WorldWideScience

Sample records for evergreen nothofagus species

  1. Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients.

    Science.gov (United States)

    Fajardo, Alex; Piper, Frida I; Hoch, Günter

    2013-08-01

    The most plausible explanation for treeline formation so far is provided by the growth limitation hypothesis (GLH), which proposes that carbon sinks are more restricted by low temperatures than by carbon sources. Evidence supporting the GLH has been strong in evergreen, but less and weaker in deciduous treeline species. Here a test is made of the GLH in deciduous-evergreen mixed species forests across elevational gradients, with the hypothesis that deciduous treeline species show a different carbon storage trend from that shown by evergreen species across elevations. Tree growth and concentrations of non-structural carbohydrates (NSCs) in foliage, branch sapwood and stem sapwood tissues were measured at four elevations in six deciduous-evergreen treeline ecotones (including treeline) in the southern Andes of Chile (40°S, Nothofagus pumilio and Nothofagus betuloides; 46°S, Nothofagus pumilio and Pinus sylvestris) and in the Swiss Alps (46°N, Larix decidua and Pinus cembra). Tree growth (basal area increment) decreased with elevation for all species. Regardless of foliar habit, NSCs did not deplete across elevations, indicating no shortage of carbon storage in any of the investigated tissues. Rather, NSCs increased significantly with elevation in leaves (P treeline species are sink limited when faced with decreasing temperatures. Despite the overall higher requirements of deciduous tree species for carbon storage, no indication was found of carbon limitation in deciduous species in the alpine treeline ecotone.

  2. Seasonal changes in the photosynthetic performance of two evergreen Nothofagus species in south central Chile Cambios estacionales en el desempeño fotosintético de dos especies siempreverdes de Nothofagus en el centro sur de Chile

    Directory of Open Access Journals (Sweden)

    RAFAEL ZÚÑIGA

    2006-12-01

    Full Text Available The evergreen Nothofagus dombeyi and Nothofagus nitida are important members of the temperate Chilean rainforest. They seldom grow together in nature. Nothofagus nitida is more susceptible to excess light and drought than N. dombeyi. We postulate that the different properties of the photosynthetic apparatus under common garden conditions of these species could explain their contrasting habitat preferences. The two species growing in a common garden in south central Chile were studied. The optimal photochemical efficiency (Fv/Fm of both species remained within normal values (»0.8 with the exception of a decrease in N. dombeyi at midday in summer, suggesting reversible reduction in photochemical efficiency of photosystem II (PSII. During summer the effective photochemical efficiency (F PSII, photochemical quenching (qP, photosynthesis (Amax, stomatal conductance (gs and transpiration rates (E in N. dombeyi were higher than in N. nitida. The highest increments in photoprotective pigments (zeaxanthin + antheraxanthin and lutein contents between predawn and midday were obtained in summer in N. dombeyi. In N. nitida a nocturnal retention of dissipative pigments, without a decrease in Fv/Fm, was found in winter. The results suggest that N. dombeyi showed a better photosynthetic performance than N. nitida under high light, high temperature, and drier conditions. These data support are consistent with the pioneer character of N. dombeyi and the semi-tolerant shade properties and more restricted distribution of N. nitida. These photosynthetic characteristics, along with their freezing and flooding resistance differences, may result from their habitat separationLas siempreverdes, Nothofagus dombeyi y Nothofagus nitida, representantes importantes de los bosques lluviosos templados de Chile, raramente crecen juntos en forma natural. Nothofagus nitida es más sensible al exceso de luz y déficit de agua que N. dombeyi. Se postula que diferentes propiedades

  3. Seed dormancy responses to temperature relate to Nothofagus species distribution and determine temporal patterns of germination across altitudes in Patagonia.

    Science.gov (United States)

    Arana, María V; Gonzalez-Polo, Marina; Martinez-Meier, Alejandro; Gallo, Leonardo A; Benech-Arnold, Roberto L; Sánchez, Rodolfo A; Batlla, Diego

    2016-01-01

    Seeds integrate environmental cues that modulate their dormancy and germination. Although many mechanisms have been identified in laboratory experiments, their contribution to germination dynamics in existing communities and their involvement in defining species habitats remain elusive. By coupling mathematical models with ecological data we investigated the contribution of seed temperature responses to the dynamics of germination of three Nothofagus species that are sharply distributed across different altitudes in the Patagonian Andes. Seed responsiveness to temperature of the three Nothofagus species was linked to the thermal characteristics of their preferred ecological niche. In their natural distribution range, there was overlap in the timing of germination of the species, which was restricted to mid-spring. By contrast, outside their species distribution range, germination was temporally uncoupled with altitude. This phenomenon was described mathematically by the interplay between interspecific differences in seed population thermal parameters and the range in soil thermic environments across different altitudes. The observed interspecific variations in seed responsiveness to temperature and its environmental regulation, constitute a major determinant of the dynamics of Nothofagus germination across elevations. This phenomenon likely contributes to the maintenance of patterns of species abundance across altitude by placing germinated seeds in a favorable environment for plant growth. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Responses of two températe evergreen Nothofagus species to sudden and gradual waterlogging: relationships with distribution patterns Respuestas de dos especies siempreverdes de Nothofagus al anegamiento gradual y repentino: relaciones con patrones de distribución

    Directory of Open Access Journals (Sweden)

    FRIDA PIPER

    2008-06-01

    Full Text Available The effects of gradual waterlogging on trees have been little studied. The températe evergreens Nothofagus nítida and N. dombeyi are differentially distributed on soil moisture gradients, only the former being common on poorly-drained sites. We compared the relative height growth rate (RGR H and foliage loss of seedlings subjected experimentally to normal drainage (soil at field capacity, sudden waterlogging and gradual waterlogging for two months to determine which waterlogging regime more accurately predicts interspecific differences in tolerance, as evident from natural distributions. RGR H was similar between species but differed between treatments (normal watering > gradual waterlogging = sudden waterlogging. Sudden waterlogging caused massive foliage loss in the two species, but gradual waterlogging caused much greater foliage loss in N. dombeyi than in N. nítida, indicating some degree of acclimation by the latter species. Linear regressions indicated that RGR H was negatively affected by foliage loss in both species, without differences between them. Since no difference in RGR H was found between species in the waterlogging treatments, but yet in foliage loss, other mechanisms may be in volved in the short term growth reduction of N. nítida. Effects of waterlogging on long-term performance in the field were evaluated by reciprocal transplants between a poorly-drained site naturally occupied by N. nítida, and a well drained site naturally occupied by N. dombeyi. After two growing seasons, N. dombeyi had significantly lower specific leaf área (SLA and RGR H, at the poorly drained site than at its original site. At the poorly drained site N. nítida achieved 100 % survival, compared with 73.5 % in N. dombeyi. Reduced growth and survival of N. dombeyi associated with the negative effects on carbón gain of extensive foliage loss and reduced SLA may thus exelude it from the wetter sites. We conclude that tolerance may be better

  5. Resource partitioning by evergreen and deciduous species in a tropical dry forest.

    Science.gov (United States)

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin

    2017-02-01

    Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.

  6. Whole-plant allocation to storage and defense in juveniles of related evergreen and deciduous shrub species.

    Science.gov (United States)

    Wyka, T P; Karolewski, P; Żytkowiak, R; Chmielarz, P; Oleksyn, J

    2016-05-01

    In evergreen plants, old leaves may contribute photosynthate to initiation of shoot growth in the spring. They might also function as storage sites for carbohydrates and nitrogen (N). We hence hypothesized that whole-plant allocation of carbohydrates and N to storage in stems and roots may be lower in evergreen than in deciduous species. We selected three species pairs consisting of an evergreen and a related deciduous species: Mahonia aquifolium (Pursh) Nutt. and Berberis vulgaris L. (Berberidaceae), Prunus laurocerasus L. and Prunus serotina Ehrh. (Rosaceae), and Viburnum rhytidophyllum Hemsl. and Viburnum lantana L. (Adoxaceae). Seedlings were grown outdoors in pots and harvested on two dates during the growing season for the determination of biomass, carbohydrate and N allocation ratios. Plant size-adjusted pools of nonstructural carbohydrates in stems and roots were lower in the evergreen species of Berberidaceae and Adoxaceae, and the slope of the carbohydrate pool vs plant biomass relationship was lower in the evergreen species of Rosaceae compared with the respective deciduous species, consistent with the leading hypothesis. Pools of N in stems and roots, however, did not vary with leaf habit. In all species, foliage contained more than half of the plant's nonstructural carbohydrate pool and, in late summer, also more than half of the plant's N pool, suggesting that in juvenile individuals of evergreen species, leaves may be a major storage site. Additionally, we hypothesized that concentration of defensive phenolic compounds in leaves should be higher in evergreen than in deciduous species, because the lower carbohydrate pool in stems and roots of the former restricts their capacity for regrowth following herbivory and also because of the need to protect their longer-living foliage. Our results did not support this hypothesis, suggesting that evergreen plants may rely predominantly on structural defenses. In summary, our study indicates that leaf habit has

  7. The influence of canopy-layer composition on understory plant diversity in southern temperate forests

    Directory of Open Access Journals (Sweden)

    Luciana Mestre

    2017-05-01

    Full Text Available Background Understory plants represents the largest component of biodiversity in most forest ecosystems and plays a key role in forest functioning. Despite their importance, the influence of overstory-layer composition on understory plant diversity is relatively poorly understood within deciduous-evergreen broadleaved mixed forests. The aim of this work was to evaluate how tree overstory-layer composition influences on understory-layer diversity in three forest types (monospecific deciduous Nothofagus pumilio (Np, monospecific evergreen Nothofagus betuloides (Nb, and mixed N. pumilio-N. betuloides (M forests, comparing also between two geographical locations (coast and mountain to estimate differences at landscape level. Results We recorded 46 plant species: 4 ferns, 12 monocots, and 30 dicots. Canopy-layer composition influences the herb-layer structure and diversity in two different ways: while mixed forests have greater similarity to evergreen forests in the understory structural features, deciduous and mixed were similar in terms of the specific composition of plant assemblage. Deciduous pure stands were the most diverse, meanwhile evergreen stands were least diverse. Lack of exclusive species of mixed forest could represent a transition where evergreen and deciduous communities meet and integrate. Moreover, landscape has a major influence on the structure, diversity and richness of understory vegetation of pure and mixed forests likely associated to the magnitude and frequency of natural disturbances, where mountain forest not only had highest herb-layer diversity but also more exclusive species. Conclusions Our study suggests that mixed Nothofagus forest supports coexistence of both pure deciduous and pure evergreen understory plant species and different assemblages in coastal and mountain sites. Maintaining the mixture of canopy patch types within mixed stands will be important for conserving the natural patterns of understory plant

  8. A comparison of 137Cs radioactivity in localized evergreen and deciduous plant species

    International Nuclear Information System (INIS)

    Rangel, R.C.

    1996-05-01

    A vegetation study at the Comanche Peak Steam Electric Station (CPSES) near Glen Rose, Texas was conducted in 1991 and 1992. The CPSES is a commercial nuclear power plant owned and operated by Texas Utilities Electric of Dallas, Texas. The US Nuclear Regulatory Commission (USNRC) requires the CPSES to routinely sample broadleaf vegetation in place of milk samples. Few commercial dairies exist in the vicinity. Broadleaf tree species are scarce because the climate and local limestone geology have produced a dry rolling hill topography. An evergreen juniper is the dominant tree species. Few broadleaves during the winter season have hindered year-round sampling. This study compares the environmental 137 Cs concentrations between broadleaf and evergreen foliage at CPSES. Soil 137 Cs concentrations from each vegetation location were also compared to the foliage 137 Cs concentrations. The study's objective was to determine if the deciduous and evergreen vegetation 137 Cs concentrations are statistically the same

  9. A comparison of {sup 137}Cs radioactivity in localized evergreen and deciduous plant species

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, R.C.

    1996-05-01

    A vegetation study at the Comanche Peak Steam Electric Station (CPSES) near Glen Rose, Texas was conducted in 1991 and 1992. The CPSES is a commercial nuclear power plant owned and operated by Texas Utilities Electric of Dallas, Texas. The US Nuclear Regulatory Commission (USNRC) requires the CPSES to routinely sample broadleaf vegetation in place of milk samples. Few commercial dairies exist in the vicinity. Broadleaf tree species are scarce because the climate and local limestone geology have produced a dry rolling hill topography. An evergreen juniper is the dominant tree species. Few broadleaves during the winter season have hindered year-round sampling. This study compares the environmental {sup 137}Cs concentrations between broadleaf and evergreen foliage at CPSES. Soil {sup 137}Cs concentrations from each vegetation location were also compared to the foliage {sup 137}Cs concentrations. The study`s objective was to determine if the deciduous and evergreen vegetation {sup 137}Cs concentrations are statistically the same.

  10. Why Do Some Evergreen Species Keep Their Leaves for a Second Winter, While Others Lose Them?

    Directory of Open Access Journals (Sweden)

    Peter J. Grubb

    2014-10-01

    Full Text Available In subtropical montane semi-moist forest in SW China (SMSF, a large majority of evergreen tree and tall shrub species was found to have only one cohort of old leaves in early spring. In contrast, almost all species of evergreen tree and tall shrub in warm temperate rain forest (WTRF in Japan and sclerophylls in Mediterranean-climate forest (MSF of the Mediterranean Basin have two or more cohorts of old leaves in early spring; they drop their oldest cohort during or soon after leaf outgrowth in spring. Japanese WTRF has no dry season and MSF a dry summer. SMSF has a dry winter. On four evergreen Rhododendron species from SW China with only one cohort of old leaves in spring when in cultivation in Scotland, the majority of leaves in the senescing cohort fell by the end of December. We hypothesize that with dry winters, there is an advantage to dropping older leaves in autumn, because there is a low chance of appreciable positive assimilation in winter and a high chance of desiccation, reducing the resorption of dry mass and mineral nutrients from ageing leaves. Our hypothesis may be extended to cover evergreens at high altitude or high latitude that experience cold soils in winter.

  11. Potential biotechnological application of mycorrhizas and yeasts associated with Nothofagus nervosa (Rauli)

    International Nuclear Information System (INIS)

    Fernandez, N.; Fontenla, S.; Gallo, L.; Marchelli, P.

    2009-01-01

    Nothofagus nervosa is an ecologically and economically important species of south American temperate forests. In Argentina, it has a reduced natural distribution area due to over exploitation, overgrazing and forest fires. This critical situation led to the implementation of conservation and domestication programs. (Author)

  12. Guanaco’s diet and forage preferences in Nothofagus forest environments of Tierra del Fuego, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Quinteros, C.P.; Bava, J.; Gobbi, M.E.; Defossé, G.E.

    2017-11-01

    Aim of study: Guanaco (Lama guanicoe Müller), is a South American native ungulate widely distributed in Patagonia, which in the island of Tierra del Fuego (TF), extends its habitat into Nothofagus spp. forests. Within these forests, guanacos consume lenga (Nothofagus pumilio) leaves and twigs, and other understory species. The aim of this work was to determine: 1) the spring and summer diet of free ranging guanacos, and 2) which plants, grown in the forest understory, guanacos do prefer, or avoid, in these seasons of great forage abundance. Area of study: Tierra del Fuego (Argentina), on three representative areas which combined Nothofagus forests and adjacent meadows (vegas). Material and Methods: uanacos’ diet was determined by comparing epidermal and non-epidermal plant fragments with micro-histological analyses of feces. The analysis was made from composite samples of fresh feces, collected at the seasons of maximum forage productivity (spring and summer). Main results: During spring, 48% of guanacos’ diet was composed of lenga leaves, 30% of grass-like species, 15% of grasses, and less than 7% of herbs, shrubs, and lichens. In summer, 40% of the diet was composed of grasses, 30% of lenga leaves, 25% of grass-like species and the rest corresponded to herbs, shrubs, and lichens. Within the forest understory, guanaco selected lenga leaves and twigs, grass species were consumed according to their availability (or sometimes rejected), while other herbs were not consumed at all. Research highlights: Guanacos’ consumption preference for lenga, even considering the high availability of other forages, could adversely affect forest regeneration.

  13. Guanaco’s diet and forage preferences in Nothofagus forest environments of Tierra del Fuego, Argentina

    International Nuclear Information System (INIS)

    Quinteros, C.P.; Bava, J.; Gobbi, M.E.; Defossé, G.E.

    2017-01-01

    Aim of study: Guanaco (Lama guanicoe Müller), is a South American native ungulate widely distributed in Patagonia, which in the island of Tierra del Fuego (TF), extends its habitat into Nothofagus spp. forests. Within these forests, guanacos consume lenga (Nothofagus pumilio) leaves and twigs, and other understory species. The aim of this work was to determine: 1) the spring and summer diet of free ranging guanacos, and 2) which plants, grown in the forest understory, guanacos do prefer, or avoid, in these seasons of great forage abundance. Area of study: Tierra del Fuego (Argentina), on three representative areas which combined Nothofagus forests and adjacent meadows (vegas). Material and Methods: uanacos’ diet was determined by comparing epidermal and non-epidermal plant fragments with micro-histological analyses of feces. The analysis was made from composite samples of fresh feces, collected at the seasons of maximum forage productivity (spring and summer). Main results: During spring, 48% of guanacos’ diet was composed of lenga leaves, 30% of grass-like species, 15% of grasses, and less than 7% of herbs, shrubs, and lichens. In summer, 40% of the diet was composed of grasses, 30% of lenga leaves, 25% of grass-like species and the rest corresponded to herbs, shrubs, and lichens. Within the forest understory, guanaco selected lenga leaves and twigs, grass species were consumed according to their availability (or sometimes rejected), while other herbs were not consumed at all. Research highlights: Guanacos’ consumption preference for lenga, even considering the high availability of other forages, could adversely affect forest regeneration.

  14. Contrasting ozone sensitivity in related evergreen and deciduous shrubs

    International Nuclear Information System (INIS)

    Calatayud, Vicent; Marco, Francisco; Cervero, Julia; Sanchez-Pena, Gerardo; Sanz, Maria Jose

    2010-01-01

    Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO 2 assimilation and stomatal conductance (g s ), impaired Rubisco efficiency and regeneration capacity (V c,max, J max ) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed. - Mediterranean evergreen shrubs have a constitutively higher capacity to tolerate ozone stress than their deciduous relatives.

  15. Do seasonal profiles of foliar pigments improve species discrimination of evergreen coastal tree species in KwaZulu- Natal, South Africa?

    CSIR Research Space (South Africa)

    Van Deventer, Heidi

    2013-04-01

    Full Text Available of seven evergreen tree species in a sub-tropical region of South Africa, over four seasons during 2011-12. Parametric ANOVA classification was compared to similarity measures of shape (spectral angle mapper; SAM) and magnitude (sum of Euclidean Distance...

  16. Patterns of leaf morphology and leaf N content in relation to winter temperatures in three evergreen tree species

    Science.gov (United States)

    Mediavilla, Sonia; Gallardo-López, Victoria; González-Zurdo, Patricia; Escudero, Alfonso

    2012-09-01

    The competitive equilibrium between deciduous and perennial species in a new scenario of climate change may depend closely on the productivity of leaves along the different seasons of the year and on the morphological and chemical adaptations required for leaf survival during the different seasons. The aim of the present work was to analyze such adaptations in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) and their responses to between-site differences in the intensity of winter harshness. We explore the hypothesis that the harshness of winter would contribute to enhancing the leaf traits that allow them to persist under conditions of stress. The results revealed that as winter harshness increases a decrease in leaf size occurs in all three species, together with an increase in the content of nitrogen per unit leaf area and a greater leaf mass per unit area, which seems to be achieved only through increased thickness, with no associated changes in density. P. pinaster was the species with the most intense response to the harshening of winter conditions, undergoing a more marked thickening of its needles than the two Quercus species. Our findings thus suggest that lower winter temperatures involve an increase in the cost of leaf production of evergreen species, which must be taken into account in the estimation of the final cost and benefit balance of evergreens. Such cost increases would be more pronounced for those species that, like P. pinaster, show a stronger response to the winter cold.

  17. Contrasting ozone sensitivity in related evergreen and deciduous shrubs

    Energy Technology Data Exchange (ETDEWEB)

    Calatayud, Vicent, E-mail: vicent@ceam.e [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain); Marco, Francisco; Cervero, Julia [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain); Sanchez-Pena, Gerardo [SPCAN, Dir. Gral. de Medio Natural y Politica Forestal, Ministerio de Medio Ambiente, y Medio Rural y Marino, Rios Rosas 24, 28003 Madrid (Spain); Sanz, Maria Jose [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain)

    2010-12-15

    Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO{sub 2} assimilation and stomatal conductance (g{sub s}), impaired Rubisco efficiency and regeneration capacity (V{sub c,max,}J{sub max}) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed. - Mediterranean evergreen shrubs have a constitutively higher capacity to tolerate ozone stress than their deciduous relatives.

  18. Responses of evergreen and deciduous Quercus species to enhanced ozone levels

    International Nuclear Information System (INIS)

    Calatayud, Vicent; Cervero, Julia; Calvo, Esperanza; Garcia-Breijo, Francisco-Jose; Reig-Arminana, Jose; Sanz, Maria Jose

    2011-01-01

    Plants of one evergreen oak (Quercus ilex) and three deciduous oaks (Q. faginea, with small leaves; Q. pyrenaica and Q. robur, with large leaves) were exposed both to filtered air and to enhanced ozone levels in Open-Top Chambers. Q. faginea and Q. pyrenaica were studied for the first time. Based on visible injury, gas exchange, chlorophyll content and biomass responses, Q. pyrenaica was the most sensitive species, and Q. ilex was the most tolerant, followed by Q. faginea. Functional leaf traits of the species were related to differences in sensitivity, while accumulated ozone flux via stomata (POD 1.6 ) partly contributed to the observed differences. For risk assessment of Mediterranean vegetation, the diversity of responses detected in this study should be taken into account, applying appropriate critical levels. - Ozone tolerance overlapped with leaf traits in four Quercus species.

  19. Responses of evergreen and deciduous Quercus species to enhanced ozone levels

    Energy Technology Data Exchange (ETDEWEB)

    Calatayud, Vicent, E-mail: calatayud_viclor@gva.e [Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Cervero, Julia; Calvo, Esperanza [Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Garcia-Breijo, Francisco-Jose [Laboratorio de Anatomia e Histologia Vegetal ' Julio Iranzo' , Jardin Botanico, Universitat de Valencia, c/Quart 80, 46008 Valencia (Spain); Departamento de Ecosistemas Agroforestales, Escuela Tecnica Superior del Medio Rural y Enologia, Universidad Politecnica de Valencia, Avda. Blasco Ibanez 21, 46010 Valencia (Spain); Reig-Arminana, Jose [Departamento de Ecosistemas Agroforestales, Escuela Tecnica Superior del Medio Rural y Enologia, Universidad Politecnica de Valencia, Avda. Blasco Ibanez 21, 46010 Valencia (Spain); Sanz, Maria Jose [Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain)

    2011-01-15

    Plants of one evergreen oak (Quercus ilex) and three deciduous oaks (Q. faginea, with small leaves; Q. pyrenaica and Q. robur, with large leaves) were exposed both to filtered air and to enhanced ozone levels in Open-Top Chambers. Q. faginea and Q. pyrenaica were studied for the first time. Based on visible injury, gas exchange, chlorophyll content and biomass responses, Q. pyrenaica was the most sensitive species, and Q. ilex was the most tolerant, followed by Q. faginea. Functional leaf traits of the species were related to differences in sensitivity, while accumulated ozone flux via stomata (POD{sub 1.6}) partly contributed to the observed differences. For risk assessment of Mediterranean vegetation, the diversity of responses detected in this study should be taken into account, applying appropriate critical levels. - Ozone tolerance overlapped with leaf traits in four Quercus species.

  20. Effect of Severe Winter Cold on the Photosynthetic Potentials of Three Co-occurring Evergreen Woody Species in a Mediterranean Forest, Catalonia (Spain)

    Science.gov (United States)

    Sperlich, Dominik; Gracia, Carlos; Peñuelas, Josep; Sabaté, Santi

    2013-04-01

    Evergreen tree species in the Mediterranean region have to cope with a wide range of environmental stress conditions from summer drought to winter cold. The winter period can lead to photoinhibition due to a combination of high solar irradiances and chilling temperatures which can reduce the light saturation point. However, Mediterranean winter mildness can lead periodically to favourable environmental conditions above the threshold for positive carbon balance benefitting evergreen woody species in contrast to winter deciduous species. The advantage of being able to photosynthesis all year round with a significant fraction in the winter month is compensating for the lower photosynthetic potentials during spring and summer in comparison to deciduous species. In this work, we investigated the physiological behaviour of three evergreen tree species (Quercus ilex, Pinus halepensis, Arbutus undeo) co-occurring in a natural and mature Mediterranean forest after a period of mild winter conditions and their response to a sudden period of intense cold weather. Therefore, we examined in each period the photosynthetic potentials by estimating the maximum carboxylation rate (Vcmax) and the maximum electron transport rate (Jmax) through gas exchange measurements. The results indicate that all species exhibited extraordinary high photosynthetic potentials during the first period of measurement as a response to the mild conditions. However, the sudden cold period affected negatively the photosynthetic potentials of Quercus ilex and A. unedo with reduction ranging between 37 to 45 %, whereas they were observed to be only insignificantly reduced in Pinus halepensis. Our results can be explained by previous classifications into photoinhibition-avoiding (P. halpensis) and photoinhibition-tolerant (Q. ilex, A. undeo) species on the basis of their susceptibility to dynamic photoinhibition (Martinez Ferri 2000). Photoinhibition tolerant species are characterised with a more dynamic

  1. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile.

    Science.gov (United States)

    Fajardo, Alex; Piper, Frida I

    2011-01-01

    • The focus of the trait-based approach to study community ecology has mostly been on trait comparisons at the interspecific level. Here we quantified intraspecific variation and covariation of leaf mass per area (LMA) and wood density (WD) in monospecific forests of the widespread tree species Nothofagus pumilio to determine its magnitude and whether it is related to environmental conditions and ontogeny. We also discuss probable mechanisms controlling the trait variation found. • We collected leaf and stem woody tissues from 30-50 trees of different ages (ontogeny) from each of four populations at differing elevations (i.e. temperatures) and placed at each of three locations differing in soil moisture. • The total variation in LMA (coefficient of variation (CV) = 21.14%) was twice that of WD (CV = 10.52%). The total variation in traits was never less than 23% when compared with interspecific studies. Differences in elevation (temperature) for the most part explained variation in LMA, while differences in soil moisture and ontogeny explained the variation in WD. Traits covaried similarly in the altitudinal gradient only. • Functional traits of N. pumilio exhibited nonnegligible variation; LMA varied for the most part with temperature, while WD mostly varied with moisture and ontogeny. We demonstrate that environmental variation can cause important trait variation without species turnover. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  2. Are trait-scaling relationships invariant across contrasting elevations in the widely distributed treeline species Nothofagus pumilio?

    Science.gov (United States)

    Fajardo, Alex

    2016-05-01

    The study of scaling examines the relative dimensions of diverse organismal traits. Understanding whether global scaling patterns are paralleled within species is key to identify causal factors of universal scaling. I examined whether the foliage-stem (Corner's rules), the leaf size-number, and the leaf mass-leaf area scaling relationships remained invariant and isometric with elevation in a wide-distributed treeline species in the southern Chilean Andes. Mean leaf area, leaf mass, leafing intensity, and twig cross-sectional area were determined for 1-2 twigs of 8-15 Nothofagus pumilio individuals across four elevations (including treeline elevation) and four locations (from central Chile at 36°S to Tierra del Fuego at 54°S). Mixed effects models were fitted to test whether the interaction term between traits and elevation was nonsignificant (invariant). The leaf-twig cross-sectional area and the leaf mass-leaf area scaling relationships were isometric (slope = 1) and remained invariant with elevation, whereas the leaf size-number (i.e., leafing intensity) scaling was allometric (slope ≠ -1) and showed no variation with elevation. Leaf area and leaf number were consistently negatively correlated across elevation. The scaling relationships examined in the current study parallel those seen across species. It is plausible that the explanation of intraspecific scaling relationships, as trait combinations favored by natural selection, is the same as those invoked to explain across species patterns. Thus, it is very likely that the global interspecific Corner's rules and other leaf-leaf scaling relationships emerge as the aggregate of largely parallel intraspecific patterns. © 2016 Botanical Society of America.

  3. Tree dynamics in canopy gaps in old-growth forests of Nothofagus pumilio in Southern Chile

    NARCIS (Netherlands)

    Fajardo, Alex; Graaf, de N.R.

    2004-01-01

    The gap dynamics of two Nothofagus pumilio (lenga) stands have been investigated. We evaluated and compared tree diameter distributions, spatial patterns, tree fall and gap characteristics and regeneration responses in gaps in two old-growth forests of Nothofagus pumilio in Southern Chile

  4. VOLUME AND TAPER EQUATIONS FOR COMMERCIAL STEMS OF Nothofagus obliqua AND N. alpina

    Directory of Open Access Journals (Sweden)

    Hernan Attis Beltran

    2017-09-01

    Full Text Available Timber volume of standing trees is essential information for management decisions. The increasing need to optimize the potential capacity of forests maintaining their conservation, requires the quantification of the different potential possible timber products. The aim was to adjust taper equations to determine volumes of different timber products for commercial stems of Nothofagus alpina and N. obliqua. Trees of both species were randomly selected in harvesting areas of Lanin National Park (Argentina. Trees were felled and cut into commercial logs, measuring diameter with bark at different heights up to the beginning of the crown, and for each tree the diameter at breast height and total height. Five taper equations were selected and non-linear regression processes were employed for the fittings. We obtained the volume through the integration of the stem profile equation and the rotation in the space thereof through solid of revolution. The Bennet and Swindel (1972 model was selected for both Nothofagus species, obtaining similar equation parameters and differences were observed at the top of the stems of larger trees. For this the use of an integrated model is not recommended. With the obtained equations it is possible to: (i estimatevolume at different heights and for different commercial diameters, and (ii predict the height at which both species reach to a certain diameter. The model presented some statistical limitations (e.g. multicollinearity, however, the fitting of the equation and the easy understanding of the outputs support it as a useful tool in a broad range of forest applications.

  5. Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions.

    NARCIS (Netherlands)

    van Ommen Kloeke, A.E.E.; Douma, J.C.; Ordonez Barragan, J.C.; Reick, P.B.; van Bodegom, P.M.

    2012-01-01

    Aim Species with deciduous and evergreen leaf habits typically differ in leaf life span (LLS). Yet quantification of the response of LLS, within each habit, to key environmental conditions is surprisingly lacking. The aim of this study is to quantify LLS strategies of the two leaf habits under

  6. Regeneración de un bosque mixto de Nothofagus (Nothofagaceae después de una corta selectiva Regeneration of a Nothofagus (Nothofagaceae mixed forest after selective cutting

    Directory of Open Access Journals (Sweden)

    ALEJANDRO DEZZOTTI

    2003-12-01

    Full Text Available El estudio de la ecología de la regeneración natural del bosque constituye una parte esencial de la silvicultura. El cerro Tren Tren (40°12' S, 71°26' O, 1.367 m, Reserva Mapuche Curruhuinca, Argentina está ocupado por un bosque cerrado compuesto por Nothofagus dombeyi, N. nervosa y N. obliqua. En 1994 se estimó la densidad de renovales (diámetro en la base del tallo Understanding forest regeneration is essential to develop sound, ecologically-based silvicultural practices. Mount Tren Tren (40°12' S, 71°26' W, 1,367 m, Reservation Mapuche Curruhuinca, Argentina is occupied by a closed stand of Nothofagus dombeyi, N. obliqua, and N. nervosa. In 1994, tree regeneration (root collar diameter < 10 cm was estimated to be 90 ind ha-1. After that, a group selection silvicultural system was implemented and the resulting 10 artificial gaps of between 1,587 and 4,322 m² were enclosed to prevent grazing by domestic livestock. Size and age structure of regeneration were analysed based on systematic and random samplings. All tree species became established simultaneously within the artificial gaps. However, the less light demanding N. nervosa exhibited a mean age slightly larger given its differential persistence as "advanced regeneration" previous to cutting treatment. Tree regeneration was estimated in 97,006 ind ha-1 (68 % of N. dombeyi, 20 % of N. obliqua, and 12 % of N. nervosa. Regeneration abundance and composition were unrelated to shape and size of regeneration gaps, nor to abundance of adult trees within the stand and along the gap boundaries. A significant positive effect of the enclosure on plant was observed. The 86 % of juvenile Nothofagus were present when understory height and cover were low to intermediate. The management plan is considered adequate if the abundance of regeneration is compared before and after its implementation, and encourages the use and conservation of this forest type under the current silvicultural system

  7. Photosynthesis and photosynthetic electron flow in the alpine evergreen species Quercus guyavifolia in winter

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2016-10-01

    Full Text Available Alpine evergreen broadleaf tree species must regularly cope with low night temperatures in winter. However, the effects of low night temperatures on photosynthesis in alpine evergreen broadleaf tree species are unclear. We measured the diurnal photosynthetic parameters before and after cold snap for leaves of Quercus guyavifolia growing in its native habitat at 3290 m. On 11 and 12 December 2013 (before cold snap, stomatal and mesophyll conductances (gs and gm, CO2 assimilation rate (An, and total electron flow through PSII (JPSII at daytime were maintained at high levels. The major action of alternative electron flow was to provide extra ATP for primary metabolisms. On 20 December 2013 (after cold snap, the diurnal values of gs, gm, An and JPSII at daytime largely decreased, mainly due to the large decrease in night air temperature. Meanwhile, the ratio of photorespiration and alternative electron flow to JPSII largely increased on 20 December. Furthermore, the high levels of alternative electron flow were accompanied with low rates of extra ATP production. A quantitative limitation analysis reveals that the gm limitation increased on 20 December with decreased night air temperature. Therefore, the night air temperature was an important determinant of stomatal/mesophyll conductance and photosynthesis. When photosynthesis is inhibited following freezing night temperatures, photorespiration and alternative electron flow are important electron sinks, which support the role of photorespiration and alternative electron flow in photoportection for alpine plants under low temperatures.

  8. Species and acoustic diversity of bats in a palaeotropical wet evergreen forest in southern India

    OpenAIRE

    Raghuram, H; Jain, M; Balakrishnan, R

    2014-01-01

    The Western Ghats of India is among the top 25 biodiversity hotspots in the world. About 43% of the reported 117 bat species in India are found in this region, but few quantitative studies of bat echolocation calls and diversity have been carried out here thus far. A quantitative study of bat diversity was therefore conducted using standard techniques, including mist-netting, acoustical and roost surveys in the wet evergreen forests of Kudremukh National Park in the Western Ghats of Karnataka...

  9. Establishment of a Nothofagus alessandrii plantation using different ...

    African Journals Online (AJOL)

    There is a lack of information regarding the establishment of Nothofagus alessandrii plantations, including any impacts that shading and weed control may have on early survival and growth. A trial was therefore initiated where four shade levels (0% and Rachel® plastic net of 50%, 65%, and 80%) and two weed control ...

  10. Mistletoes and epiphytic lichens contribute to litter input in Nothofagus antarctica forests

    Science.gov (United States)

    Soler, Rosina; Pastur, Guillermo Martínez; Lencinas, María Vanessa; Peri, Pablo Luis

    2015-10-01

    Litter input is one of the key components that define nutrient cycling in forests and the majority of studies only consider the tree components of litterfall. However, epiphytic species can play a crucial role in litter input throughout the growing season. This work evaluates changes in litter production by mistletoe (Misodendrum sp.) and epiphytic lichen (Usnea sp.), related to crown cover in mature unmanaged, second-growth and managed (thinned for silvopastoral use) forests in Tierra del Fuego (Argentina). We used plastic traps to collect litterfall biomass from trees, lichens and mistletoes on a monthly basis over three consecutive years. Tree litter was considerable during autumn (March to May), which is typical of Nothofagus deciduous species in the Southern hemisphere. In contrast, peak litterfall from mistletoes and lichens occurred during spring and summer seasons. Tree litter (1954-3398 kg dry matter ha-1 year-1) was correlated with crown cover gradient being highest in second-growth forests and lowest in thinned sites. While litter input from mistletoes did not vary among forest types (307-333 kg dry matter ha-1 year-1), lichen litter (11-40 kg dry matter ha-1 year-1) was higher in unmanaged and thinned mature forests despite differences in tree crown cover. Contrary to what we expected, the management practices investigated here did not affect the biomass of canopy communities compared to unmanaged mature forests. Mistletoes and lichens significantly increased the spatial (forest type) and temporal complexity (extended period of falling) of litterfall in Nothofagus antarctica forests. This study provides a starting point to understand the ecological relevance of canopy communities in the Patagonian forests of southern Argentina.

  11. Ecophysiological and biochemical strategies of response to ozone in Mediterranean evergreen broadleaf species

    Science.gov (United States)

    Nali, C.; Paoletti, E.; Marabottini, R.; Della Rocca, G.; Lorenzini, G.; Paolacci, A. R.; Ciaffi, M.; Badiani, M.

    Three Mediterranean shrubs, Phillyrea latifolia L. (phillyrea), Arbutus unedo L. (strawberry tree), and Laurus nobilis L. (laurel), differing in their morphological and ecological response to water shortage, were exposed for 90 days to 0 or 110 ppb of ozone (O 3), 5 h each day. This yielded an accumulated exposure over of a threshold of 40 ppb (AOT40) of 31.5 ppm h over the 3 months experiment. These species showed differing responses to O 3: laurel and phillyrea developed foliar chlorotic mottles on the adaxial surface of leaves, whereas strawberry tree leaves showed reddish interveinal stipple-like necrotic lesions. In all cases, however, foliar injury did not exceed 8% of the sampled leaf area. At the end of the exposure period, O 3-induced stomatal limitation caused significant decreases of net photosynthesis in strawberry tree and laurel, but not in phillyrea. The relative water content of the leaves was significantly decreased by O 3, especially in laurel and strawberry tree, suggesting the occurrence of drought stress. Electrical conductivity of leachates from foliar discs increased in response to the treatment, much more strongly in laurel and in strawberry tree than in phillyrea, suggesting an O 3-dependent alteration of the membrane retention capacity. At the end of the experimental period, the activity of superoxide dismutase and the content of reduced glutathione, but not that of reduced ascorbate, were significantly increased in the ozonated leaves of strawberry tree and phillyrea, but not in laurel. The evergreen broadleaves studied here maybe relatively tolerant to realistic O 3 levels, at least in terms of visible injury and gas exchange. Such tolerance might overlap with their level of tolerance to drought stress. High constitutive levels, and/or O 3-induced increases in antioxidants, might contribute to O 3 tolerance in these Mediterranean evergreen broadleaf species.

  12. Propagation of Native Tree Species to Restore Subtropical Evergreen Broad-Leaved Forests in SW China

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2016-01-01

    Full Text Available Subtropical evergreen broad-leaved forest (EBLF is a widespread vegetation type throughout East Asia that has suffered extensive deforestation and fragmentation. Selection and successful propagation of native tree species are important for improving ecological restoration of these forests. We carried out a series of experiments to study the propagation requirements of indigenous subtropical tree species in Southwest China. Seeds of 21 tree species collected from the natural forest were materials for the experiment. This paper examines the seed germination and seedling growth performance of these species in a nursery environment. Germination percentages ranged from 41% to 96% and were ≥50% for 19 species. The median length of germination time (MLG ranged from 24 days for Padus wilsonii to 144 days for Ilex polyneura. Fifteen species can reach the transplant size (≥15 cm in height within 12 months of seed collection. Nursery-grown seedlings for each species were planted in degraded site. Two years after planting, the seedling survival rate was >50% in 18 species and >80% in 12 species. Based on these results, 17 species were recommended as appropriate species for nursery production in forest restoration projects. Our study contributes additional knowledge regarding the propagation techniques for various native subtropical tree species in nurseries for forest restoration.

  13. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacitúa, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought.

  14. Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula.

    Directory of Open Access Journals (Sweden)

    Kyung Ah Koo

    Full Text Available Climate change has caused shifts in species' ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1 identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2 predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77. Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and

  15. Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula.

