WorldWideScience

Sample records for evoked electrophysiological responses

  1. Purinoceptors Evoke Different Electrophysiological Responses in Pancreatic Ducts

    DEFF Research Database (Denmark)

    Hede, S E; Amstrup, Jan; Christoffersen, Bettina C

    1999-01-01

    , intracellular Ca(2+) and pH measurements, and reverse transcription-polymerase chain reaction (RT-PCR) analysis. The data show two types of purinoceptors and cellular responses. UTP and ATP produced large Ca(2+) transients, a decrease in intracellular pH, 8-10-mV depolarization of the membrane voltage......, and a decrease in the whole-cell conductance. The membrane effects were due to closure of K(+) channels, as confirmed by dependence on extracellular K(+). UTP/ATP effects could be associated with P2Y(2) purinoceptors, and RT-PCR revealed mRNAs for P2Y(2) and P2Y(4) receptors. On the other hand, 2', 3'-O-4......-benzoylbenzoyl-ATP induced Ca(2+) influx and approximately 20-mV depolarization of the membrane voltage with a concomitant increase in the whole-cell conductance. These effects were dependent on extracellular Na(+), not Cl(-), indicating opening of cation channels associated with P2X(7) purinoceptors. RT...

  2. BAER - brainstem auditory evoked response

    Science.gov (United States)

    ... auditory potentials; Brainstem auditory evoked potentials; Evoked response audiometry; Auditory brainstem response; ABR; BAEP ... Normal results vary. Results will depend on the person and the instruments used to perform the test.

  3. Brain stem auditory evoked responses in human infants and adults

    Science.gov (United States)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  4. Electrophysiological responses of the mouse retina to 12C ions.

    Science.gov (United States)

    Sannita, Walter G; Peachey, Neal S; Strettoi, Enrica; Ball, Sherry L; Belli, Francesco; Bidoli, Vittorio; Carozzo, Simone; Casolino, Marco; Di Fino, Luca; Picozza, Piergiorgio; Pignatelli, Vincenzo; Rinaldi, Adele; Saturno, Moreno; Schardt, Dieter; Vazquez, Marcelo; Zaconte, Veronica; Narici, Livio

    2007-04-18

    Phosphenes ("light flashes") have been reported by most astronauts on space missions and by healthy subjects whose eyes were exposed to ionizing radiation in early experiments in particle accelerators. The conditions of occurrence suggested retinal effects of heavy ions. To develop an in vivo animal model, we irradiated the eyes of anesthetized wild-type mice with repeated bursts of 12C ions delivered under controlled conditions in accelerator. 12C ions evoked electrophysiological retinal mass responses and activated the visual system as indicated by responses recorded from the visual cortex. No retinal immunohistological damage was detected. Mice proved a suitable animal model to study radiation-induced phosphenes in vivo and our findings are consistent with an origin of phosphenes in radiation activating the retina.

  5. Somatosensory evoked response: application in neurology

    Directory of Open Access Journals (Sweden)

    Carlos A. M. Guerreiro

    1982-03-01

    Full Text Available One technique used for short-latency somatosensory evoked response (SER is described. SER following nerve stimulation is a unique non-invasive, clinical test used to evaluate the somatosensory pathways. It tests the physiological function of the median nerve, the brachial plexus, the C6-7 cervical roots, cervical spinal cord, the cuneate nuclei, the medial lemniscus, the thalamus, and the contralateral sensory cortex. It has been shown to be a reliable and useful clinical test partiicularly in multiple sclerosis and comatose patients. The promising technique of SER following peroneal nerve stimulation is mentioned.

  6. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  7. Bayesian analysis of MEG visual evoked responses

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, D.M.; George, J.S.; Wood, C.C.

    1999-04-01

    The authors developed a method for analyzing neural electromagnetic data that allows probabilistic inferences to be drawn about regions of activation. The method involves the generation of a large number of possible solutions which both fir the data and prior expectations about the nature of probable solutions made explicit by a Bayesian formalism. In addition, they have introduced a model for the current distributions that produce MEG and (EEG) data that allows extended regions of activity, and can easily incorporate prior information such as anatomical constraints from MRI. To evaluate the feasibility and utility of the Bayesian approach with actual data, they analyzed MEG data from a visual evoked response experiment. They compared Bayesian analyses of MEG responses to visual stimuli in the left and right visual fields, in order to examine the sensitivity of the method to detect known features of human visual cortex organization. They also examined the changing pattern of cortical activation as a function of time.

  8. [Electrophysiological characterisation of envelope-following responses].

    Science.gov (United States)

    Mijares Nodarse, Eleina; Pérez Abalo, María Cecilia; Torres Fortuny, Alejandro; Vega Hernández, Mayrim

    2011-01-01

    The auditory ability to discriminate rapid changes in the envelope of language sounds is essential for speech comprehension. This ability is deteriorated in some neurological diseases such as multiple sclerosis, auditory neuropathy, sensorineural hearing loss, presbycusis and primary developmental language disorder. Envelope-following responses (EFRs) in humans are useful in objective measurement of temporal processing in the auditory nervous system. To evaluate EFRs in healthy younger subjects and to investigate the effects of subject states on the EFRs recorded. Eleven young subjects were included; six of them were awake and five were asleep. EFRs were evoked by white noise carrier stimuli with a sweep of modulation frequencies from 20 to 200Hz presented at 50dB HL. The EFRs we recorded were similar in all subjects. There were two principal components. During both subject sleep and wakefulness, the first component (located between 30-50Hz) was significantly larger than the second component (located between 80-110Hz). There was also a significant effect of sleep on the EFR amplitude for the modulation frequencies between 88-110, 155-165 and 190-200Hz. However, there were no significant effects of sleep on the principal EFR components. These results corroborate the usefulness of the EFR technique for objective measurement of human auditory temporal processing. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  9. Intraurethral stimulation evokes bladder responses via 2 distinct reflex pathways.

    Science.gov (United States)

    Woock, John P; Yoo, Paul B; Grill, Warren M

    2009-07-01

    Recent animal studies have shown that selective activation of pudendal nerve branches can evoke bladder responses through 2 distinct reflex pathways. We examined intraurethral electrical stimulation as a minimally invasive means of selectively activating these pathways in the cat. Bladder responses evoked by intraurethral electrical stimulation were measured in alpha-chloralose anesthetized male cats at different stimulation frequencies, stimulation intensities and intraurethral locations. Intraurethral electrical stimulation evoked inhibitory and excitatory bladder reflexes depending on stimulation frequency and location. Stimulation in the penile urethra 0 to 3 cm from the urethral meatus at 33 Hz evoked bladder contraction and at 10 Hz it evoked bladder relaxation. These responses were abolished after bilateral transection of the dorsal penile nerves. Stimulation in the membranous urethra 5 to 7 cm from the urethral meatus at 2, 10 and 33 Hz evoked bladder contractions. These responses were abolished after bilateral transection of the cranial sensory nerves. Following acute spinal cord transection bladder contractions were still evoked by 33 Hz stimulation in the penile urethra but not by stimulation at any frequency in the membranous urethra. Intraurethral electrical stimulation selectively evoked bladder responses by activating 2 distinct pudendal afferent pathways. Responses depended on stimulation frequency and location. Intraurethral electrical stimulation is a valid means of determining the pathways involved in bladder responses evoked by pudendal nerve stimulation.

  10. Surface Electromyography Reliably Records Electrophysiologically Evoked Internal Anal Sphincter Activity: A More Minimally Invasive Approach for Monitoring Extrinsic Innervation.

    Science.gov (United States)

    Kauff, Daniel W; Wachter, Nicolas; Heimann, Axel; Krüger, Thilo B; Hoffmann, Klaus-Peter; Lang, Hauke; Kneist, Werner

    2016-01-01

    Even in the case of minimally invasive pelvic surgery, sparing of the autonomic nerve supply is a prerequisite for maintaining anal sphincter function. Internal anal sphincter (IAS) innervation could be electrophysiologically identified based on processed electromyographic (EMG) recordings with conventional bipolar needle electrodes (NE). This experimental study aimed for the development of a minimally invasive approach via intra-anal surface EMG for recordings of evoked IAS activity. Six male pigs underwent nerve-sparing low anterior rectal resection. Electric autonomic nerve stimulations were performed under online-processed EMG of the IAS. EMG recordings were simultaneously carried out with conventional bipolar NE as the reference method and newly developed intra-anal surface electrodes (SE) in different designs. In all experiments, the IAS activity could be continuously visualized via EMG recordings based on NE and SE. The median number of bipolar electric stimulations per animal was 27 (range 5-52). The neurostimulations resulted in significant EMG amplitude increases for both recording types [NE: median 3.0 µV (interquartile range, IQR 2.8-3.5) before stimulation vs. 7.1 µV (IQR 3.9-13.8) during stimulation, p < 0.001; SE: median 3.6 µV (IQR 3.1-4.3) before stimulation vs. 6.8 µV (IQR 4.8-10.3) during stimulation, p < 0.001]. Intra-anal SE enabled reliable EMG of electrophysiologically evoked IAS activity similar to the conventional recording via NE. The transfer of the method to access platforms for transanal total mesorectal excision or robotics may offer a practical more minimally invasive approach for monitoring extrinsic innervation. © 2016 S. Karger AG, Basel.

  11. Age-related hearing loss in dogs : Diagnosis with Brainstem-Evoked Response Audiometry and Treatment with Vibrant Soundbridge Middle Ear Implant.

    NARCIS (Netherlands)

    ter Haar, G.|info:eu-repo/dai/nl/304828750

    2009-01-01

    Age-related hearing loss (ARHL) is the most common cause of acquired hearing impairment in dogs. Diagnosis requires objective electrophysiological tests (brainstem evoked response audiometry [BERA]) evaluating the entire audible frequency range in dogs. In our laboratory a method was developed to

  12. Evoked responses to sinusoidally modulated sound in unanaesthetized dogs

    NARCIS (Netherlands)

    Tielen, A.M.; Kamp, A.; Lopes da Silva, F.H.; Reneau, J.P.; Storm van Leeuwen, W.

    1. 1. Responses evoked by sinusoidally amplitude-modulated sound in unanaesthetized dogs have been recorded from inferior colliculus and from auditory cortex structures by means of chronically indwelling stainless steel wire electrodes. 2. 2. Harmonic analysis of the average responses demonstrated

  13. Pattern visual evoked responses in hereditary spastic paraplegia

    Science.gov (United States)

    Livingstone, I R; Mastaglia, F L; Edis, R; Howe, J W

    1981-01-01

    Pattern visual evoked responses were studied in 13 patients from nine families with dominant herditary spastic paraplegia and in seven sporadic cases. The responses were normal in all the dominantly inherited cases but abnormal in three of the seven sporadic cases. PMID:7217977

  14. Objective information-theoretic algorithm for detecting brainstem-evoked responses to complex stimuli.

    Science.gov (United States)

    Bidelman, Gavin M

    2014-09-01

    The scalp-recorded frequency-following response (FFR), an auditory-evoked potential with putative neural generators in the rostral brainstem, provides a robust representation of the neurophysiologic encoding of complex stimuli. The FFR is rapidly becoming a valuable tool for understanding the neural transcription of speech and music, language-related processing disorders, and brain plasticity at initial stages of the auditory pathway. Despite its potential clinical and empirical utility, determining the presence of a response is still dependent on the subjective interpretation by an experimenter/clinician. The purpose of the present work was to develop and validate a fully objective procedure for the automatic detection of FFRs elicited by complex auditory stimuli, including speech. Mutual information (MI) was computed between the spectrographic representation of neural FFRs and their evoking acoustic stimuli to quantify the amount of shared time-frequency information between electrophysiologic responses and stimulus acoustics. To remove human subjectivity associated with typical response evaluation, FFRs were first simulated at known signal-to-noise ratios using a computational model of the auditory periphery. The MI at which model FFRs contained +3 dB Signal-to-noise ratio was taken as the criterion threshold (θMI) for the presence of a response. θMI was then applied as a binary classifier on actual neurophysiologic responses recorded previously in human participants (n = 35). Sham recordings, in which no stimulus was presented to participants, allowed us to determine the receiver operating characteristics of the MI metric and the capabilities of the algorithm to segregate true evoked responses from sham recordings. RESULTS showed high overall accuracy (93%) in the metric's ability to identify true responses from sham recordings. The metric's overall performance was considerably better than trained human observers who, on average, accurately identified only

  15. Looplure efficacy and electrophysiological responses in three plusiinae species.

    Science.gov (United States)

    Alford, A R; Hammond, A M

    1982-12-01

    Source concentration differences of (Z)-7-dodecen-1-ol acetate, or looplure, were evaluated for field trapping efficiency and electrophysiological responses with malePseudoplusia includens (Walker),Trichoplusia ni (Hubner) andRachiplusia ou (Guenné) (Lepidoptera: Noctuidae). Sticky traps baited with 1000 μg of the lure captured a significantly greater (P includens andT. ni than any other concentration;R. ou males were caught at a greater rate in traps baited with 100 μg of looplure, significantly more (P includens have a lower response threshold to looplure than eitherT. ni orR. ou antennae, the latter demonstrating the highest significant threshold of response. No differences in the stimulus-response functions of the three species were detected.

  16. Visual evoked responses during standing and walking

    Directory of Open Access Journals (Sweden)

    Klaus Gramann

    2010-10-01

    Full Text Available Human cognition has been shaped both by our body structure and by its complex interactionswith its environment. Our cognition is thus inextricably linked to our own and others’ motorbehavior. To model brain activity associated with natural cognition, we propose recording theconcurrent brain dynamics and body movements of human subjects performing normal actions.Here we tested the feasibility of such a mobile brain/body (MoBI imaging approach byrecording high-density electroencephalographic (EEG activity and body movements of subjectsstanding or walking on a treadmill while performing a visual oddball response task. Independentcomponent analysis (ICA of the EEG data revealed visual event-related potentials (ERPs thatduring standing, slow walking, and fast walking did not differ across movement conditions,demonstrating the viability of recording brain activity accompanying cognitive processes duringwhole body movement. Non-invasive and relatively low-cost MoBI studies of normal, motivatedactions might improve understanding of interactions between brain and body dynamics leadingto more complete biological models of cognition.

  17. Speech-evoked cortical auditory responses in children with normal hearing

    Directory of Open Access Journals (Sweden)

    Aseel Almeqbel

    2013-12-01

    Full Text Available Objective: Cortical auditory-evoked potentials (CAEPs, an objective measure of human speech encoding in individuals with normal or impaired auditory systems, can be used to assess the outcomes of hearing aids and cochlear implants in infants, or in young children who cannot co-operate for behavioural speech discrimination testing. The current study aimed to determine whether naturally produced speech stimuli /m/, /g/ and /t/ evoke distinct CAEP response patterns that can be reliably recorded and differentiated, based on their spectral information and whether the CAEP could be an electrophysiological measure to differentiate between these speech sounds.Method: CAEPs were recorded from 18 school-aged children with normal hearing, tested in two groups: younger (5 - 7 years and older children (8 - 12 years. Cortical responses differed in their P1 and N2 latencies and amplitudes in response to /m/, /g/ and /t/ sounds (from low-, mid- and high-frequency regions, respectively. The largest amplitude of the P1 and N2 component was for /g/ and the smallest was for /t/. The P1 latency in both age groups did not show any significant difference between these speech sounds. The N2 latency showed a significant change in the younger group but not in the older group. The N2 latency of the speech sound /g/ was always noted earlier in both groups.Conclusion: This study demonstrates that spectrally different speech sounds are encoded differentially at the cortical level, and evoke distinct CAEP response patterns. CAEP latencies and amplitudes may provide an objective indication that spectrally different speech sounds are encoded differently at the cortical level.

  18. Evoked response audiometry used in testing auditory organs of miners

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, T.; Klepacki, J.; Wagstyl, R.

    1980-01-01

    The evoked response audiometry method of testing hearing loss is presented and the results of comparative studies using subjective tonal audiometry and evoked response audiometry in tests of 56 healthy men with good hearing are discussed. The men were divided into three groups according to age and place of work: work place without increased noise; work place with noise and vibrations (at drilling machines); work place with noise and shocks (work at excavators in surface coal mines). The ERA-MKII audiometer produced by the Medelec-Amplaid firm was used. Audiometric threshhold curves for the three groups of tested men are given. At frequencies of 500, 1000 and 4000 Hz mean objective auditory threshhold was shifted by 4-9.5 dB in comparison to the subjective auditory threshold. (21 refs.) (In Polish)

  19. Subjective stress, salivary cortisol and electrophysiological responses to psychological stress

    Directory of Open Access Journals (Sweden)

    Mingming eQi

    2016-02-01

    Full Text Available The present study aimed to investigate the subjective stress, salivary cortisol, and electrophysiological responses to psychological stress induced by a modified version of a mental arithmetic task. Fifteen participants were asked to estimate whether the multiplication product of two-decimal numbers was above 10 or not either with a time limit (the stress condition or without a time limit (the control condition. The results showed that participants reported higher levels of stress, anxiety, and negative affect in the stress condition than they did in the control condition. Moreover, the salivary cortisol level continued to increase after the stress condition but exhibited a sharp decrease after the control condition. In addition, the electrophysiological data showed that the amplitude of the frontal-central N1 component was larger for the stress condition than it was for the control condition, while the amplitude of the frontal-central P2 component was larger for the control condition than it was for the stress condition. Our study suggests that the psychological stress characteristics of time pressure and social-evaluative threat caused dissociable effects on perception and on the subsequent attentional resource allocation of visual information.

  20. Electrophysiological ON and OFF Responses in Autosomal Dominant Optic Atrophy.

    Science.gov (United States)

    Morny, Enyam Komla A; Margrain, Tom H; Binns, Alison M; Votruba, Marcela

    2015-12-01

    To assess the effect of autosomal dominant optic atrophy (ADOA) on ON and OFF retinal ganglion cell (RGC) function by evaluating the ON and OFF components of the photopic negative response (PhNR). Twelve participants from six families with OPA1 ADOA and 16 age-matched controls were recruited. Electrophysiological assessment involved pattern ERGs (PERGs), focal (20°) and full-field long-duration (250 ms) flash ERGs using a red light-emitting diode flash on a rod-saturating blue background, and full-field brief (300 μs) xenon flash ERGs using a red filter over a continuous rod saturating blue background. Amplitudes and implicit times of the ERG components were analyzed and the diagnostic potential of each electrophysiological technique was determined by generating receiver operating characteristic (ROC) curves. Mean amplitudes of the N95 and all PhNRs, except the full-field PhNRON, were significantly reduced in participants with ADOA (P curve (AUC) for the focal PhNRON (0.92), focal PhNROFF (0.95), and full-field PhNROFF (0.83), were not significantly different from that of the PERG N95 (0.99). In patients with ADOA, the PhNRON and PhNROFF components are nearly symmetrically reduced in the long-duration ERG, suggesting that ON- and OFF-RGC pathways may be equally affected.

  1. Review of evoked and event-related delta responses in the human brain.

    Science.gov (United States)

    Güntekin, Bahar; Başar, Erol

    2016-05-01

    In the last decade, the brain's oscillatory responses have invaded the literature. The studies on delta (0.5-3.5Hz) oscillatory responses in humans upon application of cognitive paradigms showed that delta oscillations are related to cognitive processes, mainly in decision making and attentional processes. The present manuscript comprehensively reviews the studies on delta oscillatory responses upon cognitive stimulation in healthy subjects and in different pathologies, namely Alzheimer's disease, Mild Cognitive Impairment (MCI), bipolar disorder, schizophrenia and alcoholism. Further delta oscillatory response upon presentation of faces, facial expressions, and affective pictures are reviewed. The relationship between pre-stimulus delta activity and post-stimulus evoked and event-related responses and/or oscillations is discussed. Cross-frequency couplings of delta oscillations with higher frequency windows are also included in the review. The conclusion of this review includes several important remarks, including that delta oscillatory responses are involved in cognitive and emotional processes. A decrease of delta oscillatory responses could be a general electrophysiological marker for cognitive dysfunction (Alzheimer's disease, MCI, bipolar disorder, schizophrenia and alcoholism). The pre-stimulus activity (phase or amplitude changes in delta activity) has an effect on post-stimulus EEG responses. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A comparison of the brainstem auditory evoked response in healthy ears of unilaterally deaf dogs and bilaterally hearing dogs.

    Science.gov (United States)

    Plonek, M; Nicpoń, J; Kubiak, K; Wrzosek, M

    2017-03-01

    Auditory plasticity in response to unilateral deafness has been reported in various animal species. Subcortical changes occurring in unilaterally deaf young dogs using the brainstem auditory evoked response have not been evaluated yet. The aim of this study was to assess the brainstem auditory evoked response findings in dogs with unilateral hearing loss, and compare them with recordings obtained from healthy dogs. Brainstem auditory evoked responses (amplitudes and latencies of waves I, II, III, V, the V/I wave amplitude ratio, wave I-V, I-III and III-V interpeak intervals) were studied retrospectively in forty-six privately owned dogs, which were either unilaterally deaf or had bilateral hearing. The data obtained from the hearing ears in unilaterally deaf dogs were compared to values obtained from their healthy littermates. Statistically significant differences in the amplitude of wave III and the V/I wave amplitude ratio at 75 dB nHL were found between the group of unilaterally deaf puppies and the control group. The recordings of dogs with single-sided deafness were compared, and the results showed no statistically significant differences in the latencies and amplitudes of the waves between left- (AL) and right-sided (AR) deafness. The recordings of the brainstem auditory evoked response in canines with unilateral inborn deafness in this study varied compared to recordings from healthy dogs. Future studies looking into electrophysiological assessment of hearing in conjunction with imaging modalities to determine subcortical auditory plasticity and auditory lateralization in unilaterally deaf dogs are warranted.

  3. Development of Brainstem-Evoked Responses in Congenital Auditory Deprivation

    Directory of Open Access Journals (Sweden)

    J. Tillein

    2012-01-01

    Full Text Available To compare the development of the auditory system in hearing and completely acoustically deprived animals, naive congenitally deaf white cats (CDCs and hearing controls (HCs were investigated at different developmental stages from birth till adulthood. The CDCs had no hearing experience before the acute experiment. In both groups of animals, responses to cochlear implant stimulation were acutely assessed. Electrically evoked auditory brainstem responses (E-ABRs were recorded with monopolar stimulation at different current levels. CDCs demonstrated extensive development of E-ABRs, from first signs of responses at postnatal (p.n. day 3 through appearance of all waves of brainstem response at day 8 p.n. to mature responses around day 90 p.n.. Wave I of E-ABRs could not be distinguished from the artifact in majority of CDCs, whereas in HCs, it was clearly separated from the stimulus artifact. Waves II, III, and IV demonstrated higher thresholds in CDCs, whereas this difference was not found for wave V. Amplitudes of wave III were significantly higher in HCs, whereas wave V amplitudes were significantly higher in CDCs. No differences in latencies were observed between the animal groups. These data demonstrate significant postnatal subcortical development in absence of hearing, and also divergent effects of deafness on early waves II–IV and wave V of the E-ABR.

  4. Evoked cavernous activity.

    Science.gov (United States)

    Yilmaz, Uğur; Soylu, Ahmet; Ozcan, Cemal; Kutlu, Ramazan; Güneş, Ali

    2002-01-01

    Corpus cavernosum electromyography has been widely done to evaluate autonomic dysfunction in patients with erectile dysfunction. We assessed the value of corpus cavernosum electromyography, evoked cavernous activity and penile sympathetic skin responses for their accuracy in determining autonomic involvement in cases of erectile dysfunction. We evaluated 75 men with erectile dysfunction by corpus cavernosum electromyography, evoked cavernous activity and penile sympathetic skin response tests at our neurourology laboratory. The etiology of dysfunction was vascular, neurogenic, psychogenic or mixed based on a detailed medical and sexual history, physical examination, electrophysiological and laboratory studies, penile color Doppler ultrasonography, and cavernosography and/or cavernosometry. Autonomic involvement was clinically assessed by systemic findings, such as orthostatic hypotension, impaired gastrointestinal motility, sinus dysrhythmia and secretomotor changes. A concentric electromyography needle placed in the right cavernous body was used to record corpus cavernosum electromyography and evoked cavernous activity. The right median nerve was stimulated electrically with 13 to 16 mA. to determine evoked cavernous activity and the penile sympathetic skin response. The latter response was recorded with silver disc electrodes placed on the left cavernous body. All tests were performed using an electromyography/evoked potential machine. We determined the relationships among corpus cavernosum electromyography, evoked cavernous activity and penile sympathetic skin response tests in respect to etiological factors. The 56 patients with normal corpus cavernosum electromyography activity had also evoked cavernous activity and a penile sympathetic skin response except for 1 with no penile sympathetic skin response but evoked cavernous activity. None of these patients had autonomic neuropathy. Of the 19 patients without corpus cavernosum electromyography activity 11 had

  5. Roles of N-methyl-d-aspartate receptors during the sensory stimulation-evoked field potential responses in mouse cerebellar cortical molecular layer.

    Science.gov (United States)

    Xu, Yin-Hua; Zhang, Guang-Jian; Zhao, Jing-Tong; Chu, Chun-Ping; Li, Yu-Zi; Qiu, De-Lai

    2017-11-01

    The functions of N-methyl-d-aspartate receptors (NMDARs) in cerebellar cortex have been widely studied under in vitro condition, but their roles during the sensory stimulation-evoked responses in the cerebellar cortical molecular layer in living animals are currently unclear. We here investigated the roles of NMDARs during the air-puff stimulation on ipsilateral whisker pad-evoked field potential responses in cerebellar cortical molecular layer in urethane-anesthetized mice by electrophysiological recording and pharmacological methods. Our results showed that cerebellar surface administration of NMDA induced a dose-dependent decrease in amplitude of the facial stimulation-evoked inhibitory responses (P1) in the molecular layer, accompanied with decreases in decay time, half-width and area under curve (AUC) of P1. The IC50 of NMDA induced inhibition in amplitude of P1 was 46.5μM. In addition, application of NMDA induced significant increases in the decay time, half-width and AUC values of the facial stimulation-evoked excitatory responses (N1) in the molecular layer. Application of an NMDAR blocker, D-APV (250μM) abolished the facial stimulation-evoked P1 in the molecular layer. These results suggested that NMDARs play a critical role during the sensory information processing in cerebellar cortical molecular layer in vivo in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Click-evoked responses in vestibular afferents in rats

    National Research Council Canada - National Science Library

    Zhu, Hong; Tang, Xuehui; Wei, Wei; Mustain, William; Xu, Youguo; Zhou, Wu

    2011-01-01

    Sound activates not only the cochlea but also the vestibular end organs. Research on this phenomenon led to the discovery of the sound-evoked vestibular myogenic potentials recorded from the sternocleidomastoid muscles...

  7. Brain stem evoked response audiometry of former drug users.

    Science.gov (United States)

    Weich, Tainara Milbradt; Tochetto, Tania Maria; Seligman, Lilian

    2012-10-01

    Illicit drugs are known for their deleterious effects upon the central nervous system and more specifically for how they adversely affect hearing. This study aims to analyze and compare the hearing complaints and the results of brainstem evoked response audiometry (BERA) of former drug user support group goers. This is a cross-sectional non-experimental descriptive quantitative study. The sample consisted of 17 subjects divided by their preferred drug of use. Ten individuals were placed in the marijuana group (G1) and seven in the crack/cocaine group (G2). The subjects were further divided based on how long they had been using drugs: 1 to 5 years, 6 to 10 years, and over 15 years. They were interviewed, and assessed by pure tone audiometry, acoustic impedance tests, and BERA. No statistically significant differences were found between G1 and G2 or time of drug use in absolute latencies and interpeak intervals. However, only five of the 17 individuals had BERA results with adequate results for their ages. Marijuana and crack/cocaine may cause diffuse disorders in the brainstem and compromise the transmission of auditory stimuli regardless of how long these substances are used for.

  8. Analysis of visual evoked responses in multiple sclerosis.

    Science.gov (United States)

    Mallecourt, J; Chain, F; Leblanc, M; Lhermitte, F

    1980-12-01

    In Multiple Sclerosis (MS) the modification of the latency of visual evoked responses (VER's) shows sequels of the involvement of anterior optic tracts manifested by a retro-bulbar optic neuritis (RBON). This study was made on 102 patients with MS. The stimulus used the pattern reversal of a checkboard. The influence of the size and squares 8' and 20' chosen as stimulus has been first studied in patients with antecedents of RBON. Using the 8' squares, all eyes with a history of RBON had pathological VER's. When there is no clinical antecedent of RBON, this means of stimulation enabled us to detect sequels of RBON. In "definitive" and "probable" MS, 100% of patients had pathological VER's either for both eyes of a single eyes. In "possible" MS a sequel of RBON was demonstrated in 57% of this population without clinical antecedent of RBON. A correlation between VER's result and the ophthalmological examination (visual acuity, fundoscopic examination and acquired dyschromatopsie) was made. Although VER's are an excellent method for detecting the sequels of RBON in MS. VER's abnormalities have no etiological significance, they are observed in other neurological involvements of anterior optic tracts. These different points are discussed and a physiological interpretation of VER's abnormalities is proposed.

  9. EEG and brainstem auditory evoked response potentials in adult male drug abusers with self-reported histories of aggressive behavior.

    Science.gov (United States)

    Fishbein, D H; Herning, R I; Pickworth, W B; Haertzen, C A; Hickey, J E; Jaffe, J H

    1989-10-01

    Auditory brainstem evoked response (BAER) and spontaneous electroencephalogram (EEG) were measured in 124 adult male drug abusers. We examined the relationships among psychiatric diagnoses, paper and pencil measures of aggression and hostility, and electrophysiological features. Subjects meeting criteria for antisocial personality disorder (ASP), as defined by DSM-III, were not significantly different from non-ASP subjects for either BAER or spontaneous EEG measures. The more overtly aggressive subjects had significant delays in BAER latency. Aggressive subjects also had more delta activity and less alpha activity in the spontaneous EEG, as have been observed in "psychopaths" and "criminals." Although ASP and aggression are related, these data indicate that aggressiveness may be a separate, albeit overlapping, trait. As both early aggression and a diagnosis of ASP are predictors of later drug use, the findings that only aggression was associated with EEG slowing and brainstem delays may indicate that ASP and aggression make independent contributions to vulnerability to the development of drug abuse.

  10. Optic nerve axonal pathology is related to abnormal visual evoked responses in AIDS.

    Science.gov (United States)

    Mahadevan, Anita; Satishchandra, Parthasarathy; Prachet, Krishnamurthy Kulkarni; Sidappa, Nagadenahalli Byrareddy; Ranga, Udaykumar; Santosh, Vani; Yasha, Thagadur Chickabasavaiah; Desai, Anita; Ravi, Vasanthapuram; Shankar, Susarla Krishna

    2006-10-01

    Electrophysiological studies in subjects with HIV/AIDS demonstrate subtle changes in the visual pathway even in the absence of visual symptoms. But the pathological correlate of the electrophysiological abnormalities is largely unknown. This study attempts to correlate pathological changes in the retina and intraorbital portion of optic nerve in four drug naïve patients of AIDS caused by HIV-1 clade C, who had abnormalities in the visual evoked potentials recorded antemortem. Three had no visual complaints and one patient had sudden loss of vision in the right eye. In all four patients, the visual evoked potentials disclosed variable prolongation of P100 latencies. Histologically axonal cytoskeletal breakdown and depletion in the optic nerves was the cardinal finding with variable myelin loss, even in the absence of overt visual dysfunction, or infective retinitis. The axonal loss was maximal in the symptomatic case. Retinal ganglion cell depletion was seen in only two patients. Sectoral infiltration of the optic nerve by cryptococci and Cryptococcal choroiditis was the only opportunistic infection to involve the eye. Axonal pathology in the optic nerve appears to be related to the abnormalities recorded in visual evoked potentials even in the absence of overt clinical symptoms. Opportunistic infections could be contributing to the axonal pathology in the optic nerve in patients with AIDS.

  11. Temporal Tuning Effects in the Visually Evoked Response,

    Science.gov (United States)

    1985-08-01

    Berger (1932) also observed that these brain waves are slowed in states of depressed function such as sleep activity and that they can be blocked by...Ma4cay and Jefferys, 1973). Transient VER’s, polyphasic in form and 200-500 milliseconds in duration, are evoked by stepwise changes in one or more per

  12. Electrically-evoked frequency-following response (EFFR) in the auditory brainstem of guinea pigs.

    Science.gov (United States)

    He, Wenxin; Ding, Xiuyong; Zhang, Ruxiang; Chen, Jing; Zhang, Daoxing; Wu, Xihong

    2014-01-01

    It is still a difficult clinical issue to decide whether a patient is a suitable candidate for a cochlear implant and to plan postoperative rehabilitation, especially for some special cases, such as auditory neuropathy. A partial solution to these problems is to preoperatively evaluate the functional integrity of the auditory neural pathways. For evaluating the strength of phase-locking of auditory neurons, which was not reflected in previous methods using electrically evoked auditory brainstem response (EABR), a new method for recording phase-locking related auditory responses to electrical stimulation, called the electrically evoked frequency-following response (EFFR), was developed and evaluated using guinea pigs. The main objective was to assess feasibility of the method by testing whether the recorded signals reflected auditory neural responses or artifacts. The results showed the following: 1) the recorded signals were evoked by neuron responses rather than by artifact; 2) responses evoked by periodic signals were significantly higher than those evoked by the white noise; 3) the latency of the responses fell in the expected range; 4) the responses decreased significantly after death of the guinea pigs; and 5) the responses decreased significantly when the animal was replaced by an electrical resistance. All of these results suggest the method was valid. Recording obtained using complex tones with a missing fundamental component and using pure tones with various frequencies were consistent with those obtained using acoustic stimulation in previous studies.

  13. Electrophysiological responses to alcohol cues are not associated with Pavlovian-to-instrumental transfer in social drinkers.

    Directory of Open Access Journals (Sweden)

    Jasna Martinovic

    Full Text Available Pavlovian to Instrumental Transfer (PIT refers to the behavioral phenomenon of increased instrumental responding for a reinforcer when in the presence of Pavlovian conditioned stimuli that were separately paired with that reinforcer. PIT effects may play an important role in substance use disorders, but little is known about the brain mechanisms that underlie these effects in alcohol consumers. We report behavioral and electroencephalographic (EEG data from a group of social drinkers (n = 31 who performed a PIT task in which they chose between two instrumental responses in pursuit of beer and chocolate reinforcers while their EEG reactivity to beer, chocolate and neutral pictorial cues was recorded. We examined two markers of the motivational salience of the pictures: the P300 and slow wave event-related potentials (ERPs. Results demonstrated a behavioral PIT effect: responding for beer was increased when a beer picture was presented. Analyses of ERP amplitudes demonstrated significantly larger slow potentials evoked by beer cues at various electrode clusters. Contrary to hypotheses, there were no significant correlations between behavioral PIT effects, electrophysiological reactivity to the cues, and individual differences in drinking behaviour. Our findings are the first to demonstrate a PIT effect for beer, accompanied by increased slow potentials in response to beer cues, in social drinkers. The lack of relationship between behavioral and EEG measures, and between these measures and individual differences in drinking behaviour may be attributed to methodological features of the PIT task and to characteristics of our sample.

  14. Taste-Evoked Responses to Sweeteners in the Nucleus of the Solitary Tract Differ between C57BL/6ByJ and 129P3/J Mice

    Science.gov (United States)

    McCaughey, Stuart A.

    2008-01-01

    C57BL/6ByJ (B6) and 129P3/J (129) mice have different alleles of Tas1r3, which is thought to influence gustatory transduction of sweeteners, but studies have provided conflicting results regarding differences in sweetness perception between these strains. Single-unit taste-evoked activity was measured in the nucleus of the solitary tract (NST) in anesthetized B6 and 129 mice to address this controversy and to provide the first electrophysiological characterization of this nucleus in mice. Neurons had properties similar to those of NST cells in other species, including mean breadth-of-tuning of 0.8 ± 0.0. There were no strain differences in neural responses at 600 or 900 ms after onset, but, with a 5 s evoked period, responses to the sweeteners sucrose, maltose, acesulfame-K, SC-45647, and D-phenylalanine were significantly larger in B6 relative to 129 mice. The strains did not differ in their mean response to NaSaccharin, but it evoked an across-neuron pattern of activity that was more similar to that of sucrose and less similar to that of NaCl in B6 mice compared with 129 mice. Neurons were classified as sucrose, NaCl, or HCl responsive, with the former more common in B6 than 129 mice. Relative to other neurons, sucrose-responsive cells had delayed but more sustained sweetener responses in both strains. The results suggest that B6 mice perceive some sweeteners as more intense, but NaSaccharin as sweeter and less salty, relative to 129 mice. Furthermore, activity evoked by sweeteners includes a phasic response sent to different NST cells than a later tonic response, and only the latter differs between B6 and 129 mice. PMID:17202470

  15. Auditory evoked responses upon awakening from sleep in human subjects.

    Science.gov (United States)

    Ferrara, M; De Gennaro, L; Ferlazzo, F; Curcio, G; Barattucci, M; Bertini, M

    2001-09-14

    The hypothesis that a state of hypoarousal upon awakening should lead to a decrease in amplitude and an increase in latency of the N1-P2 components of the Auditory Evoked Potentials (AEPs) as compared to presleep wakefulness levels, was evaluated after two nocturnal awakenings and after the final morning awakening from a 7.5-h night of sleep. The amplitude of the N1-P2 complex was reduced upon awakening as compared to presleep wakefulness levels, but only following the first nocturnal awakening, scheduled after the first 2 h of sleep. This result is interpreted as indicating a link between slow wave sleep amount, mainly present during the first part of the night, and lowered levels of brain activation upon awakening. The reaction times, recorded concomitantly to AEPs, were more sensitive to the negative effects of sleep inertia.

  16. Correlation of augmented startle reflex with brainstem electrophysiological responses in Tay-Sachs disease.

    Science.gov (United States)

    Nakamura, Sadao; Saito, Yoshiaki; Ishiyama, Akihiko; Sugai, Kenji; Iso, Takashi; Inagaki, Masumi; Sasaki, Masayuki

    2015-01-01

    To clarify the evolution of an augmented startle reflex in Tay-Sachs disease and compare the temporal relationship between this reflex and brainstem evoked potentials. Clinical and electrophysiological data from 3 patients with Tay-Sachs disease were retrospectively collected. The augmented startle reflex appeared between the age of 3 and 17 months and disappeared between the age of 4 and 6 years. Analysis of brainstem auditory evoked potentials revealed that poor segregation of peak I, but not peak III, coincided with the disappearance of the augmented startle reflex. A blink reflex with markedly high amplitude was observed in a patient with an augmented startle reflex. The correlation between the augmented startle reflex and the preservation of peak I but not peak III supports the theory that the superior olivary nucleus is dispensable for this reflex. The blink reflex with high amplitudes may represent augmented excitability of reticular formation at the pontine tegmentum in Tay-Sachs disease, where the pattern generators for the augmented startle and blink reflexes may functionally overlap. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Evoked response audiometry in scrub typhus: prospective, randomised, case-control study.

    Science.gov (United States)

    Thakur, J S; Mohindroo, N K; Sharma, D R; Soni, K; Kaushal, S S

    2011-06-01

    To investigate the hypothesis of cochlear and retrocochlear damage in scrub typhus, using evoked response audiometry. Prospective, randomised, case-control study. The study included 25 patients with scrub typhus and 25 controls with other febrile illnesses not known to cause hearing loss. Controls were age- and sex-matched. All subjects underwent pure tone audiometry and evoked response audiometry before commencing treatment. Six patients presented with hearing loss, although a total of 23 patients had evidence of symmetrical high frequency loss on pure tone audiometry. Evoked response audiometry found significant prolongation of absolute latencies of wave I, III, V, and wave I-III interpeak latency. Two cases with normal hearing had increased interpeak latencies. These findings constitute level 3b evidence. Findings were suggestive of retrocochlear pathology in two cases with normal hearing. In other patients, high frequency hearing loss may have led to altered evoked response results. Although scrub typhus appears to cause middle ear cochlear and retrocochlear damage, the presence of such damage could not be fully confirmed by evoked response audiometry.

  18. Responses evoked by a vestibular implant providing chronic stimulation.

    Science.gov (United States)

    Thompson, Lara A; Haburcakova, Csilla; Gong, Wangsong; Lee, Daniel J; Wall, Conrad; Merfeld, Daniel M; Lewis, Richard F

    2012-01-01

    Patients with bilateral vestibular loss experience dehabilitating visual, perceptual, and postural difficulties, and an implantable vestibular prosthesis that could improve these symptoms would be of great benefit to these patients. In previous work, we have shown that a one-dimensional, unilateral canal prosthesis can improve the vestibulooccular reflex (VOR) in canal-plugged squirrel monkeys. In addition to the VOR, the potential effects of a vestibular prosthesis on more complex, highly integrative behaviors, such as the perception of head orientation and posture have remained unclear. We tested a one-dimensional, unilateral prosthesis in a rhesus monkey with bilateral vestibular loss and found that chronic electrical stimulation partially restored the compensatory VOR and also that percepts of head orientation relative to gravity were improved. However, the one-dimensional prosthetic stimulation had no clear effect on postural stability during quiet stance, but sway evoked by head-turns was modestly reduced. These results suggest that not only can the implementation of a vestibular prosthesis provide partial restitution of VOR but may also improve perception and posture in the presence of bilateral vestibular hypofunction (BVH). In this review, we provide an overview of our previous and current work directed towards the eventual clinical implementation of an implantable vestibular prosthesis.

  19. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    Science.gov (United States)

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  20. Comparative electrophysiological responses in anisometropic and strabismic amblyopic children

    Directory of Open Access Journals (Sweden)

    de Souza Lima LCS

    2017-06-01

    Full Text Available Luiz Cláudio Santos de Souza Lima,1 Adalmir Morterá Dantas,2 Guilherme Herzog Neto,1 Eduardo França Damasceno,1 Helena Parente Solari,1 Marcelo Palis Ventura1 1Department of General Surgery, Federal Fluminense University, Niteroi, 2Department of Ophthalmology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Purpose: To compare anisometropic hypermetropic amblyopic and strabismic amblyopic responses to pattern electroretinogram (PERG and pattern visual evocated potential (PVEP. Materials and methods: Fifty-six patients – 18 hypermetropic anisometropic amblyopic children (mean age 9.70±2.5 years, 19 strabismic amblyopic children (mean age 10.30±2.6 years and 19 normal emetropic subjects (mean age 10.10±2.2 years – were enrolled in this study. After routine ophthalmic examination, PERG and PVEP were recorded in response to checks reversed at the rate of two reversals/second stimulating macular area. Results: The difference between hypermetropic anisometropic amblyopia and strabismus amblyopia with respect to P100/P50/N95 wave latencies (P=0.055/0.855/0.132 and P100/P50/N95 amplitudes (P=0.980/0.095/0.045 was not statistically significant. However, there was a significant statistical difference between strabismic amblyopia group and controls for P100/P50/N95 latencies (P=0.000/0.006/0.004. Conclusion: Our findings indicated that despite clinical differences between anisometropic amblyopic and strabismic amblyopic patients, no differences were found in the responses of PVEP and PERG. The abnormal components of the PVEP and PERG in amblyopic subjects could reflect a retinal dysfunction in the visual pathway. Keywords: amblyopia, strabismus, pattern electroretinogram, pattern visual evocated potential, anisometropia

  1. Speech-evoked auditory brainstem responses in children with hearing loss.

    Science.gov (United States)

    Koravand, Amineh; Al Osman, Rida; Rivest, Véronique; Poulin, Catherine

    2017-08-01

    The main objective of the present study was to investigate subcortical auditory processing in children with sensorineural hearing loss. Auditory Brainstem Responses (ABRs) were recorded using click and speech/da/stimuli. Twenty-five children, aged 6-14 years old, participated in the study: 13 with normal hearing acuity and 12 with sensorineural hearing loss. No significant differences were observed for the click-evoked ABRs between normal hearing and hearing-impaired groups. For the speech-evoked ABRs, no significant differences were found for the latencies of the following responses between the two groups: onset (V and A), transition (C), one of the steady-state wave (F), and offset (O). However, the latency of the steady-state waves (D and E) was significantly longer for the hearing-impaired compared to the normal hearing group. Furthermore, the amplitude of the offset wave O and of the envelope frequency response (EFR) of the speech-evoked ABRs was significantly larger for the hearing-impaired compared to the normal hearing group. Results obtained from the speech-evoked ABRs suggest that children with a mild to moderately-severe sensorineural hearing loss have a specific pattern of subcortical auditory processing. Our results show differences for the speech-evoked ABRs in normal hearing children compared to hearing-impaired children. These results add to the body of the literature on how children with hearing loss process speech at the brainstem level. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A translational study on looming-evoked defensive response and the underlying subcortical pathway in autism.

    Science.gov (United States)

    Hu, Yu; Chen, Zhuoming; Huang, Lu; Xi, Yue; Li, Bingxiao; Wang, Hong; Yan, Jiajian; Lee, Tatia M C; Tao, Qian; So, Kwok-Fai; Ren, Chaoran

    2017-11-07

    Rapidly approaching objects indicating threats can induce defensive response through activating a subcortical pathway comprising superior colliculus (SC), lateral posterior nucleus (LP), and basolateral amygdala (BLA). Abnormal defensive response has been reported in autism, and impaired synaptic connections could be the underlying mechanism. Whether the SC-LP-BLA pathway processes looming stimuli abnormally in autism is not clear. Here, we found that looming-evoked defensive response is impaired in a subgroup of the valproic acid (VPA) mouse model of autism. By combining the conventional neurotracer and transneuronal rabies virus tracing techniques, we demonstrated that synaptic connections in the SC-LP-BLA pathway were abnormal in VPA mice whose looming-evoked defensive responses were absent. Importantly, we further translated the finding to children with autism and observed that they did not present looming-evoked defensive response. Furthermore, the findings of the DTI with the probabilistic tractography showed that the structural connections of SC-pulvinar-amygdala in autism children were weak. The pulvinar is parallel to the LP in a mouse. Because looming-evoked defensive response is innate in humans and emerges much earlier than do social and language functions, the absence of defensive response could be an earlier sign of autism in children.

  3. Inheritance of electrophysiological responses to leaf saps of host- and nonhost plants in two helicoverpa species and their hybrids

    NARCIS (Netherlands)

    Tang, Q.B.; Huang, L.Q.; Wang, C.Z.; Tang, Q.B.T.; Zhan, H.; Loon, van J.J.A.

    2014-01-01

    The polyphagous cotton bollworm Helicoverpa armigera (Hubner) and the oligophagous oriental tobacco budworm Helicoverpa assulta (Guenee) (Lepidoptera: Noctuidae) display contrasting heritable feeding preferences for cotton and pepper leaves. In this study, electrophysiological response patterns to

  4. Potassium channels-mediated electrophysiologic responses are inhibited by cytosolic phospholipase A2α ablation.

    Science.gov (United States)

    Wang, Na; Hu, Ying-Hong; Su, Li-Da

    2018-01-03

    Cytosolic phospholipase A2α (cPLA2α) is implicated in the progression of excitotoxic neuronal injury and cerebral ischemia. Previous work suggests that cPLA2α increases aberrant electrophysiologic events through attenuating K channel functions. Nevertheless, which K channels are affected by cPLA2α needs to be determined. Here we examined K channels-mediated electrophysiologic responses in hippocampal CA1 pyramidal neurons from wild-type and cPLA2α mice using simultaneous patch-clamp recording and confocal Ca imaging. After the exposure to the blockers of Ca-sensitive and A-type K channels, all CA1 neurons developed spike broadening and increased dendritic Ca transients. These effects were occluded in CA1 neurons from cPLA2α mice. Therefore, cPLA2α modulates the functions of Ca-sensitive and A-type K channels in neurotoxicity.

  5. Cortical Auditory-Evoked Responses in Preterm Neonates: Revisited by Spectral and Temporal Analyses.

    Science.gov (United States)

    Kaminska, A; Delattre, V; Laschet, J; Dubois, J; Labidurie, M; Duval, A; Manresa, A; Magny, J-F; Hovhannisyan, S; Mokhtari, M; Ouss, L; Boissel, A; Hertz-Pannier, L; Sintsov, M; Minlebaev, M; Khazipov, R; Chiron, C

    2017-08-11

    Characteristic preterm EEG patterns of "Delta-brushes" (DBs) have been reported in the temporal cortex following auditory stimuli, but their spatio-temporal dynamics remains elusive. Using 32-electrode EEG recordings and co-registration of electrodes' position to 3D-MRI of age-matched neonates, we explored the cortical auditory-evoked responses (AERs) after 'click' stimuli in 30 healthy neonates aged 30-38 post-menstrual weeks (PMW). (1) We visually identified auditory-evoked DBs within AERs in all the babies between 30 and 33 PMW and a decreasing response rate afterwards. (2) The AERs showed an increase in EEG power from delta to gamma frequency bands over the middle and posterior temporal regions with higher values in quiet sleep and on the right. (3) Time-frequency and averaging analyses showed that the delta component of DBs, which negatively peaked around 550 and 750 ms over the middle and posterior temporal regions, respectively, was superimposed with fast (alpha-gamma) oscillations and corresponded to the late part of the cortical auditory-evoked potential (CAEP), a feature missed when using classical CAEP processing. As evoked DBs rate and AERs delta to alpha frequency power decreased until full term, auditory-evoked DBs are thus associated with the prenatal development of auditory processing and may suggest an early emerging hemispheric specialization. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Brainstem auditory evoked responses in 37 dogs with otitis media before and after topical therapy.

    Science.gov (United States)

    Paterson, S

    2017-07-18

    The objective of this study was to determine whether intra-aural administration of aqueous solutions of marbofloxacin, gentamicin, tobramycin and ticarcillin (used off-licence) was associated with changes in hearing as measured by brainstem auditory evoked responses. Dogs diagnosed with otitis media (n=37) underwent brainstem auditory evoked response testing and then were treated for their ear disease. First, the external ear canal and middle ear were flushed with sterile saline followed by EDTA tris with 0·15% chlorhexidine. Then, a combination of aqueous antibiotic mixed with an aqueous solution of EDTA tris was instilled into the middle ear. Follow-up examinations were undertaken for each dog, and treatment was continued until there were no detected infectious organisms or inflammatory infiltrate. Brainstem auditory evoked response testing was repeated after resolution of the infection and discontinuation of therapy. Brainstem auditory evoked responses in dogs treated with aqueous solutions of marbofloxacin or gentamicin remained unchanged or improved after therapy of otitis media but were impaired in dogs treated with ticarcillin or tobramycin. If off-licence use of topical antibiotics is deemed necessary in cases of otitis media, aqueous solutions of marbofloxacin and gentamicin appear to be less ototoxic than aqueous solutions of ticarcillin or tobramycin. © 2017 British Small Animal Veterinary Association.

  7. Long-term moderate exercise accelerates the recovery of stress-evoked cardiovascular responses.

    Science.gov (United States)

    Hsu, Yuan-Chang; Tsai, Sheng-Feng; Yu, Lung; Chuang, Jih-Ing; Wu, Fong-Sen; Jen, Chauying J; Kuo, Yu-Min

    2016-01-01

    Psychological stress is an important global health problem. It is well documented that stress increases the incidences of various cardiovascular disorders. Regular exercise is known to reduce resting blood pressure (BP) and heart rate (HR). This study was designed to clarify the effects of long-term exercise on stress-evoked cardiovascular responses and to emphasize post-stress recovery effects. Male Wistar rats underwent 8 weeks of moderate treadmill training, with cardiovascular responses, autonomic nervous system activities and local Fos reactivity changes in the cardiovascular regulation center were monitored before, during and after immobilization stress. A spectral analysis of cardiovascular parameters was used to examine autonomic nervous activities. We found that long-term exercise (i) lowered resting BP, HR and sympathetic activity, but increased resting parasympathetic activity and baroreflex sensitivity (BRS); (ii) accelerated post-stress recovery of stress-evoked cardiovascular and sympathetic responses along with increased BRS and (iii) accelerated post-stress recovery of stress-evoked neuron activations in the paraventricular nucleus, but delayed it in the nucleus of the tractus solitarius. We conclude that, in rats, long-term exercise accelerated recovery of stress-evoked cardiovascular responses differentially altering hypothalamic and medullar neuron activities.

  8. Regularity increases middle latency evoked and late induced beta brain response following proprioceptive stimulation

    DEFF Research Database (Denmark)

    Arnfred, Sidse M.; Hansen, Lars Kai; Parnas, Josef

    2008-01-01

    as an indication of increased readiness. This is achieved through detailed analysis of both evoked and induced responses in the time-frequency domain. Electroencephalography in a 64 channels montage was recorded in four-teen healthy subjects. Two paradigms were explored: A Regular alternation between hand...

  9. Whiplash evokes descending muscle recruitment and sympathetic responses characteristic of startle

    OpenAIRE

    Mang, Daniel WH; Siegmund, Gunter P.; Blouin, Jean-Sébastien

    2014-01-01

    Whiplash injuries are the most common injuries following rear-end collisions. During a rear-end collision, the human muscle response consists of both a postural and a startle response that may exacerbate injury. However, most previous studies only assessed the presence of startle using data collected from the neck muscles and head/neck kinematics. The startle response also evokes a descending pattern of muscle recruitment and changes in autonomic activity. Here we examined the recruitment of ...

  10. Auditory evoked responses in musicians during passive vowel listening are modulated by functional connectivity between bilateral auditory-related brain regions.

    Science.gov (United States)

    Kühnis, Jürg; Elmer, Stefan; Jäncke, Lutz

    2014-12-01

    Currently, there is striking evidence showing that professional musical training can substantially alter the response properties of auditory-related cortical fields. Such plastic changes have previously been shown not only to abet the processing of musical sounds, but likewise spectral and temporal aspects of speech. Therefore, here we used the EEG technique and measured a sample of musicians and nonmusicians while the participants were passively exposed to artificial vowels in the context of an oddball paradigm. Thereby, we evaluated whether increased intracerebral functional connectivity between bilateral auditory-related brain regions may promote sensory specialization in musicians, as reflected by altered cortical N1 and P2 responses. This assumption builds on the reasoning that sensory specialization is dependent, at least in part, on the amount of synchronization between the two auditory-related cortices. Results clearly revealed that auditory-evoked N1 responses were shaped by musical expertise. In addition, in line with our reasoning musicians showed an overall increased intracerebral functional connectivity (as indexed by lagged phase synchronization) in theta, alpha, and beta bands. Finally, within-group correlative analyses indicated a relationship between intracerebral beta band connectivity and cortical N1 responses, however only within the musicians' group. Taken together, we provide first electrophysiological evidence for a relationship between musical expertise, auditory-evoked brain responses, and intracerebral functional connectivity among auditory-related brain regions.

  11. Modeling auditory evoked brainstem responses to transient stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Dau, Torsten; Harte, James

    2012-01-01

    A quantitative model is presented that describes the formation of auditory brainstem responses (ABR) to tone pulses, clicks and rising chirps as a function of stimulation level. The model computes the convolution of the instantaneous discharge rates using the “humanized” nonlinear auditory-nerve ...

  12. Fluorescent tube light evokes flicker responses in visual neurons.

    Science.gov (United States)

    Eysel, U T; Burandt, U

    1984-01-01

    Single neurons in the cat visual system respond distinctly to the temporal information present in light from fluorescent tubes driven by 50 or 60 Hz alternating current. Despite the resulting flicker frequencies of 100 or 120 Hz all retinal and most thalamic neurons show strong phase locking of the neuronal responses to the modulation of fluorescent tube light. Some retinal ganglion cells have not yet reached their critical flicker fusion frequency under such conditions. Though usually beyond perception, the frequency and depth of modulation of artificial light thus might well play a role in biological light effects.

  13. Normal Evoked Response to Rapid Sequences of Tactile Pulses in Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Santosh Ganesan

    2016-09-01

    Full Text Available Autism spectrum disorder (ASD is a developmental disorder diagnosed behaviorally, with many documented neurophysiological abnormalities in cortical response properties. While abnormal sensory processing is not considered core to the disorder, most ASD individuals report sensory processing abnormalities. Yet, the neurophysiological correlates of these abnormalities have not been fully mapped. In the auditory domain, studies have shown that cortical responses in the early auditory cortex in ASD are abnormal in multiple ways. In particular, it has been shown that individuals with ASD who were also language impaired, have abnormal cortical auditory evoked responses to rapid, but not slow, sequences of tones. Here, we tested the somatosensory domain in ASD for abnormalities in rapid processing of tactile pulses, to determine whether abnormalities there parallel those observed in the auditory domain. Specifically, we tested the somatosensory cortex response to a sequence of two tactile pulses with different (short and long temporal separation. We analyzed the responses in cortical space, in primary somatosensory cortex. As expected, we found no group difference in the evoked response to pulses with long temporal separation. Contrary to findings in the auditory domain and to our hypothesis, we also found no group differences in the evoked responses to the sequence with a short temporal separation. These results suggest that rapid temporal processing deficits in ASD are not generalized across multiple sensory domains, and are unlikely to underlie the behavioral somatosensory abnormalities observed in ASD.

  14. Endogenous Opioid Function Mediates the Association Between Laboratory Evoked Pain Sensitivity and Morphine Analgesic Responses

    Science.gov (United States)

    Bruehl, Stephen; Burns, John W.; Gupta, Rajnish; Buvanendran, Asokumar; Chont, Melissa; Kinner, Ellen; Schuster, Erik; Passik, Steven; France, Christopher R.

    2014-01-01

    Predictors of responsiveness to opioid analgesic medications are not well understood. This study tested whether individual differences in endogenous opioid (EO) function are associated with analgesic responsiveness to morphine. In randomized, counterbalanced order over three sessions, 45 chronic low back pain participants (CLBP) and 31 healthy controls received an opioid antagonist (8mg naloxone), morphine (0.08 mg/kg), or placebo. Participants then engaged in two laboratory evoked pain tasks (ischemic, thermal). Outcomes included pain threshold, pain tolerance, and pain ratings. Indexes of EO function and morphine analgesic responsiveness were derived for each measure as the difference in pain responses between the placebo condition, and naloxone or morphine conditions respectively. For all 7 pain measures across the two laboratory pain tasks, greater EO function was associated with significantly lower morphine analgesic responsiveness (p ≤ .001 − p=.02). Morphine reduced pain responses of low EO individuals to levels similar to high EO individuals under placebo. Higher placebo condition evoked pain sensitivity was associated with significantly greater morphine analgesic responsiveness for 5 of 7 pain measures (p<.001 − p=.02). These latter associations were significantly mediated by EO function for 4 of these 5 pain outcomes (p’s<.05). In the laboratory evoked pain context, opioid analgesic medications may supplement inadequate EO analgesia, with little incremental benefit in those with pre-existing high EO function. Implications for personalized medicine are discussed. PMID:23748117

  15. Effects of aspartame on the evaluation of electrophysiological responses in Wistar albino rats

    Directory of Open Access Journals (Sweden)

    Arbind Kumar Choudhary

    2016-07-01

    Full Text Available Aspartame is a non-nutritive sweetener that is used predominantly in various ‘diet’ and ‘low-calorie’ products, such as beverages, instant breakfasts, desserts, breath mints, sugar-free chewing gum, vitamins, and pharmaceuticals, consumed by millions of people who are attempting weight loss, young adults and diabetic persons. On a weight basis, the metabolism of aspartame generates approximately 50% phenylalanine, 40% aspartic acid and 10% methanol. The detailed mechanisms of the effects of aspartame on the electrophysiological response are still unclear; therefore, this study was designed to clarify whether longer-term aspartame consumption has any effect on the electrophysiological response in Wistar albino rats. The oral administration of aspartame in a safe dose of 40 mg/kg bodyweight/day (as recommended by EFSA, 2012 was tested in Wistar albino rats for a longer period (90 days. Electrophysiological responses, including heart rate variability (HRV and electroencephalogram (EEG pattern, were assessed in a folate-deficient animal model along with control animals using BIOPAC and EEG equipment (model RMS EEG–24 brain new-plus: RMS – Recorder and Medicare systems. In this study, the folate-deficient animal model was used to mimic human methanol metabolism in rats. After 90 days of aspartame treatment, a significant alteration was observable in the time domain [Mean RR (ms SDNN (ms RMSSD (ms PNN50 (%] and the frequency domain [LF, HF, and LF/HF ratio] with significantly impaired frequency and amplitude of the fronto-parietal and occipital EEG waves at p ≤ 0.05. The results of this study clearly indicate that the oral consumption of aspartame reduced HRV, with sympathetic dominance and loss of vagal tone, and altered sympathovagal activity along with impairment of learning and memory, showing an additional effect on health within this study duration. The aspartame metabolites methanol and formaldehyde may be the causative factors

  16. Behavioral and electrophysiological responses of the banana weevilCosmopolites sordidus to host plant volatiles.

    Science.gov (United States)

    Budenberg, W J; Ndiege, I O; Karago, F W; Hansson, B S

    1993-02-01

    Male and femaleCosmopolites sordidus were attracted to freshly cut banana rhizome and pseudostem in a still-air olfactometer. Females responded similarly to odors from a comparatively resistant and from a susceptible cultivar of banana, when presented as either freshly cut tissue or as Porapak-trapped volatiles. Females were also attracted to rotting banana pseudostem and to volatiles collected from it. Males and females gave similar responses to host tissue in both the behavioral bioassay and to collected volatiles in EAG recordings. Weevils did not respond, either behaviorally or electrophysiologically, to a synthetic mixture of mono- and sesqiterpenes, which made up over 9% of the volatiles collected from pseudostem.

  17. Dynamic causal modeling of evoked responses in EEG and MEG.

    Science.gov (United States)

    David, Olivier; Kiebel, Stefan J; Harrison, Lee M; Mattout, Jérémie; Kilner, James M; Friston, Karl J

    2006-05-01

    Neuronally plausible, generative or forward models are essential for understanding how event-related fields (ERFs) and potentials (ERPs) are generated. In this paper, we present a new approach to modeling event-related responses measured with EEG or MEG. This approach uses a biologically informed model to make inferences about the underlying neuronal networks generating responses. The approach can be regarded as a neurobiologically constrained source reconstruction scheme, in which the parameters of the reconstruction have an explicit neuronal interpretation. Specifically, these parameters encode, among other things, the coupling among sources and how that coupling depends upon stimulus attributes or experimental context. The basic idea is to supplement conventional electromagnetic forward models, of how sources are expressed in measurement space, with a model of how source activity is generated by neuronal dynamics. A single inversion of this extended forward model enables inference about both the spatial deployment of sources and the underlying neuronal architecture generating them. Critically, this inference covers long-range connections among well-defined neuronal subpopulations. In a previous paper, we simulated ERPs using a hierarchical neural-mass model that embodied bottom-up, top-down and lateral connections among remote regions. In this paper, we describe a Bayesian procedure to estimate the parameters of this model using empirical data. We demonstrate this procedure by characterizing the role of changes in cortico-cortical coupling, in the genesis of ERPs. In the first experiment, ERPs recorded during the perception of faces and houses were modeled as distinct cortical sources in the ventral visual pathway. Category-selectivity, as indexed by the face-selective N170, could be explained by category-specific differences in forward connections from sensory to higher areas in the ventral stream. We were able to quantify and make inferences about these

  18. Visually-evoked pattern and photomyoclonic responses in video game and television epilepsy: case reports.

    Science.gov (United States)

    Anyanwu, E; Watson, N A

    1996-01-01

    This research paper reports a case study of two male photosensitive epileptic patients, aged 14 and 16 years old respectively, whose epileptic seizures were often triggered by the flickers from television and video games respectively. The 14-year old patient had no family history of epilepsy, while the 16 year old had a family history of epilepsy. A comprehensive electroencephalogram (EEG), including hyperventilation, intermittent photic stimulation (IPS) and pattern stimulation were carried out on them and EEG abnormalities including photoparoxysmal responses (PPR) and generalized myoclonic responses were evoked. A thorough analysis of the EEG morphology of the myclonic responses and the clinical manifestations showed evidence of two separate entitles of seizures namely: visually evoked pattern-myoclonic responses (PTMR) and visually evoked photomyoclonic responses (PMR). PTMR was independent of flash rate and occurred before a PPR and at the same time as the flash rate, while PMR occurred after the PPR and was dependent on flash rate. These findings suggest that "Video Game" epilepsy is probably a pattern sensitive epilepsy, electronic screen being the source of the triggering patterns; hence, the morphology and the family histories and the myoclonic phenomena differ from those of pure photosensitive epilepsy.

  19. Natural stimuli from three coherent modalities enhance behavioral responses and electrophysiological cortical activity in humans.

    Science.gov (United States)

    Sella, Irit; Reiner, Miriam; Pratt, Hillel

    2014-07-01

    Cues that involve a number of sensory modalities are processed in the brain in an interactive multimodal manner rather than independently for each modality. We studied multimodal integration in a natural, yet fully controlled scene, implemented as an interactive game in an auditory-haptic-visual virtual environment. In this imitation of a natural scene, the targets of perception were ecologically valid uni-, bi- and tri-modal manifestations of a simple event-a ball hitting a wall. Subjects were engaged in the game while their behavioral and early cortical electrophysiological responses were measured. Behavioral results confirmed that tri-modal cues were detected faster and more accurately than bi-modal cues, which, likewise, showed advantages over unimodal responses. Event-Related Potentials (ERPs) were recorded, and the first 200 ms following stimulus onset was analyzed to reveal the latencies of cortical multimodal interactions as estimated by sLORETA. These electrophysiological findings indicated bi-modal as well as tri-modal interactions beginning very early (~30 ms), uniquely for each multimodal combination. The results suggest that early cortical multimodal integration accelerates cortical activity and, in turn, enhances performance measures. This acceleration registers on the scalp as sub-additive cortical activation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A comparison of myogenic motor evoked responses to electrical and magnetic transcranial stimulation during nitrous oxide/opioid anesthesia

    NARCIS (Netherlands)

    Ubags, L. H.; Kalkman, C. J.; Been, H. D.; Koelman, J. H.; Ongerboer de Visser, B. W.

    1999-01-01

    Transcranial motor evoked potentials (tc-MEPs) are used to monitor spinal cord integrity intraoperatively. We compared myogenic motor evoked responses with electrical and magnetic transcranial stimuli during nitrous oxide/opioid anesthesia. In 11 patients undergoing spinal surgery, anesthesia was

  1. TRPV4 channels mediate the infrared laser-evoked response in sensory neurons.

    Science.gov (United States)

    Albert, E S; Bec, J M; Desmadryl, G; Chekroud, K; Travo, C; Gaboyard, S; Bardin, F; Marc, I; Dumas, M; Lenaers, G; Hamel, C; Muller, A; Chabbert, C

    2012-06-01

    Infrared laser irradiation has been established as an appropriate stimulus for primary sensory neurons under conditions where sensory receptor cells are impaired or lost. Yet, development of clinical applications has been impeded by lack of information about the molecular mechanisms underlying the laser-induced neural response. Here, we directly address this question through pharmacological characterization of the biological response evoked by midinfrared irradiation of isolated retinal and vestibular ganglion cells from rodents. Whole cell patch-clamp recordings reveal that both voltage-gated calcium and sodium channels contribute to the laser-evoked neuronal voltage variations (LEVV). In addition, selective blockade of the LEVV by micromolar concentrations of ruthenium red and RN 1734 identifies thermosensitive transient receptor potential vanilloid channels as the primary effectors of the chain reaction triggered by midinfrared laser irradiation. These results have the potential to facilitate greatly the design of future prosthetic devices aimed at restoring neurosensory capacities in disabled patients.

  2. Is the auditory evoked P2 response a biomarker of learning?

    Directory of Open Access Journals (Sweden)

    Kelly eTremblay

    2014-02-01

    Full Text Available Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography and magnetoencephalography have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP, as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What’s more, these effects were retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN wave 600-900 ms post-stimulus onset, post-training, exclusively for the group that learned to identify the pre

  3. Is the auditory evoked P2 response a biomarker of learning?

    Science.gov (United States)

    Tremblay, Kelly L.; Ross, Bernhard; Inoue, Kayo; McClannahan, Katrina; Collet, Gregory

    2014-01-01

    Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography (EEG) and magnetoencephalography (MEG) have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP), as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What’s more, these effects are retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN) wave 600–900 ms post-stimulus onset, post-training exclusively for the group that learned to identify the pre

  4. Assessment of the cellular and electrophysiological response of cardiomyocytes to radiation

    Science.gov (United States)

    Helm, Alexander; Ritter, Sylvia; Durante, Marco; Friess, Johannes; Thielemann, Christiane; Mr; Frank, Simon

    Cardiac disease is considered as a late effect resulting from an exposure during long-term space missions. Yet, the underlying mechanisms and the impact of radiation quality and dose are not well understood. To address this topic, we used cardiomyocytes derived from mouse embryonic stem cells (mESC) as a model system. This model has already been successfully used for cardiotoxicity screening of new drugs. Both, the cellular and electrophysiological response to X-ray irradiation were examined. Cellular endpoints such as the induction of micronuclei, apoptosis, number of binucleated cells and expression of connexin43 (Cx 43) were analyzed by standard techniques. For electrophysiological studies a microelectrode array (MEA) was used allowing non-invasive recordings of electrical signals such as signal amplitude and shape, beat rate and conduction velocity. Data analysis was performed using the MATLAB based software DrCell. As a first approach, cardiomyocytes were generated by differentiation of mESC via the formation of embryoid bodies. However, the system proved to be unsuitable due to large intra- and inter-sample variations. In consecutive experiments we used commercially available Cor.At cells, i.e. a pure culture of mESC derived cardiomyocytes. For the analysis of cellular and electrophysiological endpoints Cor.At cells were seeded onto chamber slides or MEA chips, respectively. Irradiation with 0.5 and 2 Gy X-rays (250 kV, 16 mA) was performed two days after seeding. At that time cardiomyocytes are electrically coupled through gap junctions and form a spontaneously beating network. Samples were examined up to four days after exposure. Analysis of the electrophysiological data revealed only minor differences between controls and X-irradiated samples indicating the functionality of cardiomyocytes is not within the dose range examined. Currently, further experiments are performed to statistically verify this finding. Additionally, the expression of Cx 43, a major

  5. Whiplash evokes descending muscle recruitment and sympathetic responses characteristic of startle.

    Science.gov (United States)

    Mang, Daniel Wh; Siegmund, Gunter P; Blouin, Jean-Sébastien

    2014-06-01

    Whiplash injuries are the most common injuries following rear-end collisions. During a rear-end collision, the human muscle response consists of both a postural and a startle response that may exacerbate injury. However, most previous studies only assessed the presence of startle using data collected from the neck muscles and head/neck kinematics. The startle response also evokes a descending pattern of muscle recruitment and changes in autonomic activity. Here we examined the recruitment of axial and appendicular muscles along with autonomic responses to confirm whether these other features of a startle response were present during the first exposure to a whiplash perturbation. Ten subjects experienced a single whiplash perturbation while recording electromyography, electrocardiogram, and electrodermal responses. All subjects exhibited a descending pattern of muscle recruitment, and increasing heart rate and electrodermal responses following the collision. Our results provide further support that the startle response is a component of the response to whiplash collisions.

