjects (aged 22-69 years) were divided into 5 groups of 12-19 subjects by decades of age. All subjects underwent oVEMPs using GVS and BCV modes. The prevalence and parameters of oVEMPs, including nI latency, pI latency, nI-pI interval, and nI-pI amplitude were measured and compared. The prevalences of GVS-oVEMPs had nonsignificant differences among all age groups, whereas that of BCV-oVEMPs in the over-60 group was significantly lower than those in the under-60 groups. In GVS-oVEMPs, the group over 60 years had significantly longer nI, pI latencies, and smaller amplitudes when compared with those under 60 years. In BCV-oVEMPs, the nI and pI latencies in the over-60 group were significantly longer than those of the under-60 groups, while the nI-pI amplitudes of groups over 50 years were significantly smaller than those of groups under 50 years. All oVEMP parameters exhibited significant differences between GVS- and BCV-oVEMPs in each age group.

  10. Speech-evoked cortical potentials and speech recognition in cochlear implant users.

    NARCIS (Netherlands)

    Groenen, P.A.P.; Beynon, A.J.; Snik, A.F.M.; Broek, P. van den

    2001-01-01

    Processing in the auditory cortex may play a role in the unexplained variability in cochlear implant benefit. P300 and N1/P2 were elicited in post-lingually deaf cochlear implant users wearing a Nucleus multichannel cochlear implant. Four sound contrasts were presented (500-1,000 Hz, /ba/-/da/,

  11. Origin of facilitation of motor-evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans.

    Science.gov (United States)

    Di Lazzaro, V; Pilato, F; Oliviero, A; Dileone, M; Saturno, E; Mazzone, P; Insola, A; Profice, P; Ranieri, F; Capone, F; Tonali, P A; Rothwell, J C

    2006-10-01

    A magnetic transcranial conditioning stimulus given over the motor cortex at intensities below active threshold for obtaining motor-evoked potentials (MEPs) facilitates EMG responses evoked at rest in hand muscles by a suprathreshold magnetic stimulus given 10-25 ms later. This is known as intracortical facilitation (ICF). We recorded descending volleys produced by single and paired magnetic motor cortex stimulation through high cervical epidural electrodes implanted for pain relief in six conscious patients. At interstimulus intervals (ISIs) of 10 and 15 ms, although MEP was facilitated, there was no change in the amplitude or number of descending volleys. An additional I wave sometimes was observed at 25 ms ISI. In one subject, we also evaluated the effects of reversing the direction of the induced current in the brain. At 10 ms ISI, the facilitation of the MEPs disappeared and was replaced by slight suppression; at 2 ms ISI, there was a pronounced facilitation of epidural volleys. Subsequent experiments on healthy subjects showed that a conditioning stimulus capable of producing ICF of MEPs had no effect on the EMG response evoked by transmastoidal electrical stimulation of corticospinal tract. We conclude that ICF occurs because either 1) the conditioning stimulus has a (thus far undetected) effect on spinal cord excitability that increases its response to the same amplitude test volley or 2) that it can alter the composition (but not the amplitude) of the descending volleys set up by the test stimulus such that a larger proportion of the activity is destined for the target muscle.

  12. Responsivity to dyslexia training indexed by the N170 amplitude of the brain potential elicited by word reading

    NARCIS (Netherlands)

    Fraga González, G.; Žarić, G.; Tijms, J.; Bonte, M.; Blomert, L.; Leppänen, P.; van der Molen, M.W.

    The present study examined training effects in dyslexic children on reading fluency and the amplitude of N170, a negative brain-potential component elicited by letter and symbol strings. A group of 18 children with dyslexia in 3rd grade (9.05 ± 0.46 years old) was tested before and after following a

  13. Ocular and Cervical Vestibular Evoked Myogenic Potentials (VEMPs) in healthy volunteers: the intra-, interobserver, and the test re-test reliability.

    Science.gov (United States)

    Venhovens, J; Meulstee, J; Verhagen, W I M

    2015-01-01

    The aims of the study are to determine the intra-, interobserver, and the test re-test reliability of the cervical and ocular vestibular evoked myogenic potentials (VEMPs). Twenty healthy subjects underwent acoustically and forehead tap elicited cervical and ocular VEMPs. The measurements were repeated one week later. The intra- and interobserver reliability of both ocular and cervical VEMPs is excellent. The test re-test reliability of the raw p13n23 peak-to-peak amplitudes of the cervical VEMPs is excellent (ICC: 0.76, 0.87) and the p13 latencies show a good reliability (ICC: 0.56, 0.73). The raw n1p1 peak-to-peak amplitudes of the ocular VEMPs show a fair-to-good test re-test reliability (ICC: 0.51, 0.64) and the n1 and p1 latencies show a poor reliability (ICC: -0.17 ≤ x ≤ 0.44). The intra- and interobserver reliability of the cervical and ocular VEMPs is excellent. The raw ocular and cervical VEMP peak-to-peak amplitudes are the most reliable parameters, followed by the cervical VEMP latencies. The ocular VEMP latencies shows a poor test re-test reliability. The individual VEMP results, however, remained within normal limits despite the test re-test variability.

  14. Comparison of DP3 Signals Evoked by Comfortable 3D Images and 2D Images — an Event-Related Potential Study using an Oddball Task

    Science.gov (United States)

    Ye, Peng; Wu, Xiang; Gao, Dingguo; Liang, Haowen; Wang, Jiahui; Deng, Shaozhi; Xu, Ningsheng; She, Juncong; Chen, Jun

    2017-02-01

    The horizontal binocular disparity is a critical factor for the visual fatigue induced by watching stereoscopic TVs. Stereoscopic images that possess the disparity within the ‘comfort zones’ and remain still in the depth direction are considered comfortable to the viewers as 2D images. However, the difference in brain activities between processing such comfortable stereoscopic images and 2D images is still less studied. The DP3 (differential P3) signal refers to an event-related potential (ERP) component indicating attentional processes, which is typically evoked by odd target stimuli among standard stimuli in an oddball task. The present study found that the DP3 signal elicited by the comfortable 3D images exhibits the delayed peak latency and enhanced peak amplitude over the anterior and central scalp regions compared to the 2D images. The finding suggests that compared to the processing of the 2D images, more attentional resources are involved in the processing of the stereoscopic images even though they are subjectively comfortable.

  15. A Pilot Study on Cortical Auditory Evoked Potentials in Children: Aided CAEPs Reflect Improved High-Frequency Audibility with Frequency Compression Hearing Aid Technology

    National Research Council Canada - National Science Library

    Glista, Danielle; Easwar, Vijayalakshmi; Purcell, David W; Scollie, Susan

    2012-01-01

    Background. This study investigated whether cortical auditory evoked potentials (CAEPs) could reliably be recorded and interpreted using clinical testing equipment, to assess the effects of hearing aid technology on the CAEP...

  16. Auditory Evoked Potentials for the Evaluation of Hearing Sensitivity in Navy Dolphins. Assessment of Hearing Sensitivity in Adult Male Elephant Seals

    National Research Council Canada - National Science Library

    Houser, Dorian S

    2006-01-01

    A custom auditory evoked potential (AEP) system was used to assess the feasibility of rapidly testing the hearing of bottlenose dolphins by tracking the magnitude of the envelope following response (EFR...

  17. Auditory Evoked Potentials for the Evaluation of Hearing Sensitivity in Navy Dolphins. Modification P00002: Assessment of Hearing Sensitivity in Adult Male Elephant Seals

    National Research Council Canada - National Science Library

    Houser, Dorian S

    2006-01-01

    A custom auditory evoked potential (AEP) system was used to assess the feasibility of rapidly testing the hearing of bottlenose dolphins by tracking the magnitude of the envelope following response (EFR...

  18. [Application of simultaneous auditory evoked potentials and functional magnetic resonance recordings for examination of central auditory system--preliminary results].