    Science.gov (United States)

    Koo, Kyung Ah; Kong, Woo-Seok; Nibbelink, Nathan P; Hopkinson, Charles S; Lee, Joon Ho

    2015-01-01

    Climate change has caused shifts in species' ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below) are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1) identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2) predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77). Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and subalpine

  16. Composition and diversity of tree species in transects of location lowland evergreen forest of Ecuador

    Directory of Open Access Journals (Sweden)

    Jorge Caranqui A.

    2015-09-01

    Full Text Available The study was conducted in 9 transects 1000m2 of lowland evergreen forest, located in two locations on the coast and one in eastern Ecuador. It was to contribute to knowledge of the diversity and composition of woody plants over 10 cm diameter at breast height (DBH plus infer the state of conservation of forests based on the composition, the number of species, indices diversity and importance value (IV, found in 9 transects of 1000 m² of forest: 156 species, 107 genera and 39 families distributed in 9 transects, in each one the Simpson diversity index is of 0.92 to 0.95, in this case are diversity because all approaches 1. Most were found species aren´t present in all transects, the index value in each transect does not exceed 40%. Grouping transects match three locations exception made to transect 5 and 8 were conducted in disturbed sites, the most transects are intermediate disturbance that their high levels of diversity.

  17. Identifying the best season for mapping evergreen swamp and mangrove species using leaf-level spectra in an estuarine system in KwaZulu-Natal, South Africa

    CSIR Research Space (South Africa)

    Van Deventer, Heidi

    2014-10-01

    Full Text Available would provide the best discrimination of six evergreen tree species, associated with swamp (Ficus Trichopoda), mangrove (Avicennia marina, Bruguiera gymnorrhiza, Hibiscus tiliaceus), wetlands in adjacent woodlands (Syzygium cordatum) and coastal...

  18. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests

    DEFF Research Database (Denmark)

    Augusto, Laurent; De Schrijver, An; Vesterdal, Lars

    2015-01-01

    It has been recognized for a long time that the overstorey composition of a forest partly determines its biological and physical-chemical functioning. Here, we review evidence of the influence of evergreen gymnosperm (EG) tree species and deciduous angiosperm (DA) tree species on the water balance...... present the current state of the art, define knowledge gaps, and briefly discuss how selection of tree species can be used to mitigate pollution or enhance accumulation of stable organic carbon in the soil. The presence of EGs generally induces a lower rate of precipitation input into the soil than DAs......, resulting in drier soil conditions and lower water discharge. Soil temperature is generally not different, or slightly lower, under an EG canopy compared to a DA canopy. Chemical properties, such as soil pH, can also be significantly modified by taxonomic groups of tree species. Biomass production...

  19. The leaf size-twig size spectrum in evergreen broadleaved forest of ...

    African Journals Online (AJOL)

    Compared to deciduous broad-leaved species, the evergreen broad-leaved species were smaller in total leaf area for a given cross-sectional area or stem mass. This suggests that the species would support less leaf area at a given twig cross-sectional area with increasing environmental stress. And the life form can modify ...

  20. Evergreen understory dynamics in Coweeta forest, North Carolina

    Science.gov (United States)

    M.M. Dobbs; Albert J. Parker

    2004-01-01

    A number of studies have elucidated the distributional patterns of various components of Southern Appalachian forests. The evergreen understory here is composed largely of a dominant ericaceous shrub, Rhododendron maximum L., which is believed to be expanding and inhibiting the development of other species with consequent impacts on overall forest...

  1. Caracterización de suelos bajo bosques de Nothofagus betuloides (Mirb Blume, en Tierra del Fuego, Chile Characterization of soils of Nothofagus betuloides (Mirb Blume forests, in Tierra del Fuego, Chile

    Directory of Open Access Journals (Sweden)

    VÍCTOR GERDING

    2002-12-01

    Full Text Available En tres sectores de la parte occidental de Tierra del Fuego (54º45'-54º15' S, 68º40'-70º10' O se caracterizó morfológica, física y químicamente los suelos bajo bosques de coigüe de Magallanes (Nothofagus betuloides (Mirb Blume y sus especies asociadas lenga (Nothofagus pumilio (P. et E. Krasser y canelo (Drimys winteri Forst.. Se describieron 85 perfiles de suelo y aproximadamente 250 observaciones con bastón pedológico. Los suelos bajo coigüe de Magallanes eran jóvenes, muy influidos por la actividad volcánica, topografía y clima. Se observó la presencia de los órdenes Spodosol e Iceptisol, principalmente. En general los suelos eran delgados a muy delgados (mayoritariamente entre 10 y 40 cm, con un alto volumen de esqueleto, textura franca, estructura masiva a granular, capacidad de agua aprovechable baja y drenaje externo e interno moderado a lento. Además, presentan una alta acidez (pH 4-5,5, una baja oferta nutricional y muy altos niveles de saturación de aluminio (promedio > 60 %. El mantillo (Oe/Oa presentó condiciones adecuadas para el desarrollo radicular. Existe comúnmente un horizonte blanco (frecuentemente 10 YR 5/1-2 inmediatamente debajo del mantillo, con textura franco limosa y estructura masiva, con arraigamiento muy bajo. Se plantea como hipótesis que este horizonte se originó por depósitos de cenizas volcánicas y procesos de podzolización. Se concluye que la fertilidad de estos suelos es baja debido a limitantes físicas (dificultades de arraigamiento y químicas (acidez, toxicidad de aluminio, baja oferta de basesSoils under coigüe de Magallanes (Nothofagus betuloides (Mirb Blume forests, located in the oriental part of Tierra del Fuego (54º45'-54º15' S, 68º40'-70º10' W, were characterized morphologically, physically and chemically. Associated tree species were lenga (Nothofagus pumilio (P. et E. Krasser and canelo (Drimys winterii Forst.. A total of 85 soil profiles and approximately 250 soil

  2. Relating ring width of Mediterranean evergreen species to seasonal and annual variations of precipitation and temperature

    Science.gov (United States)

    Nijland, W.; Jansma, E.; Addink, E. A.; Domínguez Delmás, M.; de Jong, S. M.

    2011-05-01

    Plant growth in Mediterranean landscapes is limited by the typical summer-dry climate. Forests in these areas are only marginally productive and may be quite susceptible to modern climate change. To improve our understanding of forest sensitivity to annual and seasonal climatic variability, we use tree-ring measurements of two Mediterranean evergreen tree species: Quercus ilex L. and Arbutus unedo L. We sampled 34 stems of these species on three different types of substrates in the Peyne study area in southern France. The resulting chronologies were analysed in combination with 38 yr of monthly precipitation and temperature data to reconstruct the response of stem growth to climatic variability. Results indicate a strong positive response to May and June precipitation, as well as a significant positive influence of early-spring temperatures and a negative growth response to summer heat. Comparison of the data with more detailed productivity measurements in two contrasting years confirms these observations and shows a strong productivity limiting effect of low early-summer precipitation. The results show that tree-ring data from Q.ilex and A.unedo can provide valuable information about the response of these tree species to climate variability, improving our ability to predict the effects of climate change in Mediterranean ecosystems.

  3. The transitional semi-evergreen bushland in Ethiopia

    DEFF Research Database (Denmark)

    van Breugel, Paulo; Friis, Ib; Sebsebe, Demissew

    2016-01-01

    Question: Evergreen bushlands in Ethiopia have been inadequately studied and mapped. We address the question whether there is a transitional semi-ever-green bushland on the eastern escarpment of the Ethiopian Highlands, with unique floristic characteristics that distinguish it from the evergreen...... bushlands in other parts of Ethiopia and eastern Africa. Methods: Based on a review of the recent descriptions of evergreen bushlands in Ethiopia, we hypothesize that there is a distinct zone of natural semi-ever-green bushland, which is restricted to the eastern and southeastern escarpment of the Ethiopian...... Highlands. In contrast, evergreen bushlands in other parts of Ethiopia are considered to be of a secondary nature. To test this hypothesis, we carried out qualitative vegetation surveys in 354 locations across Ethiopia and classified the vegetation in these locations based on the occurrences of indicator...

  4. Artocarpus hirsutus Lam. of Moraceae is a large evergreen tree with ...

    Indian Academy of Sciences (India)

    Artocarpus hirsutus Lam. of Moraceae is a large evergreen tree with milky latex. This species occurs wild and is also cultivated for its fruit, which is edible. Leaves are simple and dark green. The branchlets are covered with rust-brown hairs. Inflorescence is axillary. The female inflorescence is globose with individualjlowers ...

  5. Abiotic factors affect the recruitment and biomass of perennial grass and evergreen shrub seedlings in denuded areas of Patagonian Monte rangelands.

    Science.gov (United States)

    Bosco, Tomás; Bertiller, Mónica Beatriz; Carrera, Analía Lorena

    2018-07-15

    Assessing the ability of key species to cope with environmental stresses in disturbed areas is an important issue for recovery of degraded arid ecosystem. Our objective was to evaluate the effect of soil moisture, exposure to UV radiation, and presence/absence of litter with different chemistry on soil N, recruitment and biomass of seedlings of perennial grass (Poa ligularis and Nassella tenuis) and evergreen shrub species (Atriplex lampa and Larrea divaricata) in denuded areas. We carried out a microcosm experiment with soil blocks (28 cm depth) sowed with seeds of the target species, subjected to different levels of litter type (perennial grass-evergreen shrub mixture, evergreen shrub mixture, and no litter), UV radiation (near ambient and reduced UV), and soil water (high: 15-25% and low 5-15%). Periodically, during 6 months, we assessed soil-N (total and inorganic) at two depths and species seedling recruitment at microcosms. Additionally, emerged seedlings of each species were transplanted to individual pots containing soil and subjected to the same previous factors during 12 months. Then, all plants were harvested and biomass assessed. Only inorganic soil-N at the upper soil varied among treatments increasing with the presence of evergreen shrub litter, exposure to ambient UV, and high soil water. Inorganic soil-N, promoted by near ambient UV and high soil water, had a positive effect on recruitment of perennial grasses and A. lampa. Both litter types promoted the recruitment of perennial grasses. Evergreen shrub litter and high soil water promoted the recruitment of L. divaricata. Seedling biomass of perennial grasses increased with high soil water and reduced UV. Ambient UV had positive or null effects on biomass of evergreen shrub seedlings. High soil water increased biomass of L. divaricata seedlings. We concluded that soil water appeared as the most limiting factor for seedling recruitment of all species whereas inorganic soil N limited the

  6. Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen Cyclobalanopsis glauca seedlings

    International Nuclear Information System (INIS)

    Zhang, Weiwei; Feng, Zhaozhong; Wang, Xiaoke; Niu, Junfeng

    2014-01-01

    To assess the effects of leaf age/layer on the response of photosynthesis to chronic ozone (O 3 ), Cyclobalanopsis glauca seedlings, a dominant evergreen broadleaf tree species in sub-tropical regions, were exposed to either ambient air (AA) or elevated O 3 (AA + 60 ppb O 3 , E-O 3 ) for two growing seasons in open-top chambers. Chlorophyll content, gas exchange and chlorophyll a fluorescence were investigated three times throughout the 2nd year of O 3 exposure. Results indicated that E-O 3 decreased photosynthetic parameters, particularly light-saturated photosynthesis rate, stomatal conductance and effective quantum yield of PSII photochemistry of current-year leaves but not previous-year leaves. Stomatal conductance of plants grown under ambient conditions partially contributed to the different response to E-O 3 between leaf layers. Light radiation or other physiological and biochemical processes closely related to photosynthesis might play important roles. All suggested that leaf ages or layers should be considered when assessing O 3 risk on evergreen woody species. -- Highlights: • Response of evergreen Cyclobalanopsis glauca to O 3 was investigated. • Elevated O 3 significantly reduced photosynthesis of current-year leaves. • Previous-year leaves showed little response to O 3 . • Stomatal conductance contributes to the response difference to O 3 among leaf ages. -- Impacts of elevated O 3 on photosynthesis of evergreen woody species depend on leaf ages

  7. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies.

    Science.gov (United States)

    Zeppel, Melanie; Tissue, David; Taylor, Daniel; Macinnis-Ng, Catriona; Eamus, Derek

    2010-08-01

    Nocturnal fluxes may be a significant factor in the annual water budget of forested ecosystems. Here, we assessed sap flow in two co-occurring evergreen species (Eucalyptus parramattensis and Angophora bakeri) in a temperate woodland for 2 years in order to quantify the magnitude of seasonal nocturnal sap flow (E(n)) under different environmental conditions. The two species showed different diurnal water relations, demonstrated by different diurnal curves of stomatal conductance, sap flow and leaf water potential. The relative influence of several microclimatic variables, including wind speed (U), vapour pressure deficit (D), the product of U and D (UD) and soil moisture content, were quantified. D exerted the strongest influence on E(n) (r² = 0.59-0.86), soil moisture content influenced E(n) when D was constant, but U and UD did not generally influence E(n). In both species, cuticular conductance (G(c)) was a small proportion of total leaf conductance (G(s)) and was not a major pathway for E(n). We found that E(n) was primarily a function of transpiration from the canopy rather than refilling of stem storage, with canopy transpiration accounting for 50-70% of nocturnal flows. Mean E(n) was 6-8% of the 24-h flux across seasons (spring, summer and winter), but was up to 19% of the 24-h flux on some days in both species. Despite different daytime strategies in water use of the two species, both species demonstrated low night-time water loss, suggesting similar controls on water loss at night. In order to account for the impact of E(n) on pre-dawn leaf water potential arising from the influence of disequilibria between root zone and leaf water potential, we also developed a simple model to more accurately predict soil water potential (ψ(s)).

  8. Xanthophyllomyces dendrorhous (Phaffia rhodozyma on stromata of Cyttaria hariotii in northwestern Patagonian Nothofagus forests

    Directory of Open Access Journals (Sweden)

    Diego Libkind

    2011-09-01

    Full Text Available The occurrence and distribution of Xanthophyllomyces dendrorhous associated with Cyttaria hariotii parasitizing three Nothofagus species (N. dombeyi, N. antarctica and N. pumilio in northwestern Patagonia (Argentina, as well as the factors that may affect this distribution were herein studied. Between 2000 and 2007, samples were obtained from 18 different locations. Based on physiological tests and morphological characteristics of sexual structures, 72 isolates were identified as X. dendrorhous. Representative strains were studied by MSP-PCR fingerprinting and sequence analysis of the ITS region. MSP-PCR fingerprints were similar for the newly isolated strains, and were also identical to the profiles of the strains previously found in this region. Patagonian strains appear to be a genetically uniform and distinct population, supporting the hypothesis that the association with different host species has determined genetically distinct X. dendrorhous populations worldwide. X. dendrorhous was recovered from N. dombeyi and N. antarctica. Approximately half the sampling sites and samples were positive for X. dendrorhous, but the isolation recovery rate was low. X. dendrorhous was absent in the early stages of ascostromata maturation, becoming more abundant in later stages. The present work represents a step forward in the understanding of the natural distribution and ecology of this biotechnologically relevant yeast.Xanthophyllomyces dendrorhous (Phaffia rhodozyma asociado a estromas de Cyttaria hariotii en bosques de Nothofagus en el noroeste de la Patagonia. Se estudió la ocurrencia y la distribución de Xanthophyllomyces dendrorhous asociado a Cyttaria hariotii en tres especies de Nothofagus (N. dombeyi, N. antarctica y N. pumilio del noroeste de la Patagonia (Argentina, y los factores que podrían afectar esta distribución. El muestreo se realizó entre 2000 y 2007 en 18 sitios diferentes. Según las pruebas fisiológicas y las caracter

  9. Transcriptome survey of Patagonian southern beech Nothofagus nervosa (= N. Alpina: assembly, annotation and molecular marker discovery

    Directory of Open Access Journals (Sweden)

    Torales Susana L

    2012-07-01

    Full Text Available Abstract Background Nothofagus nervosa is one of the most emblematic native tree species of Patagonian temperate forests. Here, the shotgun RNA-sequencing (RNA-Seq of the transcriptome of N. nervosa, including de novo assembly, functional annotation, and in silico discovery of potential molecular markers to support population and associations genetic studies, are described. Results Pyrosequencing of a young leaf cDNA library generated a total of 111,814 high quality reads, with an average length of 447 bp. De novo assembly using Newbler resulted into 3,005 tentative isotigs (including alternative transcripts. The non-assembled sequences (singletons were clustered with CD-HIT-454 to identify natural and artificial duplicates from pyrosequencing reads, leading to 21,881 unique singletons. 15,497 out of 24,886 non-redundant sequences or unigenes, were successfully annotated against a plant protein database. A substantial number of simple sequence repeat markers (SSRs were discovered in the assembled and annotated sequences. More than 40% of the SSR sequences were inside ORF sequences. To confirm the validity of these predicted markers, a subset of 73 SSRs selected through functional annotation evidences were successfully amplified from six seedlings DNA samples, being 14 polymorphic. Conclusions This paper is the first report that shows a highly precise representation of the mRNAs diversity present in young leaves of a native South American tree, N. nervosa, as well as its in silico deduced putative functionality. The reported Nothofagus transcriptome sequences represent a unique resource for genetic studies and provide a tool to discover genes of interest and genetic markers that will greatly aid questions involving evolution, ecology, and conservation using genetic and genomic approaches in the genus.

  10. Relating ring width of Mediterranean evergreen species to seasonal and annual variations of precipitation and temperature

    Directory of Open Access Journals (Sweden)

    W. Nijland

    2011-05-01

    Full Text Available Plant growth in Mediterranean landscapes is limited by the typical summer-dry climate. Forests in these areas are only marginally productive and may be quite susceptible to modern climate change. To improve our understanding of forest sensitivity to annual and seasonal climatic variability, we use tree-ring measurements of two Mediterranean evergreen tree species: Quercus ilex L. and Arbutus unedo L. We sampled 34 stems of these species on three different types of substrates in the Peyne study area in southern France. The resulting chronologies were analysed in combination with 38 yr of monthly precipitation and temperature data to reconstruct the response of stem growth to climatic variability. Results indicate a strong positive response to May and June precipitation, as well as a significant positive influence of early-spring temperatures and a negative growth response to summer heat. Comparison of the data with more detailed productivity measurements in two contrasting years confirms these observations and shows a strong productivity limiting effect of low early-summer precipitation. The results show that tree-ring data from Q.ilex and A.unedo can provide valuable information about the response of these tree species to climate variability, improving our ability to predict the effects of climate change in Mediterranean ecosystems.

  11. Forest Typification to Characterize the Structure and Composition of Old-growth Evergreen Forests on Chiloe Island, North Patagonia (Chile

    Directory of Open Access Journals (Sweden)

    Jan R. Bannister

    2013-11-01

    Full Text Available The Evergreen forest type develops along the Valdivian and North-Patagonian phytogeographical regions of the south-central part of Chile (38° S–46° S. These evergreen forests have been scarcely studied south of 43° S, where there is still a large area made up of old-growth forests. Silvicultural proposals for the Evergreen forest type have been based on northern Evergreen forests, so that the characterization of the structure and composition of southern Evergreen forests, e.g., their typification, would aid in the development of appropriate silvicultural proposals for these forests. Based on the tree composition of 46 sampled plots in old-growth forests in an area of >1000 ha in southern Chiloé Island (43° S, we used multivariate analyses to define forest groups and to compare these forests with other evergreen forests throughout the Archipelago of North-Patagonia. We determined that evergreen forests of southern Chiloé correspond to the North-Patagonian temperate rainforests that are characterized by few tree species of different shade tolerance growing on fragile soils. We discuss the convenience of developing continuous cover forest management for these forests, rather than selective cuts or even-aged management that is proposed in the current legislation. This study is a contribution to forest classification for both ecologically- and forestry-oriented purposes.

  12. Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand.

    Science.gov (United States)

    Ishida, Atsushi; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Sasrisang, Amornrat; Kaewpakasit, Kanokwan; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Gamo, Minoru; Diloksumpun, Sapit; Puangchit, Ladawan; Ishizuka, Moriyoshi

    2010-08-01

    This study compared leaf gas exchange, leaf hydraulic conductance, twig hydraulic conductivity and leaf osmotic potential at full turgor between two drought-deciduous trees, Vitex peduncularis Wall. and Xylia xylocarpa (Roxb.) W. Theob., and two evergreen trees, Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels, at the uppermost canopies in tropical dry forests in Thailand. The aims were to examine (i) whether leaf and twig hydraulic properties differ in relation to leaf phenology and (ii) whether xylem cavitation is a determinant of leaf shedding during the dry season. The variations in almost all hydraulic traits were more dependent on species than on leaf phenology. Evergreen Hopea exhibited the lowest leaf-area-specific twig hydraulic conductivity (leaf-area-specific K(twig)), lamina hydraulic conductance (K(lamina)) and leaf osmotic potential at full turgor (Ψ(o)) among species, whereas evergreen Syzygium exhibited the highest leaf-area-specific K(twig), K(lamina) and Ψ(o). Deciduous Xylia had the highest sapwood-area-specific K(twig), along with the lowest Huber value (sapwood area/leaf area). More negative osmotic Ψ(o) and leaf osmotic adjustment during the dry season were found in deciduous Vitex and evergreen Hopea, accompanied by low sapwood-area-specific K(twig). Regarding seasonal changes in hydraulics, no remarkable decrease in K(lamina) and K(twig) was found during the dry season in any species. Results suggest that leaf shedding during the dry season is not always associated with extensive xylem cavitation.

  13. Transpiration and water use efficiency in native chilean and exotic species, a usefull tool for catchment management?

    Science.gov (United States)

    Hervé-Fernández, P.; Oyarzun, C. E.

    2012-04-01

    Land-use and forest cover change play important roles in socio-economic processes and have been linked with water supply and other ecosystem services in various regions of the world. Water yield from watersheds is a major ecosystem service for human activities but has been altered by landscape management superimposed on climatic variability and change. Sustaining ecosystem services important to humans, while providing a dependable water supply for agriculture and urban needs is a major challenge faced by managers of human-dominated or increased antropical effect over watersheds. Since water is mostly consumed by vegetation (i.e: transpiration), which strongly depends on trees physiological characteristics (i.e: foliar area, transpiration capacity) are very important. The quantity of water consumed by plantations is influenced mainly by forest characteristics (species physiology, age and management), catchment water retention capacity and meteorological characteristics. Eventhough in Chile, the forest sector accounts for 3.6% of the gross domestic product (GDP) and 12.5% of total exports (INFOR, 2003), afforestation with fast growing exotic species has ended up being socially and politically questionable because of the supposed impact on the environment and water resources. We present data of trees transpiration and water use efficiency from three headwater catchments: (a) second growth native evergreen forest (Aetoxicon punctatum, Drimys winterii, Gevuina avellana, Laureliopsis philippiana); (b) Eucalyptus globulus plantation, and (c) a mixed native deciduous (Nothofagus obliqua and some evergreen species) forest and Eucalyptus globulus and Acacia melanoxylon plantation located at the Coastal Mountain Range in southern Chile (40°S). Annual transpiration rates ranged from 1.24 ± 0.41 mol•m-2•s-1 (0.022 ± 0.009 L•m-2•s-1) for E. globulus, while the lowest observed was for L. philippiana 0.44 ± 0.31 mol•m-2•s-1 (0.008 ± 0.006 L•m-2•s-1). However

  14. Do evergreen and deciduous trees have different effects on net N mineralization in soil?

    Science.gov (United States)

    Mueller, Kevin E; Hobbie, Sarah E; Oleksyn, Jacek; Reich, Peter B; Eissenstat, David M

    2012-06-01

    Evergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (N(min)). We evaluated this hypothesis by compiling published data on net N(min) rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net N(min) rates; net N(min) beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net N(min) rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net N(min) at some sites and lower net N(min) at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net N(min) rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net N(min) are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net N(min) probably depend on site-specific factors such as stand age and soil type.

  15. [Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China].

    Science.gov (United States)

    Zuo, Shu-di; Ren, Yin; Weng, Xian; Ding, Hong-feng; Luo, Yun-jian

    2015-02-01

    Biomass allometric equation (BAE) considered as a simple and reliable method in the estimation of forest biomass and carbon was used widely. In China, numerous studies focused on the BAEs for coniferous forest and pure broadleaved forest, and generalized BAEs were frequently used to estimate the biomass and carbon of mixed broadleaved forest, although they could induce large uncertainty in the estimates. In this study, we developed the species-specific and generalized BAEs using biomass measurement for 9 common broadleaved trees (Castanopsis fargesii, C. lamontii, C. tibetana, Lithocarpus glaber, Sloanea sinensis, Daphniphyllum oldhami, Alniphyllum fortunei, Manglietia yuyuanensis, and Engelhardtia fenzlii) of subtropical evergreen broadleaved forest, and compared differences in species-specific and generalized BAEs. The results showed that D (diameter at breast height) was a better independent variable in estimating the biomass of branch, leaf, root, aboveground section and total tree than a combined variable (D2 H) of D and H (tree height) , but D2H was better than D in estimating stem biomass. R2 (coefficient of determination) values of BAEs for 6 species decreased when adding H as the second independent variable into D- only BAEs, where R2 value for S. sinensis decreased by 5.6%. Compared with generalized D- and D2H-based BAEs, standard errors of estimate (SEE) of BAEs for 8 tree species decreased, and similar decreasing trend was observed for different components, where SEEs of the branch decreased by 13.0% and 20.3%. Therefore, the biomass carbon storage and its dynamic estimates were influenced largely by tree species and model types. In order to improve the accuracy of the estimates of biomass and carbon, we should consider the differences in tree species and model types.

  16. Yeast and yeast-like fungi associated with dry indehiscent fruits of Nothofagus nervosa in Patagonia, Argentina.

    Science.gov (United States)

    Fernández, Natalia V; Mestre, M Cecilia; Marchelli, Paula; Fontenla, Sonia B

    2012-04-01

    Nothofagus nervosa (Raulí) is a native tree species that yields valuable timber. It was overexploited in the past and is currently included in domestication and conservation programs. Several research programs have focused on the characterization of epiphytic microorganisms because it has been demonstrated that they can affect plant-pathogen interactions and/or promote plant growth. Although the microbial ecology of leaves has been well studied, less is known about microorganisms occurring on seeds and noncommercial fruits. In this work, we analyzed the yeast and yeast-like fungi present on N. nervosa fruits destined for the propagation of this species, as well as the effects of fruit preservation and seed dormancy-breaking processes on fungal diversity. Morphological and molecular methods were used, and differences between fungal communities were analyzed using a similarity index. A total of 171 isolates corresponding to 17 species were recovered, most of which belong to the phylum Ascomycota. The majority of the species develop mycelia, produce pigments and mycosporines, and these adaptation strategies are discussed. It was observed that the preservation process considerably reduced yeast and yeast-like fungal diversity. This is the first study concerning microbial communities associated with this ecologically and economically important species, and the information presented is relevant to domestication programs. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers.

    Science.gov (United States)

    Gamon, John A; Huemmrich, K Fred; Wong, Christopher Y S; Ensminger, Ingo; Garrity, Steven; Hollinger, David Y; Noormets, Asko; Peñuelas, Josep

    2016-11-15

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying "photosynthetic phenology" from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a "chlorophyll/carotenoid index" (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA's Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology.

  18. Protected Areas: Mixed Success in Conserving East Africa's Evergreen Forests

    OpenAIRE

    Pfeifer, Marion; Burgess, Neil D.; Swetnam, Ruth D.; Platts, Philip J.; Willcock, Simon; Marchant, Robert

    2012-01-01

    In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and 'leakage' (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa ...

  19. Species composition, diversity and stratification in subtropical evergreen broadleaf forests along a latitudinal thermal gradient in the Ryukyu Archipelago, Japan

    Directory of Open Access Journals (Sweden)

    S.M. Feroz

    2015-07-01

    Full Text Available A well-developed evergreen broadleaf forest exists in the northern part of Okinawa and in the central part of the Ishigaki Islands in the Ryukyu Archipelago, Japan. All woody plants were identified to species level and their heights and diameters were measured in a 750m2 plot in Okinawa and a 400m2 plot in the Ishigaki Islands. Species overlap, dominance, diversity, multi-strata structure, and spatial distribution were calculated. The floristic composition in Okinawa was found to be different from that in Ishigaki. The species overlap between strata was higher in Okinawa than in Ishigaki. Species diversity and evenness tended to increase from the top down in Okinawa and the reverse in Ishigaki. Mean tree weight of each stratum decreased and tree density increased from top down in both forests. This trend resembled the mean weight–density trajectory of self-thinning plant populations. The degree of stand stratification, species richness and species diversity for trees with DBH ⩾4.5  cm increased along the latitudinal thermal gradient in the Ryukyu Archipelago. Thus, trees in the lower strata of Okinawa and upper strata of Ishigaki are important for sustainable maintenance of higher woody species diversity in the Ryukyu Archipelago.

  20. The seasonality of butterflies in a semi-evergreen forest: Gibbon Wildlife Sanctuary, Assam, northeastern India

    Directory of Open Access Journals (Sweden)

    Arun P. Singh

    2015-01-01

    Full Text Available A study spanning 3.7 years on the butterflies of Gibbon Wildlife Sanctuary GWS (21km2, a semi-evergreen forest, in Jorhat District of Assam, northeastern India revealed 211 species of butterflies belonging to 115 genera including 19 papilionids and seven ‘rare’ and ‘very rare’ species as per Evans list of the Indian sub-continent (Great Blue Mime Papilio paradoxa telearchus; Brown Forest BobScobura woolletti; Snowy Angle Darpa pteria dealbatahas; Constable Dichorragia nesimachus; Grey Baron Euthalia anosia anosia; Sylhet Oakblue Arhopala silhetensis; Branded Yamfly Yasoda tripunctata. The butterflies showed a strong seasonality pattern in this forest with only one significant peak during the post monsoon (September-October when 118 species were in flight inside the forest which slowly declined to 92 species in November-December. Another peak (102 species was visible after winter from March to April. Species composition showed least similarity between pre-monsoon (March-May and post-monsoon (October-November seasons. The number of papilionid species were greater from July to December as compared from January to June. The findings of this study suggest that the pattern of seasonality in a semi-evergreen forest in northeastern India is distinct from that of the sub-tropical lowland forest in the Himalaya. Favourable logistics and rich diversity in GWS points to its rich potential in promoting ‘butterfly inclusive ecotourism’ in this remnant forest.

  1. Insect herbivores associated with an evergreen tree Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) in a tropical dry forest.

    Science.gov (United States)

    Silva, J O; Neves, F S

    2014-08-01

    Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) is a tree species found in Brazilian tropical dry forests that retain their leaves during the dry season. That being, we addressed the following question: i) How do insect diversity (sap-sucking and chewing), leaf herbivory and defensive traits (tannin and leaf sclerophylly) vary on the evergreen tree species G. marginata between seasons? The abundance of sap-sucking insects was higher in the dry season than in the rainy season. However, we did not verify any difference in the species richness and abundance of chewing insects between seasons. Leaf herbivory was higher in the rainy season, whereas leaf sclerophylly was higher in the dry season. However, herbivory was not related to sclerophylly. Insect herbivores likely decrease their folivory activity during the dry season due to life history patterns or changes in behaviour, possibly entering diapause or inactivity during this period. Therefore, G. marginata acts as a likely keystone species, serving as a moist refuge for the insect fauna during the dry season in tropical dry forest, and the presence of this evergreen species is crucial to conservation strategies of this threatened ecosystem.

  2. Photosynthetic pathway types of evergreen rosette plants (Liliaceae) of the Chihuahuan desert.

    Science.gov (United States)

    Kemp, Paul R; Gardetto, Pietra E

    1982-11-01

    Diurnal patterns of CO 2 exchange and titratable acidity were monitored in six species of evergreen rosette plants growing in controlled environment chambers and under outdoor environmental conditions. These patterns indicated that two of the species, Yucca baccata and Y. torreyi, were constituitive CAM plants while the other species, Y. elata, Y. campestris, Nolina microcarpa and Dasylirion wheeleri, were C 3 plants. The C 3 species did not exhibit CAM when grown in any of several different temperature, photoperiod, and moisture regimes. Both photosynthetic pathway types appear adapted to desert environments and all species show environmentally induced changes in their photosynthetic responses consistent with desert adaptation. The results of this study do not indicate that changes in the photosynthetic pathway type are an adaptation in any of these species.

  3. Estudio comparativo del crecimiento y la ramificación de brotes anuales en dos especies de Nothofagus (Nothofagaceae y en híbridos inter-específicos Comparative study of annual shoot growth and branching in two species of Nothofagus (Nothofagaceae and inter-specific hybrids

    Directory of Open Access Journals (Sweden)

    Cristian Torres

    2009-12-01

    Full Text Available Las ramas principales y secundarias se diferencian en mayor o menor medida según las especies, lo cual puede observarse en base al crecimiento primario de los brotes que las originan. En ejemplares de vivero juveniles-adultos de Nothofagus obliqua, N. nervosa e híbridos entre ambas especies, se compararon la dinámica de alargamiento, el tamaño y la morfología de dos brotes distales de ramas principales: uno que continúa el alargamiento de la rama principal y el otro que inicia una rama secundaria. En N. alpina y en híbridos, los dos brotes más distales se diferencian más que en N. obliqua. A pesar de la homogeneidad ambiental en el vivero y el origen geográfico común para los ejemplares de N. nervosa y los híbridos, hubieron diferencias fenológicas y morfológicas entre estas entidades. La duración y tasa de alargamiento y la longitud final de los brotes fueron altamente variables en cada entidad. Las variaciones entre entidades en la diferenciación de ejes podrían indicar diferencias en sus capacidades de uso del espacio circundante. La diferenciación entre ramas principales y secundarias se iniciaría en el estado de yema. La variación intra-específica fenológica y morfológica es útil para programas de selección artificial de individuos.Main and secondary branches are more or less differentiated according to the species and this could be observed during the primary growth of the shoots that produce them. In young-adult trees of Nothofagus obliqua, N. nervosa and hybrids between them growing in a common garden, growth dynamics, size and morphology were compared between two distal shoots produced by main branches: one of these shoots continued the extension of the main branch whereas the other initiated a secondary branch. The two distal shoots differed from each other more notably in N. nervosa and in the hybrids than in N. obliqua. Despite the environmental homogeneities at the nursery and the common geographic origin of

  4. 'Linkage' pharmaceutical evergreening in Canada and Australia

    Science.gov (United States)

    Faunce, Thomas A; Lexchin, Joel

    2007-01-01

    'Evergreening' is not a formal concept of patent law. It is best understood as a social idea used to refer to the myriad ways in which pharmaceutical patent owners utilise the law and related regulatory processes to extend their high rent-earning intellectual monopoly privileges, particularly over highly profitable (either in total sales volume or price per unit) 'blockbuster' drugs. Thus, while the courts are an instrument frequently used by pharmaceutical brand name manufacturers to prolong their patent royalties, 'evergreening' is rarely mentioned explicitly by judges in patent protection cases. The term usually refers to threats made to competitors about a brand-name manufacturer's tactical use of pharmaceutical patents (including over uses, delivery systems and even packaging), not to extension of any particular patent over an active product ingredient. This article focuses in particular on the 'evergreening' potential of so-called 'linkage' provisions, imposed on the regulatory (safety, quality and efficacy) approval systems for generic pharmaceuticals of Canada and Australia, by specific articles in trade agreements with the US. These 'linkage' provisions have also recently appeared in the Korea-US Free Trade Agreement (KORUSFTA). They require such drug regulators to facilitate notification of, or even prevent, any potential patent infringement by a generic pharmaceutical manufacturer. This article explores the regulatory lessons to be learnt from Canada's and Australia's shared experience in terms of minimizing potential adverse impacts of such 'linkage evergreening' provisions on drug costs and thereby potentially on citizen's access to affordable, essential medicines. PMID:17543113

  5. Site quality influence over understory plant diversity in old-growth and harvested Nothofagus pumilio forests

    Directory of Open Access Journals (Sweden)

    E. A. Gallo

    2013-04-01

    Full Text Available Aim of study: The effects and interactions of shelterwood forest harvesting and site qualities over understory plant species diversity and composition were compared among primary and harvested Nothofagus pumilio forests.Area of study: Tierra del Fuego (Argentina, on three pure conditions (one and six year-old harvested, and primary without previous harvesting forests and three site qualities (high, medium and low.Material and Methods: Understory richness and cover (% were registered in five replicates of 1 hectare each per treatment. Taxonomic species were classified in categories (groups, origin and life forms. Two-way ANOVAs and multivariate analyses were conducted.Main results: Shelterwood harvesting and site quality significantly influenced understory cover and richness, which allow the introduction of native and exotic species and increasing of dicot and monocot covers. In dicots, monocots, exotics and total groups, higher richness and covers were related to time. Meanwhile, cover reached similar high values in all site qualities on dicot, native and total groups. On the other hand, monocot and exotic richness and cover remain similar in primary and recently harvested forests, and greatly increased in old harvested forests. Mosses and ferns were among the most sensitive groups.Research highlights: Impacts of shelterwood cut depend on site quality of the stands and time since harvesting occurs. For this, different site quality stands should received differential attention in the development of conservation strategies, as well as variations in the shelterwood implementation (as irregularity and patchiness should be considered to better promote understory plant species conservation inside managed areas.Key words: plant species conservation; years after harvesting; forest management; Tierra del Fuego.

  6. Observations on arbuscular mycorrhiza associated with important edible tuberous plants grown in wet evergreen forest in Assam, India

    Directory of Open Access Journals (Sweden)

    RAJA RISHI

    2013-10-01

    Full Text Available Kumar R, Tapwal A, Pandey S, Rishi R, Borah D. 2013. Observations on arbuscular mycorrhiza associated with important edible tuberous plants grown in wet evergreen forest in Assam, India. Biodiversitas 14: 67-72. Non-timber forest products constitute an important source of livelihood for rural households from forest fringe communities across the world. Utilization of wild edible tuber plants is an integral component of their culture. Mycorrhizal associations influence the establishment and production of tuber plants under field conditions.The aim of present study is to explore the diversity and arbuscular mycorrhizal (AMF colonization of wild edible tuber plants grown in wet evergreen forest of Assam, India. A survey was conducted in 2009-10 in Sunaikuchi, Khulahat, and Bura Mayong reserved forest of Morigaon district of Assam to determine the AMF spore population in rhizosphere soils and root colonization of 14 tuberous edible plants belonging to five families. The results revealed AMF colonization of all selected species in all seasons. The percent colonization and spore count was less in summer, moderate in winter and highest in rainy season. Seventeen species of arbuscular mycorrhizal fungi were recorded in four genera viz. Acaulospora (7 species, Glomus (5 species, Sclerocystis (3 species and Gigaspora (2 species.

  7. Age and distribution of an evergreen clonal shrub in the Coweeta basin: Rhododendron maximum L

    Science.gov (United States)

    Katherine J. Elliott; James M. Vose

    2012-01-01

    Rhododendron maximum L. is an evergreen, clonal shrub that forms a dominant sub-canopy layer and is a key species in southern Appalachian forests. We investigated the age and distribution of R. maximum across the Coweeta Basin, a 1626 ha watershed in western North Carolina. We selected 16 perennial, second-order streams and used a Global Positioning System to establish...

  8. Use of tree species by White-throated treerunner (Pygarrhichas albogularis King in a secondary native forest of southern Chile

    Directory of Open Access Journals (Sweden)

    Alberto Gantz

    2015-06-01

    Full Text Available ABSTRACT In forest ecosystems, numerous species of insectivorous birds use certain tree species as feeding and nesting substrates. Between 2009 and 2010, the use of different floristic components as feeding substrate by the Pygarrhichas albogularis King, 1831 was evaluated in a southern Chilean secondary native forest. From a total of 13 trees and bush species, six tree species were used by P. albogularis as a feeding substrate. Tree use was limited to intermediate heights (11-20 m and, mainly, to the trunk (40% of observations and secondary branches (26%. Pygarrhichas albogularis showed a disproportionated use of N. dombeyi and an important use of trees with a greater age structure (DBH 81-100 cm. Nothofagus dombeyi presented a significantly greater tree bark crevice depth than E. cordifolia. In turn, covariance between crevice depth and invertebrate supply in tree bark was positive and significant. We consider bark depth and invertebrate supply to be the proximate causes explaining P. albogularis disproportionated use of Nothofagus dombeyi.