  6. Differential effects of LSD serotonin and l-tryptophan on visually evoked responses.

    Science.gov (United States)

    Strahlendorf, J C; Goldstein, F J; Rossi, G V; Malseed, R T

    1982-01-01

    Alterations in photically-evoked cortical responses were assessed in immobilized artificially respired cats following intraraphe microinjections of LSD and serotonin (5-HT) and IV administration of LSD and l-tryptophan. Both systemic (10-100 micrograms/kg; N = 5) and intraraphe (0.25 microgram; N = 10) LSD significantly increased the amplitudes of the three primary components of the visual evoked response (VER). In contrast, the same VER components were significantly depressed following intraraphe 5-HT (30 micrograms; N = 4) and IV l-tryptophan (100 mg/kg; N = 6), a serotonin precursor that elevates raphe 5-HT levels. Intraraphe cinanserin (180 micrograms; 30 minute pretreatment) completely reversed LSD-induced enhancements in all three components (p less than 0.01). Depressions of VER following intraraphe 5-HT (30 micrograms) were also antagonized by cinanserin, although to lesser degree (p less than 0.05 for first 2 components only) than with LSD. The depressive effects of l-tryptophan (100 mg/kg) were unaffected by cinanserin. Modification of raphe neuronal activity can significantly alter photically evoked responses, and may explain the perceptual disturbances associated with LSD, i.e., depression of an area (raphe) normally inhibiting forebrain areas of the visual system.

  7. Electrophysiological and behavioral responses of Dendroctonus valens (Coleoptera: Curculionidae: Scolytinae) to four bark beetle pheromones.

    Science.gov (United States)

    Zhang, Longwa; Clarke, Stephen R; Sun, Jianghua

    2009-04-01

    The red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae), has caused extensive mortality of Pinus tabuliformis Carrière in north central China. The electrophysiological and behavioral activities of the four bark beetle pheromones, frontalin, exo-brevicomin, trans-verbenol, and cis-verbenol, singly or in combination with host-produced kairomones, were tested on red turpentine beetles. Both sexes showed a consistent electrophysiological response to the four test compounds. In Y-tube olfactometer bioassays, walking red turpentine beetles selected the host compound (+)-3-carene over any of the test compounds, but significantly higher numbers chose each tested pheromone over a blank control. The four compounds, tested singly or in combination, were not attractive to red turpentine beetles in field trapping studies in 2006 and 2007 and also did not significantly increase trap catch when combined with (+)-3-carene. Frontalin, alone or in combination with exo-brevicomin and trans-verbenol, significantly reduced the attractiveness of (+)-3-carene in 2006 but not in 2007. The possible roles of the pheromones in host and mate finding and selection are discussed.

  8. Electrophysiologic Evaluation of Psychogenic Movement Disorders

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Pal

    2011-05-01

    Full Text Available Psychogenic movement disorders (PMD are a group of disorders which are in the border zone between neurology and psychiatry. All necessary laboratory investigations should be done to rule out an underlying organic disorder. While clinical acumen of a trained movement disorder specialist may be sufficient to diagnose most PMD, there are clinical situations where electrophysiological tests are required either to rule out an organic movement disorder or even diagnose a PMD. Current electrophysiological test are most useful for tremor, followed by jerks and least for spasms or dystonia. Commonly used electrophysiologic tests include multichannel surface electromyography (EMG, accelerometry, electroencephalography time locked with EMG, premovement potential (Bereitschaftspotential, and somatosensory evoked potentials. Psychogenic tremor is a low frequency tremor with variable frequency and duration of EMG bursts, entrainable, has a high coherence with voluntary movements, and presence of coactivation sign. Patients with psychogenic jerks have well organized triphasic pattern of activation of agonist and antagonist muscles. The jerks are associated with EMG bursts of long duration (usually > 70 ms, long and variable latencies in stimulus induced jerks, absence of craniocaudal pattern of muscle recruitment in apparent startle response, and often a Breitschaftspotential (premovement potential precedes the jerk. Electrophysiological characterization of psychogenic dystonia is difficult and the tests are usually performed to rule out organic dystonia with characteristic findings. Finally, caution should be exerted in interpreting the electrophysiological tests as both false positive and false negative diagnosis of PMD may still occur.

  9. Brainstem auditory evoked responses in man. 1: Effect of stimulus rise-fall time and duration

    Science.gov (United States)

    Hecox, K.; Squires, N.; Galambos, R.

    1975-01-01

    Short latency (under 10 msec) responses elicited by bursts of white noise were recorded from the scalps of human subjects. Response alterations produced by changes in the noise burst duration (on-time), inter-burst interval (off-time), and onset and offset shapes were analyzed. The latency of the most prominent response component, wave V, was markedly delayed with increases in stimulus rise time but was unaffected by changes in fall time. Increases in stimulus duration, and therefore in loudness, resulted in a systematic increase in latency. This was probably due to response recovery processes, since the effect was eliminated with increases in stimulus off-time. The amplitude of wave V was insensitive to changes in signal rise and fall times, while increasing signal on-time produced smaller amplitude responses only for sufficiently short off-times. It was concluded that wave V of the human auditory brainstem evoked response is solely an onset response.

  10. Response inhibition is linked to emotional devaluation: behavioural and electrophysiological evidence

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available To study links between the inhibition of motor responses and emotional evaluation, we combined electrophysiological measures of prefrontal response inhibition with behavioural measures of affective evaluation. Participants first performed a Go-Nogo task in response to Asian and Caucasian faces (with race determining their Go or Nogo status, followed by a trustworthiness rating for each face. Faces previously seen as Nogo stimuli were rated as less trustworthy than previous Go stimuli. To study links between the efficiency of response inhibition in the Go-Nogo task and subsequent emotional evaluations, the Nogo N2 component was quantified separately for faces that were later judged to be high versus low in trustworthiness. Nogo N2 amplitudes were larger in response to low-rated as compared to high-rated faces, demonstrating that trial-by-trial variations in the efficiency of response inhibition triggered by Nogo faces, as measured by the Nogo N2 component, co-vary with their subsequent affective evaluation. These results suggest close links between inhibitory processes in top-down motor control and emotional responses.

  11. Comparison of binaural auditory brainstem responses and the binaural difference potential evoked by chirps and clicks.

    Science.gov (United States)

    Riedel, Helmut; Kollmeier, Birger

    2002-07-01

    Rising chirps that compensate for the dispersion of the travelling wave on the basilar membrane evoke larger monaural brainstem responses than clicks. In order to test if a similar effect applies for the early processing stages of binaural information, monaurally and binaurally evoked auditory brainstem responses were recorded for clicks and chirps for levels from 10 to 60 dB nHL in steps of 10 dB. Ten thousand sweeps were collected for every stimulus condition from 10 normal hearing subjects. Wave V amplitudes are significantly larger for chirps than for clicks for all conditions. The amplitude of the binaural difference potential, DP1-DN1, is significantly larger for chirps at the levels 30 and 40 dB nHL. Both the binaurally evoked potential and the binaural difference potential exhibit steeper growth functions for chirps than for clicks for levels up to 40 dB nHL. For higher stimulation levels the chirp responses saturate approaching the click evoked amplitude. For both stimuli the latency of DP1 is shorter than the latency of the binaural wave V, which in turn is shorter than the latency of DN1. The amplitude ratio of the binaural difference potential to the binaural response is independent of stimulus level for clicks and chirps. A possible interpretation is that with click stimulation predominantly binaural interaction from high frequency regions is seen which is compatible with a processing by contralateral inhibitory and ipsilateral excitatory (IE) cells. Contributions from low frequencies are negligible since the responses from low frequencies are not synchronized for clicks. The improved synchronization at lower frequencies using chirp stimuli yields contributions from both low and high frequency neurons enlarging the amplitudes of the binaural responses as well as the binaural difference potential. Since the constant amplitude ratio of the binaural difference potential to the binaural response makes contralateral and ipsilateral excitatory interaction

  12. It's a word: early electrophysiological response to the character likeness of pictographs.

    Science.gov (United States)

    Zhang, Mingxia; Jiang, Ting; Mei, Leilei; Yang, Hongmin; Chen, Chuansheng; Xue, Gui; Dong, Qi

    2011-07-01

    Using unfamiliar and meaningless pictographs that varied in their degree of similarity to Chinese characters, the current study tested whether the early electrophysiological response was modulated by character likeness. We measured P100 and N170 while 20 native Chinese speakers were viewing Chinese characters, drawings of objects, and pictographs. Comparisons across the three categories of stimuli showed that pictographs elicited a smaller N170 amplitude than did Chinese characters and a stronger N170 amplitude than did objects, but did not differ in the P100 amplitude from the other two categories. Within the category of pictographs, stimuli with a higher degree of character likeness elicited larger N170 amplitudes and shorter N170 peak latencies, and this effect was again not observed in P100. These results suggest that N170 is sensitive to visual stimuli's character likeness even though they are unfamiliar pictographs with no meanings or sounds. Copyright © 2010 Society for Psychophysiological Research.

  13. The reliability of commonly used electrophysiology measures.

    Science.gov (United States)

    Brown, K E; Lohse, K R; Mayer, I M S; Strigaro, G; Desikan, M; Casula, E P; Meunier, S; Popa, T; Lamy, J-C; Odish, O; Leavitt, B R; Durr, A; Roos, R A C; Tabrizi, S J; Rothwell, J C; Boyd, L A; Orth, M

    Electrophysiological measures can help understand brain function both in healthy individuals and in the context of a disease. Given the amount of information that can be extracted from these measures and their frequent use, it is essential to know more about their inherent reliability. To understand the reliability of electrophysiology measures in healthy individuals. We hypothesized that measures of threshold and latency would be the most reliable and least susceptible to methodological differences between study sites. Somatosensory evoked potentials from 112 control participants; long-latency reflexes, transcranial magnetic stimulation with resting and active motor thresholds, motor evoked potential latencies, input/output curves, and short-latency sensory afferent inhibition and facilitation from 84 controls were collected at 3 visits over 24 months at 4 Track-On HD study sites. Reliability was assessed using intra-class correlation coefficients for absolute agreement, and the effects of reliability on statistical power are demonstrated for different sample sizes and study designs. Measures quantifying latencies, thresholds, and evoked responses at high stimulator intensities had the highest reliability, and required the smallest sample sizes to adequately power a study. Very few between-site differences were detected. Reliability and susceptibility to between-site differences should be evaluated for electrophysiological measures before including them in study designs. Levels of reliability vary substantially across electrophysiological measures, though there are few between-site differences. To address this, reliability should be used in conjunction with theoretical calculations to inform sample size and ensure studies are adequately powered to detect true change in measures of interest. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Cell-attached recordings of responses evoked by photorelease of GABA in the immature cortical neurons

    Directory of Open Access Journals (Sweden)

    Marat eMinlebaev

    2013-05-01

    Full Text Available We present a novel non-invasive technique to measure the polarity of GABAergic responses based on cell-attached recordings of currents activated by laser-uncaging of GABA. For these recordings, a patch pipette was filled with a solution containing RuBi-GABA, and GABA was released from this complex by a laser beam conducted to the tip of the patch pipette via an optic fiber. In cell-attached recordings from neocortical and hippocampal neurons in postnatal days P2-5 rat brain slices in vitro, we found that laser-uncaging of GABA activates integral cell-attached currents mediated by tens of GABA(A channels. The initial response was inwardly directed, indicating a depolarizing response to GABA. The direction of the initial response was dependent on the pipette potential and analysis of its slope-voltage relationships revealed a depolarizing driving force of +11 mV for the currents through GABA channels. Initial depolarizing responses to GABA uncaging were inverted to hyperpolarizing in the presence of the NKCC1 blocker bumetanide. Current-voltage relationships of the currents evoked by Rubi-GABA uncaging using voltage-ramps at the peak of responses not only revealed a bumetanide-sensitive depolarizing reversal potential of the GABA(A receptor mediated responses, but also showed a strong voltage-dependent hysteresis. Upon desensitization of the uncaged-GABA response, current-voltage relationships of the currents through single GABA(A channels revealed depolarizing responses with the driving force values similar to those obtained for the initial response. Thus, cell-attached recordings of the responses evoked by local intrapipette GABA uncaging are suitable to assess the polarity of the GABA(A-Rs mediated signals in small cell compartments.

  15. Behavioural and electrophysiological responses of the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) to human emanations

    NARCIS (Netherlands)

    Qiu, Y.T.; Smallegange, R.C.; Hoppe, S.; Loon, van J.J.A.; Bakker, E.J.; Takken, W.

    2004-01-01

    Behavioural and electrophysiological responses of Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) to human skin emanations collected on glass beads were studied using a dual-port olfactometer and electroantannography. Glass beads to which skin emanations from human hands had been

  16. The investigation of cortical auditory evoked potentials responses in young adults having musical education.

    Science.gov (United States)

    Polat, Zahra; Ataş, Ahmet

    2014-12-01

    In the literature, music education has been shown to enhance auditory perception for children and young adults. When compared to young adult non-musicians, young adult musicians demonstrate increased auditory processing, and enhanced sensitivity to acoustic changes. The evoked response potentials associated with the interpretation of sound are enhanced in musicians. Studies show that training also changes sound perception and cortical responses. The earlier training appears to lead to larger changes in the auditory cortex. Most cortical studies in the literature have used pure tones or musical instrument sounds as stimuli signals. The aim of those studies was to investigate whether musical education would enhance auditory cortical responses when speech signals were used. In this study, the speech sounds extracted from running speech were used as sound stimuli. Non-randomized controlled study. The experimental group consists of young adults up to 21 years-old, all with a minimum of 4 years of musical education. The control group was selected from young adults of the same age without any musical education. The experiments were conducted by using a cortical evoked potential analyser and /m/, /t/ /g/ sound stimulation at the level of 65 dB SPL. In this study, P1 / N1 / P2 amplitude and latency values were measured. Significant differences were found in the amplitude values of P1 and P2 (p0.05). The results obtained in our study indicate that musical experience has an effect on the nervous system and this can be seen in cortical auditory evoked potentials recorded when the subjects hear speech.

  17. Brain stem evoked response to forward and reversed speech in humans.

    Science.gov (United States)

    Galbraith, Gary C; Amaya, Elizabeth M; de Rivera, Jacinta M Diaz; Donan, Namee M; Duong, Mylien T; Hsu, Jeffrey N; Tran, Kim; Tsang, Lian P

    2004-09-15

    Speech stimuli played in reverse are perceived as unfamiliar and alien-sounding, even though phoneme duration and fundamental voicing frequency are preserved. Although language perception ultimately resides in the neocortex, the brain stem plays a vital role in processing auditory information, including speech. The present study measured brain stem frequency-following responses (FFR) evoked by forward and reverse speech stimuli recorded from electrodes oriented horizontally and vertically to measure signals with putative origins in auditory nerve and rostral brain stem, respectively. The vertical FFR showed increased amplitude due to forward speech. It is concluded that familiar phonological and prosodic properties of forward speech selectively activate central brain stem neurons.

  18. Auditory evoked response: a new approach for the evaluation of the unborn fetus.

    Science.gov (United States)

    Pereira Luz, N; Pereira Lima, C; Germany Paula, L; Hecker Luz, J

    1980-01-01

    The authors present their preliminary results observed with sound stimulation of human fetuses, a new approach to the exploration of some brain functions during fetal life, using a behavioural procedure. By applying an adequate auditory stimulus to the abdomen of pregnant women in the last trimester of pregnancy and during labour, they were able to evoke a standard fetal heart rate and motor response. They describe the different patterns observed during labour as a preliminary report of what appears to be a new procedure for evaluation of fetal conditions in normal or abnormal environments.

  19. Experience with Sugar Modifies Behavioral but not Taste-Evoked Medullary Responses to Sweeteners in Mice

    Science.gov (United States)

    2013-01-01

    Dietary exposure to sugars increases the preference for and intake of sugar solutions in mice. We used brief-access lick tests and multiunit electrophysiological recordings from the nucleus of the solitary tract (NST) to investigate the role of taste in diet-induced changes in sucrose responsiveness. We exposed C57BL/6J (B6) and 129X1/SvJ (129) mice to either a sucrose diet (chow, water, and a 500mM sucrose solution) or a control diet (chow and water) for 3 days. In B6 mice, exposure to the sucrose diet decreased the appetitive response (i.e., number of trials initiated) but had no effect on the consummatory response (i.e., rate of licking) to 500mM sucrose and 20mM saccharin. In 129 mice, exposure to the sucrose diet increased the appetitive response but had no effect on the consummatory response to the sweetener solutions. In the NST recordings, the B6 mice exhibited larger multiunit responses to sweeteners than 129 mice, but there was no effect of the sucrose diet in either strain. Our results indicate that sucrose exposure alters the appetitive response of B6 and 129 mice to sweeteners in diametrically opposed ways and that these changes are mediated by structures in the gustatory neuraxis above the NST (e.g., ventral forebrain). PMID:24084168

  20. Electrophysiological indices of response inhibition in a Go/NoGo task predict self-control in a social context.

    Directory of Open Access Journals (Sweden)

    Kyle Nash

    Full Text Available Recent research demonstrates that response inhibition-a core executive function-may subserve self-regulation and self-control. However, it is unclear whether response inhibition also predicts self-control in the multifaceted, high-level phenomena of social decision-making. Here we examined whether electrophysiological indices of response inhibition would predict self-control in a social context. Electroencephalography was recorded as participants completed a widely used Go/NoGo task (the cued Continuous Performance Test. Participants then interacted with a partner in an economic exchange game that requires self-control. Results demonstrated that greater NoGo-Anteriorization and larger NoGo-P300 peak amplitudes-two established electrophysiological indices of response inhibition-both predicted more self-control in this social game. These findings support continued integration of executive function and self-regulation and help extend prior research into social decision-making processes.

  1. Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses

    Science.gov (United States)

    Son, Taeyoon; Wang, Benquan; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2017-02-01

    It is well established that major retinal diseases involve distortions of the retinal neural physiology and blood vascular structures. However, the details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood. In this study, a multi-modal optical coherence tomography (OCT) imaging system was developed to enable concurrent imaging of retinal neural activity and vascular hemodynamics. Flicker light stimulation was applied to mouse retinas to evoke retinal neural responses and hemodynamic changes. The OCT images were acquired continuously during the pre-stimulation, light-stimulation, and post-stimulation phases. Stimulus-evoked intrinsic optical signals (IOSs) and hemodynamic changes were observed over time in blood-free and blood regions, respectively. Rapid IOSs change occurred almost immediately after stimulation. Both positive and negative signals were observed in adjacent retinal areas. The hemodynamic changes showed time delays after stimulation. The signal magnitudes induced by light stimulation were observed in blood regions and did not show significant changes in blood-free regions. These differences may arise from different mechanisms in blood vessels and neural tissues in response to light stimulation. These characteristics agreed well with our previous observations in mouse retinas. Further development of the multimodal OCT may provide a new imaging method for studying how retinal structures and metabolic and neural functions are affected by age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and other diseases, which promises novel noninvasive biomarkers for early disease detection and reliable treatment evaluations of eye diseases.

  2. Behavioural and electrophysiological responses of Triatoma dimidiata nymphs to conspecific faecal volatiles.

    Science.gov (United States)

    Galvez-Marroquin, Z; Cruz-López, L; Malo, E A; Ramsey, J M; Rojas, J C

    2018-03-01

    The behavioural and electrophysiological (electroantennography) responses of the first two instars of Triatoma dimidiata (Hemiptera: Reduviidae) Latreille to fresh and dry faecal headspace volatile extracts from fifth instar conspecific nymphs and synthetic compounds were analysed in this study. Recently emerged nymphs (3-5 days) aggregated around filter paper impregnated with dry faeces and around filter paper impregnated with extracts from both fresh and dry faeces. Older first instars (10-15 days) and second instars aggregated around filter paper impregnated with fresh and dry faeces, and their respective headspace extracts. Dry faecal volatile extracts elicited the strongest antennal responses, followed by fresh faecal extracts. Gas chromatography-mass spectrometry analysis of dried faecal headspace volatiles demonstrated the presence of 12 compounds: 2-ethyl-1-hexanol, 1,2,4-trimethylbenzene, n-octadecane, n-nonadecane, n-eicosane, n-heneicosane, n-tricosane, n-pentaeicosane, n-hexaeicosane, n-octaeicosane, nonanal, and 4-methyl quinazoline. In fresh faecal headspace extracts, only nonanal was clearly detected, although there were other trace compounds, including several unidentified sesquiterpenes. Four of the 11 compounds tested individually elicited aggregation behaviour at concentrations of 100 ng/µL and 1 µg/µL. A blend containing these four components also mediated the aggregation of nymphs. These volatiles may be valuable for developing monitoring methods and designing sensitive strategies to detect and measure T. dimidiata infestation. © 2017 The Royal Entomological Society.

  3. Grammatical markers switch roles and elicit different electrophysiological responses under shallow and deep semantic requirements

    Directory of Open Access Journals (Sweden)

    Takahiro Soshi

    2016-10-01

    Full Text Available Static knowledge about the grammar of a natural language is represented in the cortico-subcortical system. However, the differences in dynamic verbal processing under different cognitive conditions are unclear. To clarify this, we conducted an electrophysiological experiment involving a semantic priming paradigm in which semantically congruent or incongruent word sequences (prime nouns–target verbs were randomly presented. We examined the event-related brain potentials that occurred in response to congruent and incongruent target words that were preceded by primes with or without grammatical case markers. The two participant groups performed either the shallow (lexical judgment or deep (direct semantic judgment semantic tasks. We hypothesized that, irrespective of the case markers, the congruent targets would reduce centro-posterior N400 activities under the deep semantic condition, which induces selective attention to the semantic relatedness of content words. However, the same congruent targets with correct case markers would reduce lateralized negativity under the shallow semantic condition because grammatical case markers are related to automatic structural integration under semantically unattended conditions. We observed that congruent targets (e.g., ‘open' that were preceded by primes with congruent case markers (e.g., ‘shutter-object case' reduced lateralized negativity under the shallow semantic condition. In contrast, congruent targets, irrespective of case markers, consistently yielded N400 reductions under the deep semantic condition. To summarize, human neural verbal processing differed in response to the same grammatical markers in the same verbal expressions under semantically attended or unattended conditions.

  4. Chronic lower limb wounds evoke systemic response of the lymphatic (immune system

    Directory of Open Access Journals (Sweden)

    W L Olszewski

    2012-01-01

    Full Text Available Wound healing should not be considered as a process limited only to the damaged tissues. It is always accompanied by an intensive local immune response and in advanced stages, the systemic lymphatic (immune structure. In this review we present evidence from our own studies as well as pertinent literature on the role of skin and subcutaneous tissue lymphatics at the wound site and of transport of antigens along with collecting afferent lymphatics to the lymph nodes. We also speculate the role of lymph nodes in raising cohorts of bacterial and own tissue antigen-specific lymphocytes and their participation in healing and not infrequently evoking uncontrolled chronic immune reaction causing a delay of healing. It is also speculated as to why there is a rapid response of lymph node cells to microbial antigens and tolerance to damaged-tissue-derived antigens occurs

  5. Effects of caffeine on the electrophysiological, cognitive and motor responses of the central nervous system

    Directory of Open Access Journals (Sweden)

    Deslandes A.C.

    2005-01-01

    Full Text Available Caffeine is the most consumed psychoactive substance in the world. The effects of caffeine have been studied using cognitive and motor measures, quantitative electroencephalography (qEEG and event-related potentials. However, these methods are not usually employed in combination, a fact that impairs the interpretation of the results. The objective of the present study was to analyze changes in electrophysiological, cognitive and motor variables with the ingestion of caffeine, and to relate central to peripheral responses. For this purpose we recorded event-related potentials and eyes-closed, resting EEG, applied the Stroop test, and measured reaction time. Fifteen volunteers took caffeine (400 mg or placebo in a randomized, crossover, double-blind design. A significant reduction of alpha absolute power over the entire scalp and of P300 latency at the Fz electrode were observed after caffeine ingestion. These results are consistent with a stimulatory effect of caffeine, although there was no change in the attention (Stroop test or in reaction time. The qEEG seems to be the most sensitive index of the changes produced by caffeine in the central nervous system since it proved to be capable of detecting changes that were not evident in the tests of cognitive or motor performance.

  6. Visual electrophysiology in children

    Directory of Open Access Journals (Sweden)

    Jelka Brecelj

    2005-10-01

    Full Text Available Background: Electrophysiological assessment of vision in children helps to recognise abnormal development of the visual system when it is still susceptible to medication and eventual correction. Visual electrophysiology provides information about the function of the retina (retinal pigment epithelium, cone and rod receptors, bipolar, amacrine, and ganglion cells, optic nerve, chiasmal and postchiasmal visual pathway, and visual cortex.Methods: Electroretinograms (ERG and visual evoked potentials (VEP are recorded non-invasively; in infants are recorded simultaneously ERG with skin electrodes, while in older children separately ERG with HK loop electrode in accordance with ISCEV (International Society for Clinical Electrophysiology of Vision recommendations.Results: Clinical and electrophysiological changes in children with nystagmus, Leber’s congenital amaurosis, achromatopsia, congenital stationary night blindness, progressive retinal dystrophies, optic nerve hypoplasia, albinism, achiasmia, optic neuritis and visual pathway tumours are presented.Conclusions: Electrophysiological tests can help to indicate the nature and the location of dysfunction in unclear ophthalmological and/or neurological cases.

  7. Emotional graphic cigarette warning labels reduce the electrophysiological brain response to smoking cues

    Science.gov (United States)

    Wang, An-Li; Romer, Dan; Elman, Igor; Turetsky, Bruce I.; Gur, Ruben C.; Langleben, Daniel D.

    2015-01-01

    There is an ongoing public debate about the new graphic warning labels (GWLs) that the Food and Drug Administration (FDA) proposes to place on cigarette packs. Tobacco companies argued that the strongly emotional images FDA proposed to include in the GWLs encroached on their constitutional rights. The court ruled that FDA did not provide sufficient scientific evidence of compelling public interest in such encroachment. This study’s objectives were to examine the effects of the GWLs on the electrophysiological and behavioral correlates of smoking addiction and to determine whether labels rated higher on the emotional reaction (ER) scale are associated with greater effects. We studied 25 non-treatment-seeking smokers. Event-related potentials (ERPs) were recorded while participants viewed a random sequence of paired images, in which visual smoking (Cues) or non-smoking (non-Cues) images were preceded by GWLs or neutral images. Participants reported their cigarette craving after viewing each pair. Dependent variables were magnitude of P300 ERPs and self-reported cigarette craving in response to Cues. We found that subjective craving response to Cues was significantly reduced by preceding GWLs, whereas the P300 amplitude response to Cues was reduced only by preceding GWLs rated high on the ER scale. In conclusion, our study provides experimental neuroscience evidence that weighs in on the ongoing public and legal debate about how to balance the constitutional and public health aspects of the FDA-proposed GWLs. The high toll of smoking-related illness and death adds urgency to the debate and prompts consideration of our findings while longitudinal studies of GWLs are underway. PMID:24330194

  8. Ipsilesional Motor-Evoked Potential Absence in Pediatric Hemiparesis Impacts Tracking Accuracy of the Less Affected Hand

    OpenAIRE

    Cassidy, Jessica M.; Carey, James R.; Lu, Chiahao; Krach, Linda E.; Feyma, Tim; Durfee, William K.; GILLICK, BERNADETTE T

    2015-01-01

    This study analyzed the relationship between electrophysiological responses to transcranial magnetic stimulation (TMS), finger tracking accuracy, and volume of neural substrate in children with congenital hemiparesis. Nineteen participants demonstrating an ipsilesional motor-evoked potential (MEP) were compared with eleven participants showing an absent ipsilesional MEP response. Comparisons of finger tracking accuracy from the affected and less affected hands and ipsilesional/contralesional ...

  9. Stimulus-response characteristics of motor evoked potentials and silent periods in proximal and distal upper-extremity muscles.

    NARCIS (Netherlands)

    Kuijk, A.A. van; Anker, L.C.; Pasman, J.W.; Hendriks, J.C.M.; Elswijk, G.A.F. van; Geurts, A.C.H.

    2009-01-01

    OBJECTIVE: To compare stimulus-response characteristics of both motor evoked potentials (MEP) and silent periods (SP) induced by transcranial magnetic stimulation (TMS) in proximal and distal upper-extremity muscles. METHODS: Stimulus-response curves of MEPs and SPs were obtained from the biceps

  10. Mapping of electrophysiological response to transcranial infrared laser stimulation on the human brain in vivo measured by electroencephalography (Conference Presentation)

    Science.gov (United States)

    Wang, Xinlong; Reddy, Divya Dhandapani; Gonzalez-Lima, F.; Liu, Hanli

    2017-02-01

    Transcranial infrared laser stimulation (TILS) is a non-destructive and non-thermal photobiomodulation therapy or process on the human brain; TILS uses infrared light from lasers or LEDs and has gained increased recognition for its beneficial effects on a variety of neurological and psychological conditions. While the mechanism of TILS has been assumed to stem from cytochrome-c-oxidase (CCO), which is the last enzyme in the electron transportation chain and is the primary photoacceptor, no literature is found to report electrophysiological response to TILS. In this study, a 64-channel electroencephalography (EEG) system was employed to monitor electrophysiological activities from 15 healthy human participants before, during and after TILS. A placebo experimental protocol was also applied for rigorous comparison. After recording a 3-minute baseline, we applied a 1064-nm laser with a power of 3.5W on the right forehead of each human participant for 8 minutes, followed by a 5-minute recovery period. In 64-channel EEG data analysis, we utilized several methods (root mean square, principal component analysis followed by independent component analysis, permutation conditional mutual information, and time-frequency wavelet analysis) to reveal differences in electrophysiological response to TILS between the stimulated versus placebo group. The analyzed results were further investigated using general linear model and paired t-test to reveal statistically meaningful responses induced by TILS. Moreover, this study will provide spatial mapping of human electrophysiological and possibly neural network responses to TILS for first time, indicating the potential of EEG to be an effective method for monitoring neurological improvement induced by TILS.

  11. Effects of intraocular mescaline and LSD on visual-evoked responses in the rat.

    Science.gov (United States)

    Eells, J T; Wilkison, D M

    1989-01-01

    The effects of mescaline and LSD on the flash-evoked cortical potential (FEP) were determined in unrestrained rats with chronically-implanted electrodes. Systemic administration of mescaline or LSD significantly attenuated the primary component of the FEP at three stimulus intensities with the greatest effect observed 60-90 minutes following drug administration. The magnitude and specificity of the effects of these agents on the primary response suggest that they produce deficits in conduction through the retino-geniculato-cortical system. The serotonin receptor antagonists, cyproheptadine and methysergide, antagonized the mescaline-induced depression of the FEP in accordance with neurochemical and behavioral evidence that mescaline acts as a partial agonist on serotonin receptors. Topical or intraocular administration of atropine antagonized the actions of systemically-administered mescaline. In addition, intraocular administration of mescaline or LSD attenuated the FEP indicative of an action of these hallucinogens on visual processing in the retina which is modulated by muscarinic receptor activity.

  12. Normal Amplitude of Electroretinography and Visual Evoked Potential Responses in AβPP/PS1 Mice.

    Science.gov (United States)

    Leinonen, Henri; Lipponen, Arto; Gurevicius, Kestutis; Tanila, Heikki

    2016-01-01

    Alzheimer's disease has been shown to affect vision in human patients and animal models. This may pose the risk of bias in behavior studies and therefore requires comprehensive investigation. We recorded electroretinography (ERG) under isoflurane anesthesia and visual evoked potentials (VEP) in awake amyloid expressing AβPPswe/PS1dE9 (AβPP/PS1) and wild-type littermate mice at a symptomatic age. The VEPs in response to patterned stimuli were normal in AβPP/PS1 mice. They also showed normal ERG amplitude but slightly shortened ERG latency in dark-adapted conditions. Our results indicate subtle changes in visual processing in aged male AβPP/PS1 mice specifically at a retinal level.

  13. The Vestibular-Evoked Postural Response of Adolescents with Idiopathic Scoliosis Is Altered.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Pialasse

    Full Text Available Adolescent idiopathic scoliosis is a multifactorial disorder including neurological factors. A dysfunction of the sensorimotor networks processing vestibular information could be related to spine deformation. This study investigates whether feed-forward vestibulomotor control or sensory reweighting mechanisms are impaired in adolescent scoliosis patients. Vestibular evoked postural responses were obtained using galvanic vestibular stimulation while participants stood with their eyes closed and head facing forward. Lateral forces under each foot and lateral displacement of the upper body of adolescents with mild (n = 20 or severe (n = 16 spine deformation were compared to those of healthy control adolescents (n = 16. Adolescent idiopathic scoliosis patients demonstrated greater lateral displacement and net lateral forces than controls both during and immediately after vestibular stimulation. Altered sensory reweighting of vestibular and proprioceptive information changed balance control of AIS patients during and after vestibular stimulation. Therefore, scoliosis onset could be related to abnormal sensory reweighting, leading to altered sensorimotor processes.

  14. Infant temperament and the brainstem auditory evoked response in later childhood.

    Science.gov (United States)

    Woodward, S A; McManis, M H; Kagan, J; Deldin, P; Snidman, N; Lewis, M; Kahn, V

    2001-07-01

    Brainstem auditory evoked responses (BAERs) were evaluated on 10-12-year-old children (N = 56) who had been classified as high or low reactive to unfamiliar stimuli at 4 months of age. BAER measurement was selected because high reactive infants tend to become inhibited or fearful young children, and adult introverts have a faster latency to wave V of the BAER than do extroverts. Children previously classified as high reactive at 4 months had larger wave V components than did low reactive children, a finding that possibly suggests greater excitability in projections to the inferior colliculus. The fact that a fundamental feature of brainstem activity differentiated preadolescent children belonging to two early temperamental groups supports the value of gathering physiological data in temperament research.

  15. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Lau, S.K.; Wei, W.I.; Sham, J.S.T.; Choy, D.T.K.; Hui, Y. (Queen Mary Hospital, Hong Kong (Hong Kong))

    1992-10-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author).

  16. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Directory of Open Access Journals (Sweden)

    Georg F Meyer

    Full Text Available Externally generated visual motion signals can cause the illusion of self-motion in space (vection and corresponding visually evoked postural responses (VEPR. These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1 visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2 real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3 visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  17. The thermosensitive potassium channel TREK-1 contributes to coolness-evoked responses of Grueneberg ganglion neurons.

    Science.gov (United States)

    Stebe, Sabrina; Schellig, Katharina; Lesage, Florian; Breer, Heinz; Fleischer, Joerg

    2014-01-01

    Neurons of the Grueneberg ganglion (GG) residing in the vestibule of the murine nose are activated by cool ambient temperatures. Activation of thermosensory neurons is usually mediated by thermosensitive ion channels of the transient receptor potential (TRP) family. However, there is no evidence for the expression of thermo-TRPs in the GG, suggesting that GG neurons utilize distinct mechanisms for their responsiveness to cool temperatures. In search for proteins that render GG neurons responsive to coolness, we have investigated whether TREK/TRAAK channels may play a role; in heterologous expression systems, these potassium channels have been previously found to close upon exposure to coolness, leading to a membrane depolarization. The results of the present study indicate that the thermosensitive potassium channel TREK-1 is expressed in those GG neurons that are responsive to cool temperatures. Studies analyzing TREK-deficient mice revealed that coolness-evoked responses of GG neurons were clearly attenuated in these animals compared with wild-type conspecifics. These data suggest that TREK-1 channels significantly contribute to the responsiveness of GG neurons to cool temperatures, further supporting the concept that TREK channels serve as thermoreceptors in sensory cells. Moreover, the present findings provide the first evidence of how thermosensory GG neurons are activated by given temperature stimuli in the absence of thermo-TRPs.

  18. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo

    DEFF Research Database (Denmark)

    Lind, Barbara Lykke; Brazhe, Alexey; Jessen, Sanne Barsballe

    2013-01-01

    Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca(2+) elevat...... brief Ca(2+) responses with a rapid onset in vivo, fast enough to initiate hemodynamic responses or influence synaptic activity.......Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca(2......+) elevations with rapid onset and short duration in a large proportion of cortical astrocytes in the adult mouse somatosensory cortex. Our improved detection of the fast Ca(2+) signals is due to a signal-enhancing analysis of the Ca(2+) activity. The rapid stimulation-evoked Ca(2+) increases identified...

  19. The electrophysiology of thyroid surgery: electrophysiologic and muscular responses with stimulation of the vagus nerve, recurrent laryngeal nerve, and external branch of the superior laryngeal nerve.

    Science.gov (United States)

    Liddy, Whitney; Barber, Samuel R; Cinquepalmi, Matteo; Lin, Brian M; Patricio, Stephanie; Kyriazidis, Natalia; Bellotti, Carlo; Kamani, Dipti; Mahamad, Sadhana; Dralle, Henning; Schneider, Rick; Dionigi, Gianlorenzo; Barczynski, Marcin; Wu, Che-Wei; Chiang, Feng Yu; Randolph, Gregory

    2017-03-01

    Correlation of physiologically important electromyographic (EMG) waveforms with demonstrable muscle activation is important for the reliable interpretation of evoked waveforms during intraoperative neural monitoring (IONM) of the vagus nerve, recurrent laryngeal nerve (RLN), and external branch of the superior laryngeal nerve (EBSLN) in thyroid surgery. Retrospective chart review. Data were reviewed retrospectively for thyroid surgery patients with laryngeal nerve IONM from January to December, 2015. EMG responses to monopolar stimulation of the vagus/RLN and EBSLN were recorded in bilateral vocalis, cricothyroid (CTM), and strap muscles using endotracheal tube-based surface and intramuscular hook electrodes, respectively. Target muscles for vagal/RLN and EBSLN stimulation were the ipsilateral vocalis and CTM, respectively. All other recording channels were nontarget muscles. Fifty surgical sides were identified in 37 subjects. All target muscle mean amplitudes were significantly higher than in nontarget muscles. With vagal/RLN stimulation, target ipsilateral vocalis mean amplitude was 1,095.7 μV (mean difference range = -814.1 to -1,078 μV, P < .0001). For EBSLN stimulation, target ipsilateral CTM mean amplitude was 6,379.3 μV (mean difference range = -6,222.6 to -6,362.3 μV, P < .0001). Target muscle large-amplitude EMG responses correlated with meaningful visual or palpable muscular responses, whereas nontarget EMG responses showed no meaningful muscle activation. Target and nontarget laryngeal muscles are differentiated based on divergence of EMG response directly correlating with presence or absence of visual and palpable muscle activation. Low-amplitude EMG waveforms in nontarget muscles with neural stimulation can be explained by the concept of far-field artifactual waveforms and do not correspond to a true muscular response. The surgeon should be aware of these nonphysiologic waveforms when interpreting and applying IONM during thyroid surgery. 4

  20. Cortically evoked responses of human pallidal neurons recorded during stereotactic neurosurgery.

    Science.gov (United States)

    Nishibayashi, Hiroki; Ogura, Mitsuhiro; Kakishita, Koji; Tanaka, Satoshi; Tachibana, Yoshihisa; Nambu, Atsushi; Kita, Hitoshi; Itakura, Toru

    2011-02-15

    Responses of neurons in the globus pallidus (GP) to cortical stimulation were recorded for the first time in humans. We performed microelectrode recordings of GP neurons in 10 Parkinson's disease (PD) patients and 1 cervical dystonia (CD) patient during surgeries to implant bilateral deep brain stimulation electrodes in the GP. To identify the motor territories in the external (GPe) and internal (GPi) segments of the GP, unitary responses evoked by stimulation of the primary motor cortex were observed by constructing peristimulus time histograms. Neurons in the motor territories of the GPe and GPi responded to cortical stimulation. Response patterns observed in the PD patients were combinations of an early excitation, an inhibition, and a late excitation. In addition, in the CD patient, a long-lasting inhibition was prominent, suggesting increased activity along the cortico-striato-GPe/GPi pathways. The firing rates of GPe and GPi neurons in the CD patient were lower than those in the PD patients. Many GPe and GPi neurons of the PD and CD patients showed burst or oscillatory burst activity. Effective cathodal contacts tended to be located close to the responding neurons. Such unitary responses induced by cortical stimulation may be of use to target motor territories of the GP for stereotactic functional neurosurgery. Future findings utilizing this method may give us new insights into understanding the pathophysiology of movement disorders. Copyright © 2011 Movement Disorder Society.

  1. Common cortical responses evoked by appearance, disappearance and change of the human face

    Directory of Open Access Journals (Sweden)

    Kida Tetsuo

    2009-04-01

    Full Text Available Abstract Background To segregate luminance-related, face-related and non-specific components involved in spatio-temporal dynamics of cortical activations to a face stimulus, we recorded cortical responses to face appearance (Onset, disappearance (Offset, and change (Change using magnetoencephalography. Results Activity in and around the primary visual cortex (V1/V2 showed luminance-dependent behavior. Any of the three events evoked activity in the middle occipital gyrus (MOG at 150 ms and temporo-parietal junction (TPJ at 250 ms after the onset of each event. Onset and Change activated the fusiform gyrus (FG, while Offset did not. This FG activation showed a triphasic waveform, consistent with results of intracranial recordings in humans. Conclusion Analysis employed in this study successfully segregated four different elements involved in the spatio-temporal dynamics of cortical activations in response to a face stimulus. The results show the responses of MOG and TPJ to be associated with non-specific processes, such as the detection of abrupt changes or exogenous attention. Activity in FG corresponds to a face-specific response recorded by intracranial studies, and that in V1/V2 is related to a change in luminance.

  2. A Pilot Study of Phase-Evoked Acoustic Responses From the Ears of Human Subjects

    DEFF Research Database (Denmark)

    Christensen, Anders Tornvig; Dewey, James; Dhar, Sumitrajit

    2015-01-01

    Temporal properties of otoacoustic emissions (OAEs) are of interest as they help understand the dynamic behavior and spatial distribution of the generating mechanisms. In particular, the ringing behavior of responses to clicks and tone bursts have been investigated, and times of arrival and round......Temporal properties of otoacoustic emissions (OAEs) are of interest as they help understand the dynamic behavior and spatial distribution of the generating mechanisms. In particular, the ringing behavior of responses to clicks and tone bursts have been investigated, and times of arrival...... and roundtrip delays have been related to properties of the dispersive cochlea and internal reflections. Temporal suppression experiments (e.g. Kemp and Chum, 1980; Verhulst et al., 2008), where a suppressor click is presented just before the stimulus click, have shown how a click response depends on preceding...... within one, three and five periods of the stimulus-frequency every 64 ms (54 conditions). Using a combination of level and phase variation, emissions linked to any time-invariant nonlinearity could be extracted. Phase-evoked residual responses (PERRs) look like tone bursts with a phase...

  3. The electrophysiological response to immunoglobulin therapy in chronic inflammatory demyelinating polyneuropathy

    DEFF Research Database (Denmark)

    Otto, Marit; Markvardsen, Lars Høj; Tankisi, Hatice

    2017-01-01

    OBJECTIVE: To characterize changes in motor nerve conduction studies (MNCS) and motor unit number index (MUNIX) following treatment with subcutaneous immunoglobulin and to assess whether these changes are related to muscle strength. METHODS: Data from 23 patients participating in a randomized, co......, and distally evoked CMAP duration (P=.013-.035). CONCLUSION: Proximally evoked CMAP amplitudes appear to be the best MNCS parameter to assess treatment outcome in chronic inflammatory demyelinating polyneuropathy....

  4. Synaptic responses evoked by tactile stimuli in Purkinje cells in mouse cerebellar cortex Crus II in vivo.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Chu

    Full Text Available BACKGROUND: Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice. METHODS AND MAIN RESULTS: Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6-8-week-old HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0, the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs in the somata of PCs. Application of SR95531, a specific GABA(A receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation. CONCLUSIONS: These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABA(A receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.

  5. Evaluation of stress response using psychological, biological, and electrophysiological markers during immersive simulation of life threatening events in multidisciplinary teams.

    Science.gov (United States)

    Ghazali, D A; Darmian-Rafei, I; Nadolny, J; Sosner, P; Ragot, S; Oriot, D

    2017-07-27

    Stress might impair clinical performance in real life and in simulation-based education (SBE). Subjective or objective measures can be used to assess stress during SBE. This monocentric study aimed to evaluate the effects of simulation of life-threatening events on measurements of various stress parameters (psychological, biological, and electrophysiological parameters) in multidisciplinary teams (MDTs) during SBE. The effect of gender and status of participants on stress response was also investigated. Twelve emergency MDTs of 4 individuals were recruited for an immersive simulation session. Stress was assessed by: (1) self-reported stress; (2) Holter analysis, including heart rate and heart rate variability in the temporal and spectral domain (autonomic nervous system); (3) salivary cortisol (hypothalamic pituitary adrenal axis). Forty-eight participants (54.2% men, psychological, biological and electrophysiological parameters. Copyright © 2017 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.

  6. The Duration of Motor Responses Evoked with Intracortical Microstimulation in Rats Is Primarily Modulated by Stimulus Amplitude and Train Duration.

    Directory of Open Access Journals (Sweden)

    Meghan Watson

    Full Text Available Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical therapies and research applications, however the effects of stimulation parameters on the responses they evoke remain widely unknown. In particular, the effects of parameters when delivered in the form of a stimulus train as opposed to a single pulse are not well understood despite the prevalence of stimulus train use. We aimed to investigate the contribution of each parameter of a stimulus train to the duration of the motor responses they evoke in forelimb muscles. We used constant-current, biphasic, square wave pulse trains in acute terminal experiments under ketamine anaesthesia. Stimulation parameters were systematically tested in a pair-wise fashion in the caudal forelimb region of the motor cortex in 7 Sprague-Dawley rats while motor evoked potential (MEP recordings from the forelimb were used to quantify the influence of each parameter in the train. Stimulus amplitude and train duration were shown to be the dominant parameters responsible for increasing the total duration of the MEP, while interphase interval had no effect. Increasing stimulus frequency from 100-200 Hz or pulse duration from 0.18-0.34 ms were also effective methods of extending response durations. Response duration was strongly correlated with peak time and amplitude. Our findings suggest that motor cortex intracortical microstimulations are often conducted at a higher frequency rate and longer train duration than necessary to evoke maximal response duration. We demonstrated that the temporal properties of the evoked response can be both predicted by certain response metrics and modulated via alterations to the stimulation signal parameters.

  7. Evoked response of heart rate variability using short-duration white noise.

    Science.gov (United States)

    Lee, Guo-She; Chen, Mei-Ling; Wang, Gin-You

    2010-06-24

    To investigate and to establish a model for evaluation of the instant cardiovascular responses to the noises of low-to-moderate intensity, sixteen healthy subjects were enrolled. The white noises were binaurally presented with a supra-aural earphone. The test intensities of noises were no noise, 50, 60, 70 and 80 dBA. Each noise was continued for 5 min and the electrocardiogram was simultaneously recorded. The cardiac autonomic responses were evaluated using power spectral analysis of the R-R contour obtained from digital signal processing of the ECG tracings. The result showed that the mean heart rate and mean blood pressure did not change significantly with the noises. However, the low-frequency power (LF) which represents cardiac autonomic modulations and the ratio (LHR) of LF to high-frequency power (HF) which reflects cardiac sympathetic modulations were significantly greater in the noise intensity of 50, 60, 70 and 80dBA (pnoise intensity (rho=0.90, pwhite noises can be detected using power spectral analysis of heart rate variability and the evoked responses may provide a sensitive way to evaluate the instant effect of noise to humans.

  8. Impact of loudness dependency of auditory evoked potentials on the panic response to CCK-4.

    Science.gov (United States)

    Eser, Daniela; Leicht, Gregor; Baghai, Thomas; Pogarell, Oliver; Schüle, Cornelius; Karch, Susanne; Nothdurfter, Caroline; Rupprecht, Rainer; Mulert, Christoph

    2009-01-01

    Experimental panic induction with cholecystokinin-tetrapeptide (CCK-4) has been established as a model to study the pathophysiology of panic disorder. In line with the serotonin (5-HT)-hypothesis of panic disorder it has been suggested that the panicogenic effects of CCK-4 are mediated in part through the 5-HT system. The analysis of the loudness dependency of the auditory evoked potentials (LDAEP) is a valid non-invasive indicator of central serotonergic activity. We investigated the correlation between LDAEP and behavioral, cardiovascular and neuroendocrine panic responses to CCK-4in 77 healthy volunteers and explored whether differences in LDAEP paralleled subjective panic severity. Behavioral panic responses were measured with the panic symptom scale (PSS). Heart rate and ACTH/cortisol plasma concentrations were assessed concomitantly. LDAEP did not differ between panickers and nonpanickers. Furthermore, LDAEP did not correlate with the behavioral panic response. However, a significant positive correlation between LDAEP and CCK-4 induced HPA-axis activation, which was uniform in panickers and nonpanickers, could be detected. The psychological effects of CCK-4 rather are mediated by neurotransmitters others than the endogenous 5-HT system. However, the extent of the neuroendocrine activation related to the CCK-4 panic provocation was correlated with the LDAEP, thereby suggesting that central 5-HT mechanisms are involved in the HPA-axis activation during this challenge paradigm.

  9. Wavelet denoising of EEG signals and identification of evoked response potentials

    Science.gov (United States)

    Carmona, Rene A.; Hudgins, Lonnie H.

    1994-10-01

    The purpose of this study is to apply a recently developed wavelet based de-noising filter to the analysis of human electroencephalogram (EEG) signals, and measure its performance. The data used contained subject EEG responses to two different stimuli using the `odd-ball' paradigm. Electrical signals measured at standard locations on the scalp were processed to detect and identify the Evoked Response Potentials (ERP's). First, electrical artifacts emitting from the eyes were identified and removed. Second, the mean signature for each type of response was extracted and used as a matched filter to define baseline detector performance for the noisy data. Third, a nonlinear filtering procedure based on the wavelet extrema representation was used to de-noise the signals. Overall detection rates for the de-noised signals were then compared to the baseline performance. It was found that while the filtered signals have significantly lower noise than the raw signals, detector performance remains comparable. We therefore conclude that all of the information that is important to matched filter detection is preserved by the filter. The implication is that the wavelet based filter eliminates much of the noise while retaining ERP's.

  10. Gender differences in rival characteristics that evoke jealousy in response to emotional versus sexual infidelity

    NARCIS (Netherlands)

    Buunk, Abraham (Bram); Dijkstra, Pieternel

    2004-01-01

    Previous research has shown that in men jealousy is evoked more by a rival's status-related characteristics than in women, whereas in women jealousy is evoked more by a rival's physical attractiveness than in men. The present study examined whether the occurrence of this gender difference depends

  11. The vestibular evoked response to linear, alternating, acceleration pulses without acoustic masking as a parameter of vestibular function

    NARCIS (Netherlands)

    Oei, MLYM; Segenhout, JM; Wit, HP; Albers, FWJ

    In this study, short latency vestibular evoked potentials (VsEPs) were recorded in five guinea pigs in response to alternating linear acceleration pulses with and without acoustic masking. A steel bolt was implanted in the skull and coupled to a shaker. Linear acceleration pulses (n = 400) in

  12. Middle components of the auditory evoked response in bilateral temporal lobe lesions. Report on a patient with auditory agnosia

    DEFF Research Database (Denmark)

    Parving, A; Salomon, G; Elberling, Claus

    1980-01-01

    An investigation of the middle components of the auditory evoked response (10--50 msec post-stimulus) in a patient with auditory agnosia is reported. Bilateral temporal lobe infarctions were proved by means of brain scintigraphy, CAT scanning, and regional cerebral blood flow measurements. The mi...

  13. Neural responses to nostalgia-evoking music modeled by elements of dynamic musical structure and individual differences in affective traits.

    Science.gov (United States)

    Barrett, Frederick S; Janata, Petr

    2016-10-01

    Nostalgia is an emotion that is most commonly associated with personally and socially relevant memories. It is primarily positive in valence and is readily evoked by music. It is also an idiosyncratic experience that varies between individuals based on affective traits. We identified frontal, limbic, paralimbic, and midbrain brain regions in which the strength of the relationship between ratings of nostalgia evoked by music and blood-oxygen-level-dependent (BOLD) signal was predicted by affective personality measures (nostalgia proneness and the sadness scale of the Affective Neuroscience Personality Scales) that are known to modulate the strength of nostalgic experiences. We also identified brain areas including the inferior frontal gyrus, substantia nigra, cerebellum, and insula in which time-varying BOLD activity correlated more strongly with the time-varying tonal structure of nostalgia-evoking music than with music that evoked no or little nostalgia. These findings illustrate one way in which the reward and emotion regulation networks of the brain are recruited during the experiencing of complex emotional experiences triggered by music. These findings also highlight the importance of considering individual differences when examining the neural responses to strong and idiosyncratic emotional experiences. Finally, these findings provide a further demonstration of the use of time-varying stimulus-specific information in the investigation of music-evoked experiences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration.

    Science.gov (United States)

    Mildren, Robyn L; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sébastien; Carpenter, Mark G; Inglis, J Timothy

    2017-05-01

    Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults ( n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1 ) accurate reflex estimates could be obtained with vibration; 2 ) responses did not habituate over 2 min of exposure; and importantly, 3 ) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing. NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the noisy vibration (peak coherence ~40 Hz), and

  15. Quantifying attentional modulation of auditory-evoked cortical responses from single-trial electroencephalography

    Directory of Open Access Journals (Sweden)

    Inyong eChoi

    2013-04-01

    Full Text Available Selective auditory attention is essential for human listeners to be able to communicate in multi-source environments. Selective attention is known to modulate the neural representation of the auditory scene, boosting the representation of a target sound relative to the background, but the strength of this modulation, and the mechanisms contributing to it, are not well understood. Here, listeners performed a behavioral experiment demanding sustained, focused spatial auditory attention while we measured cortical responses using electroencephalography (EEG. We presented three concurrent melodic streams; listeners were asked to attend and analyze the melodic contour of one of the streams, randomly selected from trial to trial. In a control task, listeners heard the same sound mixtures, but performed the contour judgment task on a series of visual arrows, ignoring all auditory streams. We found that the cortical responses could be fit as weighted sum of event-related potentials evoked by the stimulus onsets in the competing streams. The weighting to a given stream was roughly 10 dB higher when it was attended compared to when another auditory stream was attended; during the visual task, the auditory gains were intermediate. We then used a template-matching classification scheme to classify single-trial EEG results. We found that in all subjects, we could determine which stream the subject was attending significantly better than by chance. By directly quantifying the effect of selective attention on auditory cortical responses, these results reveal that focused auditory attention both suppresses the response to an unattended stream and enhances the response to an attended stream. The single-trial classification results add to the growing body of literature suggesting that auditory attentional modulation is sufficiently robust that it could be used as a control mechanism in brain-computer interfaces.

  16. Not all reading is alike: Task modulation of magnetic evoked response to visual word

    Directory of Open Access Journals (Sweden)

    Pavlova A. A.

    2017-09-01

    Full Text Available Background. Previous studies have shown that brain response to a written word depends on the task: whether the word is a target in a version of lexical decision task or should be read silently. Although this effect has been interpreted as an evidence for an interaction between word recognition processes and task demands, it also may be caused by greater attention allocation to the target word. Objective. We aimed to examine the task effect on brain response evoked by non- target written words. Design. Using MEG and magnetic source imaging, we compared spatial-temporal pattern of brain response elicited by a noun cue when it was read silently either without additional task (SR or with a requirement to produce an associated verb (VG. Results.The task demands penetrated into early (200-300 ms and late (500-800 ms stages of a word processing by enhancing brain response under VG versus SR condition. The cortical sources of the early response were localized to bilateral inferior occipitotemporal and anterior temporal cortex suggesting that more demanding VG task required elaborated lexical-semantic analysis. The late effect was observed in the associative auditory areas in middle and superior temporal gyri and in motor representation of articulators. Our results suggest that a remote goal plays a pivotal role in enhanced recruitment of cortical structures underlying orthographic, semantic and sensorimotor dimensions of written word perception from the early processing stages. Surprisingly, we found that to fulfil a more challenging goal the brain progressively engaged resources of the right hemisphere throughout all stages of silent reading. Conclusion. Our study demonstrates that a deeper processing of linguistic input amplifies activation of brain areas involved in integration of speech perception and production. This is consistent with theories that emphasize the role of sensorimotor integration in speech understanding.

  17. Baroreflexes of the rat. IV. ADN-evoked responses at the NTS.

    Science.gov (United States)

    Tang, Xiaorui; Dworkin, Barry R

    2007-12-01

    In a long-term (7-21 days) neuromuscular blocked (NMB) rat preparation, using precise single-pulse aortic depressor nerve (ADN) stimulation and stable chronic evoked response (ER) recordings from the dorsal-medial solitary nucleus (dmNTS), two different response patterns were observed: continuous and discrete. For the continuous pattern, activity began approximately 3 ms after the stimulus and persisted for 45 ms; for the discrete pattern, two complexes were separated by a gap from approximately 17 to 25 ms. The early complex was probably transmitted via A-fibers: it had a low stimulus current threshold and an average conduction velocity (CV) of 0.58-5.5 m/s; the high threshold late (HTL) complex had a CV = 0.26-0.58 m/s. The average stimulus amplitude-ER magnitude transduction curves for the A and HTL complexes were sigmoidal. For individual rats, in the linear range, mean r2 = 0.96 +/- 0.03 for both complexes. The average stimulus amplitude vs. the systolic blood pressure change (delta sBP) transduction curve was also approximately linear; however, for individual rats, the relationship was not consistently reliable: mean r2 = 0.48 +/- 0.19. Approximately 90% of recording sites had respiratory, and 50% had cardiac synchronism. The NMB preparation is useful for studying central baroreflex mechanisms that operate on time scales of days or weeks, such as adaptation and other kinds of neural plasticity.

  18. Emotional expressions evoke a differential response in the fusiform face area

    Directory of Open Access Journals (Sweden)

    Bronson Blake Harry

    2013-10-01

    Full Text Available It is widely assumed that the fusiform face area (FFA, a brain region specialised for face perception, is not involved in processing emotional expressions. This assumption is based on the proposition that the FFA is involved in face identification and only processes features that are invariant across changes due to head movements, speaking and expressing emotions. The present study tested this proposition by examining whether the response in the human FFA varies across emotional expressions with functional magnetic resonance imaging and brain decoding analysis techniques (n = 11. A one versus all classification analysis showed that most emotional expressions that participants perceived could be reliably predicted from the neural pattern of activity in left and the right FFA, suggesting that the perception of different emotional expressions recruit partially non-overlaping neural mechanisms. In addition, emotional expressions could also be decoded from the pattern of activity in the early visual cortex (EVC, indicating that retinotopic cortex also shows a differential response to emotional expressions. These results cast doubt on the idea that the FFA is involved in expression invariant face processing, and instead indicate that emotional expressions evoke partially de-correlated signals throughout occipital and posterior temporal cortex.

  19. Brainstem auditory-evoked response (BAER) in client-owned pet ferrets with normal hearing.

    Science.gov (United States)

    Piazza, S; Huynh, M; Cauzinille, L

    2014-06-07

    The objective of this study was to evaluate the feasibility of brainstem auditory-evoked response (BAER) testing in pet ferrets in a clinical setting, and to describe a routine method and baseline data for normal hearing ferrets for future investigation of deafness in this species. Twenty-eight clinically normal client-owned ferrets were included. BAER measurements were recorded under general anaesthesia (isoflurane delivered by mask), from subcutaneously placed needle electrodes. A 'click' stimulus applied by insert earphone with an intensity of 90 dB sound pressure level (SPL) was used. The final BAER waveform represents an average of 500 successive responses. Morphology of the waveform was studied; amplitude and latency measures were determined and means were calculated. The BAER waveform of the normal ferret included 4 reproducible waves named I, II, III and V, as previously described in dogs and cats. Measurements of latencies are consistent with previous laboratory research using experimental ferrets. In the present study, a reliable routine protocol for clinical evaluation of the hearing function in the pet ferret was established. This procedure can be easily and safely performed in a clinical setting in ferrets as young as eight weeks of age. The prevalence of congenital deafness in ferrets is currently unknown but may be an important consideration, especially in ferrets with a white coat. BAER test is a useful screening for congenital deafness in this species. British Veterinary Association.

  20. The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG-fMRI study

    Directory of Open Access Journals (Sweden)

    Gounot Daniel

    2003-09-01

    Full Text Available Abstract Background The integration of EEG and fMRI is attractive because of their complementary precision regarding time and space. But the relationship between the indirect hemodynamic fMRI signal and the more direct EEG signal is uncertain. Event-related EEG responses can be analyzed in two different ways, reflecting two different kinds of brain activity: evoked, i.e. phase-locked to the stimulus, such as evoked potentials, or induced, i.e. non phase-locked to the stimulus such as event-related oscillations. In order to determine which kind of EEG activity was more closely related with fMRI, EEG and fMRI signals were acquired together, while subjects were presented with two kinds of rare events intermingled with frequent distractors. Target events had to be signaled by pressing a button and Novel events had to be ignored. Results Both Targets and Novels triggered a P300, of larger amplitude in the Novel condition. On the opposite, the fMRI BOLD response was stronger in the Target condition. EEG event-related oscillations in the gamma band (32–38 Hz reacted in a way similar to the BOLD response. Conclusions The reasons for such opposite differential reactivity between oscillations / fMRI on the one hand, and evoked potentials on the other, are discussed in the paper. Those results provide further arguments for a closer relationship between fast oscillations and the BOLD signal, than between evoked potentials and the BOLD signal.

  1. Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses

    NARCIS (Netherlands)

    Journee, H. -L.; Polak, H. E.; De Kleuver, M.

    2007-01-01

    Introduction. - In spite of the use of multipulse, transcranial electrical stimulation (TES) is still insufficient in a subgroup of patients to elicit motor-evoked potentials during intraoperative neurophysiological monitoring (IONM). Classic facilitation methods used in awake patients are precluded

  2. Revealing the distinction between perception and cognition through intra-individual variability of visual evoked responses.

    Science.gov (United States)

    Constantinescu, V D

    1996-01-01

    Searching for a method to objectively detect the cognitive activity of the brain, the variability of visual evoked responses (ER) was analysed in 75 human subjects and 10 animals. The individual ERs of a normal subject were found typically very scattered in the first approx. 120 ms after stimulation, converging at 160-220 ms and then diverging again progressively. This variability pattern (VP) is event-related and is not attributable to background noise. On the other hand, statistically significant correlation showed that in most patients, with anatomically intact visual structures but with pronounced mental troubles, the VP is absent and the ERs are randomly scattered. Based on these results we consider that the event-related variability reflects the cognition function of the subjects and that it is instrumental in evidencing the distinction between cognitive and perceptive processes. The results are further consistent with the idea that cognition implies the chaotic activity of certain neural populations and that the VP reflects this chaotic, non-repetitive, non-linear and impredictable but effective neural activity.

  3. Effects of otitis on hearing in dogs characterised by brainstem auditory evoked response testing.

    Science.gov (United States)

    Eger, C E; Lindsay, P

    1997-09-01

    Hearing function was measured in normal dogs and in dogs with otitis using brainstem auditory evoked response testing. Data were obtained from 86 normal ears and from 105 ears with otitis, categorised into four degrees of severity. The data were analysed to illustrate the differences between the hearing function in the normal and abnormal ears and to estimate the degree of impairment associated with differing degrees of pathology. While severe hearing loss seemed to be present in the dogs with more severe otitis, only two individuals were identified as being totally deaf in the affected ears and no dogs were identified in which the cleaning and examination processes had caused damage to hearing function. Cleaning the ear canal produced measurable improvements in hearing in several dogs, indicating the profound effect of physical obstruction of the external ear canal by debris. It is concluded that most dogs with chronic otitis externa are not totally deaf and that the hearing impairment that does occur has the characteristics of conductive hearing loss.

  4. Gender Disparities in Speech-evoked Auditory Brainstem Response in Healthy Adults.

    Science.gov (United States)

    Jalaei, Bahram; Zakaria, Mohd Normani; Mohd Azmi, Mohd Hafiz Afifi; Nik Othman, Nik Adilah; Sidek, Dinsuhaimi

    2017-04-01

    Gender disparities in speech-evoked auditory brainstem response (speech-ABR) outcomes have been reported, but the literature is limited. The present study was performed to further verify this issue and determine the influence of head size on speech-ABR results between genders. Twenty-nine healthy Malaysian subjects (14 males and 15 females) aged 19 to 30 years participated in this study. After measuring the head circumference, speech-ABR was recorded by using synthesized syllable /da/ from the right ear of each participant. Speech-ABR peaks amplitudes, peaks latencies, and composite onset measures were computed and analyzed. Significant gender disparities were noted in the transient component but not in the sustained component of speech-ABR. Statistically higher V/A amplitudes and less steeper V/A slopes were found in females. These gender differences were partially affected after controlling for the head size. Head size is not the main contributing factor for gender disparities in speech-ABR outcomes. Gender-specific normative data can be useful when recording speech-ABR for clinical purposes.

  5. Middle latency auditory evoked responses in normal term infants: a longitudinal study.

    Science.gov (United States)

    Rogers, S H; Edwards, D A; Henderson-Smart, D J; Pettigrew, A G

    1989-05-01

    Middle latency auditory evoked responses (MLAERs) were measured in 21 normal term infants, three to five days after birth and then at 6 weeks, 7 months and 1 year of age. A polyphasic waveform was elicited during natural sleep in all infants at each recording session by monaural click stimulation at a rate of 9 per second. A 70 dBHL stimulus was found to be optimal as the MLAER became less well defined when the stimulus intensity approached the threshold hearing level. The first 60 to 70 msec of the waveform was found to be most stable, with decreasing detectability of peaks at longer latencies. There was no change in wave latency or reproducibility of MLAERs recorded during different sleep states. Waves Po and Na showed a significant decrease in latency with increasing stimulus intensity at term and/or 6 weeks of age. This was not evident for the remainder of the waveform. Waves Po, Na, Pa, Nb, Pb and Nc exhibited significant decreases in latency with age, attaining values indistinguishable from adults by 7 months of age.

  6. The effect of morphology upon electrophysiological responses of retinal ganglion cells: simulation results.

    Science.gov (United States)

    Maturana, Matias I; Kameneva, Tatiana; Burkitt, Anthony N; Meffin, Hamish; Grayden, David B

    2014-04-01

    Retinal ganglion cells (RGCs) display differences in their morphology and intrinsic electrophysiology. The goal of this study is to characterize the ionic currents that explain the behavior of ON and OFF RGCs and to explore if all morphological types of RGCs exhibit the phenomena described in electrophysiological data. We extend our previous single compartment cell models of ON and OFF RGCs to more biophysically realistic multicompartment cell models and investigate the effect of cell morphology on intrinsic electrophysiological properties. The membrane dynamics are described using the Hodgkin - Huxley type formalism. A subset of published patch-clamp data from isolated intact mouse retina is used to constrain the model and another subset is used to validate the model. Two hundred morphologically distinct ON and OFF RGCs are simulated with various densities of ionic currents in different morphological neuron compartments. Our model predicts that the differences between ON and OFF cells are explained by the presence of the low voltage activated calcium current in OFF cells and absence of such in ON cells. Our study shows through simulation that particular morphological types of RGCs are capable of exhibiting the full range of phenomena described in recent experiments. Comparisons of outputs from different cells indicate that the RGC morphologies that best describe recent experimental results are ones that have a larger ratio of soma to total surface area.

  7. Cow's milk challenge through human milk evokes immune responses in infants with cow's milk allergy.

    Science.gov (United States)

    Järvinen, K M; Mäkinen-Kiljunen, S; Suomalainen, H

    1999-10-01

    In order to measure the immune response evoked in breast-fed infants with cow's milk allergy (CMA) by cow's milk challenge through human milk, mothers were given increasing doses of cow's milk after they had been on a cow's milk elimination diet. Another objective was to study the secretion of beta-lactoglobulin (BLG) into human milk before and during milk challenge in relation to the appearance of symptoms in infants. Seventeen asymptomatic mothers who had infants with challenge-proven CMA and 10 asymptomatic mothers who had healthy infants were recruited. Infants ranged in age from 1.8 to 9.4 months. A solid-phase enzyme-linked immunoassay (ELISPOT) was used to assess the total number of immunoglobulin-secreting and specific antibody-secreting cells. Flow cytometry was used to enumerate different lymphocyte subpopulations among peripheral blood lymphocytes primed during provocation by cow's milk antigens. BLG levels were assessed in human milk before the challenge and 1, 2, 3, and 4 hours after the commencement of the challenge. All but one of the infants with CMA showed symptoms of CMA during cow's milk challenge through human milk. There was a significant rise in the total number of immunoglobulin-secreting cells in the IgA and IgG classes associated with a positive cow's milk challenge response, but the proportions of peripheral blood B cells bearing CD19, CD23, CD19 and 23, CD5, or CD19 and CD5 were comparable. BLG levels were comparable in both study groups. Most of the infants with CMA reacted to cow's milk challenge through human milk. Hypersensitivity reactions to food antigens through human milk may be more common than previously thought.

  8. Frequency-specific objective audiometry: tone-evoked brainstem responses and steady-state responses to 40 Hz and 90 Hz amplitude modulated stimuli.