    Science.gov (United States)

    Milner, Rafał; Rusiniak, Mateusz; Wolak, Tomasz; Piatkowska-Janko, Ewa; Naumczyk, Patrycja; Bogorodzki, Piotr; Senderski, Andrzej; Ganc, Małgorzata; Skarzyński, Henryk

    2011-01-01

    Processing of auditory information in central nervous system bases on the series of quickly occurring neural processes that cannot be separately monitored using only the fMRI registration. Simultaneous recording of the auditory evoked potentials, characterized by good temporal resolution, and the functional magnetic resonance imaging with excellent spatial resolution allows studying higher auditory functions with precision both in time and space. was to implement the simultaneous AEP-fMRI recordings method for the investigation of information processing at different levels of central auditory system. Five healthy volunteers, aged 22-35 years, participated in the experiment. The study was performed using high-field (3T) MR scanner from Siemens and 64-channel electrophysiological system Neuroscan from Compumedics. Auditory evoked potentials generated by acoustic stimuli (standard and deviant tones) were registered using modified odd-ball procedure. Functional magnetic resonance recordings were performed using sparse acquisition paradigm. The results of electrophysiological registrations have been worked out by determining voltage distributions of AEP on skull and modeling their bioelectrical intracerebral generators (dipoles). FMRI activations were determined on the basis of deviant to standard and standard to deviant functional contrasts. Results obtained from electrophysiological studies have been integrated with functional outcomes. Morphology, amplitude, latency and voltage distribution of auditory evoked potentials (P1, N1, P2) to standard stimuli presented during simultaneous AEP-fMRI registrations were very similar to the responses obtained outside scanner room. Significant fMRI activations to standard stimuli were found mainly in the auditory cortex. Activations in these regions corresponded with N1 wave dipoles modeled based on auditory potentials generated by standard tones. Auditory evoked potentials to deviant stimuli were recorded only outside the MRI

  19. Functional source separation improves the quality of single trial visual evoked potentials recorded during concurrent EEG-fMRI.

    Science.gov (United States)

    Porcaro, Camillo; Ostwald, Dirk; Bagshaw, Andrew P

    2010-03-01

    EEG quality is a crucial issue when acquiring combined EEG-fMRI data, particularly when the focus is on using single trial (ST) variability to integrate the data sets. The most common method for improving EEG data quality following removal of gross MRI artefacts is independent component analysis (ICA), a completely blind source separation technique. In the current study, a different approach is proposed based on the functional source separation (FSS) algorithm. FSS is an extension of ICA that incorporates prior knowledge about the signal of interest into the data decomposition. Since in general the part of the EEG signal that will contain the most relevant information is known beforehand (i.e. evoked potential peaks, spectral bands), FSS separates the signal of interest by exploiting this prior knowledge without renouncing the advantages of using only information contained in the original signal waveforms. A reversing checkerboard stimulus was used to generate visual evoked potentials (VEPs) in healthy control subjects. Gradient and ballistocardiogram artefacts were removed with template subtraction techniques to form the raw data, which were then subjected to ICA denoising and FSS. The resulting EEG data sets were compared using several metrics derived from average and ST data and correlated with fMRI data. In all cases, ICA was an improvement on the raw data, but the most obvious improvement was provided by FSS, which consistently outperformed ICA. The results show the benefit of FSS for the recovery of good quality single trial evoked potentials during concurrent EEG-fMRI recordings. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  20. Cortical Auditory-Evoked Potential and Behavioral Evidence for Differences in Auditory Processing between Good and Poor Readers.

    Science.gov (United States)

    Barker, Matthew D; Kuruvilla-Mathew, Abin; Purdy, Suzanne C

    2017-06-01

    The relationship between auditory processing (AP) and reading is thought to be significant; however our understanding of this relationship is somewhat limited. Previous studies have investigated the relation between certain electrophysiological and behavioral measures of AP and reading abilities in children. This study attempts to further understand that relation. Differences in AP between good and poor readers were investigated using electrophysiological and behavioral measures. Thirty-two children (15 female) aged 9-11 yr were placed in either a good reader group or poor reader group, based on the scores of a nationally normed reading test in New Zealand. Children were initially tested using an automated behavioral measuring system that runs through a tablet computer known as "Feather Squadron." Following the administration of Feather Squadron, cortical auditory-evoked potentials (CAEPs) were recorded using a speech stimulus (/m/) with the HEARLab(®) Cortical Auditory Evoked Potential Analyzer. The children were evaluated on eight subsections of the Feather Squadron, and CAEP waveform peaks were visually identified and averaged. Separate Kruskal-Wallis analyses were performed for the behavioral and electrophysiological variables, with group (good versus poor readers) serving as the between-group independent variable and scores from the Feather Squadron AP tasks as well as CAEP latencies and amplitudes as dependent variables. After the children's AP status was determined, the entire group was further divided into three groups: typically developing, auditory processing disorder + reading difficulty (APD + RD), and RDs only. Statistical analyses were repeated for these subgroups. Poorer readers showed significantly worse scores than the good readers for the Tonal Pattern 1, Tonal Pattern 2, and Word Double Dichotic Right tasks. CAEP differences observed across groups indicated comorbid effects of RD and AP difficulties. N2 amplitude was significantly smaller for

  1. Comparison of elicitation potential of chloroatranol and atranol - 2 allergens in oak moss absolute

    DEFF Research Database (Denmark)

    Johansen, J.D.; Bernard, G.; Gimenez-Arnau, E.

    2006-01-01

    Chloroatranol and atranol are degradation products of chloroatranorin and atranorin, respectively, and have recently been identified as important contact allergens in the natural fragrance extract, oak moss absolute. Oak moss absolute is widely used in perfumery and is the cause of many cases...... of fragrance allergic contact dermatitis. Chloroatranol elicits reactions at very low levels of exposure. In oak moss absolute, chloroatranol and atranol are present together and both may contribute to the allergenicity and eliciting capacity of the natural extract. In this study, 10 eczema patients with known...... sensitization to chloroatranol and oak moss absolute were tested simultaneously to a serial dilution of chloroatranol and atranol in ethanol, in equimolar concentrations (0.0034-1072 microM). Dose-response curves were estimated and analysed by logistic regression. The estimated difference in elicitation potency...

  2. Partial recovery of alcohol dependence-related deficits in sleep evoked potentials following twelve months of abstinence.

    Directory of Open Access Journals (Sweden)

    Ian M Colrain

    2012-02-01

    Full Text Available Stimuli presented during sleep can produce an evoked EEG delta wave referred to as a K-complex. These responses occur when large numbers of cortical cells burst fire in a synchronized manner. Large amplitude synchronized scalp responses require that the CNS contain large numbers of healthy neurons that are interconnected with highly functional white matter pathways. The P2, N550 and P900 components of the evoked K-complex are sensitive measures of normal healthy brain aging, showing a decrease in amplitude with age. N550 and P900 amplitudes are also reduced in recently detoxified alcoholics, most dramatically over frontal scalp regions. The present study tested the hypothesis that the amplitude of K-complex related evoked potential components would increase with prolonged abstinence. Fifteen alcoholics (12 men were studied twice, separated by a 12-month period, during which time they were followed with monthly phone calls. Subjects were aged between 38 and 60 years at their first study. They had on average a 29.3 ± 6.7 year drinking history and had been abstinent for between 54 and 405 days at initial testing . Evoked K-complexes were identified in the EEG and averaged to enable measurement of the P2, N550 and P900 peaks. Data were collected from 7 scalp sites (FP1, FP2, Fz, FCz, Cz, CPz and Pz. There were significant increases in, N550 and P900 amplitudes over 12 months. N550 and P900 also showed highly significant site by night interactions with the largest increases occurring over prefrontal and frontal sites. The substantial recovery in N550 amplitude with abstinence over a 12-month period is in contrast to the 1.5μV decrease predicted by the normal aging regression model, and an improvement of at least 5μV occurred in 11 of the 15 subjects. The data indicate that the sleep evoked response may provide a sensitive marker of brain recovery with abstinence from alcohol.

  3. Identification of causal relations between haemodynamic variables, auditory evoked potentials and isoflurane by means of fuzzy logic

    DEFF Research Database (Denmark)

    Jensen, E W; Nebot, A; Caminal, P

    1999-01-01

    The aim of this study was to identify a possible relationship between haemodynamic variables, auditory evoked potentials (AEP) and inspired fraction of isoflurane (ISOFl). Two different models (isoflurane and mean arterial pressure) were identified using the fuzzy inductive reasoning (FIR......) methodology. A fuzzy model is able to identify non-linear and linear components of a causal relationship by means of optimization of information content of available data. Nine young female patients undergoing hysterectomy under general anaesthesia were included. Mean arterial pressure (MAP), heart rate (HR...

  4. MRI of optic nerve and postchiasmal visual pathways and visual evoked potentials in secondary progressive multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.B.; Hawkins, C.P. [School of Postgraduate Medicine, Keele Univ. (United Kingdom)]|[Department of Neurology and Neurophysiology, Royal Infirmary, Stoke-on-Trent (United Kingdom); Williams, R. [MRI Unit Cornwall House, Stoke-on-Trent (United Kingdom); Haq, N. [Department of Neurology, North Staffordshire Hospital, Stoke-on-Trent (United Kingdom); Pelosi, L. [Department of Neurology and Neurophysiology, Royal Infirmary, Stoke-on-Trent (United Kingdom)

    1998-12-01

    We studied the relationship between abnormalities shown by MRI and functional disturbances in the visual pathway as assessed by the visual evoked potential (VEP) in 25 patients with established multiple sclerosis (MS); only 4 of whom had a history of acute optic neuritis. Optic nerve MRI was abnormal in 19 (76 %) and is thus useful in detecting subclinical disease. Optic nerve total lesion length and area on the STIR sequence was found to correlate significantly with prolongation of the VEP latency. This may reflect a predominantly demyelinating rather than inflammatory origin for the signal change in the optic nerve. (orig.) With 5 figs., 1 tab., 25 refs.