  9. Whole-tree distribution and temporal variation of non-structural carbohydrates in broadleaf evergreen trees.

    Science.gov (United States)

    Smith, Merryn G; Miller, Rebecca E; Arndt, Stefan K; Kasel, Sabine; Bennett, Lauren T

    2018-04-01

    Non-structural carbohydrates (NSCs) form a fundamental yet poorly quantified carbon pool in trees. Studies of NSC seasonality in forest trees have seldom measured whole-tree NSC stocks and allocation among organs, and are not representative of all tree functional types. Non-structural carbohydrate research has primarily focussed on broadleaf deciduous and coniferous evergreen trees with distinct growing seasons, while broadleaf evergreen trees remain under-studied despite their different growth phenology. We measured whole-tree NSC allocation and temporal variation in Eucalyptus obliqua L'Hér., a broadleaf evergreen tree species typically occurring in mixed-age temperate forests, which has year-round growth and the capacity to resprout after fire. Our overarching objective was to improve the empirical basis for understanding the functional importance of NSC allocation and stock changes at the tree- and organ-level in this tree functional type. Starch was the principal storage carbohydrate and was primarily stored in the stem and roots of young (14-year-old) trees rather than the lignotuber, which did not appear to be a specialized starch storage organ. Whole-tree NSC stocks were depleted during spring and summer due to significant decreases in starch mass in the roots and stem, seemingly to support root and crown growth but potentially exacerbated by water stress in summer. Seasonality of stem NSCs differed between young and mature trees, and was not synchronized with stem basal area increments in mature trees. Our results suggest that the relative magnitude of seasonal NSC stock changes could vary with tree growth stage, and that the main drivers of NSC fluctuations in broadleaf evergreen trees in temperate biomes could be periodic disturbances such as summer drought and fire, rather than growth phenology. These results have implications for understanding post-fire tree recovery via resprouting, and for incorporating NSC pools into carbon models of mixed

  10. Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna.

    Science.gov (United States)

    Zhang, Shu-Bin; Zhang, Jiao-Lin; Cao, Kun-Fang

    2016-01-01

    Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a "safety valve" to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia , drought-deciduous Terminthia paniculata , and winter-deciduous Lannea coromandelica , to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50 leaf-stem ) was positive in P. weinmanniifolia and L. coromandelica , whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains

  11. Effect of urbanization on the structure and functional traits of remnant subtropical evergreen broad-leaved forests in South China

    Science.gov (United States)

    Liujing Huang; Hongfeng Chen; Hai Ren; Jun Wang; Qinfeng Guo

    2013-01-01

    We investigated the effects of major environmental drivers associated with urbanization on species diversity and plant functional traits (PFTs) in the remnant subtropical evergreen broad-leaved forests in Metropolitan Guangzhou (Guangdong, China). Twenty environmental factors including topography, light, and soil properties were used to quantify the effects of...

  12. Decoupled leaf and root carbon economics is a key component in the ecological diversity and evolutionary divergence of deciduous and evergreen lineages of genus Rhododendron.

    Science.gov (United States)

    Medeiros, Juliana S; Burns, Jean H; Nicholson, Jaynell; Rogers, Louisa; Valverde-Barrantes, Oscar

    2017-06-01

    We explored trait-trait and trait-climate relationships for 27 Rhododendron species while accounting for phylogenetic relationships and within-species variation to investigate whether leaf and root traits are coordinated across environments and over evolutionary time, as part of a whole-plant economics spectrum. We examined specific leaf area (SLA) and four root traits: specific root length (SRL), specific root tip abundance (SRTA), first order diameter, and link average length, for plants growing in a cold, seasonal climate (Kirtland, Ohio) and a warmer, less seasonal climate (Federal Way, Washington) in the United States. We estimated a phylogeny and species' climate of origin, determined phylogenetic signal on mean traits and within-species variation, and used phylogenetically informed analysis to compare trait-trait and trait-climate relationships for deciduous and evergreen lineages. Mean SLA and within-species variation in SRL were more similar between close relatives than expected by chance. SLA and root traits differed according to climate of origin and across growth environments, though SLA differed within- and among-species less than roots. A negative SRL-SRTA correlation indicates investment in foraging scale vs. precision as a fundamental trade-off defining the root economic spectrum. Also, the deciduous clade exhibited a strong negative relationship between SLA and SRL, while evergreen clades showed a weaker positive or no relationship. Our work suggests that natural selection has shaped relationships between above- and belowground traits in genus Rhododendron and that leaf and root traits may evolve independently. Morphological decoupling may help explain habitat diversity among Rhododendron species, as well as the changes accompanying the divergence of deciduous and evergreen lineages. © 2017 Botanical Society of America.

  13. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    Science.gov (United States)

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  14. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers

    OpenAIRE

    Gamon, John A.

    2016-01-01

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying “photosynthetic phenology” from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a “chlorophyll/carotenoid index” (CCI) that tracks ever...

  15. Investigating the role of evergreen and deciduous forests in the increasing trend in atmospheric CO2 seasonal amplitude

    Science.gov (United States)

    Welp, L.; Calle, L.; Graven, H. D.; Poulter, B.

    2017-12-01

    The seasonal amplitude of Northern Hemisphere atmospheric CO2 concentrations has systematically increased over the last several decades, indicating that the timing and amplitude of net CO2 uptake and release by northern terrestrial ecosystems has changed substantially. Remote sensing, dynamic vegetation modeling, and in-situ studies have explored how changes in phenology, expansion of woody vegetation, and changes in species composition and disturbance regimes, among others, are driven by changes in climate and CO2. Despite these efforts, ecosystem models have not been able to reproduce observed atmospheric CO2 changes. Furthermore, the implications for the source/sink balance of northern ecosystems remains unclear. Changing proportions of evergreen and deciduous tree cover in response to climate change could be one of the key mechanisms that have given rise to amplified atmospheric CO2 seasonality. These two different plant functional types (PFTs) have different carbon uptake seasonal patterns and also different sensitivities to climate change, but are often lumped together as one forest type in global ecosystem models. We will demonstrate the potential that shifting distributions of evergreen and deciduous forests can have on the amplitude of atmospheric CO2. We will show phase differences in the net CO2 seasonal uptake using CO2 flux data from paired evergreen/deciduous eddy covariance towers. We will use simulations of evergreen and deciduous PFTs from the LPJ dynamic vegetation model to explore how climate change may influence the abundance and CO2 fluxes of each. Model results show that the area of deciduous forests is predicted to have increased, and the seasonal amplitude of CO2 fluxes has increased as well. The impact of surface flux seasonal variability on atmospheric CO2 amplitude is examined by transporting fluxes from each forest PFT through the TM3 transport model. The timing of the most intense CO2 uptake leads to an enhanced effect of deciduous

  16. Phosphorus conservation by evergreenness of mountain laurel. [Kalmia latifolia

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, W A [Oak Ridge National Lab., TN; Grigal, D F

    1976-01-01

    Field studies and compartmental model analyses demonstrate that the evergreen nature of mountain laurel Kalmia latifolia L. helps conserve phosphorus on infertile sites. The perennial canopy continuously adds P to the forest floor through foliar leaching and year-round leaf fall. Slow mineralization of leaf litter provides a steady addition of available P. The evergreenness of Kalmia allows it to utilize increases in available P, thus keeping it in circulation through biological tissues. Retention of a sufficient P supply in this manner allows the site to respond when changes such as disturbance or succession occur in the system.

  17. 78 FR 45288 - Frank Sherman, Evergreen Trails, Inc., Cabana Coaches, LLC, TMS West Coast, Inc. and FSCS...

    Science.gov (United States)

    2013-07-26

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [STB Docket No. MCF 21054] Frank Sherman, Evergreen Trails, Inc., Cabana Coaches, LLC, TMS West Coast, Inc. and FSCS Corporation--Intra-Corporate Family Transaction Exemption Frank Sherman, Evergreen Trails, Inc. (Evergreen), Cabana Coaches, LLC...

  18. Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest

    Science.gov (United States)

    Xiaojun Du; Qinfeng Guo; Xianming Gao; Keping Na

    2007-01-01

    Understanding the seed rain and seed loss dynamics in the natural condition has important significance for revealing the natural regeneration mechanisms.We conducted a 3-year field observation on seed rain, seed loss and natural regeneration of Castanopsis fargesii Franch., a dominant tree species in evergreen broad-leaved forests in Dujiangyan,...

  19. Species-specific and seasonal differences in chlorophyll fluorescence and photosynthetic light response among three evergreen species in a Madrean sky island mixed conifer forest

    Science.gov (United States)

    Potts, D. L.; Minor, R. L.; Braun, Z.; Barron-Gafford, G. A.

    2012-12-01

    -use efficiency (AQE) was similar among P. strobiformis and P. ponderosa and least in P. menziesii (repeated-measures ANOVA; species, F2,8 = 13.83, P = 0.002). Across all three species, monsoon onset increased AQE (repeated-measures ANOVA; time, F1,8= 10.04, P = 0.01). Likewise, P. strobiformis and P. ponderosa shared a similar, greater light compensation point than P. menziesii (repeated-measures ANOVA; species, F2,8 = 5.89, P = 0.02). However, across species, monsoon onset did not influence light compensation points. These results support the hypothesis that the monsoon has species-specific effects on evergreen physiological performance and are broadly consistent with predictions of stress tolerance based on species' latitudinal and elevational range distributions. Moreover, with year-to-year rainfall variability predicted to increase under future climate scenarios, species-specific functional traits related to stress tolerance and photosynthesis may promote ecosystem functional resilience in Madrean sky island mixed conifer forests.

  20. An observational study of the carbon-sink strength of East Asian subtropical evergreen forests

    International Nuclear Information System (INIS)

    Tan Zhenghong; Zhang Yiping; Zhang Yongjiang; Song Qinhai; Cao Kunfang; Schaefer, D A; Liu Yuhong; Liang Naishen; Hsia, Yue-Joe; Zhou Guoyi; Li Yuelin; Yan Junhua; Juang, Jehn-Yih; Chu Housen; Yu Guirui; Sun Xiaomin

    2012-01-01

    Relatively little is known about the effects of regional warming on the carbon cycle of subtropical evergreen forest ecosystems, which are characterized by year-round growing season and cold winters. We investigated the carbon balance in three typical East Asia subtropical evergreen forests, using eddy flux, soil respiration and leaf-level measurements. Subtropical evergreen forests maintain continuous, high rates of photosynthetic activity, even during winter cold periods. Warm summers enhance photosynthetic rates in a limited way, because overall ecosystem productivity is primarily restrained by radiation levels during the warm period. Conversely, warm climates significantly enhance the respiratory carbon efflux. The finding of lower sensitivity of photosynthesis relative to that of respiration suggests that increased temperature will weaken the carbon-sink strength of East Asia subtropical evergreen forests. (letter)

  1. Ozone injury to some Japanese woody plant species in summer

    Energy Technology Data Exchange (ETDEWEB)

    Kadota, M; Ohta, K

    1972-01-01

    Ozone is an important constituent of photochemical oxidant smog. This paper reveals the semiquantitative responses of various Japanese woody plant species to ozone (0.25 ppm). Plant species examined in this investigation include four coniferous trees, eleven evergreen broad-leaf trees, and twenty-one deciduous broad-leaf trees or shrubs. Generally, plants having thin leaves were susceptible. The plant species with higher activity of photosynthesis appeared to be more susceptible. As a whole, evergreen broad-leaf trees could be said to be more resistant to ozone than deciduous broad-leaf trees.

  2. Establishment of ectomycorrhizal fungal community on isolated Nothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests: does fruit-body type matter?

    Science.gov (United States)

    Tedersoo, Leho; Gates, Genevieve; Dunk, Chris W; Lebel, Teresa; May, Tom W; Kõljalg, Urmas; Jairus, Teele

    2009-08-01

    Decaying wood provides an important habitat for animals and forms a seed bed for many shade-intolerant, small-seeded plants, particularly Nothofagus. Using morphotyping and rDNA sequence analysis, we compared the ectomycorrhizal fungal community of isolated N. cunninghamii seedlings regenerating in decayed wood against that of mature tree roots in the forest floor soil. The /cortinarius, /russula-lactarius, and /laccaria were the most species-rich and abundant lineages in forest floor soil in Australian sites at Yarra, Victoria and Warra, Tasmania. On root tips of seedlings in dead wood, a subset of the forest floor taxa were prevalent among them species of /laccaria, /tomentella-thelephora, and /descolea, but other forest floor dominants were rare. Statistical analyses suggested that the fungal community differs between forest floor soil and dead wood at the level of both species and phylogenetic lineage. The fungal species colonizing isolated seedlings on decayed wood in austral forests were taxonomically dissimilar to the species dominating in similar habitats in Europe. We conclude that formation of a resupinate fruit body type on the underside of decayed wood is not necessarily related to preferential root colonization in decayed wood. Rather, biogeographic factors as well as differential dispersal and competitive abilities of fungal taxa are likely to play a key role in structuring the ectomycorrhizal fungal community on isolated seedlings in decaying wood.

  3. Combined community ecology and floristics, a synthetic study on the upper montane evergreen broad-leaved forests in Yunnan, southwestern China

    Institute of Scientific and Technical Information of China (English)

    Hua Zhu; Yong Chai; Shisun Zhou; Lichun Yan; Jipu Shi; Guoping Yang

    2016-01-01

    The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous, island-like, distribution. It is diverse, rich in endemic species, and likely to be sensitive to climate change. Six 1-ha sampling plots were established across the main distribution area of the upper montane evergreen broad-leaved forest in Yunnan. All trees with d.b.h.>1 cm in each plot were identified. Patterns of seed plant distributions were quantified at the specific, generic and family levels. The forests are dominated by the families Fagaceae, Lauraceae, Theaceae and Magnoliaceae, but are very diverse with only a few species shared between sites. Floristic similarities at the family and generic level were high, but they were low at the specific level, with species complementarity between plots. Diversity varied greatly among sites, with greater species richness and more rare species in western Yunnan than central Yunnan. The flora is dominated by tropical biogeographical elements, mainly the pantropic and the tropical Asian distributions at the family and genus levels. In contrast, at the species level, the flora is dominated by the southwest or the southeast China distributions, including Yunnan endemics. This suggests that the flora of the upper montane forest in Yunnan could have a tropical floristic origin, and has adapted to cooler temperatures with the uplift of the Himalayas. Due to great sensitivity to climate, high endemism and species complementarity, as well as the discontinuous, island-like, distribution patterns of the upper montane forest in Yunnan, the regional conservation of the forest is especially needed.

  4. Seasonal variation and enzymatic potential of microfungi associated with the decomposition of Nothofagus pumilio leaf litter

    OpenAIRE

    VALENZUELA, EDUARDO; LEIVA, SERGIO; GODOY, ROBERTO

    2001-01-01

    Se estudió la variación estacional y el potencial enzimático de microhongos aislados desde el follaje y hojarasca de Nothofagus pumilio sometida a degradación natural durante 1 año. La investigación se realizó en un bosque de N. pumilio ubicado en una microcuenca del Valle de Antillanca, Parque Nacional Puyehue (40° 47' S, 72° 12' O, 1.120 m de altitud). Hojas senescentes colectadas desde árboles de N. pumilio se depositaron en bolsas de malla de nylon ("litter bags") y se sometieron a degrad...

  5. Caída de tefra y su influencia sobre la estructura y dinámica de los bosques andinos de Nothofagus en el Parque Nacional Puyehue, Chile

    Science.gov (United States)

    Mauricio Montiel; Mauro E González; Charles M Crisafulli

    2016-01-01

    Tephra fall influences the structure and dynamics of Andean Nothofagus (beech) forests in Puyehue National Park, Chile. Forest mortality and subsequent establishment, structure and composition have been affected by the eruption of the Puyehue-Cordon Caulle volcano complex.

  6. Terrestrial Macrofungal Diversity from the Tropical Dry Evergreen Biome of Southern India and Its Potential Role in Aerobiology.

    Science.gov (United States)

    Priyamvada, Hema; Akila, M; Singh, Raj Kamal; Ravikrishna, R; Verma, R S; Philip, Ligy; Marathe, R R; Sahu, L K; Sudheer, K P; Gunthe, S S

    2017-01-01

    Macrofungi have long been investigated for various scientific purposes including their food and medicinal characteristics. Their role in aerobiology as a fraction of the primary biological aerosol particles (PBAPs), however, has been poorly studied. In this study, we present a source of macrofungi with two different but interdependent objectives: (i) to characterize the macrofungi from a tropical dry evergreen biome in southern India using advanced molecular techniques to enrich the database from this region, and (ii) to assess whether identified species of macrofungi are a potential source of atmospheric PBAPs. From the DNA analysis, we report the diversity of the terrestrial macrofungi from a tropical dry evergreen biome robustly supported by the statistical analyses for diversity conclusions. A total of 113 macrofungal species belonging to 54 genera and 23 families were recorded, with Basidiomycota and Ascomycota constituting 96% and 4% of the species, respectively. The highest species richness was found in the family Agaricaceae (25.3%) followed by Polyporaceae (15.3%) and Marasmiaceae (10.8%). The difference in the distribution of commonly observed macrofungal families over this location was compared with other locations in India (Karnataka, Kerala, Maharashtra, and West Bengal) using two statistical tests. The distributions of the terrestrial macrofungi were distinctly different in each ecosystem. We further attempted to demonstrate the potential role of terrestrial macrofungi as a source of PBAPs in ambient air. In our opinion, the findings from this ecosystem of India will enhance our understanding of the distribution, diversity, ecology, and biological prospects of terrestrial macrofungi as well as their potential to contribute to airborne fungal aerosols.

  7. Variación estacional y potencial enzimático de microhongos asociados con la descomposición de hojarasca de Nothofagus pumilio Seasonal variation and enzymatic potential of microfungi associated with the decomposition of Nothofagus pumilio leaf litter

    OpenAIRE

    EDUARDO VALENZUELA; SERGIO LEIVA; ROBERTO GODOY

    2001-01-01

    Se estudió la variación estacional y el potencial enzimático de microhongos aislados desde el follaje y hojarasca de Nothofagus pumilio sometida a degradación natural durante 1 año. La investigación se realizó en un bosque de N. pumilio ubicado en una microcuenca del Valle de Antillanca, Parque Nacional Puyehue (40° 47' S, 72° 12' O, 1.120 m de altitud). Hojas senescentes colectadas desde árboles de N. pumilio se depositaron en bolsas de malla de nylon ("litter bags") y se sometieron a degrad...

  8. Tree Diversity and Structure of Andaman Giant Evergreen Forests, India

    Directory of Open Access Journals (Sweden)

    M. Rajkumar

    2008-12-01

    Full Text Available We investigated tree diversity in ‘giant evergreen forest’ of Andaman and Nicobar Islands, which falls within the Indo-Burma hot spot of biodiversity in the world. A one hectare square plot was established in sites Kalapahad (KP and Macarthy Valley (MV of Middle Andamans, in which all trees ≥ 30 cm girth at breast height (gbh were enumerated. Tree diversity totaled 105 species that belonged to 63 genera and 49 families. Site MV harboured ~10% greater species richness than KP. Species diversity indices did not vary much between the two sites. In the two sites, there were 1311 individuals of trees (579 ha-1 in KP and 732 in MV. The stand basal area was nearly equal in both the sites (KP- 45.59 m2 ha-1; MV- 47.93 m2 ha-1. Thirteen tree species (12.38% were strict endemics to Andamans. Ten species recorded are rare to the flora of these islands. The two sites are distinctly dominated by two different plant families; Dipterocarpaceae in KP and Myristicaceae in MV. Most of the species were common to central and lower region of Myanmar and Indian mainland. The forest stand structure exhibited a typical reverse-J shape, but site MV had double the density of stems in the lower tree size class than that of KP. The voluminous dipterocarps contributed more to the total above-ground live biomass. The need to preserve these species- and endemics- rich, fragile island forests, prioritized for biodiversity conservation, is emphasized.

  9. Monitoring Spring Recovery of Photosynthesis and Spectral Reflectance in Temperate Evergreen and Mixed Deciduous Forests

    Science.gov (United States)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2015-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which characterizes their photosynthetic activity with high activity in the growing season and downregulation during the winter season. Monitoring the timing of the transitions in evergreens is difficult since it's a largely invisible process, unlike deciduous trees that have a visible budding and senescence sequence. Spectral reflectance and the photochemical reflectance index (PRI), often used as a proxy for photosynthetic light-use efficiency, provides a promising tool to track the transition of evergreens between inactive and active photosynthetic states. To better understand the relationship between PRI and photosynthetic activity and to contrast this relationship between plant functional types, the spring recovery of an evergreen forest and mixed deciduous forest was monitored using spectral reflectance, chlorophyll fluorescence and gas exchange. All metrics indicate photosynthetic recovery during the spring season. These findings indicate that PRI can be used to observe the spring recovery of photosynthesis in evergreen conifers but may not be best suited for deciduous trees. These findings have implications for remote sensing, which provides a promising long-term monitoring system of whole ecosystems, which is important since their roles in the carbon cycle may shift in response to climate change.

  10. Litterfall, litter decomposition and nitrogen mineralization in old-growth evergreen and secondary deciduous Nothofagus forests in south-central Chile Aporte, descomposición de hojarasca y mineralización de nitrógeno en bosques siempreverdes de antiguo crecimiento y bosques secundarios deciduos, centro-sur de Chile

    Directory of Open Access Journals (Sweden)

    JEROEN STAELENS

    2011-03-01

    Full Text Available South Chilean forest ecosystems represent one of the largest areas of old-growth temperate rainforests remaining in the Southern hemisphere and have a high ecological value, but suffer from deforestation, invasion by exotic species, fragmentation, and increasing atmospheric nitrogen (N deposition. To support sustainable forest management, more knowledge is required on nutrient cycling of these ecosystems. Therefore, a descriptive study of nutrient dynamics was done in four Valdivian rainforests in the lower Andes range of south Chile: old-growth and altered evergreen stands and unmanaged and managed secondary deciduous stands. Time series were measured for (i mass (four year and nutrient content (N, K, Ca, and Mg; one year of litterfall, (ii decomposition and nutrient dynamics (N, C, K, Ca, Mg, and P; one year of leaf litter and Saxegothaea conspicua bark litter, and (iii in situ topsoil net N mineralization (one year. Litterfall in the four stands ranged from 3.5 to 5.8 ton ha-1 yr-1, was temporarily lower in the managed than in the unmanaged deciduous stand and had a different seasonality in the evergreen stands than in the deciduous stands. Leaf litter decomposed faster (on average 32 % mass loss after one year than bark litter (8 % but without significant differences between leaf litter types. Net N in evergreen leaf litter decreased during decomposition but increased in deciduous leaf litter. Net soil N mineralization was fastest in the pristine evergreen stand, intermediate in the deciduous stands and slowest in the altered evergreen forest. Given the absence of replicated stands, the definite impact of forest type or management regime on the internal nutrient cycling cannot be demonstrated. Nevertheless, the results suggest that management can affect nutrient turnover by altering species composition and forest structure, while recent (five years selective logging in secondary deciduous forest did not affect litter decomposition or N

  11. Different Patterns of Changes in the Dry Season Diameter at Breast Height of Dominant and Evergreen Tree Species in a Mature Subtropical Forest in South China

    Institute of Scientific and Technical Information of China (English)

    Jun-Hua Yan; Guo-Yi Zhou; De-Qiang Zhang; Xu-Li Tang; Xu Wang

    2006-01-01

    Information on changes in diameter at breast height (DBH) is important for net primary production (NPP)estimates, timing of forest inventory, and forest management. In the present study, patterns of DBH change were measured under field conditions during the dry season for three dominant and native tree species in a monsoon evergreen broad-leaved forest in the Dinghushan Biosphere Reserve. For each tree species,different patterns of DBH change were observed. In the case of the fast-growing tree species Castanopsis chinensis Hance, large diurnal fluctuations occur, with a peak DBH in the early morning (around 05:00 h) that decreases to a minimum by about 14:00 h. Both Schima superba Gardn. et Chemp and Cryptocarya chinensis (Hance) Hemsl. exhibited less diurnal swelling and shrinkage. Diurnal fluctuations for these species were observed on a few occasions over the period of observation. Graphical comparisons and statistical analysis of changes in DBH with meteorological variables indicate that for different trees, the different changes in DBH observed responded to different meteorological variables. Large stem changes were found to occur for Ca. chinensis trees that were associated with variations in solar radiation. However, both S. superba and Cr. chinensis were found to be less sensitive to solar radiation. Changes in the DBH of these two species were found to be controlled mainly by soil temperature and soil moisture. During the later dry season, with a lower soil temperature and soil moisture, all three tree species stopped growing and only negligible shrinkage, expansion, or fluctuation occurred, suggesting that the optimum time to measure tree growth in the Dinghushan Biosphere Reserve is the later dry season.

  12. Variación estacional y potencial enzimático de microhongos asociados con la descomposición de hojarasca de Nothofagus pumilio Seasonal variation and enzymatic potential of microfungi associated with the decomposition of Nothofagus pumilio leaf litter

    Directory of Open Access Journals (Sweden)

    EDUARDO VALENZUELA

    2001-12-01

    Full Text Available Se estudió la variación estacional y el potencial enzimático de microhongos aislados desde el follaje y hojarasca de Nothofagus pumilio sometida a degradación natural durante 1 año. La investigación se realizó en un bosque de N. pumilio ubicado en una microcuenca del Valle de Antillanca, Parque Nacional Puyehue (40° 47' S, 72° 12' O, 1.120 m de altitud. Hojas senescentes colectadas desde árboles de N. pumilio se depositaron en bolsas de malla de nylon ("litter bags" y se sometieron a degradación natural en el piso del bosque durante 1 año (marzo 1997-marzo 1998, realizando muestreos trimestrales. Para el aislamiento de microhongos desde las hojas se utilizó el método de las diluciones, con agar extracto de malta al 2 % como medio de cultivo. Para determinar los potenciales degradativos de los aislamientos, se analizaron in vitro las actividades de amilasa, celulasa, pectinasa, proteasa, lacasa, oxidasa extracelular, peroxidasa, citocromo oxidasa, fosfatasa, esterasa y tirosinasa. Las principales especies aisladas en las hojas senescentes fueron Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, Phialophora grupo hoffmannii y Rhodotorula aurantiaca. Las especies dominantes en la hojarasca fueron Hormonema prunorum, Mortierella ramanniana var. angulispora, Penicillium para-herquei y Trichoderma polysporum. El mayor potencial enzimático lo exhibieron Moniliales y micelios estériles, mientras el menor Sphaeropsidales y levaduras. Las especies más activas fueron Alternaria alternata, Cladosporium cladosporioides, Hormonema prunorum y Phialophora malorum. Las actividades de celulasa y amilasa fueron las más importantes. De las enzimas ligninolíticas, oxidasa extracelular y peroxidasa presentaron los más elevados potenciales enzimáticosThe seasonal variation and enzymatic potential of microfungi isolated from senescent leaves and leaf litter of Nothofagus pumilio was studied. The study was performed in a N

  13. 75 FR 76727 - Evergreen Wind Power III, LLC; Supplemental Notice that Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-12-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2201-000] Evergreen Wind Power III, LLC; Supplemental Notice that Initial Market-Based Rate Filing Includes Request for... proceeding of Evergreen Wind Power III, LLC's application for market-based rate authority, with an...

  14. Evergreen oak leaves as natural monitor in environmental pollution

    International Nuclear Information System (INIS)

    Capannesi, G.; Rosada, A.; Caroli, S.

    1988-01-01

    Evergreen oak was chosen as a possible biological monitor of environmental pollution. It was shown that there was a direct relationship between the concentration of elements in leaves and the presence of pollution sources, i.e. the density of vehicular traffic. (author) 12 figs.; 3 tabs

  15. Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range.

    Science.gov (United States)

    Vowles, Tage; Gunnarsson, Bengt; Molau, Ulf; Hickler, Thomas; Klemedtsson, Leif; Björk, Robert G

    2017-11-01

    One of the most palpable effects of warming in Arctic ecosystems is shrub expansion above the tree line. However, previous studies have found that reindeer can influence plant community responses to warming and inhibit shrubification of the tundra.We revisited grazed (ambient) and ungrazed study plots (exclosures), at the southern as well as the northern limits of the Swedish alpine region, to study long-term grazing effects and vegetation changes in response to increasing temperatures between 1995 and 2011, in two vegetation types (shrub heath and mountain birch forest).In the field layer at the shrub heath sites, evergreen dwarf shrubs had increased in cover from 26% to 49% but were unaffected by grazing. Deciduous dwarf and tall shrubs also showed significant, though smaller, increases over time. At the birch forest sites, the increase was similar for evergreen dwarf shrubs (20-48%) but deciduous tall shrubs did not show the same consistent increase over time as in the shrub heath.The cover and height of the shrub layer were significantly greater in exclosures at the shrub heath sites, but no significant treatment effects were found on species richness or diversity.July soil temperatures and growing season thawing degree days (TDD) were higher in exclosures at all but one site, and there was a significant negative correlation between mean shrub layer height and soil TDD at the shrub heath sites. Synthesis . This study shows that shrub expansion is occurring rapidly in the Scandes mountain range, both above and below the tree line. Tall, deciduous shrubs had benefitted significantly from grazing exclosure, both in terms of cover and height, which in turn lowered summer soil temperatures. However, the overriding vegetation shift across our sites was the striking increase in evergreen dwarf shrubs, which were not influenced by grazing. As the effects of an increase in evergreen dwarf shrubs and more recalcitrant plant litter may to some degree counteract some of

  16. A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia

    Science.gov (United States)

    Xiangming Xiao; Chandrashekhar M. Biradar; Christina Czarnecki; Tunrayo Alabi; Michael Keller

    2009-01-01

    The areal extent and spatial distribution of evergreen forests in the tropical zones are important for the study of climate, carbon cycle and biodiversity. However, frequent cloud cover in the tropical regions makes mapping evergreen forests a challenging task. In this study we developed a simple and novel mapping algorithm that is based on the temporal profile...

  17. Variaciones Intra-Específicas en el crecimiento primario de Nothofagus dombeyi (Nothofagaceae Intra-specific variations in the primary growth of Nothofagus dombeyi (Nothofagaceae

    Directory of Open Access Journals (Sweden)

    Javier Puntieri

    2005-07-01

    Full Text Available Se evaluó el patrón de crecimiento bajo condiciones controladas de los ejes foliados de 16 plántulas de Nothofagus dombeyi. Los individuos fueron ubicados en una cámara de crecimiento y se evaluó el crecimiento del tronco en dos eventos de crecimiento sucesivos (julio 2002 - marzo 2004. Se identificaron tres patrones de crecimiento del primer brote medido: (1 crecimiento ininterrumpido por unos 8 meses, (2 crecimiento interrumpido por un período de reposo no menor de 7 semanas, con rebrote posterior y (3 crecimiento ininterrumpido por 6 a 7 meses. En los individuos con los patrones de crecimiento 1 y 2, la tasa máxima de producción de hojas del primer brote producido fue mayor que en los individuos con el tercer patrón de crecimiento. La tasa media de crecimiento fue mayor para los brotes del primer grupo que para los de los otros dos grupos. El segundo de los brotes medidos se alargó en un único pulso y alcanzó menor tamaño que el primero de los brotes. Se discute el posible rol de gradientes ontogenéticos o de variaciones genéticas entre individuos de coihue como explicación de los diferentes patrones de crecimiento registrados.

  18. Living on the edge: adaptive and plastic responses of the tree Nothofagus pumilio to a long-term transplant experiment predict rear-edge upward expansion.

    Science.gov (United States)

    Mathiasen, Paula; Premoli, Andrea C

    2016-06-01

    Current climate change affects the competitive ability and reproductive success of many species, leading to local extinctions, adjustment to novel local conditions by phenotypic plasticity or rapid adaptation, or tracking their optima through range shifts. However, many species have limited ability to expand to suitable areas. Altitudinal gradients, with abrupt changes in abiotic conditions over short distances, represent "natural experiments" for the evaluation of ecological and evolutionary responses under scenarios of climate change. Nothofagus pumilio is the tree species which dominates as pure stands the montane forests of Patagonia. We evaluated the adaptive value of variation in quantitative traits of N. pumilio under contrasting conditions of the altitudinal gradient with a long-term reciprocal transplant experimental design. While high-elevation plants show little response in plant, leaf, and phenological traits to the experimental trials, low-elevation ones show greater plasticity in their responses to changing environments, particularly at high elevation. Our results suggest a relatively reduced potential for evolutionary adaptation of high-elevation genotypes, and a greater evolutionary potential of low-elevation ones. Under global warming scenarios of forest upslope migration, high-elevation variants may be outperformed by low-elevation ones during this process, leading to the local extinction and/or replacement of these genotypes. These results challenge previous models and predictions expected under global warming for altitudinal gradients, on which the leading edge is considered to be the upper treeline forests.

  19. 'Linkage' pharmaceutical evergreening in Canada and Australia

    OpenAIRE

    Faunce, Thomas A; Lexchin, Joel

    2007-01-01

    'Evergreening' is not a formal concept of patent law. It is best understood as a social idea used to refer to the myriad ways in which pharmaceutical patent owners utilise the law and related regulatory processes to extend their high rent-earning intellectual monopoly privileges, particularly over highly profitable (either in total sales volume or price per unit) 'blockbuster' drugs. Thus, while the courts are an instrument frequently used by pharmaceutical brand name manufacturers to prolong...

  20. Structure and Regeneration Status of Gedo Dry Evergreen Montane ...

    African Journals Online (AJOL)

    This study was conducted on Gedo Dry Evergreen Montane Forest in West Shewa Zone of Oromia National Regional State, 182-196 km west of Addis Ababa (Finfinne). The objective of the study was to determine structure and regeneration status of Gedo Forest. All trees and shrubs with Diameter at Breast Height (DBH) ...

  1. Growing up with stress - carbon sequestration and allocation dynamics of a broadleaf evergreen forest

    Science.gov (United States)

    Griebel, Anne; Bennett, Lauren T.; Arndt, Stefan K.

    2016-04-01

    Evergreen forests have the potential to sequester carbon year-round due to the presence of leaves with a multi-year lifespan. Eucalypt forests occur in warmer climates where temperature and radiation are not imposing a strong seasonality. Thus, unlike deciduous or many coniferous trees, many eucalypts grow opportunistically as conditions allow. As such, many eucalypts do not produce distinct growth rings, which present challenges to the implementation of standard methods and data interpretation approaches for monitoring and explaining carbon allocation dynamics in response to climatic stress. As a consequence, there is a lack of detailed understanding of seasonal growth dynamics of evergreen forests as a whole, and, in particular, of the influence of climatic drivers on carbon allocation to the various biomass pools. We used a multi-instrument approach in a mixed species eucalypt forest to investigate the influence of climatic drivers on the seasonal growth dynamics of a predominantly temperate and moisture-regulated environment in south-eastern Australia. Ecosystem scale observations of net ecosystem exchange (NEE) from a flux tower in the Wombat forest near Melbourne indicated that the ecosystem is a year-round carbon sink, but that intra-annual variations in temperature and moisture along with prolonged heat waves and dry spells resulted in a wide range of annual sums over the past three years (NEE ranging from ~4 to 12 t C ha-1 yr-1). Dendrometers were used to monitor stem increments of the three dominant eucalypt species. Stem expansion was generally opportunistic with the greatest increments under warm but moist conditions (often in spring and autumn), and the strongest indicators of stem growth dynamics being radiation, vapour pressure deficit and a combined heat-moisture index. Differences in the seasonality of stem increments between species were largely due to differences in the canopy position of sampled individuals. The greatest stem increments were

  2. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode.

    Science.gov (United States)

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-04-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.

  3. Physiological Effects of Smoke Exposure on Deciduous and Conifer Tree Species

    International Nuclear Information System (INIS)

    Calder, W.J.; Lifferth, G.; Clair, S.B.S.; Moritz, M.A.

    2010-01-01

    Smoke from forest fires can persist in the environment for weeks and while there is a substantial amount of literature examining the effects of smoke exposure on seed germination, the effects of smoke on leaf function are nearly un investigated. The objective of this study was to compare growth and primary and secondary metabolic responses of deciduous angiosperm and evergreen conifer tree species to short smoke exposure. Twenty minutes of smoke exposure resulted in a greater than 50% reduction in photosynthetic capacity in five of the six species we examined. Impairment of photosynthesis in response to smoke was a function of reductions in stomatal conductance and biochemical limitations. In general, deciduous angiosperm species showed a greater sensitivity than evergreen conifers. While there were significant decreases in photosynthesis and stomatal conductance, smoke had no significant effect on growth or secondary defense compound production in any of the tree species examined.

  4. Physiological Effects of Smoke Exposure on Deciduous and Conifer Tree Species

    Directory of Open Access Journals (Sweden)

    W. John Calder

    2010-01-01

    Full Text Available Smoke from forest fires can persist in the environment for weeks and while there is a substantial amount of literature examining the effects of smoke exposure on seed germination, the effects of smoke on leaf function are nearly uninvestigated. The objective of this study was to compare growth and primary and secondary metabolic responses of deciduous angiosperm and evergreen conifer tree species to short smoke exposure. Twenty minutes of smoke exposure resulted in a greater than 50% reduction in photosynthetic capacity in five of the six species we examined. Impairment of photosynthesis in response to smoke was a function of reductions in stomatal conductance and biochemical limitations. In general, deciduous angiosperm species showed a greater sensitivity than evergreen conifers. While there were significant decreases in photosynthesis and stomatal conductance, smoke had no significant effect on growth or secondary defense compound production in any of the tree species examined.

  5. Patrones de dispersión de semillas y colonización de Misodendrum punctulatum (Misodendraceae en un matorral postfuego de Nothofagus antarctica (Nothofagaceae del noroeste de la Patagonia Misodendrum punctulatum (Misodendraceae seed dispersal and colonization patterns on a Nothofagus antarctica (Nothofagaceae post-fire shrubland from Northwestern Patagonia

    Directory of Open Access Journals (Sweden)

    NORLAN TERCERO-BUCARDO

    2010-01-01

    allow understand the patterns of spatial distribution and infection dynamics of Misodendrum punctulatum. In order to plan management strategies, understanding the infection dynamics is useful to perform successfully strategies to the control of hemiparasitic plants in forest to commercial use, and conservation or restoration strategies, e.g. to restorate this hemiparasitic specie in areas recently colonized by N. antárctica. These studied aspects in Misodendrum punctulatum contribute to the knowledge of this ecological interaction, which is frequent in Nothofagus forests from Argentina and Chile.

  6. Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: evidence from 19 years of warming and simulated herbivory in the subarctic tundra.

    Science.gov (United States)

    Ylänne, Henni; Stark, Sari; Tolvanen, Anne

    2015-10-01

    Selective herbivory of palatable plant species provides a competitive advantage for unpalatable plant species, which often have slow growth rates and produce slowly decomposable litter. We hypothesized that through a shift in the vegetation community from palatable, deciduous dwarf shrubs to unpalatable, evergreen dwarf shrubs, selective herbivory may counteract the increased shrub abundance that is otherwise found in tundra ecosystems, in turn interacting with the responses of ecosystem carbon (C) stocks and CO2 balance to climatic warming. We tested this hypothesis in a 19-year field experiment with factorial treatments of warming and simulated herbivory on the dominant deciduous dwarf shrub Vaccinium myrtillus. Warming was associated with a significantly increased vegetation abundance, with the strongest effect on deciduous dwarf shrubs, resulting in greater rates of both gross ecosystem production (GEP) and ecosystem respiration (ER) as well as increased C stocks. Simulated herbivory increased the abundance of evergreen dwarf shrubs, most importantly Empetrum nigrum ssp. hermaphroditum, which led to a recent shift in the dominant vegetation from deciduous to evergreen dwarf shrubs. Simulated herbivory caused no effect on GEP and ER or the total ecosystem C stocks, indicating that the vegetation shift counteracted the herbivore-induced C loss from the system. A larger proportion of the total ecosystem C stock was found aboveground, rather than belowground, in plots treated with simulated herbivory. We conclude that by providing a competitive advantage to unpalatable plant species with slow growth rates and long life spans, selective herbivory may promote aboveground C stocks in a warming tundra ecosystem and, through this mechanism, counteract C losses that result from plant biomass consumption. © 2015 John Wiley & Sons Ltd.