    NARCIS (Netherlands)

    Reijden, C.S. van der; Mens, L.H.M.; Snik, A.F.M.

    2006-01-01

    Tone-evoked Auditory Brainstem Responses (tone-burst ABRs) and Auditory Steady-State Responses (ASSRs) with 40 or 90 Hz amplitude modulation (AM) were compared, using the same equipment and recording parameters, to determine which of these three methods most accurately approached the behavioural

  9. Modulation of auditory evoked responses to spectral and temporal changes by behavioral discrimination training

    Directory of Open Access Journals (Sweden)

    Okamoto Hidehiko

    2009-12-01

    Full Text Available Abstract Background Due to auditory experience, musicians have better auditory expertise than non-musicians. An increased neocortical activity during auditory oddball stimulation was observed in different studies for musicians and for non-musicians after discrimination training. This suggests a modification of synaptic strength among simultaneously active neurons due to the training. We used amplitude-modulated tones (AM presented in an oddball sequence and manipulated their carrier or modulation frequencies. We investigated non-musicians in order to see if behavioral discrimination training could modify the neocortical activity generated by change detection of AM tone attributes (carrier or modulation frequency. Cortical evoked responses like N1 and mismatch negativity (MMN triggered by sound changes were recorded by a whole head magnetoencephalographic system (MEG. We investigated (i how the auditory cortex reacts to pitch difference (in carrier frequency and changes in temporal features (modulation frequency of AM tones and (ii how discrimination training modulates the neuronal activity reflecting the transient auditory responses generated in the auditory cortex. Results The results showed that, additionally to an improvement of the behavioral discrimination performance, discrimination training of carrier frequency changes significantly modulates the MMN and N1 response amplitudes after the training. This process was accompanied by an attention switch to the deviant stimulus after the training procedure identified by the occurrence of a P3a component. In contrast, the training in discrimination of modulation frequency was not sufficient to improve the behavioral discrimination performance and to alternate the cortical response (MMN to the modulation frequency change. The N1 amplitude, however, showed significant increase after and one week after the training. Similar to the training in carrier frequency discrimination, a long lasting

  10. Detection of binaural interaction in free-field evoked auditory brainstem responses by time-scale representations.

    Science.gov (United States)

    Schebsdat, Erik; Hessel, Horst; Seidler, Harald; Strauss, Daniel J

    2016-08-01

    The so called β-wave of the binaural interaction component (BIC) in auditory brainstem responses (ABR) has been shown to be an objective measure for binaural interaction (BI). This component is the arithmetical difference between the sum of the monaurally evoked ABRs and the binaurally evoked ABR. Unfortunately, these neural responses are known to be very fragile and as a result the calculated BIC. An additional issue is, that the findings of this measurement are predominantly needed in people with hearing loss who may use hearing devices like hearing aids (HA) or cochlear implants (CI), thus they are not able to use headphones (like in conventional ABR measurements) during the detection of possible BI. This is a crucial problem, because it is known that factors like the interaural time delay (ITD) between the receiving ears are responsible for solving tasks like sound source localization or sound source separation, but specially designed measurements to coordinate the fitting of HAs or CIs with respect to BI are still missing. In this paper, we introduce a new measurement setup that is able to detect BI depending on different ITDs in free-field evoked responses by using the more reliable instantaneous phase in the time-scale representation. With this pilot study we are able to demonstrate a decreasing BI with an increasing ITD using the wavelet phase synchronization stability analysis in ten normal hearing subjects.

  11. Brainstem auditory evoked responses in an equine patient population: part I--adult horses.

    Science.gov (United States)

    Aleman, M; Holliday, T A; Nieto, J E; Williams, D C

    2014-01-01

    Brainstem auditory evoked response has been an underused diagnostic modality in horses as evidenced by few reports on the subject. To describe BAER findings, common clinical signs, and causes of hearing loss in adult horses. Study group, 76 horses; control group, 8 horses. Retrospective. BAER records from the Clinical Neurophysiology Laboratory were reviewed from the years of 1982 to 2013. Peak latencies, amplitudes, and interpeak intervals were measured when visible. Horses were grouped under disease categories. Descriptive statistics and a posthoc Bonferroni test were performed. Fifty-seven of 76 horses had BAER deficits. There was no breed or sex predisposition, with the exception of American Paint horses diagnosed with congenital sensorineural deafness. Eighty-six percent (n = 49/57) of the horses were younger than 16 years of age. The most common causes of BAER abnormalities were temporohyoid osteoarthropathy (THO, n = 20/20; abnormalities/total), congenital sensorineural deafness in Paint horses (17/17), multifocal brain disease (13/16), and otitis media/interna (4/4). Auditory loss was bilateral and unilateral in 74% (n = 42/57) and 26% (n = 15/57) of the horses, respectively. The most common causes of bilateral auditory loss were sensorineural deafness, THO, and multifocal brain disease whereas THO and otitis were the most common causes of unilateral deficits. Auditory deficits should be investigated in horses with altered behavior, THO, multifocal brain disease, otitis, and in horses with certain coat and eye color patterns. BAER testing is an objective and noninvasive diagnostic modality to assess auditory function in horses. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  12. P2X7R modulation of visually evoked synaptic responses in the retina.

    Science.gov (United States)

    Chavda, Seetal; Luthert, Philip J; Salt, Thomas E

    2016-12-01

    P2X7Rs are distributed throughout all layers of the retina, and thus, their localisation on various cell types puts into question their specific site(s) of action. Using a dark-adapted, ex vivo mouse retinal whole mount preparation, the present study aimed to characterise the effect of P2X7R activation on light-evoked, excitatory RGC ON-field excitatory post-synaptic potentials (fEPSPs) and on outer retinal electroretinogram (ERG) responses under comparable conditions. The pharmacologically isolated NMDA receptor-mediated RGC ON-fEPSP was reduced in the presence of BzATP, an effect which was significantly attenuated by A438079 and other selective P2X7R antagonists A804598 or AF27139. In physiological Krebs medium, BzATP induced a significant potentiation of the ERG a-wave, with a concomitant reduction in the b-wave and the power of the oscillatory potentials. Conversely, in the pharmacologically modified Mg2+-free perfusate, BzATP reduced both the a-wave and b-wave. The effects of BzATP on the ERG components were suppressed by A438079. A role for P2X7R function in visual processing in both the inner and outer retina under physiological conditions remains controversial. The ON-fEPSP was significantly reduced in the presence of A804598 but not by A438079 or AF27139. Furthermore, A438079 did not have any effect on the ERG components in physiological Krebs but potentiated and reduced the a-wave and b-wave, respectively, when applied to the pharmacologically modified medium. Therefore, activation of P2X7Rs affects the function in the retinal ON pathway. The presence of a high concentration of extracellular ATP would most likely contribute to the modulation of visual transmission in the retina in the pathophysiological microenvironment.

  13. Auditory assessment of children with severe hearing loss using behavioural observation audiometry and brainstem evoked response audiometry

    OpenAIRE

    Rakhi Kumari; Priyanko Chakraborty; Jain, R K; Dhananjay Kumar

    2016-01-01

    Background: Early detection of hearing loss has been a long-standing priority in the field of audiology. Currently available auditory testing methods include both behavioural and non-behavioural or objective tests of hearing. This study was planned with an objective to assess hearing loss in children using behavioural observation audiometry and brain stem evoked response audiometry. Methods: A total of 105 cases suffering from severe to profound hearing loss were registered. After proper h...

  14. Physical exercise affects the epigenetic programming of rat brain and modulates the adaptive response evoked by repeated restraint stress.

    Science.gov (United States)

    Kashimoto, R K; Toffoli, L V; Manfredo, M H F; Volpini, V L; Martins-Pinge, M C; Pelosi, G G; Gomes, M V

    2016-01-01

    Epigenetics has recently been linked to molecular adaptive responses evoked by physical exercise and stress. Herein we evaluated the effects of physical exercise on global DNA methylation and expression of the Dnmt1 gene in the rat brain and also verified its potential to modulate responses evoked by repeated restraint stress (RRS). Wistar rats were classified into the following experimental groups: (1) physically active (EX): animals submitted to swimming during postnatal days 53-78 (PND); (2) stress (ST): animals submitted to RRS during 75-79PND; (3) exercise-stress (EX-ST): animals submitted to swimming during 53-78PND and to RRS during 75-79PND, and (4) control (CTL): animals that were not submitted to intervention. Samples from the hippocampus, cortex and hypothalamus were obtained at 79PND. The global DNA methylation profile was assessed using an ELISA-based method and the expression of Dnmt1 was evaluated by real-time PCR. Significantly increased methylation was observed in the hypothalamus of animals from the EX group in comparison to CTL. Comparative analysis involving the EX-ST and ST groups revealed increased global DNA methylation in the hippocampus, cortex, and hypothalamus of EX-ST, indicating the potential of physical exercise in modulating the responses evoked by RRS. Furthermore, decreased expression of the Dnmt1 gene was observed in the hippocampus and hypothalamus of animals from the EX-ST group. In summary, our data indicate that physical exercise affects DNA methylation of the hypothalamus and might modulate epigenetic responses evoked by RRS in the hippocampus, cortex, and hypothalamus. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Electrophysiology Studies (EPS)

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Electrophysiology Studies (EPS) Updated:Dec 21,2016 What are electrophysiology studies? Electrophysiology studies (EPS) are tests that help doctors ...

  16. Effects of motivation and medication on electrophysiological markers of response inhibition in children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Groom, Madeleine J; Scerif, Gaia; Liddle, Peter F; Batty, Martin J; Liddle, Elizabeth B; Roberts, Katherine L; Cahill, John D; Liotti, Mario; Hollis, Chris

    2010-04-01

    Theories of attention-deficit/hyperactivity disorder (ADHD) posit either executive deficits and/or alterations in motivational style and reward processing as core to the disorder. Effects of motivational incentives on electrophysiological correlates of inhibitory control and relationships between motivation and stimulant medication have not been explicitly tested. Children (9-15 years) with combined-type ADHD (n = 28) and matched typically developing children (CTRL) (n = 28) performed a go/no-go task. Electroencephalogram data were recorded. Amplitude of two event-related potentials, the N2 and P3 (markers of response conflict and attention), were measured. The ADHD children were all stimulant responders tested on and off their usual dose of methylphenidate; CTRLs were never medicated. All children performed the task under three motivational conditions: reward; response cost; and baseline, in which points awarded/deducted for inhibitory performance varied. There were effects of diagnosis (CTRL > ADHD unmedicated), medication (on > off), and motivation (reward and/or response cost > baseline) on N2 and P3 amplitude, although the N2 diagnosis effect did not reach statistical significance (p = .1). Interactions between motivation and diagnosis/medication were nonsignificant (p > .1). Motivational incentives increased amplitudes of electrophysiological correlates of response conflict and attention in children with ADHD, towards the baseline (low motivation) amplitudes of control subjects. These results suggest that, on these measures, motivational incentives have similar effects in children with ADHD as typically developing CTRLs and have additive effects with stimulant medication, enhancing stimulus salience and allocation of attentional resources during response inhibition. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Source localization of EEG versus MEG: Emperical comparison using visually evoked responses and theoretical considerations

    NARCIS (Netherlands)

    Lopes da silva, F.H.; Wieringa, H.J.; Wieringa, H.J.; Peters, M.J.

    1991-01-01

    Theoretically, the information we can obtain about the functional localization of a source of brain activity from the scalp, for instance evoked by a sensory stimulus, is the same whether one uses EEG or MEG recordings. However, the nature of the sources and, especially of the volume conductor,

  18. Circulatory response evoked by a 3 s bout of dynamic leg exercise in humans

    NARCIS (Netherlands)

    Wieling, W.; Harms, M. P.; ten Harkel, A. D.; van Lieshout, J. J.; Sprangers, R. L.

    1996-01-01

    1. The mechanisms underlying the pronounced transient fall in arterial blood pressure evoked by a 3 s bout of bicycle exercise were investigated in twenty healthy young adults and four patients with hypoadrenergic orthostatic hypotension. 2. In healthy subjects a 3 s bout of upright cycling induced

  19. Quantification of baseline pupillary response and task-evoked pupillary response during constant and incremental task load.

    Science.gov (United States)

    Mosaly, Prithima R; Mazur, Lukasz M; Marks, Lawrence B

    2017-10-01

    The methods employed to quantify the baseline pupil size and task-evoked pupillary response (TEPR) may affect the overall study results. To test this hypothesis, the objective of this study was to assess variability in baseline pupil size and TEPR during two basic working memory tasks: constant load of 3-letters memorisation-recall (10 trials), and incremental load memorisation-recall (two trials of each load level), using two commonly used methods (1) change from trail/load specific baseline, (2) change from constant baseline. Results indicated that there was a significant shift in baseline between the trails for constant load, and between the load levels for incremental load. The TEPR was independent of shifts in baseline using method 1 only for constant load, and method 2 only for higher levels of incremental load condition. These important findings suggest that the assessment of both the baseline and methods to quantify TEPR are critical in ergonomics application, especially in studies with small number of trials per subject per condition. Practitioner Summary: Quantification of TEPR can be affected by shifts in baseline pupil size that are most likely affected by non-cognitive factors when other external factors are kept constant. Therefore, quantification methods employed to compute both baseline and TEPR are critical in understanding the information processing of humans in practical ergonomics settings.

  20. Development of an ultra low noise, miniature signal conditioning device for vestibular evoked response recordings.

    Science.gov (United States)

    Kumaragamage, Chathura L; Lithgow, Brian J; Moussavi, Zahra

    2014-01-27

    Inner ear evoked potentials are small amplitude (signals that require a low noise signal acquisition protocol for successful extraction; an existing such technique is Electrocochleography (ECOG). A novel variant of ECOG called Electrovestibulography (EVestG) is currently investigated by our group, which captures vestibular responses to a whole body tilt. The objective is to design and implement a bio-signal amplifier optimized for ECOG and EVestG, which will be superior in noise performance compared to low noise, general purpose devices available commercially. A high gain configuration is required (>85 dB) for such small signal recordings; thus, background power line interference (PLI) can have adverse effects. Active electrode shielding and driven-right-leg circuitry optimized for EVestG/ECOG recordings were investigated for PLI suppression. A parallel pre-amplifier design approach was investigated to realize low voltage, and current noise figures for the bio-signal amplifier. In comparison to the currently used device, PLI is significantly suppressed by the designed prototype (by >20 dB in specific test scenarios), and the prototype amplifier generated noise was measured to be 4.8 nV/Hz @ 1 kHz (0.45 μVRMS with bandwidth 10 Hz-10 kHz), which is lower than the currently used device generated noise of 7.8 nV/Hz @ 1 kHz (0.76 μVRMS). A low noise (noise contribution from the pre-amplifier, while maintaining the required bandwidth in high impedance measurements. Validation of the prototype device was conducted for actual ECOG recordings on humans that showed an increase (p Signal-to-Noise ratio (SNR), and for EVestG recordings using a synthetic ear model that showed a ~4% improvement (p noise and miniaturized bio-signal amplifier tailored for EVestG and ECOG. The increase in SNR for the implemented amplifier will reduce variability associated with bio-features extracted from such recordings; hence sensitivity and specificity measures associated with disease

  1. Association of Hemoglobin levels and Brainstem Auditory Evoked Responses in Lead-Exposed Children

    Science.gov (United States)

    Counter, S. Allen; Buchanan, Leo H.; Ortega, Fernando

    2012-01-01

    Objectives Decreased blood hemoglobin (HbB) levels and anemia have been associated with abnormal brainstem auditory evoked responses (BAER). Lead (Pb) exposure has also been associated with anemia and aberrant BAER. This study investigated the relationship between HbB level and BAER wave latency and amplitude in Pb-exposed Andean children. Design and methods Sixty-six children aged 2 to 15 years (mean age: 9.1; SD: 3.3) living in Pb-contaminated villages were screened for HbB levels, blood Pb (PbB) levels and BAER latencies and amplitudes. Results The mean HbB level observed in the study group was 11.9 g/dL (SD: 1.4; range: 8.6–14.8 g/dL). The mean HbB level corrected for altitude was 10.3 g/dL (SD: 1.4; range: 6.9–13.1 g/dL), and suggestive of anemia. The mean PbB level was 49.3 μg/dL (SD: 30.1; range: 4.4–119.1 μg/dL) and indicative of Pb poisoning. Spearman Rho correlation analyses revealed significant associations between the BAER absolute latencies and HbB level, indicating that as the HbB level decreased, the BAER wave latency increased. Children with low HbB levels (≤11 g/dL) showed significantly prolonged absolute latencies of waves I, II, III, IV and V compared to the children with normal HbB levels. Although a significant relationship between HbB and BAER waves was observed, no significant associations between PbB level and BAER parameters were found. Conclusion Low hemoglobin levels may diminish auditory sensory-neural function, and is therefore an important variable to consider when assessing BAER in children with anemia and/or Pb exposure. PMID:22735387

  2. Genetic Analysis of the Electrophysiological Response to Salicin, a Bitter Substance, in a Polyphagous Strain of the Silkworm Bombyx mori

    Science.gov (United States)

    Iizuka, Tetsuya; Tamura, Toshiki; Sezutsu, Hideki; Mase, Keisuke; Okada, Eiji; Asaoka, Kiyoshi

    2012-01-01

    Sawa-J is a polyphagous silkworm (Bombyx mori L.) strain that eats various plant leaves that normal silkworms do not. The feeding preference behavior of Sawa-J is controlled by one major recessive gene(s) on the polyphagous (pph) locus, and several minor genes; moreover, its deterrent cells possess low sensitivity to some bitter substances including salicin. To clarify whether taste sensitivity is controlled by the pph locus, we conducted a genetic analysis of the electrophysiological characteristics of the taste response using the polyphagous strain Sawa-J·lem, in which pph is linked to the visible larval marker lemon (lem) on the third chromosome, and the normal strain Daiankyo, in which the wild-type gene of pph (+pph) is marked with Zebra (Ze). Maxillary taste neurons of the two strains had similar dose–response relationships for sucrose, inositol, and strychnine nitrate, but the deterrent cell of Sawa-J·lem showed a remarkably low sensitivity to salicin. The F1 generation of the two strains had characteristics similar to the Daiankyo strain, consistent with the idea that pph is recessive. In the BF1 progeny between F1 females and Sawa-J·lem males where no crossing-over occurs, the lem and Ze phenotypes corresponded to different electrophysiological reactions to 25 mM salicin, indicating that the gene responsible for taste sensitivity to salicin is located on the same chromosome as the lem and Ze genes. The normal and weak reactions to 25 mM salicin were segregated in crossover-type larvae of the BF1 progeny produced by a reciprocal cross, and the recombination frequency agreed well with the theoretical ratio for the loci of lem, pph, and Ze on the standard linkage map. These results indicate that taste sensitivity to salicin is controlled by the gene(s) on the pph locus. PMID:22649537

  3. Awareness during anaesthesia for surgery requiring evoked potential monitoring: A pilot study

    Directory of Open Access Journals (Sweden)

    Pritish J Korula

    2017-01-01

    Full Text Available Background: Evoked potential monitoring such as somatosensory-evoked potential (SSEP or motor-evoked potential (MEP monitoring during surgical procedures in proximity to the spinal cord requires minimising the minimum alveolar concentrations (MACs below the anaesthetic concentrations normally required (1 MAC to prevent interference in amplitude and latency of evoked potentials. This could result in awareness. Our primary objective was to determine the incidence of awareness while administering low MAC inhalational anaesthetics for these unique procedures. The secondary objective was to assess the adequacy of our anaesthetic technique from neurophysiologist′s perspective. Methods: In this prospective observational pilot study, 61 American Society of Anesthesiologists 1 and 2 patients undergoing spinal surgery for whom intraoperative evoked potential monitoring was performed were included; during the maintenance phase, 0.7-0.8 MAC of isoflurane was targeted. We evaluated the intraoperative depth of anaesthesia using a bispectral (BIS index monitor as well as the patients response to surgical stimulus (PRST scoring system. Post-operatively, a modified Bruce questionnaire was used to verify awareness. The adequacy of evoked potential readings was also assessed. Results: Of the 61 patients, no patient had explicit awareness. Intraoperatively, 19 of 61 patients had a BIS value of above sixty at least once, during surgery. There was no correlation with PRST scoring and BIS during surgery. Fifty-four out of 61 patient′s evoked potential readings were deemed ′good′ or ′fair′ for the conduct of electrophysiological monitoring. Conclusions: This pilot study demonstrates that administering low MAC inhalational anaesthetics to facilitate evoked potential monitoring does not result in explicit awareness. However, larger studies are needed to verify this. The conduct of SSEP electrophysiological monitoring was satisfactory with the use of this

  4. Electrophysiological and behavioral responses of the multicolored Asian lady beetle, Harmonia axyridis pallas, to sesquiterpene semiochemicals.

    Science.gov (United States)

    Verheggen, François J; Fagel, Quentin; Heuskin, Stéphanie; Lognay, Georges; Francis, Frédéric; Haubruge, Eric

    2007-11-01

    The role of two volatile sesquiterpenes, (E)-beta-farnesene and (-)-beta-caryophyllene, in the chemical ecology of the multicolored Asian lady beetle, Harmonia axyridis Pallas, was investigated by using both electrophysiological and behavioral techniques. (E)-beta-Farnesene is the major component of the alarm pheromone of most aphid species, which are preyed on by H. axyridis. (-)-beta-Caryophyllene was previously isolated from the headspace volatiles above overwintering and aggregated H. axyridis females. These sesquiterpenes elicited significant electroantennogram (EAG) activity from both H. axyridis male and female antennae. In a four-arm olfactometer, male and female H. axyridis were highly attracted toward (E)-beta-farnesene, whereas only males were attracted to (-)-beta-caryophyllene. In a bioassay technique that used a passively ventilated plastic box, both male and female H. axyridis aggregated in the (-)-beta-caryophyllene-treated side of the box. These results support the potential usefulness of (E)-beta-farnesene and (-)-beta-caryophyllene in push-pull strategies that use H. axyridis as a biological control agent in aphid-infested sites or to control this new urban pest in residential structures.

  5. Brainstem auditory evoked response in adolescents with acoustic mycotic neuroma due to environmental exposure to toxic molds.

    Science.gov (United States)

    Anyanwu, Ebere; Campbell, Andrew W; High, William

    2002-01-01

    Indoor air contamination with toxic opportunistic molds is an emerging health risk worldwide. Some of the opportunistic molds include: Stachybotrys chartarum, Aspergillus species (A. fumigatus, A. flavus, A. niger, A. versicolor etc.), Cadosporium, Alternaria, Penicillium, Trichoderma, Fusarium graminearum etc. These molds flourish in homes that are moist and damp. Reports of floods are now evident in many parts of the world. With these global changes in climatic conditions that favor the opportunistic mode of living among these molds, some health authorities are beginning to feel concerned about the diversity and the extent to which opportunistic molds can cause adverse health effects in humans. Mycotoxicosis is the collective name for all the diseases caused by toxic molds. Frequently, we have cases of acoustic neuroma due to mycotoxicity in our Center. Mycotic neuroma probably has not been reported before and the application of brainstem auditory evoked response (BAER) techniques in acoustic mycotic neuroma have not been reported either. The aim of this study, therefore, was to report cases and measurements of acoustic mycotic neuroma in adolescents using the brainstem auditory evoked response. The patients' case history, clinical neurological and neurobehavioral questionnaires were assessed. Then, the BAERs were recorded between Cz and Ai, with a second channel, Cz-Ac. The case histories and the questionnaires were analyzed in conjunction with the outcome of the objective brainstem auditory evoked response measurements. The prevalent subjective findings in the patients were headaches, memory loss, hearing loss, lack of concentration, fatigue, sleep disturbance, facial swelling, rashes, nosebleeds, diarrhea, abdominal pains and respiratory difficulties. Objective BAER showed overall abnormalities in all the patients. Although the waveform abnormalities varied, 1-3 interpeak latencies were abnormal in all the patients. Overall results showed the presence of

  6. Proprioceptive evoked potentials in man: cerebral responses to changing weight loads on the hand

    DEFF Research Database (Denmark)

    Arnfred, S; He, Chen; Eder, D

    2000-01-01

    We studied cerebral evoked potentials on the scalp to the stimulation of the right hand from a change in weight of 400-480 g in ten subjects. Rise-time was 20g/10 ms, Inter Stimulus Interval 2s and stimulus duration was 100 ms. The cerebral activations were a double positive contralateral C3'/P70......). Further studies of the PEP are needed to assess the influence of load manipulations and of muscle contraction and to explore the effect of attentional manipulation....

  7. The influence of anesthetic depth on motor evoked potential response during awake craniotomy

    OpenAIRE

    Ohtaki, Shunya

    2016-01-01

    術中のMEP(motor evoked potential)の振幅および潜時は麻酔深度に影響される. またMEP振幅のdeviationに関しても麻酔深度と相関し, 覚醒下ではdeviationが小さい. 覚醒下手術におけるMEPの測定は, 術中の運動機能評価をより正確に行うことが出来る可能性が示唆される.

  8. The relation of ongoing brain activity, evoked neural responses, and cognition

    Directory of Open Access Journals (Sweden)

    Sepideh Sadaghiani

    2010-06-01

    Full Text Available Ongoing brain activity has been observed since the earliest neurophysiological recordings and is found over a wide range of temporal and spatial scales. It is characterized by remarkably large spontaneous modulations. Here, we review evidence for the functional role of these ongoing activity fluctuations and argue that they constitute an essential property of the neural architecture underlying cognition. The role of spontaneous activity fluctuations is probably best understood when considering both their spatiotemporal structure and their functional impact on cognition. We first briefly argue against a ‘segregationist’ view on ongoing activity, both in time and space, countering this view with an emphasis on integration within a hierarchical spatiotemporal organization of intrinsic activity. We then highlight the flexibility and context-sensitivity of intrinsic functional connectivity that suggest its involvement in functionally relevant information processing. This role in information processing is pursued by reviewing how ongoing brain activity interacts with afferent and efferent information exchange of the brain with its environment. We focus on the relationship between the variability of ongoing and evoked brain activity, and review recent reports that tie ongoing brain activity fluctuations to variability in human perception and behavior. Finally, these observations are discussed within the framework of the free-energy principle which – applied to human brain function - provides a theoretical account for a non-random, coordinated interaction of ongoing and evoked activity in perception and behaviour.

  9. Eugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses.

    Science.gov (United States)

    Klein, A H; Joe, C L; Davoodi, A; Takechi, K; Carstens, M I; Carstens, E

    2014-06-20

    Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive transient receptor potential ankyrin (TRPA)-1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42 °C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Characterizing Rat PNS Electrophysiological Response to Electrical Stimulation Using in vitro Chip-Based Human Investigational Platform (iCHIP)

    Energy Technology Data Exchange (ETDEWEB)

    Khani, Joshua [Georgetown Univ., Washington, DC (United States); Prescod, Lindsay [Georgetown Univ., Washington, DC (United States); Enright, Heather [Georgetown Univ., Washington, DC (United States); Felix, Sarah [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osburn, Joanne [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wheeler, Elizabeth [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kulp, Kris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-18

    Ex vivo systems and organ-on-a-chip technology offer an unprecedented approach to modeling the inner workings of the human body. The ultimate goal of LLNL’s in vitro Chip-based Human Investigational Platform (iCHIP) is to integrate multiple organ tissue cultures using microfluidic channels, multi-electrode arrays (MEA), and other biosensors in order to effectively simulate and study the responses and interactions of the major organs to chemical and physical stimulation. In this study, we focused on the peripheral nervous system (PNS) component of the iCHIP system. Specifically we sought to expound on prior research investigating the electrophysiological response of rat dorsal root ganglion cells (rDRGs) to chemical exposures, such as capsaicin. Our aim was to establish a protocol for electrical stimulation using the iCHIP device that would reliably elicit a characteristic response in rDRGs. By varying the parameters for both the stimulation properties – amplitude, phase width, phase shape, and stimulation/ return configuration – and the culture conditions – day in vitro and neural cell types - we were able to make several key observations and uncover a potential convention with a minimal number of devices tested. Future work will seek to establish a standard protocol for human DRGs in the iCHIP which will afford a portable, rapid method for determining the effects of toxins and novel therapeutics on the PNS.

  11. Alouatta trichromatic color vision: cone spectra and physiological responses studied with microspectrophotometry and single unit retinal electrophysiology.

    Science.gov (United States)

    Silveira, Luiz Carlos L; Saito, Cézar A; da Silva Filho, Manoel; Kremers, Jan; Bowmaker, James K; Lee, Barry B

    2014-01-01

    The howler monkeys (Alouatta sp.) are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP) was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions) were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10-20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression.

  12. Alouatta trichromatic color vision: cone spectra and physiological responses studied with microspectrophotometry and single unit retinal electrophysiology.

    Directory of Open Access Journals (Sweden)

    Luiz Carlos L Silveira

    Full Text Available The howler monkeys (Alouatta sp. are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10-20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression.

  13. Task-specific modulation of human auditory evoked responses in a delayed-match-to-sample task

    Directory of Open Access Journals (Sweden)

    Feng eRong

    2011-05-01

    Full Text Available In this study, we focus our investigation on task-specific cognitive modulation of early cortical auditory processing in human cerebral cortex. During the experiments, we acquired whole-head magnetoencephalography (MEG data while participants were performing an auditory delayed-match-to-sample (DMS task and associated control tasks. Using a spatial filtering beamformer technique to simultaneously estimate multiple source activities inside the human brain, we observed a significant DMS-specific suppression of the auditory evoked response to the second stimulus in a sound pair, with the center of the effect being located in the vicinity of the left auditory cortex. For the right auditory cortex, a non-invariant suppression effect was observed in both DMS and control tasks. Furthermore, analysis of coherence revealed a beta band (12 ~ 20 Hz DMS-specific enhanced functional interaction between the sources in left auditory cortex and those in left inferior frontal gyrus, which has been shown to involve in short-term memory processing during the delay period of DMS task. Our findings support the view that early evoked cortical responses to incoming acoustic stimuli can be modulated by task-specific cognitive functions by means of frontal-temporal functional interactions.

  14. Visual evoked response in patients with severe carotid disease--functional transcranial doppler study of posterior circulation.

    Science.gov (United States)

    Roje Bedeković, Marina; Bosnar Puretić, Marijana; Lovrencić Huzjan, Arijana; Demarin, Vida

    2009-12-01

    The goal of this study was to evaluate the visual evoked response in posterior cerebral artery (PCA) by means of functional transcranial doppler in patients with severe carotid disease and to determine the hemodynamic effect of severe carotid disease on posterior circulation. Measurements were performed successively in the dark and during the white light stimulation in 49 patients with high-grade (70-99%) internal carotid artery (ICA) stenosis or occlusion and compared with 30 healthy age and sex matched subjects. Mean blood flow velocities (MBFV) (cm/s +/- 2SD) and mean reaction time (MRT) (s +/- 2SD) during three consecutive repetitive periods of 1 minute each were analyzed. MBFV in PCA during the white light stimulation and in the dark between the two groups didn't differ. MRT in patients showed a significantly prolonged visual evoked response in both affected (light: patients 29.36 +/- 14.46, controls 19.67 +/- 11.25, respectively, p dark: patients 35.25 +/- 11.9 controls 21.89 +/- 10.31, respectively, p dark: patients 33.13 +/- 11.12, controls 23.89 +/- 11.23, respectively, p circle that is necessary to be considered separately.

  15. Study progress of clinical electrophysiology on amblyopia

    Directory of Open Access Journals (Sweden)

    Ao Zhang

    2016-07-01

    Full Text Available Electrophysiology examination is an important technique in studying amblyopia, which mainly includes electrooculography(EOG, electroretinography(ERG, visual evoked potential(VEP. This study does not only summarizes the definition, the mechanisms and the meaning of these indexes in the relevant research progress in recent years, but also makes a comment on the controversies among the relevant research conclusions.

  16. The cortical responses to evoked clinical pain in patients with hip osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Mikkel Gram

    Full Text Available Experimental models have been used extensively to evaluate pain using e.g., visual analogue scales or electroencephalography (EEG. Stimulation using tonic pain has been shown to better mimic the unpleasantness of chronic pain, but has mainly been evoked by non-clinical stimuli. This study aims to, evaluate the EEG during clinical pain in patients scheduled for total hip replacement with control and resting conditions.The hip scheduled for replacement was moved by the examiner to evoke pain for 30 seconds while recording EEG. The control condition entailed movement of the opposite hip in a similar fashion and holding it for 30 seconds. In addition, EEG was recorded during the resting condition with open eyes. The relative spectral content was calculated from the EEG as well as functional connectivity using phase-lag index for frequency bands delta (1-4Hz, theta (4-8Hz, alpha (8-12Hz and beta (12-32Hz. A mixed model was used for statistical comparison between the three recording conditions.Spectral content differed between conditions in all bands. Functional connectivity differed in delta and theta frequency bands. Post-hoc analysis revealed differences between the painful and control condition in delta, theta and beta for spectral content. Pain during the hip rotation was correlated to the theta (r = -0.24 P = 0.03 and beta (r = 0.25 P = 0.02 content in the EEG.EEG differences during hip movements in the affected and unaffected hip appeared in the spectral beta and theta content. This was correlated to the reported pain perceived, pointing towards pain specific brain activity related to clinical pain.

  17. Electrophysiological and behavioral responses to chocolate volatiles in both sexes of the pyralid moths Ephestia cautella and Plodia interpunctella.

    Science.gov (United States)

    Olsson, P-O Christian; Anderbrant, Olle; Löfstedt, Christer; Borg-Karlson, Anna-Karin; Liblikas, Ilme

    2005-12-01

    Volatiles from chocolate mediate upwind flight behavior in Ephestia cautella and Plodia interpunctella. We used gas chromatography with electroantennographic detection and found 12 active compounds derived from three different chocolate types, i.e., plain, nut-containing, and rum-flavored. Eight of the compounds were identified with mass spectrometry, and the activity of three compounds, ethyl vanillin, nonanal, and phenylacetaldehyde (PAA), was subsequently confirmed in both electrophysiological and behavioral assays. In the electroantennogram experiment, PAA and nonanal were consistently eliciting responses in both species and sexes. Ethyl vanillin was active in males of both species, and also in P. interpunctella females. E. cautella females showed no antennal activity in response to ethyl vanillin. All three volatiles were attractive to E. cautella males and P. interpunctella females in a flight tunnel. E. cautella females were significantly attracted only to ethyl vanillin. P. interpunctella males were attracted to PAA. Ethyl vanillin is a novel insect attractant, whereas both nonanal and phenylacetaldehyde mediate behavior in many insect species. A final experiment revealed that a blend of the three volatiles was required to induce landing in the flight tunnel bioassay, and that the landing rate was dependent on dose. The three-component blend attracted both sexes of P. interpunctella and females of E. cautella, whereas E. cautella males were not attracted.

  18. Use of auditory steady-state responses in children and comparison with other electrophysiological and behavioral tests.

    Science.gov (United States)

    François, M; Dehan, E; Carlevan, M; Dumont, H

    2016-11-01

    In patients who cannot or will not cooperate in behavioral hearing assessment, electrophysiological examinations are used, but are time-consuming because the subject has to remain immobile. The aim of this study was to assess whether auditory steady-state responses (ASSR) are sufficiently reliable, compared to auditory brainstem responses (ABR) and free-field audiometry, for assessment to begin with ASSR instead of ABR. A retrospective study was performed between January 2012 and April 2013, including children less than 6 years of age who could not be tested via headphones. ASSR and ABR were measured during natural sleep or under phenobarbital-alimemazine sedation. Subjective pure-tone audiometry was performed, using the visual reinforcement audiometry method, in 69 children who were able and willing to cooperate. A total of 175 children were included. ASSR and ABR thresholds showed good positive correlation (338 ears; Pearson's correlation coefficient, 0.87). Behavioral thresholds correlated significantly with ASSR thresholds (Student t-test for matched series; Phearing threshold rather than latency is to be determined. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Pain Processing and Vegetative Dysfunction in Fibromyalgia: A Study by Sympathetic Skin Response and Laser Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Marina de Tommaso

    2017-01-01

    Full Text Available Background. A dysfunction of pain processing at central and peripheral levels was reported in fibromyalgia (FM. We aimed to correlate laser evoked potentials (LEPs, Sympathetic Skin Response (SSR, and clinical features in FM patients. Methods. Fifty FM patients and 30 age-matched controls underwent LEPs and SSR by the right hand and foot. The clinical evaluation included FM disability (FIQ and severity scores (WPI, anxiety (SAS and depression (SDS scales, and questionnaires for neuropathic pain (DN4. Results. The LEP P2 latency and amplitude and the SSR latency were increased in FM group. This latter feature was more evident in anxious patients. The LEPs habituation was reduced in FM patients and correlated to pain severity scores. In a significant number of patients (32% with higher DN4 and FIQ scores, SSR or LEP responses were absent. Conclusions. LEPs and SSR might contribute to clarifying the peripheral and central nervous system involvement in FM patients.

  20. Visual acuity of the midland banded water snake estimated from evoked telencephalic potentials.

    Science.gov (United States)

    Baker, Robert A; Gawne, Timothy J; Loop, Michael S; Pullman, Sheena

    2007-08-01

    The visual acuity of seven midland banded water snakes was measured by recording evoked responses from telencephalon to temporally modulated square wave grating patterns. Using conventional electrophysiological techniques and signal averaging, high contrast square wave gratings of different spatial frequencies were presented. Acuity was estimated by extrapolating relative response amplitude/log(10) spatial frequency functions which yielded an average acuity of 4.25 cycles/degree. Refractive state was also estimated by recording evoked potentials to intermediate spatial frequencies with different lenses in front of the eye. Polynomial fits indicated that under the experimental conditions the snakes were around 6.4 diopters hyperopic suggesting a corrected acuity of 4.89 cycles/degree. Reduction of grating luminance resulted in a reduction in evoked potential acuity measurements. These results indicate that the spatial resolution of midland banded water snakes is the equal of cat; about 20/120 in human clinical terms.

  1. An evil face? Verbal evaluative multi-CS conditioning enhances face-evoked mid-latency magnetoencephalographic responses

    Science.gov (United States)

    Junghöfer, Markus; Rehbein, Maimu Alissa; Maitzen, Julius; Schindler, Sebastian

    2017-01-01

    Abstract Humans have a remarkable capacity for rapid affective learning. For instance, using first-order US such as odors or electric shocks, magnetoencephalography (MEG) studies of multi-CS conditioning demonstrate enhanced early (<150 ms) and mid-latency (150–300 ms) visual evoked responses to affectively conditioned faces, together with changes in stimulus evaluation. However, particularly in social contexts, human affective learning is often mediated by language, a class of complex higher-order US. To elucidate mechanisms of this type of learning, we investigate how face processing changes following verbal evaluative multi-CS conditioning. Sixty neutral expression male faces were paired with phrases about aversive crimes (30) or neutral occupations (30). Post conditioning, aversively associated faces evoked stronger magnetic fields in a mid-latency interval between 220 and 320 ms, localized primarily in left visual cortex. Aversively paired faces were also rated as more arousing and more unpleasant, evaluative changes occurring both with and without contingency awareness. However, no early MEG effects were found, implying that verbal evaluative conditioning may require conceptual processing and does not engage rapid, possibly sub-cortical, pathways. Results demonstrate the efficacy of verbal evaluative multi-CS conditioning and indicate both common and distinct neural mechanisms of first- and higher-order multi-CS conditioning, thereby informing theories of associative learning. PMID:28008078

  2. Electrophysiological mapping of novel prefrontal - cerebellar pathways.

    Science.gov (United States)

    Watson, Thomas C; Jones, Matthew W; Apps, Richard

    2009-01-01

    Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non-motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL) and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35 ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre); they were not attenuated by local anaesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency (approximately 30 ms). Single unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s) of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.

  3. Electrophysiological mapping of novel prefrontal - cerebellar pathways

    Directory of Open Access Journals (Sweden)

    Thomas C Watson

    2009-08-01

    Full Text Available Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre; they were not attenuated by local anesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency. Single-unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.

  4. Steady-state visual evoked potentials can be explained by temporal superposition of transient event-related responses.

    Directory of Open Access Journals (Sweden)

    Almudena Capilla

    Full Text Available BACKGROUND: One common criterion for classifying electrophysiological brain responses is based on the distinction between transient (i.e. event-related potentials, ERPs and steady-state responses (SSRs. The generation of SSRs is usually attributed to the entrainment of a neural rhythm driven by the stimulus train. However, a more parsimonious account suggests that SSRs might result from the linear addition of the transient responses elicited by each stimulus. This study aimed to investigate this possibility. METHODOLOGY/PRINCIPAL FINDINGS: We recorded brain potentials elicited by a checkerboard stimulus reversing at different rates. We modeled SSRs by sequentially shifting and linearly adding rate-specific ERPs. Our results show a strong resemblance between recorded and synthetic SSRs, supporting the superposition hypothesis. Furthermore, we did not find evidence of entrainment of a neural oscillation at the stimulation frequency. CONCLUSIONS/SIGNIFICANCE: This study provides evidence that visual SSRs can be explained as a superposition of transient ERPs. These findings have critical implications in our current understanding of brain oscillations. Contrary to the idea that neural networks can be tuned to a wide range of frequencies, our findings rather suggest that the oscillatory response of a given neural network is constrained within its natural frequency range.

  5. An alternative strategy for universal infant hearing screening in tertiary hospitals with a high delivery rate, within a developing country, using transient evoked oto-acoustic emissions and brainstem evoked response audiometry.

    Science.gov (United States)

    Mathur, N N; Dhawan, R

    2007-07-01

    To formulate an alternative strategy for universal infants hearing screening in an Indian tertiary referral hospital with a high delivery rate, which could be extended to similar situations in other developing countries. The system should be able to diagnose, in a timely fashion, all infants with severe and profound hearing losses. One thousand newborn were randomly selected. All underwent testing with transient evoked oto-acoustic emissions (TEOAE) in the first 48 hours of life. All TEOAE failures were followed up and repeat tests were performed at three weeks, three months and six months of age. Infants with acceptable TEOAE results at any of the four ages were discharged from the study. Infants with unacceptable TEOAE results at all the four ages underwent brainstem evoked response audiometry and oto-endoscopy. The 'pass rate' for TEOAE testing was calculated for all four ages. The time taken to perform TEOAE and brainstem evoked response audiometry was recorded for all subjects. These recordings were statistically analysed to find the most suitable strategy for universal hearing screening in our hospital. The pass rate for TEOAE was 79.0 per cent at audiometry. Obstructed and collapsed external auditory canals were the two factors that significantly affected the specificity of TEOAE in infants results are generated, such that a larger number must undergo brainstem evoked response audiometry, wasting time and resources. This can easily be avoided by delaying TEOAE screening until three months of age, when it has a substantially lower false positive outcome. We expect that implementation of this alternative strategy in our hospital will maximise the benefits of such a programme.

  6. Independent component analysis for cochlear implant artifacts attenuation from electrically evoked auditory steady-state response measurements

    Science.gov (United States)

    Deprez, Hanne; Gransier, Robin; Hofmann, Michael; van Wieringen, Astrid; Wouters, Jan; Moonen, Marc

    2018-02-01

    Objective. Electrically evoked auditory steady-state responses (EASSRs) are potentially useful for objective cochlear implant (CI) fitting and follow-up of the auditory maturation in infants and children with a CI. EASSRs are recorded in the electro-encephalogram (EEG) in response to electrical stimulation with continuous pulse trains, and are distorted by significant CI artifacts related to this electrical stimulation. The aim of this study is to evaluate a CI artifacts attenuation method based on independent component analysis (ICA) for three EASSR datasets. Approach. ICA has often been used to remove CI artifacts from the EEG to record transient auditory responses, such as cortical evoked auditory potentials. Independent components (ICs) corresponding to CI artifacts are then often manually identified. In this study, an ICA based CI artifacts attenuation method was developed and evaluated for EASSR measurements with varying CI artifacts and EASSR characteristics. Artifactual ICs were automatically identified based on their spectrum. Main results. For 40 Hz amplitude modulation (AM) stimulation at comfort level, in high SNR recordings, ICA succeeded in removing CI artifacts from all recording channels, without distorting the EASSR. For lower SNR recordings, with 40 Hz AM stimulation at lower levels, or 90 Hz AM stimulation, ICA either distorted the EASSR or could not remove all CI artifacts in most subjects, except for two of the seven subjects tested with low level 40 Hz AM stimulation. Noise levels were reduced after ICA was applied, and up to 29 ICs were rejected, suggesting poor ICA separation quality. Significance. We hypothesize that ICA is capable of separating CI artifacts and EASSR in case the contralateral hemisphere is EASSR dominated. For small EASSRs or large CI artifact amplitudes, ICA separation quality is insufficient to ensure complete CI artifacts attenuation without EASSR distortion.

  7. The Effect of Lamotrigine and Levetiracetam on TMS-Evoked EEG Responses Depends on Stimulation Intensity

    Directory of Open Access Journals (Sweden)

    Isabella Premoli

    2017-10-01

    Full Text Available The combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG has uncovered underlying mechanisms of two anti-epileptic medications: levetiracetam and lamotrigine. Despite their different mechanism of action, both drugs modulated TMS-evoked EEG potentials (TEPs in a similar way. Since both medications increase resting motor threshold (RMT, the current aim was to examine the similarities and differences in post-drug TEPs, depending on whether stimulation intensity was adjusted to take account of post-drug RMT increase. The experiment followed a placebo controlled, double blind, crossover design, involving a single dose of either lamotrigine or levetiracetam. When a drug-induced increase of RMT occurred, post-drug measurements involved two blocks of stimulations, using unadjusted and adjusted stimulation intensity. A cluster based permutation analysis of differences in TEP amplitude between adjusted and unadjusted stimulation intensity showed that lamotrigine induced a stronger modulation of the N45 TEP component compared to levetiracetam. Results highlight the impact of adjusting stimulation intensity.

  8. Grasshopper DCMD: An Undergraduate Electrophysiology Lab for Investigating Single-Unit Responses to Behaviorally-Relevant Stimuli

    Science.gov (United States)

    Nguyen, Dieu My T.; Roper, Mark; Mircic, Stanislav; Olberg, Robert M.; Gage, Gregory J.

    2017-01-01

    Avoiding capture from a fast-approaching predator is an important survival skill shared by many animals. Investigating the neural circuits that give rise to this escape behavior can provide a tractable demonstration of systems-level neuroscience research for undergraduate laboratories. In this paper, we describe three related hands-on exercises using the grasshopper and affordable technology to bring neurophysiology, neuroethology, and neural computation to life and enhance student understanding and interest. We simplified a looming stimuli procedure using the Backyard Brains SpikerBox bioamplifier, an open-source and low-cost electrophysiology rig, to extracellularly record activity of the descending contralateral movement detector (DCMD) neuron from the grasshopper’s neck. The DCMD activity underlies the grasshopper’s motor responses to looming monocular visual cues and can easily be recorded and analyzed on an open-source iOS oscilloscope app, Spike Recorder. Visual stimuli are presented to the grasshopper by this same mobile application allowing for synchronized recording of stimuli and neural activity. An in-app spike-sorting algorithm is described that allows a quick way for students to record, sort, and analyze their data at the bench. We also describe a way for students to export these data to other analysis tools. With the protocol described, students will be able to prepare the grasshopper, find and record from the DCMD neuron, and visualize the DCMD responses to quantitatively investigate the escape system by adjusting the speed and size of simulated approaching objects. We describe the results from 22 grasshoppers, where 50 of the 57 recording sessions (87.7%) had a reliable DCMD response. Finally, we field-tested our experiment in an undergraduate neuroscience laboratory and found that a majority of students (67%) could perform this exercise in one two-hour lab setting, and had an increase in interest for studying the neural systems that drive

  9. Electrophysiological and hemodynamic mismatch responses in rats listening to human speech syllables.

    Science.gov (United States)

    Mahmoudzadeh, Mahdi; Dehaene-Lambertz, Ghislaine; Wallois, Fabrice

    2017-01-01

    Speech is a complex auditory stimulus which is processed according to several time-scales. Whereas consonant discrimination is required to resolve rapid acoustic events, voice perception relies on slower cues. Humans, right from preterm ages, are particularly efficient to encode temporal cues. To compare the capacities of preterms to those observed in other mammals, we tested anesthetized adult rats by using exactly the same paradigm as that used in preterm neonates. We simultaneously recorded neural (using ECoG) and hemodynamic responses (using fNIRS) to series of human speech syllables and investigated the brain response to a change of consonant (ba vs. ga) and to a change of voice (male vs. female). Both methods revealed concordant results, although ECoG measures were more sensitive than fNIRS. Responses to syllables were bilateral, but with marked right-hemispheric lateralization. Responses to voice changes were observed with both methods, while only ECoG was sensitive to consonant changes. These results suggest that rats more effectively processed the speech envelope than fine temporal cues in contrast with human preterm neonates, in whom the opposite effects were observed. Cross-species comparisons constitute a very valuable tool to define the singularities of the human brain and species-specific bias that may help human infants to learn their native language.

  10. Electrophysiological and hemodynamic mismatch responses in rats listening to human speech syllables.

    Directory of Open Access Journals (Sweden)

    Mahdi Mahmoudzadeh

    Full Text Available Speech is a complex auditory stimulus which is processed according to several time-scales. Whereas consonant discrimination is required to resolve rapid acoustic events, voice perception relies on slower cues. Humans, right from preterm ages, are particularly efficient to encode temporal cues. To compare the capacities of preterms to those observed in other mammals, we tested anesthetized adult rats by using exactly the same paradigm as that used in preterm neonates. We simultaneously recorded neural (using ECoG and hemodynamic responses (using fNIRS to series of human speech syllables and investigated the brain response to a change of consonant (ba vs. ga and to a change of voice (male vs. female. Both methods revealed concordant results, although ECoG measures were more sensitive than fNIRS. Responses to syllables were bilateral, but with marked right-hemispheric lateralization. Responses to voice changes were observed with both methods, while only ECoG was sensitive to consonant changes. These results suggest that rats more effectively processed the speech envelope than fine temporal cues in contrast with human preterm neonates, in whom the opposite effects were observed. Cross-species comparisons constitute a very valuable tool to define the singularities of the human brain and species-specific bias that may help human infants to learn their native language.

  11. Electrophysiological and hemodynamic mismatch responses in rats listening to human speech syllables

    Science.gov (United States)

    Dehaene-Lambertz, Ghislaine; Wallois, Fabrice

    2017-01-01

    Speech is a complex auditory stimulus which is processed according to several time-scales. Whereas consonant discrimination is required to resolve rapid acoustic events, voice perception relies on slower cues. Humans, right from preterm ages, are particularly efficient to encode temporal cues. To compare the capacities of preterms to those observed in other mammals, we tested anesthetized adult rats by using exactly the same paradigm as that used in preterm neonates. We simultaneously recorded neural (using ECoG) and hemodynamic responses (using fNIRS) to series of human speech syllables and investigated the brain response to a change of consonant (ba vs. ga) and to a change of voice (male vs. female). Both methods revealed concordant results, although ECoG measures were more sensitive than fNIRS. Responses to syllables were bilateral, but with marked right-hemispheric lateralization. Responses to voice changes were observed with both methods, while only ECoG was sensitive to consonant changes. These results suggest that rats more effectively processed the speech envelope than fine temporal cues in contrast with human preterm neonates, in whom the opposite effects were observed. Cross-species comparisons constitute a very valuable tool to define the singularities of the human brain and species-specific bias that may help human infants to learn their native language. PMID:28291832

  12. Structure and electrophysiological responses of gustatory organs on the ovipositor of the parasitoid Leptopilina heterotoma

    NARCIS (Netherlands)

    Lenteren, van J.C.; Ruschioni, S.; Romani, R.; Loon, van J.J.A.; Qiu, Y.T.; Smid, H.M.; Isidoro, N.; Bin, F.

    2007-01-01

    Location, structure and histology of chemosensilla on the tip of the ovipositor of the parasitoid Leptopilina heterotoma are described based on SEM and TEM studies. Furthermore, we developed a method for recording extracellular action potentials from the gustatory neurons in response to host

  13. Electrophysiological correlates for response inhibition in intellectually gifted children: a Go/NoGo study.

    Science.gov (United States)

    Duan, Xiaoju; Shi, Jiannong; Wu, Jianhui; Mou, Yi; Cui, Hairong; Wang, Guiqing

    2009-06-19

    Superior response inhibition is an essential component of the advanced cognitive abilities of gifted children. This study investigated response inhibition in intellectually gifted children by recording event-related brain potentials (ERPs) during a Go/NoGo task. Fifteen intellectually gifted children and 15 intellectually average children participated. Our present findings showed that intellectually gifted children had shorter Go-P3 latency, indicating faster processing of Go stimuli, a finding consistent with previous studies. We focused on the two inhibition-related components, NoGo-N2 and NoGo-P3. The results showed that NoGo-P3 latency was shorter for intellectually gifted children compared to their average peers. N2 latency did not indicate the intelligence difference. These results suggested that intellectually gifted children showed faster inhibition when dealing with NoGo stimuli, and this superiority came from the later stages of inhibition, i.e., response evaluation or the success of inhibiting a response, as indexed by the shorter P3 latency.

  14. Assessment of Electrically Evoked Auditory Brain Stem Response of 30 Implanted Patients With Nucleus Multichannel Cochlear Implant

    Directory of Open Access Journals (Sweden)

    Dr. Soqrat Faghihzadeh

    2001-05-01

    Full Text Available Methods and Materials: Investigation of electrically evoked auditory brain stem response (EABR is a new issue, especially in implanted patients. Experiments were performed in C.I Center of Iranian Institute for Science and research expansion,1996 on 30 implanted patients with 22 spectra and MSP cochlear implant system and 30 normal subjects with the range of 3-33 years. Findings: I- EABR was obtained in the implanted patients. 2- Absolute latency of EABR waves is 1-1.5 ms shorter than ABR waves ‘P<0.05. 3-Absolute latency of wave V decreases as a function of electric stimulus magnitude (P<0.05. 4- No significant difference was observed in IPL Ill-V between ABR and EABR.

  15. How does emotional context modulate response inhibition in alexithymia: electrophysiological evidence from an ERP study.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available BACKGROUND: Alexithymia, characterized by difficulties in identifying and describing feelings, is highly indicative of a broad range of psychiatric disorders. Several studies have also discovered the response inhibition ability impairment in alexithymia. However, few studies on alexithymic individuals have specifically examined how emotional context modulates response inhibition procedure. In order to investigate emotion cognition interaction in alexithymia, we analyzed the spatiao-temporal features of such emotional response inhibition by the approaches of event-related potentials and neural source-localization. METHOD: The study participants included 15 subjects with high alexithymia scores on the 20-item Toronto Alexithymia Scale (alexithymic group and 15 matched subjects with low alexithymia scores (control group. Subjects were instructed to perform a modified emotional Go/Nogo task while their continuous electroencephalography activities were synchronously recorded. The task includes 3 categories of emotional contexts (positive, negative and neutral and 2 letters ("M" and "W" centered in the screen. Participants were told to complete go and nogo actions based on the letters. We tested the influence of alexithymia in this emotional Go/Nogo task both in behavioral level and related neural activities of N2 and P3 ERP components. RESULTS: We found that negatively valenced context elicited larger central P3 amplitudes of the Nogo-Go difference wave in the alexithymic group than in the control group. Furthermore, source-localization analyses implicated the anterior cingulate cortex (ACC as the neural generator of the Nogo-P3. CONCLUSION: These findings suggest that difficulties in identifying feelings, particularly in negative emotions, is a major feature of alexithymia, and the ACC plays a critical role in emotion-modulated response inhibition related to alexithymia.

  16. An objective method for measuring face detection thresholds using the sweep steady-state visual evoked response.

    Science.gov (United States)

    Ales, Justin M; Farzin, Faraz; Rossion, Bruno; Norcia, Anthony M

    2012-09-29

    We introduce a sensitive method for measuring face detection thresholds rapidly, objectively, and independently of low-level visual cues. The method is based on the swept parameter steady-state visual evoked potential (ssVEP), in which a stimulus is presented at a specific temporal frequency while parametrically varying ("sweeping") the detectability of the stimulus. Here, the visibility of a face image was increased by progressive derandomization of the phase spectra of the image in a series of equally spaced steps. Alternations between face and fully randomized images at a constant rate (3/s) elicit a robust first harmonic response at 3 Hz specific to the structure of the face. High-density EEG was recorded from 10 human adult participants, who were asked to respond with a button-press as soon as they detected a face. The majority of participants produced an evoked response at the first harmonic (3 Hz) that emerged abruptly between 30% and 35% phase-coherence of the face, which was most prominent on right occipito-temporal sites. Thresholds for face detection were estimated reliably in single participants from 15 trials, or on each of the 15 individual face trials. The ssVEP-derived thresholds correlated with the concurrently measured perceptual face detection thresholds. This first application of the sweep VEP approach to high-level vision provides a sensitive and objective method that could be used to measure and compare visual perception thresholds for various object shapes and levels of categorization in different human populations, including infants and individuals with developmental delay.

  17. Mathematical impairment associated with high-contrast abnormalities in change detection and magnocellular visual evoked response.

    Science.gov (United States)

    Jastrzebski, Nicola R; Crewther, Sheila G; Crewther, David P

    2015-10-01

    The cause of developmental dyscalculia, a specific deficit in acquisition of arithmetic skills, particularly of enumeration, has never been investigated with respect to the patency of the visual magnocellular system. Here, the question of dysfunction of the afferent magnocellular cortical input and its dorsal stream projections was tested directly using nonlinear analysis of the visual evoked potential (VEP) and through the psychophysical ability to rapidly detect visual change. A group of young adults with self-reported deficiencies of arithmetical ability, showed marked impairment in magnitude estimation and enumeration performance-though not in lexical decision reaction times when compared with an arithmetically capable group controlled for age and handedness. Multifocal nonlinear VEPs were recorded at low (24 %) and high (96 %) contrast. First- and second-order VEP kernels were comparable between groups at low contrast, but not at high contrast. The mathematically impaired group showed an abnormal lack of contrast saturation in the shortest latency first-order peak (N60) and a delayed P100 positivity in the first slice of the second-order kernel. Both features have previously been argued to be physiological markers of magnocellular function. Mathematically impaired participants also performed worse on a gap paradigm change detection for digit task showing increased reaction times for high-contrast stimuli but not for low-contrast stimuli compared with controls. The VEP results give direct evidence of abnormality in the occipital processing of magnocellular information in those with mathematical impairment. The anomalous high visual contrast physiological and psychophysical performance suggests an abnormality in the inhibitory processes that normally result in saturation of contrast gain in the magnocellular system.

  18. Characterization of Motor and Somatosensory Evoked Potentials in the Yucatan Micropig Using Transcranial and Epidural Stimulation.

    Science.gov (United States)

    Benavides, Francisco D; Santamaria, Andrea J; Bodoukhin, Nikita; Guada, Luis G; Solano, Juan P; Guest, James D

    2017-09-15

    Yucatan micropigs have brain and spinal cord dimensions similar to humans and are useful for certain spinal cord injury (SCI) translational studies. Micropigs are readily trained in behavioral tasks, allowing consistent testing of locomotor loss and recovery. However, there has been little description of their motor and sensory pathway neurophysiology. We established methods to assess motor and sensory cortical evoked potentials in the anesthetized, uninjured state. We also evaluated epidurally evoked motor and sensory stimuli from the T6 and T9 levels, spanning the intended contusion injury epicenter. Response detection frequency, mean latency and amplitude values, and variability of evoked potentials were determined. Somatosensory evoked potentials were reliable and best detected during stimulation of peripheral nerve and epidural stimulation by referencing the lateral cortex to midline Fz. The most reliable hindlimb motor evoked potential (MEP) occurred in tibialis anterior. We found MEPs in forelimb muscles in response to thoracic epidural stimulation likely generated from propriospinal pathways. Cranially stimulated MEPs were easier to evoke in the upper limbs than in the hindlimbs. Autopsy studies revealed substantial variations in cortical morphology between animals. This electrophysiological study establishes that neurophysiological measures can be reliably obtained in micropigs in a time frame compatible with other experimental procedures, such as SCI and transplantation. It underscores the need to better understand the motor control pathways, including the corticospinal tract, to determine which therapeutics are suitable for testing in the pig model.

  19. Whiplash evokes descending muscle recruitment and sympathetic responses characteristic of startle

    National Research Council Canada - National Science Library

    Mang, Daniel Wh; Siegmund, Gunter P; Blouin, Jean-Sébastien

    2014-01-01

    Whiplash injuries are the most common injuries following rear-end collisions. During a rear-end collision, the human muscle response consists of both a postural and a startle response that may exacerbate injury...

  20. Responses of tectal neurons to contrasting stimuli: an electrophysiological study in the barn owl.

    Directory of Open Access Journals (Sweden)

    Yael Zahar

    Full Text Available The saliency of visual objects is based on the center to background contrast. Particularly objects differing in one feature from the background may be perceived as more salient. It is not clear to what extent this so called "pop-out" effect observed in humans and primates governs saliency perception in non-primates as well. In this study we searched for neural-correlates of pop-out perception in neurons located in the optic tectum of the barn owl. We measured the responses of tectal neurons to stimuli appearing within the visual receptive field, embedded in a large array of additional stimuli (the background. Responses were compared between contrasting and uniform conditions. In a contrasting condition the center was different from the background while in the uniform condition it was identical to the background. Most tectal neurons responded better to stimuli in the contrsating condition compared to the uniform condition when the contrast between center and background was the direction of motion but not when it was the orientation of a bar. Tectal neurons also preferred contrasting over uniform stimuli when the center was looming and the background receding but not when the center was receding and the background looming. Therefore, our results do not support the hypothesis that tectal neurons are sensitive to pop-out per-se. The specific sensitivity to the motion contrasting stimulus is consistent with the idea that object motion and not large field motion (e.g., self-induced motion is coded in the neural responses of tectal neurons.

  1. Responses of tectal neurons to contrasting stimuli: an electrophysiological study in the barn owl.

    Science.gov (United States)

    Zahar, Yael; Wagner, Hermann; Gutfreund, Yoram

    2012-01-01

    The saliency of visual objects is based on the center to background contrast. Particularly objects differing in one feature from the background may be perceived as more salient. It is not clear to what extent this so called "pop-out" effect observed in humans and primates governs saliency perception in non-primates as well. In this study we searched for neural-correlates of pop-out perception in neurons located in the optic tectum of the barn owl. We measured the responses of tectal neurons to stimuli appearing within the visual receptive field, embedded in a large array of additional stimuli (the background). Responses were compared between contrasting and uniform conditions. In a contrasting condition the center was different from the background while in the uniform condition it was identical to the background. Most tectal neurons responded better to stimuli in the contrsating condition compared to the uniform condition when the contrast between center and background was the direction of motion but not when it was the orientation of a bar. Tectal neurons also preferred contrasting over uniform stimuli when the center was looming and the background receding but not when the center was receding and the background looming. Therefore, our results do not support the hypothesis that tectal neurons are sensitive to pop-out per-se. The specific sensitivity to the motion contrasting stimulus is consistent with the idea that object motion and not large field motion (e.g., self-induced motion) is coded in the neural responses of tectal neurons.

  2. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.

    2016-05-03

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment.

  3. Electrophysiological and Behavioral Responses of Theocolax elegans (Westwood (Hymenoptera: Pteromalidae to Cereal Grain Volatiles

    Directory of Open Access Journals (Sweden)

    Giacinto Salvatore Germinara

    2016-01-01

    Full Text Available Volatiles emitted by the host’s food would be the first signals used by parasitoids in the host location process and are thought to play an important role in host habitat location. In this study, the olfactory responses of Theocolax elegans (Westwood, a Pteromalid wasp that parasitizes immature stages of stored-product insect pests developing inside cereal or leguminous grains, to volatiles emitted by healthy wheat grains, their hexane extracts, and different doses of three individual compounds previously identified in cereal grain odors were investigated in Y-tube olfactometer and Petri dish arena behavioral bioassays and electroantennogram recordings. In Y-tube olfactometer bioassays, odors from healthy wheat grains and their hexane extracts were attractive to both sexes of T. elegans. Moreover, hexane extracts elicited arresting effects in Petri dish arena. The three synthetic compounds valeraldehyde, maltol, and vanillin elicited dose-dependent responses in both male and female adult wasps confirming the capability of the peripheral olfactory systems to perceive cereal volatiles. In behavioral bioassays, different doses of vanillin were significantly attractive to both sexes.

  4. Electrophysiological responses to argument structure violations in healthy adults and individuals with agrammatic aphasia

    Science.gov (United States)

    Kielar, Aneta; Meltzer-Asscher, Aya; Thompson, Cynthia

    2012-01-01

    Sentence comprehension requires processing of argument structure information associated with verbs, i.e. the number and type of arguments that they select. Many individuals with agrammatic aphasia show impaired production of verbs with greater argument structure density. The extent to which these participants also show argument structure deficits during comprehension, however, is unclear. Some studies find normal access to verb arguments, whereas others report impaired ability. The present study investigated verb argument structure processing in agrammatic aphasia by examining event-related potentials associated with argument structure violations in healthy young and older adults as well as aphasic individuals. A semantic violation condition was included to investigate possible differences in sensitivity to semantic and argument structure information during sentence processing. Results for the healthy control participants showed a negativity followed by a positive shift (N400-P600) in the argument structure violation condition, as found in previous ERP studies (Friederici & Frisch, 2000; Frisch, Hahne, & Friederici, 2004). In contrast, individuals with agrammatic aphasia showed a P600, but no N400, response to argument structure mismatches. Additionally, compared to the control groups, the agrammatic participants showed an attenuated, but relatively preserved, N400 response to semantic violations. These data show that agrammatic individuals do not demonstrate normal real-time sensitivity to verb argument structure requirements during sentence processing. PMID:23022079

  5. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure.

    Science.gov (United States)

    Baud, Maxime O; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J; Petit, Jean-Marie

    2016-10-01

    Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment. © 2016 European Sleep Research Society.

  6. Electrophysiological responses to argument structure violations in healthy adults and individuals with agrammatic aphasia.

    Science.gov (United States)

    Kielar, Aneta; Meltzer-Asscher, Aya; Thompson, Cynthia K

    2012-12-01

    Sentence comprehension requires processing of argument structure information associated with verbs, i.e. the number and type of arguments that they select. Many individuals with agrammatic aphasia show impaired production of verbs with greater argument structure density. The extent to which these participants also show argument structure deficits during comprehension, however, is unclear. Some studies find normal access to verb arguments, whereas others report impaired ability. The present study investigated verb argument structure processing in agrammatic aphasia by examining event-related potentials associated with argument structure violations in healthy young and older adults as well as aphasic individuals. A semantic violation condition was included to investigate possible differences in sensitivity to semantic and argument structure information during sentence processing. Results for the healthy control participants showed a negativity followed by a positive shift (N400-P600) in the argument structure violation condition, as found in previous ERP studies (Friederici & Frisch, 2000; Frisch, Hahne, & Friederici, 2004). In contrast, individuals with agrammatic aphasia showed a P600, but no N400, response to argument structure mismatches. Additionally, compared to the control groups, the agrammatic participants showed an attenuated, but relatively preserved, N400 response to semantic violations. These data show that agrammatic individuals do not demonstrate normal real-time sensitivity to verb argument structure requirements during sentence processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Electrophysiological responses of eucalyptus brown looper Thyrinteina arnobia to essential oils of seven Eucalyptus species

    Directory of Open Access Journals (Sweden)

    Batista-Pereira Luciane G.

    2006-01-01

    Full Text Available Eucalyptus is frequently attacked by the Brazilian eucalyptus brown looper, Thyrinteina arnobia. This caterpillar is regarded as the main lepidopterous pest of Eucalyptus and yet no practical and environmentally acceptable method of control currently exists. Electroantennographic techniques (EAG have never before been used to detect semiochemicals that affect the behavior of T. arnobia. Thus, in this work, the ability of T. arnobia males and females to detect volatile essential oils of seven Eucalyptus species was investigated by EAG. We demonstrated that T. arnobia antennal olfactory system clearly showed differential sensitivity to several compounds, by coupled gas chromatography-electroantennographic detection (GC-EAD. Twenty-eight compounds were identified that elicited responses in T. arnobia, indicating that GC-EAD analysis may well be a useful means of screening active plant extracts for compounds that contribute to the observed behavior of this defoliator. The results also suggest that this species uses several volatile cues to find its host.

  8. A mucosal IgA response, but no systemic antibody response, is evoked by intranasal immunisation of dogs with Echinococcus granulosus surface antigens iscoms.

    Science.gov (United States)

    Carol, H; Nieto, A

    1998-09-16

    The search for protective antigens of intestinal parasites is conditioned by the methodology used to induce a relevant local immune response against them. The present work describes the use of immuno stimulating complexes (iscoms) from tegumental antigens from protoscoleces (PSC) of the cestode Echinococcus granulosus as immunogens in dogs by the intranasal route. It also describes the evaluation of the immune response evoked at the antibody level (systemically and at a distant mucosal location) as well as at the level of antibody secreting cells in peripheral blood. Iscoms from both E. granulosus tegumental antigens and hen ovalbumin (OVA), given at 50 microg doses by intranasal route, evoked significant secretory IgA antibody responses detected in saliva. Specific IgA secreting cells in peripheral blood also increased 10-20-fold, although transiently, after primary and secondary stimulation, whereas specific IgG secreting cells in peripheral blood were only detected in some individuals after the second antigenic exposure. Generation of immune responses at a related mucosal site provides evidence of localised immunity. No significant increase in systemic antibody titers of either IgM, IgG or IgA isotype was detected in plasma as a result of the immunisation. This fact could reflect that the nasopharyngeal mucosal associated lymphoid tissue of dogs is more strictly compartmentalised than that of other mammals.