  5. [Visual evoked potentials produced by monocular flash stimuli in the cerebral cortex of the rabbit. I. Typography].

    Science.gov (United States)

    Pérez-Cobo, J C; Ruiz-Beramendi, M; Pérez-Arroyo, M

    1990-12-01

    The visually evoked potentials in the hemisphere contralateral to the stimulated eye in rabbit, can be described topographically as follows. While a positive wave (P1) begins forming in the anterior zones and in the V I binocular zone, the N0 wave, at times very large, is produced in a more occipital zone, which corresponds to the visual streak. Immediately afterwards, the positivity, P1, practically invades the whole of the hemisphere. After this, the N1 wave which is produced in the most posterior parts of the V I, begins forming. The whole phenomenon comes to an end when the P2 wave is generated in the most occipital zones.

  6. Theta Burst Stimulation of the Cerebellum Modifies the TMS-Evoked N100 Potential, a Marker of GABA Inhibition.

    Directory of Open Access Journals (Sweden)

    Allanah Harrington

    Full Text Available Theta burst stimulation (TBS of the cerebellum, a potential therapy for neurological disease, can modulate corticospinal excitability via the dentato-thalamo-cortical pathway, but it is uncertain whether its effects are mediated via inhibitory or facilitatory networks. The aim of this study was to investigate the effects of 30Hz cerebellar TBS on the N100 waveform of the TMS-evoked potential (TEP, a marker of intracortical GABAB-mediated inhibition. 16 healthy participants (aged 18-30 years; 13 right handed and 3 left handed received 30Hz intermittent TBS (iTBS, continuous TBS (cTBS or sham stimulation over the right cerebellum, in three separate sessions. The first 8 participants received TBS at a stimulus intensity of 80% of active motor threshold (AMT, while the remainder received 90% of AMT. Motor evoked potentials (MEP and TEP were recorded before and after each treatment, by stimulating the first dorsal interosseus area of the left motor cortex. Analysis of the 13 right handed participants showed that iTBS at 90% of AMT increased the N100 amplitude compared to sham and cTBS, without significantly altering MEP amplitude. cTBS at 80% of active motor threshold decreased the N100 amplitude and cTBS overall reduced resting MEP amplitude. The study demonstrates effects of 30Hz cerebellar TBS on inhibitory cortical networks that may be useful for treatment of neurological conditions associated with dysfunctional intracortical inhibition.

  7. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Zhang, Xin; Xie, Jun; Li, Yeping; Han, Chengcheng; Lili, Li; Wang, Jing [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Guang-Hua [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054 (China)

    2015-03-10

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method; Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.

  8. Convergence characteristics of two algorithms in non-linear stimulus artefact cancellation for electrically evoked potential enhancement.

    Science.gov (United States)

    Parsa, V; Parker, P; Scott, R

    1998-03-01

    Somatosensory evoked potentials (SEPs) are a sub-class of evoked potentials (EPs) that are very useful in diagnosing various neuromuscular disorders and in spinal cord and peripheral-nerve monitoring. Most often, the measurements of these signals are contaminated by stimulus-evoked artefact. Conventional stimulus-artifact (SA) reduction schemes are primarily hardware-based and rely on some form of input blanking during the SA phase. This procedure can result in partial SEP loss if the tail of the SA interferes with the SEP. Adaptive filters offer an attractive solution to this problem by iteratively reducing the SA waveform while leaving the SEP intact. Owing to the inherent non-linearities in the SA generation system, non-linear adaptive filters (NAFs) are most suitable. SA reduction using NAFs based on truncated second-order Volterra expansion series is investigated. The focus is on the performance of two main adaptation algorithms, the least mean square (LMS) and recursive least squares (RLS) algorithms, in the context of non-linear adaptive filtering. A comparison between the convergence and performance characteristics of these two algorithms is made by processing both simulated and experimental SA data. It is found that, in high artefact-to-noise ratio (ANR) SA cancellation, owing to the large eigenvalue spreads, the RLS-based NAF is more efficient than the LMS-based NAF. However, in low-ANR scenarios, the RLS- and LMS-based NAFs exhibit similar convergence properties, and the computational simplicity of the LMS-based NAFs makes them the preferred option.

  9. Simultaneous detection of P300 and steady-state visually evoked potentials for hybrid brain-computer interface.

    Science.gov (United States)

    Combaz, Adrien; Van Hulle, Marc M

    2015-01-01

    We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI. We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline. Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.

  10. Effects of continuous conditioning noise and light on the auditory- and visual-evoked potentials of the guinea pig.

    Science.gov (United States)

    Goksoy, Cuneyt; Demirtas, Serdar; Ates, Kahraman

    2005-11-02

    Neurophysiological studies aiming to explore how the brain integrates information from different brain regions are increasing in the literature. The aim of the present study is to explore intramodal (binaural, binocular) and intermodal (audio-visual) interactions in the guinea pig brain through the observation of changes in evoked potentials by generalized continuous background activity. Seven chronically prepared animals were used in the study and the recordings were made as they were awake. Epidural electrodes were implanted to the skulls by using stereotaxic methods. Continuous light for retinal or continuous white noise for cochlear receptors were used as continuous conditioning stimuli for generalized stimulation. To evoke auditory or visual potentials, click or flash were used as transient imperative stimuli. The study data suggest that (a) white noise applied to one ear modifies the response to click in the contralateral ear which is a binaural interaction; (b) continuous light applied to one eye modifies the response to flash applied to the contralateral eye which is interpreted as a binocular interaction; (c) regardless of the application side, white noise similarly modified the response to flash applied to the either eye connoting a nonspecific effect of white noise on vision, independent from spatial hearing mechanisms; (d) on the other hand, continuous light, in either eye, did not affect the response to click applied to any ear, reminding a 'one-way' interaction that continuous aural stimulation affects visual response.

  11. Effect of Sahaja yoga meditation on auditory evoked potentials (AEP) and visual contrast sensitivity (VCS) in epileptics.

    Science.gov (United States)

    Panjwani, U; Selvamurthy, W; Singh, S H; Gupta, H L; Mukhopadhyay, S; Thakur, L

    2000-03-01

    The effect of Sahaja yoga meditation on 32 patients with primary idiopathic epilepsy on regular and maintained antiepileptic medication was studied. The patients were randomly divided into 3 groups: group I practiced Sahaja Yoga meditation twice daily for 6 months under proper guidance; group II practiced postural exercises mimicking the meditation for the same duration; and group III was the control group. Visual Contrast Sensitivity (VCS), Auditory Evoked Potentials (AEP), Brainstem Auditory Evoked Potentials (BAEP), and Mid Latency Responses (MLR) were recorded initially (0 month) and at 3 and 6 months for each group. There was a significant improvement in VCS following meditation practice in group I participants. Na, the first prominent negative peak of MLR and Pa, the positive peak following Na did not register changes in latency. The Na-Pa amplitude of MLR also showed a significant increase. There were no significant changes in the absolute and interpeak latencies of BAEP. The reduced level of stress following meditation practice may make patients more responsive to specific stimuli. Sahaja Yoga meditation appears to bring about changes in some of the electrophysiological responses studied in epileptic patients.

  12. Cold saline injection attenuates motor-evoked potential in the spinal cord by cortical electrical stimulation in the dog.

    Science.gov (United States)

    Kumagai, Hajime; Sugawara, Yuji; Isaka, Mitsuhiro; Okada, Kenji; Orihashi, Kazumasa; Sueda, Taijiro

    2005-09-01

    Changes in the motor-evoked potential of the spinal cord with transcranial stimulation are monitored for spinal cord function during thoracoabdominal aortic aneurysm surgeries. We examined the effects of changes in motor-evoked potential with cold saline injected into the clamped segment of the aorta, and compared the effects to lidocaine and warm saline injection. Eighteen dogs were divided into three groups according to the injected agents: Warm saline group (37 degrees C, 20 ml), Cold saline group (4 degrees C, 20 ml), and Lidocaine group (5.0 mg/kg of lidocaine in 20 ml of warm saline), (n=6, each group). Changes in the peak-to-peak MEP amplitude and the indirect wave (I wave) amplitude were measured during aortic cross-clamping. In the peak-to-peak MEP amplitude, the cold saline and lidocaine groups attenuated to 80% of the control value but were not significantly changed. In the I wave amplitude, the cold saline group showed a significant attenuation 1 min after injection (psaline group. Attenuation of the I wave amplitude in the cold saline group was significantly larger than that in the lidocaine group (p=0.0003). Changes in the I wave amplitude appeared within 4 min in both the cold saline and lidocaine groups. Cold saline injection into the clamped segment of the aorta is a diagnostic procedure for determining presiding critical arteries in the segment without experiencing the pharmacological side effects observed with lidocaine injection.