  7. Fragmentation patterns of evergreen oak woodlands in Southwestern Iberia

    DEFF Research Database (Denmark)

    Costa, A.; Madeira, M.; Lima Santos, J.

    2014-01-01

    Mediterranean evergreen oak woodlands (composed of Quercus suber L. and Quercus rotundifolia Lam.) are becoming increasingly fragmented in the human-modified landscapes of Southwestern Portugal and Spain. Previous studies have largely neglected to assess the spatial changes of oak woodlands...... patterns of oak recruitment and therefore, its study may be helpful in highlighting future baselines for the sustainable management of oak woodlands....

  8. Endophytic Fungi of Various Medicinal Plants Collected From Evergreen Forest Baluran National Park and Its Potential as Laboratory Manual for Mycology Course

    OpenAIRE

    Murdiyah, Siti

    2017-01-01

    Endophytic fungi found on a variety of medicinal plants may express particular benefit. These fungi provide an alternative to overcome the progressive microbial resistance and as an effort to combat infectious diseases that became one of the leading causes of mortality. The main objective of this study was to isolate endophytic fungi from leaf samples of five medicinal plants species collected from evergreen forests Baluran National Park and its use as laboratory manual for Micology. Research...

  9. Effect of feeding some evergreen tropical browse plant leaves on ...

    African Journals Online (AJOL)

    A feeding trial was conducted with thirty (30) weaner rabbits to investigate the nutritive potentials of some evergreen tropical browse plant leaves (Ficcus thoningii, Vitex doniana, Daniela oliveri, Sarcocephalus latifolia). Mixed breed rabbits were used and randomly assigned to five (5) treatments (T1 - T5). The rabbits in ...

  10. Changes in sapwood permeability and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans.

    Science.gov (United States)

    England, Jacqueline R; Attiwill, Peter M

    2007-08-01

    Increases in plant size and structural complexity with increasing age have important implications for water flow through trees. Water supply to the crown is influenced by both the cross-sectional area and the permeability of sapwood. It has been hypothesized that hydraulic conductivity within sapwood increases with age. We investigated changes in sapwood permeability (k) and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans F. Muell. Sapwood was sampled at breast height from trees ranging from 8 to 240 years old, and at three height positions on the main stem of 8-year-old trees. Variation in k was not significant among sampling height positions in young trees. However, k at breast height increased with tree age. This was related to increases in both vessel frequency and vessel diameter, resulting in a greater proportion of sapwood being occupied by vessel lumina. Sapwood hydraulic conductivity (the product of k and sapwood area) also increased with increasing tree age. However, at the stand level, there was a decrease in forest sapwood hydraulic conductivity with increasing stand age, because of a decrease in the number of trees per hectare. Across all ages, there were significant relationships between k and anatomy, with individual anatomical characteristics explaining 33-62% of the variation in k. There was also strong agreement between measured k and permeability predicted by the Hagen-Poiseuille equation. The results support the hypothesis of an increase in sapwood permeability at breast height with age. Further measurements are required to confirm this result at other height positions in older trees. The significance of tree-level changes in sapwood permeability for stand-level water relations is discussed.

  11. Arbuscular mycorrhizal fungi improve photosynthetic energy use efficiency and decrease foliar construction cost under recurrent water deficit in woody evergreen species.

    Science.gov (United States)

    Barros, Vanessa; Frosi, Gabriella; Santos, Mariana; Ramos, Diego Gomes; Falcão, Hiram Marinho; Santos, Mauro Guida

    2018-06-01

    Plants suffer recurrent cycles of water deficit in semiarid regions and have several mechanisms to tolerate low water availability. Thus, arbuscular mycorrhizal fungi (AMF) can alleviate deleterious effects of stress. In this study, Cynophalla flexuosa plants, a woody evergreen species from semiarid, when associated with AMF were exposed to two consecutive cycles of water deficit. Leaf primary metabolism, specific leaf area (SLA), leaf construction cost (CC) and photosynthetic energy use efficiency (PEUE) were measured. The maximum stress occurred on seven days (cycle 1) and ten days (cycle 2) after suspending irrigation (photosynthesis close to zero). The rehydration was performed for three days after each maximum stress. In both cycles, plants submitted to water deficit showed reduced gas exchange and leaf relative water content. However, Drought + AMF plants had significantly larger leaf relative water content in cycle 2. At cycle 1, the SLA was larger in non-inoculated plants, while CC was higher in inoculated plants. At cycle 2, Drought + AMF treatment had lower CC and large SLA compared to control, and high PEUE compared to Drought plants. These responses suggest AMFs increase tolerance of C. flexuosa to recurrent water deficit, mainly in cycle 2, reducing the CC, promoting the improvement of SLA and PEUE, leading to higher photosynthetic area. Thus, our result emphasizes the importance of studies on recurrence of water deficit, a common condition in semiarid environments. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Encapsulado de Embriones Somáticos y Embriones Cigóticos para Obtención de Semillas Artificiales de Raulí (Nothofagus alpina (Poepp. & Endl.) Oerst.)

    OpenAIRE

    Cartes R, Priscila; Castellanos B, Hermes; Ríos L, Darcy; Sáez C, Katia; Spierccolli H, Scarlette; Sánchez O, Manuel

    2009-01-01

    Somatic and zygotic embryos from mature seeds of rauli-beech, Nothofagus alpina (Poepp. & Endl.) Oerst., were encapsulated in different artificial endosperms in order to generate a cover that fulfills the function of nourishment and protection of the embryos, facilitating their later germination. The content of sodium alginate varied by 4%, 3%, and 2%, as did the immersion time in calcium chloride (CaCl2), which acts as complexing agent. The artificial endosperm components of the Murashige an...

  13. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands

    Directory of Open Access Journals (Sweden)

    P. Pinho

    2012-03-01

    Full Text Available Nitrogen (N has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds such as critical loads (deposition fluxes and levels (concentrations can be established. Few studies have assessed these thresholds for semi-natural Mediterranean ecosystems. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. We have considered changes in epiphytic lichen communities, one of the most sensitive comunity indicators of excessive N in the atmosphere. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done for a Mediterranean climate in evergreen cork-oak woodlands, based on the relation between lichen functional diversity and modelled N deposition for critical loads and measured annual atmospheric ammonia concentrations for critical levels, evaluated downwind from a reduced N source (a cattle barn. Modelling the highly significant relationship between lichen functional groups and annual atmospheric ammonia concentration showed the critical level to be below 1.9 μg m−3, in agreement with recent studies for other ecosystems. Modelling the highly significant relationship between lichen functional groups and N deposition showed that the critical load was lower than 26 kg (N ha−1 yr−1, which is within the upper range established for other semi-natural ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should aid development of policies to protect Mediterranean woodlands from the initial effects of excessive N.

  14. Can native plant species be preserved in an anthropogenic forest landscape dominated by aliens? A case study from Mediterranean Chile

    Directory of Open Access Journals (Sweden)

    Steffi Heinrichs

    2016-06-01

    Full Text Available Plantations with fast growing exotic tree species can negatively affect native plant species diversity and promote the spread of alien species. Mediterranean Chile experienced major landscape changes with a vast expansion of industrial plantations of Pinus radiata in the past. However, with increasing knowledge of biodiversity effects on ecosystem services Chilean forest owners now aim to integrate the conservation of native biodiversity into forest management, but data on native species diversity and establishment within a plantation landscape is scarce. Here we investigated plant species diversity and composition in four forest management options applied within a landscape dominated by P. radiata plantations in comparison to an unmanaged reference: (i a clear cut, (ii a strip cut, (iii a native canopy of Nothofagus glauca and (iv a young P. radiata plantation. We wanted to assess if native plant species can be maintained either by natural regeneration or by planting of native tree species (Nothofagus glauca, N. obliqua, Quillaja saponaria within this landscape. Results show a high diversity of native and forest plant species within the different management options indicating a high potential for native biodiversity restoration within an anthropogenic landscape. In particular, herbaceous species can benefit from management. They are rare in unmanaged natural forests that are characterized by low light conditions and a thick litter layer. Management, however, also promoted a diversity of alien species. The rapid spread of alien grass species after management can deter an initial establishment of native tree species or the survival and growth after planting mainly under dry but less under sufficient moisture conditions. The most unsuccessful option for promoting native plant species was clear cutting in a dry area where alien grasses were abundant. For drought-tolerant tree species such as Quillaja saponaria, though

  15. A new species of Rhytidognathus (Carabidae, Migadopini) from Argentina.

    Science.gov (United States)

    Roig-Juñent, Sergio; Rouaux, Julia

    2012-01-01

    The Migadopini are a small tribe of Carabidae with 47 species that occur in South America, Australia, and New Zealand, in the sub-Antarctic areas. In South America, most of the genera inhabit areas related to sub-Antartic Nothofagus forest except two monogeneric genera, the Ecuadorian genus Aquilex Moret and the Pampean genus Rhytidognathus Chaudoir. These two genera are geographically isolated from the remaining five South American genera. New material of Rhytidognathus from the northeast of Buenos Aires province and from Entre Ríos province permits establishing that the previous records of Rhytidognathus ovalis (Dejean) for Argentina were erroneous and that it belongs to a new species. Based on external morphological characters and from male and female genitalia we describe Rhytidognathus platensis as a new species. In this contribution we provide illustrations, keys, habitat characteristics and some biogeographic considerations on the distribution of Rhytidognathus.

  16. A new species of Rhytidognathus (Carabidae, Migadopini from Argentina

    Directory of Open Access Journals (Sweden)

    Sergio Roig-Junent

    2012-11-01

    Full Text Available The Migadopini are a small tribe of Carabidae with 47 species that occur in South America, Australia, and New Zealand, in the sub-Antarctic areas. In South America, most of the genera inhabit areas related to sub-Antartic Nothofagus forest except two monogeneric genera, the Ecuadorian genus Aquilex Moret and the Pampean genus Rhytidognathus Chaudoir. These two genera are geographically isolated from the remaining five South American genera. New material of Rhytidognathus from the northeast of Buenos Aires province and from Entre Ríos province permits establishing that the previous records of Rhytidognathus ovalis (Dejean for Argentina were erroneous and that it belongs to a new species. Based on external morphological characters and from male and female genitalia we describe Rhytidognathus platensis as a new species. In this contribution we provide illustrations, keys, habitat characteristics and some biogeographic considerations on the distribution of Rhytidognathus.

  17. A new species of Alsodes (Anura: Alsodidae) from Altos de Cantillana, central Chile.

    Science.gov (United States)

    Charrier, Andrés; Correa, Claudio; Castro, Camila; Méndez, Marco A

    2015-02-05

    Based on morphological and molecular evidence (mitochondrial and nuclear sequences) we describe a new species of spiny-chest frog, Alsodes cantillanensis, from central Chile (around 34°S). The type locality, Quebrada Infiernillo, is located in the Coastal Range at approximately 65 km from Santiago (Metropolitan Region), the capital of Chile. The distribution of the new species is included entirely in that of A. nodosus (32-36°S approximately), which was identified as the sister taxon according to molecular phylogenetic analyses. Moreover, both species are sympatric in the type locality. The new species was found in a Nothofagus macrocarpa relict forest potentially threatened by gold mining activities. We identify other threats for its conservation and some biological data needed for understanding the evolution of this species. This discovery reveals the scarce knowledge about biogeography, evolution and ecology of spiny-chest frogs from central Chile. 

  18. [Biogeographic regionalization of the mammals of tropical evergreen forests in Mesoamerica].

    Science.gov (United States)

    Olguin-Monroy, Hector C; Gutiérrez-Blando, Cirene; Rios-Muñoz, César A; León-Paniagua, Livia; Navarro-Sigüenza, Adolfo G

    2013-06-01

    Mesoamerica is a biologically complex zone that expands from Southern Mexico to extreme Northern Colombia. The biogeographical patterns and relationships of the mammalian fauna associated to the Mesoamerican Tropical Evergreen Forest (MTEF) are poorly understood, in spite of the wide distribution of this kind of habitat in the region. We compiled a complete georeferenced database of mammalian species distributed in the MTEF of specimens from museum collections and scientific literature. This database was used to create potential distribution maps through the use of environmental niche models (ENMs) by using the Genetic Algorithm for Rule-Set Production (GARP) using 22 climatic and topographic layers. Each map was used as a representation of the geographic distribution of the species and all available maps were summed to obtain general patterns of species richness in the region. Also, the maps were used to construct a presence-absence matrix in a grid of squares of 0.5 degrees of side, that was analyzed in a Parsimony Analysis of Endemicity (PAE), which resulted in a hypothesis of the biogeographic scheme in the region. We compiled a total of 41 527 records of 233 species of mammals associated to the MTEF. The maximum concentration of species richness (104-138 species) is located in the areas around the Isthmus of Tehuantepec, Northeastern Chiapas-Western Guatemala, Western Honduras, Central Nicaragua to Northwestern Costa Rica and Western Panama. The proposed regionalization indicates that mammalian faunas associated to these forests are composed of two main groups that are divided by the Isthmus of Tehuantepec in Oaxaca in: a) a Northern group that includes Sierra Madre of Chiapas-Guatemala and Yucatan Peninsula; and b) an austral group, that contains the Pacific slope of Chiapas towards the South including Central America. Some individual phylogenetic studies of mammal species in the region support the relationships between the areas of endemism proposed, which

  19. Genetic diversity of an endangered species, Fokienia hodginsii ...

    African Journals Online (AJOL)

    Fokienia hodginsii (Cupressaceae) is distributed in montane evergreen forests in North and Central Vietnam and extends to southeastern China at 900 m above sea level. The species has been threatened in its area of distribution in recent years because of habitat destruction and over-exploitation. The genetic variation of ...

  20. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam.

    Science.gov (United States)

    Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P R

    2016-01-01

    Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB) and root biomass (RB) based on 300 (of 45 species) and 40 (of 25 species) sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH) and tree height (H), wood density (WD) was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.

  1. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam.

    Directory of Open Access Journals (Sweden)

    Vu Thanh Nam

    Full Text Available Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB and root biomass (RB based on 300 (of 45 species and 40 (of 25 species sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH and tree height (H, wood density (WD was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.

  2. Changes in structure and composition of evergreen forests on an altitudinal gradient in the Venezuelan Guayana Shield

    Directory of Open Access Journals (Sweden)

    Lionel Hernández

    2012-03-01

    Full Text Available There have been several ecological studies in forests of the Guayana Shield, but so far none had examined the changes in structure and composition of evergreen forests with altitude. This study describes and analyzes the structure, species composition and soil characteristics of forest stands at different altitudinal zones in Southeastern Venezuelan Guayana, in order to explain the patterns and the main factors that determine the structure and composition of evergreen forests along the altitudinal gradient. Inventories of 3 948 big (>10cm DBH and 1 328 small (5-10cm DBH woody stems were carried out in eleven plots, ranging from 0.1 to 1.0ha, along a 188km long transect with elevations between 290 and 1 395masl. It has been found that 1 hemiepihytes become more dominant and lianas reduce their dominance with increasing altitude and 2 the forest structure in the study area is size-dependent. Five families and 12 genera represented only 9% of the total number of families and genera, respectively, recorded troughout the gradient, but the two groups of taxa comprised more than 50% of the Importance Value (the sum of the relative density and the relative dominance of all measured stems. Moreover, the results suggest that low species richness seems to be associated with the dominance of one or few species. Stand-level wood density (WD of trees decreased significantly with increasing elevation. WD is an indicator of trees’life history strategy. Its decline suggests a change in the functional composition of the forest with increasing altitude. The Canonical Correspondence Analysis (CCA indicated a distinction of the studied forests on the basis of their altitudinal levels and geographic location, and revealed different ecological responses by the forests, to environmental variables along the altitudinal gradient. The variation in species composition, in terms of basal area among stands, was controlled primarily by elevation and secondarily by rainfall

  3. The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers.

    Science.gov (United States)

    Wong, Christopher Y S; Gamon, John A

    2015-04-01

    In evergreens, the seasonal down-regulation and reactivation of photosynthesis is largely invisible and difficult to assess with remote sensing. This invisible phenology may be changing as a result of climate change. To better understand the mechanism and timing of these hidden physiological transitions, we explored several assays and optical indicators of spring photosynthetic activation in conifers exposed to a boreal climate. The photochemical reflectance index (PRI), chlorophyll fluorescence, and leaf pigments for evergreen conifer seedlings were monitored over 1 yr of a boreal climate with the addition of gas exchange during the spring. PRI, electron transport rate, pigment levels, light-use efficiency and photosynthesis all exhibited striking seasonal changes, with varying kinetics and strengths of correlation, which were used to evaluate the mechanisms and timing of spring activation. PRI and pigment pools were closely timed with photosynthetic reactivation measured by gas exchange. The PRI provided a clear optical indicator of spring photosynthetic activation that was detectable at leaf and stand scales in conifers. We propose that PRI might provide a useful metric of effective growing season length amenable to remote sensing and could improve remote-sensing-driven models of carbon uptake in evergreen ecosystems. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Understanding Seasonal Dynamics of the Photo-Protective Xanthophyll Cycle Improves Remote Detection of Photosynthetic Phenology in Deciduous Trees and Evergreen Conifers

    Science.gov (United States)

    Ensminger, I.; Wong, C. Y.; Junker, L. V.; Bathena, Y.; Arain, M. A.; D'Odorico, P.

    2017-12-01

    The ability of plants to sequester carbon is highly variable over the course of the year and reflects seasonal variation in photosynthetic efficiency. This seasonal variation is most prominent during autumn, when leaves of deciduous tree species undergo senescence, which is associated with the downregulation of photosynthesis and a change of leaf color and leaf optical properties. Vegetation indices derived from remote sensing of leaf optical properties using e.g. spectral reflectance measurements are increasingly used to monitor and predict growing season length and seasonal variation in carbon sequestration. Here we compare leaf-level, canopy-level and drone based observations of leaf spectral reflectance measurements. We demonstrate that some of the widely used vegetation indices such as the normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI) vary in their ability to adequately track the seasonal variation in photosynthetic efficiency and chlorophyll content. We further show that monitoring seasonal variation of photosynthesis using NDVI or PRI is particularly challenging in evergreen conifers, due to little seasonal variation in foliage. However, there is remarkable seasonal variation in leaf optical properties associated with changes in pools of xanthophyll cycle pigments and carotenoids that provide a promising way of monitoring photosynthetic phenology in evergreen conifers via leaf reflectance measurements.

  5. An experimental approach to explain the southern Andes elevational treeline.

    Science.gov (United States)

    Fajardo, Alex; Piper, Frida I

    2014-05-01

    • The growth limitation hypothesis (GLH) is the most accepted mechanistic explanation for treeline formation, although it is still uncertain whether it applies across taxa. The successful establishment of Pinus contorta--an exotic conifer species in the southern hemisphere--above the Nothofagus treeline in New Zealand may suggest a different mechanism. We tested the GLH in Nothofagus pumilio and Pinus contorta by comparing seedling performance and carbon (C) balance in response to low temperatures.• At a southern Chilean treeline, we grew seedlings of both species 2 m above ground level, to simulate coupling between temperatures at the meristem and in the air (colder), and at ground level, i.e., decoupling air temperature (relatively milder). We recorded soil and air temperatures as well. After 3 yr, we measured seedling survival and biomass (as a surrogate of growth) and determined nonstructural carbohydrates (NSC).• Nothofagus and Pinus did not differ in survival, which, as a whole, was higher at ground level than at the 2-m height. The root-zone temperature for the growing season was 6.6°C. While biomass and NSC decreased significantly for Nothofagus at the 2-m height compared with ground level (C limitation), these trends were not significant for Pinus• The treeline for Nothofagus pumilio is located at an isotherm that fully matches global patterns; however, its physiological responses to low temperatures differed from those of other treeline species. Support for C limitation in N. pumilio but not in P. contorta indicates that the physiological mechanism explaining their survival and growth at treeline may be taxon-dependent. © 2014 Botanical Society of America, Inc.

  6. Effect of the degree of anthropization in the structure, at three sites fragmented evergreen piedmont forest

    Directory of Open Access Journals (Sweden)

    Hugo Gabriel Sánchez Villacis

    2017-08-01

    Full Text Available The Ecuadorian Amazon is recognized worldwide for its extraordinary megadiversity and multiplicity of forest goods and services. However, the inadequate practices of extractive use of non-timber forest products, the clearing of extensive areas of forests for the development of oil activity and the unsustainable use of timber as economic sustenance of communities have led to structural and functional changes In ecosystems. The study was carried out in three sites of a degraded evergreen forest of the eastern Amazon (Mera, Shell and Puyo in order to evaluate the effect of the degree of intervention on the forest structure. A floristic inventory was carried out with 60 plots of 25 x 25 m2 and tree species ≥ 2.5 cm d1.30 and species in natural regeneration phase with h <2 m were measured. We found 35 families, 65 genera, 101 species and 2 298 individuals, with Arecaceae, Fabaceae and Moraceae being the most representative botanical families. The degree of anthropization was highly modified where Mera was the best state of conservation. It was evidenced a low floristic diversity with patterns of alteration in the vertical and horizontal structure, distinguished phytosociologically by two strata in the sites of Shell and Puyo and by three in Mera, indicator of structural changes.

  7. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    Science.gov (United States)

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Eco-physiological adaptation of dominant tree species at two contrasting karst habitats in southwestern China [v1; ref status: indexed, http://f1000r.es/xt

    Directory of Open Access Journals (Sweden)

    Shouren Zhang

    2013-05-01

    Full Text Available The purpose of this study was to investigate the eco-physiological adaptation of indigenous woody species to their habitats in karst areas of southwestern China. Two contrasting forest habitats were studied: a degraded habitat in Daxiagu and a well-developed habitat in Tianlongshan, and the eco-physiological characteristics of the trees were measured for three growth seasons. Photosynthetic rate (Pn, stomatal conductance (gs, and transpiration rate (Tr of the tree species in Daxiagu were 2-3 times higher than those in Tianlongshan under ambient conditions. However, this habitat effect was not significant when measurements were taken under controlled conditions. Under controlled conditions, Pn, gs, and Tr of the deciduous species were markedly higher than those for the evergreen species. Habitat had no significant effect on water use efficiency (WUE or photochemical characteristics of PSII. The stomatal sensitivity of woody species in the degraded habitat was much higher than that in the well-developed habitat. Similarly, the leaf total nitrogen (N and phosphorus (P contents expressed on the basis of either dry mass or leaf area were also much higher in Daxiagu than they were in Tianlongshan. The mass-based leaf total N content of deciduous species was much higher than that of evergreen species, while leaf area-based total N and P contents of evergreens were significantly higher than those of deciduous species. The photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE of deciduous species were much higher than those of evergreens. Further, the PPUE of the woody species in Tianlongshan was much higher than that  of the woody species in Daxiagu. The results from three growth seasons imply that the tree species were able to adapt well to their growth habitats. Furthermore, it seems that so-called “temporary drought stress” may not occur, or may not be severe for most woody plants in karst areas of southwestern China.

  9. Micropropagación in vitro de Nothofagus alpina utilizando fitohormonas

    Directory of Open Access Journals (Sweden)

    Luz García Cruzatty

    2015-09-01

    Full Text Available Nothofagus alpina es una de las especies forestales más importantes del Sur de Chile y Argentina, países donde se ha empezado con programas de mejoramiento genético. La micropropagación es una técnica muy útil en la clonación de árboles con fines de mejoramiento, por tanto, los objetivos planteados en esta investigación fueron: determinar la mejor concentración de fitohormonas 6-bencilaminopurina (BAP y ácido indol butírico (AIB y, el medio de cultivo idóneo para inducir el enraizamiento de brotes y la brotación de secciones nodales de N. alpina. Se evaluaron los medios de Murashige Skoog (MS y Wood Plant Medium (WPM, con la mitad de los macronutrientes (enraizamiento y los micronutrientes completos (multiplicación, suplementado con peptone (0.1%, sacarosa (2.0%, agar (0.7% y diferentes concentraciones de auxinas. El medio MS suplementado con 2 mg L-1 de AIB resultó mejor para inducir la producción de las raíces, tanto en número como en la longitud de la raíz principal. El mayor porcentaje de enraizamiento se registró en el medio WPM suplementado con 2 mg L-1 AIB. Los tratamientos para inducir multiplicación que incluyeron citoquinina originaron callos y no enraizaron; siendo mayor la presencia de callos en el medio WPM. Se sugiere que la aplicación de citoquininas no es indispensable para la brotación, puesto que en los tratamientos testigos hubo una buena brotación; lo que hace suponer que el material vegetal utilizado tiene suficiente niveles endógenos de esta fitohormona.

  10. From leaf longevity to canopy seasonality: a carbon optimality phenology model for tropical evergreen forests

    Science.gov (United States)

    Xu, X.; Medvigy, D.; Wu, J.; Wright, S. J.; Kitajima, K.; Pacala, S. W.

    2016-12-01

    Tropical evergreen forests play a key role in the global carbon, water and energy cycles. Despite apparent evergreenness, this biome shows strong seasonality in leaf litter and photosynthesis. Recent studies have suggested that this seasonality is not directly related to environmental variability but is dominated by seasonal changes of leaf development and senescence. Meanwhile, current terrestrial biosphere models (TBMs) can not capture this pattern because leaf life cycle is highly underrepresented. One challenge to model this leaf life cycle is the remarkable diversity in leaf longevity, ranging from several weeks to multiple years. Ecologists have proposed models where leaf longevity is regarded as a strategy to optimize carbon gain. However previous optimality models can not be readily integrated into TBMs because (i) there are still large biases in predicted leaf longevity and (ii) it is never tested whether the carbon optimality model can capture the observed seasonality in leaf demography and canopy photosynthesis. In this study, we develop a new carbon optimality model for leaf demography. The novelty of our approach is two-fold. First, we incorporate a mechanistic photosynthesis model that can better estimate leaf carbon gain. Second, we consider the interspecific variations in leaf senescence rate, which strongly influence the modelled optimal carbon gain. We test our model with a leaf trait database for Panamanian evergreen forests. Then, we apply the model at seasonal scale and compare simulated seasonality of leaf litter and canopy photosynthesis with in-situ observations from several Amazonian forest sites. We find that (i) compared with original optimality model, the regression slope between observed and predicted leaf longevity increases from 0.15 to 1.04 in our new model and (ii) that our new model can capture the observed seasonal variations of leaf demography and canopy photosynthesis. Our results suggest that the phenology in tropical evergreen

  11. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought.

    Science.gov (United States)

    David, T S; Henriques, M O; Kurz-Besson, C; Nunes, J; Valente, F; Vaz, M; Pereira, J S; Siegwolf, R; Chaves, M M; Gazarini, L C; David, J S

    2007-06-01

    In the Mediterranean evergreen oak woodlands of southern Portugal, the main tree species are Quercus ilex ssp. rotundifolia Lam. (holm oak) and Quercus suber L. (cork oak). We studied a savannah-type woodland where these species coexist, with the aim of better understanding the mechanisms of tree adaptation to seasonal drought. In both species, seasonal variations in transpiration and predawn leaf water potential showed a maximum in spring followed by a decline through the rainless summer and a recovery with autumn rainfall. Although the observed decrease in predawn leaf water potential in summer indicates soil water depletion, trees maintained transpiration rates above 0.7 mm day(-1) during the summer drought. By that time, more than 70% of the transpired water was being taken from groundwater sources. The daily fluctuations in soil water content suggest that some root uptake of groundwater was mediated through the upper soil layers by hydraulic lift. During the dry season, Q. ilex maintained higher predawn leaf water potentials, canopy conductances and transpiration rates than Q. suber. The higher water status of Q. ilex was likely associated with their deeper root systems compared with Q. suber. Whole-tree hydraulic conductance and minimum midday leaf water potential were lower in Q. ilex, indicating that Q. ilex was more tolerant to drought than Q. suber. Overall, Q. ilex seemed to have more effective drought avoidance and drought tolerance mechanisms than Q. suber.

  12. Surface-bound phosphatase activity in living hyphae of ectomycorrhizal fungi of Nothofagus obliqua.

    Science.gov (United States)

    Alvarez, Maricel; Godoy, Roberto; Heyser, Wolfgang; Härtel, Steffen

    2004-01-01

    We determined the location and the activity of surface-bound phosphomonoesterase (SBP) of five ectomycorrhizal (EM) fungi of Nothofagus oblique. EM fungal mycelium of Paxillus involutus, Austropaxillus boletinoides, Descolea antartica, Cenococcum geophilum and Pisolithus tinctorius was grown in media with varying concentrations of dissolved phosphorus. SBP activity was detected at different pH values (3-7) under each growth regimen. SBP activity was assessed using a colorimetric method based on the hydrolysis of p-nitrophenyl phosphate (pNPP) to p-nitrophenol phosphate (pNP) + P. A new technique involving confocal laser-scanning microscopy (LSM) was used to locate and quantify SBP activity on the hyphal surface. EM fungi showed two fundamentally different patterns of SBP activity in relation to varying environmental conditions (P-concentrations and pH). In the cases of D. antartica, A. boletinoides and C. geophilum, changes in SBP activity were induced primarily by changes in the number of SBP-active centers on the hyphae. In the cases of P. tinctorius and P. involutus, the number of SBP-active centers per μm hyphal length changed much less than the intensity of the SBP-active centers on the hyphae. Our findings not only contribute to the discussion about the role of SBP-active centers in EM fungi but also introduce LSM as a valuable method for studying EM fungi.

  13. Eco-physiological adaptation of dominant tree species at two contrasting karst habitats in southwestern China [v2; ref status: indexed, http://f1000r.es/2d9

    Directory of Open Access Journals (Sweden)

    Shouren Zhang

    2013-11-01

    Full Text Available The purpose of this study was to investigate the eco-physiological adaptation of indigenous woody species to their habitats in karst areas of southwestern China. Two contrasting forest habitats were studied: a degraded habitat in Daxiagu and a well-developed habitat in Tianlongshan, and the eco-physiological characteristics of the trees were measured for three growth seasons. Photosynthetic rate (Pn, stomatal conductance (gs, and transpiration rate (Tr of the tree species in Daxiagu were 2-3 times higher than those in Tianlongshan under ambient conditions. However, this habitat effect was not significant when measurements were taken under controlled conditions. Under controlled conditions, Pn, gs, and Tr of the deciduous species were markedly higher than those for the evergreen species. Habitat had no significant effect on water use efficiency (WUE or photochemical characteristics of PSII. The stomatal sensitivity of woody species in the degraded habitat was much higher than that in the well-developed habitat. Similarly, the leaf total nitrogen (N and phosphorus (P contents expressed on the basis of either dry mass or leaf area were also much higher in Daxiagu than they were in Tianlongshan. The mass-based leaf total N content of deciduous species was much higher than that of evergreen species, while leaf area-based total N and P contents of evergreens were significantly higher than those of deciduous species. The photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE of deciduous species were much higher than those of evergreens. Further, the PPUE of the woody species in Tianlongshan was much higher than that  of the woody species in Daxiagu. The results from three growth seasons imply that the tree species were able to adapt well to their growth habitats. Furthermore, it seems that so-called “temporary drought stress” may not occur, or may not be severe for most woody plants in karst areas of southwestern China.

  14. Differences in the environmental control of leaf senescence of four Quercus species coexisting in a Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Teresa del Río-García

    2015-08-01

    Full Text Available Aims of study: Our aim is to check the effect of different environmental factors on the leaf senescence of four Quercus species with different leaf longevities, to help us better understand the implications of climate change on leaf demography. Area of study: The study was carried out in two sites of the province of Salamanca (central-western Spain, both sites showing differences in their temperatures and soil water availability. Material and Methods: Over four years (2007-2010 we monitored the number of leaves of the different cohorts labelled on five specimens of each species at both sites to elaborate life-tables and calculate mortality rates. Mortality rates were then related to several other variables measured during the same period: air temperature, soil water availability, precipitation, predawn water potentials (Ψpd and leaf N resorption. Main results: In the two deciduous species maximum daily temperatures and the time during which their values remain above a certain threshold (between 11 and 12ºC of maximum daily temperature are the main factors controlling the timing of leaf abscission. In the evergreen species abscission of old leaves showed no relationship with the environmental factors analyzed. By contrast, mortality rates of old leaves were related to seasonal N resorption values, with the maximum mortality of old leaves coinciding in time with the maximum withdrawal of N from shed leaves and also with the emergence of the new leaf cohort. Research highlights: The increase in the duration of the leaves of the two deciduous species, as a result of the delayed senescence by warmer autumnal temperatures, could contribute to reducing the differences in the length of the productive leaf life with respect to the evergreen species. This could improve the competitive capacity of deciduous species as opposed to that of evergreen species, and thus alter their respective distribution patterns.

  15. Morfología y Anatomía del Ápice Caulinar de Nothofagus dombeyi (Nothofagaceae a lo largo de un año Morfology and anatomy of the shoot apex of Nothofagus dombeyi (Nothofagaceae along a year

    Directory of Open Access Journals (Sweden)

    Soledad García

    2006-07-01

    Full Text Available En el presente estudio se evaluó la posible variación anual de la morfología y la anatomía del ápice caulinar de coihue, Nothofagus dombeyi (Nothofagaceae. A partir de muestras tomadas a lo largo de un año calendario, se realizaron cortes longitudinales de las yemas terminales con micrótomo de congelación. Independientemente de la época del año, una yema terminal está conformada por un meristema apical y rudimentos de tallo y hojas. Los primordios foliares proximales tienen mayor tamaño y grado de diferenciación que los distales. En la axila de cada estípula se destaca la presencia de coléteres. Cada coléter se comunica vascularmente con la estípula correspondiente. El número de primordios foliares por yema es constante entre abril y octubre y disminuye posteriormente al incrementarse el número de hojas expandidas, aunque sin llegar a cero. Al final de la estación de crecimiento se distinguen yemas de mayor y yemas de menor tamaño; estas últimas se secan y desprenden del tallo antes de la primavera siguiente. Dentro de una yema se evidencian, en un momento dado, distintos grados de diferenciación entre primordios foliares proximales y distales y entre la lámina y las estípulas de los primordios más proximales.The present study evaluates the possible annual variation in the morphology and anatomy of the shoot apex of Nothofagus dombeyi (Nothofagaceae. From samples taken over one year, longitudinal slices of terminal buds were cut with a freezing microtome. Irrespective of the time of the year, a terminal bud consists of an apical meristem and rudiments of stem and leaves. Proximal primordia are larger and have a higher degree of differentiation than distal primordia. Around the axil of each stipule colleters are present. Each colleter is connected with the corresponding stipule through a conducting strand. The number of leaf primordia per bud is constant between April and October and diminishes later on as leaf expansion

  16. Facilitating the recovery of natural evergreen forests in South Africa via invader plant stands

    Directory of Open Access Journals (Sweden)

    Coert J. Geldenhuys

    2017-11-01

    Full Text Available Contrary to general belief, planted and naturalized stands of introduced species facilitate the recovery of natural evergreen forests and their diversity. Forest rehabilitation actions are often performed at great cost: mature forest species are planted, while species with adaptations to recover effectively and quickly after severe disturbance are ignored; or stands are cleared of invasive alien species before native tree species are planted. By contrast, cost-effective commercial plantation forestry systems generally use fast-growing pioneer tree species introduced from other natural forest regions. Such planted tree stands often facilitate the recovery of shade-tolerant native forest species. This paper provides a brief overview of disturbance-recovery processes at landscape level, and how pioneer stands of both native and introduced tree species develop from monocultures to diverse mature forest communities. It uses one example of a study of how natural forest species from small forest patches of 3 ha in total invaded a 90-ha stand of the invasive Black wattle, Acacia mearnsii, over a distance of 3.1 ha at Swellendam near Cape Town, South Africa. The study recorded 329 forest species clusters across the wattle stand: more large clusters closer to and more smaller clusters further away from natural forest patches. The 28 recorded forest species (of potentially 40 species in the surrounding forest patches included 79% tree and 21% shrub species. Colonizing forest species had mostly larger fleshy fruit and softer small seeds, and were dispersed by mostly birds and primate species. Maturing forest trees within developing clusters in the wattle stand became a source for forest regeneration away from the clusters, showing different expansion patterns. Four sets of fenced-unfenced plots in the wattle stand showed the impact of browsing by livestock, antelope, rodents and insects on the successful establishment of regenerating forest species, and the

  17. The Next Generation Library Catalog: A Comparative Study of the OPACs of Koha, Evergreen, and Voyager

    Directory of Open Access Journals (Sweden)

    Sharon Q. Yang

    2010-09-01

    Full Text Available Open source has been the center of attention in the library world for the past several years. Koha and Evergreen are the two major open-source integrated library systems (ILSs, and they continue to grow in maturity and popularity. The question remains as to how much we have achieved in open-source development toward the next-generation catalog compared to commercial systems. Little has been written in the library literature to answer this question. This paper intends to answer this question by comparing  the next-generation features of the OPACs of two open-source ILSs (Koha and Evergreen and one proprietary ILS (Voyager’s WebVoyage.

  18. Wellington Quaternary palynology

    International Nuclear Information System (INIS)

    Harris, W.F.; Mildenhall, D.C.

    1984-01-01

    Pollen samples from a profile at Taita indicate a grassland environment prior to and immediately after the deposition of the Aokautere Ash (Kawakawa Tephra) approximately 21,000 years B.P. This grassland gradually gave way to a Nothofagus menziesii montane forest followed by an abrupt change to a N. ''Fusca'' group dominant forest which continues to the top of the section. The top few centimetres of the profile may have been deposited in post-European time. The abrupt change in the species of beech represents an unconformity of unknown duration. Pollen samples from a number of profiles at Mangaroa (Wallaceville Swamp) indicate a change from a cool environment (Gramineae plus Phyllocladus) through successive phases of Nothofagus menziesii, Podocarpus species, Dacrydium cupressinum to Nothofagus ''fusca'' group close to the present day. These results are presented in an historical context based on notes left by Dr W.F. Harris, supplemented with additional data by the junior author

  19. Moisture availability constraints on the leaf area to sapwood area ratio: analysis of measurements on Australian evergreen angiosperm trees

    Science.gov (United States)

    Togashi, Henrique; Prentice, Colin; Evans, Bradley; Forrester, David; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel

    2014-05-01

    The leaf area to sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. Pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease towards drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. We found considerable scatter in LA:SA among species. However quantile regression showed strong (0.2

  20. Upscaling from leaf to canopy chlorophyll/carotenoid pigment based vegetation indices reveal phenology of photosynthesis in temperate evergreen and deciduous trees

    Science.gov (United States)

    Wong, C. Y.; Bhathena, Y.; Arain, M. A.; Ensminger, I.

    2017-12-01

    Optically derived vegetation indices have been developed to provide information about plant status including photosynthetic activity. They reflect changes in leaf pigments, which vary seasonally in pigment composition, enabling them to be used as a proxy of photosynthetic phenology. Important pigments in photosynthetic activity are carotenoids and chlorophylls, which are associated with light harvesting and energy dissipation. In temperate forests, which consist of deciduous and evergreen trees, there are difficulties resolving evergreen phenology using the most widely used index, the normalized difference vegetation index (NDVI). NDVI works well in deciduous trees, which exhibit a "visible" phenological process of leaf growth in the spring, and leaf senescence and abscission in the autumn. Evergreen conifers stay green year-round and utilize "invisible" changes of overwintering pigment composition that NDVI cannot resolve, so carotenoid pigment sensitive vegetation indices have been suggested for evergreens. The aim of this study was to evaluate carotenoid based vegetation indices over the chlorophyll sensitive NDVI. For this purpose, we evaluated the greenness index, NDVI, and carotenoid pigment sensitive indices: photochemical reflectance index (PRI) and chlorophyll/carotenoid index (CCI) in red maple, white oak and eastern white pine for two years. We also measured leaf gas exchange and pigment concentrations. We observed that NDVI correlated with photosynthetic activity in deciduous trees, whereas PRI and CCI correlated with photosynthesis across both evergreen and deciduous trees. This pattern was consistent, upscaling from leaf- to canopy-scales indicating that the mechanisms involved in winter acclimation can be resolved at larger spatial scales. PRI and CCI detected seasonal changes in carotenoids and chlorophylls linked to photoprotection and are suitable as a proxy of photosynthetic activity. These findings have implications to improve our use and

  1. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China.