  9. EphA4 is Involved in Sleep Regulation but Not in the Electrophysiological Response to Sleep Deprivation.

    Science.gov (United States)

    Freyburger, Marlène; Pierre, Audrey; Paquette, Gabrielle; Bélanger-Nelson, Erika; Bedont, Joseph; Gaudreault, Pierre-Olivier; Drolet, Guy; Laforest, Sylvie; Blackshaw, Seth; Cermakian, Nicolas; Doucet, Guy; Mongrain, Valérie

    2016-03-01

    Optimal sleep is ensured by the interaction of circadian and homeostatic processes. Although synaptic plasticity seems to contribute to both processes, the specific players involved are not well understood. The EphA4 tyrosine kinase receptor is a cell adhesion protein regulating synaptic plasticity. We investigated the role of EphA4 in sleep regulation using electrocorticography in mice lacking EphA4 and gene expression measurements. EphA4 knockout (KO) mice, Clock(Δ19/Δ19) mutant mice and littermates, C57BL/6J and CD-1 mice, and Sprague-Dawley rats were studied under a 12 h light: 12 h dark cycle, under undisturbed conditions or 6 h sleep deprivation (SLD), and submitted to a 48 h electrophysiological recording and/or brain sampling at different time of day. EphA4 KO mice showed less rapid eye movement sleep (REMS), enhanced duration of individual bouts of wakefulness and nonrapid eye movement sleep (NREMS) during the light period, and a blunted daily rhythm of NREMS sigma activity. The NREMS delta activity response to SLD was unchanged in EphA4 KO mice. However, SLD increased EphA4 expression in the thalamic/hypothalamic region in C57BL/6J mice. We further show the presence of E-boxes in the promoter region of EphA4, a lower expression of EphA4 in Clock mutant mice, a rhythmic expression of EphA4 ligands in several brain areas, expression of EphA4 in the suprachiasmatic nuclei of the hypothalamus (SCN), and finally an unchanged number of cells expressing Vip, Grp and Avp in the SCN of EphA4 KO mice. Our results suggest that EphA4 is involved in circadian sleep regulation. © 2016 Associated Professional Sleep Societies, LLC.

  10. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials.

    Science.gov (United States)

    Hu, L; Zhang, Z G; Mouraux, A; Iannetti, G D

    2015-05-01

    oscillations, obtaining single-trial estimate of response latency, frequency, and magnitude. This permits within-subject statistical comparisons, correlation with pre-stimulus features, and integration of simultaneously-recorded EEG and fMRI. Copyright © 2015. Published by Elsevier Inc.

  11. A cholinergic contribution to the circulatory responses evoked at the onset of handgrip exercise in humans

    DEFF Research Database (Denmark)

    Vianna, Lauro C; Fadel, Paul J; Secher, Niels H

    2015-01-01

    A cholinergic (muscarinic) contribution to the initial circulatory response to exercise in humans remains controversial. Herein, we posit that this may be due to exercise mode with a cholinergic contribution being important during isometric handgrip exercise, where the hyperemic response of the m......A cholinergic (muscarinic) contribution to the initial circulatory response to exercise in humans remains controversial. Herein, we posit that this may be due to exercise mode with a cholinergic contribution being important during isometric handgrip exercise, where the hyperemic response...... of the muscle is relatively small compared with the onset of leg cycling, where a marked increase in muscle blood flow rapidly occurs as a consequence of multiple redundant mechanisms. We recorded blood pressure (BP; brachial artery), stroke volume (pulse contour analysis), cardiac output, and systemic vascular...

  12. The effect of boric acid on acethylcholine, bethanechol and potasssium-evoked responses on ileum of rat.

    Science.gov (United States)

    Ince, S; Turkmen, R; Yavuz, H

    2011-01-01

    1 The aim of this study was to clarify the effect of boric acid on contractions of rat isolated ileum. 2 Contractile responses expressed as Emax and pD2 for acetylcholine (10(-3)-10(-8) m, Ach), bethanechol (10(-3)-10(-8) m) and potassium (10-80 × 10(-3) m, KCl) were determined in the absence and presence of boric acid (10(-3); 5 × 10(-4); 10(-4) m). 3 The contractile response to Ach in the presence of verapamil (10(-6) or 10(-8) m) or in calcium-free Tyrode's solution was also determined in the absence and presence of boric acid. 4 Boric acid did not affect the contractile response to Ach, bethanechol or KCl. Single or cumulative treatment of boric acid did not affect ileum muscle contraction evoked by KCl. The atropine-resistant component of Ach-induced contraction and 4-diphenyl-acetoxy-N-methyl-piperidine methiodide-resistant component of bethanechol-induced contraction were not inhibited by boric acid (10(-3) m). The contractile response to Ach was reduced in calcium-free Tyrode's solution, and the contractile response was not affected by (10(-8) m). The addition of boric acid (10(-3) m) in combination with verapamil (10(-8) m) did not significantly affect the contractile response to Ach. 5 In conclusion, boric acid does not affect contractions induced by Ach, bethanechol or potassium in rat isolated ileum. © 2011 Blackwell Publishing Ltd.

  13. Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the Nucleus CI24M cochlear implant system.

    NARCIS (Netherlands)

    Cafarelli-Dees, D.; Dillier, N.; Lai, W.K.; Wallenberg, E. von; Dijk, B. van; Akdas, F.; Aksit, M.; Batman, C.; Beynon, A.J.; Burdo, S.; Chanal, J.M.; Collet, L.; Conway, M.; Coudert, C.; Craddock, L.; Cullington, H.; Deggouj, N.; Fraysse, B.; Grabel, S.; Kiefer, J.; Kiss, J.G.; Lenarz, T.; Mair, A.; Maune, S.; Muller-Deile, J.; Piron, J.P.; Razza, S.; Tasche, C.; Thai-Van, H.; Toth, F.; Truy, E.; Uziel, A.; Smoorenburg, G.F.

    2005-01-01

    One hundred and forty-seven adult recipients of the Nucleus 24 cochlear implant system, from 13 different European countries, were tested using neural response telemetry to measure the electrically evoked compound action potential (ECAP), according to a standardised postoperative measurement

  14. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  15. Brain imaging and electrophysiology biomarkers: is there a role in poverty and education outcome research?

    Science.gov (United States)

    Pavlakis, Alexandra E; Noble, Kimberly; Pavlakis, Steven G; Ali, Noorjahan; Frank, Yitzchak

    2015-04-01

    Prekindergarten educational interventions represent a popular approach to improving educational outcomes, especially in children from poor households. Children from lower socioeconomic groups are at increased risk for delays in cognitive development that are important for school success. These delays, which may stem from stress associated with poverty, often develop before kindergarten. Early interventions have been proposed, but there is a need for more information on effectiveness. By assessing socioeconomic differences in brain structure and function, we may better be able to track the neurobiologic basis underlying children's cognitive improvement. We conducted a review of the neuroimaging and electrophysiology literature to evaluate what is known about differences in brain structure and function as assessed by magnetic resonance imaging and electrophysiology and evoked response potentials among children from poor and nonpoor households. Differences in lower socioeconomic groups were found in functional magnetic resonance imaging, diffusion tensor imaging, and volumetric magnetic resonance imaging as well as electroencephalography and evoked response potentials compared with higher socioeconomic groups. The findings suggest a number of neurobiologic correlates for cognitive delays in children who are poor. Given this, we speculate that magnetic resonance imaging and electrophysiology parameters might be useful as biomarkers, after more research, for establishing the effectiveness of specific prekindergarten educational interventions. At the very least, we suggest that to level the playing field in educational outcomes, it may be helpful to foster communication and collaboration among all professionals involved in the care and education of children. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. AT1 and AT2 Receptors in the Prelimbic Cortex Modulate the Cardiovascular Response Evoked by Acute Exposure to Restraint Stress in Rats.

    Science.gov (United States)

    Brasil, Taíz F S; Fassini, Aline; Corrêa, Fernando M

    2017-07-10

    The prelimbic cortex (PL) is an important structure in the neural pathway integrating stress responses. Brain angiotensin is involved in cardiovascular control and modulation of stress responses. Blockade of angiotensin receptors has been reported to reduce stress responses. Acute restraint stress (ARS) is a stress model, which evokes sustained blood pressure increase, tachycardia, and reduction in tail temperature. We therefore hypothesized that PL locally generated angiotensin and angiotensin receptors modulate stress autonomic responses. To test this hypothesis, we microinjected an angiotensin-converting enzyme (ACE) inhibitor or angiotensin antagonists into the PL, prior to ARS. Male Wistar rats were used; guide cannulas were bilaterally implanted in the PL for microinjection of vehicle or drugs. A polyethylene catheter was introduced into the femoral artery to record cardiovascular parameters. Tail temperature was measured using a thermal camera. ARS was started 10 min after PL treatment with drugs. Pretreatment with ACE inhibitor lisinopril (0.5 nmol/100 nL) reduced the pressor response, but did not affect ARS-evoked tachycardia. At a dose of 1 nmol/100 nL, it reduced both ARS pressor and tachycardic responses. Pretreatment with candesartan, AT1 receptor antagonist reduced ARS-evoked pressor response, but not tachycardia. Pretreatment with PD123177, AT2 receptor antagonist, reduced tachycardia, but did not affect ARS pressor response. No treatment affected ARS fall in tail temperature. Results suggest involvement of PL angiotensin in the mediation of ARS cardiovascular responses, with participation of both AT1 and AT2 receptors. In conclusion, results indicate that PL AT1-receptors modulate the ARS-evoked pressor response, while AT2-receptors modulate the tachycardic component of the autonomic response.

  17. Low-frequency stimulation of group III and IV hind limb afferents evokes reflex pressor responses in decerebrate rats.

    Science.gov (United States)

    Harms, Jonathan E; Copp, Steven W; Kaufman, Marc P

    2016-10-01

    Contraction of freely perfused hind limb muscles in decerebrate rats evokes the exercise pressor reflex, resulting in sympathetic activation and increased blood pressure. This reflex is propagated along mechanically sensitive group III and metabolically sensitive group IV afferent nerve fibers. Recent research by our laboratory has focused on the exaggeration of the exercise pressor reflex in decerebrate rats with simulated peripheral artery disease, which was induced by ligating the femoral artery for 72 h before the start of the experiment. Recently, we showed that ligating the femoral artery increased the responses of single fiber group III and IV triceps surae muscle afferents to static contraction. The objective of this study was to determine if electrical stimulation of group III and IV afferents at frequencies approximating those occurring during static contraction was capable of reflexively increasing arterial blood pressure. We directly stimulated muscle afferents in the absence of muscle contraction for both freely perfused and ligated rats. We established 0.25 Hz as the minimal stimulation frequency to observe a sustained blood pressure response. The blood pressure response increased in a graded fashion as both stimulus frequency and motor threshold were increased. Additionally, we observed similar blood pressure responses from both freely perfused and ligated rats, suggesting that spinal and medullary processing of group III and IV afferent input plays no role in augmenting the pressor response to contraction caused by femoral artery ligation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  18. Electroencephalographic evoked pain response is suppressed by spinal cord stimulation in complex regional pain syndrome: a case report.

    Science.gov (United States)

    Hylands-White, Nicholas; Duarte, Rui V; Beeson, Paul; Mayhew, Stephen D; Raphael, Jon H

    2016-12-01

    Pain is a subjective response that limits assessment. The purpose of this case report was to explore how the objectivity of the electroencephalographic response to thermal stimuli would be affected by concurrent spinal cord stimulation. A patient had been implanted with a spinal cord stimulator for the management of complex regional pain syndrome of both hands for 8 years. Following ethical approval and written informed consent we induced thermal stimuli using the Medoc PATHWAY Pain & Sensory Evaluation System on the right hand of the patient with the spinal cord stimulator switched off and with the spinal cord stimulator switched on. The patient reported a clinically significant reduction in thermal induced pain using the numerical rating scale (71.4 % reduction) with spinal cord stimulator switched on. Analysis of electroencephalogram recordings indicated the occurrence of contact heat evoked potentials (N2-P2) with spinal cord stimulator off, but not with spinal cord stimulator on. This case report suggests that thermal pain can be reduced in complex regional pain syndrome patients with the use of spinal cord stimulation and offers objective validation of the reported outcomes with this treatment.

  19. Sex-Specific Automatic Responses to Infant Cries: TMS Reveals Greater Excitability in Females than Males in Motor Evoked Potentials.

    Science.gov (United States)

    Messina, Irene; Cattaneo, Luigi; Venuti, Paola; de Pisapia, Nicola; Serra, Mauro; Esposito, Gianluca; Rigo, Paola; Farneti, Alessandra; Bornstein, Marc H

    2015-01-01

    Neuroimaging reveals that infant cries activate parts of the premotor cortical system. To validate this effect in a more direct way, we used event-related transcranial magnetic stimulation (TMS). Here, we investigated the presence and the time course of modulation of motor cortex excitability in young adults who listened to infant cries. Specifically, we recorded motor evoked potentials (MEPs) from the biceps brachii (BB) and interosseus dorsalis primus (ID1) muscles as produced by TMS delivered from 0 to 250 ms after sound onset in six steps of 50 ms in 10 females and 10 males. We observed an excitatory modulation of MEPs at 100 ms from the onset of infant cry specific to females and to the ID1 muscle. We regard this modulation as a response to natural cry sounds because it was attenuated to stimuli increasingly different from natural cry and absent in a separate group of females who listened to non-cry stimuli physically matched to natural infant cries. Furthermore, the 100-ms latency of this response is not compatible with a voluntary reaction to the stimulus but suggests an automatic, bottom-up audiomotor association. The brains of adult females appear to be tuned to respond to infant cries with automatic motor excitation.

  20. Potential contamination effects of neuronal refractoriness on the speech-evoked mismatch negativity response.

    Science.gov (United States)

    Cranford, Jerry L; Walker, Letitia J; Stuart, Andrew; Elangovan, Saravanan; Pravica, David

    2003-07-01

    The mismatch negativity response (MMN) is an event-related potential that is believed to reflect the automatic (possibly preconscious) neural processing of changes in ongoing environmental sounds. The MMN involves a negative voltage shift of baseline electroencephalographic (EEG) activity in the approximate latency window of the N1 and P2 cortical potentials in response to new or novel sounds. The most commonly used laboratory tests for extracting the MMN from EEG activity all involve oddball stimulus presentation procedures in which the interstimulus intervals (ISIs) of the frequently occurring standard sounds are shorter in length then that of the infrequently occurring deviant sounds. This presents the possibility that the MMN response could be affected by neuronal refractory or recovery events. The present study tested 12 young females, using the syllabic events /da/ and /ga/ as standard and deviant stimuli, and found evidence that, with certain experimental protocols, ISI-dependent neural refractory effects can affect the morphology of the MMN, possibly resulting in misinterpretation of the underlying neural bases of the response.

  1. Changes in Sensory Evoked Responses Coincide with Rapid Improvement in Speech Identification Performance

    Science.gov (United States)

    Alain, Claude; Campeanu, Sandra; Tremblay, Kelly

    2010-01-01

    Perceptual learning is sometimes characterized by rapid improvements in performance within the first hour of training (fast perceptual learning), which may be accompanied by changes in sensory and/or response pathways. Here, we report rapid physiological changes in the human auditory system that coincide with learning during a 1-hour test session…

  2. Differential effects of nitrous oxide and propofol on myogenic transcranial motor evoked responses during sufentanil anaesthesia

    NARCIS (Netherlands)

    Ubags, L. H.; Kalkman, C. J.; Been, H. D.; Drummond, J. C.

    1997-01-01

    We have compared the effects of 50% nitrous oxide and propofol, each administered concurrently with sufentanil, on the amplitudes and latencies of the compound muscle action potential (CMAP) response to transcranial electrical stimulation. Using a crossover design, 12 patients undergoing spinal

  3. Cortical evoked potentials in response to rapid balloon distension of the rectum and anal canal

    DEFF Research Database (Denmark)

    Haas, S; Brock, C; Krogh, K

    2014-01-01

    BACKGROUND: Neurophysiological evaluation of anorectal sensory function is hampered by a paucity of methods. Rapid balloon distension (RBD) has been introduced to describe the cerebral response to rectal distension, but it has not successfully been applied to the anal canal. METHODS: Nineteen...

  4. Low-frequency versus high-frequency synchronisation in chirp-evoked auditory brainstem responses

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Gøtsche-Rasmussen, Kristian

    2011-01-01

    This study investigates the frequency specific contribution to the auditory brainstem response (ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes than for click stimuli as more auditory nerve fibres...

  5. Modeling paternal attentiveness: distressed pups evoke differential neurobiological and behavioral responses in paternal and nonpaternal mice.

    Science.gov (United States)

    Lambert, K G; Franssen, C L; Hampton, J E; Rzucidlo, A M; Hyer, M M; True, M; Kaufman, C; Bardi, M

    2013-03-27

    With the exception of parturition and lactation, male California deer mice (Peromyscus californicus) exhibit the same parental responses toward offspring as conspecific females. A closely related species, Peromyscus maniculatus, however, rarely exhibits paternal responses. In the current study, a comparative species approach was used to assess paternal responses in both Peromyscus species with varying levels of paternal experience (biological fathers, pup-exposed virgins, and pup-naïve virgins). Of special interest was the persistence of the males to direct their attention toward a distressed pup housed in a small enclosure (i.e., a barrier existed between males and pups). In addition to pup-directed responses, non-pup-directed responses such as grooming, resting and jumping were recorded. Subsequently, all animals' brains were assessed for fos-immunoreactivity (ir) in several areas previously associated with the paternal brain circuit. Overall, P. californicus exhibited more pup-directed responses as well as less fos-ir in brain areas involved in emotional integration and processing such as the insula and anterior cingulate. In addition to increased activation of emotional regulatory areas, P. maniculatus males, observed to direct their behavior away from the pup, exhibited higher fos-ir in the nucleus accumbens (involved in goal acquisition), perhaps due to a heightened motivation to avoid the pups. Interestingly, experience with pups altered the lateral septum and amygdala activation of P. maniculatus to levels similar to P. californicus biological fathers. Finally, fos-ir was increased in the medial preoptic area, involved in the maintenance of maternal behavior, in the biological fathers of both species. Thus, although biological predispositions toward pup-directed behaviors were observed in P. californicus males, evidence of a few shifts toward the paternal neural activation profile was apparent in P. maniculatus males. Specifically, modifications in fear

  6. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    OpenAIRE

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compr...

  7. PET measured evoked cerebral blood flow responses in an awake monkey

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, J.S.; Lich, L.L.; Margenau, W.; Buchholz, S. (Washington Univ. School of Medicine, St. Louis, MO (USA))

    1991-03-01

    We have developed a method to measure task-related regional cerebral blood flow (BF) responses in an awake, trained monkey using positron emission tomography (PET) and H215O. We trained an animal with operant conditioning using only positive reinforcement to climb unassisted into a modified primate chair that was then positioned in the PET scanner. A special headholder and acrylic skull cap permitted precise placement and accurate repositioning. We measured BF qualitatively with bolus injection of H215O and 40-s scan. Each session included scans at rest interposed with scans during vibration of a forepaw. Regional responses were identified using subtraction image analysis. After global normalization, a resting image was subtracted on a pixel-by-pixel basis from a comparable image collected during vibration. The region of peak response occurred in contralateral sensorimotor cortex with a mean magnitude of 11.6% (+/- 3.2%) of the global mean value for 10 separate experiments, significantly greater than the mean qualitative BF change (0.4 +/- 3.6%; p less than 0.00001) in the same region for seven rest-rest pairs. This newly developed technique forms the basis for a wide variety of experiments.

  8. Characterisation of the p53-mediated cellular responses evoked in primary mouse cells following exposure to ultraviolet radiation.

    Directory of Open Access Journals (Sweden)

    Gillian D McFeat

    Full Text Available Exposure to ultraviolet (UV light can cause significant damage to mammalian cells and, although the spectrum of damage produced varies with the wavelength of UV, all parts of the UV spectrum are recognised as being detrimental to human health. Characterising the cellular response to different wavelengths of UV therefore remains an important aim so that risks and their moderation can be evaluated, in particular in relation to the initiation of skin cancer. The p53 tumour suppressor protein is central to the cellular response that protects the genome from damage by external agents such as UV, thus reducing the risk of tumorigenesis. In response to a variety of DNA damaging agents including UV light, wild-type p53 plays a role in mediating cell-cycle arrest, facilitating apoptosis and stimulating repair processes, all of which prevent the propagation of potentially mutagenic defects. In this study we examined the induction of p53 protein and its influence on the survival of primary mouse fibroblasts exposed to different wavelengths of UV light. UVC was found to elevate p53 protein and its sequence specific DNA binding capacity. Unexpectedly, UVA treatment failed to induce p53 protein accumulation or sequence specific DNA binding. Despite this, UVA exposure of wild-type cells induced a p53 dependent G1 cell cycle arrest followed by a wave of p53 dependent apoptosis, peaking 12 hours post-insult. Thus, it is demonstrated that the elements of the p53 cellular response evoked by exposure to UV radiation are wavelength dependent. Furthermore, the interrelationship between various endpoints is complex and not easily predictable. This has important implications not only for understanding the mode of action of p53 but also for the use of molecular endpoints in quantifying exposure to different wavelengths of UV in the context of human health protection.

  9. Long-Term Evolution of Brainstem Electrical Evoked Responses to Sound after Restricted Ablation of the Auditory Cortex

    Science.gov (United States)

    Lamas, Verónica; Alvarado, Juan C.; Carro, Juan; Merchán, Miguel A.

    2013-01-01

    Introduction This study aimed to assess the top-down control of sound processing in the auditory brainstem of rats. Short latency evoked responses were analyzed after unilateral or bilateral ablation of auditory cortex. This experimental paradigm was also used towards analyzing the long-term evolution of post-lesion plasticity in the auditory system and its ability to self-repair. Method Auditory cortex lesions were performed in rats by stereotactically guided fine-needle aspiration of the cerebrocortical surface. Auditory Brainstem Responses (ABR) were recorded at post-surgery day (PSD) 1, 7, 15 and 30. Recordings were performed under closed-field conditions, using click trains at different sound intensity levels, followed by statistical analysis of threshold values and ABR amplitude and latency variables. Subsequently, brains were sectioned and immunostained for GAD and parvalbumin to assess the location and extent of lesions accurately. Results Alterations in ABR variables depended on the type of lesion and post-surgery time of ABR recordings. Accordingly, bilateral ablations caused a statistically significant increase in thresholds at PSD1 and 7 and a decrease in waves amplitudes at PSD1 that recover at PSD7. No effects on latency were noted at PSD1 and 7, whilst recordings at PSD15 and 30 showed statistically significant decreases in latency. Conversely, unilateral ablations had no effect on auditory thresholds or latencies, while wave amplitudes only decreased at PSD1 strictly in the ipsilateral ear. Conclusion Post-lesion plasticity in the auditory system acts in two time periods: short-term period of decreased sound sensitivity (until PSD7), most likely resulting from axonal degeneration; and a long-term period (up to PSD7), with changes in latency responses and recovery of thresholds and amplitudes values. The cerebral cortex may have a net positive gain on the auditory pathway response to sound. PMID:24066057

  10. Long-term evolution of brainstem electrical evoked responses to sound after restricted ablation of the auditory cortex.

    Directory of Open Access Journals (Sweden)

    Verónica Lamas

    Full Text Available INTRODUCTION: This study aimed to assess the top-down control of sound processing in the auditory brainstem of rats. Short latency evoked responses were analyzed after unilateral or bilateral ablation of auditory cortex. This experimental paradigm was also used towards analyzing the long-term evolution of post-lesion plasticity in the auditory system and its ability to self-repair. METHOD: Auditory cortex lesions were performed in rats by stereotactically guided fine-needle aspiration of the cerebrocortical surface. Auditory Brainstem Responses (ABR were recorded at post-surgery day (PSD 1, 7, 15 and 30. Recordings were performed under closed-field conditions, using click trains at different sound intensity levels, followed by statistical analysis of threshold values and ABR amplitude and latency variables. Subsequently, brains were sectioned and immunostained for GAD and parvalbumin to assess the location and extent of lesions accurately. RESULTS: Alterations in ABR variables depended on the type of lesion and post-surgery time of ABR recordings. Accordingly, bilateral ablations caused a statistically significant increase in thresholds at PSD1 and 7 and a decrease in waves amplitudes at PSD1 that recover at PSD7. No effects on latency were noted at PSD1 and 7, whilst recordings at PSD15 and 30 showed statistically significant decreases in latency. Conversely, unilateral ablations had no effect on auditory thresholds or latencies, while wave amplitudes only decreased at PSD1 strictly in the ipsilateral ear. CONCLUSION: Post-lesion plasticity in the auditory system acts in two time periods: short-term period of decreased sound sensitivity (until PSD7, most likely resulting from axonal degeneration; and a long-term period (up to PSD7, with changes in latency responses and recovery of thresholds and amplitudes values. The cerebral cortex may have a net positive gain on the auditory pathway response to sound.

  11. Linear combination of auditory steady-state responses evoked by co-modulated tones

    DEFF Research Database (Denmark)

    Guérit, François; Marozeau, Jeremy; Epp, Bastian

    2017-01-01

    Up to medium intensities and in the 80–100-Hz region, the auditory steady-state response (ASSR) to a multi-tone carrier is commonly considered to be a linear sum of the dipoles from each tone specific ASSR generator. Here, this hypothesis was investigated when a unique modulation frequency is used...... for all carrier components. Listeners were presented with a co-modulated dual-frequency carrier (1 and 4 kHz), from which the modulator starting phase Ui of the 1-kHz component was systematically varied. The results support the hypothesis of a linear superposition of the dipoles originating from different...

  12. High frequency switched-mode stimulation can evoke postsynaptic responses in cerebellar principal neurons

    Directory of Open Access Journals (Sweden)

    Marijn Van Dongen

    2015-03-01

    Full Text Available This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100kHz duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation.These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.

  13. Thujone exhibits low affinity for cannabinoid receptors but fails to evoke cannabimimetic responses.

    Science.gov (United States)

    Meschler, J P; Howlett, A C

    1999-03-01

    Absinthe, an abused drug in the early 1900s, has been speculated to activate the receptors responsible for marijuana intoxication (the CB1 cannabinoid receptor) (Nature 253:365-356; 1975). To test this hypothesis, we investigated oil of wormwood (Artemisia absinthium) the active plant product found in absinthe, and thujone, the active compound found in oil of wormwood. Radioligand receptor binding assays employing membrane preparations from rat brains containing CB1 cannabinoid receptors, and human tonsils containing CB2 receptors, demonstrated that thujone displaced [3H]CP55940, a cannabinoid agonist, only at concentrations above 10 microM. HPLC analysis of oil of wormwood revealed that only the fractions having mobility close to thujone displaced [3H]CP55940 from the CB1 cannabinoid receptor. [35S]GTPgammaS binding assays revealed that thujone failed to stimulate G-proteins even at 0.1 mM. Thujone failed to inhibit forskolin-stimulated adenylate cyclase activity in N18TG2 membranes at 1 mM. Rats administered thujone exhibited different behavioral characteristics compared with rats administered a potent cannabinoid agonist, levonantradol. Therefore, the hypothesis that activation of cannabinoid receptors is responsible for the intoxicating effects of thujone is not supported by the present data.

  14. Using click-evoked auditory brainstem response thresholds in infants to estimate the corresponding pure-tone audiometry thresholds in children referred from UNHS.

    Science.gov (United States)

    Lu, Tsun-Min; Wu, Fang-Wei; Chang, Hsiuwen; Lin, Hung-Ching

    2017-04-01

    To examine whether behavioral pure-tone audiometry (PTA) thresholds in children can be accurately estimated from the corresponding infants' click-evoked auditory brainstem response (ABR) thresholds through a retrospective review of data from a universal newborn hearing screening (UNHS) program in Taiwan. According to medical records from Mackay Memorial Hospital, Taipei Hospital District, 45,450 newborns received hearing screening during January 1999-December 2011. Among these newborns, 104 (82, both ears; 22, one ear; total, 186 ears) received regular follow-up and were recruited as subjects. The relationship between infant click-evoked ABR thresholds and the corresponding child PTA thresholds was determined through Pearson correlation coefficient and linear regression analyses. The correlation coefficient between click-evoked ABR thresholds and behavioral PTA thresholds at the average of frequencies of 1-4 and 2-4 kHz was 0.76 and 0.76, respectively. Linear regression analysis showed that behavioral audiometry thresholds at the average of frequencies of 1-4 and 2-4 kHz were accurately estimated from click-evoked ABR thresholds in 57% and 58% children, respectively. Click-evoked ABR testing is a reliable tool to cautiously estimate behavioral PTA thresholds at the average of frequencies of 1-4 and 2-4 kHz. For accurately performing hearing aid fitting and auditory rehabilitation in congenitally deaf infants, a combination of frequency-specific tone-burst ABR and click-evoked ABR should be used. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Electrophysiological and behavioral responses of pea weevil Bruchus pisorum L. (Coleóptera: Bruchidae to volatiles collected from its host Pisum sativum L

    Directory of Open Access Journals (Sweden)

    Ricardo Ceballos

    2015-06-01

    Full Text Available The pea weevil (Bruchus pisorum L. (Coleóptera: Bruchidae is one of the most damaging pests of pea (Pisum sativum L. We investigated the role of pea volatiles on the electrophysiological and behavioral response of B. pisorum using electroantennography (EAG and olfactometry bioassays. Plant volatiles emitted at different phenological stages were collected in situ by headspace on Porapak Q traps and analyzed through gas chromatography coupled to mass spectrometry (GC-MS. Most abundant volatiles identified in all phenological stages were terpenes and green leaf volatiles. All tested volatile extracts elicited significant EAG responses in both male and female B. pisorum, with females exhibiting a greater response (1.35 mV than males (1.02 mV to pea-pod volatiles. Volatiles from each phenological stage stimulated an attractant behavioral response of both males and females B. pisorum in olfactometer bioassay. A larger attraction of B. pisorum females was observed to volatiles from pods over other phenological stages (P < 0.001. These results suggest the relative importance of volatiles cues from plant mediating host location by B. pisorum. This work showed that plant volatiles elicited electrophysiological and behavioral responses and that B. pisorum female can discern between phenological stages of P. sativum based on those chemical cues.

  16. Cellular responses evoked by different surface characteristics of intraosseous titanium implants.

    Science.gov (United States)

    Feller, Liviu; Jadwat, Yusuf; Khammissa, Razia A G; Meyerov, Robin; Schechter, Israel; Lemmer, Johan

    2015-01-01

    The properties of biomaterials, including their surface microstructural topography and their surface chemistry or surface energy/wettability, affect cellular responses such as cell adhesion, proliferation, and migration. The nanotopography of moderately rough implant surfaces enhances the production of biological mediators in the peri-implant microenvironment with consequent recruitment of differentiating osteogenic cells to the implant surface and stimulates osteogenic maturation. Implant surfaces with moderately rough topography and with high surface energy promote osteogenesis, increase the ratio of bone-to-implant contact, and increase the bonding strength of the bone to the implant at the interface. Certain features of implant surface chemistry are also important in enhancing peri-implant bone wound healing. It is the purpose of this paper to review some of the more important features of titanium implant surfaces which have an impact on osseointegration.

  17. Evaluation of deafness in American Paint Horses by phenotype, brainstem auditory-evoked responses, and endothelin receptor B genotype.

    Science.gov (United States)

    Magdesian, K Gary; Williams, D Colette; Aleman, Monica; Lecouteur, Richard A; Madigan, John E

    2009-11-15

    To evaluate deafness in American Paint Horses by phenotype, clinical findings, brainstem auditory-evoked responses (BAERs), and endothelin B receptor (EDNBR) genotype. Case series and case-control studies. 14 deaf American Paint Horses, 20 suspected-deaf American Paint Horses, and 13 nondeaf American Paint Horses and Pintos. Horses were categorized on the basis of coat color pattern and eye color. Testing for the EDNBR gene mutation (associated with overo lethal white foal syndrome) and BAERs was performed. Additional clinical findings were obtained from medical records. All 14 deaf horses had loss of all BAER waveforms consistent with complete deafness. Most horses had the splashed white or splashed white-frame blend coat pattern. Other patterns included frame overo and tovero. All of the deaf horses had extensive head and limb white markings, although the amount of white on the neck and trunk varied widely. All horses had at least 1 partially heterochromic iris, and most had 2 blue eyes. Ninety-one percent (31/34) of deaf and suspected-deaf horses had the EDNBR gene mutation. Deaf and suspected-deaf horses were used successfully for various performance events. All nondeaf horses had unremarkable BAER results. Veterinarians should be aware of deafness among American Paint Horses, particularly those with a splashed white or frame overo coat color pattern, blend of these patterns, or tovero pattern. Horses with extensive head and limb markings and those with blue eyes appeared to be at particular risk.

  18. Comparing the Performance of Popular MEG/EEG Artifact Correction Methods in an Evoked-Response Study

    Directory of Open Access Journals (Sweden)

    Niels Trusbak Haumann

    2016-01-01

    Full Text Available We here compared results achieved by applying popular methods for reducing artifacts in magnetoencephalography (MEG and electroencephalography (EEG recordings of the auditory evoked Mismatch Negativity (MMN responses in healthy adult subjects. We compared the Signal Space Separation (SSS and temporal SSS (tSSS methods for reducing noise from external and nearby sources. Our results showed that tSSS reduces the interference level more reliably than plain SSS, particularly for MEG gradiometers, also for healthy subjects not wearing strongly interfering magnetic material. Therefore, tSSS is recommended over SSS. Furthermore, we found that better artifact correction is achieved by applying Independent Component Analysis (ICA in comparison to Signal Space Projection (SSP. Although SSP reduces the baseline noise level more than ICA, SSP also significantly reduces the signal—slightly more than it reduces the artifacts interfering with the signal. However, ICA also adds noise, or correction errors, to the waveform when the signal-to-noise ratio (SNR in the original data is relatively low—in particular to EEG and to MEG magnetometer data. In conclusion, ICA is recommended over SSP, but one should be careful when applying ICA to reduce artifacts on neurophysiological data with relatively low SNR.

  19. Can subject-specific single-fibre electrically evoked auditory brainstem response data be predicted from a model?

    Science.gov (United States)

    Malherbe, Tiaan K; Hanekom, Tania; Hanekom, Johan J

    2013-07-01

    This article investigates whether prediction of subject-specific physiological data is viable through an individualised computational model of a cochlear implant. Subject-specific predictions could be particularly useful to assess and quantify the peripheral factors that cause inter-subject variations in perception. The results of such model predictions could potentially be translated to clinical application through optimisation of mapping parameters for individual users, since parameters that affect perception would be reflected in the model structure and parameters. A method to create a subject-specific computational model of a guinea pig with a cochlear implant is presented. The objectives of the study are to develop a method to construct subject-specific models considering translation of the method to in vivo human models and to assess the effectiveness of subject-specific models to predict peripheral neural excitation on subject level. Neural excitation patterns predicted by the model are compared with single-fibre electrically evoked auditory brainstem responses obtained from the inferior colliculus in the same animal. Results indicate that the model can predict threshold frequency location, spatial spread of bipolar and tripolar stimulation and electrode thresholds relative to one another where electrodes are located in different cochlear structures. Absolute thresholds and spatial spread using monopolar stimulation are not predicted accurately. Improvements to the model should address this. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Sensorineural hearing loss among cerebellopontine-angle tumor patients examined with pure tone audiometry and brainstem-evoked response audiometry

    Science.gov (United States)

    Rinindra, A. M.; Zizlavsky, S.; Bashiruddin, J.; Aman, R. A.; Wulani, V.; Bardosono, S.

    2017-08-01

    Tumor in the cerebellopontine angle (CPA) accurs for approximately 5-10% of all intracranial tumors, where unilateral hearing loss and tinnitus are the most frequent symptoms. This study aimed to collect data on sensorineural hearing loss in CPA tumor patients in Dr. Cipto Mangunkusumo Hospital (CMH) using pure tone audiometry and brainstem-evoked response audiometry (BERA). It also aimed to obtaine data on CPA-tumor imaging through magnetic resonance imaging (MRI). This was a descriptive, analytic, and cross-sectional study. The subjects of this study were gathered using a total sampling method from secondary data between July 2012 and November 2016. From 104 patients, 30 matched the inclusion criteria. The CPA-tumor patients in the ENT CMH outpatient clinic were mostly female, middle-aged patients (41-60 years) whose clinical presentation was mostly tinnitus and severe, asymmetric sensorineural hearing loss in 10 subjects. From 30 subjects, 29 showed ipsilaterally impaired BERA results, and 17 subjects showed contralaterally impaired BERA results. There were 24 subjects who with large-sized tumors and 19 subjects who had intracanal tumors that had spread until they were extracanal in 19 subjects.

  1. Effect of middle ear effusion on the brain-stem auditory evoked response of Cavalier King Charles Spaniels.

    Science.gov (United States)

    Harcourt-Brown, Thomas R; Parker, John E; Granger, Nicolas; Jeffery, Nick D

    2011-06-01

    Brain-stem auditory evoked responses (BAER) were assessed in 23 Cavalier King Charles Spaniels with and without middle ear effusion at sound intensities ranging from 10 to 100 dB nHL. Significant differences were found between the median BAER threshold for ears where effusions were present (60 dB nHL), compared to those without (30 dB nHL) (P=0.001). The slopes of latency-intensity functions from both groups did not differ, but the y-axis intercept when the x value was zero was greater in dogs with effusions (P=0.009), consistent with conductive hearing loss. Analysis of latency-intensity functions suggested the degree of hearing loss due to middle ear effusion was 21 dB (95% confidence between 10 and 33 dB). Waves I-V inter-wave latency at 90 dB nHL was not significantly different between the two groups. These findings demonstrate that middle ear effusion is associated with a conductive hearing loss of 10-33 dB in affected dogs despite the fact that all animals studied were considered to have normal hearing by their owners. Copyright © 2010. Published by Elsevier Ltd.

  2. Both Ox1R and Ox2R orexin receptors contribute to the cardiorespiratory response evoked from the perifornical hypothalamus.

    Science.gov (United States)

    Beig, Mirza I; Horiuchi, Jouji; Dampney, Roger A L; Carrive, Pascal

    2015-10-01

    Orexin/hypocretin neurons are located in and around the perifornical hypothalamus. Disinhibition of this area in the anaesthetized preparation evokes cardiorespiratory changes that can be reduced to nearly half or more by systemic Almorexant, a dual receptor antagonist of the two known orexin receptors, Ox1R and Ox2R. It is not clear if these reductions result from the blockade of one receptor or both. To determine the contribution of the two receptors, we compared the effects of Almorexant to those of the selective Ox1R antagonist ACT335827 and the selective Ox2R antagonists EMPA and TCS-OX2-29. Bicuculline (20 pmol) was injected in the perifornical hypothalamus of urethane-anaesthetized rats before and after administration of the drugs (all 15 mg/kg, intravenously). The pressor, tachycardic and tachypneic responses to bicuculline were attenuated/reduced by ACT335827 (by 19%, ns; 10%, ns and 24%, P hypothalamus under anaesthesia. They are consistent with our previous study in the conscious animal. © 2015 Wiley Publishing Asia Pty Ltd.

  3. Sex-specific automatic responses to infant cries: TMS reveals greater excitability in females than males in motor evoked potentials

    Directory of Open Access Journals (Sweden)

    Irene eMessina

    2016-01-01

    Full Text Available Neuroimaging reveals that infant cries activate parts of the premotor cortical system. To validate this effect in a more direct way, we used event-related transcranial magnetic stimulation (TMS. Here, we investigated the presence and the time course of modulation of motor cortex excitability in young adults who listened to infant cries. Specifically, we recorded motor evoked potentials (MEPs from the biceps brachii (BB and interosseus dorsalis primus (ID1 muscles as produced by TMS delivered from 0 to 250 ms from sound onset in six steps of 50 ms in 10 females and 10 males. We observed an excitatory modulation of MEPs at 100 ms from the onset of the infant cry specific to females and to the ID1 muscle. We regard this modulation as a response to natural cry sounds because it was delayed, attenuated to stimuli increasingly different from natural cry, and was absent in a separate group of females who listened to non-cry stimuli physically matched to natural infant cries. Furthermore, the 100-ms latency of this modulation is not compatible with a voluntary reaction to the stimulus but suggests an automatic, bottom-up audiomotor association. The brains of adult females appear to be tuned to respond to infant cries with automatic motor excitation. This effect may reflect the greater and longstanding burden on females in caregiving infants.

  4. Predictive value of neurological examination for early cortical responses to somatosensory evoked potentials in patients with postanoxic coma.

    Science.gov (United States)

    Bouwes, Aline; Binnekade, Jan M; Verbaan, Bart W; Zandbergen, Eveline G J; Koelman, Johannes H T M; Weinstein, Henry C; Hijdra, Albert; Horn, Janneke

    2012-03-01

    Bilateral absence of cortical N20 responses of median nerve somatosensory evoked potentials (SEP) predicts poor neurological outcome in postanoxic coma after cardiopulmonary resuscitation (CPR). Although SEP is easy to perform and available in most hospitals, it is worthwhile to know how neurological signs are associated with SEP results. The aim of this study was to investigate whether specific clinical neurological signs are associated with either an absent or a present median nerve SEP in patients after CPR. Data from the previously published multicenter prospective cohort study PROPAC (prognosis in postanoxic coma, 2000-2003) were used. Neurological examination, consisting of Glasgow Coma Score (GCS) and brain stem reflexes, and SEP were performed 24, 48, and 72 h after CPR. Positive predictive values for predicting absent and present SEP, as well as diagnostic accuracy were calculated. Data of 407 patients were included. Of the 781 SEPs performed, N20 s were present in 401, bilaterally absent in 299, and 81 SEPs were technically undeterminable. The highest positive predictive values (0.63-0.91) for an absent SEP were found for absent pupillary light responses. The highest positive predictive values (0.71-0.83) for a present SEP were found for motor scores of withdrawal to painful stimuli or better. Multivariate analyses showed a fair diagnostic accuracy (0.78) for neurological examination in predicting an absent or present SEP at 48 or 72 h after CPR. This study shows that neurological examination cannot reliably predict absent or present cortical N20 responses in median nerve SEPs in patients after CPR.

  5. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats.

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-05-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compression were recorded from the lumbar spinal cord using an in vivo extracellular single unit recording setup 1 day after ankle sprain. EA was applied to the SI-6 acupoint on the right forelimb (contralateral to the sprained ankle) by trains of electrical pulses (10 Hz, 1-ms pulse width, 2-mA intensity) for 30 min. After EA, WBR of the sprained foot significantly recovered and dorsal horn neuron activities were significantly suppressed in ankle-sprained rats. However, EA produced no effect in normal rats. The inhibitory effect of EA on hyperactivities of dorsal horn neurons of ankle-sprained rats was blocked by the α-adrenoceptor antagonist phentolamine (5 mg/kg ip) but not by the opioid receptor antagonist naltrexone (10 mg/kg ip). These data suggest that EA-induced analgesia in ankle sprain pain is mediated mainly by suppressing dorsal horn neuron activities through α-adrenergic descending inhibitory systems at the spinal level.

  6. Mechanisms of habitual approach: Failure to suppress irrelevant responses evoked by previously reward-associated stimuli.

    Science.gov (United States)

    Anderson, Brian A; Folk, Charles L; Garrison, Rebecca; Rogers, Leeland

    2016-06-01

    Reward learning has a powerful influence on the attention system, causing previously reward-associated stimuli to automatically capture attention. Difficulty ignoring stimuli associated with drug reward has been linked to addiction relapse, and the attention system of drug-dependent patients seems especially influenced by reward history. This and other evidence suggests that value-driven attention has consequences for behavior and decision-making, facilitating a bias to approach and consume the previously reward-associated stimulus even when doing so runs counter to current goals and priorities. Yet, a mechanism linking value-driven attention to behavioral responding and a general approach bias is lacking. Here we show that previously reward-associated stimuli escape inhibitory processing in a go/no-go task. Control experiments confirmed that this value-dependent failure of goal-directed inhibition could not be explained by search history or residual motivation, but depended specifically on the learned association between particular stimuli and reward outcome. When a previously high-value stimulus is encountered, the response codes generated by that stimulus are automatically afforded high priority, bypassing goal-directed cognitive processes involved in suppressing task-irrelevant behavior. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compression were recorded from the lumbar spinal cord using an in vivo extracellular single unit recording setup 1 day after ankle sprain. EA was applied to the SI-6 acupoint on the right forelimb (contralateral to the sprained ankle) by trains of electrical pulses (10 Hz, 1-ms pulse width, 2-mA intensity) for 30 min. After EA, WBR of the sprained foot significantly recovered and dorsal horn neuron activities were significantly suppressed in ankle-sprained rats. However, EA produced no effect in normal rats. The inhibitory effect of EA on hyperactivities of dorsal horn neurons of ankle-sprained rats was blocked by the α-adrenoceptor antagonist phentolamine (5 mg/kg ip) but not by the opioid receptor antagonist naltrexone (10 mg/kg ip). These data suggest that EA-induced analgesia in ankle sprain pain is mediated mainly by suppressing dorsal horn neuron activities through α-adrenergic descending inhibitory systems at the spinal level. PMID:21389301

  8. Amyloid Form of Ovalbumin Evokes Native Antigen-specific Immune Response in the Host

    Science.gov (United States)

    Tufail, Saba; Owais, Mohammad; Kazmi, Shadab; Balyan, Renu; Kaur Khalsa, Jasneet; Faisal, Syed Mohd.; Sherwani, Mohd. Asif; Gatoo, Manzoor Ahmad; Umar, Mohd. Saad; Zubair, Swaleha

    2015-01-01

    Amyloids are highly organized protein aggregates that arise from inappropriately folded versions of proteins or polypeptides under both physiological as well as simulated ambiences. Once thought to be irreversible assemblies, amyloids have begun to expose their more dynamic and reversible attributes depending upon the intrinsic properties of the precursor protein/peptide and experimental conditions such as temperature, pressure, structural modifications in proteins, or presence of chemicals in the reaction mixture. It has been repeatedly proposed that amyloids undergo transformation to the bioactive peptide/protein forms under specific conditions. In the present study, amyloids assembled from the model protein ovalbumin (OVA) were found to release the precursor protein in a slow and steady manner over an extended time period. Interestingly, the released OVA from amyloid depot was found to exhibit biophysical characteristics of native protein and reacted with native-OVA specific monoclonal as well as polyclonal antibodies. Moreover, antibodies generated upon immunization of OVA amyloidal aggregates or fibrils were found to recognize the native form of OVA. The study suggests that amyloids may act as depots for the native form of the protein and therefore can be exploited as vaccine candidates, where slow antigen release over extended time periods is a pre-requisite for the development of desired immune response. PMID:25512377

  9. The neural substrates of response inhibition to negative information across explicit and implicit tasks in GAD patients: Electrophysiological evidence from an ERP study

    Directory of Open Access Journals (Sweden)

    Fengqiong eYu

    2015-03-01

    Full Text Available Background: It has been established that the inability to inhibit a response to negative stimuli is the genesis of anxiety. However, the neural substrates of response inhibition to sad faces across explicit and implicit tasks in general anxiety disorder (GAD patients remain unclear.Methods: Electrophysiological data were recorded when subjects performed two modified emotional go/no-go tasks in which neutral and sad faces were presented: one task was explicit (emotion categorization, and the other task was implicit (gender categorization.Results: In the explicit task, electrophysiological evidence showed decreased amplitudes of no-go/go difference waves at the N2 interval in the GAD group compared to the control group. However, in the implicit task, the amplitudes of no-go/go difference waves at the N2 interval showed a reversed trend. Source localization analysis on no-go/N2 components revealed a decreased current source density (CSD in the right dorsal lateral prefrontal cortex in GAD individuals relative to controls. In the implicit task, the left superior temporal gyrus and the left inferior parietal lobe showed enhanced activation in GAD individuals and may compensate for the dysfunction of the right dorsal lateral prefrontal cortex.Conclusions: These findings indicated that the processing of response inhibition to socially sad faces in GAD individuals was interrupted in the explicit task. However, this processing was preserved in the implicit task. The neural substrates of response inhibition to sad faces were dissociated between implicit and explicit tasks.

  10. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.

    Science.gov (United States)

    Hertrich, Ingo; Mathiak, Klaus; Lutzenberger, Werner; Ackermann, Hermann

    2004-01-01

    To delineate the time course and processing stages of pitch encoding at the level of the supratemporal plane, the present study recorded evoked magnetic fields in response to rippled noise (RN) stimuli. RN largely masks simple tonotopic representations and addresses pitch processing within the temporal domain (periodicity encoding). Four dichotic stimulus types (111 or 133 Hz RN at one ear, white noise to the other one) were applied in randomized order during either visual distraction or selective auditory attention. Strictly periodic signals, noise-like events, and mixtures of both signals served as control conditions. (1) Attention-dependent ear x hemisphere interactions were observed within the time domain of the M50 field, indicating early streaming of auditory information. (2) M100 responses to strictly periodic stimuli were found lateralized to the right hemisphere. Furthermore, the higher-pitched stimuli yielded enhanced activation as compared to the lower-pitch signals (pitch scaling), conceivably reflecting sensory memory operations. (3) Besides right-hemisphere pitch scaling, the relatively late M100 component in association with the RN condition (latency = 136 ms) showed significantly stronger field strengths over the left hemisphere. Control experiments revealed this lateralization effect to be related to noise rather than pitch processing. Furthermore, subtle noise variations interacted with signal periodicity. Obviously, thus, complex task demands such as RN encoding give rise to functional segregation of auditory processing across the two hemispheres (left hemisphere: noise, right hemisphere: periodicity representation). The observed noise/periodicity interactions, furthermore, might reflect pitch-synchronous spectral evaluation at the level of the left supratemporal plane, triggered by right-hemisphere representation of signal periodicity. Copyright 2004 Elsevier Ltd.

  11. Trait-like differences in underlying oscillatory state predict individual differences in the TMS-evoked response.

    Science.gov (United States)

    Kundu, Bornali; Johnson, Jeffrey S; Postle, Bradley R

    2014-01-01

    Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) can provide insights into how differing cognitive contexts produce different brain states, through TMS-based measures of effective connectivity. For instance, in a recent study, the amplitude of the TMS-evoked response (TMS-ER) derived during the delay-period of a spatial short-term memory (STM) task had a larger amplitude, and greater spread to distal cortical areas, than the TMS-ER from a fixation condition (Johnson et al. J Neurophysiol, 2012). This indicated that the brain's electrical response to TMS is influenced by the cognitive context (STM or fixation) at the time of stimulation. This study also showed significant individual differences in the shape of the TMS-ER. Further, delay-period spectrograms revealed patterns of activity, the sustained pattern of delay-period activity (SPDPA), which were different across individuals. The present study addressed whether individual differences in the SPDPA predict spectral properties of the TMS-ER. We predicted that significant relationships would exist in task-relevant areas, such as the prefrontal cortex in the case of STM. The TMS-ER was derived using TMS-EEG and source-localization methods. The SPDPA varied significantly across subjects, and these differences predicted individual differences in several frequency-dependent parameters of the TMS-ER that were specific to task-relevant areas, including prefrontal cortex for STM. Furthermore, a follow-up test-retest study revealed that the SPDPA was stable over sessions. These observations offer a window into how individual differences in the effects of TMS are related to trait-like individual differences in physiological profile. Published by Elsevier Inc.

  12. Audiometria de resposta evocada de acordo com sexo e idade: achados e aplicabilidade Evoked response audiometry according to gender and age: findings and usefulness

    Directory of Open Access Journals (Sweden)

    Edmir Américo Lourenço

    2008-08-01

    Full Text Available A audiometria de respostas evocadas (ABR é um registro não-invasivo de potenciais elétricos auditivos nos primeiros 12 milissegundos, da orelha média ao córtex auditivo. ABR é importante na avaliação otoneurológica. OBJETIVO: Esclarecer as utilidades do exame, faixas etárias e sexo com maior incidência e topodiagnóstico segundo as latências absolutas e os intervalos interpicos. CASUÍSTICA E MÉTODO: Neste estudo retrospectivo foram analisados 403 prontuários de ABR realizados em clínica particular na cidade de Jundiaí/SP, Brasil, suspeitos de alteração auditiva e/ou doença do SNC, com os pacientes divididos por sexo e faixa etária. RESULTADOS E CONCLUSÕES: ABR é um importante exame para determinar a integridade da via auditiva, limiares eletrofisiológicos e topodiagnóstico, embora o teste não indique a etiologia das alterações. Foi demonstrado que ocorreu maior incidência de achados retrococleares na faixa etária de 12-20 anos e sexo masculino, contudo crianças menores de um ano com fatores de risco não apresentaram um aumento na incidência de alterações condutivas, cocleares e retrococleares em relação à população geral estudada. As latências absolutas das ondas I, III e V foram maiores no sexo masculino e as alterações dos intervalos interpicos foram similares em ambos os sexos, sendo que o intervalo I-III foi o mais freqüentemente alterado.Auditory evoked brainstem responses (ABR is a non-invasive electrical potential registration which evaluates the auditory tract from the middle ear to the auditory cortex in the first 12 milliseconds (ms. The ABR is an important otoneurological evaluation. AIM: confirm the test's usefulness, major incidence and topography according to are range gender considering the absolute latencies of the waves and interpeak intervals. MATERIALS AND METHOD: we retrospectively analyzed 403 tests from a private clinic in the city of Jundiaí-São Paulo State-Brazil, from

  13. Gating of the vertex somatosensory and auditory evoked potential P50 and the correlation to skin conductance orienting response in healthy men

    DEFF Research Database (Denmark)

    Arnfred, S M; Eder, D N; Hemmingsen, R P

    2001-01-01

    A defect in auditory evoked potential (AEP) P50 gating supports the theory of information-processing deficits in schizophrenia. The relationship between gating of the mid-latency evoked potentials (EP) in the somatosensory and the auditory modalities has not been studied together before. In schiz......A defect in auditory evoked potential (AEP) P50 gating supports the theory of information-processing deficits in schizophrenia. The relationship between gating of the mid-latency evoked potentials (EP) in the somatosensory and the auditory modalities has not been studied together before....... In schizophrenia, we might expect the processing deficits to act on multiple modalities. We have examined the gating of median nerve somatosensory EP (SEP) following paired stimulation identical to the AEP P50 gating paradigm using interstimulus intervals (ISI) of 500, 750 and 1000 ms and the correlation of gating...... to the skin conductance orienting response (SCOR) in 20 healthy men. We measured mid-latency vertex components (SEP: P50, N65, P85 and N100; AEP: P30, N45, P50 and N80). The gating was most pronounced at ISI 500 ms where the SEP P50 and N100 gating were 0.59 and 0.37, respectively, as compared to a gating...

  14. Whole body oxygen uptake and evoked knee torque in response to low frequency electrical stimulation of the quadriceps muscles: V•O2 frequency response to NMES.

    Science.gov (United States)

    Minogue, Conor M; Caulfield, Brian M; Lowery, Madeleine M

    2013-06-28

    There is emerging evidence that isometric Neuromuscular Electrical Stimulation (NMES) may offer a way to elicit therapeutically significant increases in whole-body oxygen uptake in order to deliver aerobic exercise to patients unable to exercise volitionally, with consequent gains in cardiovascular health. The optimal stimulation frequency to elicit a significant and sustained pulmonary oxygen uptake has not been determined. The aim of this study was to examine the frequency response of the oxygen uptake and evoked torque due to NMES of the quadriceps muscles across a range of low frequencies spanning the twitch to tetanus transition. Ten healthy male subjects underwent bilateral NMES of the quadriceps muscles comprising eight 4 minute bouts of intermittent stimulation at selected frequencies in the range 1 to 12 Hz, interspersed with 4 minutes rest periods. Respiratory gases and knee extensor torque were simultaneously monitored throughout. Multiple linear regression was used to fit the resulting data to an energetic model which expressed the energy rate in terms of the pulse frequency, the torque time integral and a factor representing the accumulated force developed per unit time. Additional oxygen uptake increased over the frequency range to a maximum of 564 (SD 114) ml min-1 at 12 Hz, and the respiratory exchange ratio was close to unity from 4 to 12 Hz. While the highest induced torque occurred at 12 Hz, the peak of the force development factor occurred at 6 Hz. The regression model accounted for 88% of the variability in the observed energetic response. Taking into account the requirement to avoid prolonged tetanic contractions and to minimize evoked torque, the results suggest that the ideal frequency for sustainable aerobic exercise is 4 to 5 Hz, which coincided in this study with the frequency above which significant twitch force summation occurred.

  15. Stimulus dependency of object-evoked responses in human visual cortex: an inverse problem for category specificity.

    Directory of Open Access Journals (Sweden)

    Britta Graewe

    Full Text Available Many studies have linked the processing of different object categories to specific event-related potentials (ERPs such as the face-specific N170. Despite reports showing that object-related ERPs are influenced by visual stimulus features, there is consensus that these components primarily reflect categorical aspects of the stimuli. Here, we re-investigated this idea by systematically measuring the effects of visual feature manipulations on ERP responses elicited by both structure-from-motion (SFM-defined and luminance-defined object stimuli. SFM objects elicited a novel component at 200-250 ms (N250 over parietal and posterior temporal sites. We found, however, that the N250 amplitude was unaffected by restructuring SFM stimuli into meaningless objects based on identical visual cues. This suggests that this N250 peak was not uniquely linked to categorical aspects of the objects, but is strongly determined by visual stimulus features. We provide strong support for this hypothesis by parametrically manipulating the depth range of both SFM- and luminance-defined object stimuli and showing that the N250 evoked by SFM stimuli as well as the well-known N170 to static faces were sensitive to this manipulation. Importantly, this effect could not be attributed to compromised object categorization in low depth stimuli, confirming a strong impact of visual stimulus features on object-related ERP signals. As ERP components linked with visual categorical object perception are likely determined by multiple stimulus features, this creates an interesting inverse problem when deriving specific perceptual processes from variations in ERP components.

  16. Sensitivity of cortical auditory evoked potential detection for hearing-impaired infants in response to short speech sounds

    Directory of Open Access Journals (Sweden)

    Bram Van Dun

    2012-01-01

    Full Text Available

    Background: Cortical auditory evoked potentials (CAEPs are an emerging tool for hearing aid fitting evaluation in young children who cannot provide reliable behavioral feedback. It is therefore useful to determine the relationship between the sensation level of speech sounds and the detection sensitivity of CAEPs.

    Design and methods: Twenty-five sensorineurally hearing impaired infants with an age range of 8 to 30 months were tested once, 18 aided and 7 unaided. First, behavioral thresholds of speech stimuli /m/, /g/, and /t/ were determined using visual reinforcement orientation audiometry (VROA. Afterwards, the same speech stimuli were presented at 55, 65, and 75 dB SPL, and CAEP recordings were made. An automatic statistical detection paradigm was used for CAEP detection.

    Results: For sensation levels above 0, 10, and 20 dB respectively, detection sensitivities were equal to 72 ± 10, 75 ± 10, and 78 ± 12%. In 79% of the cases, automatic detection p-values became smaller when the sensation level was increased by 10 dB.

    Conclusions: The results of this study suggest that the presence or absence of CAEPs can provide some indication of the audibility of a speech sound for infants with sensorineural hearing loss. The detection of a CAEP provides confidence, to a degree commensurate with the detection probability, that the infant is detecting that sound at the level presented. When testing infants where the audibility of speech sounds has not been established behaviorally, the lack of a cortical response indicates the possibility, but by no means a certainty, that the sensation level is 10 dB or less.

  17. Sensitivity of cortical auditory evoked potential detection for hearing-impaired infants in response to short speech sounds

    Directory of Open Access Journals (Sweden)

    Bram Van Dun

    2012-08-01

    Full Text Available Cortical auditory evoked potentials (CAEPs are an emerging tool for hearing aid fitting evaluation in young children who cannot provide reliable behavioral feedback. It is therefore useful to determine the relationship between the sensation level of speech sounds and the detection sensitivity of CAEPs, which is the ratio between the number of detections and the sum of detections and non-detections. Twenty-five sensorineurally hearing impaired infants with an age range of 8 to 30 months were tested once, 18 aided and 7 unaided. First, behavioral thresholds of speech stimuli /m/, /g/, and /t/ were determined using visual reinforcement orientation audiometry. Afterwards, the same speech stimuli were presented at 55, 65, and 75 dB sound pressure level, and CAEPs were recorded. An automatic statistical detection paradigm was used for CAEP detection. For sensation levels above 0, 10, and 20 dB respectively, detection sensitivities were equal to 72±10, 75±10, and 78±12%. In 79% of the cases, automatic detection P-values became smaller when the sensation level was increased by 10 dB. The results of this study suggest that the presence or absence of CAEPs can provide some indication of the audibility of a speech sound for infants with sensorineural hearing loss. The detection of a CAEP might provide confidence, to a degree commensurate with the detection probability, that the infant is detecting that sound at the level presented. When testing infants where the audibility of speech sounds has not been established behaviorally, the lack of a cortical response indicates the possibility, but by no means a certainty, that the sensation level is 10 dB or less.

  18. Electrophysiological prognostication and brain injury from cardiac arrest.

    Science.gov (United States)

    Kaplan, Peter W

    2006-09-01

    Anoxic coma after cardiorespiratory arrest warrants precocious investigation to establish probable outcome. Electroencephalogram (EEG) may uncover subclinical seizures; EEG grades have provided accurate prognosis of poor and favorable outcomes, but are weakest in those patients in between. Somatosensory evoked potentials now have proven benefit in accurately establishing a poor outcome (death or persistent vegetative state) when cortical responses (N20) are absent. These studies are particularly helpful when clinical examination of coma, early on, might yield uncertain prognosis (i.e., when brain stem reflexes are present). Combining clinical examination with electrophysiology has increasingly yielded multimodality approaches to early prognostication of coma after cardiorespiratory arrest, with more recent studies using event-related and middle-latency potentials showing promise for distinguishing good outcome (to consciousness), from awake but vegetative states. Further studies are warranted for this multimodality approach which, hopefully, may yield more widespread practical use of these testing modalities.

  19. Rhesus macaque model of chronic opiate dependence and neuro-AIDS: longitudinal assessment of auditory brainstem responses and visual evoked potentials.

    Science.gov (United States)

    Riazi, Mariam; Marcario, Joanne K; Samson, Frank K; Kenjale, Himanshu; Adany, Istvan; Staggs, Vincent; Ledford, Emily; Marquis, Janet; Narayan, Opendra; Cheney, Paul D

    2009-06-01

    Our work characterizes the effects of opiate (morphine) dependence on auditory brainstem and visual evoked responses in a rhesus macaque model of neuro-AIDS utilizing a chronic continuous drug delivery paradigm. The goal of this study was to clarify whether morphine is protective, or if it exacerbates simian immunodeficiency virus (SIV)-related systemic and neurological disease. Our model employs a macrophage tropic CD4/CCR5 coreceptor virus, SIV(mac)239 (R71/E17), which crosses the blood-brain barrier shortly after inoculation and closely mimics the natural disease course of human immunodeficiency virus infection. The cohort was divided into three groups: morphine only, SIV only, and SIV + morphine. Evoked potential (EP) abnormalities in subclinically infected macaques were evident as early as 8 weeks postinoculation. Prolongations in EP latencies were observed in SIV-infected macaques across all modalities. Animals with the highest cerebrospinal fluid viral loads and clinical disease showed more abnormalities than those with subclinical disease, confirming our previous work (Raymond et al., J Neurovirol 4:512-520, 1998; J Neurovirol 5:217-231, 1999; AIDS Res Hum Retroviruses 16:1163-1173, 2000). Although some differences were observed in auditory and visual evoked potentials in morphine-treated compared to morphine-untreated SIV-infected animals, the effects were relatively small and not consistent across evoked potential type. However, morphine-treated animals with subclinical disease had a clear tendency toward higher virus loads in peripheral and central nervous system tissues (Marcario et al., J Neuroimmune Pharmacol 3:12-25, 2008) suggesting that if had been possible to follow all animals to end-stage disease, a clearer pattern of evoked potential abnormality might have emerged.

  20. Auditory evoked potentials in patients with dementia of the Alzheimer type.

    Science.gov (United States)

    Grimes, A M; Grady, C L; Pikus, A

    1987-06-01

    Dementia of the Alzheimer type (DAT) disrupts the function of the central auditory nervous system as a result of temporal lobe pathology. Auditory brain stem response (ABR) and middle latency responses (MLR) were studied in a group of patients with DAT to determine whether a correlate of dementia existed in these electrophysiological potentials. Comparison of absolute and interwave latencies on ABR, and absolute latency and amplitude of the MLR in patients with DAT and normal aged controls showed no significant differences between groups for any measure. Further, no relationship with degree of dementia or temporal lobe involvement, as assessed through dichotic speech recognition studies, and auditory evoked potentials could be demonstrated. It was concluded that the temporal lobe atrophy and hypometabolism seen in DAT is not generally sufficient to disrupt the generating of ABR and MLR potentials; however, slow cortical and cognitive evoked potentials may be more sensitive to central auditory nervous system impairment in DAT.

  1. Electrophysiological Monitoring in Patients With Tumors of the Skull Base Treated by Carbon-12 Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carozzo, Simone [Department of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova (Italy); Schardt, Dieter [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Narici, Livio [Department of Physics, University of Rome Tor Vergata, Rome (Italy); Combs, Stephanie E.; Debus, Jürgen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Sannita, Walter G., E-mail: wgs@dism.unige.it [Department of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova (Italy); Department of Psychiatry, State University of New York, Stony Brook, New York (United States)

    2013-03-15

    Purpose: To report the results of short-term electrophysiologic monitoring of patients undergoing {sup 12}C therapy for the treatment of skull chordomas and chondrosarcomas unsuitable for radical surgery. Methods and Materials: Conventional electroencephalogram (EEG) and retinal and cortical electrophysiologic responses to contrast stimuli were recorded from 30 patients undergoing carbon ion radiation therapy, within a few hours before the first treatment and after completion of therapy. Methodologies and procedures were compliant with the guidelines of the International Federation for Clinical Neurophysiology and International Society for Clinical Electrophysiology of Vision. Results: At baseline, clinical signs were reported in 56.6% of subjects. Electrophysiologic test results were abnormal in 76.7% (EEG), 78.6% (cortical evoked potentials), and 92.8% (electroretinogram) of cases, without correlation with neurologic signs, tumor location, or therapy plan. Results on EEG, but not electroretinograms and cortical responses, were more often abnormal in patients with reported clinical signs. Abnormal EEG results and retinal/cortical responses improved after therapy in 40% (EEG), 62.5% (cortical potentials), and 70% (electroretinogram) of cases. Results on EEG worsened after therapy in one-third of patients whose recordings were normal at baseline. Conclusions: The percentages of subjects whose EEG results improved or worsened after therapy and the improvement of retinal/cortical responses in the majority of patients are indicative of a limited or negligible (and possibly transient) acute central nervous system toxicity of carbon ion therapy, with a significant beneficial effect on the visual pathways. Research on large samples would validate electrophysiologic procedures as a possible independent test for central nervous system toxicity and allow investigation of the correlation with clinical signs; repeated testing over time after therapy would demonstrate, and may

  2. The key role of electrophysiology in the diagnosis of visually impaired children.

    Science.gov (United States)

    van Genderen, Maria; Riemslag, Frans; Jorritsma, Frank; Hoeben, Frank; Meire, Francoise; Stilma, Jan

    2006-12-01

    To describe the outcome of specialized electrophysiology in visually impaired children. We carried out a retrospective evaluation of 340 electrophysiological examinations performed in 298 children over a 3-year period (2001-2003), with regard to demographic data, referral pattern, degree of compliance, and diagnostic results. Electrophysiology was performed without sedation or anaesthesia. In electroretinograms, DTL electrodes were used in combination with online selection of responses. Visual evoked potentials testing was performed with seven active occipital electrodes. The mean age of the children was 7 +/- 5 years; 72 (24%) of the children were mentally as well as visually impaired. Main reasons for referral were suspected posterior segment disease, abnormal visual development, unexplained low vision, high myopia, and suspected albinism. Compliance was good in 302/340 (88%), partial in 24/340 (7%), and absent in 14/340 (4%) of the examinations. Of the 326 successful procedures, 215 (66%) showed abnormal results. Tapetoretinal dystrophy (22%), opticopathy (16%), congenital stationary night blindness (13%), and cone dystrophy (11%) were the most frequently established diagnoses. Albinism was confirmed in 14 of 24 suspected patients; additionally, unsuspected misrouting was found in six. In 26 (9%) of the patients, a previously established diagnosis was changed. In a specialized setting, electrophysiological examinations can be performed successfully in visually impaired children. The results are essential for the final ophthalmological diagnosis and have important consequences for rehabilitation.

  3. Sex Differences in Orienting to Pictures with and without Humans: Evidence from the Cardiac Evoked Response (ECR) and the Cortical Long Latency Parietal Positivity (LPP)

    Science.gov (United States)

    Althaus, Monika; Groen, Yvonne; van der Schaft, Lutske; Minderaa, Ruud B.; Tucha, Oliver; Mulder, Lambertus J. M.; Wijers, Albertus A.

    2014-01-01

    Objective This study investigated the effect of social relevance in affective pictures on two orienting responses, i.e. the evoked cardiac response (ECR), and a long latency cortical evoked potential (LPP) and whether this effect would differ between males and females. Assuming that orienting to affective social information is fundamental to experiencing affective empathy, associations between self-report measures of empathy and the two orienting responses were investigated. Method ECRs were obtained from 34 female and 30 male students, and LPPs from 25 female and 27 male students viewing 414 pictures from the International Affective Picture System. Pictures portrayed pleasant, unpleasant and neutral scenes with and without humans. Results Both the ECR and LPP showed the largest response to pictures with humans in unpleasant situations. For both measures, the responses to pictures with humans correlated with self-report measures of empathy. While we found a greater male than female responsiveness to the pictures without humans in the ECR, a greater female than male responsiveness was observed in the LPP response to pictures with humans. Conclusion and Significance The sensitivity of these orienting responses to social relevance and their differential contribution to the prediction of individual differences underline the validity of their combined use in clinical studies investigating individuals with social disabilities. PMID:25330003

  4. Emotion responses under evoked consumption contexts: A focus on the consumers’ frequency of product consumption and the stability of responses

    NARCIS (Netherlands)

    Piqueras Fiszman, B.; Jaeger, S.R.