  13. Endocannabinoids produced upon action potential firing evoke a Cl(-) current via type-2 cannabinoid receptors in the medial prefrontal cortex.

    Science.gov (United States)

    den Boon, Femke S; Chameau, Pascal; Houthuijs, Kas; Bolijn, Simone; Mastrangelo, Nicolina; Kruse, Chris G; Maccarrone, Mauro; Wadman, Wytse J; Werkman, Taco R

    2014-12-01

    The functional presence of type-2 cannabinoid receptors (CB2Rs) in layer II/III pyramidal neurons of the rat medial prefrontal cortex (mPFC) was recently demonstrated. In the present study, we show that the application of the endocannabinoids (eCBs) 2-arachidonoylglycerol (2-AG) and methanandamide [a stable analog of the eCB anandamide (AEA)] can activate CB2Rs of mPFC layer II/III pyramidal neurons, which subsequently induces a Cl(-) current. In addition, we show that action potential (AP) firing evoked by 20-Hz current injections results in an eCB-mediated opening of Cl(-) channels via CB2R activation. This AP-evoked synthesis of eCBs is dependent on the Ca(2+) influx through N-type voltage-gated calcium channels. Our results indicate that 2-AG is the main eCB involved in this process. Finally, we demonstrate that under physiologically relevant intracellular Cl(-) conditions, 20-Hz AP firing leads to a CB2R-dependent reduction in neuronal excitability. Altogether, our data indicate that eCBs released upon action potential firing can modulate, through CB2R activation, neuronal activity in the mPFC. We discuss how this may be a mechanism to prevent excessive neuronal firing.

  14. Sound-Evoked Biceps Myogenic Potentials Reflect Asymmetric Vestibular Drive to Spastic Muscles in Chronic Hemiparetic Stroke Survivors.

    Science.gov (United States)

    Miller, Derek M; Rymer, William Z

    2017-01-01

    Aberrant vestibular nuclear function is proposed to be a principle driver of limb muscle spasticity after stroke. We sought to determine whether altered cortical modulation of descending vestibulospinal pathways post-stroke could impact the excitability of biceps brachii motoneurons. Twelve chronic hemispheric stroke survivors aged 46-68 years were enrolled. Sound evoked biceps myogenic potentials (SEBMPs) were recorded from the spastic and contralateral biceps muscles using surface EMG electrodes. We assessed the impact of descending vestibulospinal pathways on biceps muscle activity and evaluated the relationship between vestibular function and the severity of spasticity. Spastic SEBMP responses were recorded in 11/12 subjects. Almost 60% of stroke subjects showed evoked responses solely on the spastic side. These data strongly support the idea that vestibular drive is asymmetrically distributed to biceps motoneuron pools in hemiparetic spastic stroke survivors. This abnormal vestibular drive is very likely to be a factor mediating the striking differences in motoneuron excitability between the clinically affected and clinically spared sides. This study extends our previous observations on vestibular nuclear changes following hemispheric stroke and potentially sheds light on the underlying mechanisms of post-stroke spasticity.

  15. A change in the parameters of P300 evoked potentials in relation to the degree of exacerbation of pain syndrome

    Directory of Open Access Journals (Sweden)

    A P Rachin

    2012-01-01

    Full Text Available In chronic pain, the state of suprasegmental brain structures (the cortex, limbic system, truncodiencephalic structures, which form the motivational-affective and cognitive components of pain behavior, actively affects pain afferentation as well. The purpose of the study was to comparatively analyze the parameters and topographic distribution of P300 cognitive evoked potential in patients with lower back pain. Sixty patients aged 22 to 60 years were examined. The authors made their clinical and neurological examinations, collected medical history data, and assessed back pain intensity by a visual analog scale. The findings were compared with the parameters of cognitive evoked potentials (the separating of P300 to count; keystroke in the recognition of significant stimuli; elaboration of a verbal and nonverbal visual stimulation protocol, by using emotionally significant stimuli. The processes of recognition and differentiation, those of directed attention, and the rate of information processing slowed down in patients with different stages of pain syndrome. The P300 separating procedure using the emotionally significant stimuli allows one to assess the specific features of chronization of pain syndromes and the presence of pain memory in the central nervous system of such patients. The estimation of P300 parameters over time or during treatment are of particular value for the optimization and evaluation of its efficiency.

  16. Action Potential-Evoked Calcium Release Is Impaired in Single Skeletal Muscle Fibers from Heart Failure Patients

    Science.gov (United States)

    DiFranco, Marino; Quiñonez, Marbella; Shieh, Perry; Fonarow, Gregg C.; Cruz, Daniel; Deng, Mario C.; Vergara, Julio L.; Middlekauff, Holly R.

    2014-01-01

    Background Exercise intolerance in chronic heart failure (HF) has been attributed to abnormalities of the skeletal muscles. Muscle function depends on intact excitation-contraction coupling (ECC), but ECC studies in HF models have been inconclusive, due to deficiencies in the animal models and tools used to measure calcium (Ca2+) release, mandating investigations in skeletal muscle from HF patients. The purpose of this study was to test the hypothesis that Ca2+ release is significantly impaired in the skeletal muscle of HF patients in whom exercise capacity is severely diminished compared to age-matched healthy volunteers. Methods and Findings Using state-of-the-art electrophysiological and optical techniques in single muscle fibers from biopsies of the locomotive vastus lateralis muscle, we measured the action potential (AP)-evoked Ca2+ release in 4 HF patients and 4 age-matched healthy controls. The mean peak Ca2+ release flux in fibers obtained from HF patients (10±1.2 µM/ms) was markedly (2.6-fold) and significantly (pfibers from healthy volunteers (28±3.3 µM/ms). This impairment in AP-evoked Ca2+ release was ubiquitous and was not explained by differences in the excitability mechanisms since single APs were indistinguishable between HF patients and healthy volunteers. Conclusions These findings prove the feasibility of performing electrophysiological experiments in single fibers from human skeletal muscle, and offer a new approach for investigations of myopathies due to HF and other diseases. Importantly, we have demonstrated that one step in the ECC process, AP-evoked Ca2+ release, is impaired in single muscle fibers in HF patients. PMID:25310188

  17. Action potential-evoked calcium release is impaired in single skeletal muscle fibers from heart failure patients.

    Directory of Open Access Journals (Sweden)

    Marino DiFranco

    Full Text Available Exercise intolerance in chronic heart failure (HF has been attributed to abnormalities of the skeletal muscles. Muscle function depends on intact excitation-contraction coupling (ECC, but ECC studies in HF models have been inconclusive, due to deficiencies in the animal models and tools used to measure calcium (Ca2+ release, mandating investigations in skeletal muscle from HF patients. The purpose of this study was to test the hypothesis that Ca2+ release is significantly impaired in the skeletal muscle of HF patients in whom exercise capacity is severely diminished compared to age-matched healthy volunteers.Using state-of-the-art electrophysiological and optical techniques in single muscle fibers from biopsies of the locomotive vastus lateralis muscle, we measured the action potential (AP-evoked Ca2+ release in 4 HF patients and 4 age-matched healthy controls. The mean peak Ca2+ release flux in fibers obtained from HF patients (10±1.2 µM/ms was markedly (2.6-fold and significantly (p<0.05 smaller than in fibers from healthy volunteers (28±3.3 µM/ms. This impairment in AP-evoked Ca2+ release was ubiquitous and was not explained by differences in the excitability mechanisms since single APs were indistinguishable between HF patients and healthy volunteers.These findings prove the feasibility of performing electrophysiological experiments in single fibers from human skeletal muscle, and offer a new approach for investigations of myopathies due to HF and other diseases. Importantly, we have demonstrated that one step in the ECC process, AP-evoked Ca2+ release, is impaired in single muscle fibers in HF patients.