    Science.gov (United States)

    Zhou, Guoyi; Peng, Changhui; Li, Yuelin; Liu, Shizhong; Zhang, Qianmei; Tang, Xuli; Liu, Juxiu; Yan, Junhua; Zhang, Deqiang; Chu, Guowei

    2013-04-01

    Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought-induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad-leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad-leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long-term climate change. © 2012 Blackwell Publishing Ltd.

  2. Meaningful traits for grouping plant species across arid ecosystems.

    Science.gov (United States)

    Bär Lamas, Marlene Ivonne; Carrera, A L; Bertiller, M B

    2016-05-01

    Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms.

  3. Individual-Tree Diameter Growth Models for Mixed Nothofagus Second Growth Forests in Southern Chile

    Directory of Open Access Journals (Sweden)

    Paulo C. Moreno

    2017-12-01

    Full Text Available Second growth forests of Nothofagus obliqua (roble, N. alpina (raulí, and N. dombeyi (coihue, known locally as RORACO, are among the most important native mixed forests in Chile. To improve the sustainable management of these forests, managers need adequate information and models regarding not only existing forest conditions, but their future states with varying alternative silvicultural activities. In this study, an individual-tree diameter growth model was developed for the full geographical distribution of the RORACO forest type. This was achieved by fitting a complete model by comparing two variable selection procedures: cross-validation (CV, and least absolute shrinkage and selection operator (LASSO regression. A small set of predictors successfully explained a large portion of the annual increment in diameter at breast height (DBH growth, particularly variables associated with competition at both the tree- and stand-level. Goodness-of-fit statistics for this final model showed an empirical coefficient of correlation (R2emp of 0.56, relative root mean square error of 44.49% and relative bias of −1.96% for annual DBH growth predictions, and R2emp of 0.98 and 0.97 for DBH projection at 6 and 12 years, respectively. This model constitutes a simple and useful tool to support management plans for these forest ecosystems.

  4. Seasonal variations in nutrients and secondary metabolites in semi-arid savannas depend on year and species

    CSIR Research Space (South Africa)

    Scogings, PF

    2015-03-01

    Full Text Available concentrations are highest in the dry season. We measured nitrogen, phosphorus, total polyphenols and condensed tannins in six woody species (including one evergreen) seasonally at the Nkuhlu exclosure, Kruger National Park, South Africa, for three consecutive...

  5. Rapid forest clearing in a Myanmar proposed national park threatens two newly discovered species of geckos (Gekkonidae: Cyrtodactylus.

    Directory of Open Access Journals (Sweden)

    Grant M Connette

    Full Text Available Myanmar's recent transition from military rule towards a more democratic government has largely ended decades of political and economic isolation. Although Myanmar remains heavily forested, increased development in recent years has been accompanied by exceptionally high rates of forest loss. In this study, we document the rapid progression of deforestation in and around the proposed Lenya National Park, which includes some of the largest remaining areas of lowland evergreen rainforest in mainland Southeast Asia. The globally unique forests in this area are rich in biodiversity and remain a critical stronghold for many threatened and endangered species, including large charismatic fauna such as tiger and Asian elephant. We also conducted a rapid assessment survey of the herpetofauna of the proposed national park, which resulted in the discovery of two new species of bent-toed geckos, genus Cyrtodactylus. We describe these new species, C. lenya sp. nov. and C. payarhtanensis sp. nov., which were found in association with karst (i.e., limestone rock formations within mature lowland wet evergreen forest. The two species were discovered less than 35 km apart and are each known from only a single locality. Because of the isolated nature of the karst formations in the proposed Lenya National Park, these geckos likely have geographical ranges restricted to the proposed protected area and are threatened by approaching deforestation. Although lowland evergreen rainforest has vanished from most of continental Southeast Asia, Myanmar can still take decisive action to preserve one of the most biodiverse places on Earth.

  6. Rapid forest clearing in a Myanmar proposed national park threatens two newly discovered species of geckos (Gekkonidae: Cyrtodactylus).

    Science.gov (United States)

    Connette, Grant M; Oswald, Patrick; Thura, Myint Kyaw; LaJeunesse Connette, Katherine J; Grindley, Mark E; Songer, Melissa; Zug, George R; Mulcahy, Daniel G

    2017-01-01

    Myanmar's recent transition from military rule towards a more democratic government has largely ended decades of political and economic isolation. Although Myanmar remains heavily forested, increased development in recent years has been accompanied by exceptionally high rates of forest loss. In this study, we document the rapid progression of deforestation in and around the proposed Lenya National Park, which includes some of the largest remaining areas of lowland evergreen rainforest in mainland Southeast Asia. The globally unique forests in this area are rich in biodiversity and remain a critical stronghold for many threatened and endangered species, including large charismatic fauna such as tiger and Asian elephant. We also conducted a rapid assessment survey of the herpetofauna of the proposed national park, which resulted in the discovery of two new species of bent-toed geckos, genus Cyrtodactylus. We describe these new species, C. lenya sp. nov. and C. payarhtanensis sp. nov., which were found in association with karst (i.e., limestone) rock formations within mature lowland wet evergreen forest. The two species were discovered less than 35 km apart and are each known from only a single locality. Because of the isolated nature of the karst formations in the proposed Lenya National Park, these geckos likely have geographical ranges restricted to the proposed protected area and are threatened by approaching deforestation. Although lowland evergreen rainforest has vanished from most of continental Southeast Asia, Myanmar can still take decisive action to preserve one of the most biodiverse places on Earth.

  7. Descomposición de hojarasca de Pinus radiata y tres especies arbóreas nativas Decomposition of leaf litter of Pinus radiata and three native tree species

    Directory of Open Access Journals (Sweden)

    CHRISTOPHER H. LUSK

    2001-09-01

    -central Chile to exotic tree plantations. However, little is known about the effects of these wholesale landuse changes on ecosystem properties and processes, with the notable exception of studies of site water balance. In this brief communication, we present the results of a comparative study of decomposition of leaf litter of Pinus radiata and three common native tree species, beneath exotic and native woody vegetation in south-central Chile. We aimed to assess the nutrient cycling implications of substitution or invasion of native vegetation by P. radiata. Litter samples of the four species were incubated in both environments, registering the percentage of dry weight loss after two and six months. Decomposition rates of all species were much faster during the first two months of incubation than during the four subsequent months. At both dates there were significant differences between species and between sites, with faster decomposition of all species beneath P. radiata. There was no evidence of interaction between species and site. After six months, species rank order for the percentage of weight loss was Nothofagus obliqua > P. radiata > Peumus boldus > Cryptocarya alba. Interspecific variation in decomposition rates was more closely correlated with specific leaf area than with litter nitrogen content. Given that litter of P. radiata decomposed slower than that of the deciduous N. obliqua, but faster than the sclerophyll evergreens, the consequences of substitution or invasion for decomposition processes are likely to depend on the composition of the native vegetation in question

  8. Evaluation of the physical, mechanical and biological properties of the combined wood-plastic in Nothofagus Pumilio wood

    International Nuclear Information System (INIS)

    Benedetto Acuna, Andres

    2010-01-01

    In this project he studied the physical, mechanical and biological properties of wood-plastic combinations (WPC) in timber Nothofagus pumilio (Lenga) impregnated with the monomer methyl methacrylate (MMA), trying to get a hold and maximum penetration into the wood . It was used for impregnation method fills the cell (Bethell). To achieve the polymerization, the MMA once absorbed by the specimens under study are irradiated with gamma rays at a dose of 25 kGy, ensuring a high percentage of final polymerization, which fluctuated between 55.09% and 84.48%. The tests applied to the specimens were moisture content, dimensional stability, density, compression perpendicular to grain, compression parallel to grain to grain compression 'new' Janka hardness, shear parallel to grain, static bending and termites. In general, except for the static bending test, the WPC had an increase in their property, being the tests of hardness, density and water absorption which achieved higher profits, increasing their properties at 104%, 79% and 75% respectively compared to untreated specimens. From the economic viewpoint, the production of an inch Lenga timber has a cost of $ 19,805, so it may be feasible marketing both domestically and internationally (author)

  9. Changes to southern Appalachian water yield and stormflow after loss of a foundation species

    Science.gov (United States)

    Steven T. Brantley; Chelcy Ford Miniat; Katherine J. Elliott; Stephanie H. Laseter; James M. Vose

    2014-01-01

    Few studies have examined how insect outbreaks affect landscape-level hydrologic processes. We report the hydrologic effects of the invasive, exotic hemlock woolly adelgid (HWA) in a headwater catchment in the southern Appalachian Mountains. The study watershed experienced complete mortality of an evergreen tree species, Tsuga canadensis (L.) Carr. (...

  10. Encapsulated Somatic Embryos and Zygotic Embryos for Obtaining Artificial Seeds of Rauli-Beech (Nothofagus alpina (Poepp. & Endl. Oerst. Encapsulado de Embriones Somáticos y Embriones Cigóticos para Obtención de Semillas Artificiales de Raulí (Nothofagus alpina (Poepp. & Endl. Oerst.

    Directory of Open Access Journals (Sweden)

    Priscila Cartes R

    2009-03-01

    Full Text Available Somatic and zygotic embryos from mature seeds of rauli-beech, Nothofagus alpina (Poepp. & Endl. Oerst., were encapsulated in different artificial endosperms in order to generate a cover that fulfills the function of nourishment and protection of the embryos, facilitating their later germination. The content of sodium alginate varied by 4%, 3%, and 2%, as did the immersion time in calcium chloride (CaCl2, which acts as complexing agent. The artificial endosperm components of the Murashige and Skoog medium (MS were added, supplemented with 0.5 mg L-1 indolacetic acid (IAA, 0.5 mg L-1 naphthaleneacetic acid (NAA, 2 mg L-1 6-benzylaminopurine (BAP and 30 g L-1 sucrose. The germinative behaviors of encapsulated somatic and zygotic embryos were evaluated after 4 wk. Comparing the percentages of germination reached by encapsulated somatic and zygotic embryos it was observed that they had similar germinative behavior according to the type of encapsulation applied. However, zygotic embryos substantially exceeded the germination levels reached by somatic embryos, 100% vs. 45% respectively.Embriones somáticos y cigóticos provenientes de semillas maduras de raulí, Nothofagus alpina (Poepp. & Endl. Oerst., se encapsularon en diferentes endospermas sintéticos con el fin de generar una cubierta que cumpla la función de nutrir y proteger al embrión para facilitar su posterior germinación. Se varió el contenido de alginato de sodio al 4%, 3% y 2% y el tiempo de inmersión en cloruro de calcio (CaCl2, el que actúa como agente acomplejante. Además, a la matriz artificial se adicionaron componentes del medio Murashige y Skoog (MS suplementado con: 0,5 mg L-1 de indolacetic acid (IAA, 0,5 mg L-1 de ácido naftalenacético (NAA, 2 mg L-1 de 6-bencilaminopurina (BAP y 30 gL-1 de sacarosa. Al cabo de 4 semanas el porcentaje de germinación de los embriones somáticos y cigóticos encapsulados tuvieron similar comportamiento germinativo según el tipo de

  11. Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents

    NARCIS (Netherlands)

    Tomlinson, K.W.; Poorter, L.; Sterck, F.J.; Borghetti, M.; Ward, D.; Bie, de S.; Langevelde, van F.

    2013-01-01

    1. Drought stress selects for a suite of plant traits at root, stem and leaf level. Two strategies are proposed for trees growing in seasonally water-stressed environments: drought tolerance and drought avoidance. These are respectively associated with evergreen phenology, where plants retain their

  12. Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment.

    Science.gov (United States)

    Fife, D N; Nambiar, E K S; Saur, E

    2008-02-01

    Internal nutrient recycling through retranslocation (resorption) is important for meeting the nutrient demands of new tissue production in trees. We conducted a comparative study of nutrient retranslocation from leaves of five tree species from three genera grown in plantation forests for commercial or environmental purposes in southern Australia--Acacia mearnsii De Wild., Eucalyptus globulus Labill., E. fraxinoides H. Deane & Maiden, E. grandis W. Hill ex Maiden and Pinus radiata D. Don. Significant amounts of nitrogen, phosphorus and potassium were retranslocated during three phases of leaf life. In the first phase, retranslocation occurred from young leaves beginning 6 months after leaf initiation, even when leaves were physiologically most active. In the second phase, retranslocation occurred from mature green leaves during their second year, and in the third phase, retranslocation occurred during senescence before leaf fall. Nutrient retranslocation occurred mainly in response to new shoot production. The pattern of retranslocation was remarkably similar in the leaves of all study species (and in the phyllodes of Casuarina glauca Sieber ex Spreng.), despite their diverse genetics, leaf forms and growth rates. There was no net retranslocation of calcium in any of the species. The amounts of nutrients at the start of each pre-retranslocation phase had a strong positive relationship with the amounts subsequently retranslocated, and all species fitted a common relationship. The percentage reduction in concentration or content (retranslocation efficiency) at a particular growth phase is subject to many variables, even within a species, and is therefore not a meaningful measure of interspecific variation. It is proposed that the pattern of retranslocation and its governing factors are similar among species in the absence of interspecies competition for growth and crown structure which occurs in mixed species stands.

  13. Simulation of the Unexpected Photosynthetic Seasonality in Amazonian Evergreen Forests by Using an Improved Diffuse Fraction-Based Light Use Efficiency Model

    Science.gov (United States)

    Yan, Hao; Wang, Shao-Qiang; da Rocha, Humberto R.; Rap, Alexandru; Bonal, Damien; Butt, Nathalie; Coupe, Natalia Restrepo; Shugart, Herman H.

    2017-11-01

    Understanding the mechanism of photosynthetic seasonality in Amazonian evergreen forests is critical for its formulation in global climate and carbon cycle models. However, the control of the unexpected photosynthetic seasonality is highly uncertain. Here we use eddy-covariance data across a network of Amazonian research sites and a novel evapotranspiration (E) and two-leaf-photosynthesis-coupled model to investigate links between photosynthetic seasonality and climate factors on monthly scales. It reproduces the GPP seasonality (R2 = 0.45-0.69) with a root-mean-square error (RMSE) of 0.67-1.25 g C m-2 d-1 and a Bias of -0.03-1.04 g C m-2 d-1 for four evergreen forest sites. We find that the proportion of diffuse and direct sunlight governs the photosynthetic seasonality via their interaction with sunlit and shaded leaves, supported by a proof that canopy light use efficiency (LUE) has a strong linear relationship with the fraction of diffuse sunlight for Amazonian evergreen forests. In the transition from dry season to rainy season, incident total radiation (Q) decreased while LUE and diffuse fraction increased, which produced the large seasonal increase ( 34%) in GPP of evergreen forests. We conclude that diffuse radiation is an important environmental driver of the photosynthetic seasonality in tropical Amazon forests yet depending on light utilization by sunlit and shaded leaves. Besides, the GPP model simulates the precipitation-dominated GPP seasonality (R2 = 0.40-0.69) at pasture and savanna sites. These findings present an improved physiological method to relate light components with GPP in tropical Amazon.

  14. Modeling the early-phase redistribution of radiocesium fallouts in an evergreen coniferous forest after Chernobyl and Fukushima accidents

    Energy Technology Data Exchange (ETDEWEB)

    Calmon, P.; Gonze, M.-A.; Mourlon, Ch.

    2015-10-01

    Following the Chernobyl accident, the scientific community gained numerous data on the transfer of radiocesium in European forest ecosystems, including information regarding the short-term redistribution of atmospheric fallout onto forest canopies. In the course of international programs, the French Institute for Radiological Protection and Nuclear Safety (IRSN) developed a forest model, named TREE4 (Transfer of Radionuclides and External Exposure in FORest systems), 15 years ago. Recently published papers on a Japanese evergreen coniferous forest contaminated by Fukushima radiocesium fallout provide interesting and quantitative data on radioactive mass fluxes measured within the forest in the months following the accident. The present study determined whether the approach adopted in the TREE4 model provides satisfactory results for Japanese forests or whether it requires adjustments. This study focused on the interception of airborne radiocesium by forest canopy, and the subsequent transfer to the forest floor through processes such as litterfall, throughfall, and stemflow, in the months following the accident. We demonstrated that TREE4 quite satisfactorily predicted the interception fraction (20%) and the canopy-to-soil transfer (70% of the total deposit in 5 months) in the Tochigi forest. This dynamics was similar to that observed in the Höglwald spruce forest. However, the unexpectedly high contribution of litterfall (31% in 5 months) in the Tochigi forest could not be reproduced in our simulations (2.5%). Possible reasons for this discrepancy are discussed; and sensitivity of the results to uncertainty in deposition conditions was analyzed. - Highlights: • Transfer of radiocesium atmospheric fallout in evergreen forests was modeled. • The model was tested using observations from Chernobyl and Fukushima accidents. • Model predictions of canopy interception and depuration agree with measurements. • Unexpectedly high contribution of litterfall for the

  15. Within-twig leaf distribution patterns differ among plant life-forms in a subtropical Chinese forest.

    Science.gov (United States)

    Meng, Fengqun; Cao, Rui; Yang, Dongmei; Niklas, Karl J; Sun, Shucun

    2013-07-01

    In theory, plants can alter the distribution of leaves along the lengths of their twigs (i.e., within-twig leaf distribution patterns) to optimize light interception in the context of the architectures of their leaves, branches and canopies. We hypothesized that (i) among canopy tree species sharing similar light environments, deciduous trees will have more evenly spaced within-twig leaf distribution patterns compared with evergreen trees (because deciduous species tend to higher metabolic demands than evergreen species and hence require more light), and that (ii) shade-adapted evergreen species will have more evenly spaced patterns compared with sun-adapted evergreen ones (because shade-adapted species are generally light-limited). We tested these hypotheses by measuring morphological traits (i.e., internode length, leaf area, lamina mass per area, LMA; and leaf and twig inclination angles to the horizontal) and physiological traits (i.e., light-saturated net photosynthetic rates, Amax; light saturation points, LSP; and light compensation points, LCP), and calculated the 'evenness' of within-twig leaf distribution patterns as the coefficient of variation (CV; the higher the CV, the less evenly spaced leaves) of within-twig internode length for 9 deciduous canopy tree species, 15 evergreen canopy tree species, 8 shade-adapted evergreen shrub species and 12 sun-adapted evergreen shrub species in a subtropical broad-leaved rainforest in eastern China. Coefficient of variation was positively correlated with large LMA and large leaf and twig inclination angles, which collectively specify a typical trait combination adaptive to low light interception, as indicated by both ordinary regression and phylogenetic generalized least squares analyses. These relationships were also valid within the evergreen tree species group (which had the largest sample size). Consistent with our hypothesis, in the canopy layer, deciduous species (which were characterized by high LCP, LSP and

  16. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo.

    Science.gov (United States)

    Paoletti, Elena

    2005-04-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol(-1) O3) on stomatal conductance (gs) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state gs compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury gs levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O3 exposure ("memory effect") and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O3 exposure. Nevertheless, measurements of steady-state gs at midday may not account for altered stomatal responses to stressors.

  17. Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest.

    Science.gov (United States)

    Bendix, J; Homeier, J; Cueva, E Ortiz; Emck, P; Breckle, S-W; Richter, M; Beck, E

    2006-07-01

    Flowering and fruiting as phenological events of 12 tree species in an evergreen tropical mountain rain forest in southern Ecuador were examined over a period of 3-4 years. Leaf shedding of two species was observed for 12 months. Parallel to the phenological recordings, meteorological parameters were monitored in detail and related to the flowering and fruiting activity of the trees. In spite of the perhumid climate of that area, a high degree of intra- and inter-specific synchronisation of phenological traits was apparent. With the exception of one species that flowered more or less continuously, two groups of trees could be observed, one of which flowered during the less humid months (September to October) while the second group started to initiate flowers towards the end of that phase and flowered during the heavy rains (April to July). As reflected by correlation coefficients, the all-time series of meteorological parameters showed a distinct seasonality of 8-12 months, apparently following the quasi-periodic oscillation of precipitation and related cloudiness. As revealed by power spectrum analysis and Markov persistence, rainfall and minimum temperature appear to be the only parameters with a periodicity free of long-term variations. The phenological events of most of the plant species showed a similar periodicity of 8-12 months, which followed the annual oscillation of relatively less and more humid periods and thus was in phase or in counter-phase with the oscillations of the meteorological parameters. Periods of unusual cold or dryness, presumably resulting from underlying longer-term trends or oscillations (such as ENSO), affected the homogeneity of quasi-12-month flowering events, fruit maturation and also the production of germinable seeds. Some species show underlying quasi-2-year-oscillations, for example that synchronise with the development of air temperature; others reveal an underlying decrease or increase in flowering activity over the

  18. Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers.

    Science.gov (United States)

    Wong, Christopher Y S; Gamon, John A

    2015-04-01

    The photochemical reflectance index (PRI) reflects diurnal xanthophyll cycle activity and is also influenced by seasonally changing carotenoid : Chl pigment ratios. Both changing pigment pools and xanthophyll cycle activity contribute to photoprotection in evergreen conifers exposed to boreal winters, but they operate over different timescales, and their relative contribution to the PRI signal has often been unclear. To clarify these responses and their contribution to the PRI signal, leaf PRI, pigment composition, temperature and irradiance were monitored over 2 yr for two evergreen conifers (Pinus contorta and Pinus ponderosa) in a boreal climate. PRI was affected by three distinct processes operating over different timescales and exhibiting contrasting spectral responses. Over the 2 yr study period, the greatest change in PRI resulted from seasonally changing carotenoid : Chl pigment ratios, followed by a previously unreported shifting leaf albedo during periods of deep cold. Remarkably, the smallest change was attributable to the xanthophyll cycle. To properly distinguish these three effects, interpretation of PRI must consider temporal context, physiological responses to evolving environmental conditions, and spectral response. Consideration of the separate mechanisms affecting PRI over different timescales could greatly improve efforts to monitor changing photosynthetic activity using optical remote sensing. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  19. Influencia de las especies del dosel en la disponibilidad de recursos y regeneración avanzada en un bosque templado lluvioso del sur de Chile Influence of overstorey species identity on resource availability and variation in composition of advanced regeneration in a temperate rainforest in southern Chile

    Directory of Open Access Journals (Sweden)

    ALFREDO SALDAÑA

    2003-12-01

    advanced regeneration was studied in a temperate rain forest in southern Chile. The forest over storey was dominated by the broadleaved evergreens Laureliopsis philippiana, Aextoxicon punctatum, Eucryphia cordifolia and Nothofagus dombeyi. Availabilities of diffuse light, nitrogen, phosphorous and calcium were measured under these four over storey species, as was nutrient content of leaf litter. Advanced regeneration was sampled in plots beneath each over storey species, and results analyzed by ordination. There were significant differences in light transmission, nutritional content of leaf litter and availability of N-NO3 and P beneath the four species. Nevertheless, all nutrients showed low availability due to low mineralization and high immobilization. Ordination results indicate that the composition of advanced regeneration under N. dombeyi and L. philippiana differed from the composition of regeneration under A. punctatum or E. cordifolia. The ordination suggested that light level explained a large proportion of compositional variation. We propose that species regenerating in the understory differed more in shade tolerance than in nutritional requirements, being the light the most limiting resource in the under story

  20. 76 FR 51367 - China Shipping Container Lines Co., Ltd.; COSCO Container Lines Company Limited; Evergreen Line A...

    Science.gov (United States)

    2011-08-18

    ... FEDERAL MARITIME COMMISSION [Docket No. 11-12] China Shipping Container Lines Co., Ltd.; COSCO Container Lines Company Limited; Evergreen Line A Joint Service Agreement; Hanjin Shipping Co., Ltd... Maritime Commission (Commission) by China Shipping Container Lines Co., Ltd.; COSCO Container Lines Company...

  1. Photosynthetic limitation and mechanisms of photoprotection under drought and recovery of Calotropis procera, an evergreen C3 from arid regions.

    Science.gov (United States)

    Rivas, Rebeca; Frosi, Gabriella; Ramos, Diego G; Pereira, Silvia; Benko-Iseppon, Ana M; Santos, Mauro G

    2017-09-01

    Calotropis procera is a C 3 plant native from arid environmental zones. It is an evergreen, shrubby, non-woody plant with intense photosynthetic metabolism during the dry season. We measured photosynthetic parameters and leaf biochemical traits, such as gas exchange, photochemical parameters, A/C i analysis, organic solutes, and antioxidant enzymes under controlled conditions in potted plants during drought stress, and following recovery conditions to obtain a better insight in the drought stress responses of C. procera. Indeed, different processes contribute to the drought stress resilience of C. procera and to the fast recovery after rehydration. The parameters analyzed showed that C. procera has a high efficiency for energy dissipation. The photosynthetic machinery is protected by a robust antioxidant system and photoprotective mechanisms such as alternative pathways for electrons (photorespiration and day respiration). Under severe drought stress, increased stomatal limitation and decreased biochemical limitation permitted C. procera to maintain maximum rate of Rubisco carboxylation (V c,max ) and photosynthetic rate (A max ). On the other hand, limitation of stomatal or mesophyll CO 2 diffusion did not impair fast recovery, maintaining V c,max , chloroplast CO 2 concentration (C c ) and mesophyll conductance (g m ) unchanged while electron flow used for RuBP carboxylation (J c ) and A max increased. The ability to tolerate drought stress and the fast recovery of this evergreen C 3 species was also due to leaf anti-oxidative stress enzyme activity, and photosynthetic pigments. Thus, these different drought tolerance mechanisms allowed high performance of photosynthetic metabolism by drought stressed plants during the re-watering period. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Carbon allocation to growth and storage in two evergreen species of contrasting successional status.

    Science.gov (United States)

    Piper, Frida I; Sepúlveda, Paulina; Bustos-Salazar, Angela; Zúñiga-Feest, Alejandra

    2017-05-01

    A prevailing hypothesis in forest succession is that shade-tolerant species grow more slowly than shade-intolerant species, across light conditions, because they prioritize carbon (C) allocation to storage. We examined this hypothesis in a confamilial pair of species, including one of the fastest-growing tree species in the world ( Eucalyptus globulus ) and a shade-tolerant, slow-growing species ( Luma apiculata ). Seedlings were subjected to one out of four combinations of light (high vs. low) and initial defoliation (90% defoliated vs. nondefoliated) for four months. Growth, C storage concentration in different organs, leaf shedding, and lateral shoot formation were measured at the end of the experiment. Eucalyptus globulus grew faster than L. apiculata in high light, but not in low light. Both species had lower C storage concentration in low than in high light, but similar C storage concentrations in each light condition. Defoliation had no effect on C storage, except in the case of the old leaves of both species, which showed lower C storage levels in response to defoliation. Across treatments, leaf shedding was 96% higher in E. globulus than in L. apiculata while, in contrast, lateral shoot formation was 87% higher in L. apiculata . In low light, E. globulus prioritized C storage instead of growth, whereas L. apiculata prioritized growth and lateral branching. Our results suggest that shade tolerance depends on efficient light capture rather than C conservation traits. © 2017 Botanical Society of America.

  3. Agrobacterium rhizogenes vs auxinic induction for in vitro rhizogenesis of Prosopis chilensis and Nothofagus alpina.

    Science.gov (United States)

    Caro, Luis A; Santecchia, Natalia; Marinangeli, Pablo A; Curvetto, Néstor R; Hernández, Luis F

    2003-12-01

    The induction and improvement of in vitro rhizogenesis of microshoots of Prosopis chilensis (Mol.) Stuntz and Nothofagus alpina (Poep. et Endl. Oerst.) were compared using Agrobacterium rhizogenes (Ar) versus indole-3-butyric acid (IBA) in the culture media. Microshoots of P. chilensis (1-2 cm length), coming from in vitro grown seedlings, were cultivated in a modified Broadleaved Tree Medium (BTMm) containing half salt concentration of macronutrients and 0.05 mg x L(-1) benzilaminopurine (BAP). After 30 days, microshoots with 2-4 leaves were selected and cultured in BTMm-agar in presence or abscense of Ar and in combination with IBA. For N. alpina, the apical shoots with the first 2 true leaves, from 5 weeks old seedlings, were cultured in the abovementioned medium, but with 0.15 mg x L(-1) of BAP. After 2 months, microshoots with 2-3 leaves were selected and cultured in BTMm-agar, supplemented with 5 mg x L(-1) IBA or in liquid BTMm on perlite and, in the presence or absence of A. rhizogenes (Ar) and in combination with 3 mg x L(-1) IBA. Rooting in P. chilensis reached 100.0% when Ar infection was produced in the presence of IBA, increasing both, the number and dry weight of roots. In N. alpina, 90.0% of rooting efficiency was obtained when Ar infection was produced in liquid culture and in the absence of auxin.

  4. Phytochemistry and Pharmacology of Berberis Species

    Science.gov (United States)

    Mokhber-Dezfuli, Najmeh; Saeidnia, Soodabeh; Gohari, Ahmad Reza; Kurepaz-Mahmoodabadi, Mahdieh

    2014-01-01

    The genus Berberis (Berberidaceae) includes about 500 species worldwide, some of which are widely cultivated in the north-eastern regions of Iran. This genus consists of spiny deciduous evergreen shrubs, characterized by yellow wood and flowers. The cultivation of seedless barberry in South Khorasan goes back to two hundred years ago. Medicinal properties for all parts of these plants have been reported, including: Antimicrobial, antiemetic, antipyretic, antioxidant, anti-inflammatory, anti-arrhythmic, sedative, anti-cholinergic, cholagogic, anti-leishmaniasis, and anti-malaria. The main compounds found in various species of Berberis, are berberine and berbamine. Phytochemical analysis of various species of this genus revealed the presence of alkaloids, tannins, phenolic compounds, sterols and triterpenes. Although there are some review articles on Berberis vulgaris (as the most applied species), there is no review on the phytochemical and pharmacological activities of other well-known species of the genus Berberis. For this reason, the present review mainly focused on the diverse secondary metabolites of various species of this genus and the considerable pharmacological and biological activities together with a concise story of the botany and cultivation. PMID:24600191

  5. Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework.

    Science.gov (United States)

    Weng, Ensheng; Farrior, Caroline E; Dybzinski, Ray; Pacala, Stephen W

    2017-06-01

    Earth system models are incorporating plant trait diversity into their land components to better predict vegetation dynamics in a changing climate. However, extant plant trait distributions will not allow extrapolations to novel community assemblages in future climates, which will require a mechanistic understanding of the trade-offs that determine trait diversity. In this study, we show how physiological trade-offs involving leaf mass per unit area (LMA), leaf lifespan, leaf nitrogen, and leaf respiration may explain the distribution patterns of evergreen and deciduous trees in the temperate and boreal zones based on (1) an evolutionary analysis of a simple mathematical model and (2) simulation experiments of an individual-based dynamic vegetation model (i.e., LM3-PPA). The evolutionary analysis shows that these leaf traits set up a trade-off between carbon- and nitrogen-use efficiency at the scale of individual trees and therefore determine competitively dominant leaf strategies. As soil nitrogen availability increases, the dominant leaf strategy switches from one that is high in nitrogen-use efficiency to one that is high in carbon-use efficiency or, equivalently, from high-LMA/long-lived leaves (i.e., evergreen) to low-LMA/short-lived leaves (i.e., deciduous). In a region of intermediate soil nitrogen availability, the dominant leaf strategy may be either deciduous or evergreen depending on the initial conditions of plant trait abundance (i.e., founder controlled) due to feedbacks of leaf traits on soil nitrogen mineralization through litter quality. Simulated successional patterns by LM3-PPA from the leaf physiological trade-offs are consistent with observed successional dynamics of evergreen and deciduous forests at three sites spanning the temperate to boreal zones. © 2016 John Wiley & Sons Ltd.

  6. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo

    Energy Technology Data Exchange (ETDEWEB)

    Paoletti, Elena [Istituto Protezione Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano, I-50019 Sesto Fiorentino (Italy)]. E-mail: e.paoletti@ipp.cnr.it

    2005-04-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol{sup -1} O{sub 3}) on stomatal conductance (g{sub s}) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state g{sub s} compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury g{sub s} levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O{sub 3} exposure ('memory effect') and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O{sub 3} exposure. Nevertheless, measurements of steady-state g{sub s} at midday may not account for altered stomatal responses to stressors. - In response to ozone exposure, stomata were slower in closing rather than in opening.

  7. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo

    International Nuclear Information System (INIS)

    Paoletti, Elena

    2005-01-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol -1 O 3 ) on stomatal conductance (g s ) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state g s compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury g s levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O 3 exposure ('memory effect') and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O 3 exposure. Nevertheless, measurements of steady-state g s at midday may not account for altered stomatal responses to stressors. - In response to ozone exposure, stomata were slower in closing rather than in opening

  8. 78 FR 69932 - Tedesco Family ESB Trust, et al.-Purchase of Certain Assets and Membership Interests-Evergreen...

    Science.gov (United States)

    2013-11-21

    ... Trails, Inc. d/b/a Horizon Coach Lines, et al. AGENCY: Surface Transportation Board, DOT. ACTION: Notice... Franmar's purchase of certain motor coach and non- motor coach assets of Evergreen Trails, Inc. d/b/a... (Family Trust), on behalf of Franmar Leasing, Inc. (Franmar), together with the Francis Tedesco Revocable...

  9. Micro-environmental changes induced by shape and size of forest openings: effects on Austrocedrus chilensis and Nothofagus dombeyi seedlings performance in a Pinus contorta plantation of Patagonia, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Pafundi, L.; Urretavizcaya, M.F.; Defosse, G.E.

    2016-07-01

    Aim of the study: to analyze, within a Pinus contorta plantation, the effects of artificially created small rectangular and small medium circular canopy gaps on: i) photosynthetic active radiation (PAR), and soil temperature and moisture, and ii) survival and growth of planted Austrocedrus chilensis and Nothofagus dombeyi seedlings, species which formerly composed the natural forest of the area. Study area: A 2 ha stand of a Pinus contorta stand in Los Alerces National Park, Argentina (42°43’S, 71°43’W, 490 m.a.s.l.). Material and methods: The Pinus contorta stand was 25 yr old, 22 m height and 26 cm DBH, presenting 1000 trees ha-1 of density and 53 m2 ha-1 of basal area. In 2009, rectangular and circular gaps were created within the stand and then seedlings were planted. During two growing seasons (2010-2011 and 2011-2012), PAR, soil temperature and moisture were measured in gaps and understory (control), and seedling survival and growth in gaps. Main results: During both seasons, soil temperature did not differ among gaps and control, whereas PAR and soil moisture were lower in control than in gaps. Seedling survival was high in all gaps regardless of species and season. Seedlings showed higher diameter growth in rectangular than in circular gaps. Research highlights: Austrocedrus chilensis and N. dombeyi seedlings survival is high and their growth slightly affected, when planted in differently-sized canopy gaps within a Pinus contorta plantation in Patagonia. However, other gap sizes and stand densities should be tested before recommending which one shows better results for reconverting monocultures into former native forests. Abbreviations used: PAR (Photosynthetic Active Radiation); DBH (Diameter at Breast Height); INTA (Argentinean Institute of Agricultural Technology); IFONA (Argentinean Forest Institute). (Author)

  10. Constructing seasonal LAI trajectory by data-model fusion for global evergreen needle-leaf forests

    Science.gov (United States)

    Wang, R.; Chen, J.; Mo, G.

    2010-12-01

    For decades, advancements in optical remote sensors made it possible to produce maps of a biophysical parameter--the Leaf Area Index (LAI), which is critically necessary in regional and global modeling of exchanges of carbon, water, energy and other substances, across large areas in a fast way. Quite a few global LAI products have been generated since 2000, e.g. GLOBCARBON (Deng et al., 2006), MODIS Collection 5 (Shabanov et al., 2007), CYCLOPES (Baret et al., 2007), etc. Albeit these progresses, the basic physics behind the technology restrains it from accurate estimation of LAI in winter, especially for northern high-latitude evergreen needle-leaf forests. Underestimation of winter LAI in these regions has been reported in literature (Yang et al., 2000; Cohen et al., 2003; Tian et al., 2004; Weiss et al., 2007; Pisek et al., 2007), and the distortion is usually attributed to the variations of canopy reflectance caused by understory change (Weiss et al., 2007) as well as by the presence of ice and snow on leaves and ground (Cohen, 2003; Tian et al., 2004). Seasonal changes in leaf pigments can also be another reason for low LAI retrieved in winter. Low conifer LAI values in winter retrieved from remote sensing make them unusable for surface energy budget calculations. To avoid these drawbacks of remote sensing approaches, we attempt to reconstruct the seasonal LAI trajectory through model-data fusion. A 1-degree LAI map of global evergreen needle-leaf forests at 10-day interval is produced based on the carbon allocation principle in trees. With net primary productivity (NPP) calculated by the Boreal Ecosystems Productivity Simulator (BEPS) (Chen et al., 1999), carbon allocated to needles is quantitatively evaluated and then can be further transformed into LAI using the specific leaf area (SLA). A leaf-fall scheme is developed to mimic the carbon loss caused by falling needles throughout the year. The seasonally maximum LAI from remote sensing data for each pixel

  11. Plant nutrient acquisition strategies in tundra species: at which soil depth do species take up their nitrogen?

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie

    2016-04-01

    The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients

  12. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    Science.gov (United States)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  13. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees.

    Science.gov (United States)

    Yang, Jiang-Ke; Zhang, Jing-Jing; Yu, Heng-Yu; Cheng, Jian-Wen; Miao, Li-Hong

    2014-02-01

    Cellulolytic bacteria in forest soil provide carbon sources to improve the soil fertility and sustain the nutrient balance of the forest ecological system through the decomposition of cellulosic remains. These bacteria can also be utilized for the biological conversion of biomass into renewable biofuels. In this study, the community compositions and activities of cellulolytic bacteria in the soils of forests planted with broad-leaved deciduous (Chang Qing Garden, CQG) and broad-leaved evergreen (Forest Park, FP) trees in Wuhan, China were resolved through restriction fragment length polymorphism (RFLP) and sequencing analysis of the 16S rRNA gene. All of the isolates exhibited 35 RFLP fingerprint patterns and were clustered into six groups at a similarity level of 50 %. The phylogeny analysis based on the 16S rRNA gene sequence revealed that these RFLP groups could be clustered into three phylogenetic groups and further divided into six subgroups at a higher resolution. Group I consists of isolates from Bacillus cereus, Bacillus subtilis complex (I-A) and from Paenibacillus amylolyticus-related complex (I-B) and exhibited the highest cellulase activity among all of the cellulolytic bacteria isolates. Cluster II consists of isolates belonging to Microbacterium testaceum (II-A), Chryseobacterium indoltheticum (II-B), and Flavobacterium pectinovorum and the related complex (II-C). Cluster III consists of isolates belonging to Pseudomonas putida-related species. The community shift with respect to the plant species and the soil properties was evidenced by the phylogenetic composition of the communities. Groups I-A and I-B, which account for 36.0 % of the cellulolytic communities in the CQG site, are the dominant groups (88.4 %) in the FP site. Alternatively, the ratio of the bacteria belonging to group III (P. putida-related isolates) shifted from 28.0 % in CQG to 4.0 % in FP. The soil nutrient analysis revealed that the CQG site planted with deciduous broad

  14. Foliage efficiency of forest-forming species in the climatic gradients of Eurasia

    Directory of Open Access Journals (Sweden)

    V. A. Usoltsev

    2017-08-01

    Full Text Available The paperis of the scientific area of biogeography and devoted to a new aspect in the study of biological productivity of forest ecosystems on a geographical basis, expressed indirectly by climate parameters, namely, the foliage efficiency that until now is not investigated at the global level. Foliage efficiency is the ratio of net primary production (NPP to foliage biomass and is expressed in relative units. Some features of change of foliage efficiency of vicarious forest-forming species in Eurasian transcontinental gradients are showed for the first time using the voluminous factual material. The set of published biomass and NPP data (t/ha obtained in a number of 2192 plots is compiled. Using multiple regression analysis technique, the statistically significant changes in foliage efficiency values according to two transcontinental gradients, namely by zonal belts and continentality of climate, are stated for each forest-forming species. The species-specificity of age dynamics of stem volume and foliage efficiency is shown. It is monotonically decreased almost for all tree species in the following order: spruce and fir, pine, birch, oak, larch and aspen-poplar. When climate continentality increasing, foliage efficiency values of mature forests is dropping, most intensively in pines, less intensive in deciduous forests and virtually no changes in spruce-fir communities. In zonal gradient from the northern temperate to the subequatorial belt, foliage efficiency of deciduous species decreases, but it of the evergreen spruce and pine increases in the same direction. One of the possible causes of these opposite zonal trends of foliage efficiency in evergreen and deciduous species consists in different conditions of physiological processes in the year cycle, in particular, in year-round assimilates accumulation in the first and seasonal one in the second.