    2014-01-01

    Previous research has demonstrated that the context in which a certain food is consumed (even if imagined) can affect consumers’ associative emotional responses to that product. In three separate studies we extended this line of research by: (1) replicating these previous findings with consumers

  5. Minimal current intensity to elicit an evoked motor response cannot discern between needle-nerve contact and intraneural needle insertion.

    Science.gov (United States)

    Wiesmann, Thomas; Bornträger, Andreas; Vassiliou, Timon; Hadzic, Admir; Wulf, Hinnerk; Müller, Hans-Helge; Steinfeldt, Thorsten

    2014-03-01

    The ability of an evoked motor response (EMR) with nerve stimulation to detect intraneural needle placement reliably at low current intensity has recently been challenged. In this study, we hypothesized that current intensity is higher in needle-nerve contact than in intraneural needle placement. Brachial plexus nerves were exposed surgically in 6 anesthetized pigs. An insulated needle connected to a nerve stimulator was placed either with 1 mm distance to the nerve (control position), adjacent to nerve epineurium (needle-nerve contact position), or inside the nerve (intraneural position). Three pulse duration settings were applied in random fashion (0.1, 0.3, or 1.0 milliseconds) at each needle position. Starting at 0.0 mA, electrical current was increased until a minimal threshold current resulting in a specific EMR was observed. Fifty threshold current measurements were scheduled for each needle position-pulse duration setting. Four hundred-fifty threshold currents in 50 peripheral nerves were measured. Threshold current intensities (mA) to elicit EMR showed small differences between the needle-nerve contact position [median (25th-75th percentiles); 0.1 milliseconds: 0.12 (0.08-0.18) mA; 0.3 milliseconds: 0.10 (0.06-0.12) mA; 1.0 milliseconds: 0.06 (0.04-0.10) mA] and the intraneural position (0.1 milliseconds: 0.12 [0.10-0.16] mA; 0.3 milliseconds: 0.08 [0.06-0.10] mA; 1.0 milliseconds: 0.06 [0.06-0.08] mA) that are neither statistically significant nor clinically relevant. Regardless of the pulse duration that was applied, the 98.33% confidence interval revealed a difference of at most 0.02 mA. However, threshold current intensities to elicit EMR were lower for the needle-nerve contact position than for the control position (0.1 milliseconds: 0.28 [0.26-0.32] mA; 0.3 milliseconds: 0.20 [0.16-0.22] mA; 1.0 milliseconds: 0.12 [0.10-0.14] mA). The confidence interval for differences suggests minimal current intensity to elicit a motor response that cannot

  6. Comparison of Effects of Different Doses Dexmedetomidine on Inhibiting Tracheal Intubation-Evoked Haemodynamic Response in the Elderly Patients

    Science.gov (United States)

    Chang-Ming, Wang; Shuai, Tang; Lin-Lin, Tong; Yu-Feng, Han

    2015-01-01

    doses DEX, the present result showed that 0.5μg/kg DEX had an effective inhibition, without respiratory depression, on tracheal intubation evoked cardiovascular response in the elderly patients. PMID:26500982

  7. Auditory and visual P300 evoked potentials do not predict response to valproate treatment of aggression in patients with borderline and antisocial personality disorders.

    Science.gov (United States)

    Reeves, Roy R; Struve, Frederick A; Patrick, Gloria

    2005-01-01

    In this study of patients with borderline personality disorder (BPD) or antisocial personality disorder (ASPD) hospitalized because of aggressive behavior, auditory and visual P300 evoked potentials were obtained prior to treatment with valproate. Eight ASPD patients (8 males, 0 females) and 11 BPD patients (2 males, 9 females) showed improvement, while in 7 patients with ASPD (7 males, 0 females) and 10 patients with BPD (2 males, 8 females), aggression was not improved. Differences in auditory and visual P300 latencies and amplitudes were not significant for either diagnosis, or for both diagnoses combined. These findings suggest that auditory or visual P300 evoked potentials may not be useful for predicting response of aggressive behavior to valproate treatment in patients with BPD or ASPD.

  8. Brimonidine Enhances the Electrophysiological Response of Retinal Ganglion Cells through the Trk-MAPK/ERK and PI3K Pathways in Axotomized Eyes.

    Science.gov (United States)

    Yukita, Masayoshi; Omodaka, Kazuko; Machida, Shigeki; Yasuda, Masayuki; Sato, Kota; Maruyama, Kazuichi; Nishiguchi, Koji M; Nakazawa, Toru

    2017-01-01

    To investigate changes in retinal ganglion cell (RGC) activity by measuring the positive scotopic threshold response (pSTR) of the electroretinogram (ERG) in axotomized eyes after brimonidine injection. In 50 adult Sprague-Dawley rats, the left eye was axotomized and injected with phosphate buffered saline (PBS) or brimonidine and the contralateral right eye was left untreated. Scotopic ERGs were recorded simultaneously from both eyes on days 1, 2, 3, 7, and 10 after the intravitreal injection, and the amplitude of the a- and b-waves and the pSTR were measured. Surviving RGCs in the flat-mounted retinas were counted 10 days after axotomy. In addition to brimonidine, K252a (an inhibitor of tyrosine kinase phosphorylation of the Trk receptors), U0126 (a MAPK/ERK kinase inhibitor), and LY294002 (phosphoinositide 3-kinases [PI3Ks]) were also injected intravitreally into the left eye, and ERGs were recorded using the same protocol. The pSTR amplitude increased significantly in the axotomized eyes with brimonidine, to 122.9 ± 5.0%, 161.8 ± 8.3%, and 133.6 ± 8.1% on days 1, 2, and 3 (P brimonidine (P brimonidine enhanced the survival and electrophysiological activity of the RGCs in rats. The mechanism of this electrophysiological change may involve activation of the Trk-MAPK/ERK and Trk-PI3K signals.

  9. Audiological and electrophysiological assessment of professional pop/rock musicians.

    Science.gov (United States)

    Samelli, Alessandra G; Matas, Carla G; Carvallo, Renata M M; Gomes, Raquel F; de Beija, Carolina S; Magliaro, Fernanda C L; Rabelo, Camila M

    2012-01-01

    In the present study, we evaluated peripheral and central auditory pathways in professional musicians (with and without hearing loss) compared to non-musicians. The goal was to verify if music exposure could affect auditory pathways as a whole. This is a prospective study that compared the results obtained between three groups (musicians with and without hearing loss and non-musicians). Thirty-two male individuals participated and they were assessed by: Immittance measurements, pure-tone air conduction thresholds at all frequencies from 0.25 to 20 kHz, Transient Evoked Otoacoustic Emissions, Auditory Brainstem Response (ABR), and Cognitive Potential. The musicians showed worse hearing thresholds in both conventional and high frequency audiometry when compared to the non-musicians; the mean amplitude of Transient Evoked Otoacoustic Emissions was smaller in the musicians group, but the mean latencies of Auditory Brainstem Response and Cognitive Potential were diminished in the musicians when compared to the non-musicians. Our findings suggest that the population of musicians is at risk for developing music-induced hearing loss. However, the electrophysiological evaluation showed that latency waves of ABR and P300 were diminished in musicians, which may suggest that the auditory training to which these musicians are exposed acts as a facilitator of the acoustic signal transmission to the cortex.

  10. Audiological and electrophysiological assessment of professional pop/rock musicians

    Directory of Open Access Journals (Sweden)

    Alessandra G Samelli

    2012-01-01

    Full Text Available In the present study, we evaluated peripheral and central auditory pathways in professional musicians (with and without hearing loss compared to non-musicians. The goal was to verify if music exposure could affect auditory pathways as a whole. This is a prospective study that compared the results obtained between three groups (musicians with and without hearing loss and non-musicians. Thirty-two male individuals participated and they were assessed by: Immittance measurements, pure-tone air conduction thresholds at all frequencies from 0.25 to 20 kHz, Transient Evoked Otoacoustic Emissions, Auditory Brainstem Response (ABR, and Cognitive Potential. The musicians showed worse hearing thresholds in both conventional and high frequency audiometry when compared to the non-musicians; the mean amplitude of Transient Evoked Otoacoustic Emissions was smaller in the musicians group, but the mean latencies of Auditory Brainstem Response and Cognitive Potential were diminished in the musicians when compared to the non-musicians. Our findings suggest that the population of musicians is at risk for developing music-induced hearing loss. However, the electrophysiological evaluation showed that latency waves of ABR and P300 were diminished in musicians, which may suggest that the auditory training to which these musicians are exposed acts as a facilitator of the acoustic signal transmission to the cortex.

  11. Electrophysiological Responses and Reproductive Behavior of Fall Webworm Moths (Hyphantria cunea Drury) are Influenced by Volatile Compounds from Its Mulberry Host (Morus alba L.).

    Science.gov (United States)

    Tang, Rui; Zhang, Feng; Zhang, Zhong-Ning

    2016-05-03

    Hyphantria cunea (Drury) is an invasive pest of Morus alba L. in China. β-ocimene and cis-2-penten-1-ol among eleven electro-physiologically active leaf volatiles from M. alba have been reported to influence captures of Hyphantria cunea moths when added into sex pheromone traps. This study further investigated influences of volatile types and their dosages on the electro-physiological responses in the antennae of male and female moths, as well as on mating and oviposition behaviors. Females were, regardless of dosages, more sensitive to β-ocimene and cis-2-penten-1-ol in electro-physiological response tests than males. For males, a dose response was detected, i.e., a dosage of 10 μg and 100 μg of either chemical stimulated higher electric response in their antennae than 1 μg. Moth pairs either exposed respectively to a herbivore-induced M. alba volatile blend (HIPV), to a mechanically-damaged M. alba volatile blend (MDV), to β-ocimene, to cis-2-penten-1-ol, or to pentane as a control showed that pairs exposed to β-ocimene most likely mated, followed by HIPV blends and least by the other volatiles or the control. In contrast, β-ocimene induced about 70% of the female oviposition behaviors and was nearly 4.5 times the oviposition rate than cis-2-penten-1-ol and 2 times than the control. However, none of the chemicals had any effect on the 48 h fecundity or on egg sizes. In conclusion, β-ocimene from mulberry plants alone could promote mating and oviposition in H. cunea at a dosage of 1 mg. The results indicate that reproductive behaviors of H. cunea moths can be enhanced through HIPV blends and β-ocimene induced by feeding of larvae. This contra phenomenon has revealed a different ecology in this moth during colonizing China as local pests would commonly be repelled by herbivore induced chemicals. These chemicals can be used for the development of biological control approaches such as being used together with sex pheromone traps.

  12. Electrophysiological Responses and Reproductive Behavior of Fall Webworm Moths (Hyphantria cunea Drury are Influenced by Volatile Compounds from Its Mulberry Host (Morus alba L.

    Directory of Open Access Journals (Sweden)

    Rui Tang

    2016-05-01

    Full Text Available Hyphantria cunea (Drury is an invasive pest of Morus alba L. in China. β-ocimene and cis-2-penten-1-ol among eleven electro-physiologically active leaf volatiles from M. alba have been reported to influence captures of Hyphantria cunea moths when added into sex pheromone traps. This study further investigated influences of volatile types and their dosages on the electro-physiological responses in the antennae of male and female moths, as well as on mating and oviposition behaviors. Females were, regardless of dosages, more sensitive to β-ocimene and cis-2-penten-1-ol in electro-physiological response tests than males. For males, a dose response was detected, i.e., a dosage of 10 μg and 100 μg of either chemical stimulated higher electric response in their antennae than 1 μg. Moth pairs either exposed respectively to a herbivore-induced M. alba volatile blend (HIPV, to a mechanically-damaged M. alba volatile blend (MDV, to β-ocimene, to cis-2-penten-1-ol, or to pentane as a control showed that pairs exposed to β-ocimene most likely mated, followed by HIPV blends and least by the other volatiles or the control. In contrast, β-ocimene induced about 70% of the female oviposition behaviors and was nearly 4.5 times the oviposition rate than cis-2-penten-1-ol and 2 times than the control. However, none of the chemicals had any effect on the 48 h fecundity or on egg sizes. In conclusion, β-ocimene from mulberry plants alone could promote mating and oviposition in H. cunea at a dosage of 1 mg. The results indicate that reproductive behaviors of H. cunea moths can be enhanced through HIPV blends and β-ocimene induced by feeding of larvae. This contra phenomenon has revealed a different ecology in this moth during colonizing China as local pests would commonly be repelled by herbivore induced chemicals. These chemicals can be used for the development of biological control approaches such as being used together with sex pheromone traps.

  13. Electrophysiological Responses and Reproductive Behavior of Fall Webworm Moths (Hyphantria cunea Drury) are Influenced by Volatile Compounds from Its Mulberry Host (Morus alba L.)

    Science.gov (United States)

    Tang, Rui; Zhang, Feng; Zhang, Zhong-Ning

    2016-01-01

    Hyphantria cunea (Drury) is an invasive pest of Morus alba L. in China. β-ocimene and cis-2-penten-1-ol among eleven electro-physiologically active leaf volatiles from M. alba have been reported to influence captures of Hyphantria cunea moths when added into sex pheromone traps. This study further investigated influences of volatile types and their dosages on the electro-physiological responses in the antennae of male and female moths, as well as on mating and oviposition behaviors. Females were, regardless of dosages, more sensitive to β-ocimene and cis-2-penten-1-ol in electro-physiological response tests than males. For males, a dose response was detected, i.e., a dosage of 10 μg and 100 μg of either chemical stimulated higher electric response in their antennae than 1 μg. Moth pairs either exposed respectively to a herbivore-induced M. alba volatile blend (HIPV), to a mechanically-damaged M. alba volatile blend (MDV), to β-ocimene, to cis-2-penten-1-ol, or to pentane as a control showed that pairs exposed to β-ocimene most likely mated, followed by HIPV blends and least by the other volatiles or the control. In contrast, β-ocimene induced about 70% of the female oviposition behaviors and was nearly 4.5 times the oviposition rate than cis-2-penten-1-ol and 2 times than the control. However, none of the chemicals had any effect on the 48 h fecundity or on egg sizes. In conclusion, β-ocimene from mulberry plants alone could promote mating and oviposition in H. cunea at a dosage of 1 mg. The results indicate that reproductive behaviors of H. cunea moths can be enhanced through HIPV blends and β-ocimene induced by feeding of larvae. This contra phenomenon has revealed a different ecology in this moth during colonizing China as local pests would commonly be repelled by herbivore induced chemicals. These chemicals can be used for the development of biological control approaches such as being used together with sex pheromone traps. PMID:27153095

  14. Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn

    Science.gov (United States)

    Grudt, T J; Perl, E R

    2002-01-01

    Relationships between the morphology of individual neurones of the spinal superficial dorsal horn (SDH), laminae I and II, and their electrophysiological properties were studied in spinal cord slices prepared from anaesthetized, free-ranging hamsters. Tight-seal, whole-cell recordings were made with pipette microelectrodes filled with biocytin to establish electrophysiological characteristics and to label the studied neurones. Neurones were categorized according to location and size of the somata, the dendritic and axonal pattern of arborization, spontaneous synaptic potentials, evoked postsynaptic currents, pattern of discharge to depolarizing pulses and current-voltage relationships. Data were obtained for 170 neurones; 13 of these had somata in lamina I and 157 in lamina II. Stimulation of the segmental dorsal root evoked a prompt excitatory response in almost every neurone sampled (161/166) with nearly 3/4 displaying putative monosynaptic EPSCs. The majority of neurones (133/170) fitted one of several distinctive morphological categories. To a considerable extent, neurones with a common morphological configuration and neurite disposition shared electrophysiological characteristics. Five of the 13 lamina I neurones were relatively large with extensive dendritic arborization in the horizontal dimension and a prominent axon directed ventrally and contralaterally. These presumptive ventrolateral projection neurones differed structurally and electrophysiologically from the other lamina I neurones, which had ipsilateral, locally arborizing axons and/or branches entering the dorsal lateral funiculus. One hundred and twenty lamina II neurones fitted one of five morphological categories: islet, central, medial-lateral, radial or vertical. Central cells were further divided into three groups on functional features. We conclude that the spinal SDH comprises many types of neurones whose morphological characteristics are associated with specific functional features implying

  15. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. IV. Responses after spectacle-induced adaptation

    Science.gov (United States)

    Clendaniel, R. A.; Lasker, D. M.; Minor, L. B.; Shelhamer, M. J. (Principal Investigator)

    2001-01-01

    The horizontal angular vestibuloocular reflex (VOR) evoked by sinusoidal rotations from 0.5 to 15 Hz and acceleration steps up to 3,000 degrees /s(2) to 150 degrees /s was studied in six squirrel monkeys following adaptation with x2.2 magnifying and x0.45 minimizing spectacles. For sinusoidal rotations with peak velocities of 20 degrees /s, there were significant changes in gain at all frequencies; however, the greatest gain changes occurred at the lower frequencies. The frequency- and velocity-dependent gain enhancement seen in normal monkeys was accentuated following adaptation to magnifying spectacles and diminished with adaptation to minimizing spectacles. A differential increase in gain for the steps of acceleration was noted after adaptation to the magnifying spectacles. The gain during the acceleration portion, G(A), of a step of acceleration (3,000 degrees /s(2) to 150 degrees /s) increased from preadaptation values of 1.05 +/- 0.08 to 1.96 +/- 0.16, while the gain during the velocity plateau, G(V), only increased from 0.93 +/- 0.04 to 1.36 +/- 0.08. Polynomial fits to the trajectory of the response during the acceleration step revealed a greater increase in the cubic than the linear term following adaptation with the magnifying lenses. Following adaptation to the minimizing lenses, the value of G(A) decreased to 0.61 +/- 0.08, and the value of G(V) decreased to 0.59 +/- 0.09 for the 3,000 degrees /s(2) steps of acceleration. Polynomial fits to the trajectory of the response during the acceleration step revealed that there was a significantly greater reduction in the cubic term than in the linear term following adaptation with the minimizing lenses. These findings indicate that there is greater modification of the nonlinear as compared with the linear component of the VOR with spectacle-induced adaptation. In addition, the latency to the onset of the adapted response varied with the dynamics of the stimulus. The findings were modeled with a bilateral model

  16. Analytical approaches to estimation of temporal frequency preference from visual evoked potentials

    Science.gov (United States)

    Wierzbicka, Agnieszka; Kordecka, Katarzyna; Żygierewicz, Jarosław; Waleszczyk, Wioletta

    2017-08-01

    There are various ways to study neuronal processing of information about temporal frequency content of visual stimuli. The two most fundamental methods are 1) direct measurement of response amplitude, e.g. an amplitude of averaged visual evoked potential, and 2) assessment of response magnitude after transformation of electrophysiological signal from time to frequency domain. In our study we found it impossible to use the same paradigm to analyze the whole spectrum of temporal frequencies in local field potentials recorded during visual electrophysiology experiments performed on anesthetized rats. Visual responses were recorded from all layers of primary visual cortex in response to flashing light with temporal frequency in the range of 0.5 - 15 Hz. We found that for frequencies lower than 2 Hz it is difficult to draw conclusions based on power spectrum alone, while for high frequencies (> 2 Hz) the evoked potential in time domain could not be observed. We discuss possible physiological reasons of these difficulties and the advantages of the Welch method instead of the periodogram to analyze signals in the frequency domain.

  17. Emotional facial expressions evoke faster orienting responses, but weaker emotional responses at neural and behavioural levels compared to scenes: A simultaneous EEG and facial EMG study.

    Science.gov (United States)

    Mavratzakis, Aimee; Herbert, Cornelia; Walla, Peter

    2016-01-01

    In the current study, electroencephalography (EEG) was recorded simultaneously with facial electromyography (fEMG) to determine whether emotional faces and emotional scenes are processed differently at the neural level. In addition, it was investigated whether these differences can be observed at the behavioural level via spontaneous facial muscle activity. Emotional content of the stimuli did not affect early P1 activity. Emotional faces elicited enhanced amplitudes of the face-sensitive N170 component, while its counterpart, the scene-related N100, was not sensitive to emotional content of scenes. At 220-280ms, the early posterior negativity (EPN) was enhanced only slightly for fearful as compared to neutral or happy faces. However, its amplitudes were significantly enhanced during processing of scenes with positive content, particularly over the right hemisphere. Scenes of positive content also elicited enhanced spontaneous zygomatic activity from 500-750ms onwards, while happy faces elicited no such changes. Contrastingly, both fearful faces and negative scenes elicited enhanced spontaneous corrugator activity at 500-750ms after stimulus onset. However, relative to baseline EMG changes occurred earlier for faces (250ms) than for scenes (500ms) whereas for scenes activity changes were more pronounced over the whole viewing period. Taking into account all effects, the data suggests that emotional facial expressions evoke faster attentional orienting, but weaker affective neural activity and emotional behavioural responses compared to emotional scenes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Organization of sensory discrimination and response selection in choice and nonchoice conditions: a study using cerebral evoked potentials in normal humans.

    Science.gov (United States)

    Goodin, D S; Aminoff, M J; Shefrin, S L

    1990-10-01

    1. It has been suggested that the long-latency "event-related" cerebral evoked potentials (ERPs) reflect certain aspects of the neural processing underlying sensory discrimination in a two-choice reaction time task. The present paper examines the hypothesis that the coupling of these ERPs to sensory discrimination is variable and that the discrimination process is completed at different points during the course of cerebral processing, depending on the actual requirements of the task. 2. We recorded the cerebral evoked potentials and electromyogram (EMG) of the responding muscle in five different reaction time tasks, each requiring sensory discrimination and response selection of varying complexity. In the Choice condition two stimuli were presented, and two separate responses were required. In the two Go-No Go conditions two stimuli were presented, but a response was required to only one or the other of the stimuli. In the two Simple conditions only one stimulus was presented, and one response was required. 3. Under both Choice and Go-No Go conditions, the frequency histogram of the onset latency of the compound muscle action potential for the response to the frequent tone showed a bimodal distribution without overlap, suggesting that there were two distinct types of responder: fast and slow. The comparable histograms for the onset latency of the response to the rare tone also showed a bimodal distribution, but the mean onset latency was prolonged relative to the response to the frequent tone, and the mean separation was less so that the two distributions overlapped each other. 4. Despite the marked difference in response latencies between the fast and slow responders, there was no appreciable difference in cerebral evoked responses between the two groups. Moreover, in response to the frequent tone, all slow responders and, likewise, all fast responders had similar onset latencies of the averaged EMG activity regardless of condition. Nonetheless, fast or slow

  19. Electrophysiological Mapping of Novel Prefrontal – Cerebellar Pathways

    Science.gov (United States)

    Watson, Thomas C.; Jones, Matthew W.; Apps, Richard

    2009-01-01

    Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non-motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL) and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35 ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre); they were not attenuated by local anaesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency (approximately 30 ms). Single unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s) of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions. PMID:19738932

  20. Cortical Responsiveness to Nociceptive Stimuli in Patients with Chronic Disorders of Consciousness: Do C-Fiber Laser Evoked Potentials Have a Role?

    Directory of Open Access Journals (Sweden)

    Antonino Naro

    Full Text Available It has been shown that the presence of Aδ-fiber laser evoked potentials (Aδ-LEP in patients suffering from chronic disorders of consciousness (DOC, such as vegetative state (VS and minimally conscious state (MCS, may be the expression of a residual cortical pain arousal. Interestingly, the study of C-fiber LEP (C-LEP could be useful in the assessment of cortical pain arousal in the DOC individuals who lack of Aδ-LEP. To this end, we enrolled 38 DOC patients following post-anoxic or post-traumatic brain injury, who met the international criteria for VS and MCS diagnosis. Each subject was clinically evaluated, through the coma recovery scale-revised (CRS-R and the nociceptive coma scale-revised (NCS-R, and electrophysiologically tested by means of a solid-state laser for Aδ-LEP and C-LEP. VS individuals showed increased latencies and reduced amplitudes of both the Aδ-LEP and C-LEP components in comparison to MCS patients. Although nearly all of the patients had both the LEP components, some VS individuals showed only the C-LEP ones. Notably, such patients had a similar NCS-R score to those having both the LEP components. Hence, we could hypothesize that C-LEP generators may be rearranged or partially spared in order to still guarantee cortical pain arousal when Aδ-LEP generators are damaged. Therefore, the residual presence of C-LEP should be assessed when Aδ-LEP are missing, since a potential pain experience should be still present in some patients, so to properly initiate, or adapt, the most appropriate pain treatment.

  1. Functional and electrophysiological characterization of four non-truncating mutations responsible for creatine transporter (SLC6A8) deficiency syndrome.

    Science.gov (United States)

    Valayannopoulos, Vassili; Bakouh, Naziha; Mazzuca, Michel; Nonnenmacher, Luc; Hubert, Laurence; Makaci, Fatna-Léa; Chabli, Allel; Salomons, Gajja S; Mellot-Draznieks, Caroline; Brulé, Emilie; de Lonlay, Pascale; Toulhoat, Hervé; Munnich, Arnold; Planelles, Gabrielle; de Keyzer, Yves

    2013-01-01

    Intellectual disability coupled with epilepsy are clinical hallmarks of the creatine (Cr) transporter deficiency syndrome resulting from mutations in the SLC6A8 gene. So far characterization of pathogenic mutations of SLC6A8 has been limited to Cr uptake. The aim of our study was to characterize the electrogenic and pharmacological properties of non truncating SLC6A8 mutations identified in patients presenting variable clinical severity. Electrophysiological and pharmacological properties of four mutants (including two novel ones) were studied in X. laevis oocyte expression system. Creatine uptake was assessed with [(14)C]-Cr in X. laevis and patients' fibroblasts. Subcellular localization was determined by immunofluorescence and western blot. All mutants were properly targeted to the plasma membrane in both systems. Mutations led to the complete loss of both electrogenic and transport activities in X. laevis and Cr uptake in patients' fibroblasts. Among the Cr analogs tested, guanidinopropionate induced an electrogenic activity with the normal SLC6A8 transporter similar to creatine whereas a phosphocreatine derivative, PCr-Mg-CPLX, resulted in partial activity. SLC6A8 mutants displayed no electrogenic activity with all Cr analogs tested in X. laevis oocytes. Although the mutations altered various domains of SLC6A8 Cr uptake and electrogenic properties were completely inhibited and could not be dissociated. Besides the metabolic functions of Cr, the loss of SLC6A8 electrogenic activity, demonstrated here for the first time, may also play a role in the altered brain functions of the patients.

  2. Dissociation of neural substrates of response inhibition to negative information between implicit and explicit facial Go/Nogo tasks: evidence from an electrophysiological study.

    Science.gov (United States)

    Yu, Fengqiong; Ye, Rong; Sun, Shiyue; Carretié, Luis; Zhang, Lei; Dong, Yi; Zhu, Chunyan; Luo, Yuejia; Wang, Kai

    2014-01-01

    Although ample evidence suggests that emotion and response inhibition are interrelated at the behavioral and neural levels, neural substrates of response inhibition to negative facial information remain unclear. Thus we used event-related potential (ERP) methods to explore the effects of explicit and implicit facial expression processing in response inhibition. We used implicit (gender categorization) and explicit emotional Go/Nogo tasks (emotion categorization) in which neutral and sad faces were presented. Electrophysiological markers at the scalp and the voxel level were analyzed during the two tasks. We detected a task, emotion and trial type interaction effect in the Nogo-P3 stage. Larger Nogo-P3 amplitudes during sad conditions versus neutral conditions were detected with explicit tasks. However, the amplitude differences between the two conditions were not significant for implicit tasks. Source analyses on P3 component revealed that right inferior frontal junction (rIFJ) was involved during this stage. The current source density (CSD) of rIFJ was higher with sad conditions compared to neutral conditions for explicit tasks, rather than for implicit tasks. The findings indicated that response inhibition was modulated by sad facial information at the action inhibition stage when facial expressions were processed explicitly rather than implicitly. The rIFJ may be a key brain region in emotion regulation.

  3. Dissociation of neural substrates of response inhibition to negative information between implicit and explicit facial Go/Nogo tasks: evidence from an electrophysiological study.

    Directory of Open Access Journals (Sweden)

    Fengqiong Yu

    Full Text Available BACKGROUND: Although ample evidence suggests that emotion and response inhibition are interrelated at the behavioral and neural levels, neural substrates of response inhibition to negative facial information remain unclear. Thus we used event-related potential (ERP methods to explore the effects of explicit and implicit facial expression processing in response inhibition. METHODS: We used implicit (gender categorization and explicit emotional Go/Nogo tasks (emotion categorization in which neutral and sad faces were presented. Electrophysiological markers at the scalp and the voxel level were analyzed during the two tasks. RESULTS: We detected a task, emotion and trial type interaction effect in the Nogo-P3 stage. Larger Nogo-P3 amplitudes during sad conditions versus neutral conditions were detected with explicit tasks. However, the amplitude differences between the two conditions were not significant for implicit tasks. Source analyses on P3 component revealed that right inferior frontal junction (rIFJ was involved during this stage. The current source density (CSD of rIFJ was higher with sad conditions compared to neutral conditions for explicit tasks, rather than for implicit tasks. CONCLUSIONS: The findings indicated that response inhibition was modulated by sad facial information at the action inhibition stage when facial expressions were processed explicitly rather than implicitly. The rIFJ may be a key brain region in emotion regulation.

  4. Relative efficacy of transcranial motor evoked potentials, mechanically-elicited electromyography, and evoked EMG to assess nerve root function during sustained retraction in a porcine model.

    Science.gov (United States)

    Lyon, Russ; Lieberman, Jeremy A; Feiner, John; Burch, Shane

    2009-07-15

    This is an animal experiment using transcranial motor evoked potentials (TcMEP), mechanically elicited electromyography (EMG), and evoked EMG during spinal nerve root retraction in a pig model. To compare the sensitivity of these 3 electrophysiological measures for a constant retraction force applied to an isolated lumbar nerve root for a specific duration of time. The incidence of nerve root injury during lumbar spine surgery ranges from 0.2% to 31%. Direct retraction of spinal nerve roots may cause these injuries, but the amount and duration of force that may safely be applied is not clear. Using an established porcine model, we examined the changes occurring to multimyotomal TcMEPs, mechanically elicited EMGs, and evoked EMGs during continuous retraction of a nerve root at a constant force applied over 10 minutes. TcMEP, mechanically elicited EMG, and evoked EMG responses were recorded from the tibialis anterior (TA) muscle in 10 experiments. The dominant root innervating the TA was determined with evoked EMG; preretraction TcMEP and nerve root stimulation threshold (NRT) was obtained. The dominant root was retracted at 2 Newton (N) for 10 minutes. TcMEP trials were elicited every minute during retraction. NRT was measured immediately after retraction. TcMEP and NRT were measured after 10 minutes of recovery. RESULTS.: During the 10 minutes of retraction at 2 N, the amplitude of the TA muscle progressively decreased in all trials in a highly significant curvilinear fashion. The mean TcMEP amplitude decreased 59% +/- 14% from baseline values. The mean NRT after 10 minutes of retraction at 2 N rose to 1.8 +/- 0.7 mA (P EMG activity was variable; tonic EMG was observed in only 2 nerve roots (20%). Three electrophysiologic methods were used intraoperatively to assess neural function during retraction of a single nerve root. Retraction produced consistent changes in TcMEPs and evoked EMG. These 2 methods show promise for assessing the limits on the force and duration

  5. Complexin Mutants Reveal Partial Segregation between Recycling Pathways That Drive Evoked and Spontaneous Neurotransmission

    Science.gov (United States)

    Sabeva, Nadezhda; Cho, Richard W.; Vasin, Alexander; Gonzalez, Agustin; Littleton, J. Troy

    2017-01-01

    Synaptic vesicles fuse at morphological specializations in the presynaptic terminal termed active zones (AZs). Vesicle fusion can occur spontaneously or in response to an action potential. Following fusion, vesicles are retrieved and recycled within nerve terminals. It is still unclear whether vesicles that fuse spontaneously or following evoked release share similar recycling mechanisms. Genetic deletion of the SNARE-binding protein complexin dramatically increases spontaneous fusion, with the protein serving as the synaptic vesicle fusion clamp at Drosophila synapses. We examined synaptic vesicle recycling pathways at complexin null neuromuscular junctions, where spontaneous release is dramatically enhanced. We combined loading of the lipophilic dye FM1–43 with photoconversion, electron microscopy, and electrophysiology to monitor evoked and spontaneous recycling vesicle pools. We found that the total number of recycling vesicles was equal to those retrieved through spontaneous and evoked pools, suggesting that retrieval following fusion is partially segregated for spontaneous and evoked release. In addition, the kinetics of FM1–43 destaining and synaptic depression measured in the presence of the vesicle-refilling blocker bafilomycin indicated that spontaneous and evoked recycling pools partially intermix during the release process. Finally, FM1–43 photoconversion combined with electron microscopy analysis indicated that spontaneous recycling preferentially involves synaptic vesicles in the vicinity of AZs, whereas vesicles recycled following evoked release involve a larger intraterminal pool. Together, these results suggest that spontaneous and evoked vesicles use separable recycling pathways and then partially intermix during subsequent rounds of fusion. SIGNIFICANCE STATEMENT Neurotransmitter release involves fusion of synaptic vesicles with the plasma membrane in response to an action potential, or spontaneously in the absence of stimulation. Upon

  6. Longitudinal changes in task-evoked brain responses in Parkinson’s disease patients with and without mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Urban eEkman

    2014-07-01

    Full Text Available Cognitive deficits are common in Parkinson’s disease. Previous cross-sectional research has demonstrated a link between cognitive impairments and fronto-striatal dopaminergic dysmodulation. However, longitudinal studies that link disease progression with altered task-evoked brain activity are lacking. Therefore, our objective was to longitudinally evaluate working-memory related brain activity changes in Parkinson’s disease patients with and without mild cognitive impairment.Patients were recruited within a longitudinal cohort study of incident patients with idiopathic parkinsonism. We longitudinally (at baseline examination and at 12-months follow-up compared 28 patients with Parkinson’s disease without mild cognitive impairment with 11 patients with Parkinson’s disease and mild cognitive impairment. Functional MRI blood oxygen level dependent signal was measured during a verbal two-back working-memory task. Patients with mild cognitive impairment under-recruited bilateral medial prefrontal cortex, right putamen, and lateral parietal cortex at both time-points (main effect of group: p<0.001, uncorrected. Critically, a significant group-by-time interaction effect (p<0.001, uncorrected was found in the right fusiform gyrus, indicating that working-memory related activity decreased for patients with Parkinson’s disease and mild cognitive impairment between baseline and follow-up, while patients without mild cognitive impairment were stable across time-points. The functional connectivity between right fusiform gyrus and bilateral caudate nucleus was stronger for patients without MCI relative to patients with MCI.Our findings support the view that deficits in working-memory updating are related to persistent fronto-striatal under-recruitments in patients with early phase Parkinson’s disease and mild cognitive impairment. The longitudinal evolution of mild cognitive impairment in Parkinson’s disease translates into additional task-evoked

  7. Noradrenergic control of gene expression and long-term neuronal adaptation evoked by learned vocalizations in songbirds.

    Directory of Open Access Journals (Sweden)

    Tarciso A F Velho

    Full Text Available Norepinephrine (NE is thought to play important roles in the consolidation and retrieval of long-term memories, but its role in the processing and memorization of complex acoustic signals used for vocal communication has yet to be determined. We have used a combination of gene expression analysis, electrophysiological recordings and pharmacological manipulations in zebra finches to examine the role of noradrenergic transmission in the brain's response to birdsong, a learned vocal behavior that shares important features with human speech. We show that noradrenergic transmission is required for both the expression of activity-dependent genes and the long-term maintenance of stimulus-specific electrophysiological adaptation that are induced in central auditory neurons by stimulation with birdsong. Specifically, we show that the caudomedial nidopallium (NCM, an area directly involved in the auditory processing and memorization of birdsong, receives strong noradrenergic innervation. Song-responsive neurons in this area express α-adrenergic receptors and are in close proximity to noradrenergic terminals. We further show that local α-adrenergic antagonism interferes with song-induced gene expression, without affecting spontaneous or evoked electrophysiological activity, thus dissociating the molecular and electrophysiological responses to song. Moreover, α-adrenergic antagonism disrupts the maintenance but not the acquisition of the adapted physiological state. We suggest that the noradrenergic system regulates long-term changes in song-responsive neurons by modulating the gene expression response that is associated with the electrophysiological activation triggered by song. We also suggest that this mechanism may be an important contributor to long-term auditory memories of learned vocalizations.

  8. Dissociation of response and feedback negativity in schizophrenia: Electrophysiological and computational evidence for a deficit in the representation of value

    Directory of Open Access Journals (Sweden)

    Sarah E Morris

    2011-10-01

    Full Text Available Contrasting theories of schizophrenia propose that the disorder is characterized by a deficit in phasic changes in dopamine activity in response to ongoing events or, alternatively, by a weakness in the representation of the value of responses. Schizophrenia patients have reliably reduced brain activity following incorrect responses but other research suggests that they may have intact feedback-related potentials, indicating that the impairment may be specifically response-related. We used event-related brain potentials and computational modeling to examine this issue by comparing the neural response to outcomes with the neural response to behaviors that predict outcomes in patients with schizophrenia and psychiatrically healthy comparison subjects. We recorded feedback-related activity in a passive gambling task and a time estimation task and error-related activity in a flanker task. Patients’ brain activity following an erroneous response was reduced compared to comparison subjects but feedback-related activity did not differ between groups. Using computational modeling, we simulated the effects of an overall reduction in patients’ sensitivity to feedback, selective insensitivity to positive or negative feedback, reduced learning rate and a decreased representation of the value of the response given the stimulus on each trial. The results of the computational modeling suggest that schizophrenia patients exhibit weakened representation of response values, possibly due to failure of the basal ganglia to strongly associate stimuli with appropriate response alternatives.

  9. [Electrophysiological testing in spinal cord tumors].

    Science.gov (United States)

    André-Obadia, N; Mauguière, F

    2017-11-01

    Evoked potentials (EPs) are useful to evaluate the functional impairment of motor and somatosensory pathways in spinal cord tumors. Conduction through pyramidal tracts is evaluated by motor EPs (MEPs) elicited by transcranial stimulation, magnetic for awake patients or electric in the operating room. Somatosensory EPs (SEPs) and laser EPs (LEPs) are complementary procedures to explore conduction in dorsal columns and spinothalamic tracts, respectively. MEPs as well as SEPs show conduction abnormalities in about 60% of cases with a sensitivity that increases up to 70% when both procedures are carried out. Abnormalities are observed in the absence of any clinical sign in respectively 7% and 15% of cases for MEPs and SEPs. Multilevel stimulations for SEPs recordings permit to detect segmental dysfunction in 70% in case of cervical TIM, even in the absence of clinical signs. LEPs are useful in specific clinical situations: they allow a dermatomal stimulation and are correlated to segmental thermoalgic anaesthesia. Electrophysiological testing plays an important role in the diagnostic and therapeutic strategy: before surgery, MEPs and SEPs objectively evaluate the functional impairment directly related to the lesion. They also help by permitting a follow-up, either before surgery when the surgical decision is delayed because of a good clinical tolerance of the lesion, or after operation to evaluate the functional evolution. Intraoperative monitoring of MEPs and SEPs allows informing the surgeon about the impact on each surgical manipulation. No prospective randomized study has been performed to date to compare clinical evolution after surgery with or without monitoring. Nevertheless, a wide consensus became established in favor of monitoring to limit the risk of postoperative definite deficit and to permit an optimal surgical resection without risk when responses are preserved. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Human sensory-evoked responses differ coincident with either "fusion-memory" or "flash-memory", as shown by stimulus repetition-rate effects

    Directory of Open Access Journals (Sweden)

    Baird Bill

    2006-02-01

    Full Text Available Abstract Background: A new method has been used to obtain human sensory evoked-responses whose time-domain waveforms have been undetectable by previous methods. These newly discovered evoked-responses have durations that exceed the time between the stimuli in a continuous stream, thus causing an overlap which, up to now, has prevented their detection. We have named them "A-waves", and added a prefix to show the sensory system from which the responses were obtained (visA-waves, audA-waves, somA-waves. Results: When A-waves were studied as a function of stimulus repetition-rate, it was found that there were systematic differences in waveshape at repetition-rates above and below the psychophysical region in which the sensation of individual stimuli fuse into a continuity. The fusion phenomena is sometimes measured by a "Critical Fusion Frequency", but for this research we can only identify a frequency-region [which we call the STZ (Sensation-Transition Zone]. Thus, the A-waves above the STZ differed from those below the STZ, as did the sensations. Study of the psychophysical differences in auditory and visual stimuli, as shown in this paper, suggest that different stimulus features are detected, and remembered, at stimulation rates above and below STZ. Conclusion: The results motivate us to speculate that: 1 Stimulus repetition-rates above the STZ generate waveforms which underlie "fusion-memory" whereas rates below the STZ show neuronal processing in which "flash-memory" occurs. 2 These two memories differ in both duration and mechanism, though they may occur in the same cell groups. 3 The differences in neuronal processing may be related to "figure" and "ground" differentiation. We conclude that A-waves provide a novel measure of neural processes that can be detected on the human scalp, and speculate that they may extend clinical applications of evoked response recordings. If A-waves also occur in animals, it is likely that A-waves will provide

  11. Sex differences in pudendal somatosensory evoked potentials.

    Science.gov (United States)

    Pelliccioni, G; Piloni, V; Sabbatini, D; Fioravanti, P; Scarpino, O

    2014-06-01

    Somatosensory evoked potentials (SEPs) of the pudendal nerve are a well-established diagnostic tool for the evaluation of pelvic floor disorders. However, the possible influence of sex differences on response latencies has not been established yet. The aim of this study was to standardize the procedures and to evaluate possible effects of gender differences on anal and penile/clitoral SEPs. The anal and dorsal penile/clitoral SEPs were recorded in 84 healthy subjects (40 males and 44 females; mean age 47.9 ± 16.6 years, range 16-81 years; mean height 168.3 ± 20.3 cm, range 155-187 cm). Pudendal SEPs were evoked with a bipolar surface electrode stimulating the clitoris or the base of the penis and the anal orifice and recorded using scalp electrodes. The latency of the first positive component (P1) was measured. The effect and possible interaction of (a) stimulation site and (b) gender on the two variables was explored by multivariate analysis of variance (MANOVA). The examination was well tolerated and a reproducible waveform of sufficient quality was obtained in all the subjects examined. In the female subjects, a mean cortical P1 latency of 37.0 ± 2.6 and 36.4 ± 3.2 ms for anal and clitoral stimulation, respectively, was found. In the male subjects, the cortical latencies were 38.0 ± 3.5 ms for the anal stimulation and 40.2 ± 3.7 ms for the penile stimulation. At MANOVA, a statistically significant main effect of stimulation site and gender as well as a significant interaction between the two variables was found. Anal and dorsal penile/clitoral SEPs represent a well-tolerated and reproducible method to assess the functional integrity of the sensory pathways in male and female subjects. Obtaining sex-specific reference data, by individual electrophysiological testing, is highly recommended because of significant latency differences between males and females, at least as far as penile/clitoral responses are concerned.

  12. Improving the detection of evoked responses to periodic stimulation by using bivariate local spectral F-test - Application to EEG during photic stimulation.

    Science.gov (United States)

    Felix, Leonardo Bonato; Rocha, Paulo Fábio; Mendes, Eduardo Mazoni Andrade Marçal; Miranda de Sá, Antonio Mauricio Ferreira Leite

    2017-10-01

    The spectral local F-test has been applied for detecting evoked responses to rhythmic stimulation that are embedded in the ongoing electroencephalogram (EEG). Based on the sampling distribution of a flat spectrum at the neighbourhood of the stimulation frequency, spectral peaks in an EEG signal that are due to the stimulation may be readily assessed. Nevertheless, the performance of the technique is strongly affected by both the signal-to-noise ratio (SNR) of the responses and the number of data segments used in the estimation. The present work aims at both deriving and evaluating a multivariate extension of local F-test by including the EEG collected at a second distinct derivation. The detection rate with this multivariate detector was found to be greater than that using a single channel in case of equal SNR in both signals. Monte Carlo simulation results showed that the probability of detection with this new detector saturates for signal-to-noise ratios above 12 dB and indicated a greater detection rate in practical situations, even when smaller SNR-values are found in the added signal (e.g. 5 dB for 16 neighbouring frequencies used in the estimation). The technique was next applied to the EEG from 12 subjects during intermittent, photic stimulation leading to superior performance in comparison with the univariate local F-test. Since a higher detection rate with the proposed technique is achieved without the need of increasing the number of data segments, it allows evoked responses to be detected faster, once the same detection rate may be accomplished with less segments. This might be useful in clinical practice. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Interpersonal relationship modulates brain responses to outcome evaluation when gambling for/against others: an electrophysiological analysis.

    Science.gov (United States)

    Leng, Yue; Zhou, Xiaolin

    2014-10-01

    When individuals play a gambling task and their actions have consequences for observers, how are the brain responses of the performers modulated by their interpersonal relationship with the observers? To address this issue, we examined the event-related potentials responses in performers while they played two gambling games: one during which they tried to earn money for the observers instead of themselves (i.e., Experiment 1) and another gambling game during which they attempted to earn money from the observers (i.e., Experiment 2). In Experiment 1, ERP results showed that when gambling for either the friends or the strangers, the feedback-related negativity (FRN) responses were more negative-going to the losses than to the gains. The FRN effect (loss minus gain) was significantly larger when gambling for the friends than for the strangers. The general P300 response was more positive-going when gambling for the friends than for the strangers. These results suggested that gambling for others enables individuals to assess the outcome from the interests of the other people, consequently, the FRN response may be driven by the evaluative process related to interests of the others. Because one׳s own economic interests were not involved, the performers׳ brain responses during both the early, semi-automatic stage (i.e., the FRN) and the later, controlled stage (i.e., the P300) of outcome evaluation were modulated by the interpersonal relationship between the performers and the observers. In Experiment 2, ERP results revealed that when gambling against others, the FRN response was more negative-going to the losses than to the gains, as well. However, neither the FRN effect nor the general FRN response was modulated by interpersonal relationship. The general P300 response was more positive-going when gambling against the stranger than against the friend. These results suggested that when gambling against others, the performers׳ FRN response may be driven by two evaluative

  14. On the electrophysiological response of bone cells using a Stokesian fluid stimulus probe for delivery of quantifiable localized picoNewton level forces.

    Science.gov (United States)

    Wu, Danielle; Ganatos, Peter; Spray, David C; Weinbaum, Sheldon

    2011-06-03

    A Stokesian fluid stimulus probe (SFSP), capable of delivering quantifiable pN level hydrodynamic forces, is developed to distinguish the electrophysiological response of the cell process and cell body of osteocyte-like MLO-Y4 cells without touching the cell or its substrate. The hydrodynamic disturbance is a short lived (100 ms), constant strength pressure pulse that propagates nearly instantaneously through the medium creating a nearly spherical expanding fluid bolus surrounding a 0.8 μm micropipette tip. Laboratory model experiments show that the growth of the bolus and the pressure field can be closely modeled by quasi-steady Stokes flow through a circular orifice provided the tip Reynolds number, Re(t)theory. One finds that forces between 1 and 2.3 pN are sufficient to initiate electrical signaling when applied to the cell process, but not the much softer cell body. Even more significantly, cellular excitation by the process only occurs when the probe is directed at discrete focal attachment sites along the cell process. This suggests that electrical signaling is initiated at discrete focal attachments along the cell process and that these sites are likely integrin-mediated complexes associated with stretch-activated ion channels though their molecular structure is unknown. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Concurrent deployment of visual attention and response selection bottleneck in a dual-task: Electrophysiological and behavioural evidence.

    Science.gov (United States)

    Reimer, Christina B; Strobach, Tilo; Schubert, Torsten

    2017-12-01

    Visual attention and response selection are limited in capacity. Here, we investigated whether visual attention requires the same bottleneck mechanism as response selection in a dual-task of the psychological refractory period (PRP) paradigm. The dual-task consisted of an auditory two-choice discrimination Task 1 and a conjunction search Task 2, which were presented at variable temporal intervals (stimulus onset asynchrony, SOA). In conjunction search, visual attention is required to select items and to bind their features resulting in a serial search process around the items in the search display (i.e., set size). We measured the reaction time of the visual search task (RT2) and the N2pc, an event-related potential (ERP), which reflects lateralized visual attention processes. If the response selection processes in Task 1 influence the visual attention processes in Task 2, N2pc latency and amplitude would be delayed and attenuated at short SOA compared to long SOA. The results, however, showed that latency and amplitude were independent of SOA, indicating that visual attention was concurrently deployed to response selection. Moreover, the RT2 analysis revealed an underadditive interaction of SOA and set size. We concluded that visual attention does not require the same bottleneck mechanism as response selection in dual-tasks.

  16. Electrophysiological and behavioral responses of oriental fruit moth to the monoterpenoid citral alone and in combination with sex pheromone.

    Science.gov (United States)

    Faraone, N; D'Errico, G; Caleca, V; Cristofaro, A De; Trimble, R M

    2013-04-01

    The monoterpenoid citral synergized the electroantennogram (EAG) response of male Grapholita molesta (Busck) antennae to its main pheromone compound Z8-12:OAc. The response to a 10-μg pheromone stimulus increased by 32, 45, 54, 71 and 94% with the addition of 0.1, 1, 10, 100 and 1,000 μg of citral, respectively. There was no detectable response to 0.1, 1, or 10 μg of citral; the response to 100 and 1,000 μg of citral was 31 and 79% of the response to 10 μg of Z8-12:OAc. In a flight tunnel, citral affected the mate-seeking behavior of males. There was a 66% reduction in the number of males orientating by flight to a virgin calling female when citral was emitted at 1,000 ng/min ≍1 cm downwind from a female. Pheromone and citral induced sensory adaptation in male antennae, but citral did not synergize the effect of pheromone. The exposure of antennae to 1 ng Z8-12:OAc/m(3) air, 1 ng citral/m3 air, 1 ng Z8-12:OAc + 1 ng citral/m3 air, or to 1 ng Z8-12:OAc + 100 ng citral/m3 air for 15 min resulted in a similar reduction in EAG response of 47-63%. The exposure of males to these same treatments for 15 min had no effect on their ability to orientate to a virgin calling female in a flight tunnel. The potential for using citral to control G. molesta by mating disruption is discussed.

  17. Electrophysiological Monitoring of Injury ProgressionIn the Rat Cerebellar Cortex

    Directory of Open Access Journals (Sweden)

    Gokhan eOrdek

    2014-10-01

    Full Text Available The changes of excitability in affected neural networks can be used as a marker to study the temporal course of traumatic brain injury (TBI. The cerebellum is an ideal platform to study brain injury mechanisms at the network level using the electrophysiological methods. Within its crystalline morphology, the cerebellar cortex contains highly organized topographical subunits that are defined by two main inputs, the climbing and mossy fibers. Here we demonstrate the use of cerebellar evoked potentials (EPs mediated through these afferent systems for monitoring the injury progression in a rat model of fluid percussion injury (FPI. A mechanical tap on the dorsal hand was used as a stimulus, and EPs were recorded from the paramedian lobule (PML of the posterior cerebellum via multi-electrode arrays (MEA. Post-injury evoked response amplitudes (EPAs were analyzed on a daily basis for one week and compared with pre-injury values. We found a trend of consistently decreasing EPAs in all nine animals, losing as much as 72±4% of baseline amplitudes measured before the injury. Notably, our results highlighted two particular time windows; the first 24 hours of injury in the acute period and day-3 to day-7 in the delayed period where the largest drops (~50% and 24% were observed in the EPAs. In addition, cross-correlations of spontaneous signals between electrode pairs declined (from 0.47±0.1 to 0.35±0.04, p<0.001 along with the EPAs throughout the week of injury. In support of the electrophysiological findings, immunohistochemical analysis at day-7 post-injury showed detectable Purkinje cell loss at low FPI pressures and more with the largest pressures used. Our results suggest that sensory evoked potentials recorded from the cerebellar surface can be a useful technique to monitor the course of cerebellar injury and identify the phases of injury progression even at mild levels.

  18. Left Ventricular Lead Placement Targeted at the Latest Activated Site Guided by Electrophysiological Mapping in Coronary Sinus Branches Improves Response to Cardiac Resynchronization Therapy.

    Science.gov (United States)

    Liang, Yanchun; Yu, Haibo; Zhou, Weiwei; Xu, Guoqing; Sun, Y I; Liu, Rong; Wang, Zulu; Han, Yaling

    2015-12-01

    Electrophysiological mapping (EPM) in coronary sinus (CS) branches is feasible for guiding LV lead placement to the optimal, latest activated site at cardiac resynchronization therapy (CRT) procedures. However, whether this procedure optimizes the response to CRT has not been demonstrated. This study was to evaluate effects of targeting LV lead at the latest activated site guided by EPM during CRT. Seventy-six consecutive patients with advanced heart failure who were referred for CRT were divided into mapping (MG) and control groups (CG). In MG, the LV lead, also used as a mapping bipolar electrode, was placed at the latest activated site determined by EPM in CS branches. In CG, conventional CRT procedure was performed. Patients were followed for 6 months after CRT. Baseline characteristics were comparable between the 2 groups. In MG (n = 29), EPM was successfully performed in 85 of 91 CS branches during CRT. A LV lead was successfully placed at the latest activated site guided by EPM in 27 (93.1%) patients. Compared with CG (n = 47), MG had a significantly higher rate (86.2% vs. 63.8%, P = 0.039) of response (>15% reduction in LV end-systolic volume) to CRT, a higher percentage of patients with clinical improvement of ≥2 NYHA functional classes (72.4% vs. 44.7%, P = 0.032), and a shorter QRS duration (P = 0.004). LV lead placed at the latest activated site guided by EPM resulted in a significantly greater CRT response, and a shorter QRS duration. © 2015 Wiley Periodicals, Inc.

  19. Electrophysiological responses of gustatory receptor neurons on the labella of the common malaria mosquito Anopheles quadrimaculatus Say (Diptera: Culicidae)

    Science.gov (United States)

    We recorded electrical responses from sensory cells associated with gustatory sensilla on the labella of female Anopheles quadrimaculatus to salt, sucrose, quinine (a feeding deterrent) and the insect repellent, N,N-diethyl-3-methylbenzamide (DEET). A salt-sensitive cell responded to increasing con...

  20. Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus mandshurica

    Science.gov (United States)

    Cesar Rodriguez-Saona; Therese M. Poland; James R. Miller; Lukasz L. Stelinski; Gary G. Grant; Peter de Groot; Linda Buchan; Linda Mac Donald

    2006-01-01

    We investigated the volatile emissions of Manchurian ash seedlings, Fraxinus mandshurica, in response to feeding by the emerald ash borer, Agrilus planipennis, and to exogenous application of methyl jasmonate (MeJA). Feeding damage by adult A. planipennis and MeJA treatment increased volatile emissions compared...

  1. Age-Related Differences in Response to Music-Evoked Emotion among Children and Adolescents with Autism Spectrum Disorders

    Science.gov (United States)

    Stephenson, K. G.; Quintin, E. M.; South, M.

    2016-01-01

    While research regarding emotion recognition in ASD has focused primarily on social cues, musical stimuli also elicit strong emotional responses. This study extends and expands the few previous studies of response to music in ASD, measuring both psychophysiological and behavioral responses in younger children (ages 8-11) as well as older…

  2. Electrophysiological Endophenotypes for Schizophrenia

    Science.gov (United States)

    Owens, Emily; Bachman, Peter; Glahn, David C; Bearden, Carrie E

    2016-01-01

    Endophenotypes are quantitative, heritable traits that may help to elucidate the pathophysiologic mechanisms underlying complex disease syndromes, such as schizophrenia. They can be assessed at numerous levels of analysis; here, we review electrophysiological endophenotypes that have shown promise in helping us understand schizophrenia from a more mechanistic point of view. For each endophenotype, we describe typical experimental procedures, reliability, heritability, and reported gene and neurobiological associations. We discuss recent findings regarding the genetic architecture of specific electrophysiological endophenotypes, as well as converging evidence from EEG studies implicating disrupted balance of glutamatergic signaling and GABA-ergic inhibition in the pathophysiology of schizophrenia. We conclude that refining the measurement of electrophysiological endophenotypes, expanding genetic association studies, and integrating datasets are important next steps for understanding the mechanisms that connect identified genetic risk loci for schizophrenia to the disease phenotype. PMID:26954597

  3. Advances in Electrophysiological Research

    Science.gov (United States)

    Kamarajan, Chella; Porjesz, Bernice

    2015-01-01

    Electrophysiological measures of brain function are effective tools to understand neurocognitive phenomena and sensitive indicators of pathophysiological processes associated with various clinical conditions, including alcoholism. Individuals with alcohol use disorder (AUD) and their high-risk offspring have consistently shown dysfunction in several electrophysiological measures in resting state (i.e., electroencephalogram) and during cognitive tasks (i.e., event-related potentials and event-related oscillations). Researchers have recently developed sophisticated signal-processing techniques to characterize different aspects of brain dynamics, which can aid in identifying the neural mechanisms underlying alcoholism and other related complex disorders. These quantitative measures of brain function also have been successfully used as endophenotypes to identify and help understand genes associated with AUD and related disorders. Translational research also is examining how brain electrophysiological measures potentially can be applied to diagnosis, prevention, and treatment. PMID:26259089

  4. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice.

    Science.gov (United States)

    Zhao, Xinyu; Liu, Mingna; Cang, Jianhua

    2014-10-01

    Neural circuits in the brain often receive inputs from multiple sources, such as the bottom-up input from early processing stages and the top-down input from higher-order areas. Here we study the function of top-down input in the mouse superior colliculus (SC), which receives convergent inputs from the retina and visual cortex. Neurons in the superficial SC display robust responses and speed tuning to looming stimuli that mimic approaching objects. The looming-evoked responses are reduced by almost half when the visual cortex is optogenetically silenced in awake, but not in anesthetized, mice. Silencing the cortex does not change the looming speed tuning of SC neurons, or the response time course, except at the lowest tested speed. Furthermore, the regulation of SC responses by the corticotectal input is organized retinotopically. This effect we revealed may thus provide a potential substrate for the cortex, an evolutionarily new structure, to modulate SC-mediated visual behaviors. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Sensitivity of primary phasic heart rate deceleration to stimulus repetition in an habituation procedure: influence of a subjective measure of activation/arousal on the evoked cardiac response.

    Science.gov (United States)

    Binder, Marek; Barry, Robert J; Kaiser, Jan

    2005-01-01

    The post-stimulus primary bradycardia--sometimes labelled as the first evoked cardiac response, ECR1--is regarded as a response which is independent of the stimulus novelty factor. Despite this however, in our previous research we have observed a noticeable variation of this response, which made us suspect that there could be some additional factor influencing it. To test this, we designed a habituation procedure to measure susceptibility of the ECR1 to stimulus repetition. In our experimental design, we also included a measure of the level of activation (arousal) as a possible additional factor influencing the time-course of the cardiac response. The level of arousal over the study was measured by the Activation-Deactivation Adjective Check List (AD ACL). Our results show that mere stimulus repetition does not influence the time-course of ECR1. However, another pattern of results appeared when one of the dimensions of AD ACL, namely Tense Arousal, was taken into account. We observed different ECR time-courses during the initial stimulus presentations for subjects with high and low levels of Tense Arousal. These results are interpreted within the framework of Preliminary Process Theory in terms of the different attentional patterns in subjects with high and low levels of Tense Arousal.

  6. Ultra-low-noise EEG/MEG systems enable bimodal non-invasive detection of spike-like human somatosensory evoked responses at 1 kHz.

    Science.gov (United States)

    Fedele, T; Scheer, H J; Burghoff, M; Curio, G; Körber, R

    2015-02-01

    Non-invasive EEG detection of very high frequency somatosensory evoked potentials featuring frequencies up to and above 1 kHz has been recently reported. Here, we establish the detectability of such components by combined low-noise EEG/MEG. We recorded SEP/SEF simultaneously using median nerve stimulation in five healthy human subjects inside an electromagnetically shielded room, combining a low-noise EEG custom-made amplifier (4.7 nV/√Hz) and a custom-made single-channel low-noise MEG (0.5 fT/√Hz @ 1 kHz). Both, low-noise EEG and MEG revealed three spectrally distinct and temporally overlapping evoked components: N20 (EEG [10 nV] ≅ MEG [1 fT]). Pronounced waveform (peak-by-peak) overlap of EEG and MEG signals is observed in the sigma band, whereas in the kappa band overlap was only partial. A decreasing signal-to-noise ratio (SNR; calculated for n = 12.000 averages) from sigma to kappa components characterizes both, electric and magnetic field recordings: Sigma-band SNR was 12.9  ±  5.5/19.8  ±  12.6 for EEG/MEG, and kappa-band SNR at 3.77  ±  0.8/4.5  ±  2.9. High-frequency performance of a tailor-made MEG matches closely with simultaneously recorded low-noise EEG for the non-invasive detection of somatosensory evoked activity at and above 1 kHz. Thus, future multi-channel dual-mode low-noise technology could offer complementary views for source reconstruction of the neural generators underlying such high-frequency responses, and render neural high-frequency processes related to multi-unit spike discharges accessible in non-invasive recordings.

  7. Wiener kernel analysis of a noise-evoked otoacoustic emission

    NARCIS (Netherlands)

    van Dijk, P; Maat, A; Wit, H P

    1997-01-01

    In one specimen of the frog species, Rana esculenta, the following were measured: (1) a spontaneous otoacoustic emission; (2) a click-evoked otoacoustic emissions; and (3) a noise evoked otoacoustic emission. From the noise evoked emission response, a first-and a second-order Wiener kernel and the

  8. The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials.

    Science.gov (United States)

    Fecchio, Matteo; Pigorini, Andrea; Comanducci, Angela; Sarasso, Simone; Casarotto, Silvia; Premoli, Isabella; Derchi, Chiara-Camilla; Mazza, Alice; Russo, Simone; Resta, Federico; Ferrarelli, Fabio; Mariotti, Maurizio; Ziemann, Ulf; Massimini, Marcello; Rosanova, Mario

    2017-01-01

    Transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) can excite both cortico-cortical and cortico-spinal axons resulting in TMS-evoked potentials (TEPs) and motor-evoked potentials (MEPs), respectively. Despite this remarkable difference with other cortical areas, the influence of motor output and its amplitude on TEPs is largely unknown. Here we studied TEPs resulting from M1 stimulation and assessed whether their waveform and spectral features depend on the MEP amplitude. To this aim, we performed two separate experiments. In experiment 1, single-pulse TMS was applied at the same supra-threshold intensity on primary motor, prefrontal, premotor and parietal cortices and the corresponding TEPs were compared by means of local mean field power and time-frequency spectral analysis. In experiment 2 we stimulated M1 at resting motor threshold in order to elicit MEPs characterized by a wide range of amplitudes. TEPs computed from high-MEP and low-MEP trials were then compared using the same methods applied in experiment 1. In line with previous studies, TMS of M1 produced larger TEPs compared to other cortical stimulations. Notably, we found that only TEPs produced by M1 stimulation were accompanied by a late event-related desynchronization (ERD-peaking at ~300 ms after TMS), whose magnitude was strongly dependent on the amplitude of MEPs. Overall, these results suggest that M1 produces peculiar responses to TMS possibly reflecting specific anatomo-functional properties, such as the re-entry of proprioceptive feedback associated with target muscle activation.

  9. Electrophysiological Responses of Gustatory Receptor Neurons on the Labella of the Common Malaria Mosquito, Anopheles quadrimaculatus (Diptera: Culicidae).

    Science.gov (United States)

    Sparks, Jackson T; Dickens, Joseph C

    2016-05-11

    We recorded electrical responses from sensory cells associated with gustatory sensilla on the labella of female Anopheles quadrimaculatus Say to salt, sucrose, quinine (a feeding deterrent), and the insect repellent, N,N-diethyl-3-methylbenzamide (DEET). A salt-sensitive cell responded to increasing concentrations of sodium chloride. A second cell was activated by increasing sucrose concentrations, while quinine, DEET, or a mixture of quinine + DEET elicited spike activity from a third cell, an apparent bitter- or deterrent-sensitive cell. Both quinine and DEET suppressed activity of the sugar-sensitive cell; sucrose suppressed activity of the bitter- or deterrent-sensitive cell. These results demonstrate separate gustatory pathways for a feeding stimulant and aversive contact cues mediated through distinct sensory inputs on the labellum. This sensory appendage may serve as a useful target to disrupt feeding behavior in this and other anopheline species, which transmit diseases like malaria to human populations. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the United States.

  10. Optical coherence tomography and electrophysiological findings in torpedo maculopathy.

    Science.gov (United States)

    Buzzonetti, Luca; Petroni, Sergio; Catena, Gino; Iarossi, Giancarlo

    2015-02-01

    To describe the morphofunctional findings in a 6-year-old child with a unilateral lesion of the temporal macula called "torpedo maculopathy" throughout a 1-year follow-up. Evaluation of retinal morphology and function was assessed by means of spectral-domain OCT scans, best-corrected visual acuity, full-field flash electroretinogram (ERG), multifocal electroretinogram (mfERG) and pattern visual evoked potentials (VEP). Patient was examined every 4 months for a 1-year follow-up time. Torpedo maculopathy consisted in a sharply demarcated hypopigmented oval iuxta-macular lesion (1.5 DD wide × 0.7 DD high). The baseline visual acuity of the affected eye was 20/25. OCT showed a sensorial retinal detachment in correspondence with the torpedo lesion. Pattern VEPs revealed a reduced response in left eye, as compared to contralateral eye. Full-field flash ERGs amplitude was normal in both eyes. Multifocal ERG response was reduced at all sites, more significantly at the site of the lesion in the eye with torpedo maculopathy and normal in fellow eye. Visual acuity, fundoscopic evaluation, OCT scans and electrophysiological tests showed no changes from baseline throughout the follow-up time. Torpedo maculopathy, although known as benign, may affect visual function if macular involvement is associated with neuroretinal detachment.

  11. Sound-Making Actions Lead to Immediate Plastic Changes of Neuromagnetic Evoked Responses and Induced β-Band Oscillations during Perception.

    Science.gov (United States)

    Ross, Bernhard; Barat, Masihullah; Fujioka, Takako

    2017-06-14

    Auditory and sensorimotor brain areas interact during the action-perception cycle of sound making. Neurophysiological evidence of a feedforward model of the action and its outcome has been associated with attenuation of the N1 wave of auditory evoked responses elicited by self-generated sounds, such as talking and singing or playing a musical instrument. Moreover, neural oscillations at β-band frequencies have been related to predicting the sound outcome after action initiation. We hypothesized that a newly learned action-perception association would immediately modify interpretation of the sound during subsequent listening. Nineteen healthy young adults (7 female, 12 male) participated in three magnetoencephalographic recordings while first passively listening to recorded sounds of a bell ringing, then actively striking the bell with a mallet, and then again listening to recorded sounds. Auditory cortex activity showed characteristic P1-N1-P2 waves. The N1 was attenuated during sound making, while P2 responses were unchanged. In contrast, P2 became larger when listening after sound making compared with the initial naive listening. The P2 increase occurred immediately, while in previous learning-by-listening studies P2 increases occurred on a later day. Also, reactivity of β-band oscillations, as well as θ coherence between auditory and sensorimotor cortices, was stronger in the second listening block. These changes were significantly larger than those observed in control participants (eight female, five male), who triggered recorded sounds by a key press. We propose that P2 characterizes familiarity with sound objects, whereas β-band oscillation signifies involvement of the action-perception cycle, and both measures objectively indicate functional neuroplasticity in auditory perceptual learning. SIGNIFICANCE STATEMENT While suppression of auditory responses to self-generated sounds is well known, it is not clear whether the learned action-sound association

  12. Development of the Complex General Linear Model in the Fourier Domain: Application to fMRI Multiple Input-Output Evoked Responses for Single Subjects

    Directory of Open Access Journals (Sweden)

    Daniel E. Rio

    2013-01-01

    Full Text Available A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI blood-oxygen level-dependent (BOLD multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF where prewhitening of the data is attempted using autoregressive (AR models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain. This is especially important for experimental designs involving multiple states (either stimulus or drug induced that may alter the form of the response function.

  13. Gating of the vertex somatosensory and auditory evoked potential P50 and the correlation to skin conductance orienting response in healthy men

    DEFF Research Database (Denmark)

    Arnfred, S M; Eder, D N; Hemmingsen, R P

    2001-01-01

    A defect in auditory evoked potential (AEP) P50 gating supports the theory of information-processing deficits in schizophrenia. The relationship between gating of the mid-latency evoked potentials (EP) in the somatosensory and the auditory modalities has not been studied together before. In schiz...

  14. Electrophysiological and behavioral responses of the bark beetle Dendroctonus rhizophagus to volatiles from host pines and conspecifics.

    Science.gov (United States)

    Cano-Ramírez, Claudia; Armendáriz-Toledano, Francisco; Macías-Sámano, Jorge E; Sullivan, Brian T; Zúñiga, Gerardo

    2012-05-01

    The bark beetle Dendroctonus rhizophagus is endemic to northwestern Mexico where it kills immature pines Pinus arizonica; mid/hindguts of single, gallery-initiating females; and mate-paired males within galleries of attacked host trees in the field. Antennae of both sexes responded to monoterpenes α-pinene, β-pinene and 3-carene as well as to the beetle-derived oxygenated monoterpenes fenchyl alcohol, myrtenal, cis-verbenol, trans-verbenol, verbenone, and myrtenol. These monoterpenes were quantified from pre-emerged D. rhizophagus adults forced to attack host tissue in the laboratory, and from individuals dissected from naturally-attacked hosts at different stages of colonization. In both bioassays, myrtenol and trans-verbenol were the most abundant volatiles, and trans-verbenol was the only one produced in significantly greater quantities by females than males in a naturally-colonized host. Two field experiments were performed to evaluate behavioral responses of D. rhizophagus to antennally-active monoterpenes. Results show that 3-carene was significantly attractive either alone or in a ternary (1:1:1) combination with α-pinene and β-pinene, whereas neither α-pinene nor β-pinene alone were attractive. None of the beetle-associated oxygenated monoterpenes enhanced the attractiveness of the ternary mixture of monoterpenes, while verbenone either alone or combined with the other five oxygenated terpenes reduced D. rhizophagus attraction to the ternary mixture. The results suggest that attraction of D. rhizophagus to the host tree P. arizonica is mediated especially by 3-carene. There was no conclusive evidence for an aggregation or sex attractant pheromone.