  18. Direction-dependent spectral sensitivity and interaural spectral difference in a dolphin: evoked potential study.

    Science.gov (United States)

    Supin AYa; Popov, V V

    1993-06-01

    Sensitivity and interaural intensity difference (IID) dependence on sound frequency and direction was measured in an Amazon river dolphin Inia geoffrensis by recording the auditory nerve evoked response from the body surface. The maximal sensitivity in the horizontal plane was found when the sound direction was 5 degrees to 10 degrees ipsilateral to the recorded ear; the direction dependence of sensitivity was more pronounced at higher frequencies than at lower ones. The IID reached its peak at small azimuthal angles (7.5 degrees to 15 degrees) and higher sound frequencies (100 kHz), or at large azimuthal angles (30 degrees to 45 degrees) and lower sound frequencies (20 to 30 kHz). Each sound direction featured its specific pattern of spectral sensitivity and of interaural spectral difference. The interaural spectral difference fluctuated within a range of more than 20 dB depending on sound direction. The data indicate that interaural intensity as well as spectral difference may be cues for binaural localization of sound direction by dolphins.

  19. Tradeoff between User Experience and BCI Classification Accuracy with Frequency Modulated Steady-State Visual Evoked Potentials.

    Science.gov (United States)

    Dreyer, Alexander M; Herrmann, Christoph S; Rieger, Jochem W

    2017-01-01

    Steady-state visual evoked potentials (SSVEPs) have been widely employed for the control of brain-computer interfaces (BCIs) because they are very robust, lead to high performance, and allow for a high number of commands. However, such flickering stimuli often also cause user discomfort and fatigue, especially when several light sources are used simultaneously. Different variations of SSVEP driving signals have been proposed to increase user comfort. Here, we investigate the suitability of frequency modulation of a high frequency carrier for SSVEP-BCIs. We compared BCI performance and user experience between frequency modulated (FM) and traditional sinusoidal (SIN) SSVEPs in an offline classification paradigm with four independently flickering light-emitting diodes which were overtly attended (fixated). While classification performance was slightly reduced with the FM stimuli, the user comfort was significantly increased. Comparing the SSVEPs for covert attention to the stimuli (without fixation) was not possible, as no reliable SSVEPs were evoked. Our results reveal that several, simultaneously flickering, light emitting diodes can be used to generate FM-SSVEPs with different frequencies and the resulting occipital electroencephalography (EEG) signals can be classified with high accuracy. While the performance we report could be further improved with adjusted stimuli and algorithms, we argue that the increased comfort is an important result and suggest the use of FM stimuli for future SSVEP-BCI applications.

  20. Brainstem Evoked Potential Indices of Subcortical Auditory Processing After Mild Traumatic Brain Injury.

    Science.gov (United States)

    Vander Werff, Kathy R; Rieger, Brian

    The primary aim of this study was to assess subcortical auditory processing in individuals with chronic symptoms after mild traumatic brain injury (mTBI) by measuring auditory brainstem responses (ABRs) to standard click and complex speech stimuli. Consistent with reports in the literature of auditory problems after mTBI (despite normal-hearing thresholds), it was hypothesized that individuals with mTBI would have evidence of impaired neural encoding in the auditory brainstem compared to noninjured controls, as evidenced by delayed latencies and reduced amplitudes of ABR components. We further hypothesized that the speech-evoked ABR would be more sensitive than the click-evoked ABR to group differences because of its complex nature, particularly when recorded in a background noise condition. Click- and speech-ABRs were collected in 32 individuals diagnosed with mTBI in the past 3 to 18 months. All mTBI participants were experiencing ongoing injury symptoms for which they were seeking rehabilitation through a brain injury rehabilitation management program. The same data were collected in a group of 32 age- and gender-matched controls with no history of head injury. ABRs were recorded in both left and right ears for all participants in all conditions. Speech-ABRs were collected in both quiet and in a background of continuous 20-talker babble ipsilateral noise. Peak latencies and amplitudes were compared between groups and across subgroups of mTBI participants categorized by their behavioral auditory test performance. Click-ABR results were not significantly different between the mTBI and control groups. However, when comparing the control group to only those mTBI subjects with measurably decreased performance on auditory behavioral tests, small differences emerged, including delayed latencies for waves I, III, and V. Similarly, few significant group differences were observed for peak amplitudes and latencies of the speech-ABR when comparing at the whole group level

  1. Least-squares (LS) deconvolution of a series of overlapping cortical auditory evoked potentials: a simulation and experimental study

    Science.gov (United States)

    Bardy, Fabrice; Van Dun, Bram; Dillon, Harvey; Cowan, Robert

    2014-08-01

    Objective. To evaluate the viability of disentangling a series of overlapping ‘cortical auditory evoked potentials’ (CAEPs) elicited by different stimuli using least-squares (LS) deconvolution, and to assess the adaptation of CAEPs for different stimulus onset-asynchronies (SOAs). Approach. Optimal aperiodic stimulus sequences were designed by controlling the condition number of matrices associated with the LS deconvolution technique. First, theoretical considerations of LS deconvolution were assessed in simulations in which multiple artificial overlapping responses were recovered. Second, biological CAEPs were recorded in response to continuously repeated stimulus trains containing six different tone-bursts with frequencies 8, 4, 2, 1, 0.5, 0.25 kHz separated by SOAs jittered around 150 (120-185), 250 (220-285) and 650 (620-685) ms. The control condition had a fixed SOA of 1175 ms. In a second condition, using the same SOAs, trains of six stimuli were separated by a silence gap of 1600 ms. Twenty-four adults with normal hearing (EEG data. The use of rapid presentation and LS deconvolution did not however, allow the recovered CAEPs to have a higher signal-to-noise ratio than for slowly presented stimuli. The LS deconvolution technique enables the analysis of a series of overlapping responses in EEG. Significance. LS deconvolution is a useful technique for the study of adaptation mechanisms of CAEPs for closely spaced stimuli whose characteristics change from stimulus to stimulus. High-rate presentation is necessary to develop an understanding of how the auditory system encodes natural speech or other intrinsically high-rate stimuli.

  2. The effect of a concurrent cognitive task on cortical potentials evoked by unpredictable balance perturbations

    Directory of Open Access Journals (Sweden)

    Staines W Richard

    2004-05-01

    Full Text Available Abstract Background Although previous studies suggest that postural control requires attention and other cognitive resources, the central mechanisms responsible for this relationship remain unclear. To address this issue, we examined the effects of altered attention on cortical activity and postural responses following mechanical perturbations to upright stance. We hypothesized that cortical activity would be attenuated but not delayed when mechanical perturbations were applied during a concurrent performance of a cognitive task (i.e. when attention was directed away from the perturbation. We also hypothesized that these cortical changes would be accompanied by alterations in the postural response, as evidenced by increases in the magnitude of anteroposterior (AP centre of pressure (COP peak displacements and tibialis anterior (TA muscle activity. Healthy young adults (n = 7 were instructed to continuously track (cognitive task or not track (control task a randomly moving visual target using a hand-held joystick. During each of these conditions, unpredictable translations of a moving floor evoked cortical and postural responses. Scalp-recorded cortical activity, COP, and TA electromyographic (EMG measures were collected. Results Results revealed a significant decrease in the magnitude of early cortical activity (the N1 response, the first negative peak after perturbation onset during the tracking task compared to the control condition. More pronounced AP COP peak displacements and EMG magnitudes were also observed for the tracking task and were possibly related to changes in the N1 response. Conclusion Based on previous notions that the N1 response represents sensory processing of the balance disturbance, we suggest that the attenuation of the N1 response is an important central mechanism that may provide insight into the relationship between attention and postural control.

  3. Potential role of blood dendritic cells in elicitation phase of contact hypersensitivity response – preliminary study

    Directory of Open Access Journals (Sweden)

    Aleksandra Lesiak

    2016-06-01

    Full Text Available Introduction . In contrast to our broad knowledge about the role of dendritic cells in the sensitization phase of the contact hypersensitivity response (CHS, very little is known about their function in the effector phase. The pathophysiological mechanism of blood dendritic cells’ participation in the inflammatory response in CHS is an emerging subject of study and needs to be scrutinized. Objective . To assess the presence and type of human blood dendritic cells (BDC – plasmacytoid DC (pDC and myeloid DC (mDC – at the elicitation site of CHS. Material and methods. The study group consisted of 25 healthy volunteers with a mean age of 22.3 ±6.1. Each patient before the trial was sensitized with DPCP, and after 3 weeks skin biopsies were taken from the elicitation site and were immunohistochemically stained with monoclonal mouse IgG1 antibodies against blood dendritic cell antigens (BDCA. Results . Skin biopsies were divided into two groups: group 1 where the CHS score was assessed as 0 (no reaction; n = 7 and group 2 where the CHS score was assessed as 1 (any response noted; n = 18. Compared to group 1, group 2 had a significantly lower percentage of pDC (60% vs. 15% respectively in the inflammatory infiltrate site. We also observed that the percentage of mDC was higher in group 2 compared to group 1, although this result was not statistically significant. Conclusions . Our findings provide some data on composition of inflammatory infiltrate in the elicitation phase of CHS. We suggest that the imbalance between pDC and mDC may be a key to understanding the effector phase of CHS.