  15. Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia.

    Science.gov (United States)

    Li, Rong; Kraft, Nathan J B; Yu, Haiying; Li, Heng

    2015-12-01

    One of the main goals of conservation biology is to understand the factors shaping variation in biodiversity across the planet. This understanding is critical for conservation planners to be able to develop effective conservation strategies. Although many studies have focused on species richness and the protection of rare and endemic species, less attention has been paid to the protection of the phylogenetic dimension of biodiversity. We explored how phylogenetic diversity, species richness, and phylogenetic community structure vary in seed plant communities along an elevational gradient in a relatively understudied high mountain region, the Dulong Valley, in southeastern Tibet, China. As expected, phylogenetic diversity was well correlated with species richness among the elevational bands and among communities. At the community level, evergreen broad-leaved forests had the highest levels of species richness and phylogenetic diversity. Using null model analyses, we found evidence of nonrandom phylogenetic structure across the region. Evergreen broad-leaved forests were phylogenetically overdispersed, whereas other vegetation types tended to be phylogenetically clustered. We suggest that communities with high species richness or overdispersed phylogenetic structure should be a focus for biodiversity conservation within the Dulong Valley because these areas may help maximize the potential of this flora to respond to future global change. In biodiversity hotspots worldwide, we suggest that the phylogenetic structure of a community may serve as a useful measure of phylogenetic diversity in the context of conservation planning. © 2015 Society for Conservation Biology.

  16. An analysis of the decadal variability of Carbon fluxes in three evergreen European forests through modelling

    Science.gov (United States)

    Delpierre, N.; Dufrêne, E.

    2009-04-01

    With several sites measuring mass and energy turbulent fluxes for more than ten years, the CarboEurope database appears as a valuable resource for addressing the question of the determinism of the interannual variability of carbon (C) and water balances in forests ecosystems. Apart from major climate-driven anomalies during the anomalous 2003 summer and 2007 spring, little is known about the factors driving interannual variability (IAV) of the C balance in forest ecosystems. We used the CASTANEA process-based model to simulate the C and W fluxes and balances of three European evergreen forests for the 2000-2007 period (FRPue Quercus ilex, 44°N; DETha Picea abies, 51°N; FIHyy Pinus sylvestris, 62°N). The model fairly reproduced the day-to-day variability of measured fluxes, accounting for 70-81%, 77-91% and 59-90% of the daily variance of measured NEP, GPP and TER, respectively. However, the model was challenged in representing the IAV of fluxes integrated on an annual time scale. It reproduced ca. 80% of the interannual variance of measured GPP, but no significant relationship could be established between annual measured and modelled NEP or TER. Accordingly, CASTANEA appeared as a suitable tool for disentangling the influence of climate and biological processes on GPP at mutiple time scales. We show that climate and biological processes relative influences on the modelled GPP vary from year to year in European evergreen forests. Water-stress related and phenological processes (i.e. release of the winter thermal constraint on photosynthesis in evergreens) appear as primary drivers for the particular 2003 and 2007 years, respectively, but the relative influence of other climatic factors widely varies for less remarkable years at all sites. We discuss shortcomings of the method, as related to the influence of compensating errors in the simulated fluxes, and assess the causes of the model poor ability to represent the IAV of the annual sums of NEP and TER.

  17. Protected areas: mixed success in conserving East Africa's evergreen forests.

    Science.gov (United States)

    Pfeifer, Marion; Burgess, Neil D; Swetnam, Ruth D; Platts, Philip J; Willcock, Simon; Marchant, Robert

    2012-01-01

    In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and 'leakage' (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL) was estimated at -9.3% (17,167 km(2)), but varied between countries (range: -0.9% to -85.7%; note: no BFL in South Sudan). We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks). Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337), Nature Reserves (six out of 12) and Game Parks (24 out of 26) were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa's forest conservation efforts.

  18. Protected areas: mixed success in conserving East Africa's evergreen forests.

    Directory of Open Access Journals (Sweden)

    Marion Pfeifer

    Full Text Available In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs are intended to conserve habitats and species. Variability in PA effectiveness and 'leakage' (here defined as displacement of deforestation may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL was estimated at -9.3% (17,167 km(2, but varied between countries (range: -0.9% to -85.7%; note: no BFL in South Sudan. We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks. Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337, Nature Reserves (six out of 12 and Game Parks (24 out of 26 were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa's forest conservation efforts.

  19. Physiological and morphological responses to permanent and intermittent waterlogging in seedlings of four evergreen trees of temperate swamp forests.

    Science.gov (United States)

    Zúñiga-Feest, Alejandra; Bustos-Salazar, Angela; Alves, Fernanda; Martinez, Vanessa; Smith-Ramírez, Cecilia

    2017-06-01

    Waterlogging decreases a plant's metabolism, stomatal conductance (gs) and photosynthetic rate (A); however, some evergreen species show acclimation to waterlogging. By studying both the physiological and morphological responses to waterlogging, the objective of this study was to assess the acclimation capacity of four swamp forest species that reside in different microhabitats. We proposed that species (Luma apiculata [D.C.] Burret. and Drimys winteri J.R. et G. Forster.) abundant in seasonally and intermittently waterlogged areas (SIWA) would have a higher acclimation capacity than species abundant in the inner swamp (Blepharocalyx cruckshanksii [H et A.] Mied. and Myrceugenia exsucca [D.C.] Berg.) where permanent waterlogging occurs (PWA); it was expected that the species from SIWA would maintain leaf expansion and gas exchange rates during intermittent waterlogging treatments. Conversely, we expected that PWA species would have higher constitutive waterlogging tolerance, and this would be reflected in the formation of lenticels and adventitious roots. Over the course of 2 months, we subjected seedlings to different waterlogging treatments: (i) permanent (sudden, SW), (ii) intermittent (gradual) or (iii) control (field capacity, C). Survival after waterlogging was high (≥80%) for all species and treatments, and only the growth rate of D. winteri subjected to SW was affected. Drimys winteri plants had low, but constant A and g during both waterlogging treatments. Conversely, L. apiculata had the highest A and g values, and g increased significantly during the first several days of waterlogging. In general, seedlings of all species subjected to waterlogging produced more adventitious roots and fully expanded leaves and had higher specific leaf area (SLA) and stomatal density (StD) than seedlings in the C treatment. From the results gathered here, we partially accept our hypothesis as all species showed high tolerance to waterlogging, maintained growth, and had

  20. Endophytic Fungi of Various Medicinal Plants Collected From Evergreen Forest Baluran National Park and Its Potential as Laboratory Manual for Mycology Course

    Directory of Open Access Journals (Sweden)

    Siti Murdiyah

    2017-03-01

    Full Text Available Endophytic fungi found on a variety of medicinal plants may express particular benefit. These fungi provide an alternative to overcome the progressive microbial resistance and as an effort to combat infectious diseases that became one of the leading causes of mortality. The main objective of this study was to isolate endophytic fungi from leaf samples of five medicinal plants species collected from evergreen forests Baluran National Park and its use as laboratory manual for Micology. Research findings showed there were 3 isolates of endophytic fungi isolated from 2 medicinal plants namely Kesambi (Schleicera oleosa and Ketapang (Terminalia catappa. All three isolates formed sporangiophores as asexual reproductive structures, while the structure of sexual still undiscovered therefore its classification has not been determined. The validity tests also showed that the lab manual is feasible for use with the percentage achievement 85.37% and 88.56%.

  1. Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD

    Science.gov (United States)

    Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.

    2006-12-01

    We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.

  2. Evergreening, patent challenges, and effective market life in pharmaceuticals.

    Science.gov (United States)

    Hemphill, C Scott; Sampat, Bhaven N

    2012-03-01

    Observers worry that generic patent challenges are on the rise and reduce the effective market life of drugs. A related concern is that challenges disproportionately target high-sales drugs, reducing market life for these "blockbusters." To study these questions, we examine new data on generic entry over the past decade. We show that challenges are more common for higher sales drugs. We also demonstrate a slight increase in challenges over this period, and a sharper increase for early challenges. Despite this, effective market life is stable across drug sales categories, and has hardly changed over the decade. To better understand these results, we examine which patents are challenged on each drug, and show that lower quality and later expiring patents disproportionately draw challenges. Overall, this evidence suggests that challenges serve to maintain, not reduce, the historical baseline of effective market life, thereby limiting the effectiveness of "evergreening" by branded firms. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    Science.gov (United States)

    Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott

    2016-01-01

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  4. Aplicación de relaciones de densidad-diámetro y de área potencial aprovechable en bosques de Nothofagus Dombeyi (mirb.) Oerst, como herramientas de planificación silvícola .

    OpenAIRE

    Cruz Johnson, Pablo Christian

    2013-01-01

    Uno de los objetivos de esta tesis de doctorado fue analizar la aplicación de relaciones de densidad ¿ diámetro en bosques de Nothofagus dombeyi (Mirb.) oerst, para la localidad del Río Mirta en la XI Región de Chile, como herramientas de planificación silvícola. El método de análisis consistió en la generación de una muestra de densidad¿diámetro a partir de la que se determinó el índice de densidad máximo (IDmax) a partir del cual se estimaron las máximas densidades que la especie podría alc...

  5. Medicinal uses, chemistry and pharmacology of Dillenia species (Dilleniaceae).

    Science.gov (United States)

    Sabandar, Carla W; Jalil, Juriyati; Ahmat, Norizan; Aladdin, Nor-Ashila

    2017-02-01

    The genus Dillenia is comprised of about 100 species of evergreen and deciduous trees or shrubs of disjunct distribution in the seasonal tropics of Madagascar through South and South East Asia, Malaysia, North Australia, and Fiji. Species from this genus have been widely used in medicinal folklore to treat cancers, wounds, jaundice, fever, cough, diabetes mellitus, and diarrhea as well as hair tonics. The plants of the genus also produce edible fruits and are cultivated as ornamental plants. Flavonoids, triterpenoids, and miscellaneous compounds have been identified in the genus. Their extracts and pure compounds have been reported for their antimicrobial, anti-inflammatory, cytotoxic, antidiabetes, antioxidant, antidiarrheal, and antiprotozoal activities. Mucilage from their fruits is used in drug formulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, as compared with those of the eastern Chinese subtropical regions

    Directory of Open Access Journals (Sweden)

    Tang, C. Q.

    2015-12-01

    Full Text Available This paper analyzes the geographic distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, and compares with other subtropical regions in the east of China in terms of forest types, pertinent species, and spatial distribution along latitudinal, longitudinal and altitudinal gradients. In general, for both the western and the eastern subtropical regions, the evergreen broad-leaved forests are dominated by species of Castanopsis, Lithocarpus, Cyclobalanopsis (Fagaceae, Machilus, Cinnamomum (Lauraceae, Schima (Theaceae, Manglietia, and Michelia, (Magnoliaceae, while in southwestern China there are more diverse forest types including semi-humid, monsoon, mid-montane moist and humid evergreen broad-leaved forests, but only monsoon and humid forests in the east. The Yunnan area has more varied species of Lithocarpus or Cyclobalanopsis or Castanopsis as dominants than does eastern China, where the chief dominant genus is Castanopsis. The upper limits of the evergreen broad-leaved forests are mainly 2400–2800 m in western Yunnan and western Sichuan, much higher than in eastern China (600–1500, but 2500 m in Taiwan. Also discussed are the environmental effects on plant diversity of the evergreen broad-leaved forest ecosystems exemplified by Yunnan and Taiwan.En este trabajo se analiza los patrones de distribución geográfica de los bosques subtropicales perennifolios de hoja ancha del suroeste de china, y se comparan con los de otras regiones subtropicales del este de China en términos de tipología de bosque, especies relevantes, y distribución espacial a lo largo de un gradiente latitudinal, longitudinal y altitudinal. De manera general, los bosques perennifolios de hoja ancha de la regiones subtropicales tanto orientales como occidentales presentan dominancia de especies de Castanopsis, Lithocarpus, Cyclobalanopsis (Fagaceae, Machilus, Cinnamomum (Lauraceae, Schima (Theaceae, Manglietia y Michelia

  7. Impact of evergreening on patients and health insurance: a meta analysis and reimbursement cost analysis of citalopram/escitalopram antidepressants.

    Science.gov (United States)

    Alkhafaji, Ali A; Trinquart, Ludovic; Baron, Gabriel; Desvarieux, Moïse; Ravaud, Philippe

    2012-11-20

    "Evergreening" refers to the numerous strategies whereby owners of pharmaceutical products use patent laws and minor drug modifications to extend their monopoly privileges on the drug. We aimed to evaluate the impact of evergreening through the case study of the antidepressant citalopram and its chiral switch form escitalopram by evaluating treatment efficacy and acceptability for patients, as well as health insurance costs for society. To assess efficacy and acceptability, we performed meta-analyses for efficacy and acceptability. We compared direct evidence (meta-analysis of results of head-to-head trials) and indirect evidence (adjusted indirect comparison of results of placebo-controlled trials). To assess health insurance costs, we analyzed individual reimbursement data from a representative sample of the French National Health Insurance Inter-regime Information System (SNIIR-AM) from 2003 to 2010, which allowed for projecting these results to the whole SNIIR-AM population (53 million people). In the meta-analysis of seven head-to-head trials (2,174 patients), efficacy was significantly better for escitalopram than citalopram (combined odds ratio (OR) 1.60 (95% confidence interval 1.05 to 2.46)). However, for the adjusted indirect comparison of 10 citalopram and 12 escitalopram placebo-controlled trials, 2,984 and 3,777 patients respectively, efficacy was similar for the two drug forms (combined indirect OR 1.03 (0.82 to 1.30)). Because of the discrepancy, we could not combine direct and indirect data (test of inconsistency, P = 0.07). A similar discrepancy was found for treatment acceptability. The overall reimbursement cost burden for the citalopram, escitalopram and its generic forms was 120.6 million Euros in 2010, with 96.8 million Euros for escitalopram. The clinical benefit of escitalopram versus citalopram remains uncertain. In our case of evergreening, escitalopram represented a substantially high proportion of the overall reimbursement cost burden as

  8. Protected Areas: Mixed Success in Conserving East Africa’s Evergreen Forests

    Science.gov (United States)

    Pfeifer, Marion; Burgess, Neil D.; Swetnam, Ruth D.; Platts, Philip J.; Willcock, Simon; Marchant, Robert

    2012-01-01

    In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and ‘leakage’ (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL) was estimated at −9.3% (17,167 km2), but varied between countries (range: −0.9% to −85.7%; note: no BFL in South Sudan). We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks). Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337), Nature Reserves (six out of 12) and Game Parks (24 out of 26) were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa’s forest conservation efforts. PMID:22768074

  9. Monitoring phenology of photosynthesis in temperate evergreen and mixed deciduous forests using the normalized difference vegetation index (NDVI) and the photochemical reflectance index (PRI) at leaf and canopy scales

    Science.gov (United States)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2016-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which determines their phenology of high photosynthetic activity in the growing season and downregulation during the winter. Monitoring the timing of the transition between summer activity and winter downregulation in evergreens is difficult since this is a largely invisible process, unlike in deciduous trees that have a visible budding and a sequence of leaf unfolding in the spring and leaf abscission in the fall. The light-use efficiency (LUE) model estimates gross primary productivity (GPP) and may be parameterized using remotely sensed vegetation indices. Using spectral reflectance data, we derived the normalized difference vegetation index (NDVI), a measure of leaf "greenness", and the photochemical reflectance index (PRI), a proxy for chlorophyll:carotenoid ratios which is related to photosynthetic activity. To better understand the relationship between these vegetation indices and photosynthetic activity and to contrast this relationship between plant functional types, the phenology of NDVI, PRI and photosynthesis was monitored in an evergreen forest and a mixed deciduous forest at the leaf and canopy scale. Our data indicates that the LUE model can be parameterized by NDVI and PRI to track forest phenology. Differences in the sensitivity of PRI and NDVI will be discussed. These findings have implications to address the phenology of evergreen conifers by using PRI to complement NDVI in the LUE model, potentially improving model productivity estimates in northern hemisphere forests, that are dominated by conifers.

  10. Biogeochemical and Ecomorphological Niche Segregation of Mediterranean Woody Species along a Local Gradient

    Directory of Open Access Journals (Sweden)

    Enrique G. de la Riva

    2017-07-01

    Full Text Available According with niche theory the species are specialized in different ecological niches, being able to coexist as result of a differential use of resources. In this context, the biogeochemical niche hypothesis proposes that species have an optimal elemental composition which results from the link between the chemical and morphological traits for the optimum plant functioning. Thus, and attending to the limiting similarity concept, different elemental composition and plant structure among co-occurring species may reduce competition, promoting different functional niches. Different functional habits associated with leaf life-span or growth forms are associated with different strategies for resource uptake, which could promote niche partitioning. In the present study, based on the biogeochemical niche concept and the use of resources in different proportions, we have focused on leaf traits (morphological and chemical associated with resource uptake, and explored the niche partitioning among functional habits: leaf life-span (deciduous, evergreen, and semideciduous and growth (tree, shrub, and arborescent-shrub. To this end, we have quantified the hypervolume of the leaf functional trait space (both structure and chemical composition in a sample of 45 Mediterranean woody species from Sierra Morena Mountains (Spain growing along a local soil resource gradient. Our results show consistent variation in functional space for woody communities distributed along the environmental gradient. Thus, communities dominated by deciduous trees with faster growth and a predominant acquisitive strategy were characteristic of bottom forests and showed highest leaf biogeochemical space. While semideciduous shrubs and evergreen (arborescent, trees species, characterized by a conservative strategy, dominated ridge forests and showed smaller functional space. In addition, within each topographical zone or environment type, the foliar biogeochemical niche partitioning

  11. Biogeochemical and Ecomorphological Niche Segregation of Mediterranean Woody Species along a Local Gradient.

    Science.gov (United States)

    de la Riva, Enrique G; Marañón, Teodoro; Violle, Cyrille; Villar, Rafael; Pérez-Ramos, Ignacio M

    2017-01-01

    According with niche theory the species are specialized in different ecological niches, being able to coexist as result of a differential use of resources. In this context, the biogeochemical niche hypothesis proposes that species have an optimal elemental composition which results from the link between the chemical and morphological traits for the optimum plant functioning. Thus, and attending to the limiting similarity concept, different elemental composition and plant structure among co-occurring species may reduce competition, promoting different functional niches. Different functional habits associated with leaf life-span or growth forms are associated with different strategies for resource uptake, which could promote niche partitioning. In the present study, based on the biogeochemical niche concept and the use of resources in different proportions, we have focused on leaf traits (morphological and chemical) associated with resource uptake, and explored the niche partitioning among functional habits: leaf life-span (deciduous, evergreen, and semideciduous) and growth (tree, shrub, and arborescent-shrub). To this end, we have quantified the hypervolume of the leaf functional trait space (both structure and chemical composition) in a sample of 45 Mediterranean woody species from Sierra Morena Mountains (Spain) growing along a local soil resource gradient. Our results show consistent variation in functional space for woody communities distributed along the environmental gradient. Thus, communities dominated by deciduous trees with faster growth and a predominant acquisitive strategy were characteristic of bottom forests and showed highest leaf biogeochemical space. While semideciduous shrubs and evergreen (arborescent, trees) species, characterized by a conservative strategy, dominated ridge forests and showed smaller functional space. In addition, within each topographical zone or environment type, the foliar biogeochemical niche partitioning would underlie the

  12. Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs

    DEFF Research Database (Denmark)

    Hansen, Anja Hoff; Jonasson, Sven Evert; Michelsen, Anders

    2006-01-01

    -arctic, alpine ecosystem, we investigated the effects on carbon based secondary compounds (CBSC) and nitrogen in one dominant deciduous dwarf shrub, Salix herbacea × polaris and two dominant evergreen dwarf shrubs, Cassiope tetragona and Vaccinium vitis-idaea throughout one growing season. The main aims were...

  13. Potential biotechnological application of mycorrhizas and yeasts associated with Nathofagus nervosa (Rauli)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, N.; Fontenla, S.; Gallo, L.; Marchelli, P.

    2009-07-01

    Nothofagus nervosa is an ecologically and economically important species of south American temperate forests. In Argentina, it has a reduced natural distribution area due to over exploitation, overgrazing and forest fires. This critical situation led to the implementation of conservation and domestication programs. (Author)

  14. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species.

    Science.gov (United States)

    Zhao, Yan-Tao; Ali, Arshad; Yan, En-Rong

    2017-02-01

    The plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China. Principal component analysis (PCA) was employed separately to construct the leaf (LES), wood (WES) and whole-plant (WPES) economics spectra. Leaf and wood traits are highly intra- and intercorrelated, thus defining not only the LES and WES, but also a WPES. Multi-trait variations in PCAs revealed that the traits which were representative of the acquisitive strategy, i.e., cheap tissue investment and rapid returns on that investment, were clustered at one end, while traits that represented the conservative strategy, i.e., expensive tissue investment and slower returns, were clustered at other end in each of the axes of the leaf and wood syndromes (PC1-axis) and the plant height strategy (PC2-axis). The local WPES, LES and WES were tightly correlated with each other. Evergreens shaped the conservative side, while deciduous species structured the acquisitive side of the WPES and LES. With respect to plant height strategies, trees formulated the acquisitive side and shrub species made up the conservative side of the WPES, LES and WES. In conclusion, our results suggested that the LES and WES were coordinated to a WPES for subtropical species. The finding of this local spectrum of plant form and function would be beneficial for modeling nutrient fluxes and species compositions in the changing climate, but also for understanding species strategies in an evolutionary context. © The Author 2016. Published by Oxford University Press. All rights

  15. Species delimitation in congenerics of Genus Daemonorops from India using DNA barcodes

    Directory of Open Access Journals (Sweden)

    Senthilkumar Umapathy

    2014-10-01

    Full Text Available Daemonorops is one of the largest genus of palms, widely distributed in tropical evergreen forests of South and Southeast Asia and especially abundant in peninsular Malaysia. It shares the phylogenetic clade with genus Calamus, but distinctly characterized by the presence of the prophyllar bracts in subtribe Calaminae of family Arecaceae (Palmae. However, the species of Daemonorops are highly variable and homoplasious in their morphological characters. Indian Daemonorops has six species, of which five distributed in Andaman group of islands and one in Indo-China. The study mainly focused on the species of Indo-Myanmar (Andaman Islands because they have showed uncertainty in their stand as distinct species. Hence it was attempted to test the species delimitation in congenerics using phylogenetic and character analysis of the nuclear genes. The study indicates three species of both Griffith and Beccari (D. jenkinsiana, D. manii, and D. kurziana in India, and another three species of Renuka et al. (D. wrightmyoensis, D. aurea, and D. rarispinosa from Andaman group of islands could be the variabilities of D. manii that is colonized throughout the archipelago.

  16. Impact of evergreening on patients and health insurance: a meta analysis and reimbursement cost analysis of citalopram/escitalopram antidepressants

    Directory of Open Access Journals (Sweden)

    Alkhafaji Ali A

    2012-11-01

    Full Text Available Abstract Background "Evergreening" refers to the numerous strategies whereby owners of pharmaceutical products use patent laws and minor drug modifications to extend their monopoly privileges on the drug. We aimed to evaluate the impact of evergreening through the case study of the antidepressant citalopram and its chiral switch form escitalopram by evaluating treatment efficacy and acceptability for patients, as well as health insurance costs for society. Methods To assess efficacy and acceptability, we performed meta-analyses for efficacy and acceptability. We compared direct evidence (meta-analysis of results of head-to-head trials and indirect evidence (adjusted indirect comparison of results of placebo-controlled trials. To assess health insurance costs, we analyzed individual reimbursement data from a representative sample of the French National Health Insurance Inter-regime Information System (SNIIR-AM from 2003 to 2010, which allowed for projecting these results to the whole SNIIR-AM population (53 million people. Results In the meta-analysis of seven head-to-head trials (2,174 patients, efficacy was significantly better for escitalopram than citalopram (combined odds ratio (OR 1.60 (95% confidence interval 1.05 to 2.46. However, for the adjusted indirect comparison of 10 citalopram and 12 escitalopram placebo-controlled trials, 2,984 and 3,777 patients respectively, efficacy was similar for the two drug forms (combined indirect OR 1.03 (0.82 to 1.30. Because of the discrepancy, we could not combine direct and indirect data (test of inconsistency, P = 0.07. A similar discrepancy was found for treatment acceptability. The overall reimbursement cost burden for the citalopram, escitalopram and its generic forms was 120.6 million Euros in 2010, with 96.8 million Euros for escitalopram. Conclusions The clinical benefit of escitalopram versus citalopram remains uncertain. In our case of evergreening, escitalopram represented a substantially

  17. Floristic composition of the dry tropical forest in biological reserve (sanctuary "Los Besotes" and phenology of the dominant arboreal species (Valledupar, Cesar, Colombia

    Directory of Open Access Journals (Sweden)

    Mary Lee Berdugo Lattke

    2015-01-01

    Full Text Available Based on the floristic composition and structural aspects, the formation tropical dry forest of the reserve "Los Besotes" (Valledupar, Cesar; 248 y 1046m of altitude was characterized. In 35 individuals from nine dominant tree species in two forest types, the phenological characteristics were assessed. Seven monitoring were performed along one year according to the scheme of distribution of rainfall. The leaf fall in the forests of Myrcianthes aff. fragrans and Brosimum alicastrum did not exceed 20% regardless of the climatic period (drought or rainy seasons. In others dominant understory species the leaf fall was less than 40%, thus species of the canopy are classified as evergreen while those of the understory as semideciduous. Blooming peaked during the dry season while fruit production peaked during the two rainy seasons. In the forest ofBursera simaruba and Pterocarpus acapulcensis the leaf fall exceeded 60% in the dry season, while in the rainy season was only 30%. The leaf fall increased to 60% in others dominant understory species. Both canopy as well as understory species are deciduous. Blooming was observed during the dry season (December to March, and July, but it is also likely to occur in October; fruit production was observed at the end of the rainy season. In the tropical dry forest formation evergreen plant communities with low values of leaf fall (40% and deciduous communities with values greater than 60% are recognized.

  18. The Gondwanan connection - Southern temperate Amanita lineages and the description of the first sequestrate species from the Americas.

    Science.gov (United States)

    Truong, Camille; Sánchez-Ramírez, Santiago; Kuhar, Francisco; Kaplan, Zachary; Smith, Matthew E

    2017-08-01

    Amanita is a diverse and cosmopolitan genus of ectomycorrhizal fungi. We describe Amanita nouhrae sp. nov., a new hypogeous ('truffle-like') species associated with Nothofagus antarctica in northern Patagonia. This constitutes the first report of a sequestrate Amanita from the Americas. Thick-walled basidiospores ornamented on the interior spore wall ('crassospores') were observed consistently in A. nouhrae and its sister epigeous taxon Amanita morenoi, a rarely collected but apparently common species from northern Patagonia that has sometimes been misidentified as the Australian taxon Amanita umbrinella. Nuclear 18S and 28S ribosomal DNA and mitochondrial 16S and 26S DNA placed these two species in a southern temperate clade within subgenus Amanita, together with other South American and Australian species. Based on a dated genus-level phylogeny, we estimate that the southern temperate clade may have originated near the Eocene/Oligocene boundary (ca. 35 Ma ± 10 Ma). This date suggests a broadly distributed ancestor in the Southern Hemisphere, which probably diversified as a result of continental drift, as well as the initiation of the Antarctic glaciation. By comparison, we show that this clade follows an exceptional biogeographic pattern within a genus otherwise seemingly dominated by Northern Hemisphere dispersal. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. New host-plant records for the defoliator Ormiscodes amphimone (Fabricius) (Lepidoptera: Saturniidae).

    Science.gov (United States)

    Paritsis, Juan; Elgueta, Mario; Quintero, Carolina; Veblen, Thomas T

    2010-01-01

    Ormiscodes amphimone (Fabricius) is a phytophagous moth species known to severely defoliate woody species in Chile and Argentina. Here we document new records of O. amphimonehost associations emphasizing the role of Nothofagus pumilio as its primary host in our study area. This new record for Argentina is highly significant given the economic importance of N. pumilio as a timber resource and the potential of O. amphimone to generate extensive outbreaks.

  20. New host-plant records for the defoliator Ormiscodes amphimone (Fabricius) (Lepidoptera: Saturniidae)

    OpenAIRE

    Paritsis, Juan; Elgueta, Mario; Quintero, Carolina; Veblen, Thomas T

    2010-01-01

    Ormiscodes amphimone (Fabricius) is a phytophagous moth species known to severely defoliate woody species in Chile and Argentina. Here we document new records of O. amphimonehost associations emphasizing the role of Nothofagus pumilio as its primary host in our study area. This new record for Argentina is highly significant given the economic importance of N. pumilio as a timber resource and the potential of O. amphimone to generate extensive outbreaks.

  1. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.

  2. NUEVA LOCALIDAD GEOGRAFICA PARA BERBERIS NEGERIANA TISCHLER (BERBERIDACEAE) EN LA PROVINCIA DE ARAUCO, REGION DEL BIO-BIO, CHILE

    OpenAIRE

    Gómez, Persy; Belov, Michail; San Martín, José

    2008-01-01

    This note reports the finding of a population of Berberis negeriana Tischler (Berberidaceae), in the province of Arauco, Bío-Bío Region (37°42'17" S y 73°19'43" W) in the center south of Chile. The population was found between Nothofagus obliqua and species of the Valdiviano Forest.

  3. [A comparative study on soil fauna in native secondary evergreen broad-leaved forest and Chinese fir plantation forests in subtropics].

    Science.gov (United States)

    Yan, Shaokui; Wang, Silong; Hu, Yalin; Gao, Hong; Zhang, Xiuyong

    2004-10-01

    In this study, we investigated the response of soil animal communities to the replacement of native secondary forest by Chinese fir plantation forest and successive rotation of Chinese fir in subtropics. Three adjacent forest stands, i.e., native secondary evergreen broad-leaved forest stand (control) and Chinese fir plantation stands of first (20 yr) and second (20 yr) rotations were selected for the comparison of soil fauna. All animals were extracted from the floor litter and 0-15 cm soil layer of the stands in Summer, 2003 by using Tullgren method, wet funnel method and hand-sorting method. Compared to two Chinese fir plantation forests, the native secondary evergreen broad-leaved forest had a higher abundance and a higher taxonomic diversity of animals in soil and litter, but there were no significant differences in the biomass and productivity of soil fauna between all study stands. The abundance or diversity did not differ significantly between the first rotation and second rotation stands, too. The results supported that vegetation cover might be one of the main forces driving the development of soil animal communities, and the effect of successive rotation of Chinese fir on the development of soil fauna was a slow-running process.

  4. Estimación del índice de sitio en rodales de Nothofagus dombeyi a través de herramientas de teledetección espacial

    Directory of Open Access Journals (Sweden)

    C. Esse

    2013-12-01

    Full Text Available La estimación del índice de sitio y la calidad del sitio constituyen herramientas básicas en la gestión de los ecosistemas forestales y la práctica de la silvicultura. El estudio de la distribución espacial y la dinámica temporal de índice de sitio y la calidad del sitio de los ecosistemas forestales aún carece de los avances tecnológicos. Este estudio propone la integración de las herramientas de teledetección para la estimación de la productividad forestal para áreas remotas. Se evaluó el potencial de aplicación de la metodología en amplias regiones y los bosques con la evaluación de la exactitud. Los resultados muestran que el índice del sitio de los bosques secundarios de Nothofagus dombeyi (Mirb. Oerst., están en correlación lineal con los índices de vegetación normalizada (NDVI, índice de diferencia de vegetación ajustado (TNDVI, banda Infrarroja pura de la imagen y transformación de componentes principales. Este estudio demostró que este enfoque puede ser utilizado en la estimación de la productividad de bosques secundarios en diferentes ecosistemas forestales.

  5. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber).

    Science.gov (United States)

    Vaz, M; Pereira, J S; Gazarini, L C; David, T S; David, J S; Rodrigues, A; Maroco, J; Chaves, M M

    2010-08-01

    Responses of leaf water relations and photosynthesis to summer drought and autumn rewetting were studied in two evergreen Mediterranean oak species, Quercus ilex spp. rotundifolia and Quercus suber. The predawn leaf water potential (Ψ(lPD)), stomatal conductance (gs) and photosynthetic rate (A) at ambient conditions were measured seasonally over a 3-year period. We also measured the photosynthetic response to light and to intercellular CO₂ (A/PPFD and A/C(i) response curves) under water stress (summer) and after recovery due to autumn rainfall. Photosynthetic parameters, Vc(max), J(max) and triose phosphate utilization (TPU) rate, were estimated using the Farquhar model. RuBisCo activity, leaf chlorophyll, leaf nitrogen concentration and leaf carbohydrate concentration were also measured. All measurements were performed in the spring leaves of the current year. In both species, the predawn leaf water potential, stomatal conductance and photosynthetic rate peaked in spring, progressively declined throughout the summer and recovered upon autumn rainfall. During the drought period, Q. ilex maintained a higher predawn leaf water potential and stomatal conductance than Q. suber. During this period, we found that photosynthesis was not only limited by stomatal closure, but was also downregulated as a consequence of a decrease in the maximum carboxylation rate (Vc(max)) and the light-saturated rate of photosynthetic electron transport (J(max)) in both species. The Vc(max) and J(max) increased after the first autumnal rains and this increase was related to RuBisCo activity, leaf nitrogen concentration and chlorophyll concentration. In addition, an increase in the TPU rate and in soluble leaf sugar concentration was observed in this period. The results obtained indicate a high resilience of the photosynthetic apparatus to summer drought as well as good recovery in the following autumn rains of these evergreen oak species.

  6. Life-history traits in an evergreen Mediterranean oak respond differentially to previous experimental environments

    Directory of Open Access Journals (Sweden)

    J. M. Rey Benayas

    2008-06-01

    Full Text Available Living organisms respond both to current and previous environments, which can have important consequences on population dynamics. However, there is little experimental evidence based on long-term field studies of the effects of previous environments on the performance of individuals. We tested the hypothesis that trees that establish under different environmental conditions perform differently under similar post-establishment conditions. We used the slow-growing, evergreen Mediterranean oak Quercus ilex subsp. rotundifolia as target species. We analyzed the effects of previous environments, competition effects and tradeoffs among life-history traits (survival, growth, and reproduction. We enhanced seedling establishment for three years by reducing abiotic environmental harshness by means of summer irrigation and artificial shading in 12 experimental plots, while four plots remained as controls. Then these treatments were interrupted for ten years. Seedlings under ameliorated environmental conditions survived and grew faster during early establishment. During the post-management period, previous treatments 1 did not have any effect on survival, 2 experienced a slower above-ground growth, 3 decreased root biomass as indicated from reflectivity of Ground Penetration Radar, 4 increased acorn production mostly through a greater canopy volume and 5 increased acorn production effort. The trees exhibited a combination of effects related to acclimation for coping with abiotic stress and effects of intra-specific competition. In accordance with our hypothesis, tree performance overall depended on previous environmental conditions, and the response was different for different life-history traits. We recommend early management because it increased plot cover, shortened the time to attain sexual maturity and increased the amount of acorn production. Plots such as those assessed in this study may act as sources of propagules in deforested

  7. Endogenous Quantification of Abscisic Acid and Indole-3-Acetic Acid in Somatic and Zigotic Embryos of Nothofagus alpina (Poepp. & Endl. Oerst Cuantificación Endógena de Ácido Abscísico y Ácido Indol-3 Acético en Embriones Somáticos y Cigóticos de Nothofagus alpina (Poepp. & Endl. Oerst

    Directory of Open Access Journals (Sweden)

    Pricila Cartes Riquelme

    2011-12-01

    Full Text Available Abscisic acid (ABA and indole-3-acetic acid (IAA participate in the propagation of plants by somatic embryogenesis, causing polar structural differentiation of the embryo. The goal of the assay was to compare endogenous levels of ABA and IAA between somatic embryos (SE and zygotic embryos (ZE of Nothofagus alpina (Poepp. & Endl. Oerst. In this study, a somatic embryo maturation assay involving the addition of varying concentrations of exogenous ABA was performed on cotyledonary-stage of N. alpina. Furthermore, the endogenous levels of ABA and IAA were quantified in the immature ZE, the mature ZE, and the embryonic axis of a mature embryo of N. alpina. The current study utilized high performance liquid chromatography (HPLC for quantification. The maturation treatments performed did not present significant differences in the endogenous ABA levels in SE. However, significant differences did exist in levels of ABA and IAA between SE submitted to the different maturation treatments and mature ZE of N. alpina. The application of exogenous ABA to the culture medium increased endogenous ABA levels, therefore, increasing the number of germinated somatic embryos. Thus, the plant conversion process was also successfully completed in somatic embryos of N. alpina.El ácido abscísico (ABA y el ácido indol 3 acético (IAA participan en el proceso de propagación de plantas mediante embriogénesis somática, ya que permiten la diferenciación de la estructura polar del embrión, órganos y regiones meristemáticas de éste. En este estudio se llevó a cabo un ensayo de maduración de embriones somáticos en estado cotiledonar con la adición de diferentes concentraciones de ABA exógeno, además se determinaron niveles endógenos entre ZE inmaduro, ZE maduro, y eje embrionario aislado desde el embrión maduro para luego comparar niveles endógenos de ABA e IAA en embriones somáticos (SE y cigóticos (ZE de raulí, Nothofagus alpina (Poepp. & Endl. Oerst. La

  8. Impacts of invading alien plant species on water flows at stand and catchment scales

    Science.gov (United States)

    Le Maitre, D. C.; Gush, M. B.; Dzikiti, S.