  15. Imaging for cardiac electrophysiology

    Directory of Open Access Journals (Sweden)

    Benoit Desjardins

    2016-11-01

    Full Text Available Clinical cardiac electrophysiology is the study of the origin and treatment of arrhythmia. There has been considerable recent development in this field, where imaging has had a transformational impact. In this invited review, we offer a global overview of the most important developments in the use of imaging in cardiac electrophysiology. We first describe the radiological imaging modalities involved in cardiac electrophysiology, to assess cardiac anatomy, function and scar. We then introduce an imaging modality with which readers are probably unfamiliar (electroanatomical mapping [EAM], but which is routinely used by electrophysiologists to plan and guide cardiac mapping and cardiac ablation therapy by catheter, a therapy which can reduce or even cure arrhythmia. We identify the limitations of EAM and describe how radiological imaging modalities can complement this technique. We then describe and illustrate how imaging has helped the diagnosis of arrhythmogenic conditions, and how imaging is used to plan and guide clinical cardiac electrophysiologic procedures and assess their results and complications. We focus on the two most common arrhythmias for which imaging has the greatest impact: atrial fibrillation and ventricular tachycardia.

  16. Functional selectivity of central Gα-subunit proteins in mediating the cardiovascular and renal excretory responses evoked by central α(2) -adrenoceptor activation in vivo.

    Science.gov (United States)

    Wainford, R D; Kapusta, D R

    2012-05-01

    Activation of brain α(2) -adrenoceptors in conscious rodents decreases heart rate (HR) and mean arterial blood pressure (MAP) and increases urine output and urinary sodium excretion. In vitro, α(2) -adrenoceptor stimulation activates Gα(i(1-3)) , Gα(o) and Gα(s) -subunit protein-gated signal transduction pathways. Here we have investigated whether these same Gα-subunit protein-gated pathways mediate the cardiovascular and renal excretory responses to central α(2) -adrenoceptor activation in conscious Sprague-Dawley rats. Rats were pre-treated by intracerebroventricular injection (i.c.v.) with an oligodeoxynucleotide (ODN) targeted to a Gα(i1) , Gα(i2) , Gα(i3) , Gα(o) , Gα(s) or a scrambled (SCR) ODN sequence (25 µg, 24 h). On the day of study, the α(2) -adrenoceptor agonist guanabenz (50 µg) or saline vehicle, was injected i.c.v. into ODN-pre-treated conscious rats. MAP and HR were recorded, and urine was collected for 150 min. In vehicle- and SCR ODN-pre-treated rats, i.c.v. guanabenz decreased MAP and HR, and produced marked diuretic and natriuretic responses. Selective ODN-mediated down-regulation of brain Gα(i2) -subunit proteins abolished the central guanabenz-induced hypotension and natriuresis. In contrast, following selective Gα(s) down-regulation, the characteristic hypotensive response to i.c.v. guanabenz was converted to an immediate increase in MAP. The bradycardic and diuretic responses to i.c.v. guanabenz were not blocked by pre-treatment with any ODN. There was functional selectivity of Gα(i2) and Gα(s) subunit protein-gated signal transduction pathways in mediating the hypotensive and natriuretic, but not bradycardic or diuretic, responses evoked by central α(2) -adrenoceptor activation in vivo. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  17. Evaluation of the occurrence of canine congenital sensorineural deafness in puppies of predisposed dog breeds using the brainstem auditory evoked response.

    Science.gov (United States)

    Płonek, Marta; Giza, Elżbieta; Niedźwiedź, Artur; Kubiak, Krzysztof; Nicpoń, Józef; Wrzosek, Marcin

    2016-12-01

    Canine congenital sensorineural deafness (CCSD) affects predisposed breeds of dogs and is primarily caused by an atrophy of the stria vascularis of the organ of Corti. The analysis of the brainstem auditory evoked response (BAER) is a reliable method for the evaluation of hearing in animals as it allows an accurate detection of unilateral or bilateral deafness. The occurrence of unilateral and bilateral deafness using the BAER was determined in a representative group of dogs in Poland, including Bull Terriers (n = 117), Australian Cattle Dogs (n = 62), English Setters (n = 32) and the Dogo Argentino (n = 32). Overall deafness, deafness in each dog breed and an association between deafness and phenotype were studied. Among the 243 dogs tested, 156 (81%) had a normal BAER, 27 (11%) were unilaterally deaf, and 12 (5%) were bilaterally deaf. The amplitudes and latencies of waves I, II, III, V, the V/I wave amplitude ratio, and wave I-V, I-III and III-V inter-peak intervals were recorded for each dog. Unilaterally and bilaterally deaf dogs were present in all the dog breeds studied. There were 17 (14.5%) deaf Bull Terriers, three (4.8%) deaf Australian Cattle Dogs, seven (21.9%) deaf English Setters, and 12 (37.5%) deaf Dogos Argentinos. Preventive BAER screening should be routinely performed in these four breeds to prevent the spread of genes responsible for deafness.

  18. Acupuncture-Evoked Response in Somatosensory and Prefrontal Cortices Predicts Immediate Pain Reduction in Carpal Tunnel Syndrome

    Directory of Open Access Journals (Sweden)

    Yumi Maeda

    2013-01-01

    Full Text Available The linkage between brain response to acupuncture and subsequent analgesia remains poorly understood. Our aim was to evaluate this linkage in chronic pain patients with carpal tunnel syndrome (CTS. Brain response to electroacupuncture (EA was evaluated with functional MRI. Subjects were randomized to 3 groups: (1 EA applied at local acupoints on the affected wrist (PC-7 to TW-5, (2 EA at distal acupoints (contralateral ankle, SP-6 to LV-4, and (3 sham EA at nonacupoint locations on the affected wrist. Symptom ratings were evaluated prior to and following the scan. Subjects in the local and distal groups reported reduced pain. Verum EA produced greater reduction of paresthesia compared to sham. Compared to sham EA, local EA produced greater activation in insula and S2 and greater deactivation in ipsilateral S1, while distal EA produced greater activation in S2 and deactivation in posterior cingulate cortex. Brain response to distal EA in prefrontal cortex (PFC and brain response to verum EA in S1, SMA, and PFC were correlated with pain reduction following stimulation. Thus, while greater activation to verum acupuncture in these regions may predict subsequent analgesia, PFC activation may specifically mediate reduced pain when stimulating distal acupoints.

  19. Interferon (IFN and Cellular Immune Response Evoked in RNA-Pattern Sensing During Infection with Hepatitis C Virus (HCV

    Directory of Open Access Journals (Sweden)

    Masato Nakai

    2015-10-01

    Full Text Available Hepatitis C virus (HCV infects hepatocytes but not dendritic cells (DCs, but DCs effectively mature in response to HCV-infected hepatocytes. Using gene-disrupted mice and hydrodynamic injection strategy, we found the MAVS pathway to be crucial for induction of type III interferons (IFNs in response to HCV in mouse. Human hepatocytes barely express TLR3 under non-infectious states, but frequently express it in HCV infection. Type I and III IFNs are induced upon stimulation with polyI:C, an analog of double-stranded (dsRNA. Activation of TLR3 and the TICAM-1 pathway, followed by DC-mediated activation of cellular immunity, is augmented during exposure to viral RNA. Although type III IFNs are released from replication-competent human hepatocytes, DC-mediated CTL proliferation and NK cell activation hardly occur in response to the released type III IFNs. Yet, type I IFNs and HCV-infected hepatocytes can induce maturation of DCs in either human or mouse origin. In addition, mouse CD8+ DCs mature in response to HCV-infected hepatocytes unless the TLR3/TICAM-1 pathway is blocked. We found the exosomes containing HCV RNA in the supernatant of the HCV-infected hepatocytes act as a source of TLR3-mediated DC maturation. Here we summarize our view on the mechanism by which DCs mature to induce NK and CTL in a status of HCV infection.

  20. Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music.

    Science.gov (United States)

    Sammler, Daniela; Grigutsch, Maren; Fritz, Thomas; Koelsch, Stefan

    2007-03-01

    Human emotion and its electrophysiological correlates are still poorly understood. The present study examined whether the valence of perceived emotions would differentially influence EEG power spectra and heart rate (HR). Pleasant and unpleasant emotions were induced by consonant and dissonant music. Unpleasant (compared to pleasant) music evoked a significant decrease of HR, replicating the pattern of HR responses previously described for the processing of emotional pictures, sounds, and films. In the EEG, pleasant (contrasted to unpleasant) music was associated with an increase of frontal midline (Fm) theta power. This effect is taken to reflect emotional processing in close interaction with attentional functions. These findings show that Fm theta is modulated by emotion more strongly than previously believed.

  1. [Patterns of action potential firing in cortical neurons of neonatal mice and their electrophysiological property].

    Science.gov (United States)

    Furong, Liu; Shengtian, L I

    2016-05-25

    To investigate patterns of action potential firing in cortical heurons of neonatal mice and their electrophysiological properties. The passive and active membrane properties of cortical neurons from 3-d neonatal mice were observed by whole-cell patch clamp with different voltage and current mode. Three patterns of action potential firing were identified in response to depolarized current injection. The effects of action potential firing patterns on voltage-dependent inward and outward current were found. Neurons with three different firing patterns had different thresholds of depolarized current. In the morphology analysis of action potential, the three type neurons were different in rise time, duration, amplitude and threshold of the first action potential evoked by 80 pA current injection. The passive properties were similar in three patterns of action potential firing. These results indicate that newborn cortical neurons exhibit different patterns of action potential firing with different action potential parameters such as shape and threshold.

  2. Choosing to Stop: Responses Evoked by Externally Triggered and Internally Generated Inhibition Identify a Neural Mechanism of Will.

    Science.gov (United States)

    Parkinson, Jim; Haggard, Patrick

    2015-10-01

    Inhibiting inappropriate action is key to human behavioral control. Studies of action inhibition largely investigated external stop signals, yet these are rare in everyday life. Instead healthy adults exert "self-control," implying an ability to decide internally to stop actions. We added "choose for yourself" stimuli to a conventional go/no-go task to compare reactive versus intentional action and inhibition. No-go reactions showed the N2 EEG potential characteristic of inhibiting prepotent motor responses, whereas go reactions did not. Interestingly, the N2 component was present for intentional choices both to act and also to inhibit. Thus, free choices involved a first step of intentionally inhibiting prepotent responses before generating or withholding an action. Intentional inhibition has a crucial role breaking the flow of stimulus-driven responding, allowing expression of volitional decisions. Even decisions to initiate self-generated actions require this prior negative form of volition, ensuring the "freedom from immediacy" characteristic of human behavior.

  3. The indolic compound hypaphorine produced by ectomycorrhizal fungus interferes with auxin action and evokes early responses in nonhost Arabidopsis thaliana.

    Science.gov (United States)

    Reboutier, David; Bianchi, Michele; Brault, Mathias; Roux, Camille; Dauphin, Aurélien; Rona, Jean-Pierre; Legué, Valérie; Lapeyrie, Frédéric; Bouteau, François

    2002-09-01

    Signals leading to mycorrhizal differentiation are largely unknown. We have studied the sensitivity of the root system from plant model Arabidopsis thaliana to hypaphorine, the major indolic compound isolated from the basidiomycetous fungus Pisolithus tinctorius. This fungi establishes ectomycorrhizas with Eucalyptus globulus. Hypaphorine controls root hair elongation and counteracts the activity of indole-3-acetic acid on root elongation on A. thaliana, as previously reported for the host plant. In addition, we show that hypaphorine counteracts the rapid upregulation by indole-3-acetic acid and 1-naphthalenic-acetic acid of the primary auxin-responsive gene IAA1 and induces a rapid, transient membrane depolarization in root hairs and suspension cells, due to the modulation of anion and K+ currents. These early responses indicate that components necessary for symbiosis-related differentiation events are present in the nonhost plant A. thaliana and provide tools for the dissection of the hypaphorine-auxin interaction.

  4. Asymmetric Correlation between Experienced Parental Attachment and Event-Related Potentials Evoked in Response to Parental Faces

    Science.gov (United States)

    Dai, Junqiang; Zhai, Hongchang; Zhou, Anbang; Gong, Yongyuan; Luo, Lin

    2013-01-01

    This study aims to explore the modulation effects of attachment relationships with parents on the neural correlates that are associated with parental faces. The event-related potentials elicited in 31 college students while viewing facial stimuli of their parents in two single oddball paradigms (father vs. unfamiliar male and mother vs. unfamiliar female) were measured. We found that enhanced P3a and P3b and attenuated N2b were elicited by parental faces; however, the N170 component failed to discriminate parental faces from unfamiliar faces. An experienced attachment relationship with the father was positively correlated to the P3a response associated with the father’s face, whereas no correlation was found in the case of mothers. Further exploration in dipole source localization showed that, within the time window of the P300, distinctive brain regions were involved in the processing of parental faces; the father’s face was located in the medial frontal gyrus, which might be involved in self effect, and the anterior cingulate gyrus was activated in response to the mother’s face. This research is the first to demonstrate that neural mechanisms involved with parents can be modulated differentially by the qualities of the attachments to the parents. In addition, parental faces share a highly similar temporal pattern, but the origins of these neural responses are distinct, which could merit further investigation. PMID:23844240

  5. Asymmetric correlation between experienced parental attachment and event-related potentials evoked in response to parental faces.

    Directory of Open Access Journals (Sweden)

    Junqiang Dai

    Full Text Available This study aims to explore the modulation effects of attachment relationships with parents on the neural correlates that are associated with parental faces. The event-related potentials elicited in 31 college students while viewing facial stimuli of their parents in two single oddball paradigms (father vs. unfamiliar male and mother vs. unfamiliar female were measured. We found that enhanced P3a and P3b and attenuated N2b were elicited by parental faces; however, the N170 component failed to discriminate parental faces from unfamiliar faces. An experienced attachment relationship with the father was positively correlated to the P3a response associated with the father's face, whereas no correlation was found in the case of mothers. Further exploration in dipole source localization showed that, within the time window of the P300, distinctive brain regions were involved in the processing of parental faces; the father's face was located in the medial frontal gyrus, which might be involved in self effect, and the anterior cingulate gyrus was activated in response to the mother's face. This research is the first to demonstrate that neural mechanisms involved with parents can be modulated differentially by the qualities of the attachments to the parents. In addition, parental faces share a highly similar temporal pattern, but the origins of these neural responses are distinct, which could merit further investigation.

  6. Injection of a recombinant AAV serotype 2 into canine skeletal muscles evokes strong immune responses against transgene products.

    Science.gov (United States)

    Yuasa, K; Yoshimura, M; Urasawa, N; Ohshima, S; Howell, J M; Nakamura, A; Hijikata, T; Miyagoe-Suzuki, Y; Takeda, S

    2007-09-01

    Using murine models, we have previously demonstrated that recombinant adeno-associated virus (rAAV)-mediated microdystrophin gene transfer is a promising approach to treatment of Duchenne muscular dystrophy (DMD). To examine further therapeutic effects and the safety issue of rAAV-mediated microdystrophin gene transfer using larger animal models, such as dystrophic dog models, we first investigated transduction efficiency of rAAV in wild-type canine muscle cells, and found that rAAV2 encoding beta-galactosidase effectively transduces canine primary myotubes in vitro. Subsequent rAAV2 transfer into skeletal muscles of normal dogs, however, resulted in low and transient expression of beta-galactosidase together with intense cellular infiltrations in vivo, where cellular and humoral immune responses were remarkably activated. In contrast, rAAV2 expressing no transgene elicited no cellular infiltrations. Co-administration of immunosuppressants, cyclosporine and mycophenolate mofetil could partially improve rAAV2 transduction. Collectively, these results suggest that immune responses against the transgene product caused cellular infiltration and eliminated transduced myofibers in dogs. Furthermore, in vitro interferon-gamma release assay showed that canine splenocytes respond to immunogens or mitogens more susceptibly than murine ones. Our results emphasize the importance to scrutinize the immune responses to AAV vectors in larger animal models before applying rAAV-mediated gene therapy to DMD patients.

  7. BioMARK as electrophysiological tool for assessing children at risk for (central) auditory processing disorders without reading deficits.

    Science.gov (United States)

    Kumar, Prawin; Singh, Niraj Kumar

    2015-06-01

    Biological Marker of auditory processing (BioMARK) is an electrophysiological test tool widely known as Speech-evoked ABR. Several previous investigations have shown the utility of speech-evoked ABR in the diagnosis of language based processing deficits like learning disability and specific language impairment; however missing from literature is a study that has ruled out the existence of comorbidity of such conditions and carefully delineated the efficacy of speech-evoked ABR in children with children with auditory processing disorders sans reading deficits. Hence, the present study aimed at investigating Speech-evoked ABR in children with auditory processing disorders without reading problems. A total of 336 school going children in the age range of 8-12 years were screened for presence of central auditory processing deficits. Among the 51 children who were identified as at risk, 15 were randomly selected and served as experimental group. The control group comprised of fifteen age matched children. The inter-group comparison was done using MANOVA, which revealed significant prolongations of latencies of waves V and A (p = 0.001) along with marginal reductions in V/A slope (p = 0.052) and amplitude of responses to first formant (p = 0.065). The responses to higher frequencies did not differ between the groups. Speech-evoked ABR are affected in children who are at risk of central auditory processing disorders sans reading deficits which probably indicates the presence of abnormal brainstem encoding of speech signal in this population. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex.

    Science.gov (United States)

    Bidet-Caulet, Aurélie; Fischer, Catherine; Besle, Julien; Aguera, Pierre-Emmanuel; Giard, Marie-Helene; Bertrand, Olivier

    2007-08-29

    In noisy environments, we use auditory selective attention to actively ignore distracting sounds and select relevant information, as during a cocktail party to follow one particular conversation. The present electrophysiological study aims at deciphering the spatiotemporal organization of the effect of selective attention on the representation of concurrent sounds in the human auditory cortex. Sound onset asynchrony was manipulated to induce the segregation of two concurrent auditory streams. Each stream consisted of amplitude modulated tones at different carrier and modulation frequencies. Electrophysiological recordings were performed in epileptic patients with pharmacologically resistant partial epilepsy, implanted with depth electrodes in the temporal cortex. Patients were presented with the stimuli while they either performed an auditory distracting task or actively selected one of the two concurrent streams. Selective attention was found to affect steady-state responses in the primary auditory cortex, and transient and sustained evoked responses in secondary auditory areas. The results provide new insights on the neural mechanisms of auditory selective attention: stream selection during sound rivalry would be facilitated not only by enhancing the neural representation of relevant sounds, but also by reducing the representation of irrelevant information in the auditory cortex. Finally, they suggest a specialization of the left hemisphere in the attentional selection of fine-grained acoustic information.

  9. The effects of metabolism improving agents: an electrophysiological study.

    Science.gov (United States)

    Yasuhara, M; Naito, H

    1980-01-01

    The effects of ATP, cytochrome C, meclofenoxate and CDP-choline on the central nervous system were studied electrophysiologically in rabbits. The threshold of arousal reaction and evoked muscular discharges following stimulation of the brainstem reticular formation, evoked muscular discharges in the fore- and hindlimbs on stimulation of the cerebral cortex and the hippocampus, afferent average evoked potential due to stimulation of the sciatic nerve and unit discharges of nerve cells in the brainstem reticular formation were examined. The results indicate that ATP facilitated the sensory system, cytochrome C facilitated the motor system and meclofenoxate and CDP-choline acted on both systems, but meclofenoxate had activity more like ATP, and CDP-choline had activity more closely allied to that of cytochrome C.

  10. Plasticity of the mate choice mind: courtship evokes choice-like brain responses in females from a coercive mating system.

    Science.gov (United States)

    Wang, S M T; Ramsey, M E; Cummings, M E

    2014-04-01

    Female mate choice is fundamental to sexual selection, and determining molecular underpinnings of female preference variation is important for understanding mating character evolution. Previously it was shown that whole-brain expression of a synaptic plasticity marker, neuroserpin, positively correlates with mating bias in the female choice poeciliid, Xiphophorus nigrensis, when exposed to conspecific courting males, whereas this relationship is reversed in Gambusia affinis, a mate coercive poeciliid with no courting males. Here we explore whether species-level differences in female behavioral and brain molecular responses represent 'canalized' or 'plastic' traits. We expose female G. affinis to conspecific males and females, as well as coercive and courting male Poecilia latipinna, for preference assays followed by whole-brain gene expression analyses of neuroserpin, egr-1 and early B. We find positive correlations between gene expression and female preference strength during exposure to courting heterospecific males, but a reversed pattern following exposure to coercive heterospecific males. This suggests that the neuromolecular processes associated with female preference behavior are plastic and responsive to different male phenotypes (courting or coercive) rather than a canalized response linked to mating system. Further, we propose that female behavioral plasticity may involve learning because female association patterns shifted with experience. Compared to younger females, we found larger, more experienced females spend less time near coercive males but associate more with males in the presence of courters. We thus suggest a conserved learning-based neuromolecular process underlying the diversity of female mate preference across the mate choice and coercion-driven mating systems. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  11. Intracisternal injection of palmitoylethanolamide inhibits the peripheral nociceptive evoked responses of dorsal horn wide dynamic range neurons.

    Science.gov (United States)

    González-Hernández, Abimael; Martínez-Lorenzana, Guadalupe; Rodríguez-Jiménez, Javier; Rojas-Piloni, Gerardo; Condés-Lara, Miguel

    2015-03-01

    Endogenous palmitoylethanolamide (PEA) has a key role in pain modulation. Central or peripheral PEA can reduce nociceptive behavior, but no study has yet reported a descending inhibitory effect on the neuronal nociceptive activity of Aδ- and C-fibers. This study shows that intracisternal PEA inhibits the peripheral nociceptive responses of dorsal horn wide dynamic range cells (i.e., inhibition of Aδ- and C-fibers), an effect blocked by spinal methiothepin. These results suggest that a descending analgesic mechanism mediated by the serotonergic system could be activated by central PEA.

  12. Single-subject analyses of magnetoencephalographic evoked responses to the acoustic properties of affective non-verbal vocalizations.

    Science.gov (United States)

    Salvia, Emilie; Bestelmeyer, Patricia E G; Kotz, Sonja A; Rousselet, Guillaume A; Pernet, Cyril R; Gross, Joachim; Belin, Pascal

    2014-01-01

    Magneto-encephalography (MEG) was used to examine the cerebral response to affective non-verbal vocalizations (ANVs) at the single-subject level. Stimuli consisted of non-verbal affect bursts from the Montreal Affective Voices morphed to parametrically vary acoustical structure and perceived emotional properties. Scalp magnetic fields were recorded in three participants while they performed a 3-alternative forced choice emotion categorization task (Anger, Fear, Pleasure). Each participant performed more than 6000 trials to allow single-subject level statistical analyses using a new toolbox which implements the general linear model (GLM) on stimulus-specific responses (LIMO-EEG). For each participant we estimated "simple" models [including just one affective regressor (Arousal or Valence)] as well as "combined" models (including acoustical regressors). Results from the "simple" models revealed in every participant the significant early effects (as early as ~100 ms after onset) of Valence and Arousal already reported at the group-level in previous work. However, the "combined" models showed that few effects of Arousal remained after removing the acoustically-explained variance, whereas significant effects of Valence remained especially at late stages. This study demonstrates (i) that single-subject analyses replicate the results observed at early stages by group-level studies and (ii) the feasibility of GLM-based analysis of MEG data. It also suggests that early modulation of MEG amplitude by affective stimuli partly reflects their acoustical properties.

  13. Single-subject analyses of magnetoencephalographic evoked responses to the acoustic properties of affective non-verbal vocalizations

    Directory of Open Access Journals (Sweden)

    Emilie eSalvia

    2014-12-01

    Full Text Available Magneto-encephalography (MEG was used to examine the cerebral response to affective non-verbal vocalizations (ANVs at the single-subject level. Stimuli consisted of nonverbal affect bursts from the Montreal Affective Voices morphed to parametrically vary acoustical structure and perceived emotional properties. Scalp magnetic fields were recorded in three participants while they performed a 3-alternative forced choice emotion categorization task (Anger, Fear, Pleasure. Each participant performed more than 6000 trials to allow single-subject level statistical analyses using a new toolbox which implements the general linear model (GLM on stimulus-specific responses (LIMO-EEG. For each participant we estimated ‘simple’ models (including just one affective regressor (Arousal or Valence as well as ‘combined’ models (including acoustical regressors. Results from the ‘simple’ models revealed in every participant the significant early effects (as early as ~100 ms after onset of Valence and Arousal already reported at the group-level in previous work. However, the ‘combined’ models showed that few effects of Arousal remained after removing the acoustically-explained variance, whereas significant effects of Valence remained especially at late stages. This study demonstrates (i that single-subject analyses replicate the results observed at early stages by group-level studies and (ii the feasibility of GLM-based analysis of MEG data. It also suggests that early modulation of MEG amplitude by affective stimuli partly reflects their acoustical properties.

  14. Auditory evoked arousal responses of 3-month-old infants exposed to methamphetamine in utero: a nap study.

    Science.gov (United States)

    Galland, Barbara C; Mitchell, Ed A; Thompson, John M D; Wouldes, Trecia

    2013-04-01

    To investigate whether or not infants exposed to methamphetamine prenatally have impaired arousal responses from sleep. The polygraphic nap studies involved 42 infants aged 3 months exposed to methamphetamine in utero and a comparison group of 57 infants. A proportion of mothers in both groups smoked cigarettes and/or marijuana and drank alcohol during pregnancy. White noise from 50 to 100 decibels (dB) was administered at 10 dB intervals twice within non-rapid eye movement (NREM) and rapid eye movement (REM) sleep states and arousal thresholds measured. Combining groups, 306 tests were completed (128 and 178 within REM and NREM sleep, respectively) and infants were more likely to wake at lower thresholds in REM than NREM sleep (hazard ratio 5.58; 95% CI, 3.78-8.23 p sleep; 0.98, 95% CI, 0.60-1.59 and REM sleep; 1.03, 95% CI, 0.56-1.89). These findings suggest that arousal responses of methamphetamine-exposed infants remain intact, providing no support for the hypothesis that prenatal exposure could increase their vulnerability to sudden infant death syndrome (SIDS) through arousal deficits. ©2012 The Author(s)/Acta Paediatrica ©2012 Foundation Acta Paediatrica.

  15. Homophobia Is Related to a Low Interest in Sexuality in General: An Analysis of Pupillometric Evoked Responses.

    Science.gov (United States)

    Cheval, Boris; Grob, Emmanuelle; Chanal, Julien; Ghisletta, Paolo; Bianchi-Demicheli, Francesco; Radel, Remi

    2016-10-01

    A recent study by Cheval et al (J Sex Med 2016;13:825-834) found that individuals high in homophobia look significantly less long at sex-related photographs, regardless of their nature (ie, homosexual or heterosexual). Because viewing time is under some conscious control, this result could indicate that individuals high in homophobia have a low sexual interest in any sexual stimuli or are consciously motivated to avoid sexual material in line with their conscious values. To determine the mechanism underlying shorter viewing time of sex-related photographs in individuals high in homophobia using pupil dilatation, which is considered a spontaneous, unconscious, and uncontrollable index of sexual interest. Heterosexual men (N = 36) completed a questionnaire assessing their level of homo-negativity and then performed a picture-viewing task with simultaneous eye-tracking recording to assess their pupillary responses to the presentation of sexually related or neutral photographs. Non-linear mixed models were carried out to fit the individual non-linear trajectories of pupillary reaction. Different parameters were obtained including the final asymptote of the pupillary response. Results showed that the final pupil size of men high in homophobia increased significantly less to the presentation of sex-related images (ie, heterosexual and homosexual) than the pupil size of men low in homophobia. In contrast, no significant difference in the final pupil size reaction toward homosexual images (vs heterosexual images) emerged between men high and men low in homophobia. Theoretically, these findings reinforce the necessity to consider that homophobia might reflect concerns about sexuality in general and not homosexuality in particular. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  16. Central and peripheral chemoreceptors evoke distinct responses in simultaneously recorded neurons of the raphé-pontomedullary respiratory network.

    Science.gov (United States)

    Nuding, Sarah C; Segers, Lauren S; Shannon, Roger; O'Connor, Russell; Morris, Kendall F; Lindsey, Bruce G

    2009-09-12

    The brainstem network for generating and modulating the respiratory motor pattern includes neurons of the medullary ventrolateral respiratory column (VRC), dorsolateral pons (PRG) and raphé nuclei. Midline raphé neurons are proposed to be elements of a distributed brainstem system of central chemoreceptors, as well as modulators of central chemoreceptors at other sites, including the retrotrapezoid nucleus. Stimulation of the raphé system or peripheral chemoreceptors can induce a long-term facilitation of phrenic nerve activity; central chemoreceptor stimulation does not. The network mechanisms through which each class of chemoreceptor differentially influences breathing are poorly understood. Microelectrode arrays were used to monitor sets of spike trains from 114 PRG, 198 VRC and 166 midline neurons in six decerebrate vagotomized cats; 356 were recorded during sequential stimulation of both receptor classes via brief CO(2)-saturated saline injections in vertebral (central) and carotid arteries (peripheral). Seventy neurons responded to both stimuli. More neurons were responsive only to peripheral challenges than those responsive only to central chemoreceptor stimulation (PRG, 20 : 4; VRC, 41 : 10; midline, 25 : 13). Of 16 474 pairs of neurons evaluated for short-time scale correlations, similar percentages of reference neurons in each brain region had correlation features indicative of a specific interaction with at least one target neuron: PRG (59.6%), VRC (51.0%) and raphé nuclei (45.8%). The results suggest a brainstem network architecture with connectivity that shapes the respiratory motor pattern via overlapping circuits that modulate central and peripheral chemoreceptor-mediated influences on breathing.

  17. Hearing impairment in children with congenital cytomegalovirus (CMV) infection based on distortion product otoacoustic emissions (DPOAE) and brain evoked response audiometry stimulus click (BERA Click) examinations

    Science.gov (United States)

    Airlangga, T. J.; Mangunatmadja, I.; Prihartono, J.; Zizlavsky, S.

    2017-08-01

    Congenital cytomegalovirus (congenital CMV) infection is a leading factor of nongenetic sensorineural hearing loss in children. Hearing loss caused by CMV infection does not have a pathognomonic configuration hence further research is needed. The development of knowledge on hearing loss caused by congenital CMV infection is progressing in many countries. Due to a lack of research in the context of Indonesia, this study assesses hearing impairment in children with congenital CMV infection in Indonesia, more specifically in the Cipto Mangunkusumo Hospital. Our objective was to profile hearing impairment in children 0-5 years of age with congenital CMV infection using Distortion Product Otoacoustic Emissions (DPOAE) and Brain Evoked Response Audiometry Stimulus Click (BERA Click) examinations. This cross-sectional study was conducted in the Cipto Mangunkusum Hospital from November, 2015 to May 2016 with 27 children 0-5 years of age with congenital CMV infection. Of individual ears studied, 58.0% exhibited sensorineural hearing loss. There was a significant relationship between developmental delay and incidence of sensorineural hearing loss. Subjects with a developmental delay were 6.57 times more likely (CI 95%; 1.88-22.87) to experience sensorineural hearing loss. Congenital CMV infection has an important role in causing sensorineural hearing loss in children.

  18. Brainstem auditory evoked response characteristics in normal-hearing subjects with chronic tinnitus and in non-tinnitus group

    Directory of Open Access Journals (Sweden)

    Shadman Nemati

    2014-06-01

    Full Text Available Background and Aim: While most of the people with tinnitus have some degrees of hearing impairment, a small percent of patients admitted to ear, nose and throat clinics or hearing evaluation centers are those who complain of tinnitus despite having normal hearing thresholds. This study was performed to better understanding of the reasons of probable causes of tinnitus and to investigate possible changes in the auditory brainstem function in normal-hearing patients with chronic tinnitus.Methods: In this comparative cross-sectional, descriptive and analytic study, 52 ears (26 with and 26 without tinnitus were examined. Components of the auditory brainstem response (ABR including wave latencies and wave amplitudes were determined in the two groups and analyzed using appropriate statistical methods.Results: The mean differences between the absolute latencies of waves I, III and V was less than 0.1 ms between the two groups that was not statistically significant. Also, the interpeak latency values of waves I-III, III-V and I-V in both groups had no significant difference. Only, the V/I amplitude ratio in the tinnitus group was significantly higher (p=0.04.Conclusion: The changes observed in amplitude of waves, especially in the latter ones, can be considered as an indication of plastic changes in neuronal activity and its possible role in generation of tinnitus in normal-hearing patients.

  19. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells.

    Science.gov (United States)

    Zhang, Xiao-Fei; Weng, De-Sheng; Pan, Ke; Zhou, Zi-Qi; Pan, Qiu-Zhong; Zhao, Jing-Jing; Tang, Yan; Jiang, Shan-Shan; Chen, Chang-Long; Li, Yong-Qiang; Zhang, Hong-Xia; Chang, Alfred E; Wicha, Max S; Zeng, Yi-Xin; Li, Qiao; Xia, Jian-Chuan

    2017-11-01

    Cancer stem cells (CSCs) are responsible for tumor initiation, progression, and resistance to therapeutic agents; they are usually less sensitive to conventional cancer therapies, and could cause tumor relapse. An ideal therapeutic strategy would therefore be to selectively target and destroy CSCs, thereby preventing tumor relapse. The aim of the present study was to evaluate the effectiveness of dendritic cells (DCs) pulsed with antigen derived from CD105+ human renal cell carcinoma (RCC) CSCs against renal cancer cells in vitro and in vivo. We identified "stem-like" characteristics of CD105+ cells in two human RCC cell lines: A498 and SK-RC-39. Loading with cell lysates did not change the characteristics of the DCs. However, DCs loaded with lysates derived from CD105+ CSCs induced more functionally specific active T cells and specific antibodies against CSCs, and clearly depressed the tumor growth in mice. Our results could form the basis for a novel strategy to improve the efficacy of DC-based immunotherapy for human RCC. © 2017 Wiley Periodicals, Inc.

  20. Corticosteroid therapy in regressive autism: a retrospective study of effects on the Frequency Modulated Auditory Evoked Response (FMAER), language, and behavior.

    Science.gov (United States)

    Duffy, Frank H; Shankardass, Aditi; McAnulty, Gloria B; Eksioglu, Yaman Z; Coulter, David; Rotenberg, Alexander; Als, Heidelise

    2014-05-15

    Up to a third of children with Autism Spectrum Disorder (ASD) manifest regressive autism (R-ASD).They show normal early development followed by loss of language and social skills. Absent evidence-based therapies, anecdotal evidence suggests improvement following use of corticosteroids. This study examined the effects of corticosteroids for R-ASD children upon the 4 Hz frequency modulated evoked response (FMAER) arising from language cortex of the superior temporal gyrus (STG) and upon EEG background activity, language, and behavior. An untreated clinical convenience sample of ASD children served as control sample. Twenty steroid-treated R-ASD (STAR) and 24 not-treated ASD patients (NSA), aged 3 - 5 years, were retrospectively identified from a large database. All study participants had two sequential FMAER and EEG studies;Landau-Kleffner syndrome diagnosis was excluded. All subjects' records contained clinical receptive and expressive language ratings based upon a priori developed metrics. The STAR group additionally was scored behaviorally regarding symptom severity as based on the Diagnostic and Statistical Manual IV (DSM-IV) ASD criteria list. EEGs were visually scored for abnormalities. FMAER responses were assessed quantitatively by spectral analysis. Treated and untreated group means and standard deviations for the FMAER, EEG, language, and behavior, were compared by paired t-test and Fisher's exact tests. The STAR group showed a significant increase in the 4 Hz FMAER spectral response and a significant reduction in response distortion compared to the NSA group. Star group subjects' language ratings were significantly improved and more STAR than NSA group subjects showed significant language improvement. Most STAR group children showed significant behavioral improvement after treatment. STAR group language and behavior improvement was retained one year after treatment. Groups did not differ in terms of minor EEG abnormalities. Steroid treatment produced no

  1. Electrophysiological and amperometric evidence that modafinil blocks the dopamine uptake transporter to induce behavioral activation.

    Science.gov (United States)

    Federici, M; Latagliata, E C; Rizzo, F R; Ledonne, A; Gu, H H; Romigi, A; Nisticò, R; Puglisi-Allegra, S; Mercuri, N B

    2013-11-12

    Although the wake-promoting drug modafinil has been shown to bind quite exclusively to the dopamine transporter (DAT), its action in the brain has been thought to be partially independent from the facilitation of the dopaminergic signals. Here we used electrophysiological and amperometric techniques to investigate the effects of modafinil on the dopaminergic neurons of the substantia nigra pars compacta (SNpc) and on the synaptic overflow of dopamine in the dorsal striatum from the sliced tissue of wild-type and cocaine-insensitive genetically modified mice (DAT-CI). Moreover, we examined the consequences of modafinil administration on the locomotor behavior of wild-type and DAT-CI mice. In in vitro experiments, modafinil inhibited the spontaneous firing discharge of the dopaminergic neurons. More consistently, it potentiated firing inhibition and the membrane responses caused by exogenously applied dopamine on these cells. Furthermore, it augmented the stimulus-evoked outflow of DA in the striatum. Noteworthy, modafinil caused locomotor activation in wild-type mice. On the other hand, neither the electrophysiological nor the behavioral effects of modafinil were detected in DAT-CI animals. These results demonstrate that modafinil potentiates brain dopaminergic signals via DAT inhibition by acting at the same binding site of cocaine. Therefore, this mechanism of action explains most of the pharmacological properties of this compound in the clinical setting. Copyright © 2013 IBRO. All rights reserved.

  2. A relationship between bruxism and orofacial-dystonia? A trigeminal electrophysiological approach in a case report of pineal cavernoma.

    Science.gov (United States)

    Frisardi, Gianni; Iani, Cesare; Sau, Gianfranco; Frisardi, Flavio; Leornadis, Carlo; Lumbau, Aurea; Enrico, Paolo; Sirca, Donatella; Staderini, Enrico Maria; Chessa, Giacomo

    2013-10-28

    In some clinical cases, bruxism may be correlated to central nervous system hyperexcitability, suggesting that bruxism may represent a subclinical form of dystonia. To examine this hypothesis, we performed an electrophysiological evaluation of the excitability of the trigeminal nervous system in a patient affected by pineal cavernoma with pain symptoms in the orofacial region and pronounced bruxism. Electrophysiological studies included bilateral electrical transcranial stimulation of the trigeminal roots, analysis of the jaw jerk reflex, recovery cycle of masseter inhibitory reflex, and a magnetic resonance imaging study of the brain. The neuromuscular responses of the left- and right-side bilateral trigeminal motor potentials showed a high degree of symmetry in latency (1.92 ms and 1.96 ms, respectively) and amplitude (11 mV and 11.4 mV, respectively), whereas the jaw jerk reflex amplitude of the right and left masseters was 5.1 mV and 8.9 mV, respectively. The test stimulus for the recovery cycle of masseter inhibitory reflex evoked both silent periods at an interstimulus interval of 150 ms. The duration of the second silent period evoked by the test stimulus was 61 ms and 54 ms on the right and left masseters, respectively, which was greater than that evoked by the conditioning stimulus (39 ms and 35 ms, respectively). We found evidence of activation and peripheral sensitization of the nociceptive fibers, the primary and secondary nociceptive neurons in the central nervous system, and the endogenous pain control systems (including both the inhibitory and facilitatory processes), in the tested subject. These data suggest that bruxism and central orofacial pain can coexist, but are two independent symptoms, which may explain why numerous experimental and clinical studies fail to reach unequivocal conclusions.

  3. Identification of Dynamic Patterns of Speech-Evoked Auditory Brainstem Response Based on Ensemble Empirical Mode Decomposition and Nonlinear Time Series Analysis Methods

    Science.gov (United States)

    Mozaffarilegha, Marjan; Esteki, Ali; Ahadi, Mohsen; Nazeri, Ahmadreza

    The speech-evoked auditory brainstem response (sABR) shows how complex sounds such as speech and music are processed in the auditory system. Speech-ABR could be used to evaluate particular impairments and improvements in auditory processing system. Many researchers used linear approaches for characterizing different components of sABR signal, whereas nonlinear techniques are not applied so commonly. The primary aim of the present study is to examine the underlying dynamics of normal sABR signals. The secondary goal is to evaluate whether some chaotic features exist in this signal. We have presented a methodology for determining various components of sABR signals, by performing Ensemble Empirical Mode Decomposition (EEMD) to get the intrinsic mode functions (IMFs). Then, composite multiscale entropy (CMSE), the largest Lyapunov exponent (LLE) and deterministic nonlinear prediction are computed for each extracted IMF. EEMD decomposes sABR signal into five modes and a residue. The CMSE results of sABR signals obtained from 40 healthy people showed that 1st, and 2nd IMFs were similar to the white noise, IMF-3 with synthetic chaotic time series and 4th, and 5th IMFs with sine waveform. LLE analysis showed positive values for 3rd IMFs. Moreover, 1st, and 2nd IMFs showed overlaps with surrogate data and 3rd, 4th and 5th IMFs showed no overlap with corresponding surrogate data. Results showed the presence of noisy, chaotic and deterministic components in the signal which respectively corresponded to 1st, and 2nd IMFs, IMF-3, and 4th and 5th IMFs. While these findings provide supportive evidence of the chaos conjecture for the 3rd IMF, they do not confirm any such claims. However, they provide a first step towards an understanding of nonlinear behavior of auditory system dynamics in brainstem level.

  4. Wideband Absorbance Outcomes in Newborns: A Comparison With High-Frequency Tympanometry, Automated Brainstem Response, and Transient Evoked and Distortion Product Otoacoustic Emissions.

    Science.gov (United States)

    Aithal, Sreedevi; Kei, Joseph; Driscoll, Carlie; Khan, Asaduzzaman; Swanston, Andrew

    2015-01-01

    The purpose of this study was to evaluate the test performance of wideband absorbance (WBA) in terms of its ability to predict the outer and middle ear status as determined by nine reference standards. Automated auditory brainstem response (AABR), high-frequency (1000 Hz) tympanometry (HFT), transient evoked otoacoustic emission (TEOAE), and distortion product otoacoustic emission (DPOAE) tests were performed on 298 ears (144 right, 154 left) of 192 (108 males, 84 females) neonates with a mean age of 43.7 hours (SD = 21.3, range = 8.3 to 152.2 hr). WBA was measured from 0.25 to 8 kHz using clicks under ambient pressure conditions. Test performance of WBA was assessed in terms of its ability to identify conductive conditions in neonates when compared with nine reference standards (including four single tests and five test batteries) using the receiver operating characteristic analysis. The test performance of WBA against the test battery reference standards was better than that against single test reference standards. The area under the receiver operating characteristic curve reached a high value of 0.78 for HFT + TEOAE + DPOAE and AABR + TEOAE + DPOAE reference standards. Within the ears that passed each of the reference standards, there were no significant differences in WBA. However, for the ears that failed each of the test standards, there were significant differences in WBA. The region between 1 and 4 kHz provided the best discriminability to evaluate the conductive status compared with other frequencies. WBA is a desirable measure of conductive conditions in newborns due to its high performance in classifying ears with conductive loss as determined by the best performing surrogate gold standards (HFT + TEOAE + DPOAE and AABR + TEOAE + DPOAE).

  5. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...... contralateral to stimulus side and additionally an unexpected 20 Hz activity was observed slightly lateralized in the frontal central region. The gamma phase locking may be a manifestation of early somatosensory feature integration. The analyses suggest that the high frequency activity consists of two distinct...

  6. Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP)

    Science.gov (United States)

    2013-01-01

    Background Hereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract. We set out for an electrophysiological characterisation of motor and sensory tracts in patients with HSP. Methods We clinically and electrophysiologically examined a cohort of 128 patients with genetically confirmed or clinically probable HSP. Motor evoked potentials (MEPs) to arms and legs, somato-sensory evoked potentials of median and tibial nerves, and nerve conduction studies of tibial, ulnar, sural, and radial nerves were assessed. Results Whereas all patients showed clinical signs of spastic paraparesis, MEPs were normal in 27% of patients and revealed a broad spectrum with axonal or demyelinating features in the others. This heterogeneity can at least in part be explained by different underlying genotypes, hinting for distinct pathomechanisms in HSP subtypes. In the largest subgroup, SPG4, an axonal type of damage was evident. Comprehensive electrophysiological testing disclosed a more widespread affection of long fibre tracts involving peripheral nerves and the sensory system in 40%, respectively. Electrophysiological abnormalities correlated with the severity of clinical symptoms. Conclusions Whereas HSP is primarily considered as an upper motoneuron disorder, our data suggest a more widespread affection of motor and sensory tracts in the central and peripheral nervous system as a common finding in HSP. The distribution patterns of electrophysiological abnormalities were associated with distinct HSP genotypes and could reflect different underlying pathomechanisms. Electrophysiological measures are independent of symptomatic treatment and may therefore serve as a reliable biomarker in upcoming HSP trials. PMID:24107482

  7. Waveform Similarity Analysis: A Simple Template Comparing Approach for Detecting and Quantifying Noisy Evoked Compound Action Potentials.

    Directory of Open Access Journals (Sweden)

    Jason Robert Potas

    Full Text Available Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for

  8. [Application of simultaneous auditory evoked potentials and functional magnetic resonance recordings for examination of central auditory system--preliminary results].

    Science.gov (United States)

    Milner, Rafał; Rusiniak, Mateusz; Wolak, Tomasz; Piatkowska-Janko, Ewa; Naumczyk, Patrycja; Bogorodzki, Piotr; Senderski, Andrzej; Ganc, Małgorzata; Skarzyński, Henryk

    2011-01-01

    Processing of auditory information in central nervous system bases on the series of quickly occurring neural processes that cannot be separately monitored using only the fMRI registration. Simultaneous recording of the auditory evoked potentials, characterized by good temporal resolution, and the functional magnetic resonance imaging with excellent spatial resolution allows studying higher auditory functions with precision both in time and space. was to implement the simultaneous AEP-fMRI recordings method for the investigation of information processing at different levels of central auditory system. Five healthy volunteers, aged 22-35 years, participated in the experiment. The study was performed using high-field (3T) MR scanner from Siemens and 64-channel electrophysiological system Neuroscan from Compumedics. Auditory evoked potentials generated by acoustic stimuli (standard and deviant tones) were registered using modified odd-ball procedure. Functional magnetic resonance recordings were performed using sparse acquisition paradigm. The results of electrophysiological registrations have been worked out by determining voltage distributions of AEP on skull and modeling their bioelectrical intracerebral generators (dipoles). FMRI activations were determined on the basis of deviant to standard and standard to deviant functional contrasts. Results obtained from electrophysiological studies have been integrated with functional outcomes. Morphology, amplitude, latency and voltage distribution of auditory evoked potentials (P1, N1, P2) to standard stimuli presented during simultaneous AEP-fMRI registrations were very similar to the responses obtained outside scanner room. Significant fMRI activations to standard stimuli were found mainly in the auditory cortex. Activations in these regions corresponded with N1 wave dipoles modeled based on auditory potentials generated by standard tones. Auditory evoked potentials to deviant stimuli were recorded only outside the MRI

  9. Evoked Electromyographically Controlled Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Hayashibe

    2016-07-01

    Full Text Available Time-variant muscle responses under electrical stimulation (ES are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications.Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES are also well known source of time-varying characteristics coming from muscle response under ES. Therefore it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favour of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm.

  10. The frequency modulated auditory evoked response (FMAER, a technical advance for study of childhood language disorders: cortical source localization and selected case studies

    Directory of Open Access Journals (Sweden)

    Duffy Frank H

    2013-01-01

    Full Text Available Abstract Background Language comprehension requires decoding of complex, rapidly changing speech streams. Detecting changes of frequency modulation (FM within speech is hypothesized as essential for accurate phoneme detection, and thus, for spoken word comprehension. Despite past demonstration of FM auditory evoked response (FMAER utility in language disorder investigations, it is seldom utilized clinically. This report's purpose is to facilitate clinical use by explaining analytic pitfalls, demonstrating sites of cortical origin, and illustrating potential utility. Results FMAERs collected from children with language disorders, including Developmental Dysphasia, Landau-Kleffner syndrome (LKS, and autism spectrum disorder (ASD and also normal controls - utilizing multi-channel reference-free recordings assisted by discrete source analysis - provided demonstratrions of cortical origin and examples of clinical utility. Recordings from inpatient epileptics with indwelling cortical electrodes provided direct assessment of FMAER origin. The FMAER is shown to normally arise from bilateral posterior superior temporal gyri and immediate temporal lobe surround. Childhood language disorders associated with prominent receptive deficits demonstrate absent left or bilateral FMAER temporal lobe responses. When receptive language is spared, the FMAER may remain present bilaterally. Analyses based upon mastoid or ear reference electrodes are shown to result in erroneous conclusions. Serial FMAER studies may dynamically track status of underlying language processing in LKS. FMAERs in ASD with language impairment may be normal or abnormal. Cortical FMAERs can locate language cortex when conventional cortical stimulation does not. Conclusion The FMAER measures the processing by the superior temporal gyri and adjacent cortex of rapid frequency modulation within an auditory stream. Clinical disorders associated with receptive deficits are shown to demonstrate absent

  11. Applying Microfluidics to Electrophysiology

    Science.gov (United States)

    Eddington, David T.

    2007-01-01

    Microfluidics can be integrated with standard electrophysiology techniques to allow new experimental modalities. Specifically, the motivation for the microfluidic brain slice device is discussed including how the device docks to standard perfusion chambers and the technique of passive pumping which is used to deliver boluses of neuromodulators to the brain slice. By simplifying the device design, we are able to achieve a practical solution to the current unmet electrophysiology need of applying multiple neuromodulators across multiple regions of the brain slice. This is achieved by substituting the standard coverglass substrate of the perfusion chamber with a thin microfluidic device bonded to the coverglass substrate. This was then attached to the perfusion chamber and small holes connect the open-well of the perfusion chamber to the microfluidic channels buried within the microfluidic substrate. These microfluidic channels are interfaced with ports drilled into the edge of the perfusion chamber to access and deliver stimulants. This project represents how the field of microfluidics is transitioning away from proof-of concept device demonstrations and into practical solutions for unmet experimental and clinical needs. PMID:18989410

  12. Visual evoked potentials in rubber factory workers.

    Science.gov (United States)

    Tandon, O P; Kumar, V

    1997-01-01

    Pattern reversal visual evoked potentials (pVEP) were studied in 39 male rubber factory workers in the age range of 18-55 years and 20 control subjects (aged 18-46 years) not exposed to the rubber factory environment. Results revealed that 20 (51%) rubber factory workers had abnormal latencies of wave P1 (dominant component of pVEP) as per accepted criteria of 99% tolerance limit set for the control group (i.e. any value above mean +3 SD of control was considered abnormal). The section-wise per cent distribution of abnormalities was vulcanization (83%), tubing (75%), calendering (60%), loading (38%) and mixing (14%). This study provides electrophysiological evidence that rubber factory environments affect the conduction processes in optical pathways from their origin in the retina to striate cortex. However, this study has its limitations in not identifying the specific chemical(s) causing these changes in VEP.

  13. Laser exposure effects on visual functions: measurement by electrophysiology: a selective review

    Science.gov (United States)

    Schmeisser, Elmar T.

    1990-07-01

    Since laser exposure in humans is usually limited to accident cases precise definition of its effects on visual function is difficult to come by. In order to determine more precisely these effects and at what exposure levels they occur animal models are required. This immediately poses the problem of how to appropriately ask the animal what it can see. Under the assumption that the visual system of lower primates is sufficiently similar to our own electrophysiological techniques allow us to trace the production of neuroelectric currents in the visual nervous system and thus to make conclusions of function based on signal analysis. These techniques (pattern and luminance electroretinograms and visual evoked potentials) are useful especially in delineating short-term effects (seconds). Since these signals are " large scale " responses their specificity can only be set by precisely delineating the stimuli used to evoke them a variant of the GIGO (garbage in garbage out) rule. The results while obtainable in no other way are therefore limited. Long term effects (chronic alterations in visual function) can also be demonstrated with these techniques. This paper will review both the techniques and the questions to which these techniques have been applied for laser exposure energies ranging from long-term low-level exposures to acute lesion-level exposures in the primate model. 2.

  14. Laser effects on electrophysiological measures of vision: the data and their implications

    Science.gov (United States)

    Schmeisser, Elmar T.

    1992-05-01

    Since laser exposure in humans is usually limited to accident cases, precise definition of its effects on visual function is difficult to come by. To determine more precisely these effects and at what exposure levels they occur, animal models are required. This immediately poses the problem of how to appropriately ask the animal what it can see. Under the assumption that the visual system of lower primates is sufficiently similar to our own, electrophysiological techniques allow us to trace the production of neuroelectric currents in the visual nervous system, and thus to make conclusions of function based on signal analysis. These techniques (pattern and luminance electroretinograms, and visual evoked potentials) are useful especially in delineating short-term effects (seconds). Since these signals are 'large-scale' responses, their specificity can be set only by precisely delineating the stimuli used to evoke them, a variant of the GIGO (garbage in, garbage out) rule. The results, while obtainable in no other way, are therefore limited. Long-tern effects (chronic alterations in visual function) can also be demonstrated with these techniques. This paper reviews both the techniques and the questions to which these techniques have been applied for laser exposure energies ranging from long-term low-level exposures to acute lesion-level exposures in the primate model.

  15. Ghrelin regulates phasic dopamine and nucleus accumbens signaling evoked by food-predictive stimuli.

    Science.gov (United States)

    Cone, Jackson J; Roitman, Jamie D; Roitman, Mitchell F

    2015-06-01

    Environmental stimuli that signal food availability hold powerful sway over motivated behavior and promote feeding, in part, by activating the mesolimbic system. These food-predictive cues evoke brief (phasic) changes in nucleus accumbens (NAc) dopamine concentration and in the activity of individual NAc neurons. Phasic fluctuations in mesolimbic signaling have been directly linked to goal-directed behaviors, including behaviors elicited by food-predictive cues. Food-seeking behavior is also strongly influenced by physiological state (i.e., hunger vs. satiety). Ghrelin, a stomach hormone that crosses the blood-brain barrier, is linked to the perception of hunger and drives food intake, including intake potentiated by environmental cues. Notwithstanding, whether ghrelin regulates phasic mesolimbic signaling evoked by food-predictive stimuli is unknown. Here, rats underwent Pavlovian conditioning in which one cue predicted the delivery of rewarding food (CS+) and a second cue predicted nothing (CS-). After training, we measured the effect of ghrelin infused into the lateral ventricle (LV) on sub-second fluctuations in NAc dopamine using fast-scan cyclic voltammetry and individual NAc neuron activity using in vivo electrophysiology in separate groups of rats. LV ghrelin augmented both phasic dopamine and phasic increases in the activity of NAc neurons evoked by the CS+. Importantly, ghrelin did not affect the dopamine nor NAc neuron response to the CS-, suggesting that ghrelin selectively modulated mesolimbic signaling evoked by motivationally significant stimuli. These data demonstrate that ghrelin, a hunger signal linked to physiological state, can regulate cue-evoked mesolimbic signals that underlie food-directed behaviors. Cues that predict food availability powerfully regulate food-seeking behavior. Here we show that cue-evoked changes in both nucleus accumbens (NAc) dopamine (DA) and NAc cell activity are modulated by intra-cranial infusions of the stomach

  16. Electrophysiological Correlates of Behavioral Temporary Threshold Shifts in Chinchilla.

    Science.gov (United States)

    the three cochlear turns. Input-output functions for whole-nerve action potential responses to clicks and visual detection levels for early averaged evoked responses arising in the brain stem were also measured.

  17. A Steady State Visually Evoked Potential Investigation of Memory and Ageing

    Science.gov (United States)

    Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard

    2009-01-01

    Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and…

  18. Increased vagal tone as an isolated finding in patients undergoing electrophysiological testing for recurrent syncope: response to long term anticholinergic agents.

    Science.gov (United States)

    McLaran, C J; Gersh, B J; Osborn, M J; Wood, D L; Sugrue, D D; Holmes, D R; Hammill, S C

    1986-01-01

    Features suggestive of an isolated increase in vagal tone during electrophysiological study were found in 12 patients with recurrent near syncope or syncope. Results at neurological and cardiac evaluation were otherwise normal. The increased tone or heightened sensitivity to vagal tone was manifested by abnormal atrioventricular nodal refractoriness and conduction that were reversed with atropine. The patients underwent long term treatment with an anticholinergic agent (propantheline bromide) and 75% improved. Before treatment they had experienced a median of seven episodes (range 3-28) of near syncope or syncope during 10.5 months (range 1-60). During treatment these episodes decreased to a median of one (range 0-15) during 22.5 months (range 3-67); six patients experienced no further symptoms. Three patients continued to have syncope while on treatment, and one of these required permanent cardiac pacing. No additional cause for syncope was identified in any patient. During electrophysiological assessment of patients with syncope, evidence may be obtained pointing to an increase in vagal tone. In many of these patients treatment with anticholinergic drugs seemed to improve or eliminate the symptoms.

  19. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, Sidse M; Hansen, Lars Kai; Parnas, Josef

    2007-01-01

    to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  20. Electrophysiological Monitoring of Brain Injury and Recovery after Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Ruoxian Deng

    2015-10-01

    Full Text Available Reliable prognostic methods for cerebral functional outcome of post cardiac-arrest (CA patients are necessary, especially since therapeutic hypothermia (TH as a standard treatment. Traditional neurophysiological prognostic indicators, such as clinical examination and chemical biomarkers, may result in indecisive outcome predictions and do not directly reflect neuronal activity, though they have remained the mainstay of clinical prognosis. The most recent advances in electrophysiological methods—electroencephalography (EEG pattern, evoked potential (EP and cellular electrophysiological measurement—were developed to complement these deficiencies, and will be examined in this review article. EEG pattern (reactivity and continuity provides real-time and accurate information for early-stage (particularly in the first 24 h hypoxic-ischemic (HI brain injury patients with high sensitivity. However, the signal is easily affected by external stimuli, thus the measurements of EP should be combined with EEG background to validate the predicted neurologic functional result. Cellular electrophysiology, such as multi-unit activity (MUA and local field potentials (LFP, has strong potential for improving prognostication and therapy by offering additional neurophysiologic information to understand the underlying mechanisms of therapeutic methods. Electrophysiology provides reliable and precise prognostication on both global and cellular levels secondary to cerebral injury in cardiac arrest patients treated with TH.

  1. Visual Evoked Potentials to Light Flashes in Captive Rhesus Monkeys: A Study Reflecting Cerebral Cortical Activity and Brain Maturation

    Directory of Open Access Journals (Sweden)

    S.A. Solís-Chávez

    2014-01-01

    Full Text Available Visual evoked potentials (VEPs are useful electrophysiological diagnostic tools for evaluating retinal response of the visual cortex and detecting its functional integrity in humans and animals. To analyze the VEPs and physiologic response of the visual pathway of a random population of captive-bred monkeys of the Macaca mulatta species throughout different physiologic stages after stimulation with stroboscopic light flashes. In this study we used 20 non-human primates (M. mulatta, 10 males and 10 females, divided into five age-dependant cohorts of 2 males and 2 females. Two replicable negative waveforms and one positive were recorded, as reliable indicators of electrical conductivity at specific anatomical nuclei of the visual pathways. Statistically significant differences were primarily observed in group 1 when compared against the remaining groups for the three evaluated waveforms. Waveform morphology characteristically presented steady deviations related to ontogenetic development of the studied population.

  2. Color vision in attention-deficit/hyperactivity disorder: a pilot visual evoked potential study.

    Science.gov (United States)

    Kim, Soyeon; Banaschewski, Tobias; Tannock, Rosemary

    2015-01-01

    Individuals with attention-deficit/hyperactivity disorder (ADHD) are reported to manifest visual problems (including ophthalmological and color perception, particularly for blue-yellow stimuli), but findings are inconsistent. Accordingly, this study investigated visual function and color perception in adolescents with ADHD using color Visual Evoked Potentials (cVEP), which provides an objective measure of color perception. Thirty-one adolescents (aged 13-18), 16 with a confirmed diagnosis of ADHD, and 15 healthy peers, matched for age, gender, and IQ participated in the study. All underwent an ophthalmological exam, as well as electrophysiological testing color Visual Evoked Potentials (cVEP), which measured the latency and amplitude of the neural P1 response to chromatic (blue-yellow, red-green) and achromatic stimuli. No intergroup differences were found in the ophthalmological exam. However, significantly larger P1 amplitude was found for blue and yellow stimuli, but not red/green or achromatic stimuli, in the ADHD group (particularly in the medicated group) compared to controls. Larger amplitude in the P1 component for blue-yellow in the ADHD group compared to controls may account for the lack of difference in color perception tasks. We speculate that the larger amplitude for blue-yellow stimuli in early sensory processing (P1) might reflect a compensatory strategy for underlying problems including compromised retinal input of s-cones due to hypo-dopaminergic tone. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  3. A Preclinical Study of Laryngeal Motor-Evoked Potentials as a Marker Vagus Nerve Activation.

    Science.gov (United States)

    Grimonprez, Annelies; Raedt, Robrecht; De Taeye, Leen; Larsen, Lars Emil; Delbeke, Jean; Boon, Paul; Vonck, Kristl

    2015-12-01

    Vagus nerve stimulation (VNS) is a treatment for refractory epilepsy and depression. Previous studies using invasive recording electrodes showed that VNS induces laryngeal motor-evoked potentials (LMEPs) through the co-activation of the recurrent laryngeal nerve and subsequent contractions of the laryngeal muscles. The present study investigates the feasibility of recording LMEPs in chronically VNS-implanted rats, using a minimally-invasive technique, to assess effective current delivery to the nerve and to determine optimal VNS output currents for vagal fiber activation. Three weeks after VNS electrode implantation, signals were recorded using an electromyography (EMG) electrode in the proximity of the laryngeal muscles and a reference electrode on the skull. The VNS output current was gradually ramped up from 0.1 to 1.0 mA in 0.1 mA steps. In 13/27 rats, typical LMEPs were recorded at low VNS output currents (median 0.3 mA, IQR 0.2-0.3 mA). In 11/27 rats, significantly higher output currents were required to evoke electrophysiological responses (median 0.7 mA, IQR 0.5-0.7 mA, p vagus nerve. Furthermore, our results suggest that low output currents are sufficient to activate vagal fibers.

  4. [Personality dimensions and cerebral evoked potential].

    Science.gov (United States)

    Camposano, S; Alvarez, C; Lolas, F

    1994-12-01

    Eysenck's personality theory postulates 3 orthogonal dimensions of personality: extraversion (E), neuroticism (N) and psychoticism (P), predicting conductual and physiological predispositions to suffer mental illness. Biological bases of Eysenck's personality traits have been documented electrophysiologically. Psychoticism, the latest described dimension, is controverted, since there is some evidence of common factors with the other two. In order to assess the relation between Eysenck's dimensions and sensorial reactivity and information encoding processes we studied 20 healthy young subjects (mean age 28.5 years) with flash visual cortical evoked potentials (VEP, 3 intensities, peak to peak amplitude of III, IV-V-VI, VII components), and auditory cognitive evoked potentials (odd ball paradigm, P300 latency). There was a positive correlation between N and P dimensions (Spearman, r = 0.52), between N and VEP amplitude at high intensity (r = 0.58) and a negative correlation between E and P300 latency (r = 0.58). In short we found that P is not an independent dimension, but is related to sensorial reactivity. E dimension was related to encoding processes supporting Eysenck's observations about memory and learning differences.

  5. Inability To Evoke a Long-Lasting Protective Immune Response to Respiratory Syncytial Virus Infection in Mice Correlates with Ineffective Nasal Antibody Responses

    Science.gov (United States)

    Singleton, Richard; Etchart, Nathalie; Hou, Sam; Hyland, Lisa

    2003-01-01

    Long-lasting protective antibody is not normally generated in children following primary respiratory syncytial virus (RSV) infection, frequently leading to reinfection. We used the BALB/c mouse model to examine the role of the nasal-associated lymphoid tissue and the bone marrow in the generation of RSV-specific long-lasting plasma cells, with a view to further understanding the mechanisms responsible for the poorly sustained RSV antibody levels following primary infection. We show here that substantial numbers of RSV-specific plasma cells were generated in the bone marrow following challenge, which were maintained thereafter. In contrast, in the nasal-associated lymphoid tissue, RSV-specific plasma cell numbers waned quickly both after primary infection and after challenge and were not maintained at a higher level after boosting. These data indicate that the inability to generate a robust local mucosal response in the nasal tissues may contribute substantially to the likelihood of subsequent reinfection and that the presence of serum anti-RSV antibody without local protection is not enough to protect against reinfection. PMID:14557616

  6. Electrophysiological precursors of social conformity.

    Science.gov (United States)

    Shestakova, Anna; Rieskamp, Jörg; Tugin, Sergey; Ossadtchi, Alexey; Krutitskaya, Janina; Klucharev, Vasily

    2013-10-01

    Humans often change their beliefs or behavior due to the behavior or opinions of others. This study explored, with the use of human event-related potentials (ERPs), whether social conformity is based on a general performance-monitoring mechanism. We tested the hypothesis that conflicts with a normative group opinion evoke a feedback-related negativity (FRN) often associated with performance monitoring and subsequent adjustment of behavior. The experimental results show that individual judgments of facial attractiveness were adjusted in line with a normative group opinion. A mismatch between individual and group opinions triggered a frontocentral negative deflection with the maximum at 200 ms, similar to FRN. Overall, a conflict with a normative group opinion triggered a cascade of neuronal responses: from an earlier FRN response reflecting a conflict with the normative opinion to a later ERP component (peaking at 380 ms) reflecting a conforming behavioral adjustment. These results add to the growing literature on neuronal mechanisms of social influence by disentangling the conflict-monitoring signal in response to the perceived violation of social norms and the neural signal of a conforming behavioral adjustment.

  7. Electrophysiological precursors of social conformity

    Science.gov (United States)

    Rieskamp, Jörg; Tugin, Sergey; Ossadtchi, Alexey; Krutitskaya, Janina; Klucharev, Vasily

    2013-01-01

    Humans often change their beliefs or behavior due to the behavior or opinions of others. This study explored, with the use of human event-related potentials (ERPs), whether social conformity is based on a general performance-monitoring mechanism. We tested the hypothesis that conflicts with a normative group opinion evoke a feedback-related negativity (FRN) often associated with performance monitoring and subsequent adjustment of behavior. The experimental results show that individual judgments of facial attractiveness were adjusted in line with a normative group opinion. A mismatch between individual and group opinions triggered a frontocentral negative deflection with the maximum at 200 ms, similar to FRN. Overall, a conflict with a normative group opinion triggered a cascade of neuronal responses: from an earlier FRN response reflecting a conflict with the normative opinion to a later ERP component (peaking at 380 ms) reflecting a conforming behavioral adjustment. These results add to the growing literature on neuronal mechanisms of social influence by disentangling the conflict-monitoring signal in response to the perceived violation of social norms and the neural signal of a conforming behavioral adjustment. PMID:22683703

  8. Effect of Sahaja yoga meditation on auditory evoked potentials (AEP) and visual contrast sensitivity (VCS) in epileptics.

    Science.gov (United States)

    Panjwani, U; Selvamurthy, W; Singh, S H; Gupta, H L; Mukhopadhyay, S; Thakur, L

    2000-03-01

    The effect of Sahaja yoga meditation on 32 patients with primary idiopathic epilepsy on regular and maintained antiepileptic medication was studied. The patients were randomly divided into 3 groups: group I practiced Sahaja Yoga meditation twice daily for 6 months under proper guidance; group II practiced postural exercises mimicking the meditation for the same duration; and group III was the control group. Visual Contrast Sensitivity (VCS), Auditory Evoked Potentials (AEP), Brainstem Auditory Evoked Potentials (BAEP), and Mid Latency Responses (MLR) were recorded initially (0 month) and at 3 and 6 months for each group. There was a significant improvement in VCS following meditation practice in group I participants. Na, the first prominent negative peak of MLR and Pa, the positive peak following Na did not register changes in latency. The Na-Pa amplitude of MLR also showed a significant increase. There were no significant changes in the absolute and interpeak latencies of BAEP. The reduced level of stress following meditation practice may make patients more responsive to specific stimuli. Sahaja Yoga meditation appears to bring about changes in some of the electrophysiological responses studied in epileptic patients.