  4. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Hung, Yeung Sam; Hu, Li; Huang, Gan; Hu, Yong; Zhang, Zhiguo

    2014-12-01

    This study aims (1) to develop an automated and fast approach for detecting visual evoked potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a real-time and high-performance brain-computer interface (BCI) system. The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter and wavelet filtering (WF) a temporal-spectral filter to jointly enhance the signal-to-noise ratio (SNR) of single-trial VEPs. The performance of the joint spatial-temporal-spectral filtering approach was assessed in a four-command VEP-based BCI system. The offline classification accuracy of the BCI system was significantly improved from 67.6±12.5% (raw data) to 97.3±2.1% (data filtered by CSP and WF). The proposed approach was successfully implemented in an online BCI system, where subjects could make 20 decisions in one minute with classification accuracy of 90%. The proposed single-trial detection approach is able to obtain robust and reliable VEP waveform in an automatic and fast way and it is applicable in VEP based online BCI systems. This approach provides a real-time and automated solution for single-trial detection of evoked potentials or event-related potentials (EPs/ERPs) in various paradigms, which could benefit many applications such as BCI and intraoperative monitoring. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Early and late activity in somatosensory cortex reflects changes in bodily self-consciousness: an evoked potential study.

    Science.gov (United States)

    Aspell, J E; Palluel, E; Blanke, O

    2012-08-02

    How can we investigate the brain mechanisms underlying self-consciousness? Recent behavioural studies on multisensory bodily perception have shown that multisensory conflicts can alter bodily self-consciousness such as in the "full body illusion" (FBI) in which changes in self-identification with a virtual body and tactile perception are induced. Here we investigated whether experimental changes in self-identification during the FBI are accompanied by activity changes in somatosensory cortex by recording somatosensory-evoked potentials (SEPs). To modulate self-identification, participants were filmed by a video camera from behind while their backs were stroked, either synchronously (illusion condition) or asynchronously (control condition) with respect to the stroking seen on their virtual body. Tibial nerve SEPs were recorded during the FBI and analysed using evoked potential (EP) mapping. Tactile mislocalisation was measured using the crossmodal congruency task. SEP mapping revealed five sequential periods of brain activation during the FBI, of which two differed between the illusion condition and the control condition. Activation at 30-50 ms (corresponding to the P40 component) in primary somatosensory cortex was stronger in the illusion condition. A later activation at ∼110-200 ms, likely originating in higher-tier somatosensory regions in parietal cortex, was stronger and lasted longer in the control condition. These data show that changes in bodily self-consciousness modulate activity in primary and higher-tier somatosensory cortex at two distinct processing steps. We argue that early modulations of primary somatosensory cortex may be a consequence of (1) multisensory integration of synchronous vs. asynchronous visuo-tactile stimuli and/or (2) differences in spatial attention (to near or far space) between the conditions. The later activation in higher-tier parietal cortex (and potentially other regions in temporo-parietal and frontal cortex) likely

  6. Auditory- and Vestibular-Evoked Potentials Correlate with Motor and Non-Motor Features of Parkinson’s Disease

    Science.gov (United States)

    Shalash, Ali Soliman; Hassan, Dalia Mohamed; Elrassas, Hanan Hani; Salama, Mohamed Mosaad; Méndez-Hernández, Edna; Salas-Pacheco, José M.; Arias-Carrión, Oscar

    2017-01-01

    Degeneration of several brainstem nuclei has been long related to motor and non-motor symptoms (NMSs) of Parkinson’s disease (PD). Nevertheless, due to technical issues, there are only a few studies that correlate that association. Brainstem auditory-evoked potential (BAEP) and vestibular-evoked myogenic potential (VEMP) responses represent a valuable tool for brainstem assessment. Here, we investigated the abnormalities of BAEPs, ocular VEMPs (oVEMPs), and cervical VEMPs (cVEMPs) in patients with PD and its correlation to the motor and NMSs. Fifteen patients diagnosed as idiopathic PD were evaluated by Unified Parkinson’s Disease Rating Scale and its subscores, Hoehn and Yahr scale, Schwab and England scale, and Non-Motor Symptoms Scale. PD patients underwent pure-tone, speech audiometry, tympanometry, BAEP, oVEMPs, and cVEMPs, and compared to 15 age-matched control subjects. PD subjects showed abnormal BAEP wave morphology, prolonged absolute latencies of wave V and I–V interpeak latencies. Absent responses were the marked abnormality seen in oVEMP. Prolonged latencies with reduced amplitudes were seen in cVEMP responses. Rigidity and bradykinesia were correlated to the BAEP and cVEMP responses contralateral to the clinically more affected side. Contralateral and ipsilateral cVEMPs were significantly correlated to sleep (p = 0.03 and 0.001), perception (p = 0.03), memory/cognition (p = 0.025), and urinary scores (p = 0.03). The oVEMP responses showed significant correlations to cardiovascular (p = 0.01) and sexual dysfunctions (p = 0.013). PD is associated with BAEP and VEMP abnormalities that are correlated to the motor and some non-motor clinical characteristics. These abnormalities could be considered as potential electrophysiological biomarkers for brainstem dysfunction and its associated motor and non-motor features. PMID:28289399

  7. Giant early components of somatosensory evoked potentials to tibial nerve stimulation in cortical myoclonus

    Directory of Open Access Journals (Sweden)

    Francesca Anzellotti

    2016-01-01

    SEPs wave shapes were identified on the basis of polarity-latency components (e.g. P15-N20-P25 as defined by earlier studies and guidelines. At EEG recording, the SEP giant component did not appear in the latency range of the first cortical component for median nerve SEP (N20, but appeared instead in the range of the P37 tibial nerve SEP, which is currently identified as the first cortical component elicited by tibial nerve stimuli. Our MEG and EEG SEPs recordings also showed that components in the latency range of P37 were preceded by other cortical components. These findings suggest that lower limb P37 does not correspond to upper limb N20. MEG results confirmed that giant SEFs are the second component from both tibial (N43m-P43m and median (N27m-P27m nerve stimulation. MEG dipolar sources of these giant components were located in the primary sensory and motor area.

  8. Comparison of the effects of ketamine-midazolam with those of fentanyl-midazolam on cortical somatosensory evoked potentials during major spine surgery.

    Science.gov (United States)

    Langeron, O; Lille, F; Zerhouni, O; Orliaguet, G; Saillant, G; Riou, B; Coriat, P

    1997-06-01

    Cortical somatosensory evoked potentials (CSEP) allow monitoring of spinal cord function during surgery. Ketamine has been shown to enhance CSEP amplitude, but there is no previous study comparing its effects with those of other anaesthetic regimens. Therefore, we have compared the effects of ketamine with those of fentanyl, both combined with midazolam, on CSEP monitoring during major spine surgery. Twenty patients with normal preoperative CSEP were allocated randomly to a ketamine or fentanyl group. Anaesthesia was induced with ketamine 3 mg kg-1 or fentanyl 6 micrograms kg-1 i.v., and midazolam 0.3 mg kg-1 i.v in both groups, and maintained with continuous i.v infusion of ketamine 2 mg kg-1 h-1 or fentanyl 3 micrograms kg-1 h-1, combined in both groups with midazolam 0.15 mg kg-1 h-1 and 60% nitrous oxide in oxygen. CSEP were elicited by tibial posterior nerve stimulation and measured P1 and N1 latencies, and P1-N1 amplitude, CSEP were recorded before and after induction, at 15 min, 1 and 2 h after induction, during skin closure and after removal of nitrous oxide. Both groups were comparable in characteristics, duration of surgery, mean arterial pressure and temperature. CSEP latencies were not significantly affected in either group. CSEP amplitude decreased significantly over time in the fentanyl group (from mean 2.02 (SEM 0.41) to 0.95 (0.17) microV, P obtaining the first voluntary postoperative motor response was significantly greater in the ketamine group (170 (54) vs 55 (17) min, P obtain reliable CSEP during major spine surgery, and there were no significant difference between these two anaesthetic regimens for CSEP monitoring, but a longer delay for voluntary postoperative motor assessment was observed in the ketamine group.

  9. Vestibular Evoked Myogenic Potential (VEMP Triggered by Galvanic Vestibular Stimulation (GVS: A Promising Tool to Assess Spinal Cord Function in Schistosomal Myeloradiculopathy.