    2015-01-01

    There have been many studies of the diverse impacts of invasions by alien plants but few have assessed impacts on water resources. We reviewed the information on the impacts of invasions on surface runoff and groundwater resources at stand to catchment scales and covering a full annual cycle. Most of the research is South African so the emphasis is on South Africa's major invaders with data from commercial forest plantations where relevant. Catchment studies worldwide have shown that changes in vegetation structure and the physiology of the dominant plant species result in changes in surface runoff and groundwater discharge, whether they involve native or alien plant species. Where there is little change in vegetation structure [e.g. leaf area (index), height, rooting depth and seasonality] the effects of invasions generally are small or undetectable. In South Africa, the most important woody invaders typically are taller and deeper rooted than the native species. The impacts of changes in evaporation (and thus runoff) in dryland settings are constrained by water availability to the plants and, thus, by rainfall. Where the dryland invaders are evergreen and the native vegetation (grass) is seasonal, the increases can reach 300–400 mm/year. Where the native vegetation is evergreen (shrublands) the increases are ∼200–300 mm/year. Where water availability is greater (riparian settings or shallow water tables), invading tree water-use can reach 1.5–2.0 times that of the same species in a dryland setting. So, riparian invasions have a much greater impact per unit area invaded than dryland invasions. The available data are scattered and incomplete, and there are many gaps and issues that must be addressed before a thorough understanding of the impacts at the site scale can be gained and used in extrapolating to watershed scales, and in converting changes in flows to water supply system yields. PMID:25935861

  9. Impacts of invading alien plant species on water flows at stand and catchment scales.

    Science.gov (United States)

    Le Maitre, D C; Gush, M B; Dzikiti, S

    2015-05-01

    There have been many studies of the diverse impacts of invasions by alien plants but few have assessed impacts on water resources. We reviewed the information on the impacts of invasions on surface runoff and groundwater resources at stand to catchment scales and covering a full annual cycle. Most of the research is South African so the emphasis is on South Africa's major invaders with data from commercial forest plantations where relevant. Catchment studies worldwide have shown that changes in vegetation structure and the physiology of the dominant plant species result in changes in surface runoff and groundwater discharge, whether they involve native or alien plant species. Where there is little change in vegetation structure [e.g. leaf area (index), height, rooting depth and seasonality] the effects of invasions generally are small or undetectable. In South Africa, the most important woody invaders typically are taller and deeper rooted than the native species. The impacts of changes in evaporation (and thus runoff) in dryland settings are constrained by water availability to the plants and, thus, by rainfall. Where the dryland invaders are evergreen and the native vegetation (grass) is seasonal, the increases can reach 300-400 mm/year. Where the native vegetation is evergreen (shrublands) the increases are ∼200-300 mm/year. Where water availability is greater (riparian settings or shallow water tables), invading tree water-use can reach 1.5-2.0 times that of the same species in a dryland setting. So, riparian invasions have a much greater impact per unit area invaded than dryland invasions. The available data are scattered and incomplete, and there are many gaps and issues that must be addressed before a thorough understanding of the impacts at the site scale can be gained and used in extrapolating to watershed scales, and in converting changes in flows to water supply system yields. Published by Oxford University Press on behalf of the Annals of Botany

  10. Seedling growth in greenhouse conditions of the forest species Dialium guianense (Aubl. Sandwith

    Directory of Open Access Journals (Sweden)

    Georgina Vargas Simon

    2018-01-01

    Full Text Available Dialium guianense is used for its wood and fruit production, and is a tropical tree species native to evergreen forests. Given the threat these forests face, the purpose of this work was to evaluate the initial growth of the plant under greenhouse conditions, for aiming in the development of propagation programs. Seedlings of the species were transplanted to nursery bags under a completely randomized design and grown for 10 months with an initial population of 200 plants. At the end of the experiment, the shoot and root reached lengths of 32.8 and 28.9 cm, respectively. The average number of composite leaves was 12.3 each with seven leaflets. The average biomass was 2.5 g for the shoot, 1.6 g for roots, and 3.7 g for leaves, with a shoot/root around four. The average relative growth rate (RGR was 15 mg g-1 day-. These characteristics indicate that D. guianense is a late successional species.

  11. Características del establecimiento e historia de vida de Misodendrum punctulatum (Misodendraceae un muérdago de Sudamérica austral Establishment and life history characteristics of the southern South American mistletoe Misodendrum punctulatum (Misodendraceae

    Directory of Open Access Journals (Sweden)

    Norlan Tercero-Bucardo

    2004-09-01

    formation and synchronic embedding of the mistletoe haustorial system within the host xylem, we analyzed age-dependent life history traits and establishment conditions of Misodendrum punctulatum (Misodendraceae infecting two deciduous species of Nothofagus in northern Patagonia, Argentina. Absolute determination of infection ages was performed by examining the number of host tree rings traversed by deepest haustoria in slices/cross-sections of parasitized branches/main trunks. Concomitantly, the number of branching events and basal stem diameters were taken from emerging aerial parts of the mistletoes. Host rings preceding the infection were used to determine branch trunk ages-1 during infection. Relationships between haustorial and aerial age indices indicate that: (1 branching events are good non-destructive estimators of mistletoe age while basal diameters were poor estimators of age, (2 early development of M. punctulatum includes a multiyear holotrophic incubation period before producing aerial shoots, (3 the incubation period span is site and/or specie dependent being longer (4-6 yr on the subalpine Nothofagus pumilio, and shorter (2 yr on the lower altitude shrub N. Antarctica, (4 Mistletoes infecting subalpine trees of Nothofagus pumilio in the harsher sites grew slower and were longer-lived than mistletoes infecting lower altitude shrubs of N. antarctica. M. punctulatum infected only young host branches (< 4 yr suggesting strong limitations of mechanically penetrating thicker bark. When M. punctulatum shoots were present on Nothofagus trunks, absolute aging of haustorial systems in cross-sections revealed non-vegetative infections when trees were saplings. Multiple discrete events of renewal of the endophytic system spanning each about 24 yr are probably related to the maintenance of appropriate connections with functional host xylem

  12. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    Science.gov (United States)

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  13. Contrasting shrub species respond to early summer temperatures leading to correspondence of shrub growth patterns

    Science.gov (United States)

    Weijers, Stef; Pape, Roland; Löffler, Jörg; Myers-Smith, Isla H.

    2018-03-01

    The Arctic-alpine biome is warming rapidly, resulting in a gradual replacement of low statured species by taller woody species in many tundra ecosystems. In northwest North America, the remotely sensed normalized difference vegetation index (NDVI), suggests an increase in productivity of the Arctic and alpine tundra and a decrease in productivity of boreal forests. However, the responses of contrasting shrub species growing at the same sites to climate drivers remain largely unexplored. Here, we test growth, climate, and NDVI relationships of two contrasting species: the expanding tall deciduous shrub Salix pulchra and the circumarctic evergreen dwarf shrub Cassiope tetragona from an alpine tundra site in the Pika valley in the Kluane Region, southwest Yukon Territories, Canada. We found that annual growth variability of both species at this site is strongly driven by early summer temperatures, despite their contrasting traits and habitats. Shrub growth chronologies for both species were correlated with the regional climate signal and showed spatial correspondence with interannual variation in NDVI in surrounding alpine and Arctic regions. Our results suggest that early summer warming represents a common driver of vegetation change for contrasting shrub species growing in different habitats in the same alpine environments.

  14. Leaf habit does not determine the investment in both physical and chemical defences and pair-wise correlations between these defensive traits.

    Science.gov (United States)

    Moreira, X; Pearse, I S

    2017-05-01

    Plant life-history strategies associated with resource acquisition and economics (e.g. leaf habit) are thought to be fundamental determinants of the traits and mechanisms that drive herbivore pressure, resource allocation to plant defensive traits, and the simultaneous expression (positive correlations) or trade-offs (negative correlations) between these defensive traits. In particular, it is expected that evergreen species - which usually grow slower and support constant herbivore pressure in comparison with deciduous species - will exhibit higher levels of both physical and chemical defences and a higher predisposition to the simultaneous expression of physical and chemical defensive traits. Here, by using a dataset which included 56 oak species (Quercus genus), we investigated whether leaf habit of plant species governs the investment in both physical and chemical defences and pair-wise correlations between these defensive traits. Our results showed that leaf habit does not determine the production of most leaf physical and chemical defences. Although evergreen oak species had higher levels of leaf toughness and specific leaf mass (physical defences) than deciduous oak species, both traits are essentially prerequisites for evergreenness. Similarly, our results also showed that leaf habit does not determine pair-wise correlations between defensive traits because most physical and chemical defensive traits were simultaneously expressed in both evergreen and deciduous oak species. Our findings indicate that leaf habit does not substantially contribute to oak species differences in plant defence investment. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest.

    Science.gov (United States)

    Albert, Loren P; Wu, Jin; Prohaska, Neill; de Camargo, Plinio Barbosa; Huxman, Travis E; Tribuzy, Edgard S; Ivanov, Valeriy Y; Oliveira, Rafael S; Garcia, Sabrina; Smith, Marielle N; Oliveira Junior, Raimundo Cosme; Restrepo-Coupe, Natalia; da Silva, Rodrigo; Stark, Scott C; Martins, Giordane A; Penha, Deliane V; Saleska, Scott R

    2018-03-04

    Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured the age dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used these data to independently test the much-debated hypothesis - arising from satellite and tower-based observations - that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branches had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. Interactions between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  16. Plant effects on soil carbon storage and turnover in montane beech (Nothofagus) forest and adjacent tussock grassland in New Zealand

    International Nuclear Information System (INIS)

    Tate, K.R.; Scott, N.A.; Ross, D.J.; Parshotam, A.; Claydon, J.J.

    2000-01-01

    Land cover is a critical factor that influences, and is influenced by, atmospheric chemistry and potential climate changes. As considerable uncertainty exists about the effects of differences in land cover on below-ground carbon (C) storage, we have compared soil C contents and turnover at adjacent, unmanaged, indigenous forest (Nothofagus solandri var. cliffortiodes) and grassland (Chionochloa pallens) sites near the timberline in the same climo-edaphic environment in Craigieburn Forest Park, Canterbury, New Zealand. Total soil profile C was 13% higher in the grassland than in the forest ( 19.9 v. 16.7 kg/m 2 ), and based on bomb 14 C measurements, the differences mainly resulted from more recalcitrant soil C in the grassland (5.3 v. 3.0 kg/m 2 ). Estimated annual net primary production was about 0.4 kg C/m 2 for the forest and 0.5 kg C/m 2 for the grassland; estimated annual root production was about 0.2 and 0.4 kg C/m 2 , respectively. In situ soil surface CO 2 -C production was similar in the grassland and the forest. The accumulation of recalcitrant soil C was unrelated to differences in mineral weathering or soil texture, but was apparently enhanced by greater soil water retention in the grassland ecosystem. Thus, contrary to model (ROTHC) predictions, this soil C fraction could be expected to respond to the effects of climate change on precipitation patterns. Overall, our results suggest that the different patterns of soil C accumulation in these ecosystems have resulted from differences in plant C inputs, soil aluminium, and soil physical characteristics, rather than from differences in soil mineral weathering or texture. Copyright (2000) CSIRO Australia

  17. Carbon isotope discrimination and water-use efficiency in native plants of the north-central Rockies

    International Nuclear Information System (INIS)

    Marshall, J.D.; Zhang, J.W.

    1994-01-01

    Stable carbon isotope composition was determined on leaves of woody plants sampled along an 800—km transect on the western flank of the Rocky Mountains at altitudes ranging from 610 to 2650 m above mean sea level. Discrimination decreased by 1.20 ± 0.11% (mean ± 1 se) per km of altitude (n = 15, F 1,13 = 127.8, P < 0.0001). The change in discrimination was just sufficient to maintain a constant CO 2 partial pressure gradient from ambient air to the intercellular spaces within the leaf for both deciduous (P = 0.60) and evergreen (P = 0.90) species. However, the CO 2 gradient so maintained was significantly steeper among evergreen (11.31 ± 0.14 Pa) than among deciduous (9.64 ± 0.14 Pa) species (t = 8.4, 27 df, P < 00001). As a consequence, the evergreens had lower discrimination than the deciduous species at any given altitude. After the data were corrected for altitude, further analysis revealed significant differences in discrimination and in CO 2 partial pressure gradient among species. Thuja plicata (western red—cedar), a scale—leaved evergreen, had lowest mean discrimination (16.67 ± 0.50%, n = 4) and the steepest CO 2 gradient from ambient to intercellular spaces (14.5 ± 0.5 Pa). Larix occidentalis (western larch), a deciduous conifer, had the highest discrimination (20.95 ± 0.34%, n = 9) and the flattest CO 2 gradient (8.3 ± 0.4 Pa). A simple model of water—use efficiency predicted that evergreen species would average 18 ± 2% higher in water—use efficiency at any given altitude and that mean water—use efficiency would triple across a 2000—m altitude gradient. The difference between evergreen and deciduous species is attributable to variation in the CO 2 partial pressure gradient, but the tripling with altitude was almost exclusively a consequence of reduced evaporative demand. (author)

  18. Description of two new sympatric species of the genus Leptolalax (Anura: Megophryidae from western Yunnan of China

    Directory of Open Access Journals (Sweden)

    Jian-Huan Yang

    2018-04-01

    Full Text Available The Asian leaf litter toads of the genus Leptolalax represent a highly diverse species group and currently contain 53 recognized species. During herpetological surveys in Yingjiang County, western Yunnan of China, we collected series of Leptolalax specimens from an isolated small fragment of montane evergreen forest. Subsequent study based on acoustic, morphological and molecular data reveals that there were three different species among the specimens sampled: while one of them belongs to Leptolalax ventripunctataus, the other two species represent unknown taxa and are described herein: Leptolalax purpurus sp. nov. and Leptolalax yingjiangensis sp. nov. The two new species can be distinguished from other congeners by the molecular divergences, acoustic data, and by a combination of morphological characters including: body size, dorsal and ventral patterns, dorsal skin texture, sizes of pectoral and femoral glands, degree of webbing and fringing on the toes and fingers, dorsum coloration and iris coloration in life. Our results further reveal that species diversity of the genus Leptolalax still remains highly underestimated and warrants further attention.

  19. Influencias de las variaciones en el clima y en la concentración de C0(2 sobre el crecimiento de Nothofagus pumilio en la Patagonia Influences of climatic and C0(2 concentration changes on radial growth oí Nothofagus pumilio in Patagonia

    Directory of Open Access Journals (Sweden)

    ANA M SRUR

    2008-06-01

    Full Text Available El objetivo de este trabajo fue evaluar las relaciones entre las variaciones en el clima y en la concentración de C0(2 durante el siglo XX con el crecimiento radial y la eficiencia en el uso del agua en los bosques de Nothofagus pumilio a lo largo de un gradiente altitudinal, en El Chaltén (49°22' S, Santa Cruz, Argentina. Se empleó una combinación de técnicas dendrocronológicas e isotópicas. Los patrones de crecimiento radial a lo largo del gradiente altitudinal reflejan las tendencias climáticas registradas en la zona durante el siglo XX. El crecimiento de los árboles ubicados en el límite superior muestra una tendencia positiva en respuesta al incremento regional de las temperaturas. Por el contrario, los bosques en contacto con la estepa patagónica presentan, en respuesta a una intensificación del déficit hídrico, una tendencia negativa de crecimiento durante el siglo pasado. Los árboles creciendo en bosques mésicos ubicados en alturas intermedias muestran una tendencia levemente negativa no significativa. Los valores de 6(13C reflejan en qué medida el contenido de humedad en el suelo regula en forma diferencial los procesos de conductancia estomática y tasa fotosintética a lo largo del gradiente altitudinal. En sitios donde el déficit hídrico varía desde leve a muy marcado, la eficiencia intrínseca en el uso del agua (EIUA parece estar influenciada por la disponibilidad de agua en el suelo. La relación entre la EIUA y las variables climáticas es más clara en sitios con reducido estrés hídrico. En sitios secos, el estrés hídrico muy marcado reduciría la tasa fotosintética en grado tal que el crecimiento no podría ser compensado por el aumento en EIUA. En contraste con el concepto tradicional en dendrocronología que postula una relación más estrecha entre el crecimiento radial y las variaciones climáticas en los bosques ecotonales, los valores isotópicos de 6(13C representan más claramente las

  20. The Evergreen basin and the role of the Silver Creek fault in the San Andreas fault system, San Francisco Bay region, California

    Science.gov (United States)

    Jachens, Robert C.; Wentworth, Carl M.; Graymer, Russell W.; Williams, Robert; Ponce, David A.; Mankinen, Edward A.; Stephenson, William J.; Langenheim, Victoria

    2017-01-01

    The Evergreen basin is a 40-km-long, 8-km-wide Cenozoic sedimentary basin that lies mostly concealed beneath the northeastern margin of the Santa Clara Valley near the south end of San Francisco Bay (California, USA). The basin is bounded on the northeast by the strike-slip Hayward fault and an approximately parallel subsurface fault that is structurally overlain by a set of west-verging reverse-oblique faults which form the present-day southeastward extension of the Hayward fault. It is bounded on the southwest by the Silver Creek fault, a largely dormant or abandoned fault that splays from the active southern Calaveras fault. We propose that the Evergreen basin formed as a strike-slip pull-apart basin in the right step from the Silver Creek fault to the Hayward fault during a time when the Silver Creek fault served as a segment of the main route by which slip was transferred from the central California San Andreas fault to the Hayward and other East Bay faults. The dimensions and shape of the Evergreen basin, together with palinspastic reconstructions of geologic and geophysical features surrounding it, suggest that during its lifetime, the Silver Creek fault transferred a significant portion of the ∼100 km of total offset accommodated by the Hayward fault, and of the 175 km of total San Andreas system offset thought to have been accommodated by the entire East Bay fault system. As shown previously, at ca. 1.5–2.5 Ma the Hayward-Calaveras connection changed from a right-step, releasing regime to a left-step, restraining regime, with the consequent effective abandonment of the Silver Creek fault. This reorganization was, perhaps, preceded by development of the previously proposed basin-bisecting Mount Misery fault, a fault that directly linked the southern end of the Hayward fault with the southern Calaveras fault during extinction of pull-apart activity. Historic seismicity indicates that slip below a depth of 5 km is mostly transferred from the Calaveras

  1. Variation of functional clonal traits along elevation in two fern species

    International Nuclear Information System (INIS)

    Song, Y.B.; Chen, L.Y.; Xiong, W.

    2015-01-01

    Phenotypical plasticity is generally considered among adaptive strategies by which plants can cope with environmental variation in space and time. Although much is known about plasticity in seed plants in terms of functional clonal traits while little is known about ferns. Variation of functional clonal traits of two ferns Dicranopteris dichotoma and Diplopterygium glaucum among plots differing in elevation in a subtropical evergreen broad-leaved forest in southern China was investigated. Along with elevation increasing the two fern species showed similar variation pattern of functional clonal traits: stable spacer length, increasing specific spacer length and decreasing spacer weight per ramet and specific spacer weight. The two ferns species had similar variation pattern of ramet performance traits but different variation pattern of ramet population properties. These results suggest an evolutionary trade-off between functions of foraging for and storing of resources in the two ferns, with a functional preference for the foraging in response to environmental change. (author)

  2. Capturing characteristics of beryllium-7 in selected tree species

    International Nuclear Information System (INIS)

    Narazaki, Yukinori; Karube, Yoshiharu.

    1997-01-01

    With regard to 7 Be, a natural radioactive nuclide, the botanical capturing characteristics were compared between eight species of those trees which grow in a local district. The mechanism of such botanical capture by their leaves was discussed. The amounts of captured 7 Be were different by tree species. Higher radioactivities were found in the coniferous trees than in the broadleaf trees. The seasonal change of 7 Be radioactivity in leaves was significantly higher in winter and spring and lower in summer. Since airborne or fallout 7 Be particles stay on the upper face of leaves, the deposited amount depended on the surface area per weight of leaves particularly for evergreen trees. Because the 7 Be amount in leaves depended on the fallout capturing ability of leafs superficial skin as well as the cleaning effect of rain and the like, the radioactivity on the surface can change depending on the surface condition of leaves even in the case the levels of 7 Be fallout stayed the same. (author)

  3. Forest tree species discrimination in western Himalaya using EO-1 Hyperion

    Science.gov (United States)

    George, Rajee; Padalia, Hitendra; Kushwaha, S. P. S.

    2014-05-01

    The information acquired in the narrow bands of hyperspectral remote sensing data has potential to capture plant species spectral variability, thereby improving forest tree species mapping. This study assessed the utility of spaceborne EO-1 Hyperion data in discrimination and classification of broadleaved evergreen and conifer forest tree species in western Himalaya. The pre-processing of 242 bands of Hyperion data resulted into 160 noise-free and vertical stripe corrected reflectance bands. Of these, 29 bands were selected through step-wise exclusion of bands (Wilk's Lambda). Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) algorithms were applied to the selected bands to assess their effectiveness in classification. SVM was also applied to broadband data (Landsat TM) to compare the variation in classification accuracy. All commonly occurring six gregarious tree species, viz., white oak, brown oak, chir pine, blue pine, cedar and fir in western Himalaya could be effectively discriminated. SVM produced a better species classification (overall accuracy 82.27%, kappa statistic 0.79) than SAM (overall accuracy 74.68%, kappa statistic 0.70). It was noticed that classification accuracy achieved with Hyperion bands was significantly higher than Landsat TM bands (overall accuracy 69.62%, kappa statistic 0.65). Study demonstrated the potential utility of narrow spectral bands of Hyperion data in discriminating tree species in a hilly terrain.

  4. Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range.

    Science.gov (United States)

    Juárez, Andrea; Arribére, María A; Arcagni, Marina; Williams, Natalia; Rizzo, Andrea; Ribeiro Guevara, Sergio

    2016-09-01

    Vegetation associated with lacustrine systems in Northern Patagonia was studied for heavy metal and trace element contents, regarding their elemental contribution to these aquatic ecosystems. The research focused on native species and exotic vascular plant Salix spp. potential for absorbing heavy metals and trace elements. The native species studied were riparian Amomyrtus luma, Austrocedrus chilensis, Chusquea culeou, Desfontainia fulgens, Escallonia rubra, Gaultheria mucronata, Lomatia hirsuta, Luma apiculata, Maytenus boaria, Myrceugenia exsucca, Nothofagus antarctica, Nothofagus dombeyi, Schinus patagonicus, and Weinmannia trichosperma, and macrophytes Hydrocotyle chamaemorus, Isöetes chubutiana, Galium sp., Myriophyllum quitense, Nitella sp. (algae), Potamogeton linguatus, Ranunculus sp., and Schoenoplectus californicus. Fresh leaves were analyzed as well as leaves decomposing within the aquatic bodies, collected from lakes Futalaufquen and Rivadavia (Los Alerces National Park), and lakes Moreno and Nahuel Huapi (Nahuel Huapi National Park). The elements studied were heavy metals Ag, As, Cd, Hg, and U, major elements Ca, K, and Fe, and trace elements Ba, Br, Co, Cr, Cs, Hf, Na, Rb, Se, Sr, and Zn. Geochemical tracers La and Sm were also determined to evaluate contamination of the biological tissues by geological particulate (sediment, soil, dust) and to implement concentration corrections.

  5. Increasing carbon discrimination rates and depth of water uptake favor the growth of Mediterranean evergreen trees in the ecotone with temperate deciduous forests.

    Science.gov (United States)

    Barbeta, Adrià; Peñuelas, Josep

    2017-12-01

    Tree populations at the low-altitudinal or -latitudinal limits of species' distributional ranges are predicted to retreat toward higher altitudes and latitudes to track the ongoing changes in climate. Studies have focused on the climatic sensitivity of the retreating species, whereas little is known about the potential replacements. Competition between tree species in forest ecotones will likely be strongly influenced by the ecophysiological responses to heat and drought. We used tree-ring widths and δ 13 C and δ 18 O chronologies to compare the growth rates and long-term ecophysiological responses to climate in the temperate-Mediterranean ecotone formed by the deciduous Fagus sylvatica and the evergreen Quercus ilex at the low altitudinal and southern latitudinal limit of F. sylvatica (NE Iberian Peninsula). F. sylvatica growth rates were similar to those of other southern populations and were surprisingly not higher than those of Q. ilex, which were an order of magnitude higher than those in nearby drier sites. Higher Q. ilex growth rates were associated with high temperatures, which have increased carbon discrimination rates in the last 25 years. In contrast, stomatal regulation in F. sylvatica was proportional to the increase in atmospheric CO 2 . Tree-ring δ 18 O for both species were mostly correlated with δ 18 O in the source water. In contrast to many previous studies, relative humidity was not negatively correlated with tree-ring δ 18 O but had a positive effect on Q. ilex tree-ring δ 18 O. Furthermore, tree-ring δ 18 O decreased in Q. ilex over time. The sensitivity of Q. ilex to climate likely reflects the uptake of deep water that allowed it to benefit from the effect of CO 2 fertilization, in contrast to the water-limited F. sylvatica. Consequently, Q. ilex is a strong competitor at sites currently dominated by F. sylvatica and could be favored by increasingly warmer conditions. © 2017 John Wiley & Sons Ltd.

  6. SPECIES RICHNESS AND UNIFORMITY CONTRIBUTIONS TO BIRD DIVERSITY IN SHADE COFFEE PLANTATIONS IN THE SOUTHEAST OF MEXICO

    Directory of Open Access Journals (Sweden)

    Marco Antonio Altamirano González Ortega

    2012-12-01

    Full Text Available This study examines the contribution of the richness and uniformity in the diversity of birds, and their relationship with covariates of vegetation in a coffee landscape in southern Mexico. Species richness and abundance was recorded in 2010 and 2011 in evergreen forests and three different types of coffee production systems. Changes in the values of species richness and uniformity were detected by a SHE analysis (S = species richness, H = diversity and E = evenness. True diversity (the actual number of species actually represent the diversity of species in the samples was also estimated. The tree cover, shrub cover and tree height were covariates of vegetation that explained the variation in species richness and abundance. SHE analysis indicated that cumulative values of bird diversity increased in all plots with species richness, while the values of uniformity of species decreased. This condition changed with management activities of coffee and / or the arrival of migratory birds. The true diversity, when all species had a weight proportional to its abundance (q = 1, was higher in all plots when they were given greater weight to the dominant species (q = 2. Management practices of tree cover and shrubs and bird migration could explain changes in species richness and uniformity during the agricultural cycle.

  7. Effect of wildfire on soil physical and chemical properties in a Nothofagus glauca forest, Chile Efecto del fuego en las propiedades físicas y químicas en un bosque de Nothofagus glauca en Chile

    Directory of Open Access Journals (Sweden)

    CREIGHTON M. LITTON

    2003-12-01

    Full Text Available Effects of a wildfire on soil chemical and physical properties in a Nothofagus glauca (Phil. Krasser forest in the Coastal Mountain Range of south-central Chile were investigated. Response of the soil during the first two years following a wildfire was examined, where data from soil in a burned forest were compared to that in an adjacent, unburned stand. The effects that wildfire have on soil properties in this highly fragmented ecosystem are not well understood, but results from this study suggest similar responses to those found in other mediterranean forest systems. Both physical (bulk density, percent soil moisture, and soil organic matter content and chemical properties (exchangeable inorganic nitrogen, extractable phosphorus, exchangeable potassium, and soil pH were examined, and data presented here suggest that soil properties vary in their initial response to fire in this ecosystem. Soil organic matter content and soil moisture decreased following fire and remained lower than values from unburned plots for the duration of the study. Exchangeable potassium increased initially after burning, but values in burned plots decreased with time and by the end of two years were significantly lower than in unburned soil. In turn, extractable phosphorus and soil pH both increased immediately following wildfire and values in burned plots remained significantly higher than unburned plots for the entire measurement period. Exchangeable inorganic nitrogen reached higher levels in soil of burned plots for the autumn measurements (April 1997 and 1998 and lower values in burned plots for the spring measurements (November 1997 and 1998. Soil bulk density remained unchanged following fire. In general, changes in soil properties following fire were greatest at the 0-5 cm layer and more modest at the 5-10 cm sampling depth. These changes were related primarily to oxidation of the detrital layer during fire and concurrent changes in the soil environment

  8. Response of the Fine Root Production, Phenology, and Turnover Rate of Six Shrub Species from a Subtropical Forest to a Soil Moisture Gradient and Shading

    Science.gov (United States)

    Fu, X.; Dai, X.; Wang, H.

    2015-12-01

    Knowledge of the fine root dynamics of different life forms in forest ecosystems is critical to understanding how the overall belowground carbon cycling is affected by climate change. However, our current knowledge regarding how endogenous or exogenous factors regulate the root dynamics of understory vegetation is limited. We selected a suite of study sites representing different habitats with gradients of soil moisture and solar radiation (shading or no shading). We assessed the fine root production phenology, the total fine root production, and the turnover among six understory shrub species in a subtropical climate, and examined the responses of the fine root dynamics to gradients in the soil moisture and solar radiation. The shrubs included three evergreen species, Loropetalum chinense, Vaccinium bracteatum, and Adinandra millettii, and three deciduous species, Serissa serissoides, Rubus corchorifolius, and Lespedeza davidii. We observed that variations in the annual fine root production and turnover among species were significant in the deciduous group but not in the evergreen group. Notably, V. bracteatum and S. serissoides presented the greatest responses in terms of root phenology to gradients in the soil moisture and shading: high-moisture habitat led to a decrease and shade led to an increase in fine root production during spring. Species with smaller fine roots of the 1st+2nd-order diameter presented more sensitive responses in terms of fine root phenology to a soil moisture gradient. Species with a higher fine root nitrogen-to -carbon ratio exhibited more sensitive responses in terms of fine root annual production to shading. Soil moisture and shading did not change the annual fine root production as much as the turnover rate. The fine root dynamics of some understory shrubs varied significantly with soil moisture and solar radiation status and may be different from tree species. Our results emphasize the need to study the understory fine root dynamics

  9. Detecting Inter-Annual Variations in the Phenology of Evergreen Conifers Using Long-Term MODIS Vegetation Index Time Series

    Directory of Open Access Journals (Sweden)

    Laura Ulsig

    2017-01-01

    Full Text Available Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI. This study investigates the potential of a Photochemical Reflectance Index (PRI, which has been linked to vegetation light use efficiency, to improve the accuracy of MODIS-based estimates of phenology in an evergreen conifer forest. Timings of the start and end of the growing season (SGS and EGS were derived from a 13-year-long time series of PRI and NDVI based on a MAIAC (multi-angle implementation of atmospheric correction processed MODIS dataset and standard MODIS NDVI product data. The derived dates were validated with phenology estimates from ground-based flux tower measurements of ecosystem productivity. Significant correlations were found between the MAIAC time series and ground-estimated SGS (R2 = 0.36–0.8, which is remarkable since previous studies have found it difficult to observe inter-annual phenological variations in evergreen vegetation from satellite data. The considerably noisier NDVI product could not accurately predict SGS, and EGS could not be derived successfully from any of the time series. While the strongest relationship overall was found between SGS derived from the ground data and PRI, MAIAC NDVI exhibited high correlations with SGS more consistently (R2 > 0.6 in all cases. The results suggest that PRI can serve as an effective indicator of spring seasonal transitions, however, additional work is necessary to confirm the relationships observed and to further explore the usefulness of MODIS PRI for detecting phenology.

  10. Estimation of above ground biomass by using multispectral data for Evergreen Forest in Phu Hin Rong Kla National Park, Thailand

    International Nuclear Information System (INIS)

    Suwanprasit, C.

    2010-01-01

    Tropical forest is the most important and largest source for stocking CO 2 from the atmosphere which might be one of the main sources of carbon emission, global warming and climate change in recent decades. There are two main objectives of this study. The first one is to establish a relationship between above ground biomass and vegetation indices and the other is to evaluate above ground biomass and carbon sequestration for evergreen forest areas in Phu Hin Rong Kla National park, Thailand. Random sampling design based was applied for calculating the above ground biomass at stand level in the selected area by using Brown and Tsutsumi allometric equations. Landsat 7 ETM+ data in February 2009 was used. Support Vector Machine (SVM) was applied for identifying evergreen forest area. Forty-three of vegetation indices and image transformations were used for finding the best correlation with forest stand biomass. Regression analysis was used to investigate the relationship between the biomass volume at stand level and digital data from the satellite image. TM51 which derived from Tsutsumi allometric equation was the highest correlation with stand biomass. Normalized Difference Vegetation Index (NDVI) was not the best correlation in this study. The best biomass estimation model was from TM51 and ND71 (R2 =0.658). The totals of above ground biomass and carbon sequestration were 112,062,010 ton and 56,031,005 ton respectively. The application of this study would be quite useful for understanding the terrestrial carbon dynamics and global climate change. (author)

  11. Teledetección satelital cuantitativa para estimar el área basal del bosque de Nothofagus pumilio (Nothofagaceae: El rol del índice de área foliar como información auxiliar Quantitative remote sensing to estimate basal area in Nothofagus pumilio (Nothofagaceae forest: The role of leaf area index as ancillary information

    Directory of Open Access Journals (Sweden)

    GASTÓN M DÍAZ

    2011-12-01

    Full Text Available Los bosques de lenga (Nothofagus pumilio son el recurso forestal más importante de la región andino patagónica argentina, sin embargo, para implementar planes de manejo en pos de prevenir o revertir su degradación es necesario disponer de mayor información sobre su estructura. Una alternativa para obtener esa información es relacionar datos satelitales con las características del bosque a través de modelos físicos y estadísticos. Pero, ¿cuál es el método más eficaz? El índice de área foliar (IAF se encuentra relacionado con la reflectividad del dosel vegetal a través del modelo de transferencia radiativa PROSAIL, lo que permite desarrollar técnicas de teledetección satelital para estimar el IAF con bases físicas, en vez de con modelos estadísticos. De ese modo se puede aprovechar la relación empírico-biológica existente entre el IAF y la estructura del bosque para estimar el área basal. El objetivo principal fue comparar la exactitud de tres métodos para estimar el área basal de la lenga con datos SPOT-5. Los métodos comparados fueron: estadístico directo (ED, estadístico de dos pasos (E2P y físico-estadístico de dos pasos (FE2P. La exactitud fue evaluada con 24 parcelas no involucradas en el ajuste o calibración de los modelos. No se hallaron diferencias significativas en la exactitud de la alternativa físico-estadística en comparación con las netamente estadísticas. Sin embargo, en base al análisis conjunto de los resultados y lo reportado por otros investigadores, se concluye que la ventaja de utilizar modelos físicos radica en la mayor robustez de la estimación y no en la mayor exactitud.Lenga forests (Nothofagus pumilio are the most important forest resource of the Argentinean Andean Patagonia, however, more information about their structure is needed to implement forest management policies and practices in order to prevent their degradation and revert it. One option to obtain this kind of information

  12. Examining the patterns and dynamics of species abundance distributions in succession of forest communities by model selection

    Science.gov (United States)

    Luo, Shao-Ming; Chen, Ping; He, Xiao; Guo, Wei; Li, Bailian

    2018-01-01

    There are a few common species and many rare species in a biological community or a multi-species collection in given space and time. This hollow distribution curve is called species abundance distribution (SAD). Few studies have examined the patterns and dynamics of SADs during the succession of forest communities by model selection. This study explored whether the communities in different successional stages followed different SAD models and whether there existed a best SAD model to reveal their intrinsic quantitative features of structure and dynamics in succession. The abundance (the number of individuals) of each vascular plant was surveyed by quadrat sampling method from the tree, shrub and herb layers in two typical communities (i.e., the evergreen needle- and broad-leaved mixed forest and the monsoon evergreen broad-leaved forest) in southern subtropical Dinghushan Biosphere Reserve, South China. The sites of two forest communities in different successional stages are both 1 ha in area. We collected seven widely representative SAD models with obviously different function forms and transformed them into the same octave (log2) scale. These models are simultaneously confronted with eight datasets from four layers of two communities, and their goodness-of-fits to the data were evaluated by the chi-squared test, the adjusted coefficient of determination and the information criteria. The results indicated that: (1) the logCauchy model followed all the datasets and was the best among seven models; (2) the fitness of each model to the data was not directly related to the successional stage of forest community; (3) according to the SAD curves predicted by the best model (i.e., the logCauchy), the proportion of rare species decreased but that of common ones increased in the upper layers with succession, while the reverse was true in the lower layers; and (4) the difference of the SADs increased between the upper and the lower layers with succession. We concluded that

  13. Presence of understory shrubs constrains carbon gain in sunflecks by advance-regeneration seedlings: evidence from Quercus Rubra seedling grouwing in understory forest patches with or without evergreen shrubs present

    Science.gov (United States)

    E.T. Nilsen; T.T. Lei; S.W. Semones

    2009-01-01

    We investigated whether dynamic photosynthesis of understory Quercus rubra L. (Fagaceae) seedlings can acclimate to the altered pattern of sunflecks in forest patches with Rhododendron maximum L. (Ericaceae), an understory evergreen shrub. Maximum photosynthesis (A) and total CO2 accumulated during lightflecks was greatest for 400-s lightflecks, intermediate for 150-s...

  14. Exemplifying whole-plant ozone uptake in adult forest trees of contrasting species and site conditions

    International Nuclear Information System (INIS)

    Nunn, Angela J.; Wieser, Gerhard; Metzger, Ursula; Loew, Markus; Wipfler, Philip; Haeberle, Karl-Heinz; Matyssek, Rainer

    2007-01-01

    Whole-tree O 3 uptake was exemplified for Picea abies, Fagus sylvatica and Larix decidua in stands at high and low altitude and contrasting water availability through sap flow measurement in tree trunks, intrinsically accounting for drought and boundary layer effects on O 3 flux. O 3 uptake of evergreen spruce per unit foliage area was enhanced by 100% at high relative to low elevation, whereas deciduous beech and larch showed similar uptake regardless of altitude. The responsiveness of the canopy conductance to water vapor and, as a consequence, O 3 uptake to soil moisture and air humidity did not differ between species. Unifying findings at the whole-tree level will promote cause-effect based O 3 risk assessment and modeling. - Sap flow-based assessment of whole-tree O 3 uptake reflects similar responsiveness of canopy conductance and O 3 uptake across contrasting tree species and site conditions

  15. Imprints of climate signals in a 204 year 18O tree-ring record of Nothofagus pumilio from Perito Moreno Glacier, southern Patagonia (50°S).

    Science.gov (United States)

    Grießinger, Jussi; Langhamer, Lukas; Schneider, Christoph; Saß, Björn-Lukas; Steger, David; Skvarca, Pedro; Braun, Matthias H.; Meier, Wolfgang J.-H.; Srur, Ana M.; Hochreuther, Philipp

    2018-04-01

    A 204 year-long record of 18O in tree-ring cellulose of southern beech (Nothofagus pumilio) from a site near Perito Moreno Glacier (50°S) in southern Patagonia was established to assess its potential for a climate reconstruction. The annually resolved oxygen isotope chronology is built out of seven individual tree-ring 18O series with a significant mean inter-series correlation (r = 0.61) and is the first of its kind located in Southern America south of 50°S. Over a common period from 1960 to 2013 of available stationary and high-resolution gridded CRU TS v. 4.01 data, the 18O chronology exhibits a strong sensitivity towards hydroclimatic as well as temperature parameters as revealed by correlation analyses. Among these, positive correlations with maximum temperature in the first part of the summer season (CRU rONDJ = 0.51, pAmerica. The modulation of positive and negative anomalies within this series can be interlinked to changes in moisture source origin as revealed by backward trajectory modeling. Additionally, these anomalies can be directly associated to positive or negative phases of the Antarctic Oscillation Index (AAOI) and therefore the strength of the Westerlies. Aligned by the analysis on the influence of different main weather types on the 18O chronology it is shown that such time-series hold the potential to additionally capture their respective influence and change during the last centuries.

  16. Species Abundance in a Forest Community in South China: A Case of Poisson Lognormal Distribution

    Institute of Scientific and Technical Information of China (English)

    Zuo-Yun YIN; Hai REN; Qian-Mei ZHANG; Shao-Lin PENG; Qin-Feng GUO; Guo-Yi ZHOU

    2005-01-01

    Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m×20 m, 5 m×5 m, and 1 m×1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal;(ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (σ andμ) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the σ and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/σ should be an alternative measure of diversity.

  17. Soil propagule banks of ectomycorrhizal fungi share many common species along an elevation gradient.

    Science.gov (United States)

    Miyamoto, Yumiko; Nara, Kazuhide

    2016-04-01

    We conducted bioassay experiments to investigate the soil propagule banks of ectomycorrhizal (EM) fungi in old-growth forests along an elevation gradient and compared the elevation pattern with the composition of EM fungi on existing roots in the field. In total, 150 soil cores were collected from three forests on Mt. Ishizuchi, western Japan, and subjected to bioassays using Pinus densiflora and Betula maximowicziana. Using molecular analyses, we recorded 23 EM fungal species in the assayed propagule banks. Eight species (34.8 %) were shared across the three sites, which ranged from a warm-temperate evergreen mixed forest to a subalpine conifer forest. The elevation pattern of the assayed propagule banks differed dramatically from that of EM fungi on existing roots along the same gradient, where only a small proportion of EM fungal species (3.5 %) were shared across sites. The EM fungal species found in the assayed propagule banks included many pioneer fungal species and composition differed significantly from that on existing roots. Furthermore, only 4 of 23 species were shared between the two host species, indicating a strong effect of bioassay host identity in determining the propagule banks of EM fungi. These results imply that the assayed propagule bank is less affected by climate compared to EM fungal communities on existing roots. The dominance of disturbance-dependent fungal species in the assayed propagule banks may result in higher ecosystem resilience to disturbance even in old-growth temperate forests.

  18. Carbon and water vapore balance in a primary subtropical evergreen forest in Southewest China under a changing climate

    Science.gov (United States)

    Song, Q. H.; Zhang, Y. P.