  9. Potenciais evocados auditivos de tronco encefálico de ex-usuários de drogas Brain stem evoked response audiometry of former drug users

    Directory of Open Access Journals (Sweden)

    Tainara Milbradt Weich

    2012-10-01

    Full Text Available As drogas ilícitas são conhecidas pelos seus efeitos deletérios no sistema nervoso central; no entanto, elas também podem atingir o sistema auditivo, provocando alterações. OBJETIVOS: Analisar e comparar os resultados dos potenciais evocados auditivos de tronco encefálico (PEATE de frequentadores de grupos de apoio a ex-usuários de drogas. MÉTODO: Estudo transversal, não experimental, descritivo e quantitativo. A amostra foi composta por 17 indivíduos divididos conforme o tipo de droga mais consumida: 10 indivíduos no grupo maconha (G1 e sete no grupo crack/cocaína (G2. Eles foram subdivididos pelo tempo de uso de drogas: um a cinco anos, seis a 10 anos e mais que 15 anos. A avaliação foi feita por meio de anamnese, audiometria tonal liminar, medidas de imitância acústica e PEATE. RESULTADOS: Ao comparar os resultados de G1 e G2, independente do tempo de uso de drogas, não se observou diferença estatisticamente significante nas latências absolutas e nos intervalos interpicos. No entanto, apenas cinco dos 17 indivíduos tiveram PEATE com resultados adequados para a faixa etária. CONCLUSÃO: Independentemente do tempo de utilização das drogas, o uso de maconha e crack/cocaína pode provocar alterações difusas no tronco encefálico, comprometendo a transmissão do estímulo auditivo.Illicit drugs are known for their deleterious effects upon the central nervous system and more specifically for how they adversely affect hearing. OBJECTIVE: This study aims to analyze and compare the hearing complaints and the results of brainstem evoked response audiometry (BERA of former drug user support group goers. METHODS: This is a cross-sectional non-experimental descriptive quantitative study. The sample consisted of 17 subjects divided by their preferred drug of use. Ten individuals were placed in the marijuana group (G1 and seven in the crack/cocaine group (G2. The subjects were further divided based on how long they had been using

  10. Clinical evaluation of cochlear hearing status in dogs using evoked otoacoustic emissions.

    Science.gov (United States)

    Gonçalves, R; McBrearty, A; Pratola, L; Calvo, G; Anderson, T J; Penderis, J

    2012-06-01

    Evoked otoacoustic emission testing is the preferred test in human patients for sensorineural deafness screening in neonates and cochlear outer hair cell function monitoring in adults. This study evaluated evoked otoacoustic emission testing for cochlear function assessment in dogs within a clinical setting. Two populations of anaesthetised dogs were included. In group 1 the evoked otoacoustic emission response was compared to the brainstem auditory evoked response in 10 dogs having hearing assessment. Group 2 comprised 43 presumed normal dogs, in which the suitability of two types of evoked otoacoustic emissions, transient-evoked and distortion product otoacoustic emissions, were evaluated (brainstem auditory evoked response was not performed in this group). Valid transient-evoked otoacoustic emission and distortion-product otoacoustic emission responses were successfully recorded within the clinical setting and correctly identified deaf and hearing ears. Within presumed healthy dogs, normal otoacoustic emission response was demonstrated in more than 80% of dogs using a single, short distortion-product otoacoustic emission run and in 78% of dogs with valid transient-evoked otoacoustic emission responses using a series of three repeated transient-evoked otoacoustic emission short runs. Transient-evoked otoacoustic emission and distortion-product otoacoustic emission testing provided a rapid, non-invasive frequency-specific assessment of cochlear function. Transient-evoked otoacoustic emission and distortion product otoacoustic emission testing is suitable as a screening procedure to detect loss of cochlear function in dogs, although further investigation is needed. © 2012 British Small Animal Veterinary Association.

  11. Selecting and evoking innovators

    DEFF Research Database (Denmark)

    Kanstrup, Anne Marie; Christiansen, Ellen

    2006-01-01

    prepared for and conducted selection of and collaboration with innovators. The outcome was successful in the sense that the innovators produced excellent foundation for conceptual interaction design by creating mock-ups and explanations incarnating their preferences, attitudes and habits. By referring...... to theories of learning we try to explain how our way of working with selection and evoking of innovators has contributed to this positive result and how our approach to user-driven innovation can be regarded as a way to combine democracy and creativity in design....

  12. pH-evoked dural afferent signaling is mediated by ASIC3 and is sensitized by mast cell mediators.

    Science.gov (United States)

    Yan, Jin; Wei, Xiaomei; Bischoff, Christina; Edelmayer, Rebecca M; Dussor, Gregory

    2013-09-01

    Prior studies have shown that decreased meningeal pH activates dural afferents via opening of acid-sensing ion channels (ASICs), suggesting one pathophysiological mechanism for the generation of headaches. The studies described here further examined the ASIC subtype mediating pH-induced dural-afferent activation and examined whether sensitization influences pH responses. Given the potential importance of meningeal mast cells to headache, the goal of this study was to evaluate dural afferent responses to pH following sensitization with mast cell mediators. Cutaneous allodynia was measured in rats following stimulation of the dura with decreased pH alone or in combination with mast cell mediators. Trigeminal ganglion neurons retrogradely labeled from the dura were stained with an ASIC3 antibody using immunohistochemistry. Current and action potentials evoked by changes in pH alone or in combination with mast cell mediators were measured in retrogradely labeled dural afferents using patch-clamp electrophysiology. pH-sensitive dural afferents generated currents in response to the ASIC3 activator 2-guanidine-4-methylquinazoline (GMQ), approximately 80% of these neurons express ASIC3 protein, and pH-evoked behavioral responses were inhibited by the ASIC3 blocker APETx2. Following exposure to mast cell mediators, dural afferents exhibited increased pH-evoked excitability, and cutaneous allodynia was observed at higher pH than with pH stimuli alone. These data indicate that the predominant ASIC subtype responding to decreased meningeal pH is ASIC3. Additionally, they demonstrate that in the presence of inflammation, dural afferents respond to even smaller decreases in pH providing further support for the ability of small pH changes within the meninges to initiate afferent input leading to headache. © 2013 American Headache Society.

  13. Identification of neonatal hearing impairment: evaluation of transient evoked otoacoustic emission, distortion product otoacoustic emission, and auditory brain stem response test performance.

    Science.gov (United States)

    Norton, S J; Gorga, M P; Widen, J E; Folsom, R C; Sininger, Y; Cone-Wesson, B; Vohr, B R; Mascher, K; Fletcher, K

    2000-10-01

    The purpose of this study was to compare the performance of transient evoked otoacoustic emissions (TEOAEs), distortion product otoacoustic emissions (DPOAEs), and auditory brain stem responses (ABRs) as tools for identification of neonatal hearing impairment. A total of 4911 infants including 4478 graduates of neonatal intensive care units, 353 well babies with one or more risk factors for hearing loss (Joint Committee on Infant Hearing, 1994) and 80 well babies without risk factor who did not pass one or more neonatal test were targeted as the potential subject pool on which test performance would be assessed. During the neonatal period, they were evaluated using TEOAEs in response to an 80 dB pSPL click, DPOAE responses to two stimulus conditions (L1 = L2 = 75 dB SPL and L1 = 65 dB SPL L2 = 50 dB SPL), and ABR elicited by a 30 dB nHL click. In an effort to describe test performance, these "at-risk" infants were asked to return for behavioral audiologic assessments, using visual reinforcement audiometry (VRA) at 8 to 12 mo corrected age, regardless of neonatal test results. Sixty-four percent of these subjects returned and reliable VRA data were obtained on 95.6% of these returnees. This approach is in contrast to previous studies in which, by necessity, efforts were made to follow only those infants who "failed" the neonatal screening tests. The accuracy of the neonatal measures in predicting hearing status at 8 to 12 mo corrected age was determined. Only those infants who provided reliable, monaural VRA test results were included in the analysis. Separate analyses were performed without regard to intercurrent events (i.e., events between the neonatal and VRA tests that could cause their results to disagree), and then after accounting for the possible influence of intercurrent events such as otitis media and late-onset or progressive hearing loss. Low refer rates were achieved for the stopping criteria used in the present study, especially when a protocol

  14. International Evoked Potentials Symposium

    CERN Document Server

    1980-01-01

    The past decade has seen great progress in the measurement of evoked potentials in man; a steady increase in our understanding of their charac­ teristics, their origins and their usefulness; and a growing application in the field of clinical diagnosis. The topic is a truly multidisciplinary one. Important research contributions have been made by workers of many different backgrounds and clinical applications span the specialities. This book represents a revised and updated version of the work originally presented at the international evoked potential symposium held in Nottingham 4-6 1978. The Nottingham Symposium provided a forum for a state-of-the-art discussion amongst workers from many different disciplines and from many different countries. For each major topic in the field an expert review set the scene for discussion of current research presentations. This format is retained in the book: the chapters in Part A provide the context in which the research presented in Part B is set. The task of selecting m...

  15. ELECTROPHYSIOLOGICAL CHARACTERISTICS OF PARAVENTRICULAR THALAMIC (PVT NEURONS IN RESPONSE TO CHRONIC COCAINE EXPOSURE: EFFECTS OF COCAINE- AND AMPHETAMINE-REGULATED TRANSCRIPT (CART

    Directory of Open Access Journals (Sweden)

    Jiann Wei eYeoh

    2014-08-01

    Full Text Available Recent work has established that the paraventricular thalamus (PVT is a central node in the brain reward-seeking pathway. This role is likely mediated in part through the dense projections to the PVT from hypothalamic peptide transmitter systems such as orexin, and cocaine- and amphetamine-regulated transcript (CART, both of which play key roles in drug-seeking behaviour. Consistent with this proposition, we previously found that inactivation of the PVT or infusions of CART into the PVT suppressed drug-seeking behaviour in an animal model of contingent cocaine self-administration. Despite this work, very few studies have assessed the basic physiological properties of PVT neurons and how these parameters are altered by exposure to drugs such as cocaine. We set out to address these questions by employing an electrophysiological approach to record from anterior PVT (aPVT neurons from cocaine-treated and control animals. First, we determined the excitability of aPVT neurons by injecting a series of depolarizing current steps and characterizing the resulting action potential (AP discharge properties. Second, we investigated the effects of CART on excitatory synaptic inputs to aPVT neurons. We found that the majority of aPVT neurons exhibited tonic firing (TF, and initial bursting (IB consistent with previous studies. However, we also identified PVT neurons that exhibited delayed firing (DF, single spiking (SS and reluctant firing (RF. Interestingly, cocaine exposure shifted the proportion of aPVT neurons that exhibited TF. Further, application of CART suppressed excitatory synaptic drive to PVT. This finding is consistent with our previous behavioural data, which showed that CART signaling in the PVT negatively regulates drug-seeking behaviour. Together, these studies support previous anatomical evidence that the PVT can integrate reward-relevant information and provides a putative mechanism through which drugs of abuse can dysregulate this system in

  16. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats.

    Science.gov (United States)

    Schuelert, N; Gorodetskaya, N; Just, S; Doods, H; Corradini, L

    2015-04-16

    Diabetic polyneuropathy (DPN) is a devastating complication of diabetes. The underlying pathogenesis of DPN is still elusive and an effective treatment devoid of side effects presents a challenge. There is evidence that in type-1 and -2 diabetes, metabolic and morphological changes lead to peripheral nerve damage and altered central nociceptive transmission, which may contribute to neuropathic pain symptoms. We characterized the electrophysiological response properties of spinal wide dynamic range (WDR) neurons in three diabetic models. The streptozotocin (STZ) model was used as a drug-induced model of type-1 diabetes, and the BioBreeding/Worcester (BB/Wor) and Zucker diabetic fatty (ZDF) rat models were used for genetic DPN models. Data were compared to the respective control group (BB/Wor diabetic-resistant, Zucker lean (ZL) and saline-injected Wistar rat). Response properties of WDR neurons to mechanical stimulation and spontaneous activity were assessed. We found abnormal response properties of spinal WDR neurons in all diabetic rats but not controls. Profound differences between models were observed. In BB/Wor diabetic rats evoked responses were increased, while in ZDF rats spontaneous activity was increased and in STZ rats mainly after discharges were increased. The abnormal response properties of neurons might indicate differential pathological, diabetes-induced, changes in spinal neuronal transmission. This study shows for the first time that specific electrophysiological response properties are characteristic for certain models of DPN and that these might reflect the diverse and complex symptomatology of DPN in the clinic. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Vestibular evoked myogenic potential

    Directory of Open Access Journals (Sweden)

    Felipe, Lilian

    2012-01-01

    Full Text Available Introduction: The Vestibular Evoked Myogenic Potential (VEMP is a promising test for the evaluation of the cholic descending vestibular system. This reflex depends of the integrity from the saccular macula, from the inferior vestibular nerve, the vestibular nuclei, the vestibule-spinal tract and effectors muscles. Objective: Perform a systematic review of the pertinent literature by means of database (COCHRANE, MEDLINE, LILACS, CAPES. Conclusion: The clinical application of the VEMP has expanded in the last years, as goal that this exam is used as complementary in the otoneurological evaluation currently used. But, methodological issues must be clarified. This way, this method when combined with the standard protocol, can provide a more widely evaluation from the vestibular system. The standardization of the methodology is fundamental criterion for the replicability and sensibility of the exam.

  18. Lack of TRPM5-Expressing Microvillous Cells in Mouse Main Olfactory Epithelium Leads to Impaired Odor-Evoked Responses and Olfactory-Guided Behavior in a Challenging Chemical Environment

    Science.gov (United States)

    Lemons, Kayla; Aoudé, Imad; Ogura, Tatsuya; Mbonu, Kenechukwu; Matsumoto, Ichiro; Arakawa, Hiroyuki

    2017-01-01

    The mammalian main olfactory epithelium (MOE) modifies its activities in response to changes in the chemical environment. This process is essential for maintaining the functions of the olfactory system and the upper airway. However, mechanisms involved in this functional maintenance, especially those occurring via paracrine regulatory pathways within the multicellular MOE, are poorly understood. Previously, a population of non-neuronal, transient receptor potential M5-expressing microvillous cells (TRPM5-MCs) was identified in the MOE, and the initial characterization of these cells showed that they are cholinergic and responsive to various xenobiotics including odorants at high concentrations. Here, we investigated the role of TRPM5-MCs in maintaining olfactory function using transcription factor Skn-1a knockout (Skn-1a-/-) mice, which lack TRPM5-MCs in the MOE. Under our standard housing conditions, Skn-1a-/- mice do not differ significantly from control mice in odor-evoked electro-olfactogram (EOG) responses and olfactory-guided behaviors, including finding buried food and preference reactions to socially and sexually relevant odors. However, after a 2-wk exposure to high-concentration odor chemicals and chitin powder, Skn-1a-/- mice exhibited a significant reduction in their odor and pheromone-evoked EOG responses. Consequently, their olfactory-guided behaviors were impaired compared with vehicle-exposed Skn-1a-/- mice. Conversely, the chemical exposure did not induce significant changes in the EOG responses and olfactory behaviors of control mice. Therefore, our physiological and behavioral results indicate that TRPM5-MCs play a protective role in maintaining the olfactory function of the MOE. PMID:28612045

  19. Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency.

    NARCIS (Netherlands)

    Nieuwenhuis, S.; Yeung, N.; van den Wildenberg, W.; Ridderinkhof, K.R.

    2003-01-01

    Neuroimaging and computational modeling studies have led to the suggestion that response conflict monitoring by the anterior cingulate cortex plays a key role in cognitive control. For example, response conflict is high when a response must be withheld (no-go) in contexts in which there is a

  20. Music evokes vivid autobiographical memories.

    Science.gov (United States)

    Belfi, Amy M; Karlan, Brett; Tranel, Daniel

    2016-08-01

    Music is strongly intertwined with memories-for example, hearing a song from the past can transport you back in time, triggering the sights, sounds, and feelings of a specific event. This association between music and vivid autobiographical memory is intuitively apparent, but the idea that music is intimately tied with memories, seemingly more so than other potent memory cues (e.g., familiar faces), has not been empirically tested. Here, we compared memories evoked by music to those evoked by famous faces, predicting that music-evoked autobiographical memories (MEAMs) would be more vivid. Participants listened to 30 songs, viewed 30 faces, and reported on memories that were evoked. Memories were transcribed and coded for vividness as in Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. [2002. Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689]. In support of our hypothesis, MEAMs were more vivid than autobiographical memories evoked by faces. MEAMs contained a greater proportion of internal details and a greater number of perceptual details, while face-evoked memories contained a greater number of external details. Additionally, we identified sex differences in memory vividness: for both stimulus categories, women retrieved more vivid memories than men. The results show that music not only effectively evokes autobiographical memories, but that these memories are more vivid than those evoked by famous faces.

  1. Adjective metaphors evoke negative meanings.

    Science.gov (United States)

    Sakamoto, Maki; Utsumi, Akira

    2014-01-01

    Previous metaphor studies have paid much attention to nominal metaphors and predicative metaphors, but little attention has been given to adjective metaphors. Although some studies have focused on adjective metaphors, they only examined differences in the acceptability of various types of adjective metaphors. This paper explores the cognitive effects evoked by adjective metaphors. Three psychological experiments revealed that (1) adjective metaphors, especially those modified by color adjectives, tend to evoke negative effect; (2) although the meanings of metaphors are basically affected by the meanings of their vehicles, when a vehicle has a neutral meaning, negative meanings are evoked most frequently for adjective metaphors compared to nominal and predicative metaphors; (3) negative meanings evoked by adjective metaphors are related to poeticness, and poetic metaphors evoke negative meanings more easily than less poetic metaphors. Our research sheds new light on studies of the use of metaphor, which is one of the most basic human cognitive abilities.

  2. Adjective metaphors evoke negative meanings.

    Directory of Open Access Journals (Sweden)

    Maki Sakamoto

    Full Text Available Previous metaphor studies have paid much attention to nominal metaphors and predicative metaphors, but little attention has been given to adjective metaphors. Although some studies have focused on adjective metaphors, they only examined differences in the acceptability of various types of adjective metaphors. This paper explores the cognitive effects evoked by adjective metaphors. Three psychological experiments revealed that (1 adjective metaphors, especially those modified by color adjectives, tend to evoke negative effect; (2 although the meanings of metaphors are basically affected by the meanings of their vehicles, when a vehicle has a neutral meaning, negative meanings are evoked most frequently for adjective metaphors compared to nominal and predicative metaphors; (3 negative meanings evoked by adjective metaphors are related to poeticness, and poetic metaphors evoke negative meanings more easily than less poetic metaphors. Our research sheds new light on studies of the use of metaphor, which is one of the most basic human cognitive abilities.

  3. Contribuição do potencial evocado auditivo em pacientes com vertigem Results of brainstem evoked response in patients with vestibular complaints

    Directory of Open Access Journals (Sweden)

    Gisiane Munaro

    2010-06-01

    Full Text Available A avaliação otoneurológica consiste em exames para investigação de patologias auditivas e vestibulares, incluindo o potencial evocado de tronco encefálico e a vectoeletronistagmografia. OBJETIVO: Descrever os resultados da avaliação otoneurológica em pacientes com queixas vestibulococleares, normo-ouvintes e com perda auditiva, comparados a grupo-controle. MATERIAL E MÉTODOS: Estudo transversal, retrospectivo, observacional, realizado com 56 pacientes vertiginosos avaliados por audiometria, vectoeletronistagmografia e potencial evocado auditivo de tronco encefálico, divididos em grupo A, 31 pacientes normo-ouvintes, e grupo B, 25 pacientes com perda auditiva, comparados ao grupo-controle constituído por dez voluntários normo-ouvintes assintomáticos. RESULTADOS: Os pacientes dos grupos A e B apresentaram aumento em monobloco das latências absolutas das ondas I, III e V estatisticamente significante, quando comparados ao grupo-controle, embora com valores dentro da normalidade. A ausência da onda I a 80 dBNA foi um achado comum para ambos os grupos e ocorreu em quatro (12,9% sujeitos bilateralmente e em três (9,6% unilateralmente no grupo A e em oito (32% pacientes no grupo B bilateralmente. Nos dois casos em que a vectoeletronistagmografia acusou alteração vestibular central não ocorreram alterações nos parâmetros dos potenciais evocados. CONCLUSÃO: Os pacientes com vertigem, normo-ouvintes e com perda auditiva, apresentaram latências absolutas aumentadas quando comparados a grupo-controleOtoneurological evaluations are based on tests which investigate auditory and vestibular disorders, including brainstem evoked auditory potentials and vecto-electronystagmography. AIM: to describe the results from the otoneurological assessment of patients with vestibulocochlear complaints, normal hearing individuals and patients with hearing loss, and we will compare them to a control group. MATERIALS AND METHODS: Cross

  4. Ocular Vestibular Evoked Myogenic Potentials

    Directory of Open Access Journals (Sweden)

    Felipe, Lilian

    2014-01-01

    Full Text Available Introduction Diagnostic testing of the vestibular system is an essential component of treating patients with balance dysfunction. Until recently, testing methods primarily evaluated the integrity of the horizontal semicircular canal, which is only a portion of the vestibular system. Recent advances in technology have afforded clinicians the ability to assess otolith function through vestibular evoked myogenic potential (VEMP testing. VEMP testing from the inferior extraocular muscles of the eye has been the subject of interest of recent research. Objective To summarize recent developments in ocular VEMP testing. Results Recent studies suggest that the ocular VEMP is produced by otolith afferents in the superior division of the vestibular nerve. The ocular VEMP is a short latency potential, composed of extraocular myogenic responses activated by sound stimulation and registered by surface electromyography via ipsilateral otolithic and contralateral extraocular muscle activation. The inferior oblique muscle is the most superficial of the six extraocular muscles responsible for eye movement. Therefore, measurement of ocular VEMPs can be performed easily by using surface electrodes on the skin below the eyes contralateral to the stimulated side. Conclusion This new variation of the VEMP procedure may supplement conventional testing in difficult to test populations. It may also be possible to use this technique to evaluate previously inaccessible information on the vestibular system.

  5. Cell-specific cardiac electrophysiology models.

    Directory of Open Access Journals (Sweden)

    Willemijn Groenendaal

    2015-04-01

    Full Text Available The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger independently. After the equations for all components are combined to form the composite model, a subset of parameters is tuned, often arbitrarily and by hand, until the model output matches a target objective, such as an action potential. Unfortunately, such models often fail to accurately simulate behavior that is dynamically dissimilar (e.g., arrhythmia to the simple target objective to which the model was fit. In this study, we develop a new approach in which data are collected via a series of complex electrophysiology protocols from single cardiac myocytes and then used to tune model parameters via a parallel fitting method known as a genetic algorithm (GA. The dynamical complexity of the electrophysiological data, which can only be fit by an automated method such as a GA, leads to more accurately parameterized models that can simulate rich cardiac dynamics. The feasibility of the method is first validated computationally, after which it is used to develop models of isolated guinea pig ventricular myocytes that simulate the electrophysiological dynamics significantly better than does a standard guinea pig model. In addition to improving model fidelity generally, this approach can be used to generate a cell-specific model. By so doing, the approach may be useful in applications ranging from studying the implications of cell-to-cell variability to the prediction of intersubject differences in response to pharmacological treatment.

  6. Neuronal intrinsic properties shape naturally evoked sensory inputs in the dorsal horn of the spinal cord.

    Science.gov (United States)

    Reali, Cecilia; Russo, Raúl E

    2013-01-01

    Intrinsic electrophysiological properties arising from specific combinations of voltage-gated channels are fundamental for the performance of small neural networks in invertebrates, but their role in large-scale vertebrate circuits remains controversial. Although spinal neurons have complex intrinsic properties, some tasks produce high-conductance states that override intrinsic conductances, minimizing their contribution to network function. Because the detection and coding of somato-sensory information at early stages probably involves a relatively small number of neurons, we speculated that intrinsic electrophysiological properties are likely involved in the processing of sensory inputs by dorsal horn neurons (DHN). To test this idea, we took advantage of an integrated spinal cord-hindlimbs preparation from turtles allowing the combination of patch-clamp recordings of DHN embedded in an intact network, with accurate control of the extracellular milieu. We found that plateau potentials and low threshold spikes (LTS) -mediated by L- and T-type Ca(2+)channels, respectively- generated complex dynamics by interacting with naturally evoked synaptic potentials. Inhibitory receptive fields could be changed in sign by activation of the LTS. On the other hand, the plateau potential transformed sensory signals in the time domain by generating persistent activity triggered on and off by brief sensory inputs and windup of the response to repetitive sensory stimulation. Our findings suggest that intrinsic properties dynamically shape sensory inputs and thus represent a major building block for sensory processing by DHN. Intrinsic conductances in DHN appear to provide a mechanism for plastic phenomena such as dynamic receptive fields and sensitization to pain.

  7. Error and reinforcement processing in ADHD : An electrophysiological study

    NARCIS (Netherlands)

    Groen, Yvonne

    2011-01-01

    Introduction and Objective(s) Current explanatory models of ADHD suggest abnormal reinforcement sensitivity, but the exact nature of this deficit is unclear. In this study we investigate electrophysiological reactions to positive/negative reinforcement as well as correct/error responses to gain more

  8. THE IMPORTANCE OF EARLY DIAGNOSIS OF MUSCLE EVOKED POTENCIAL IN BELL'S PALSY

    Directory of Open Access Journals (Sweden)

    Jelena Stamenovic

    2005-01-01

    Full Text Available Electrophysiological tests may offer a valuable information in defining the severity of nerve injury and a possible subsequent dysfunction. For that reasons these tests could be significant prognostic parameters in Bell’s palsy. The basic aim of our study was to evaluate diagnostic and prognostic value of muscle evoked potential (MEP in Bell’s palsy. Our study included 50 patients with clinical signs of Bell’s palsy, of both sexes, 18 to 80 years of age. We analysed MEP amplitude and MEP latency on the third, seventh, fourteenth and twenty first day of the onset of palsy. In order to estimate prognostic values of these electrophysiological parameters we correlated them with duration of clinical recovery. Our results show that MEP amplitude and MEP latency are of early prognostic importance in Bell’s palsy. On the basis of on these electrophysiological parameters it is possible to predict duration of clinical recovery and outcome of this disease.

  9. Asymmetrical hemispheric EEG activation evoked by stimulus position during the Simon task.

    Science.gov (United States)

    Spironelli, Chiara; Tagliabue, Mariaelena; Angrilli, Alessandro

    2006-05-22

    The Simon effect has been previously shown to be asymmetric at both the behavioral and electrophysiological levels. The present investigation was aimed to clarify whether, during a Simon task, hemispheric asymmetry is also observed in the early phases of stimulus processing. In a group of healthy subjects performing the Simon task, we analyzed scalp potentials evoked by the first lateralized cue (left or right), instead of the classical readiness potential preceding the motor response. ERP results showed a significant left cortical activation to stimuli presented in the right visual field at the 140-160 ms time window. Instead, left stimuli elicited a significant activation of the right versus left hemisphere starting at the next 160-180 ms time interval. We linked this asymmetry to that observed in behavioral data: the Simon effect recorded with left stimuli is smaller than the Simon effect recorded with right stimuli. Results confirm the hypothesis that in right handed subjects, left hemisphere is specialized for motor response selection and is able to process right stimuli faster than the right hemisphere does for left stimuli.

  10. The locus of color sensation: cortical color loss and the chromatic visual evoked potential.

    Science.gov (United States)

    Crognale, Michael A; Duncan, Chad S; Shoenhard, Hannah; Peterson, Dwight J; Berryhill, Marian E

    2013-08-28

    Color losses of central origin (cerebral achromatopsia and dyschromatopsia) can result from cortical damage and are most commonly associated with stroke. Such cases have the potential to provide useful information regarding the loci of the generation of the percept of color. One available tool to examine this issue is the chromatic visual evoked potential (cVEP). The cVEP has been used successfully to objectively quantify losses in color vision capacity in both congenital and acquired deficiencies of retinal origin but has not yet been applied to cases of color losses of cortical origin. In addition, it is not known with certainty which cortical sites are responsible for the generation of the cVEP waveform components. Here we report psychophysical and electrophysiological examination of a patient with color deficits resulting from a bilateral cerebral infarct in the ventral occipitotemporal region. Although this patient demonstrated pronounced color losses of a general nature, the waveform of the cVEP remains unaffected. Contrast response functions of the cVEP are also normal for this patient. The results suggest that the percept of color arises after the origin of the cVEP and that normal activity in those areas that give rise to the characteristic negative wave of the cVEP are not sufficient to provide for the normal sensation of color.

  11. The detection of infant cortical auditory evoked potentials (CAEPs) using statistical and visual detection techniques.

    Science.gov (United States)

    Carter, Lyndal; Golding, Maryanne; Dillon, Harvey; Seymour, John

    2010-05-01

    With the advent of newborn hearing screening programs, the need to verify the fit of hearing aids in young infants has increased. The recording of cortical auditory evoked potentials (CAEPs) for this purpose is quite feasible, but rapid developmental changes that affect response morphology and the presence of electrophysiological noise can make subjective response detection challenging. The purpose of this study was to investigate the effectiveness of an automated statistic versus experienced examiners in detecting the presence of infant CAEPs when stimuli were present and reporting the absence of CAEPs when no stimuli were present. A repeated-measures design was used where infant-generated CAEPs were interpreted by examiners and an automated statistic. There were nine male and five female infants (mean age, 12 mo; SD, 3.4) who completed behavioral and electrophysiological testing using speech-based stimuli. In total, 87 infant CAEPs were recorded to three sensation levels, 10, 20 and 30 dB relative to the behavioral thresholds and to nonstimulus trials. Three examiners were presented with these responses: (1) "in series," where waveforms were presented in order of decreasing stimulus presentation levels, and (2) "nonseries," where waveforms were randomized completely and presented as independent waveforms. The examiners were given no information about the stimulus levels and were asked to determine whether responses to auditory stimulation could be observed and their degree of certainty in making their decision. Data from the CAEP responses were also converted to multiple dependent variables and analyzed using Hotelling's T(2). Results from both methods of response detection were analyzed using a repeated measures ANOVA (analysis of variance) and parameters of signal detection theory known as d-prime (d') and the area under the receiver operating characteristic (ROC) curve. Results showed that as the stimulus level increased, the sensitivity index, d', increased

  12. Brainstem auditory evoked potentials in children with lead exposure

    Directory of Open Access Journals (Sweden)

    Katia de Freitas Alvarenga

    2015-02-01

    Full Text Available Introduction: Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. Objective: To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Methods: Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months. Results: The mean time-integrated cumulative blood lead index was 12 µg/dL (SD ± 5.7, range:2.433. All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. Conclusion: No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area.

  13. Brainstem auditory evoked potentials in children with lead exposure.

    Science.gov (United States)

    Alvarenga, Katia de Freitas; Morata, Thais Catalani; Lopes, Andrea Cintra; Feniman, Mariza Ribeiro; Corteletti, Lilian Cassia Bornia Jacob

    2015-01-01

    Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months). The mean time-integrated cumulative blood lead index was 12 μg/dL (SD ± 5.7, range: 2.433). All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  14. Evoked cavernous activity: neuroanatomic implications.

    Science.gov (United States)

    Yilmaz, U; Vicars, B; Yang, C C

    2009-01-01

    We investigated the autonomic innervation of the penis by using evoked cavernous activity (ECA). We recruited seven men with thoracic spinal cord injury (SCI) and sexual dysfunction, and six men who were scheduled to have pelvic surgery (PS), specifically non-nerve-sparing radical cystoprostatectomy. In the PS patients, ECA was performed both pre- and postoperatively. The left median nerve was electrically stimulated and ECA was recorded with two concentric electromyography needles placed into the right and left cavernous bodies. We simultaneously recorded hand and foot sympathetic skin responses (SSRs) as controls. In the SCI group, all but one patient had reproducible hand SSRs. None of these patients had ECA or foot SSRs. All the PS patients had reproducible ECA and SSRs, both preoperatively and postoperatively. There was no difference in the latency and amplitude measurements of ECA and SSRs in the postoperative compared with that of the pre-operative period (P>0.05). In conclusion, ECA is absent in men with SCI above the sympathetic outflow to the genitalia. In men, after radical pelvic surgery, ECA is preserved, indicating the preservation of sympathetic fibers.

  15. CESE: Cell Electrophysiology Simulation Environment.

    Science.gov (United States)

    Missan, Sergey; McDonald, Terence F

    2005-01-01

    Cell electrophysiology simulation environment (CESE) is an integrated environment for performing simulations with a variety of electrophysiological models that have Hodgkin-Huxley and Markovian formulations of ionic currents. CESE is written in Java 2 and is readily portable to a number of operating systems. CESE allows execution of single-cell models and modification and clamping of model parameters, as well as data visualisation and analysis using a consistent interface. Model creation for CESE is facilitated by an object-oriented approach and use of an extensive modelling framework. The Web-based model repository is available. CESE and the Web-based model repository are available at http://cese.sourceforge.net/.

  16. Electrophysiological and behavioural responses of the tea geometrid Ectropis obliqua (Lepidoptera: Geometridae) to volatiles from a non-host plant, rosemary, Rosmarinus officinalis (Lamiaceae).

    Science.gov (United States)

    Zhang, Zhengqun; Bian, Lei; Sun, Xiaoling; Luo, Zongxiu; Xin, Zhaojun; Luo, Fengjian; Chen, Zongmao

    2015-01-01

    A plant-based 'push-pull' strategy for Ectropis obliqua (Prout) (Lepidoptera: Geometridae) is being developed using semiochemicals in the volatiles of Rosmarinus officinalis (Lamiaceae). The aim of this study was to identify and quantify the bioactive components within R. officinalis by gas chromatography-electroantennographic detection (GC-EAD) and gas chromatography-mass spectrometry (GC-MS), and to test the antennal and behavioural responses of E. obliqua to these chemicals. The emission dynamics of bioactive chemicals was also monitored. GC-EAD experiments indicated that E. obliqua antennae responded to the following volatile compounds from R. officinalis: myrcene, α-terpinene, γ-terpinene, linalool, cis-verbenol, camphor, α-terpineol and verbenone, which were the minor constituents. Based on the dose-dependent antennal and behavioural responses of E. obliqua to these bioactive compounds, myrcene, γ-terpinene, linalool, cis-verbenol, camphor and verbenone were found to play a key role in repelling the moths, and the mixture that included all eight compounds was significantly more effective. The maximum emissions of these semiochemicals occurred at nightfall. The specifically bioactive compounds in R. officinalis volatiles are responsible for repelling E. obliqua adults. Results indicate that R. officinalis should be considered as a potential behaviour-modifying stimulus for 'push' components when developing 'push-pull' strategies for control of E. obliqua using semiochemicals. © 2014 Society of Chemical Industry.

  17. Do ambient urban odors evoke basic emotions?

    Directory of Open Access Journals (Sweden)

    Sandra Theresia Weber-Glass

    2014-04-01

    Full Text Available Fragrances, such as plant odors, have been shown to evoke autonomic response patterns associated with Ekman’s (Ekman et al., 1983 basic emotions happiness, surprise, anger, fear, sadness and disgust. Inducing positive emotions by odors in highly frequented public spaces could serve to improve the quality of life in urban environments. Thus, the present study evaluated the potency of ambient odors connoted with an urban environment to evoke basic emotions on an autonomic and cognitive response level. Synthetic mixtures representing the odors of disinfectant, candles / bees wax, summer air, burnt smell, vomit and musty smell as well as odorless water as a control were presented five times in random order to 30 healthy, non-smoking human subjects with intact sense of smell. Skin temperature, skin conductance, breathing rate, forearm muscle activity, blink rate and heart rate were recorded simultaneously. Subjects rated the odors in terms of pleasantness, intensity and familiarity and gave verbal labels to each odor as well as cognitive associations with the basic emotions. The results showed that the amplitude of the skin conductance response varied as a function of odor presentation. Burnt smell and vomit elicited significantly higher electrodermal responses than summer air. Also, a negative correlation was revealed between the amplitude of the skin conductance response and hedonic odor valence indicating that the magnitude of the electrodermal response increased with odor unpleasantness. The analysis of the cognitive associations between odors and basic emotions showed that candles / bees wax and summer air were specifically associated with happiness whereas burnt smell and vomit were uniquely associated with disgust. Our findings suggest that city odors may evoke specific cognitive associations of basic emotions and that autonomic activity elicited by such odors is related to odor hedonics.

  18. Auditory- and Vestibular-Evoked Potentials Correlate with Motor and Non-Motor Features of Parkinson’s Disease

    Science.gov (United States)

    Shalash, Ali Soliman; Hassan, Dalia Mohamed; Elrassas, Hanan Hani; Salama, Mohamed Mosaad; Méndez-Hernández, Edna; Salas-Pacheco, José M.; Arias-Carrión, Oscar

    2017-01-01

    Degeneration of several brainstem nuclei has been long related to motor and non-motor symptoms (NMSs) of Parkinson’s disease (PD). Nevertheless, due to technical issues, there are only a few studies that correlate that association. Brainstem auditory-evoked potential (BAEP) and vestibular-evoked myogenic potential (VEMP) responses represent a valuable tool for brainstem assessment. Here, we investigated the abnormalities of BAEPs, ocular VEMPs (oVEMPs), and cervical VEMPs (cVEMPs) in patients with PD and its correlation to the motor and NMSs. Fifteen patients diagnosed as idiopathic PD were evaluated by Unified Parkinson’s Disease Rating Scale and its subscores, Hoehn and Yahr scale, Schwab and England scale, and Non-Motor Symptoms Scale. PD patients underwent pure-tone, speech audiometry, tympanometry, BAEP, oVEMPs, and cVEMPs, and compared to 15 age-matched control subjects. PD subjects showed abnormal BAEP wave morphology, prolonged absolute latencies of wave V and I–V interpeak latencies. Absent responses were the marked abnormality seen in oVEMP. Prolonged latencies with reduced amplitudes were seen in cVEMP responses. Rigidity and bradykinesia were correlated to the BAEP and cVEMP responses contralateral to the clinically more affected side. Contralateral and ipsilateral cVEMPs were significantly correlated to sleep (p = 0.03 and 0.001), perception (p = 0.03), memory/cognition (p = 0.025), and urinary scores (p = 0.03). The oVEMP responses showed significant correlations to cardiovascular (p = 0.01) and sexual dysfunctions (p = 0.013). PD is associated with BAEP and VEMP abnormalities that are correlated to the motor and some non-motor clinical characteristics. These abnormalities could be considered as potential electrophysiological biomarkers for brainstem dysfunction and its associated motor and non-motor features. PMID:28289399

  19. Electrophysiological measurements of spectral sensitivities: a review

    Directory of Open Access Journals (Sweden)

    R.D. DeVoe

    1997-02-01

    Full Text Available Spectral sensitivities of visual systems are specified as the reciprocals of the intensities of light (quantum fluxes needed at each wavelength to elicit the same criterion amplitude of responses. This review primarily considers the methods that have been developed for electrophysiological determinations of criterion amplitudes of slow-wave responses from single retinal cells. Traditional flash methods can require tedious dark adaptations and may yield erroneous spectral sensitivity curves which are not seen in such modifications as ramp methods. Linear response methods involve interferometry, while constant response methods involve manual or automatic adjustments of continuous illumination to keep response amplitudes constant during spectral scans. In DC or AC computerized constant response methods, feedback to determine intensities at each wavelength is derived from the response amplitudes themselves. Although all but traditional flash methods have greater or lesser abilities to provide on-line determinations of spectral sensitivities, computerized constant response methods are the most satisfactory due to flexibility, speed and maintenance of a constant adaptation level

  20. Ipsilesional motor-evoked potential absence in pediatric hemiparesis impacts tracking accuracy of the less affected hand.

    Science.gov (United States)

    Cassidy, Jessica M; Carey, James R; Lu, Chiahao; Krach, Linda E; Feyma, Tim; Durfee, William K; Gillick, Bernadette T

    2015-12-01

    This study analyzed the relationship between electrophysiological responses to transcranial magnetic stimulation (TMS), finger tracking accuracy, and volume of neural substrate in children with congenital hemiparesis. Nineteen participants demonstrating an ipsilesional motor-evoked potential (MEP) were compared with eleven participants showing an absent ipsilesional MEP response. Comparisons of finger tracking accuracy from the affected and less affected hands and ipsilesional/contralesional (I/C) volume ratio for the primary motor cortex (M1) and posterior limb of internal capsule (PLIC) were done using two-sample t-tests. Participants showing an ipsilesional MEP response demonstrated superior tracking performance from the less affected hand (p=0.016) and significantly higher I/C volume ratios for M1 (p=0.028) and PLIC (p=0.005) compared to participants without an ipsilesional MEP response. Group differences in finger tracking accuracy from the affected hand were not significant. These results highlight differentiating factors amongst children with congenital hemiparesis showing contrasting MEP responses: less affected hand performance and preserved M1 and PLIC volume. Along with MEP status, these factors pose important clinical implications in pediatric stroke rehabilitation. These findings may also reflect competitive developmental processes associated with the preservation of affected hand function at the expense of some function in the less affected hand. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Assessment of hearing threshold in adults with hearing loss using an automated system of cortical auditory evoked potential detection

    Directory of Open Access Journals (Sweden)

    Alessandra Spada Durante

    Full Text Available Abstract Introduction: The use of hearing aids by individuals with hearing loss brings a better quality of life. Access to and benefit from these devices may be compromised in patients who present difficulties or limitations in traditional behavioral audiological evaluation, such as newborns and small children, individuals with auditory neuropathy spectrum, autism, and intellectual deficits, and in adults and the elderly with dementia. These populations (or individuals are unable to undergo a behavioral assessment, and generate a growing demand for objective methods to assess hearing. Cortical auditory evoked potentials have been used for decades to estimate hearing thresholds. Current technological advances have lead to the development of equipment that allows their clinical use, with features that enable greater accuracy, sensitivity, and specificity, and the possibility of automated detection, analysis, and recording of cortical responses. Objective: To determine and correlate behavioral auditory thresholds with cortical auditory thresholds obtained from an automated response analysis technique. Methods: The study included 52 adults, divided into two groups: 21 adults with moderate to severe hearing loss (study group; and 31 adults with normal hearing (control group. An automated system of detection, analysis, and recording of cortical responses (HEARLab® was used to record the behavioral and cortical thresholds. The subjects remained awake in an acoustically treated environment. Altogether, 150 tone bursts at 500, 1000, 2000, and 4000 Hz were presented through insert earphones in descending-ascending intensity. The lowest level at which the subject detected the sound stimulus was defined as the behavioral (hearing threshold (BT. The lowest level at which a cortical response was observed was defined as the cortical electrophysiological threshold. These two responses were correlated using linear regression. Results: The cortical

  2. Evoked emotions predict food choice.

    Directory of Open Access Journals (Sweden)

    Jelle R Dalenberg

    Full Text Available In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments. Therefore, the focus within recent studies shifted towards using emotion-profiling methods that successfully can discriminate between products that are equally liked. However, it is unclear how well scores from emotion-profiling methods predict actual food choice and/or consumption. To test this, we proposed to decompose emotion scores into valence and arousal scores using Principal Component Analysis (PCA and apply Multinomial Logit Models (MLM to estimate food choice using liking, valence, and arousal as possible predictors. For this analysis, we used an existing data set comprised of liking and food-evoked emotions scores from 123 participants, who rated 7 unlabeled breakfast drinks. Liking scores were measured using a 100-mm visual analogue scale, while food-evoked emotions were measured using 2 existing emotion-profiling methods: a verbal and a non-verbal method (EsSense Profile and PrEmo, respectively. After 7 days, participants were asked to choose 1 breakfast drink from the experiment to consume during breakfast in a simulated restaurant environment. Cross validation showed that we were able to correctly predict individualized food choice (1 out of 7 products for over 50% of the participants. This number increased to nearly 80% when looking at the top 2 candidates. Model comparisons showed that evoked emotions better predict food choice than perceived liking alone. However, the strongest predictive strength was achieved by the combination of evoked emotions and liking. Furthermore we showed that non-verbal food-evoked emotion scores more accurately predict food choice than verbal food-evoked emotions scores.

  3. Evoked emotions predict food choice.

    Science.gov (United States)

    Dalenberg, Jelle R; Gutjar, Swetlana; Ter Horst, Gert J; de Graaf, Kees; Renken, Remco J; Jager, Gerry

    2014-01-01

    In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments. Therefore, the focus within recent studies shifted towards using emotion-profiling methods that successfully can discriminate between products that are equally liked. However, it is unclear how well scores from emotion-profiling methods predict actual food choice and/or consumption. To test this, we proposed to decompose emotion scores into valence and arousal scores using Principal Component Analysis (PCA) and apply Multinomial Logit Models (MLM) to estimate food choice using liking, valence, and arousal as possible predictors. For this analysis, we used an existing data set comprised of liking and food-evoked emotions scores from 123 participants, who rated 7 unlabeled breakfast drinks. Liking scores were measured using a 100-mm visual analogue scale, while food-evoked emotions were measured using 2 existing emotion-profiling methods: a verbal and a non-verbal method (EsSense Profile and PrEmo, respectively). After 7 days, participants were asked to choose 1 breakfast drink from the experiment to consume during breakfast in a simulated restaurant environment. Cross validation showed that we were able to correctly predict individualized food choice (1 out of 7 products) for over 50% of the participants. This number increased to nearly 80% when looking at the top 2 candidates. Model comparisons showed that evoked emotions better predict food choice than perceived liking alone. However, the strongest predictive strength was achieved by the combination of evoked emotions and liking. Furthermore we showed that non-verbal food-evoked emotion scores more accurately predict food choice than verbal food-evoked emotions scores.

  4. Music-Evoked Emotions-Current Studies.

    Science.gov (United States)

    Schaefer, Hans-Eckhardt

    2017-01-01

    The present study is focused on a review of the current state of investigating music-evoked emotions experimentally, theoretically and with respect to their therapeutic potentials. After a concise historical overview and a schematic of the hearing mechanisms, experimental studies on music listeners and on music performers are discussed, starting with the presentation of characteristic musical stimuli and the basic features of tomographic imaging of emotional activation in the brain, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), which offer high spatial resolution in the millimeter range. The progress in correlating activation imaging in the brain to the psychological understanding of music-evoked emotion is demonstrated and some prospects for future research are outlined. Research in psychoneuroendocrinology and molecular markers is reviewed in the context of music-evoked emotions and the results indicate that the research in this area should be intensified. An assessment of studies involving measuring techniques with high temporal resolution down to the 10 ms range, as, e.g., electroencephalography (EEG), event-related brain potentials (ERP), magnetoencephalography (MEG), skin conductance response (SCR), finger temperature, and goose bump development (piloerection) can yield information on the dynamics and kinetics of emotion. Genetic investigations reviewed suggest the heredity transmission of a predilection for music. Theoretical approaches to musical emotion are directed to a unified model for experimental neurological evidence and aesthetic judgment. Finally, the reports on musical therapy are briefly outlined. The study concludes with an outlook on emerging technologies and future research fields.

  5. Classification of Auditory Evoked Potentials based on the wavelet decomposition and SVM network

    Directory of Open Access Journals (Sweden)

    Michał Suchocki

    2015-12-01

    Full Text Available For electrophysiological hearing assessment and diagnosis of brain stem lesions, the most often used are auditory brainstem evoked potentials of short latency. They are characterized by successively arranged maxima as a function of time, called waves. Morphology of the course, in particular, the timing and amplitude of each wave, allow a neurologist to make diagnose, what is not an easy task. A neurologist should be experienced, concentrated, and should have very good perception. In order to support his diagnostic process, the authors have developed an algorithm implementing the automated classification of auditory evoked potentials to the group of pathological and physiological cases, the sensitivity and specificity determined for an independent test group (of 50 cases of respectively 84% and 88%.[b]Keywords[/b]: biomedical engineering, brainstem auditory evoked potentials, wavelet decomposition, support vector machine

  6. The μ opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway

    Directory of Open Access Journals (Sweden)

    Roberts-Thomson Sarah J

    2006-07-01

    Full Text Available Abstract Background The vanilloid receptor 1 (TRPV1 is critical in the development of inflammatory hyperalgesia. Several receptors including G-protein coupled prostaglandin receptors have been reported to functionally interact with the TRPV1 through a cAMP-dependent protein kinase A (PKA pathway to potentiate TRPV1-mediated capsaicin responses. Such regulation may have significance in inflammatory pain. However, few functional receptor interactions that inhibit PKA-mediated potentiation of TRPV1 responses have been described. Results In the present studies we investigated the hypothesis that the μ opioid receptor (MOP agonist morphine can modulate forskolin-potentiated capsaicin responses through a cAMP-dependent PKA pathway. HEK293 cells were stably transfected with TRPV1 and MOP, and calcium (Ca2+ responses to injection of the TRPV1 agonist capsaicin were monitored in Fluo-3-loaded cells. Pre-treatment with morphine did not inhibit unpotentiated capsaicin-induced Ca2+ responses but significantly altered capsaicin responses potentiated by forskolin. TRPV1-mediated Ca2+ responses potentiated by the direct PKA activator 8-Br-cAMP and the PKC activator Phorbol-12-myristate-13-acetatewere not modulated by morphine. Immunohistochemical studies confirmed that the TRPV1 and MOP are co-expressed on cultured Dorsal Root Ganglion neurones, pointing towards the existence of a functional relationship between the G-protein coupled MOP and nociceptive TRPV1. Conclusion The results presented here indicate that the opioid receptor agonist morphine acts via inhibition of adenylate cyclase to inhibit PKA-potentiated TRPV1 responses. Targeting of peripheral opioid receptors may therefore have therapeutic potential as an intervention to prevent potentiation of TRPV1 responses through the PKA pathway in inflammation.

  7. Electrophysiologic Assessments of Involuntary Movements: Tremor and Myoclonus

    Directory of Open Access Journals (Sweden)

    Hyun-Dong Park

    2009-05-01

    Full Text Available Tremor is defined as a rhythmical, involuntary oscillatory movement of a body part. Although neurological examination reveals information regarding its frequency, regularity, amplitude, and activation conditions, the electrophysiological investigations help in confirming the tremor, in differentiating it from other hyperkinetic disorders like myoclonus, and may provide etiological clues. Accelerometer with surface electromyogram (EMG can be used to document the dominant frequency of a tremor, which may be useful as certain frequencies are more characteristic of specific etiologies than others hyperkinetic disorders. It may show rhythmic bursts, duration and activation pattern (alternating or synchronous. Myoclonus is a quick, involuntary movement. Electrophysiological studies may helpful in the evaluation of myoclonus, not only for confirming the clinical diagnosis but also for understanding the underlying physiological mechanisms. Electroencephalogram (EEG-EMG correlates can give us important information about myoclonus. Jerk-locked back-averaging and evoked potentials with recording of the long-latency, long-loop reflexes are currently available to study the pathophysiology of myoclonus.

  8. Influence of delta9-tetrahydrocannabinol and cannabidiol on photically evoked after-discharge potentials.

    Science.gov (United States)

    Turkanis, S A; Chiu, P; Borys, H K; Karler, R

    1977-04-29

    Two cannabinoids, delta9-tetrahydrocannabinol and cannabidiol, and several reference drugs were compared relative to their effects in a recently developed anticonvulsant test system, the after-discharge potentials of the visually evoked response; the potentials were recorded electrophysiologically from electrodes permanently mounted over the visual cortices of conscious rats. In anticonvulsant doses, trimethadione and ethosuximide produced an extensive depression of after-discharge activity, whereas diphenylhydantoin and cannabidiol exerted no such effect. In contrast, anticonvulsant doses of delta9-tetrahydrocannabinol and subconvulsant doses of pentylenetetrazol markedly increased after-discharge activity, which may represent a manifestation of their central nervous system excitatory properties. The data from the present study support our previously published ovservations from several other anticonvulsant tests that indicate the anticonvulsant characteristics of cannabidiol resemble those of diphenylhydantoin rather than those of trimethadione and that the central excitatory properties of delta9-tetrahydrocannabinol distinguish it from cannabidiol. The results consistently suggest that the cannabinoids will be effective against grand mal but not absence seizures.

  9. Steady state visually evoked potential (SSVEP) topography changes associated with cocoa flavanol consumption.

    Science.gov (United States)

    Camfield, D A; Scholey, A; Pipingas, A; Silberstein, R; Kras, M; Nolidin, K; Wesnes, K; Pase, M; Stough, C

    2012-02-28

    In a randomized, double-blind placebo controlled trial, 63 middle-aged volunteers aged between 40 and 65 years were administered a daily chocolate drink containing 250 mg or 500 mg cocoa flavanols versus a low cocoa flavanol (placebo) drink over a 30-day period. Participants were tested at baseline as well as at the end of the treatment period on a test of Spatial Working Memory. Steady State Probe Topography (SST) was used to assess neurocognitive changes associated with cocoa flavanol supplementation during the completion of the Spatial Working Memory task. SST is an electrophysiological technique which utilizes a 13 Hz diffuse visual flicker in order to generate a steady state visually evoked potential (SSVEP). Changes in the amplitude and phase of the SSVEP response after 30 days were compared between treatment groups. Behavioral measures of accuracy and reaction time were not found to be significantly different between treatment groups, while average SSVEP amplitude and phase differences at a number of posterior parietal and centro-frontal sites were found to be significantly different between groups during memory encoding, the working memory hold period and retrieval. In the absence of significant behavioral effects, these differences in brain activation can be interpreted as evidence of increased neural efficiency in spatial working memory function associated with chronic cocoa flavanol consumption. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging

    DEFF Research Database (Denmark)

    Fuglø, Dan; Pedersen, Henrik; Rostrup, Egill

    2012-01-01

    To compare different electroencephalography (EEG)-based regressors and their ability to predict the simultaneously recorded blood oxygenation level dependent response during blocked visual stimulation, simultaneous EEG-functional magnetic resonance imaging in 10 healthy volunteers was performed...

  11. Long-term electrophysiological activity and pharmacological response of a human induced pluripotent stem cell-derived neuron and astrocyte co-culture.

    Science.gov (United States)

    Odawara, A; Saitoh, Y; Alhebshi, A H; Gotoh, M; Suzuki, I

    2014-01-24

    Human induced pluripotent stem cell (hiPSC)-derived neurons may be effectively used for drug discovery and cell-based therapy. However, the immaturity of cultured human iPSC-derived neurons and the lack of established functional evaluation methods are problematic. We here used a multi-electrode array (MEA) system to investigate the effects of the co-culture of rat astrocytes with hiPSC-derived neurons on the long-term culture, spontaneous firing activity, and drug responsiveness effects. The co-culture facilitated the long-term culture of hiPSC-derived neurons for >3 months and long-term spontaneous firing activity was also observed. After >3 months of culture, we observed synchronous burst firing activity due to synapse transmission within neuronal networks. Compared with rat neurons, hiPSC-derived neurons required longer time to mature functionally. Furthermore, addition of the synapse antagonists bicuculline and 6-cyano-7-nitroquinoxaline-2,3-dione induced significant changes in the firing rate. In conclusion, we used a MEA system to demonstrate that the co-culture of hiPSC-derived neurons with rat astrocytes is an effective method for studying the function of human neuronal cells, which could be used for drug screening. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Electrophysiological correlates of changes in reaction time based on stimulus intensity.

    Directory of Open Access Journals (Sweden)

    Bimal Lakhani

    Full Text Available Although reaction time is commonly used as an indicator of central nervous system integrity, little is currently understood about the mechanisms that determine processing time. In the current study, we are interested in determining the differences in electrophysiological events associated with significant changes in reaction time that could be elicited by changes in stimulus intensity. The primary objective is to assess the effect of increasing stimulus intensity on the latency and amplitude of afferent inputs to the somatosensory cortex, and their relation to reaction time.Median nerve stimulation was applied to the non-dominant hand of 12 healthy young adults at two different stimulus intensities (HIGH & LOW. Participants were asked to either press a button as fast as possible with their dominant hand or remain quiet following the stimulus. Electroencephalography was used to measure somatosensory evoked potentials (SEPs and event related potentials (ERPs. Electromyography from the flexor digitorum superficialis of the button-pressing hand was used to assess reaction time. Response time was the time of button press.Reaction time and response time were significantly shorter following the HIGH intensity stimulus compared to the LOW intensity stimulus. There were no differences in SEP (N20 & P24 peak latencies and peak-to-peak amplitude for the two stimulus intensities. ERPs, locked to response time, demonstrated a significantly larger pre-movement negativity to positivity following the HIGH intensity stimulus over the Cz electrode.This work demonstrates that rapid reaction times are not attributable to the latency of afferent processing from the stimulated site to the somatosensory cortex, and those latency reductions occur further along the sensorimotor transformation pathway. Evidence from ERPs indicates that frontal planning areas such as the supplementary motor area may play a role in transforming the elevated sensory volley from the

  13. Mercury toxicity in Amazon gold miners: visual dysfunction assessed by retinal and cortical electrophysiology.

    Science.gov (United States)

    da Costa, Genilma M; dos Anjos, Laiza M; Souza, Givago S; Gomes, Bruno D; Saito, Cézar A; Pinheiro, Maria da Conceição N; Ventura, Dora F; da Silva Filho, Manoel; Silveira, Luiz Carlos L

    2008-05-01

    Amazonian gold mining activity results in human exposure to mercury vapor. We evaluated the visual system of two Amazonian gold miners (29 and 37 years old) by recording the transient pattern electroretinogram (tPERG) and transient pattern visual evoked potential (tPVEP). We compared these results with those obtained from a regional group of control subjects. For both tPERG and tPVEP, checkerboards with 0.5 or 2 cycles per degree (cpd) of spatial frequency were presented in a 16 degrees squared area, 100% Michelson contrast, 50cd/m2 mean luminance, and 1 Hz square-wave pattern-reversal presentation. Two averaged waveforms (n=240 sweeps, 1s each) were monocularly obtained for each subject in each condition. Both eyes were monocularly tested only in gold miners. Normative data were calculated using a final pooled waveform with 480 sweeps. The first gold miner, LCS, had normal tPERG responses. The second one, RNP, showed low tPERG (P50 component) amplitudes at 0.5 cpd for both eyes, outside the normative data, and absence of response at 2 cpd for his right eye. Delayed tPVEP responses (P100 component) were found at 2 cpd for LCS but the implicit times were inside the normative data. Subject RNP also showed delayed tPVEP responses (all components), but only the implicit time obtained with his right eye was outside the normative data at 2 cpd. We conclude that mercury exposure levels found in the Amazon gold miners is high enough to damage the visual system and can be assessed by non-invasive electrophysiological techniques.

  14. Remodeling of energy metabolism and absence of electrophysiological changes in hearts of obese hyperleptinemic mice. New insights into the pleiotropic role of leptin

    Directory of Open Access Journals (Sweden)

    Rocío eGuzmán-Ruiz

    2013-11-01

    Full Text Available Dietary treatment with high-fat diets (HFD triggers diabetes and hyperleptinemia, concomitantly with a partial state of leptin resistance that affects hepatic and adipose tissue but not the heart. In this context, characterized by widespread steatosis, cardiac lipid content remains unchanged. As previously reported, HFD-evoked hyperleptinemia could be a pivotal element contributing to increase fatty acid (FA metabolism in the heart and to to prevent cardiac steatosis. This metabolic adaptation might theoretically reduce energy efficiency in cardiomyocytes and lead to cardiac electrophysiological remodeling. Therefore the aim of the current study has been to investigate the impact of long-term HFD on cardiac metabolism and electrophysiological properties of the principal ionic currents responsible of the action potential duration in mouse cardiomyocytes. Male C57BL/6J mice were fed a control (10% kcal from fat or HFD (45% kcal from fat during 32 weeks. Quantification of enzymatic activities regulating mitochondrial uptake of pyruvate and FA showed an increase of both carnitine-palmitoyltransferase and citrate synthase activities together with a decrease of lactate dehydrogenase and pyruvate dehydrogenase activities. Increased expression of uncoupling protein-3, Mn- and Cu/Zn-superoxide dismutases and catalase were also detected. Total glutathione/oxidized glutathione ratios were unaffected by HFD. These data suggest that HFD triggers adaptive mechanisms aimed at i facilitating FA catabolism, and ii preventing oxidative stress. All these changes did not affect the duration of action potentials in cardiomyocytes and only slightly modified electrocardiographic parameters.

  15. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Nishida

    Full Text Available The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  16. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Science.gov (United States)

    Nishida, Kazuhiko; Matsumura, Shinji; Taniguchi, Wataru; Uta, Daisuke; Furue, Hidemasa; Ito, Seiji

    2014-01-01

    The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET)-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  17. Electrical stimulation of the dorsal nerve of the penis evokes reflex tonic erections of the penile body and reflex ejaculatory responses in the spinal rat.

    Science.gov (United States)

    Pescatori, E S; Calabro, A; Artibani, W; Pagano, F; Triban, C; Italiano, G

    1993-03-01

    An animal model using the spinal rat was characterized. Electrical stimulation of the dorsal nerve of the penis elicited reflex tonic erections of the penile body and reflex bulbospongiosus muscle activity, flips and ejaculations. The tonic erections of the penile body are independent from contractions of the bulbospongiosus muscle and appear to be the result of a neurovascular process. Our observations suggest that reflex bulbospongiosus muscle activity, flips and ejaculations are a single complex reflex response, which we define as reflex ejaculatory response. Two parameters predicted the occurrence and type of reflex response. The visualization of bulbospongiosus muscle activity during surgical isolation of the dorsal nerve of the penis was sufficient to anticipate the elicitability of reflex ejaculatory responses. The latter, together with a systemic systolic pressure > or = 73 mmHg., warranted the elicitability of reflex tonic erections. The similarities found in the physiology of rat tonic penile body erections and of human erections make this model promising for further elucidation of sexual function. Moreover, the present model may prove useful for the investigation of neurogenic erectile dysfunction, and of neurogenic ejaculatory disorders.

  18. Electrophysiological study in neuromuscular junction disorders

    Directory of Open Access Journals (Sweden)

    Ajith Cherian

    2013-01-01

    Full Text Available This review is on ultrastructure and subcellular physiology at normal and abnormal neuromuscular junctions. The clinical and electrophysiological findings in myasthenia gravis, Lambert-Eaton myasthenic syndrome (LEMS, congenital myasthenic syndromes, and botulinum intoxication are discussed. Single fiber electromyography (SFEMG helps to explain the basis of testing neuromuscular junction function by repetitive nerve stimulation (RNS. SFEMG requires skill and patience and its availability is limited to a few centers. For RNS supramaximal stimulation is essential and so is display of the whole waveform of each muscle response at maximum amplitude. The amplitudes of the negative phase of the first and fourth responses are measured from baseline to negative peak, and the percent change of the fourth response compared with the first represents the decrement or increment. A decrement greater than 10% is accepted as abnormal and smooth progression of response amplitude train and reproducibility form the crux. In suspected LEMS the effect of fast rates of stimulation should be determined after RNS response to slow rates of stimulation. Caution is required to avoid misinterpretation of potentiation and pseudofacilitation.

  19. Chronic Compression of the Dorsal Root Ganglion Enhances Mechanically Evoked Pain Behavior and the Activity of Cutaneous Nociceptors in Mice.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Radicular pain in humans is usually caused by intraforaminal stenosis and other diseases affecting the spinal nerve, root, or dorsal root ganglion (DRG. Previous studies discovered that a chronic compression of the DRG (CCD induced mechanical allodynia in rats and mice, with enhanced excitability of DRG neurons. We investigated whether CCD altered the pain-like behavior and also the responses of cutaneous nociceptors with unmyelinated axons (C-fibers to a normally aversive punctate mechanical stimulus delivered to the hairy skin of the hind limb of the mouse. The incidence of a foot shaking evoked by indentation of the dorsum of foot with an aversive von Frey filament (tip diameter 200 μm, bending force 20 mN was significantly higher in the foot ipsilateral to the CCD surgery as compared to the contralateral side on post-operative days 2 to 8. Mechanically-evoked action potentials were electrophysiologically recorded from the L3 DRG, in vivo, from cell bodies visually identified as expressing a transgenically labeled fluorescent marker (neurons expressing either the receptor MrgprA3 or MrgprD. After CCD, 26.7% of MrgprA3+ and 32.1% MrgprD+ neurons exhibited spontaneous activity (SA, while none of the unoperated control neurons had SA. MrgprA3+ and MrgprD+ neurons in the compressed DRG exhibited, in comparison with neurons from unoperated control mice, an increased response to the punctate mechanical stimuli for each force applied (6, 20, 40, and 80 mN. We conclude that CCD produced both a behavioral hyperalgesia and an enhanced response of cutaneous C-nociceptors to aversive punctate mechanical stimuli.

  20. Prediction of Long-Term Treatment Response to Selective Serotonin Reuptake Inhibitors (SSRIs Using Scalp and Source Loudness Dependence of Auditory Evoked Potentials (LDAEP Analysis in Patients with Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Bun-Hee Lee

    2015-03-01

    Full Text Available Background: Animal and clinical studies have demonstrated that the loudness dependence of auditory evoked potentials (LDAEP is inversely related to central serotonergic activity, with a high LDAEP reflecting weak serotonergic neurotransmission and vice versa, though the findings in humans have been less consistent. In addition, a high pretreatment LDAEP appears to predict a favorable response to antidepressant treatments that augment the actions of serotonin. The aim of this study was to test whether the baseline LDAEP is correlated with response to long-term maintenance treatment in patients with major depressive disorder (MDD. Methods: Scalp N1, P2 and N1/P2 LDAEP and standardized low resolution brain electromagnetic tomography-localized N1, P2, and N1/P2 LDAEP were evaluated in 41 MDD patients before and after they received antidepressant treatment (escitalopram (n = 32, 10.0 ± 4.0 mg/day, sertraline (n = 7, 78.6 ± 26.7 mg/day, and paroxetine controlled-release formulation (n = 2, 18.8 ± 8.8 mg/day for more than 12 weeks. A treatment response was defined as a reduction in the Beck Depression Inventory (BDI score of >50% between baseline and follow-up. Results: The responders had higher baseline scalp P2 and N1/P2 LDAEP than nonresponders (p = 0.017; p = 0.036. In addition, changes in total BDI score between baseline and follow-up were larger in subjects with a high baseline N1/P2 LDAEP than those with a low baseline N1/P2 LDAEP (p = 0.009. There were significantly more responders in the high-LDAEP group than in the low-LDAEP group (p = 0.041. Conclusions: The findings of this study reveal that a high baseline LDAEP is associated with a clinical response to long-term antidepressant treatment.

  1. The visuo-cognitive and motor effect of amantadine in non-Caucasian patients with Parkinson's disease. A clinical and electrophysiological study.

    Science.gov (United States)

    Bandini, F; Pierantozzi, M; Bodis-Wollner, I

    2002-01-01

    It has been reported that non-Caucasian populations often suffer from an atypical type of Parkinson's disease (PD) characterized by poor levodopa response, early cognitive impairment and autonomic dysfunction. We tested the effect of a well known antiparkinsonian compound, amantadine, in 23 Afro-American patients with PD in a time-limited (six months), open-label, clinical and electrophysiological (simultaneously recorded primary and cognitive visual evoked potentials) trial. Patients were given amantadine either as monotherapy (first group) or added to levodopa treatment (second group). Amantadine produced a significant (p discrimination paradigm, while the timing of primary visual evoked potentials was little or not at all affected. Amantadine also showed significant beneficial effects (p < 0.01) on the motor score of both groups as assessed by the Rated Parkinson's Disease Neurological Exam, including items related to autonomic dysfunction. These findings suggest that amantadine alone and as adjuvant to levodopa can significantly improve both the speed of visual cognitive processing and the clinical score in non caucasian patients with PD. For these populations amantadine can be thus considered a helpful therapeutical option.

  2. Fear-Mongering or Fact-Driven? Illuminating the Interplay of Objective Risk and Emotion-Evoking Form in the Response to Epidemic News.

    Science.gov (United States)

    Klemm, Celine; Hartmann, Tilo; Das, Enny

    2017-10-23

    This study examined the veracity of the common assumption that news coverage of epidemic outbreaks spawns heightened fears and risk perceptions. An online experiment with 1,324 participants investigated the interplay of the form of news coverage (factual/emotion-laden) and key aspects of actual risk (low/high vulnerability, low/high severity) on audience responses. Participants read one of eight versions of a newspaper article followed by measures on risk perceptions, negative affect, behavioral intentions, and perceived sensationalism. Risk perceptions and fear were primarily driven by objective risk characteristics, whereas emotion-laden news form only increased perceptions of disease severity, not of fear or personal vulnerability.

  3. Evoked Emotions Predict Food Choice

    NARCIS (Netherlands)

    Dalenberg, Jelle R.; Gutjar, Swetlana; ter Horst, Gert J.; de Graaf, Kees; Renken, Remco J.; Jager, Gerry

    2014-01-01

    In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments.

  4. Human auditory evoked potentials. II - Effects of attention

    Science.gov (United States)

    Picton, T. W.; Hillyard, S. A.

    1974-01-01

    Attention directed toward auditory stimuli, in order to detect an occasional fainter 'signal' stimulus, caused a substantial increase in the N1 (83 msec) and P2 (161 msec) components of the auditory evoked potential without any change in preceding components. This evidence shows that human auditory attention is not mediated by a peripheral gating mechanism. The evoked response to the detected signal stimulus also contained a large P3 (450 msec) wave that was topographically distinct from the preceding components. This late positive wave could also be recorded in response to a detected omitted stimulus in a regular train and therefore seemed to index a stimulus-independent perceptual decision process.

  5. A systematic review of electrophysiological outcomes following auditory training in school-age children with auditory processing deficits.

    Science.gov (United States)

    Wilson, Wayne J; Arnott, Wendy; Henning, Caroline

    2013-11-01

    To systematically review the peer-reviewed literature on electrophysiological outcomes following auditory training (AT) in school-age children with (central) auditory processing disorder ([C]APD). A systematic review. Searches of 16 electronic databases yielded four studies involving school-aged children whose auditory processing deficits had been confirmed in a manner consistent with ASHA (2005) and AAA (2010) and compared to a treated and/or an untreated control group before and after AT. A further three studies were identified with one lacking a control group and two measuring auditory processing in a manner not consistent with ASHA (2005) and AAA (2010). There is limited evidence that AT leads to measurable electrophysiological changes in children with auditory processing deficits. The evidence base is too small and weak to provide clear guidance on the use of electrophysiological outcomes as a measure of AT outcomes in children with auditory processing problems. The currently limited data can only be used to suggest that click-evoked AMLR and tone-burst evoked auditory P300 might be more likely to detect such outcomes in children diagnosed with (C)APD, and that speech-evoked ALLR might be more likely to detect phonological processing changes in children without a specific diagnosis of (C)APD.

  6. The Electrophysiological Underpinnings of Processing Gender Stereotypes in Language

    OpenAIRE

    Anna Siyanova-Chanturia; Francesca Pesciarelli; Cristina Cacciari

    2012-01-01

    Despite the widely documented influence of gender stereotypes on social behaviour, little is known about the electrophysiological substrates engaged in the processing of such information when conveyed by language. Using event-related brain potentials (ERPs), we examined the brain response to third-person pronouns (lei "she" and lui "he") that were implicitly primed by definitional (passeggera(FEM) "passenger", pensionato(MASC) "pensioner"), or stereotypical antecedents (insegnante "teacher", ...

  7. Morphologic, Electrophysiologic, and Visual Function Parameters in Children with Non-Glaucomatous Cupping of Prematurity.