    Directory of Open Access Journals (Sweden)

    Júlia Fonseca de Morais Caporali

    2016-04-01

    Full Text Available Schistosomal myeloradiculopathy (SMR, the most severe and disabling ectopic form of Schistosoma mansoni infection, is caused by embolized ova eliciting local inflammation in the spinal cord and nerve roots. The treatment involves the use of praziquantel and long-term corticotherapy. The assessment of therapeutic response relies on neurological examination. Supplementary electrophysiological exams may improve prediction and monitoring of functional outcome. Vestibular evoked myogenic potential (VEMP triggered by galvanic vestibular stimulation (GVS is a simple, safe, low-cost and noninvasive electrophysiological technique that has been used to test the vestibulospinal tract in motor myelopathies. This paper reports the results of VEMP with GVS in patients with SMR.A cross-sectional comparative study enrolled 22 patients with definite SMR and 22 healthy controls that were submitted to clinical, neurological examination and GVS. Galvanic stimulus was applied in the mastoid bones in a transcranial configuration for testing VEMP, which was recorded by electromyography (EMG in the gastrocnemii muscles. The VEMP variables of interest were blindly measured by two independent examiners. They were the short-latency (SL and the medium-latency (ML components of the biphasic EMG wave.VEMP showed the components SL (p = 0.001 and ML (p<0.001 delayed in SMR compared to controls. The delay of SL (p = 0.010 and of ML (p = 0.020 was associated with gait dysfunction.VEMP triggered by GVS identified alterations in patients with SMR and provided additional functional information that justifies its use as a supplementary test in motor myelopathies.

  10. Transcranial motor evoked potential monitoring outcome in the high-risk brain and spine surgeries: Correlation of clinical and neurophysiological data - An Indian perspective

    Directory of Open Access Journals (Sweden)

    Poornima Amit Shah

    2013-01-01

    Full Text Available Objective: The objective of this study is to assess the safety, feasibility and clinical value of transcranial motor evoked potential (MEP monitoring by electrical stimulation. Setting: Clinical neurophysiology department of tertiary reach hospital. Materials and Methods: MEP monitoring was attempted in 44 "high risk" patients. Intraoperative surgical, anesthesia and neurophysiological findings were documented prospectively. MEP monitoring results were correlated with motor outcome. Results: The success for reliable MEP recording from the lower limbs was 75%. Incidence of new permanent post-operative motor deficit was zero. Nearly, 76.5% of the cases (13 out of 17 cases who showed unobtainable and unstable MEP outcome had lesion location in the spine as compared with 23.5% (4 out of 17 cases that had lesion location in the brain. Chi-square test demonstrated a statistically significant difference between these two groups (P = 0.0020. Out of these 13 spine surgery cases, 8 (62% were operated for deformity. Seven out of 12 (60% patients less than 12 years of age had a poor MEP monitoring outcome suggesting that extremes of age and presence of a spine deformity may be associated with a lesser incidence of successful MEP monitoring. No complications related to the repetitive transcranial electrical stimulation for eliciting MEP were observed. Conclusion: MEP monitoring is safe. The protocol used in this study is simple, feasible for use and has a fairly high success rate form the lower limbs. Pediatric age group and spine lesions, particularly deformities have an adverse effect on stable MEP recording.

  11. Orientation-modulated attention effect on visual evoked potential: Application for PIN system using brain-computer interface.

    Science.gov (United States)

    Wilaiprasitporn, Theerawit; Yagi, Tohru

    2015-01-01

    This research demonstrates the orientation-modulated attention effect on visual evoked potential. We combined this finding with our previous findings about the motion-modulated attention effect and used the result to develop novel visual stimuli for a personal identification number (PIN) application based on a brain-computer interface (BCI) framework. An electroencephalography amplifier with a single electrode channel was sufficient for our application. A computationally inexpensive algorithm and small datasets were used in processing. Seven healthy volunteers participated in experiments to measure offline performance. Mean accuracy was 83.3% at 13.9 bits/min. Encouraged by these results, we plan to continue developing the BCI-based personal identification application toward real-time systems.

  12. Visual Evoked Potentials to Light Flashes in Captive Rhesus Monkeys: A Study Reflecting Cerebral Cortical Activity and Brain Maturation

    Directory of Open Access Journals (Sweden)

    S.A. Solís-Chávez

    2014-01-01

    Full Text Available Visual evoked potentials (VEPs are useful electrophysiological diagnostic tools for evaluating retinal response of the visual cortex and detecting its functional integrity in humans and animals. To analyze the VEPs and physiologic response of the visual pathway of a random population of captive-bred monkeys of the Macaca mulatta species throughout different physiologic stages after stimulation with stroboscopic light flashes. In this study we used 20 non-human primates (M. mulatta, 10 males and 10 females, divided into five age-dependant cohorts of 2 males and 2 females. Two replicable negative waveforms and one positive were recorded, as reliable indicators of electrical conductivity at specific anatomical nuclei of the visual pathways. Statistically significant differences were primarily observed in group 1 when compared against the remaining groups for the three evaluated waveforms. Waveform morphology characteristically presented steady deviations related to ontogenetic development of the studied population.

  13. Comparison of clinical, magnetic resonance and evoked potentials data in a case of valproic-acid-related hyperammonemic coma

    Energy Technology Data Exchange (ETDEWEB)

    Hantson, Philippe [Universite Catholique de Louvain, Department of Intensive Care, Cliniques Saint-Luc, Brussels (Belgium); Grandin, Cecile; Duprez, Thierry [Universite Catholique de Louvain, Department of Neuroradiology, Cliniques Saint-Luc, Brussels (Belgium); Nassogne, Marie-Cecile [Universite Catholique de Louvain, Department of Pediatric Neurology, Cliniques Saint-Luc, Brussels (Belgium); Guerit, Jean-Michel [Universite Catholique de Louvain, Laboratory of Neurophysiology, Cliniques Saint-Luc, Brussels (Belgium)

    2005-01-01

    Magnetic resonance (MR) multimodality evoked potentials (MEPs) and clinical findings were correlated in a 47-year-old epileptic man in whom parenteral valproic acid (VPA) therapy induced severe comatose hyperammonemic encephalopathy without biological signs of hepatotoxicity (or hepatocytic dysfunction). Although the plasma VPA level remained within a normal therapeutic range, the ammoniemia increased to a toxic peak level at 411 {mu}mol/l 24 h after symptom onset, requiring VPA therapy discontinuation. Brain MR monitoring demonstrated early cytotoxic edema evolving into delayed vasogenic edema and final brain atrophy. Concomitantly to abnormalities within the brainstem on MR images, an increase in brainstem conduction at MEPs and clinical disturbance of brainstem reflexes were observed at the initial phase of the disease course. Later, the resolution of the MR and MEPs abnormalities paralleled the clinical recovery of the reflexes. (orig.)

  14. Ganglioside with nerve growth factor for the recovery of extremity function following spinal cord injury and somatosensory evoked potential.

    Science.gov (United States)

    Zhai, H-W; Gong, Z-K; Sun, J; Chen, W; Zhang, M; Zhou, J-J; Zheng, B

    2015-06-01

    To investigate the effect ganglioside with nerve growth factor on the recovery of extremity functionality following spinal cord injury and somatosensory evoked potential. A total of 62 patients with spinal cord injury admitted to our hospital from February 2012 to October 2013 were selected and randomized to treatment (N = 31) and control groups (N = 31). The combination of systematic rehabilitation training and GM-1 intervention were prescribed to patients in the control group, while an additional intervention of mNGF (mouse nerve growth factor) was prescribed to patients in the treatment group. All patients were subject to Functional Independence Measure (FIM), Modified Barthel Index (MBI) and P- and N- wave latency of bilateral lower extremities by SEP method evaluations at 3 months before and after the intervention. Three months after the intervention, the FIM and MBI scores improved significantly in both groups, with significant recovery in the P- and N-wave latencies. (p efficacy and accurately reflect changes in neurological function.

  15. Pain Processing and Vegetative Dysfunction in Fibromyalgia: A Study by Sympathetic Skin Response and Laser Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Marina de Tommaso

    2017-01-01

    Full Text Available Background. A dysfunction of pain processing at central and peripheral levels was reported in fibromyalgia (FM. We aimed to correlate laser evoked potentials (LEPs, Sympathetic Skin Response (SSR, and clinical features in FM patients. Methods. Fifty FM patients and 30 age-matched controls underwent LEPs and SSR by the right hand and foot. The clinical evaluation included FM disability (FIQ and severity scores (WPI, anxiety (SAS and depression (SDS scales, and questionnaires for neuropathic pain (DN4. Results. The LEP P2 latency and amplitude and the SSR latency were increased in FM group. This latter feature was more evident in anxious patients. The LEPs habituation was reduced in FM patients and correlated to pain severity scores. In a significant number of patients (32% with higher DN4 and FIQ scores, SSR or LEP responses were absent. Conclusions. LEPs and SSR might contribute to clarifying the peripheral and central nervous system involvement in FM patients.