    Science.gov (United States)

    Pawlak, Marta; Gotz-Wieckowska, Anna; Sowinska, Anna

    2015-01-01

    The aim of this study was to compare morphologic, electrophysiologic, and visual function parameters in non-glaucomatous cupping of prematurity to those of controls. Twenty children (7 to 18 years) with non-glaucomatous cupping of prematurity were prospectively recruited, along with 20 controls. Visual function parameters, retinal nerve fiber layer (RNFL) thickness, and visual evoked potentials (VEP) parameters were measured. RNFL thickness was reduced in children with non-glaucomatous cupping of prematurity compared with controls. VEP P100 amplitude was significantly lower in children with non-glaucomatous cupping of prematurity than in the control group. Kinetic perimetry visual fields were normal in all but one patient. Static perimetry revealed increased overall pattern defect in children with non-glaucomatous cupping of prematurity compared with controls. Despite these morphological, electrophysiological, and subtle visual field defects, many other visual function parameters, such as visual acuity, color vision, and contrast sensitivity, appear similar to normal controls.

  8. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seok Kyun; Kim, Gwang Won; Kang, Heoung Keun; Jeong, Gwang Woo [Chonnam National University, Gwangju (Korea, Republic of); Yang, Jong Chul [Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Seok Kwun [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2012-06-15

    This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males.

  9. Ocular vestibular evoked myogenic potentials in response to air-conducted 500 Hz short tones: Effect of stimulation procedure (monaural or binaural), age and gender.

    Science.gov (United States)

    Versino, Maurizio; Colnaghi, Silvia; Ranzani, Marina; Alloni, Roberto; Bolis, Carlotta; Sacco, Simone; Moglia, Arrigo; Callieco, Roberto

    2015-01-01

    The ocular vestibular myogenic potentials (oVEMP) can be elicited by monaural air-conducted sound stimulation, and are usually recorded from the contralateral eye. In clinical setting a binaural stimulation would save time and require less effort from the subjects. We evaluated the differences between monaural and binaural stimulation, and the possible effect of age and gender on oVEMP parameters. Air-conducted oVEMP were recorded by binaural and by monaural stimulation in a group of 54 normal subjects, aged from 12 to 83 years, and in 50 vestibular patients. From each side, we measured the latency of the N1 component, and the peak-to-peak N1-P1 amplitude. For both parameters we also computed the asymmetry ratio. In normal subjects binaural stimulation produced slightly larger responses than monaural stimulation; detectability, latency and amplitude ratio were the same for the two techniques. We found no differences related to gender, and the age-induced amplitude decline was likely to be negligible.oVEMP recorded not in an acute phase of their disorder, proved to be abnormal in about 20% of the patients, and the normal or abnormal findings obtained either with monaural or with binaural stimulation were always concordant. The oVEMP obtained after binaural and monaural stimulation are very similar, and they are largely independent from age and gender.

  10. cGMP-Dependent Protein Kinase Inhibition Extends the Upper Temperature Limit of Stimulus-Evoked Calcium Responses in Motoneuronal Boutons of Drosophila melanogaster Larvae.

    Science.gov (United States)

    Krill, Jennifer L; Dawson-Scully, Ken

    2016-01-01

    While the mammalian brain functions within a very narrow range of oxygen concentrations and temperatures, the fruit fly, Drosophila melanogaster, has employed strategies to deal with a much wider range of acute environmental stressors. The foraging (for) gene encodes the cGMP-dependent protein kinase (PKG), has been shown to regulate thermotolerance in many stress-adapted species, including Drosophila, and could be a potential therapeutic target in the treatment of hyperthermia in mammals. Whereas previous thermotolerance studies have looked at the effects of PKG variation on Drosophila behavior or excitatory postsynaptic potentials at the neuromuscular junction (NMJ), little is known about PKG effects on presynaptic mechanisms. In this study, we characterize presynaptic calcium ([Ca2+]i) dynamics at the Drosophila larval NMJ to determine the effects of high temperature stress on synaptic transmission. We investigated the neuroprotective role of PKG modulation both genetically using RNA interference (RNAi), and pharmacologically, to determine if and how PKG affects presynaptic [Ca2+]i dynamics during hyperthermia. We found that PKG activity modulates presynaptic neuronal Ca2+ responses during acute hyperthermia, where PKG activation makes neurons more sensitive to temperature-induced failure of Ca2+ flux and PKG inhibition confers thermotolerance and maintains normal Ca2+ dynamics under the same conditions. Targeted motoneuronal knockdown of PKG using RNAi demonstrated that decreased PKG expression was sufficient to confer thermoprotection. These results demonstrate that the PKG pathway regulates presynaptic motoneuronal Ca2+ signaling to influence thermotolerance of presynaptic function during acute hyperthermia.

  11. Electrophysiological study in the infraorbital nerve of the rat: Spontaneous and evoked activity

    Energy Technology Data Exchange (ETDEWEB)

    AlbarracIn, A L [Catedra de Neurociencias, Facultad de Medicina, Universidad Nacional de Tucuman, Av. Roca 2200, PC 4000 (Argentina); Farfan, F D [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina); Felice, C J [Departamento de BioingenierIa, FACET, Universidad Nacional de Tucuman, INSIBIO - CONICET, CC 327, PC 4000 (Argentina)

    2007-11-15

    In this work we present some studies in the afferent nerve of the rat vibrissae. Studies on spontaneous activity (SA) in this sensorial system are of long data. Nevertheless, SA recordings in the nerve of a single vibrissa have not been made until present. In this work, we use an algorithm based on signal decomposition with Continuous Wavelet Transform (CWT) to analyse the discharges of two nerves. The action potentials of both nerves were detected and the firing rates were calculated. These results suggest that the firing rate of one vibrissa innervation is low considering that this nerve contains hundred of fibers. In addition, we present preliminary studies suggesting important effects of the hair shaft length in the afferent discharge during the vibrissae movements. The experiments consisted in recording the nerve activity after the vibrissae were sectioned at two different levels. The results showed important differences in the signal energy contents. It suggests that the hair shaft length would produce a differential activation of the mechanoreceptors located in the vibrissae follicle.

  12. In vivo optical microprobe imaging for intracellular Ca2+ dynamics in response to dopaminergic signaling in deep brain evoked by cocaine

    Science.gov (United States)

    Luo, Zhongchi; Pan, Yingtian; Du, Congwu

    2012-02-01

    Ca2+ plays a vital role as second messenger in signal transduction and the intracellular Ca2+ ([Ca2+]i) change is an important indicator of neuronal activity in the brain, including both cortical and subcortical brain regions. Due to the highly scattering and absorption of brain tissue, it is challenging to optically access the deep brain regions (e.g., striatum at >3mm under the brain surface) and image [Ca2+]i changes with cellular resolutions. Here, we present two micro-probe approaches (i.e., microlens, and micro-prism) integrated with a fluorescence microscope modified to permit imaging of neuronal [Ca2+]i signaling in the striatum using a calcium indicator Rhod2(AM). While a micro-prism probe provides a larger field of view to image neuronal network from cortex to striatum, a microlens probe enables us to track [Ca2+]i dynamic change in individual neurons within the brain. Both techniques are validated by imaging neuronal [Ca2+]i changes in transgenic mice with dopamine receptors (D1R, D2R) expressing EGFP. Our results show that micro-prism images can map the distribution of D1R- and D2R-expressing neurons in various brain regions and characterize their different mean [Ca2+]i changes induced by an intervention (e.g., cocaine administration, 8mg/kg., i.p). In addition, microlens images can characterize the different [Ca2+]i dynamics of D1 and D2 neurons in response to cocaine, including new mechanisms of these two types of neurons in striatum. These findings highlight the power of the optical micro-probe imaging for dissecting the complex cellular and molecular insights of cocaine in vivo.

  13. Specific electrophysiological components disentangle affective sharing and empathic concern in psychopathy.

    Science.gov (United States)

    Decety, Jean; Lewis, Kimberly L; Cowell, Jason M

    2015-07-01

    Empathic impairment is one of the hallmarks of psychopathy, a personality dimension associated with poverty in affective reactions, lack of attachment to others, and a callous disregard for the feelings, rights, and welfare of others. Neuroscience research on the relation between empathy and psychopathy has predominately focused on the affective sharing and cognitive components of empathy in forensic populations, and much less on empathic concern. The current study used high-density electroencephalography in a community sample to examine the spatiotemporal neurodynamic responses when viewing people in physical distress under two subjective contexts: one evoking affective sharing, the other, empathic concern. Results indicate that early automatic (175-275 ms) and later controlled responses (LPP 400-1,000 ms) were differentially modulated by engagement in affective sharing or empathic concern. Importantly, the late event-related potentials (ERP) component was significantly impacted by dispositional empathy and psychopathy, but the early component was not. Individual differences in dispositional empathic concern directly predicted gamma coherence (25-40 Hz), whereas psychopathy was inversely modulatory. Interestingly, significant suppression in the mu/alpha band (8-13 Hz) when perceiving others in distress was positively associated with higher trait psychopathy, which argues against the assumption that sensorimotor resonance underpins empathy. Greater scores on trait psychopathy were inversely related to subjective ratings of both empathic concern and affective sharing. Overall, the study demonstrates that neural markers of affective sharing and empathic concern to the same cues of another's distress can be distinguished at an electrophysiological level, and that psychopathy alters later time-locked differentiations and spectral coherence associated with empathic concern. Copyright © 2015 the American Physiological Society.

  14. Antivenom Evaluation by Electrophysiological Analysis

    Directory of Open Access Journals (Sweden)

    Rita Restano-Cassulini

    2017-02-01

    Full Text Available Scorpion stings on humans are medically relevant because they may contain toxins that specifically target ion channels. During antivenom production, pharmaceutical companies must use a large number of experimental animals to ensure the antivenom’s efficacy according to pharmacopeia methods. Here we present an electrophysiological alternative for the evaluation of horse antivenoms produced against two species of Moroccan scorpions: Buthus mardochei and Androctonus mauretanicus. Human sodium and potassium channels and acetylcholine nicotinic receptors were analyzed by standard patch-clamp techniques. The results showed that the antivenom is capable of reversing ion current disruption caused by the venom application. We propose the use of this in vitro technique for antivenom evaluation as an alternative to using a large number of live animals.

  15. Pattern-reversal visual evoked potentials as a diagnostic tool for ocular malingering

    Directory of Open Access Journals (Sweden)

    Tarciana de Souza Soares

    Full Text Available ABSTRACT Purpose: To investigate the contributions of transient pattern-reversal visual evoked potentials in the diagnosis of ocular malingering at a Brazilian university hospital. Methods: Adult patients with suspected malingering in one or both eyes were referred for visual evoked potential testing. Data from patients' medical records were reviewed and analyzed retrospectively. Data analysis included the distance optotype visual acuity based on a ETDRS retro-illuminated chart and the transient pattern-reversal visual evoked potential parameters of latency (milliseconds and amplitude (microvolts for the P100 component, using checkerboards with visual subtenses of 15' and 60'. Motivations for malingering were noted. Results: The 20 subjects included 11 (55% women. Patient ages ranged from 21 to 61 years (mean= 45.05 ± 11.76 years; median= 49 years. In 8 patients (6 women, both eyes exhibited reduced visual acuity with normal pattern-reversal visually evoked potential parameters (pure malingerers. The remaining 12 patients (7 men exhibited reduced vision in only 1 eye, with simulated reduced vision in the contralateral eye (exaggerators. Financial motivation was noted in 18 patients (9 men. Conclusion: Normal pattern-reversal visually evoked potential parameters with suspected ocular malingering were observed in a 20 patient cohort. This electrophysiological technique appeared to be useful as a measure of visual pathway integrity in this specific population.

  16. Modeling auditory evoked potentials to complex stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch

    cochlear compression would be of great benefit, as a more precise diagnose of the deficits underlying a potential hearing impairment in both infants and adults could be obtained. It was demonstrated in this thesis, via experimental recordings and supported by model simulations, that the growth of the ASSR....... Sensorineural hearing impairments is commonly associated with a loss of outer hair-cell functionality, and a measurable consequence is the decreased amount of cochlear compression at frequencies corresponding to the damaged locations in the cochlea. In clinical diagnostics, a fast and objective measure of local...... clinically and in research towards using realistic and complex stimuli, such as speech, to electrophysiologically assess the human hearing. However, to interpret the AEP generation to complex sounds, the potential patterns in response to simple stimuli needs to be understood. Therefore, the model was used...

  17. Cortical maturation in children with cochlear implants: Correlation between electrophysiological and behavioral measurement

    Science.gov (United States)

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Magliaro, Fernanda C. L.; Tsuji, Robinson Koji; Bento, Ricardo Ferreira; de Carvalho, Ana Claudia Martinho; Matas, Carla Gentile

    2017-01-01

    Central auditory pathway maturation in children depends on auditory sensory stimulation. The objective of the present study was to monitor the cortical maturation of children with cochlear implants using electrophysiological and auditory skills measurements. The study was longitudinal and consisted of 30 subjects, 15 (8 girls and 7 boys) of whom had a cochlear implant, with a mean age at activation time of 36.4 months (minimum, 17 months; maximum, 66 months), and 15 of whom were normal-hearing children who were matched based on gender and chronological age. The auditory and speech skills of the children with cochlear implants were evaluated using GASP, IT-MAIS and MUSS measures. Both groups underwent electrophysiological evaluation using long-latency auditory evoked potentials. Each child was evaluated at three and nine months after cochlear implant activation, with the same time interval adopted for the hearing children. The results showed improvements in auditory and speech skills as measured by IT-MAIS and MUSS. Similarly, the long-latency auditory evoked potential evaluation revealed a decrease in P1 component latency; however, the latency remained significantly longer than that of the hearing children, even after nine months of cochlear implant use. It was observed that a shorter P1 latency corresponded to more evident development of auditory skills. Regarding auditory behavior, it was observed that children who could master the auditory skill of discrimination showed better results in other evaluations, both behavioral and electrophysiological, than those who had mastered only the speech-detection skill. Therefore, cochlear implant auditory stimulation facilitated auditory pathway maturation, which decreased the latency of the P1 component and advanced the development of auditory and speech skills. The analysis of the long-latency auditory evoked potentials revealed that the P1 component was an important biomarker of auditory development during the

  18. Postpartum lumbosacral plexopathy limited to autonomic and perineal manifestations: clinical and electrophysiological study of 19 patients

    Science.gov (United States)

    Ismael, S. S.; Amarenco, G.; Bayle, B.; Kerdraon, J.

    2000-01-01

    The objective was to describe perineal electrophysiological findings and to determine their diagnostic value in a type of lumbosacral plexopathy after vaginal delivery, which only involves the lower part of the plexus (S2-S4).
 Consecutive female patients referred to an outpatients' urodynamic clinic were the source. Nineteen previously healthy women, 13 multiparae and six para 1, were investigated. Mean age was 33.7 (SD 5.4) (range 28-41) years. All of them presented with urinary (stress incontinence 14, dysuria five), anorectal (faecal incontinence eight, dyskesia one), or sexual dysfunctions (hypoorgasmia or anorgasmia six) after vaginal delivery. No associated lower limb sensory or motor deficits were noted. All the patients had electrophysiological recordings (bulbocavernosus muscle EMG, measurements of the bulbocavernosus reflex latencies (BCRLs), somatosensory evoked potentials of the pudendal nerve (SEPPNs), and pudendal nerve terminal motor latencies (PNTMLs)). Cystometry and urethral pressure profile (UPP) were performed in the 14 patients with stress urinary incontinence.
 Perineal electrophysiological examination disclosed signs of denervation in the perineal muscles in all the cases, prolonged BCRLs in 17/19, and abolished BCRLs in 2/19, abnormal SEPPN in 1/19, and normal PNTMLs in all the patients. Urodynamic investigations disclosed low urethral closure pressure for age (< 50 cm H2O) in half of the patients.
 In conclusion, Lower postpartum lumbosacral plexopathy is evoked when perineal sensory disturbances whether or not associated with urinary or faecal incontinence persist after a history of a difficult vaginal delivery. Electrophysiological investigations precisely identify the site of the lesion and demonstrate distal innervation integrity.

 PMID:10811704

  19. Music-Evoked Emotions—Current Studies

    Directory of Open Access Journals (Sweden)

    Hans-Eckhardt Schaefer

    2017-11-01

    Full Text Available The present study is focused on a review of the current state of investigating music-evoked emotions experimentally, theoretically and with respect to their therapeutic potentials. After a concise historical overview and a schematic of the hearing mechanisms, experimental studies on music listeners and on music performers are discussed, starting with the presentation of characteristic musical stimuli and the basic features of tomographic imaging of emotional activation in the brain, such as functional magnetic resonance imaging (fMRI and positron emission tomography (PET, which offer high spatial resolution in the millimeter range. The progress in correlating activation imaging in the brain to the psychological understanding of music-evoked emotion is demonstrated and some prospects for future research are outlined. Research in psychoneuroendocrinology and molecular markers is reviewed in the context of music-evoked emotions and the results indicate that the research in this area should be intensified. An assessment of studies involving measuring techniques with high temporal resolution down to the 10 ms range, as, e.g., electroencephalography (EEG, event-related brain potentials (ERP, magnetoencephalography (MEG, skin conductance response (SCR, finger temperature, and goose bump development (piloerection can yield information on the dynamics and kinetics of emotion. Genetic investigations reviewed suggest the heredity transmission of a predilection for music. Theoretical approaches to musical emotion are directed to a unified model for experimental neurological evidence and aesthetic judgment. Finally, the reports on musical therapy are briefly outlined. The study concludes with an outlook on emerging technologies and future research fields.

  20. Music-Evoked Emotions—Current Studies

    Science.gov (United States)

    Schaefer, Hans-Eckhardt

    2017-01-01

    The present study is focused on a review of the current state of investigating music-evoked emotions experimentally, theoretically and with respect to their therapeutic potentials. After a concise historical overview and a schematic of the hearing mechanisms, experimental studies on music listeners and on music performers are discussed, starting with the presentation of characteristic musical stimuli and the basic features of tomographic imaging of emotional activation in the brain, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), which offer high spatial resolution in the millimeter range. The progress in correlating activation imaging in the brain to the psychological understanding of music-evoked emotion is demonstrated and some prospects for future research are outlined. Research in psychoneuroendocrinology and molecular markers is reviewed in the context of music-evoked emotions and the results indicate that the research in this area should be intensified. An assessment of studies involving measuring techniques with high temporal resolution down to the 10 ms range, as, e.g., electroencephalography (EEG), event-related brain potentials (ERP), magnetoencephalography (MEG), skin conductance response (SCR), finger temperature, and goose bump development (piloerection) can yield information on the dynamics and kinetics of emotion. Genetic investigations reviewed suggest the heredity transmission of a predilection for music. Theoretical approaches to musical emotion are directed to a unified model for experimental neurological evidence and aesthetic judgment. Finally, the reports on musical therapy are briefly outlined. The study concludes with an outlook on emerging technologies and future research fields. PMID:29225563

  1. Electrophysiological evidence of peripheral nerve dysfunction in six dogs with botulism type C.

    Science.gov (United States)

    van Nes, J J; van der Most van Spijk, D

    1986-05-01

    In six dogs with botulism type C electrophysiological examinations showed: fibrillation potentials and prolonged insertional activity; low amplitude of the evoked muscle action potential; decrease in amplitude of the compound muscle action potential with slow repetitive stimulation; slowing of motor and sensory velocities in the peripheral nerve; and restoration of velocity and amplitude corresponding to clinical improvement. These findings indicate peripheral nerve dysfunction which cannot be explained adequately by current knowledge of the action of botulinum toxin on cholinergic nerve endings. It is therefore suggested that botulinum toxin also interferes with peripheral nerve conduction.

  2. A 4+1 ARCHITECTURE FOR IN VIVO ELECTROPHYSIOLOGY VISUAL PROSTHESIS

    Directory of Open Access Journals (Sweden)

    Alejandro Barriga-Rivera

    2016-11-01

    Full Text Available Researchers around the globe are working towards restoring vision to the blind through the development of a visual neuroprosthesis. Overcoming physical, technical and biological limitations represents one of the main challenges for the scientific community and will eventually benefit the wellbeing of the recipients of these devices. Thus, understanding the physiological mechanisms of prosthetic vision plays a key role. In this context, in vivo electrophysiological studies are aiming to shed light on new stimulation paradigms that can potentially lead to improved visual perception. This paper describes a multi-viewpoint architecture of an experimental setup for the investigation of electrically evoked potentials in a retinal neuroprosthesis.

  3. The paradox of music-evoked sadness: an online survey.

    Science.gov (United States)

    Taruffi, Liila; Koelsch, Stefan

    2014-01-01

    This study explores listeners' experience of music-evoked sadness. Sadness is typically assumed to be undesirable and is therefore usually avoided in everyday life. Yet the question remains: Why do people seek and appreciate sadness in music? We present findings from an online survey with both Western and Eastern participants (N = 772). The survey investigates the rewarding aspects of music-evoked sadness, as well as the relative contribution of listener characteristics and situational factors to the appreciation of sad music. The survey also examines the different principles through which sadness is evoked by music, and their interaction with personality traits. Results show 4 different rewards of music-evoked sadness: reward of imagination, emotion regulation, empathy, and no "real-life" implications. Moreover, appreciation of sad music follows a mood-congruent fashion and is greater among individuals with high empathy and low emotional stability. Surprisingly, nostalgia rather than sadness is the most frequent emotion evoked by sad music. Correspondingly, memory was rated as the most important principle through which sadness is evoked. Finally, the trait empathy contributes to the evocation of sadness via contagion, appraisal, and by engaging social functions. The present findings indicate that emotional responses to sad music are multifaceted, are modulated by empathy, and are linked with a multidimensional experience of pleasure. These results were corroborated by a follow-up survey on happy music, which indicated differences between the emotional experiences resulting from listening to sad versus happy music. This is the first comprehensive survey of music-evoked sadness, revealing that listening to sad music can lead to beneficial emotional effects such as regulation of negative emotion and mood as well as consolation. Such beneficial emotional effects constitute the prime motivations for engaging with sad music in everyday life.

  4. The paradox of music-evoked sadness: an online survey.

    Directory of Open Access Journals (Sweden)

    Liila Taruffi

    Full Text Available This study explores listeners' experience of music-evoked sadness. Sadness is typically assumed to be undesirable and is therefore usually avoided in everyday life. Yet the question remains: Why do people seek and appreciate sadness in music? We present findings from an online survey with both Western and Eastern participants (N = 772. The survey investigates the rewarding aspects of music-evoked sadness, as well as the relative contribution of listener characteristics and situational factors to the appreciation of sad music. The survey also examines the different principles through which sadness is evoked by music, and their interaction with personality traits. Results show 4 different rewards of music-evoked sadness: reward of imagination, emotion regulation, empathy, and no "real-life" implications. Moreover, appreciation of sad music follows a mood-congruent fashion and is greater among individuals with high empathy and low emotional stability. Surprisingly, nostalgia rather than sadness is the most frequent emotion evoked by sad music. Correspondingly, memory was rated as the most important principle through which sadness is evoked. Finally, the trait empathy contributes to the evocation of sadness via contagion, appraisal, and by engaging social functions. The present findings indicate that emotional responses to sad music are multifaceted, are modulated by empathy, and are linked with a multidimensional experience of pleasure. These results were corroborated by a follow-up survey on happy music, which indicated differences between the emotional experiences resulting from listening to sad versus happy music. This is the first comprehensive survey of music-evoked sadness, revealing that listening to sad music can lead to beneficial emotional effects such as regulation of negative emotion and mood as well as consolation. Such beneficial emotional effects constitute the prime motivations for engaging with sad music in everyday life.

  5. The Paradox of Music-Evoked Sadness: An Online Survey

    Science.gov (United States)

    Taruffi, Liila; Koelsch, Stefan

    2014-01-01

    This study explores listeners’ experience of music-evoked sadness. Sadness is typically assumed to be undesirable and is therefore usually avoided in everyday life. Yet the question remains: Why do people seek and appreciate sadness in music? We present findings from an online survey with both Western and Eastern participants (N = 772). The survey investigates the rewarding aspects of music-evoked sadness, as well as the relative contribution of listener characteristics and situational factors to the appreciation of sad music. The survey also examines the different principles through which sadness is evoked by music, and their interaction with personality traits. Results show 4 different rewards of music-evoked sadness: reward of imagination, emotion regulation, empathy, and no “real-life” implications. Moreover, appreciation of sad music follows a mood-congruent fashion and is greater among individuals with high empathy and low emotional stability. Surprisingly, nostalgia rather than sadness is the most frequent emotion evoked by sad music. Correspondingly, memory was rated as the most important principle through which sadness is evoked. Finally, the trait empathy contributes to the evocation of sadness via contagion, appraisal, and by engaging social functions. The present findings indicate that emotional responses to sad music are multifaceted, are modulated by empathy, and are linked with a multidimensional experience of pleasure. These results were corroborated by a follow-up survey on happy music, which indicated differences between the emotional experiences resulting from listening to sad versus happy music. This is the first comprehensive survey of music-evoked sadness, revealing that listening to sad music can lead to beneficial emotional effects such as regulation of negative emotion and mood as well as consolation. Such beneficial emotional effects constitute the prime motivations for engaging with sad music in everyday life. PMID:25330315

  6. Evoked Emotions Predict Food Choice

    OpenAIRE

    Dalenberg, Jelle R.; Swetlana Gutjar; Gert J Ter Horst; Kees de Graaf; Renken, Remco J.; Gerry Jager

    2014-01-01

    In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments. Therefore, the focus within recent studies shifted towards using emotion-profiling methods that successfully can discriminate between products that are equally liked. However, it is unclear how well ...

  7. EVOKED CAVERNOUS ACTIVITY: NEUROANATOMIC IMPLICATIONS

    OpenAIRE

    Yilmaz, Ugur; Vicars, Brenda; Yang, Claire C.

    2009-01-01

    We investigated the autonomic innervation of the penis by using evoked cavernous activity (ECA). We recruited 7 males with thoracic spinal cord injury (SCI) and sexual dysfunction and 6 males who were scheduled to have pelvic surgery (PS), specifically non-nerve-sparing radical cystoprostatectomy. In the PS subjects, ECA was performed both pre- and postoperatively. The left median nerve was electrically stimulated and ECA was recorded with two concentric electromyography needles placed into t...

  8. Model of evoked rabbit phonation.

    Science.gov (United States)

    Ge, Ping Jiang; French, Lesley C; Ohno, Tsunehisa; Zealear, David L; Rousseau, Bernard

    2009-01-01

    We describe a method for eliciting phonation in an in vivo rabbit preparation using low-frequency, bipolar pulsed stimulation of the cricothyroid muscles with airflow delivered to the glottis. Ten New Zealand White breeder rabbits weighing 3 to 5 kg were used in this study. The cricothyroid muscles were isolated bilaterally, and separate pairs of anode-cathode hooked-wire electrodes were inserted into each muscle. A Grass S-88 stimulator and 2 constant-current PSIU6 isolation units were used to deliver bipolar square wave pulses to each cricothyroid muscle, with airflow delivered to the glottis through a cuffed endotracheal tube. Phonation was evoked with a 50-Hz, 4-mA stimulus train of 1-ms pulses delivered to each cricothyroid muscle. The pulse trains were on for 2 seconds and were repeated every 5 seconds over a period of 180 minutes. Airflow was delivered at 143 cm3/s, producing phonation measuring 71 to 85 dB sound pressure level. Evoked phonation is feasible in rabbits by use of bipolar stimulation of the cricothyroid muscles with airflow delivered to the glottis. The in vivo rabbit preparation described may provide a useful small animal option for studies of evoked phonation. From the level and consistency of the adduction observed, we hypothesize that current spreading to the underlying adductor muscles and nerves resulted in neural pathway involvement beyond discrete activation of the cricothyroid muscle, providing sufficient approximation of the vocal folds for phonation.

  9. Sex and Ear Differences in Spontaneous and Click-Evoked Otoacoustic Emissions in Young Adults

    Science.gov (United States)

    Snihur, Adrian W. K.; Hampson, Elizabeth

    2011-01-01

    Effects of sex and handedness on the production of spontaneous and click-evoked otoacoustic emissions (OAEs) were explored in a non-hearing impaired population (ages 17-25 years). A sex difference in OAEs, either produced spontaneously (spontaneous OAEs or SOAEs) or in response to auditory stimuli (click-evoked OAEs or CEOAEs) has been reported in…

  10. One Year of Musical Training Affects Development of Auditory Cortical-Evoked Fields in Young Children

    Science.gov (United States)

    Fujioka, Takako; Ross, Bernhard; Kakigi, Ryusuke; Pantev, Christo; Trainor, Laurel J.

    2006-01-01

    Auditory evoked responses to a violin tone and a noise-burst stimulus were recorded from 4- to 6-year-old children in four repeated measurements over a 1-year period using magnetoencephalography (MEG). Half of the subjects participated in musical lessons throughout the year; the other half had no music lessons. Auditory evoked magnetic fields…

  11. Single-sweep spectral analysis of contact heat evoked potentials

    DEFF Research Database (Denmark)

    Hansen, Tine M; Graversen, Carina; Frøkjaer, Jens B

    2015-01-01

    AIMS: The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single-sweep ch...

  12. New perspectives on vestibular evoked myogenic potentials.

    Science.gov (United States)

    Rosengren, Sally M; Kingma, Herman

    2013-02-01

    Although the vestibular evoked myogenic potential (VEMP) measured from the cervical muscles (cVEMP, cervical VEMP) is well described and has documented clinical utility, its analogue recorded from the extraocular muscles (oVEMP, ocular VEMP) has been described only recently and is currently emerging as an additional test of otolith function. This review will, therefore, summarize recent developments in VEMP research with a focus on the oVEMP. Recent studies suggest that the oVEMP is produced by otolith afferents in the superior vestibular nerve division, whereas the cVEMP evoked by sound is thought to be an inferior vestibular nerve reflex. Correspondingly, the oVEMP correlates better with caloric and subjective visual vertical tests than sound-cVEMPs. cVEMPs are more complicated than often thought, as shown by the presence of crossed responses and conflicting results of recent vibration studies. Altered inner ear mechanics produced by the vestibular diseases superior semicircular canal dehiscence and Ménière's disease lead to changes in the preferred frequency of the oVEMP and cVEMP. The oVEMP provides complementary diagnostic information to the cVEMP and is likely to be a useful addition to the diagnostic test battery in neuro-otology.

  13. Healthy Architecture! Can environments evoke emotional responses?

    Science.gov (United States)

    Roessler, Kirsten Kaya

    2012-06-05

    We find environmental psychology at the intersection between architecture and psychology. This article discusses the ways in which individuals are affected by architecture, departing from an early source on the psychology of architecture and taking three architectural examples as illustrations: a public place in Berlin, a health environment in Sweden, and a fitness centre in Denmark. Each of these architectural examples creates what might be called its own psychological emotions, and these are analysed and discussed using a psychodynamic and existential attempt to understand the interrelationship between individuals and spatial reality. A health oriented existential approach is used as a methodological basis to conceptualise the psychological effects of various forms of architecture.

  14. Healthy Architecture! Can environments evoke emotional responses?

    OpenAIRE

    Roessler, Kirsten Kaya

    2012-01-01

    We find environmental psychology at the intersection between architecture and psychology. This article discusses the ways in which individuals are affected by architecture, departing from an early source on the psychology of architecture and taking three architectural examples as illustrations: a public place in Berlin, a health environment in Sweden, and a fitness centre in Denmark. Each of these architectural examples creates what might be called its own psychological emotions, and these ar...

  15. Analysis of multiple sclerosis patients with electrophysiological and structural tests.

    Science.gov (United States)

    Hamurcu, Mualla; Orhan, Gürdal; Sarıcaoğlu, Murat Sinan; Mungan, Semra; Duru, Zeynep

    2017-06-01

    We aimed to analyze the effects of progressive myelin loss and neurodegeneration seen in patients with multiple sclerosis (MS) on visual tract with electrophysiological and structural tests. Fifty-one patients diagnosed with MS in the Neurology Department were followed up in neuro-ophthalmology outpatient clinic irrespective of their visual symptoms, and were included in our study. The patients were classified as the ones with the history of optic neuritis (group II) and ones without the history (group I) of optic neuritis. The data, including clinical presentation, retinal nerve fiber layer thickness (RNFLT) measurements, pattern visual evoked potential (pVEP) and flash electro retino grams (ERG) test results, were recorded. In our study, comparison of pVEP test latencies of groups I and II with each other, and with those of healthy subjects revealed statistically significant differences (p  0.05). However, both groups showed significantly decreased cone b-wave amplitudes, elongation of latencies, and decreased flicker amplitudes on cone and flicker potentials obtained after light adaptation (p < 0.05). There was significant thinning in RNFLT of the both groups when compared to the normal standards. The difference between two groups was statistically significant (p < 0.05). Axon loss is seen in the optic nerve with subclinical or acute optic neuritis in patients with MS. RNFLT analysis and electrophysiological tests are of great importance in diagnosis of MS, as well as to determine progression and to direct neuroprotective therapy in patients diagnosed with MS. Objective analysis methods gain more importance in the diagnosis and follow-up of MS patients, parallel to technological advancements.

  16. Flash visual evoked potentials in preterm infants.

    Science.gov (United States)

    Feng, Jing-Jing; Wang, Wei-Ping; Guo, Shu-Juan; Liu, Zhi-Wei; Xu, Xiu

    2013-03-01

    To describe the development of flash visual evoked potentials (FVEPs) in preterm infants from 1 to 18 months and to determine if the maturation of FVEPs is similar to that of term infants. Longitudinal follow-up study. Twenty very low birth weight (VLBW) preterm infants, 42 low birth weight (LBW) preterm infants, and 41 term infants underwent FVEP recordings and neurodevelopmental examinations at 1, 3, 6, 9, 12, and 18 months of corrected and chronological ages. The FVEP recordings were carried out with the VikingQuest-IV neuroelectrophysiological device (VikingQuest, Nicolet, WI), and neurodevelopmental assessments were made by the Development Screen Test and Bayley Scales of Infant Development, Second Edition. At 1, 3, 6, and 9 months of age, neurodevelopment was measured with the Mental Index and Developmental Quotient. At 12 and 18 months, neurodevelopment was assessed using the Mental Developmental Index and Psychomotor Developmental Index. Two FVEP values were analyzed: the P2 amplitude (peak to peak from the preceding N2 wave) and the latency of the P2 wave. There was no significant difference for age-dependent decreased pattern of FVEP P2 latency between preterm infants and the control group. This pattern consisted of a rapid decrease in the first 6 months of life, a gradual decline from 6 to 12 months of age, and a steady reduction from 12 to 18 months of age. The P2 latencies were prolonged significantly at all 6 recorded times in the VLBW group compared with the controls and showed a delay in the LBW group at 1 and 3 months of corrected age. The maturation of P2 latency in LBW infants is similar to that of the controls at 3 months of corrected age, but the maturation of P2 latency in VLBW children remained delayed when compared with the controls until 18 months of corrected age. Although the FVEP development pattern of preterm infants was similar to that of healthy full-term infants, the former had deficits in visual electrophysiologic maturation

  17. Electrophysiologic Study of Exhaustive Exercise

    Directory of Open Access Journals (Sweden)

    MA Babaee Bigi

    2010-12-01

    Full Text Available Background: Exhaustive exercise is well known to pose a variety ofhealth hazards, such as sudden cardiac death reported in ultra-marathon runners.Depressed parasympathetic tone is associated with increased risk of suddencardiac death, thus parasympathetic withdrawal in post-exercise phase may be ahigh risk period for sudden death. To date, the effect on cardiacelectrophysiology after exhaustive strenuous exercise has not been described.The aim of this study was to evaluate the impact of severe exhaustive exerciseon cardiac electrophysiology.Methods: The subjects in ranger training were invited to participatein this prospective study. The parameters measured consisted of PR interval, QRSduration, and macro T wave alternans as well as corrected QT, QTc dispersion,Tpeak –Tend interval and Tpeak –Tend dispersion.Results: The study group consisted of 40 consecutive male rangers whocompleted training and the control group (22 healthy age and height matched malesubjects. In regard to electrocardiographic criteria, no differences were foundbetween rangers before and after training program. In respect of therepolarization markers, there were no significant differences between therangers before and after training program.

  18. Electrophysiology of pumpkin seeds: Memristors in vivo.

    Science.gov (United States)

    Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Greeman, Esther A; Markin, Vladislav S

    2016-01-01

    Leon Chua, the discoverer of a memristor, theoretically predicted that voltage gated ion channels can be memristors. We recently found memristors in different plants such as the Venus flytrap, Mimosa pudica, Aloe vera, apple fruits, and in potato tubers. There are no publications in literature about the existence of memristors in seeds. The goal of this work was to discover if pumpkin seeds might have memristors. We selected Cucurbita pepo L., cv. Cinderella, Cucurbita maxima L. cv Warty Goblin, and Cucurbita maxima L., cv. Jarrahdale seeds for this analysis. In these seeds, we found the presence of resistors with memory. The analysis was based on cyclic voltammetry where a memristor should manifest itself as a nonlinear two-terminal electrical element, which exhibits a pinched hysteresis loop on a current-voltage plane for any bipolar cyclic voltage input signal. Dry dormant pumpkin seeds have very high electrical resistance without memristive properties. The electrostimulation by bipolar sinusoidal or triangular periodic waves induces electrical responses in imbibed pumpkin seeds with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K(+) channels, transforms a memristor to a resistor in pumpkin seeds. NPPB (5-Nitro-2-(3-phenylpropylamino)benzoic acid) inhibits the memristive properties of imbibed pumpkin seeds. The discovery of memristors in pumpkin seeds creates a new direction in the understanding of electrophysiological phenomena in seeds.

  19. Whodunnit? Electrophysiological correlates of agency judgements.

    Directory of Open Access Journals (Sweden)

    Simone Kühn

    Full Text Available Sense of agency refers to the feeling that "I" am responsible for those external events that are directly produced by one's own voluntary actions. Recent theories distinguish between a non-conceptual "feeling" of agency linked to changes in the processing of self-generated sensory events, and a higher-order judgement of agency, which attributes sensory events to the self. In the current study we explore the neural correlates of the judgement of agency by means of electrophysiology. We measured event-related potentials to tones that were either perceived or not perceived as triggered by participants' voluntary actions and related these potentials to later judgements of agency over the tones. Replicating earlier findings on predictive sensory attenuation, we found that the N1 component was attenuated for congruent tones that corresponded to the learned action-effect mapping as opposed to incongruent tones that did not correspond to the previously acquired associations between actions and tones. The P3a component, but not the N1, directly reflected the judgement of agency: deflections in this component were greater for tones judged as self-generated than for tones judged as externally produced. The fact that the outcome of the later agency judgement was predictable based on the P3a component demonstrates that agency judgements incorporate early information processing components and are not purely reconstructive, post-hoc evaluations generated at time of judgement.

  20. Electrophysiological evidence for an early processing of human voices

    Directory of Open Access Journals (Sweden)

    Fillion-Bilodeau Sarah

    2009-10-01

    Full Text Available Abstract Background Previous electrophysiological studies have identified a "voice specific response" (VSR peaking around 320 ms after stimulus onset, a latency markedly longer than the 70 ms needed to discriminate living from non-living sound sources and the 150 ms to 200 ms needed for the processing of voice paralinguistic qualities. In the present study, we investigated whether an early electrophysiological difference between voice and non-voice stimuli could be observed. Results ERPs were recorded from 32 healthy volunteers who listened to 200 ms long stimuli from three sound categories - voices, bird songs and environmental sounds - whilst performing a pure-tone detection task. ERP analyses revealed voice/non-voice amplitude differences emerging as early as 164 ms post stimulus onset and peaking around 200 ms on fronto-temporal (positivity and occipital (negativity electrodes. Conclusion Our electrophysiological results suggest a rapid brain discrimination of sounds of voice, termed the "fronto-temporal positivity to voices" (FTPV, at latencies comparable to the well-known face-preferential N170.

  1. Electrophysiological evidence for an early processing of human voices.

    Science.gov (United States)

    Charest, Ian; Pernet, Cyril R; Rousselet, Guillaume A; Quiñones, Ileana; Latinus, Marianne; Fillion-Bilodeau, Sarah; Chartrand, Jean-Pierre; Belin, Pascal

    2009-10-20

    Previous electrophysiological studies have identified a "voice specific response" (VSR) peaking around 320 ms after stimulus onset, a latency markedly longer than the 70 ms needed to discriminate living from non-living sound sources and the 150 ms to 200 ms needed for the processing of voice paralinguistic qualities. In the present study, we investigated whether an early electrophysiological difference between voice and non-voice stimuli could be observed. ERPs were recorded from 32 healthy volunteers who listened to 200 ms long stimuli from three sound categories - voices, bird songs and environmental sounds - whilst performing a pure-tone detection task. ERP analyses revealed voice/non-voice amplitude differences emerging as early as 164 ms post stimulus onset and peaking around 200 ms on fronto-temporal (positivity) and occipital (negativity) electrodes. Our electrophysiological results suggest a rapid brain discrimination of sounds of voice, termed the "fronto-temporal positivity to voices" (FTPV), at latencies comparable to the well-known face-preferential N170.

  2. Long latency auditory evoked potentials in children with cochlear implants: systematic review.

    Science.gov (United States)

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Matas, Carla Gentile; Carvalho, Ana Claudia Martinho de

    2013-11-25

    The aim of this study was to analyze the findings on Cortical Auditory Evoked Potentials in children with cochlear implant through a systematic literature review. After formulation of research question and search of studies in four data bases with the following descriptors: electrophysiology (eletrofisiologia), cochlear implantation (implante coclear), child (criança), neuronal plasticity (plasticidade neuronal) and audiology (audiologia), were selected articles (original and complete) published between 2002 and 2013 in Brazilian Portuguese or English. A total of 208 studies were found; however, only 13 contemplated the established criteria and were further analyzed; was made data extraction for analysis of methodology and content of the studies. The results described suggest rapid changes in P1 component of Cortical Auditory Evoked Potentials in children with cochlear implants. Although there are few studies on the theme, cochlear implant has been shown to produce effective changes in central auditory path ways especially in children implanted before 3 years and 6 months of age.

  3. Achieving Presence through Evoked Reality

    Science.gov (United States)

    Pillai, Jayesh S.; Schmidt, Colin; Richir, Simon

    2013-01-01

    The sense of “Presence” (evolving from “telepresence”) has always been associated with virtual reality research and is still an exceptionally mystifying constituent. Now the study of presence clearly spans over various disciplines associated with cognition. This paper attempts to put forth a concept that argues that it’s an experience of an “Evoked Reality (ER)” (illusion of reality) that triggers an “Evoked Presence (EP)” (sense of presence) in our minds. A Three Pole Reality Model is proposed to explain this phenomenon. The poles range from Dream Reality to Simulated Reality with Primary (Physical) Reality at the center. To demonstrate the relationship between ER and EP, a Reality-Presence Map is developed. We believe that this concept of ER and the proposed model may have significant applications in the study of presence, and in exploring the possibilities of not just virtual reality but also what we call “reality.” PMID:23550234

  4. VISUAL EVOKED POTENTIALS AND „PATTERN” ELECTRORETINOGRAM IN HIGH MYOPIA

    Directory of Open Access Journals (Sweden)

    Stojanka Djurić

    2004-12-01

    Full Text Available In patients with high myopia one can notice characteristic degenerative changes of eye base that affect, in the initial phase, the posterior side of the eye, and in the developed form, the peripheral parts of retina. This paper points to the potential of application of electrophysiological methods, visual evoked potentials and PERG in assessment of the degree of the degenerative disease and following of its progression.n 15 eyes with high myopia we performed testing by means of visual evoked potentials and „pattern” electroretinogram and compared the received results with the values obtained from the controls. Structured VEP and „pattern” electroretinogram (PERG was performed on Mistral-Medelec computerized machine; with angle of stimulation CHESS of 30 minutes, screen angle of 15–19 degrees and maximal CHESS contrast. We performed a total of 128 stimulations with use of surface skin electrodes and stimulus frequency of 2 Hz.In patients with high myopia, visual acuity was between 1.0 and 0.1. The average latency value of P-100 waves of PVEP in patients with high myopia was 119.4 msec and was in correlation with the reduction of visual acuity of the researched eye (p<0.05.The average values of P-100 waves amplitudes were statistically significantly lower compared to the control group (3.9 msec.The amplitude values P1 and N2 of PERG were significantly lower compared to the values from the control group (p<0.01. The decrease in amplitude value was in correlation with the decline of visual acuity and the degree of degenerative changes at eye base. Latency values of P1and N2 waves of PERG were slightly prolonged without any statistical significance.Considering that „pattern” electroretinogram maintains electrical activity of inner layers of retina, most of all of ganglion cells, and PVEP records the electrical response of ganglion cells which mostly originate from macula, these methods can, therefore, give us an insight as to the degree

  5. [Effects of infrasound on visual electrophysiology in mice].

    Science.gov (United States)

    Shi, Li; Zhang, Zuo-ming; Chen, Jing-zao; Liu, Jing

    2003-04-01

    To investigate the possible effects of infrasound on visual functions. One hundred and fifty mature male Kunming-mice were divided into 5 groups, in which one was control and the other four were exposed to infrasound of 8 Hz, 90 dB; 8 Hz, 130 dB; 16 Hz, 90 dB and 16 Hz, 130 dB 2 h/d respectively. The exposure time for them were 0, 1, 4, 7, 14 and 21 d respectively, each group was divided into 6 sub-groups. Electroretinogram (ERG), oscillatory potentials (OPs), and visual evoked potential (VEP) were recorded after exposure. The visual electrophysiological indices after 8 Hz, 90 dB and 16 Hz, 90 dB exposures were similar except for a little difference at some temporal points (P<0.05). Most of the indices in 8 Hz, 130 dB group changed after 7 d exposure, and the longer the exposure, the more obvious changes were observed (P<0.01). The indices in 16 Hz, 130 dB group changed obviously after 1 d and reversed with increase of exposure time (P<0.01). The effect of infrasound on visual functions are related to its frequency and intensity. Infrasound of different frequencies causes different levels of retinal resonance, which leads to different degrees of cellular lesion and produces different electrical potentials.

  6. Electrophysiological properties of embryonic stem cell-derived neurons.

    Directory of Open Access Journals (Sweden)

    Jessica R Risner-Janiczek

    Full Text Available In vitro generation of functional neurons from embryonic stem (ES cells and induced pluripotent stem cells offers exciting opportunities for dissecting gene function, disease modelling, and therapeutic drug screening. To realize the potential of stem cells in these biomedical applications, a complete understanding of the cell models of interest is required. While rapid advances have been made in developing the technologies for directed induction of defined neuronal subtypes, most published works focus on the molecular characterization of the derived neural cultures. To characterize the functional properties of these neural cultures, we utilized an ES cell model that gave rise to neurons expressing the green fluorescent protein (GFP and conducted targeted whole-cell electrophysiological recordings from ES cell-derived neurons. Current-clamp recordings revealed that most neurons could fire single overshooting action potentials; in some cases multiple action potentials could be evoked by depolarization, or occurred spontaneously. Voltage-clamp recordings revealed that neurons exhibited neuronal-like currents, including an outward current typical of a delayed rectifier potassium conductance and a fast-activating, fast-inactivating inward current, typical of a sodium conductance. Taken together, these results indicate that ES cell-derived GFP(+ neurons in culture display functional neuronal properties even at early stages of differentiation.

  7. RECORDING OF VESTIBULAR EVOKED MYOGENIC POTENTIALS

    Directory of Open Access Journals (Sweden)

    A. A. Sazgar

    2006-05-01

    Full Text Available It has been shown recently that loud clicks evoke myogenic potentials in the tonically contracting sternocleidomastoid muscles. Studies have suggested that these potentials are of vestibular origin, especially of the saccule and inferior vestibular nerve. A pilot study was undertaken in our hospital to record vestibular evoked myogenic potentials (VEMP for the first time in Iran. Eighteen healthy volunteers (32 ears without history of otologic or vestibular disorders were subjected to the VEMP test. Twenty-one patients (26 ears with unilateral (6 patients and bilateral (5 patients high frequency sensorineural hearing loss with unknown etiology, acoustic neuroma (1 patient, Meniere’s disease (4 patients and unilateral low frequency sensorineural hearing loss without vestibular complaint (5 patients were also enrolled in this study. VEMP response to clicks was obtained from 84.4% of ears of healthy subjects. These subjects demonstrated short latency waves to click stimuli during tonic neck flexor activation. Mean latencies of first positive (p13 and first negative (n23 potentials in healthy subjects were 12.45 ± 1.9 ms and 20.8 ± 3.5 ms, respectively. Median latencies of these two potentials were 12.1 and 19.3 ms, respectively. We could record VEMP in 5 patients with unilateral and all patients with high and low frequency sensorineural hearing loss without vestibular complaint. In the patient with acoustic neuroma VEMP was absent on the affected side. This technique may offer a new method to evaluate otolith and sacculocollic pathways in human.

  8. Late Presentation of Ataxia, Areflexia, and Electrophysiological Abnormalities as Part of Miller Fisher Syndrome: Case Report.

    Science.gov (United States)

    Somer, Deniz; Yilmaz, Arzu; Tiras Teber, Serap; Cinar, Fatma Gul

    2016-08-01

    Miller Fisher syndrome (MFS) is characterised by the triad of ophthalmoplegia, ataxia, and areflexia. A case with external ophthalmoplegia and absence of ataxia and areflexia until the end of second week is presented. Electrophysiological findings became apparent after the third week and showed reduced amplitudes of sensory nerve action potentials and prolonged latencies of F with no evidence of conduction blocks. There was no response to intravenous immunoglobulin, but there was response to corticosteroids. This case may represent an atypical MFS with late presenting electrophysiological abnormalities. Corticosteroids can be a therapeutic option when intravenous immunoglobulin fails to control clinical symptoms.

  9. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Directory of Open Access Journals (Sweden)

    Lizeth H Sloot

    Full Text Available Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms. Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally

  10. Study on diffusion tensor imaging combined with electrophysiological monitoring in brain stem cavernous hemangioma resection

    Directory of Open Access Journals (Sweden)

    Dong-sheng KONG

    2017-07-01

    Full Text Available Objective To evaluate the clinical application value of diffusion tensor imaging (DTI combined with electrophysiological monitoring in the resection of brain stem cavernous hemangioma (CM.    Methods There were 39 patients with brain stem cavernous hemangioma. DTI was performed before and during the operation. Diffusion tensor tractography (DTT was used to track fiber and reconstruct pyramidal tract. Intraoperative neurobehavioral monitoring was used to detect the changes of somatosensory-evoked potentials (SEP, motor - evoked potentials (MEP and brain stem auditory - evoked potentials (BAEP.    Results Of all the 39 patients, there was no significant change of BAEP during the operation, 5 patients (12.82% had abnormal SEP, 6 cases (15.38% had abnormalities in MEP monitoring, 2 cases (5.13% had reduced volumes of pyramidal tract proved by DTI. Intraoperative MRI confirmed 36 cases (92.31% had complete removal of lesions, and 3 cases (7.69% had subtotal resection. There were improvement of clinical symptoms in 29 cases (74.36% , no obvious changes in 4 cases (10.26% , postoperative facial paralysis in 3 cases (7.69%, worsened movement disorder in 2 cases (5.13%, death due to disorder of consciousness and pulmonary infection in one case (2.56% . Postoperative follow - up was 30 months in average. Glasgow Outcome Scale (GOS showed 27 cases (69.23% of Grade 5, 7 cases (17.95% of Grade 4, 4 cases (10.26% of Grade 3, and one case (2.56% of Grade 1.    Conclusions Combined use of intraoperative DTI and electrophysiological monitoring can safely and effectively remove brain stem cavernous hemangioma. DOI: 10.3969/j.issn.1672-6731.2017.05.010

  11. Cyclic AMP directs inositol (1,4,5)-trisphosphate-evoked Ca2+ signalling to different intracellular Ca2+ stores

    OpenAIRE

    Tovey, Stephen C.; Taylor, Colin W.

    2013-01-01

    Cholesterol depletion reversibly abolishes carbachol-evoked Ca2+ release from inositol (1,4,5)-trisphosphate (IP3)-sensitive stores, without affecting the distribution of IP3 receptors (IP3R) or endoplasmic reticulum, IP3 formation or responses to photolysis of caged IP3. Receptors that stimulate cAMP formation do not alone evoke Ca2+ signals, but they potentiate those evoked by carbachol. We show that these potentiated signals are entirely unaffected by cholesterol depletion and that, within...

  12. On the use of information theory for the analysis of synchronous nociceptive withdrawal reflexes and somatosensory evoked potentials elicited by graded electrical stimulation.

    Science.gov (United States)

    Arguissain, Federico G; Biurrun Manresa, José A; Mørch, Carsten D; Andersen, Ole K

    2015-01-30

    To date, few studies have combined the simultaneous acquisition of nociceptive withdrawal reflexes (NWR) and somatosensory evoked potentials (SEPs). In fact, it is unknown whether the combination of these two signals acquired simultaneously could provide additional information on somatosensory processing at spinal and supraspinal level compared to individual NWR and SEP signals. By using the concept of mutual information (MI), it is possible to quantify the relation between electrical stimuli and simultaneous elicited electrophysiological responses in humans based on the estimated stimulus-response signal probability distributions. All selected features from NWR and SEPs were informative in regard to the stimulus when considered individually. Specifically, the information carried by NWR features was significantly higher than the information contained in the SEP features (pinformation carried by the combination of features showed an overall redundancy compared to the sum of the individual contributions. Comparison with existing methods MI can be used to quantify the information that single-trial NWR and SEP features convey, as well as the information carried jointly by NWR and SEPs. This is a model-free approach that considers linear and non-linear correlations at any order and is not constrained by parametric assumptions. The current study introduces a novel approach that allows the quantification of the individual and joint information content of single-trial NWR and SEP features. This methodology could be used to decode and interpret spinal and supraspinal interaction in studies modulating the responsiveness of the nociceptive system. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Establishing an evoked-potential vision-tracking system

    Science.gov (United States)

    Skidmore, Trent A.

    1991-01-01

    This paper presents experimental evidence to support the feasibility of an evoked-potential vision-tracking system. The topics discussed are stimulator construction, verification of the photic driving response in the electroencephalogram, a method for performing frequency separation, and a transient-analysis example. The final issue considered is that of object multiplicity (concurrent visual stimuli with different flashing rates). The paper concludes by discussing several applications currently under investigation.

  14. Comparison of clinical and evoked pain measures in fibromyalgia.

    Science.gov (United States)

    Harris, Richard E; Gracely, Richard H; McLean, Samuel A; Williams, David A; Giesecke, Thorsten; Petzke, Frank; Sen, Ananda; Clauw, Daniel J

    2006-07-01

    Evoked pain measures such as tender point count and dolorimetry are often used to determine tenderness in studies of fibromyalgia (FM). However, these measures frequently do not improve in clinical trials and are known to be influenced by factors other than pain such as distress and expectancy. The purpose of this investigation was to determine whether evoked pain paradigms that present pressure stimuli in a random fashion (eg, Multiple Random Staircase [MRS]) would track with clinical pain improvement in patients with FM better than traditional measures. Sixty-five subjects enrolled in a randomized clinical trial of acupuncture were observed longitudinally. Clinical pain was measured on a 101-point numerical rating scale (NRS) and the Short Form McGill Pain Questionnaire (SF-MPQ), whereas evoked pressure sensitivity was assessed via manual tender point count, dolorimetry, and MRS methods. Improvements in clinical pain and evoked pain were assessed irrespective of group assignment. Improvement was seen in clinical pain during the course of the trial as measured by both NRS (P = .032) and SF-MPQ (P = .001). The MRS was the only evoked pain measure to improve correspondingly with treatment (MRS, P = .001; tender point count and dolorimeter, P > .05). MRS change scores were correlated with changes in NRS pain ratings (P = .003); however, this association was not stronger than tender point or dolorimetry correlations with clinical pain improvement (P > .05). Pain sensitivity as assessed by random paradigms was associated with improvements in clinical FM pain. Sophisticated pain testing paradigms might be responsive to change in clinical trials. Trials in fibromyalgia often use both clinical and experimental methods of pain assessment; however, these two outcomes are often poorly correlated. We explore the relationship between changes in clinical and experimental pain within FM patients. Pressure pain testing that applies stimuli in a random order is associated with

  15. Visual evoked potentials in patients after methanol poisoning.

    Science.gov (United States)

    Urban, Pavel; Zakharov, Sergey; Diblík, Pavel; Pelclová, Daniela; Ridzoň, Petr

    2016-01-01

    We report the results of the visual evoked potentials (VEP) examination in patients after severe poisoning by methanol. The group of 47 patients (38 males and 9 females) was assembled out of persons who survived an outbreak of poisoning by the methanol adulterated alcohol beverages, which happened in the Czech Republic in 2012-2013. The visual evoked potentials examination was performed using monocular checkerboard pattern-reversal stimulation. Two criteria of abnormality were chosen: missing evoked response, and wave P1 latency > 117 ms. Non-parametric statistical methods (median, range, and the median test) were used to analyze factors influencing the VEP abnormality. The visual evoked potential was abnormal in 20 patients (43%), 5 of them had normal visual acuity on the Snellen chart. The VEP abnormality did not correlate significantly with initial serum concentrations of methanol, formic acid or lactate; however, it showed statistically significant inverse relation to the initial serum pH: the subgroup with the abnormal VEP had significantly lower median pH in comparison with the subgroup with the normal VEP (7.16 vs. 7.34, p = 0.04). The abnormality was not related to chronic alcohol abuse. The visual evoked potentials examination appeared sensitive enough to detected even subclinical impairment of the optic system. Metabolic acidosis is likely to be the key factor related to the development of visual damage induced by methanol. The examination performed with a delay of 1-9 months after the poisoning documented the situation relatively early after the event. It is considered as a baseline for the planned long-term follow-up of the patients, which will make it possible to assess the dynamics of the observed changes, their reversibility, and the occurrence of potential late sequelae. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  16. Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays.

    Science.gov (United States)

    Ferrea, E; Maccione, A; Medrihan, L; Nieus, T; Ghezzi, D; Baldelli, P; Benfenati, F; Berdondini, L

    2012-01-01

    Multielectrode arrays (MEAs) are extensively used for electrophysiological studies on brain slices, but the spatial resolution and field of recording of conventional arrays are limited by the low number of electrodes available. Here, we present a large-scale array recording simultaneously from 4096 electrodes used to study propagating spontaneous and evoked network activity in acute murine cortico-hippocampal brain slices at unprecedented spatial and temporal resolution. We demonstrate that multiple chemically induced epileptiform episodes in the mouse cortex and hippocampus can be classified according to their spatio-temporal dynamics. Additionally, the large-scale and high-density features of our recording system enable the topological localization and quantification of the effects of antiepileptic drugs in local neuronal microcircuits, based on the distinct field potential propagation patterns. This novel high-resolution approach paves the way to detailed electrophysiological studies in brain circuits spanning spatial scales from single neurons up to the entire slice network.

  17. Electrophysiological Correlates of Observational Learning in Children

    Science.gov (United States)

    Rodriguez Buritica, Julia M.; Eppinger, Ben; Schuck, Nicolas W.; Heekeren, Hauke R.; Li, Shu-Chen

    2016-01-01

    Observational learning is an important mechanism for cognitive and social development. However, the neurophysiological mechanisms underlying observational learning in children are not well understood. In this study, we used a probabilistic reward-based observational learning paradigm to compare behavioral and electrophysiological markers of…

  18. Electrophysiological research on conversation and discourse processing

    NARCIS (Netherlands)

    Hoeks, John; Brouwer, Harm; Holtgraves, Thomas

    2014-01-01

    Research into the electrophysiology of language comprehension has essentially been “speakerless.” This has left three vital aspects of communication—it is social, pragmatic, and dynamic—severely underresearched. This chapter makes a case for the investigation of language users involved in active

  19. How Compatible is Clinical Diagnosis with Electrophysiology?

    Directory of Open Access Journals (Sweden)

    Yakup Turkel

    2013-10-01

    Full Text Available Aim: The objective of this study was to investigate the correlation of the clinical diagnosis of patients referred to the electroneuromyography laboratory with the electrophysiological diagnosis. Material and Method: Eight hundred eighty two patients  were enrolled in the study. Their ages, genders, the clinic that referred the patient, the clinical diagnosis, and the electrophysiological results were registered retrospectively and the results were statistically evaluated. Results: Five hundred twenty four of 882 patients enrolled in the study were women, while 358 of them were men. Four hundred hundred ninety nine (56,6% of the patients were consulted by the Neurology department, 222 (25,2% patients were consulted by the Neurosurgery deparment, 59 (6,7%  patients were consulted by the Physical medicine and rehabilitation  deparment while 61 (6,9% patients were referred by the Orthopedy department and 41 (4,6% by other departments. Carpal tunnel syndrome was the most frequent clinical diagnosis (28,7%. Only in a small group of patients symptoms were assessed rather than the clinical diagnosis (2,9%. In 49,1% of the patients, There was correlation between clinical and electrophysiological diagnosis while 44,7% of patients had normal electroneuromyography results. Discussion: The high rate of the normal electroneuromyography tests and the statistically significant discordance of clinical diagnosis of patients with their electrophysiological test results show that, there are inessential electroneuromyography reguests.

  20. Electrophysiological correlates of refreshing: Event-related potentials associated with directing reflective attention to face, scene, or word representations

    Science.gov (United States)

    Johnson, Matthew R.; McCarthy, Gregory; Muller, Kathleen A.; Brudner, Samuel N.; Johnson, Marcia K.

    2016-01-01

    Refreshing is the component cognitive process of directing reflective attention to one of several active mental representations. Previous studies using functional magnetic resonance imaging (fMRI) suggested that refresh tasks involve a component process of initiating refreshing as well as the top-down modulation of representational regions central to refreshing. However, those studies were limited by fMRI’s low temporal resolution. In the present study, we used electroencephalography (EEG) to examine the timecourse of refreshing on the scale of milliseconds rather than seconds. Event-related potential (ERP) analyses showed that a typical refresh task does have a distinct electrophysiological response as compared to a control condition, and includes at least two main temporal components: an earlier (~400ms) positive peak reminiscent of a P3 response, and a later (~800ms–1400ms) sustained positivity over several sites reminiscent of the late directing attention positivity (LDAP). Overall, the evoked potentials for refreshing representations from three different visual categories (faces, scenes, words) were similar, but multivariate pattern analysis (MVPA) showed that some category information was nonetheless present in the EEG signal. When related to previous fMRI studies, these results are consistent with a two-phase model, with the first phase dominated by frontal control signals involved in initiating refreshing and the second by the top-down modulation of posterior perceptual cortical areas that constitutes refreshing a representation. This study also lays the foundation for future studies of the neural correlates of reflective attention at a finer temporal resolution than is possible using fMRI. PMID:25961640

  1. Trigeminal electrophysiology: a 2 x 2 matrix model for differential diagnosis between temporomandibular disorders and orofacial pain.

    Science.gov (United States)

    Frisardi, Gianni; Chessa, Giacomo; Sau, Gianfranco; Frisardi, Flavio

    2010-07-01

    Pain due to temporomandibular disorders (TMDs) often has the same clinical symptoms and signs as other types of orofacial pain (OP). The possible presence of serious neurological and/or systemic organic pathologies makes differential diagnosis difficult, especially in early disease stages. In the present study, we performed a qualitative and quantitative electrophysiological evaluation of the neuromuscular responses of the trigeminal nervous system. Using the jaw jerk reflex (JJ) and the motor evoked potentials of the trigeminal roots ((b)R-MEPs) tests, we investigated the functional and organic responses of healthy subjects (control group) and patients with TMD symptoms (TMD group). Thirty-three patients with temporomandibular disorder (TMD) symptoms and 36 control subjects underwent two electromyographic (EMG) tests: the jaw jerk reflex test and the motor evoked potentials of the trigeminal roots test using bilateral electrical transcranial stimulation. The mean, standard deviation, median, minimum, and maximum values were computed for the EMG absolute values. The ratio between the EMG values obtained on each side was always computed with the reference side as the numerator. For the TMD group, this side was identified as the painful side (pain side), while for the control group this was taken as the non-preferred masticatory side (non-preferred side). The 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles were also calculated. Analysis of the ratios (expressed as percentages) between the values obtained on both sides revealed a high degree of symmetry in the (b)R-MEPs % in the control (0.93 +/- 0.12%) and TMD (0.91 +/- 0.22%) groups. This symmetry indicated organic integrity of the trigeminal root motor fibers and correct electrode arrangement. A degree of asymmetry of the jaw jerk's amplitude between sides (ipJJ%), when the mandible was kept in the intercuspal position, was found in the TMD group (0.24% +/- 0.14%) with a statistically significant difference

  2. [Present situation and development of ocular vestibular-evoked myogenic potential].

    Science.gov (United States)

    Hu, Juan; Xu, Min; Zhang, Qing

    2013-04-01

    Myogenic potentials evoked by air conducted sound (ACS), bone conducted vibration (BCV) or galvanic pulses can be recorded with surface electrodes over contracted muscles. These myogenic potentials are of vestibular origin (utricle and saccule) and so these potentials are called vestibular evoked myogenic potentials (VEMPs). Since the vestibular system has projections to many muscle systems, there are many such VEMPs. In this review, we discuss the generated origin, response pathway, waveform characteristics and clinical application of ocular vestibular-evoked myogenic potential (oVEMP).

  3. Vestibular Evoked Myogenic Potential (VEMP Triggered by Galvanic Vestibular Stimulation (GVS: A Promising Tool to Assess Spinal Cord Function in Schistosomal Myeloradiculopathy.

    Directory of Open Access Journals (Sweden)

    Júlia Fonseca de Morais Caporali

    2016-04-01

    Full Text Available Schistosomal myeloradiculopathy (SMR, the most severe and disabling ectopic form of Schistosoma mansoni infection, is caused by embolized ova eliciting local inflammation in the spinal cord and nerve roots. The treatment involves the use of praziquantel and long-term corticotherapy. The assessment of therapeutic response relies on neurological examination. Supplementary electrophysiological exams may improve prediction and monitoring of functional outcome. Vestibular evoked myogenic potential (VEMP triggered by galvanic vestibular stimulation (GVS is a simple, safe, low-cost and noninvasive electrophysiological technique that has been used to test the vestibulospinal tract in motor myelopathies. This paper reports the results of VEMP with GVS in patients with SMR.A cross-sectional comparative study enrolled 22 patients with definite SMR and 22 healthy controls that were submitted to clinical, neurological examination and GVS. Galvanic stimulus was applied in the mastoid bones in a transcranial configuration for testing VEMP, which was recorded by electromyography (EMG in the gastrocnemii muscles. The VEMP variables of interest were blindly measured by two independent examiners. They were the short-latency (SL and the medium-latency (ML components of the biphasic EMG wave.VEMP showed the components SL (p = 0.001 and ML (p<0.001 delayed in SMR compared to controls. The delay of SL (p = 0.010 and of ML (p = 0.020 was associated with gait dysfunction.VEMP triggered by GVS identified alterations in patients with SMR and provided additional functional information that justifies its use as a supplementary test in motor myelopathies.

  4. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens.

    Science.gov (United States)

    Cone, Barbara; Whitaker, Richard

    2013-07-01

    Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: (1) further knowledge of auditory development above the level of the brainstem during the first year of life; (2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and (3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. 36 infants, between the ages of 4 and 12 months (mean=8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. Infant CAEP component latencies were prolonged by 100-150 ms in comparison to adults. CAEP latency

  5. Prestimulus amplitudes modulate P1 latencies and evoked traveling alpha waves

    Directory of Open Access Journals (Sweden)

    Nicole Alexandra Himmelstoss

    2015-05-01

    Full Text Available Traveling waves have been well documented in the ongoing, and more recently also in the evoked EEG. In the present study we investigate what kind of physiological process might be responsible for inducing an evoked traveling wave. We used a semantic judgment task which already proved useful to study evoked traveling alpha waves that coincide with the appearance of the P1 component. We found that the P1 latency of the leading electrode is significantly correlated with prestimulus amplitude size and that this event is associated with a transient change in alpha frequency. We assume that cortical background excitability, as reflected by an increase in prestimulus amplitude, is responsible for the observed change in alpha frequency and the initiation of an evoked traveling trajectory.

  6. Adaptive estimation of contrast thresholds using the visual evoked potential (VEP); Die adaptive Bestimmung von Kontrastschwellen mit dem visuell evozierten Potenzial (VEP)

    Energy Technology Data Exchange (ETDEWEB)

    Meigen, T.; Kley, F. [Elektrophysiologisches Lab., Universitaets-Augenklinik Wuerzburg (Germany)

    2007-07-01

    The visual evoked potential (VEP) can be used to objectively estimate sensory thresholds. Recently, we developed an adaptive procedure for this threshold estimation based on a Fourier analysis of steady-state responses during the recording. In this study we quantified the reduction in recording time of this adaptive procedure. Steady-state VEPs to pattern reversal (f=8.3 Hz) of checkerboards with 8 contrast values between 0.64% and 82% were recorded monocularly. Adaptive and non-adaptive recordings were performed for full correction (fc) and for blurred stimulus patterns (+1.5 D and +3.0 D). VEP contrast thresholds were defined by the lowest contrast condition that showed a significant response. An ANOVA of the VEP thresholds showed significant effects (p<0.0001) of the factors 'procedure' (psychophysics, adaptive VEP, non-adaptive VEP) and 'correction' (fc, fc+1.5D, fc+3.0D). Compared to non-adaptive recordings, adaptive recordings showed thresholds that were significantly reduced and closer to psychophysical contrast thresholds. By applying the adaptive procedure the recording time can be reduced by a factor of about 2 when compared to the non-adaptive procedure. The new adaptive VEP procedure may help to improve the correlation of electrophysiological and psychophysical estimates of sensory thresholds and may accelerate functional testing in the clinical routine. (orig.)

  7. Transient evoked otoacoustic emissions testing for screening of sensorineural deafness in puppies

    OpenAIRE

    McBrearty, A; Penderis, J

    2011-01-01

    Background: Transient evoked otoacoustic emissions (TEOAE) are widely used for human neonatal deafness screening, but have not been reported for clinical use in dogs. \\ud \\ud Hypothesis/Objectives: To investigate the feasibility of TEOAE testing in conscious puppies and the ability of TEOAE testing to correctly identify