  16. Bypass or not? Adjustment of surgical strategies according to motor evoked potential changes in large middle cerebral artery aneurysm surgery.

    Science.gov (United States)

    Chen, Liang; Lang, Liqin; Zhou, Liangfu; Song, Donglei; Mao, Ying

    2012-02-01

    To report the use of neuroelectrophysiologic monitoring to alter the course in aneurysm surgery to minimize postoperative infarction and bypass-related adverse events. Two patients with large middle cerebral artery (MCA) aneurysms were admitted to the authors' hospital. Direct clipping seemed to be difficult, and postoperative paralysis was not rare in the authors' experience owing to prolonged temporal occlusion of the parent artery. Balloon test occlusion (BTO) was positive in one patient, who developed paralysis and aphasia 3 minutes after balloon occlusion of the feeding M1 artery. A bypass procedure seemed to be inevitable in both patients. Motor evoked potentials (MEPs) and sensory evoked potentials (SEPs) were used for monitoring during the operation. For the patient with a positive BTO result, MEP waves did not change until 17 minutes after temporary clip placement. The aneurysm was clipped, and the occlusion time was 24 minutes. MEP waves recovered quickly after reperfusion. In the other patient, there were early changes in MEP waves after temporary clipping. After bypass construction from the temporal artery to the inferior M2 trunk, the time window of safe occlusion was prolonged to 7-8 minutes. Both the aneurysm and the bypassed branch were obliterated, and the clip reconstruction was done to preserve the flow from M1 to the superior M2 trunk. Permanent postoperative disability did not occur in either patient. Intraoperative physiologic monitoring is a complementary method to preoperative BTO to evaluate the window of safe occlusion with high reliability. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Flash visual evoked potentials in patients with periventricular leucomalacia in children less than 1 year of age

    Directory of Open Access Journals (Sweden)

    Jitendra Jethani

    2013-01-01

    Full Text Available Background and Aim: Children with periventricular leucomalacia (PVL are known to have visual impairment of various forms starting from reduced vision, field defects, congnitive problems, and problems with hand eye coordination. There is very scant data/literature on the visual evoked potentials (VEPs at an early age in children with PVL. We did a study to evaluate the flash visual evoked potentials (fVEPs in children with PVL less than 1 year of age. Materials and Methods: A total of nine children diagnosed as having PVL on magnetic resonance imaging were included in the study. The mean age was 9.7μ 3.5 months. All children underwent handheld fVEPs under sedation at two different flash frequencies 1.4 and 8 Hz. Results: The mean latency of N1 and P1 on stimulation with 1.4 Hz was 47.9μ 15.2 and 77.7μ 26.0 ms, respectively. However, on stimulation with 8 Hz the mean latency of N1 and P1 was 189.8μ 25.6 and 238.4μ 33.6 ms, respectively. The mean amplitude with 1.4 Hz and 8 stimulation frequency was 5.6μ 4.5 and 5.59μ 3 mV, respectively. Conclusion: We have found for the first time that there is a change in the latency and the delay occurs at 8 Hz frequency but not at 1.4 Hz. We also conclude that amplitudes by fVEPs may be normal even in presence of periventricular changes. The amplitudes of fVEPs are not reliable in children with PVL.

  18. Pure phase-locking of beta/gamma oscillation contributes to the N30 frontal component of somatosensory evoked potentials

    Directory of Open Access Journals (Sweden)

    Leroy Axelle

    2007-09-01

    Full Text Available Abstract Background Evoked potentials have been proposed to result from phase-locking of electroencephalographic (EEG activities within specific frequency bands. However, the respective contribution of phasic activity and phase resetting of ongoing EEG oscillation remains largely debated. We here applied the EEGlab procedure in order to quantify the contribution of electroencephalographic oscillation in the generation of the frontal N30 component of the somatosensory evoked potentials (SEP triggered by median nerve electrical stimulation at the wrist. Power spectrum and intertrial coherence analysis were performed on EEG recordings in relation to median nerve stimulation. Results The frontal N30 component was accompanied by a significant phase-locking of beta/gamma oscillation (25–35 Hz and to a lesser extent of 80 Hz oscillation. After the selection in each subject of the trials for which the power spectrum amplitude remained unchanged, we found pure phase-locking of beta/gamma oscillation (25–35 Hz peaking about 30 ms after the stimulation. Transition across trials from uniform to normal phase distribution revealed temporal phase reorganization of ongoing 30 Hz EEG oscillations in relation to stimulation. In a proportion of trials, this phase-locking was accompanied by a spectral power increase peaking in the 30 Hz frequency band. This corresponds to the complex situation of 'phase-locking with enhancement' in which the distinction between the contribution of phasic neural event versus EEG phase resetting is hazardous. Conclusion The identification of a pure phase-locking in a large proportion of the SEP trials reinforces the contribution of the oscillatory model for the physiological correlates of the frontal N30. This may imply that ongoing EEG rhythms, such as beta/gamma oscillation, are involved in somatosensory information processing.

  19. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    Science.gov (United States)

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  20. Gap prepulse inhibition and auditory brainstem evoked potentials as objective measures for tinnitus in guinea pigs.

    Directory of Open Access Journals (Sweden)

    Susanne eDehmel

    2012-05-01

    Full Text Available Tinnitus or ringing of the ears is a subjective phantom sensation necessitating behavioral models that objectively demonstrate the existence and quality of the tinnitus sensation. The gap detection test uses the acoustic startle response elicited by loud noise pulses and its gating or suppression by preceding sub-startling prepulses. Gaps in noise bands serve as prepulses, assuming that ongoing tinnitus masks the gap and results in impaired gap detection. This test has shown its reliability in rats, mice, and gerbils. No data exists for the guinea pig so far, although gap detection is similar across mammals and the acoustic startle response is a well-established tool in guinea pig studies of psychiatric disorders and in pharmacological studies. Here we investigated the startle behavior and prepulse inhibition (PPI of the guinea pig and showed that guinea pigs have a reliable startle response that can be suppressed by 15 ms gaps embedded in narrow noise bands preceding the startle noise pulse. After recovery of auditory brainstem response (ABR thresholds from a unilateral noise over-exposure centered at 7 kHz, guinea pigs showed diminished gap-induced reduction of the startle response in frequency bands between 8 and 18 kHz. This suggests the development of tinnitus in frequency regions that showed a temporary threshold shift (TTS after noise over-exposure. Changes in discharge rate and synchrony, two neuronal correlates of tinnitus, should be reflected in altered ABR waveforms, which would be useful to objectively detect tinnitus and its localization to auditory brainstem structures. Therefore we analyzed latencies and amplitudes of the first five ABR waves at suprathreshold sound intensities and correlated ABR abnormalities with the results of the behavioral tinnitus testing. Early ABR wave amplitudes up to N3 were increased for animals with tinnitus possibly stemming from hyperactivity and hypersynchrony underlying the tinnitus percept.

  1. Steady-state visual evoked potentials can be explained by temporal superposition of transient event-related responses.

    Directory of Open Access Journals (Sweden)

    Almudena Capilla

    Full Text Available BACKGROUND: One common criterion for classifying electrophysiological brain responses is based on the distinction between transient (i.e. event-related potentials, ERPs and steady-state responses (SSRs. The generation of SSRs is usually attributed to the entrainment of a neural rhythm driven by the stimulus train. However, a more parsimonious account suggests that SSRs might result from the linear addition of the transient responses elicited by each stimulus. This study aimed to investigate this possibility. METHODOLOGY/PRINCIPAL FINDINGS: We recorded brain potentials elicited by a checkerboard stimulus reversing at different rates. We modeled SSRs by sequentially shifting and linearly adding rate-specific ERPs. Our results show a strong resemblance between recorded and synthetic SSRs, supporting the superposition hypothesis. Furthermore, we did not find evidence of entrainment of a neural oscillation at the stimulation frequency. CONCLUSIONS/SIGNIFICANCE: This study provides evidence that visual SSRs can be explained as a superposition of transient ERPs. These findings have critical implications in our current understanding of brain oscillations. Contrary to the idea that neural networks can be tuned to a wide range of frequencies, our findings rather suggest that the oscillatory response of a given neural network is constrained within its natural frequency range.