    2017-12-01

    The Ailaoshan Nature Reserve in Yunnan province, southwestern China hosts about 5000 ha of primary subtropical evergreen mountain cloud forest. A widespread and severe drought occurred in southwestern China in 2009 and 2010, providing a unique opportunity to directly evaluate how water use efficiency (WUE) changes with drought stress in the primary subtropical forest. We calculated WUE using measures of gross primary production (GPP) and evapotranspiration (ET) from five years of continuous eddy covariance measurements (2009-2013) obtained over a primary subtropical evergreen broadleaved forest in southwestern China. Annual mean WUE exhibited a decreasing trend from 2009 to 2013, varying from 2.28 to 2.68 g C kg H2O-1. The multiyear average WUE was 2.48 ± 0.17 (mean ± standard deviation) g C kg H2O-1. WUE increased greatly in the driest year (2009), due to a larger decline in ET than in GPP. Unfortunately, the same study site experienced a particularly extreme climate anomaly during January 2015, with a heavy snow of up to 50 cm in depth, which led to severe forest damage. The forest canopy was severely damaged by the heavy snow, and the leaf area index (LAI) decreased significantly from January to July 2015. GPP, net ecosystem exchange (NEE), and Ecosystem respiration (Reco) all sharply decreased in 2015 after the heavy snow. On average, a strong decrease of 544 g C m-2 year-1 in annual NEE in 2015 was associated with a decrease of 829 g C m-2 year-1 in annual GPP and a decrease of 285 g C m-2 year-1 in annual Reco. Overall, annual net C uptake in 2015 was reduced by 76% compared to the mean C uptake of the previous four years. A sharp increase in carbon uptake was also observed in 2016, indicating that long-term, continuous measurements should be carried out to evaluate the overall response to the disturbance.

  19. Effect of Disturbance Regimes on Spatial Patterns of Tree Species in Three Sites in a Tropical Evergreen Forest in Vietnam

    Directory of Open Access Journals (Sweden)

    Do Thi Ngoc Le

    2016-01-01

    Full Text Available The effects of disturbance regimes on the spatial patterns of the five most abundant species were investigated in three sites in a tropical forest at Xuan Nha Nature Reserve, Vietnam. Three permanent one-ha plots were established in undisturbed forest (UDF, lightly disturbed forest (LDF, and highly disturbed forest (HDF. All trees ≥5 cm DBH were measured in twenty-five 20 m × 20 m subplots. A total of 57 tree species belonging to 26 families were identified in the three forest types. The UDF had the highest basal area (30 m2 ha−1, followed by the LDF (17 m2 ha−1 and the HDF (13.0 m2 ha−1. The UDF also had the highest tree density (751 individuals ha−1 while the HDF held the lowest (478 individuals ha−1. Across all species, there were 417 “juveniles,” 267 “subadults,” and 67 “adults” in the UDF, while 274 “juveniles,” 230 “subadults,” and 36 “adults” were recorded in the LDF. 238 “juveniles,” 227 “subadults,” and 13 “adults” were obtained in the HDF. The univariate and bivariate data with pair- and mark-correlation functions of intra- and interspecific interactions of the five most abundant species changed in the three forest types. Most species indicated clumping or regular distributions at small scale, but a high ratio of negative interspecific small-scale associations was recorded in both the LDF and HDF sites. These were, however, rare in the UDF.

  20. Sapling growth and crown expansion in canopy gaps of Nothofagus pumilio (lenga) forests in Chubut, Patagonia, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Bernal, P. M.; Defosse, G. E.; Quinteros, C. P.; Bava, J. O.

    2012-07-01

    In the province of Chubut in Patagonia, Argentina, Nothofagus pumilio forests (locally known as lenga), are managed through selective cuts, which imply the opening of canopy gaps. This management scheme is carried out without taking into consideration the changes of sapling requirements through either a cutting cycle or the precipitation gradient in which these forests thrive. To analyze these changes, we inferred the facilitation-competition balance between the canopy and regeneration, studying the effects of precipitation levels, gap size and gap age on saplings growth in height on 45 canopy gaps artificially created between 1960 and 1993. Results showed that during the first 20 years since gap opening, growth of regeneration is determined by light availability in mesic sites and by water availability in xeric sites. However, differences due to precipitation levels gradually decrease over time. Moreover, in the period between 20 and 35 years after gap opening, in both mesic and xeric sites, growth is limited by light availability. This indicates that in xeric sites, sapling growth requirements shift from a water-dependent situation to a light-dependent situation. The average closing rate of gaps due to lateral growth of bordering trees is high enough so that within the proposed gap size range, gap healing can occur before regeneration reaches the upper stratum. Consequently, in mesic sites gap opening can be done by a single operation that generates gaps with diameters of approximately twice the average height of the canopy (D/H). While in xeric environments, lenga seedling establishment and initial growth require the cover of small gaps, but advanced regeneration requires bigger gaps to reach the canopy. For this reason, gaps should be opened in two stages: the first gaps should be opened with a D/H between 0.8 and 1, and after a cutting cycle of 35 years, these openings should be enlarged to a D/H between 1.5 and 2. The close relationship maintained between the

  1. Water use efficiency in a primary subtropical evergreen forest in Southwest China.

    Science.gov (United States)

    Song, Qing-Hai; Fei, Xue-Hai; Zhang, Yi-Ping; Sha, Li-Qing; Liu, Yun-Tong; Zhou, Wen-Jun; Wu, Chuan-Sheng; Lu, Zhi-Yun; Luo, Kang; Gao, Jin-Bo; Liu, Yu-Hong

    2017-02-20

    We calculated water use efficiency (WUE) using measures of gross primary production (GPP) and evapotranspiration (ET) from five years of continuous eddy covariance measurements (2009-2013) obtained over a primary subtropical evergreen broadleaved forest in southwestern China. Annual mean WUE exhibited a decreasing trend from 2009 to 2013, varying from ~2.28 to 2.68 g C kg H 2 O -1 . The multiyear average WUE was 2.48 ± 0.17 (mean ± standard deviation) g C kg H 2 O -1 . WUE increased greatly in the driest year (2009), due to a larger decline in ET than in GPP. At the diurnal scale, WUE in the wet season reached 5.1 g C kg H 2 O -1 in the early morning and 4.6 g C kg H 2 O -1 in the evening. WUE in the dry season reached 3.1 g C kg H 2 O -1 in the early morning and 2.7 g C kg H 2 O -1 in the evening. During the leaf emergence stage, the variation of WUE could be suitably explained by water-related variables (relative humidity (RH), soil water content at 100 cm (SWC_100)), solar radiation and the green index (Sgreen). These results revealed large variation in WUE at different time scales, highlighting the importance of individual site characteristics.

  2. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen Conifer Jack Pine

    OpenAIRE

    Busch, F.; Huner, N.; Ensminger, I.

    2007-01-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack ...

  3. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species.

    Science.gov (United States)

    Martínez-Vilalta, Jordi; Prat, Ester; Oliveras, Imma; Piñol, Josep

    2002-09-01

    We studied the hydraulic architecture and water relations of nine co-occurring woody species in a Spanish evergreen oak forest over the course of a dry season. Our main objectives were to: (1) test the existence of a trade-off between hydraulic conductivity and security in the xylem, and (2) establish the safety margins at which the species operated in relation to hydraulic failure, and compare these safety margins between species and tissues (roots vs. stems). Our results showed that the relationship between specific hydraulic conductivity (K s) and resistance to cavitation followed a power function with exponent ≈-2, consistent with the existence of a trade-off between conductivity and security in the xylem, and also consistent with a linear relationship between vessel diameter and the size of inter-vessel pores. The diameter of xylem conduits, K s and vulnerability to xylem embolism were always higher in roots than in stems of the same species. Safety margins from hydraulic failure were narrower in roots than in stems. Among species, the water potential (Ψ) at which 50% of conductivity was lost due to embolism ranged between -0.9 and Cistus albidus=Ilex aquifolium>Phillyrea latifolia>Juniperus oxycedrus. Gas exchange and seasonal Ψ minima were in general correlated with resistance to xylem embolism. Hydraulic safety margins differed markedly among species, with some of them (J. oxycedrus, I. aquifolium, P. latifolia) showing a xylem overly resistant to cavitation. We hypothesize that this overly resistant xylem may be related to the shape of the relationship between K s and security we have found.

  4. Insights into intraspecific wood density variation and its relationship to growth, height and elevation in a treeline species.

    Science.gov (United States)

    Fajardo, A

    2018-05-01

    The wood economics spectrum provides a general framework for interspecific trait-trait coordination across wide environmental gradients. Whether global patterns are mirrored within species constitutes a poorly explored subject. In this study, I first determined whether wood density co-varies together with elevation, tree growth and height at the within-species level. Second, I determined the variation of wood density in different stem parts (trunk, branch and twigs). In situ trunk sapwood, trunk heartwood, branch and twig densities, in addition to stem growth rates and tree height were determined in adult trees of Nothofagus pumilio at four elevations in five locations spanning 18° of latitude. Mixed effects models were fitted to test relationships among variables. The variation in wood density reported in this study was narrow (ca. 0.4-0.6 g cm -3 ) relative to global density variation (ca. 0.3-1.0 g cm -3 ). There was no significant relationship between stem growth rates and wood density. Furthermore, the elevation gradient did not alter the wood density of any stem part. Trunk sapwood density was negatively related to tree height. Twig density was higher than branch and trunk densities. Trunk heartwood density was always significantly higher than sapwood density. Negative across-species trends found in the growth-wood density relationship may not emerge as the aggregate of parallel intraspecific patterns. Actually, trees with contrasting growth rates show similar wood density values. Tree height, which is tightly related to elevation, showed a negative relationship with sapwood density. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  5. Dust collection capacity of plants growing in coal mining areas

    International Nuclear Information System (INIS)

    Maiti, S.K.

    1993-01-01

    Plant can act as living filter of dust pollution in coal mining areas, where the amount of suspended particulate matter and dust fall rate is very high. Therefore, plant species growing in coal mining areas are classified as evergreen or deciduous with simple and compound leaf basis. The dust arresting capacity of each leaf is measured and expressed in g/m 2 . The study indicated that evergreen plants with simple, pilose surface, like - Alstonia, Ficus cunea, F. benghalensis and Mangifera indica are good dust catcher than evergreen compound leaves of Cassia siamea, Acacia arabica and Leucaena leucocephala. Deciduous with simple leaves, such as Zizyphus mauritiana, F. religiosa, Psidium guyava are also good dust collectors. Suitable plant species also help in quick reclamation of mined out areas; one practical difficulty for establishment of trees as green belts or reclamation purpose, has been incidence of cattle grazing. This study suggested a systematic way of selecting plant species on the basis of their efficiency in dust control and resistance to cattle grazing. (author). 16 refs., 3 tabs

  6. Contrasting regeneration strategies in climax and long-lived pioneer tree species in a subtropical forest.

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    Full Text Available 1: This study investigated 15 coexisting dominant species in a humid subtropical evergreen broad-leaved forest in southwest China, consisting of long-lived pioneers and climax species occurring in natural and disturbed regimes. The authors hypothesized that there would be non-tradeoff scaling relationships between sprouting and seed size among species, with the aim of uncovering the ecological relationship between plant sprouting and seed characteristics in the two functional groups. 2: The sprouting variations of the species were initially examined using pairwise comparisons between natural and disturbed habitats within and across species and were noted to show a continuum in persistence niches across the forest dominants, which may underlie the maintenance of plant diversity. Second, a significantly positive, rather than tradeoff, relationship between sprout number and seed size across species within each of the two functional groups was observed, and an obvious elevational shift with a common slope among the two groups in their natural habitat was examined. The results indicate the following: 1 the relationship of seed size vs. sprouts in the natural habitat is more likely to be bet-hedging among species within a guild in a forest; 2 climax species tend to choose seeding rather than sprouting regeneration, and vice versa for the long-lived pioneers; and 3 the negative correlation between sprouting and seed dispersal under disturbed conditions may imply a tradeoff between dispersal and persistence in situ during the process of plant regeneration. 3: These findings may be of potential significance for urban greening using native species.

  7. Seasonal changes in camera-based indices from an open canopy black spruce forest in Alaska, and comparison with indices from a closed canopy evergreen coniferous forest in Japan

    Science.gov (United States)

    Nagai, Shin; Nakai, Taro; Saitoh, Taku M.; Busey, Robert C.; Kobayashi, Hideki; Suzuki, Rikie; Muraoka, Hiroyuki; Kim, Yongwon

    2013-06-01

    Evaluation of the carbon, water, and energy balances in evergreen coniferous forests requires accurate in situ and satellite data regarding their spatio-temporal dynamics. Daily digital camera images can be used to determine the relationships among phenology, gross primary productivity (GPP), and meteorological parameters, and to ground-truth satellite observations. In this study, we examine the relationship between seasonal variations in camera-based canopy surface indices and eddy-covariance-based GPP derived from field studies in an Alaskan open canopy black spruce forest and in a Japanese closed canopy cedar forest. The ratio of the green digital number to the total digital number, hue, and GPP showed a bell-shaped seasonal profile at both sites. Canopy surface images for the black spruce forest and cedar forest mainly detected seasonal changes in vegetation on the floor of the forest and in the tree canopy, respectively. In contrast, the seasonal cycles of the ratios of the red and blue digital numbers to the total digital numbers differed between the two sites, possibly due to differences in forest structure and leaf color. These results suggest that forest structural characteristics, such as canopy openness and seasonal forest-floor changes, should be considered during continuous observations of phenology in evergreen coniferous forests.

  8. [Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural evergreen broad-leaved forest in the Rainy Area of West China].

    Science.gov (United States)

    Zhou, Shi Xing; Zou, Cheng; Xiao, Yong Xiang; Xiang, Yuan Bin; Han, Bo Han; Tang, Jian Dong; Luo, Chao; Huang, Cong de

    2017-01-01

    To understand the effects of increasing nitrogen deposition on soil microbial biomass carbon (MBC) and nitrogen(MBN), an in situ experiment was conducted in a natural evergreen broad-leaved forest in Ya'an City, Sichuan Province. Four levels of nitrogen deposition were set: i.e., control (CK, 0 g N·m -2 ·a -1 ), low nitrogen (L, 5 g N·m -2 ·a -1 ), medium nitrogen (M, 15 g N·m -2 ·a -1 ), and high nitrogen (H, 30 g N·m -2 ·a -1 ). The results indicated that nitrogen deposition significantly decreased MBC and MBN in the 0-10 cm soil layer, and as N de-position increased, the inhibition effect was enhanced. L and M treatments had no significant effect on MBC and MBN in the 10-20 cm soil layer, while H treatment significantly reduced. The influence of N deposition on MBC and MBN was weakened with the increase of soil depth. MBC and MBN had obvious seasonal dynamic, which were highest in autumn and lowest in summer both in the 0-10 and 10-20 cm soil layers. The fluctuation ranges of soil microbial biomass C/N were respectively 10.58-11.19 and 9.62-12.20 in the 0-10 cm and 10-20 cm soil layers, which indicated that the fungi hold advantage in the soil microbial community in this natural evergreen broad-leaved forest.

  9. Improving winter leaf area index estimation in evergreen coniferous forests and its significance in carbon and water fluxes modeling

    Science.gov (United States)

    Wang, R.; Chen, J. M.; Luo, X.

    2016-12-01

    Modeling of carbon and water fluxes at the continental and global scales requires remotely sensed LAI as inputs. For evergreen coniferous forests (ENF), severely underestimated winter LAI has been one of the issues for mostly available remote sensing products, which could cause negative bias in the modeling of Gross Primary Productivity (GPP) and evapotranspiration (ET). Unlike deciduous trees which shed all the leaves in winter, conifers retains part of their needles and the proportion of the retained needles depends on the needle longevity. In this work, the Boreal Ecosystem Productivity Simulator (BEPS) was used to model GPP and ET at eight FLUXNET Canada ENF sites. Two sets of LAI were used as the model inputs: the 250m 10-day University of Toronto (U of T) LAI product Version 2 and the corrected LAI based on the U of T LAI product and the needle longevity of the corresponding tree species at individual sites. Validating model daily GPP (gC/m2) against site measurements, the mean RMSE over eight sites decreases from 1.85 to 1.15, and the bias changes from -0.99 to -0.19. For daily ET (mm), mean RMSE decreases from 0.63 to 0.33, and the bias changes from -0.31 to -0.16. Most of the improvements occur in the beginning and at the end of the growing season when there is large correction of LAI and meanwhile temperature is still suitable for photosynthesis and transpiration. For the dormant season, the improvement in ET simulation mostly comes from the increased interception of precipitation brought by the elevated LAI during that time. The results indicate that model performance can be improved by the application the corrected LAI. Improving the winter RS LAI can make a large impact on land surface carbon and energy budget.

  10. Mineralización del nitrógeno, carbono y actividad enzimática del suelo en un bosque de Nothofagus obliqua (Mirb Oerst y una plantación de Pinus radiata D. Don. del centro-sur de Chile Nitrogen and carbon mineralization and enzyme activity in soils of Nothofagus obliqua (Mirb Oerst stands and Pinus radiata D. Don plantation in south-central Chile

    Directory of Open Access Journals (Sweden)

    YESSICA RIVAS

    2009-03-01

    Full Text Available En Chile, el establecimiento de plantaciones comerciales de rápido crecimiento ha sido sostenido en las últimas décadas mediante la sustitución de bosques nativos y conversión de suelos agrícolas. Pinus radiata D. Don es la principal especie productiva, debido a su crecimiento acelerado y adaptabilidad al clima y los suelos. En el presente estudio se plantea que la actividad biológica del suelo es variable a través del año, en respuesta a variaciones de precipitación, temperatura y contenido de humedad de suelo y que el cambio de uso de suelo desde un bosque templado de Nothofagus obliqua (Mirb Oerst a una plantación con coniferas exóticas, modifica la química del suelo y consecuentemente los procesos de N-min, C-min y la actividad biológica del suelo. Esta hipótesis fue examinada en un bosque de N. obliqua y una plantación de P. radiata del centro-sur de Chile (40°07' S, 72° O. Se evaluó mensualmente la tasa mineralización de nitrógeno (N-min, cabono (C-min y la actividad enzimática potencial del suelo (ureasa, proteasa e hidrólisis de la fluoresceína diacetato entre septiembre 2003 y mayo 2005. Los resultados demuestran que los niveles de las variables de actividad biológica del suelo fueron significativamente diferentes entre las parcelas de bosque y plantación (Lambda de Wilk = 0,022; F 5,80 = 733; P In Chile, commercial forests plantations have increased during the last decades due in part to replacement of native forests and conversion of agricultural soils. Pinus radiata D. Don has been the main tree planted, due to its rapid growth and adaptability. In the present study we proposed that biological activity varies along the year due to changes of precipitation, temperature and soil water content and mainly because the conversion of native forest to exotic P. radiata plantations alters the soil chemistry, N and C mineralization and the potential enzymatic activity in these soils. This hypothesis was examined in a

  11. Vegetation Response and Landscape Dynamics of Indian Summer Monsoon Variations during Holocene: An Eco-Geomorphological Appraisal of Tropical Evergreen Forest Subfossil Logs

    Science.gov (United States)

    Kumaran, Navnith K. P.; Padmalal, Damodaran; Nair, Madhavan K.; Limaye, Ruta B.; Guleria, Jaswant S.; Srivastava, Rashmi; Shukla, Anumeha

    2014-01-01

    The high rainfall and low sea level during Early Holocene had a significant impact on the development and sustenance of dense forest and swamp-marsh cover along the southwest coast of India. This heavy rainfall flooded the coastal plains, forest flourishing in the abandoned river channels and other low-lying areas in midland.The coastline and other areas in lowland of southwestern India supply sufficient evidence of tree trunks of wet evergreen forests getting buried during the Holocene period under varying thickness of clay, silty-clay and even in sand sequences. This preserved subfossil log assemblage forms an excellent proxy for eco-geomorphological and palaeoclimate appraisal reported hitherto from Indian subcontinent, and complements the available palynological data. The bulk of the subfossil logs and partially carbonized wood remains have yielded age prior to the Holocene transgression of 6.5 k yrs BP, suggesting therein that flooding due to heavy rainfall drowned the forest cover, even extending to parts of the present shelf. These preserved logs represent a unique palaeoenvironmental database as they contain observable cellular structure. Some of them can even be compared to modern analogues. As these woods belong to the Late Pleistocene and Holocene, they form a valuable source of climate data that alleviates the lack of contemporaneous meteorological records. These palaeoforests along with pollen proxies depict the warmer environment in this region, which is consistent with a Mid Holocene Thermal Maximum often referred to as Holocene Climate Optimum. Thus, the subfossil logs of tropical evergreen forests constitute new indices of Asian palaeomonsoon, while their occurrence and preservation are attributed to eco-geomorphology and hydrological regimes associated with the intensified Asian Summer Monsoon, as recorded elsewhere. PMID:24727672

  12. Download this PDF file

    African Journals Online (AJOL)

    IKYAAGBA E

    inventory approach which only tree species are ... Figure 1. Map of Cross River National Park Showing the Study Locations ..... evergreen rain forest with some semi-deciduous species (Tchouto et .... sourth- eastern Nigeria. ... Washington D.C..

  13. Birds' nesting parameters in four forest types in the Pantanal wetland

    Directory of Open Access Journals (Sweden)

    JB Pinho

    Full Text Available We tested the heterogeneity/productivity hypothesis with respect to the abundance and richness of birds and the vegetation density hypothesis with respect to birds' nest predation rates, and determined the relative importance of forested vegetation formations for the conservation of birds in the Pantanal. We estimated the apparent nesting success, and the abundance and richness of nesting birds' in four forest types, by monitoring nests during two reproductive seasons in four forested physiognomies (two high productivity/heterogeneity evergreen forests = Cambará and Landi; two low productivity/heterogeneity dry forests = Cordilheira and Carvoeiro in the Pantanal wetland in Poconé, State of Mato Grosso, Brazil. We found 381 nests of 46 species (35 Passeriformes and 11 non-Passeriformes in the four forest types. Of these, we monitored 220 active nests belonging to 44 species, 101 during the reproductive season of 2001 and 119 in 2002. We supported the productivity/heterogeneity hypothesis since the two evergreen forests had higher nest abundance and one of them (Cambará had higher nesting species richness than the dry forests. The number of nests found in each habitat differed with most nests monitored in the Cambará forest (82%, followed by Landi (9%, Cordilheira (6% and Carvoeiro (3% forests. The total number of nests monitored was significantly higher in evergreen forests than in dry forests. Also, more species nested in evergreen (37 species than in dry (16 species forests. A Correspondence Analysis revealed that only Carvoeiros had a different nesting bird community. The overall apparent nesting success of 220 nests was 26.8%. We did not support the vegetation density hypothesis since nest predation rates were similar between evergreen (73.5% and dry (70% forests, and were higher in the Landi (85% than in the other three forests (69.2 to 72.2%. Our data indicate that Cambará forests seem to be a key nesting habitat for many bird species

  14. Birds' nesting parameters in four forest types in the Pantanal wetland.

    Science.gov (United States)

    Pinho, J B; Marini, M A

    2014-11-01

    We tested the heterogeneity/productivity hypothesis with respect to the abundance and richness of birds and the vegetation density hypothesis with respect to birds' nest predation rates, and determined the relative importance of forested vegetation formations for the conservation of birds in the Pantanal. We estimated the apparent nesting success, and the abundance and richness of nesting birds' in four forest types, by monitoring nests during two reproductive seasons in four forested physiognomies (two high productivity/heterogeneity evergreen forests = Cambará and Landi; two low productivity/heterogeneity dry forests = Cordilheira and Carvoeiro) in the Pantanal wetland in Poconé, State of Mato Grosso, Brazil. We found 381 nests of 46 species (35 Passeriformes and 11 non-Passeriformes) in the four forest types. Of these, we monitored 220 active nests belonging to 44 species, 101 during the reproductive season of 2001 and 119 in 2002. We supported the productivity/heterogeneity hypothesis since the two evergreen forests had higher nest abundance and one of them (Cambará) had higher nesting species richness than the dry forests. The number of nests found in each habitat differed with most nests monitored in the Cambará forest (82%), followed by Landi (9%), Cordilheira (6%) and Carvoeiro (3%) forests. The total number of nests monitored was significantly higher in evergreen forests than in dry forests. Also, more species nested in evergreen (37 species) than in dry (16 species) forests. A Correspondence Analysis revealed that only Carvoeiros had a different nesting bird community. The overall apparent nesting success of 220 nests was 26.8%. We did not support the vegetation density hypothesis since nest predation rates were similar between evergreen (73.5%) and dry (70%) forests, and were higher in the Landi (85%) than in the other three forests (69.2 to 72.2%). Our data indicate that Cambará forests seem to be a key nesting habitat for many bird species of the

  15. Differential nitrogen cycling in semiarid sub-shrubs with contrasting leaf habit.

    Directory of Open Access Journals (Sweden)

    Sara Palacio

    Full Text Available Nitrogen (N is, after water, the most limiting resource in semiarid ecosystems. However, knowledge on the N cycling ability of semiarid woody plants is still very rudimentary. This study analyzed the seasonal change in the N concentrations and pools of the leaves and woody organs of two species of semiarid sub-shrubs with contrasting leaf habit. The ability of both species to uptake, remobilize and recycle N, plus the main storage organ for N during summer drought were evaluated. We combined an observational approach in the field with experimental (15N labelling of adult individuals grown in sand culture. Seasonal patterns of N concentrations were different between species and organs and foliar N concentrations of the summer deciduous Lepidium subulatum were almost double those of the evergreen Linum suffruticosum. L. subulatum up took ca. 60% more external N than the evergreen and it also had a higher N resorption efficiency and proficiency. Contrastingly, L. suffruticosum relied more on internal N remobilization for shoot growth. Differently to temperate species, the evergreen stored N preferentially in the main stem and old trunks, while the summer deciduous stored it in the foliage and young stems. The higher ability of L. subulatum to uptake external N can be related to its ability to perform opportunistic growth and exploit the sporadic pulses of N typical of semiarid ecosystems. Such ability may also explain its high foliar N concentrations and its preferential storage of N in leaves and young stems. Finally, L. suffruticosum had a lower ability to recycle N during leaf senescence. These strategies contrast with those of evergreen and deciduous species from temperate and boreal areas, highlighting the need of further studies on semiarid and arid plants.

  16. Capparis Cleghornii Dunn, a species from Southern India (Capparaceae)

    NARCIS (Netherlands)

    Rao, Rolla S.; Raghavan, R. Sundara

    1964-01-01

    Among recent collections from the evergreen forests of Mysore State in southern India, material was found of Capparis cleghornii Dunn which had only been known from the original collection made by Cleghorn in 1846 and from a Stocks specimen from “Kanara”. Further scrutiny of fresh collections from

  17. The trait contribution to wood decomposition rates of 15 Neotropical tree species.

    Science.gov (United States)

    van Geffen, Koert G; Poorter, Lourens; Sass-Klaassen, Ute; van Logtestijn, Richard S P; Cornelissen, Johannes H C

    2010-12-01

    The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in species traits on differences in wood decomposition rates remains unknown. In order to fill these gaps, we applied a novel method to study long-term wood decomposition of 15 tree species in a Bolivian semi-evergreen tropical moist forest. We hypothesized that interspecific differences in species traits are important drivers of variation in wood decomposition rates. Wood decomposition rates (fractional mass loss) varied between 0.01 and 0.31 yr(-1). We measured 10 different chemical, anatomical, and morphological traits for all species. The species' average traits were useful predictors of wood decomposition rates, particularly the average diameter (dbh) of the tree species (R2 = 0.41). Lignin concentration further increased the proportion of explained inter-specific variation in wood decomposition (both negative relations, cumulative R2 = 0.55), although it did not significantly explain variation in wood decomposition rates if considered alone. When dbh values of the actual dead trees sampled for decomposition rate determination were used as a predictor variable, the final model (including dead tree dbh and lignin concentration) explained even more variation in wood decomposition rates (R2 = 0.71), underlining the importance of dbh in wood decomposition. Other traits, including wood density, wood anatomical traits, macronutrient concentrations, and the amount of phenolic extractives could not significantly explain the variation in wood decomposition rates. The surprising results of this multi-species study, in which for the first time a large set of traits is explicitly linked to wood decomposition rates, merits further testing in other forest ecosystems.

  18. Stand, species, and individual traits impact transpiration in historically disturbed forests.

    Science.gov (United States)

    Blakely, B.; Rocha, A. V.; McLachlan, J. S.

    2017-12-01

    Historic logging disturbances have changed the structure and species composition of most Northern temperate forests. These changes impact the process of transpiration - which in turn impacts canopy surface temperature - but the links among structure, composition, and transpiration remain unclear. For this reason, ecosystem models typically use simplified structure and composition to simulate the impact of disturbances on forest transpiration. However, such simplifications ignore real variability among stands, species, and individual trees that may strongly influence transpiration across spatial and temporal scales. To capture this variability, we monitored transpiration in 48 individual trees of multiple species in both undisturbed (400+ yr) and historically logged (80 - 120 yr) forests. Using modern and historic forest surveys, we upscaled our observations to stand and regional scales to identify the key changes impacting transpiration. We extended these inferences by establishing a relationship between transpiration and measured surface temperature, linking disturbance-induced changes in structure and composition to local and regional climate. Despite greater potential evapotranspiration and basal area, undisturbed forest transpired less than disturbed (logged) forest. Transpiration was a strong predictor of surface temperature, and the canopy surface was warmer in undisturbed forest. Transpiration differences among disturbed and undisturbed forests resulted from (1) lesser transpiration and dampened seasonality in evergreen species (2) greater transpiration in younger individuals within a species, and (3) strong transpiration by large individuals. When transpiration was scaled to the stand or regional level in a simplified manner (e.g. a single transpiration rate for all deciduous individuals), the resulting estimates differed markedly from the original. Stand- species- and individual-level traits are therefore essential for understanding how transpiration and

  19. Two new species of shovel-jaw carp Onychostoma (Teleostei: Cyprinidae) from southern Vietnam.

    Science.gov (United States)

    Hoang, Huy Duc; Pham, Hung Manh; Tran, Ngan Trong

    2015-05-22

    Two new species of large shovel-jaw carps in the genus Onychostoma are described from the upper Krong No and middle Dong Nai drainages of the Langbiang Plateau in southern Vietnam. These new species are known from streams in montane mixed pine and evergreen forests between 140 and 1112 m. Their populations are isolated in the headwaters of the upper Sre Pok River of the Mekong basin and in the middle of the Dong Nai basin. Both species are differentiated from their congeners by a combination of the following characters: transverse mouth opening width greater than head width, 14-17 predorsal scales, caudal-peduncle length 3.9-4.2 times in SL, no barbels in adults and juveniles, a strong serrated last simple ray of the dorsal fin, and small eye diameter (20.3-21.5% HL). Onychostoma krongnoensis sp. nov. is differentiated from Onychostoma dongnaiensis sp. nov. by body depth (4.0 vs. 3.2 times in SL), predorsal scale number (14-17 vs. 14-15), dorsal-fin length (4.5 vs. 4.2 times in SL), caudal-peduncle length (3.9 vs. 4.2 times in SL), colour in life (dark vs. bright), and by mitochondrial DNA (0.2% sequence divergence). Molecular evidence indicates that both species are members of Onychostoma and are distinct from all congeners sampled (uncorrected sequence divergences at the 16S rRNA gene of >2.0% for all Onychostoma for which homologous 16S rRNA sequences are available).

  20. [Dynamic Characteristics of Base Cations During Wet Deposition in Evergreen Broad-leaf Forest Ecosystem].

    Science.gov (United States)

    An, Si-wei; Sun, Tao; Ma, Ming; Wang, Ding-yong

    2015-12-01

    Based on field tests and laboratory experiments, effects of precipitation, throughfall, litterfall, and groundwater runoff of the ever-green broad-leaf forest on the dynamic characteristics of base cations in Simian Mountain were investigated from September 2012 to August 2013. The results showed that the rainfall of Simian Mountain was apparently acidic, with average pH of 4.90 and maximum pH of 5.14. The soil and canopies could increase pH of precipitation, with soils having the maximum increment, followed by the forest canopy. Forest canopy only had the function of interception on Na⁺. And precipitation could leach out Ca2⁺, Mg2⁺ and K⁺ of the canopies. Moreover, the degradation of litter was probably the main reason for the increase of base cations concentrations in the surface litter water. The litter water leached Ca2⁺, Mg2⁺ and Na⁺ of the forest soil through downward infiltration. The total retention rates of Ca²⁺, Mg²⁺, Na⁺ and K⁺ were 33.82%, -7.06%, 74.36% and 42.87%, respectively. Ca²⁺, Na⁺, K⁺ were found to be reserved in the forest ecosystem, and the highest interception rate was found for Na⁺.

  1. Influence of summer marine fog and low cloud stratus on water relations of evergreen woody shrubs (Arctostaphylos: Ericaceae) in the chaparral of central California.

    Science.gov (United States)

    Vasey, Michael C; Loik, Michael E; Parker, V Thomas

    2012-10-01

    Mediterranean-type climate (MTC) regions around the world are notable for cool, wet winters and hot, dry summers. A dominant vegetation type in all five MTC regions is evergreen, sclerophyllous shrubland, called chaparral in California. The extreme summer dry season in California is moderated by a persistent low-elevation layer of marine fog and cloud cover along the margin of the Pacific coast. We tested whether late dry season water potentials (Ψ(min)) of chaparral shrubs, such as Arctostaphylos species in central California, are influenced by this coast-to-interior climate gradient. Lowland coastal (maritime) shrubs were found to have significantly less negative Ψ(min) than upland interior shrubs (interior), and stable isotope (δ(13)C) values exhibited greater water use efficiency in the interior. Post-fire resprouter shrubs (resprouters) had significantly less negative Ψ(min) than co-occurring obligate seeder shrubs (seeders) in interior and transitional chaparral, possibly because resprouters have deeper root systems with better access to subsurface water than shallow-rooted seeders. Unexpectedly, maritime resprouters and seeders did not differ significantly in their Ψ(min), possibly reflecting more favorable water availability for shrubs influenced by the summer marine layer. Microclimate and soil data also suggest that maritime habitats have more favorable water availability than the interior. While maritime seeders constitute the majority of local Arctostaphylos endemics, they exhibited significantly greater vulnerability to xylem cavitation than interior seeders. Because rare seeders in maritime chaparral are more vulnerable to xylem cavitation than interior seeders, the potential breakdown of the summer marine layer along the coast is of potential conservation concern.

  2. Retention of available P in acid soils of tropical and subtropical evergreen broad-leaved forests

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianhui; ZOU Xiaoming; YANG Xiaodong

    2007-01-01

    Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests.For this paper,we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils.The two forests differ in forest humus layer;it is deep in the Ailao forest while little is present in the Xishuangbanna forest.The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced.The lowest levels of extractable P pools occurred in the surface (0-10 era) mineral soils of the Xishuangbanna forest.However,microbial P in the mineral soil of the Xishuangbauna forest was twice that in the Ailao forest.Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests.We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils,whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests.

  3. The ghosts of trees past: savanna trees create enduring legacies in plant species composition.

    Science.gov (United States)

    Stahlheber, Karen A; Crispin, Kimberly L; Anton, Cassidy; D'Antonio, Carla M

    2015-09-01

    Isolated trees in savannas worldwide are known to modify their local environment and interact directly with neighboring plants. Less is known about how related tree species differ in their impacts on surrounding communities, how the effects of trees vary between years, and how composition might change following loss of the tree. To address these knowledge gaps, we explored the following questions: How do savanna trees influence the surrounding composition of herbaceous plants? Is the influence of trees consistent across different species and years? How does this change following the death of the tree? We surveyed herbaceous species composition and environmental attributes surrounding living and dead evergreen and deciduous Quercus trees in California (USA) savannas across several years that differed in their total precipitation. Oak trees of all species created distinct, homogenous understory communities dominated by exotic grasses across several sites. The composition of the low-diversity understory communities showed less interannual variation than open grassland, despite a two-fold difference in precipitation between the driest and wettest year. Vegetation composition was correlated with variation in soil properties, which were strongly affected by trees. Oaks also influenced the communities beyond the edge of the crown, but this depended on site and oak species. Low-diversity understory communities persisted up to 43 years following the death of the tree. A gradual decline in the effect of trees on the physical, environment following death did not result in vegetation becoming more similar to open grassland over time. The presence of long-lasting legacies of past tree crowns highlights the difficulty of assigning control of the current distribution of herbaceous species in grassland to their contemporary environment.

  4. Seasonal abundance and activity of pill millipedes ( Arthrosphaera magna) in mixed plantation and semi-evergreen forest of southern India

    Science.gov (United States)

    Ashwini, Krishna M.; Sridhar, Kandikere R.

    2006-01-01

    Seasonal occurrence and activity of endemic pill millipedes ( Arthrosphaera magna) were examined in organically managed mixed plantation and semi-evergreen forest reserve in southwest India between November 1996 and September 1998. Abundance and biomass of millipedes were highest in both habitats during monsoon season. Soil moisture, conductivity, organic carbon, phosphate, potassium, calcium and magnesium were higher in plantation than in forest. Millipede abundance and biomass were about 12 and 7 times higher in plantation than in forest, respectively ( P 0.05). Millipede abundance and biomass were positively correlated with rainfall ( P = 0.01). Besides rainfall, millipedes in plantation were positively correlated with soil moisture as well as temperature ( P = 0.001). Among the associated fauna with pill millipedes, earthworms rank first followed by soil bugs in both habitats. Since pill millipedes are sensitive to narrow ecological changes, the organic farming strategies followed in mixed plantation and commonly practiced in South India seem not deleterious for the endangered pill millipedes Arthrosphaera and reduce the risk of local extinctions.

  5. Net Primary Production and Carbon Stocks for Subarctic Mesic-Dry Tundras with Contrasting Microtopography, Altitude, and Dominant Species

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Demey, A

    2009-01-01

    Mesic-dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five...... mesic-dry tundras in Northern Sweden with contrasting microtopography, altitude, and dominant species. Those measurements were paralleled by the stock assessments of nitrogen (N), the limiting nutrient. The vascular production was determined by harvest or in situ growing units, whereas the nonvascular...... hermaphroditum is more productive than Cassiope tetragona vegetation. Although the large majority of the apical NPP occurred in early-mid season (85%), production of stems and evergreen leaves proceeded until about 2 weeks before senescence. Most of the vascular vegetation was belowground (80%), whereas most...

  6. Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman–Monteith approach combined with a photosynthesis-dependent stomatal model

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Komatsu, Masabumi; Hoshika, Yasutomo; Yazaki, Kenichi; Yoshimura, Kenichi; Fujii, Saori; Miyama, Takafumi; Kominami, Yuji

    2014-01-01

    Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman–Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO 2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O 3 uptake, even when the Penman–Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O 3 uptake through stomata, as AOT40 peaked in April, but with O 3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O 3 uptake in springtime, even when the highest O 3 concentrations were observed. -- Highlights: • We estimate canopy-level O 3 uptake in a warm-temperate mixed forest in Japan. • The Penman–Monteith approach is compensated by a photosynthesis-dependent model. • Stomatal conductance can be estimated, even in a partly-opened or wet canopy. • The estimated O 3 dose peaks in summer though O 3 exposure peaks in spring. -- Estimation of seasonal O 3 uptake over a mixed-temperate forest compensated by a photosynthesis-dependent stomatal model

  7. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.

    Science.gov (United States)

    Poorter, Lourens

    2009-03-01

    Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.

  8. the ecological dynamics and trajectories of bioactive compounds in ...

    African Journals Online (AJOL)

    COMPOUNDS IN PLANTS OF THE GENUS - ANTHOCLIESTA FOUND. IN PARTS OF .... East Atlantic Ocean. .... formation of red precipitate indicate, the presence of alkaloid. ..... and fruit of plant species under varied geographical location ... perennial evergreen and deciduous species, biennial .... Washington DC. Ogata ...

  9. Modelling tree ring cellulose δ18O variations in two temperature-sensitive tree species from North and South America

    Directory of Open Access Journals (Sweden)

    A. Lavergne

    2017-11-01

    Full Text Available Oxygen isotopes in tree rings (δ18OTR are widely used to reconstruct past climates. However, the complexity of climatic and biological processes controlling isotopic fractionation is not yet fully understood. Here, we use the MAIDENiso model to decipher the variability in δ18OTR of two temperature-sensitive species of relevant palaeoclimatological interest (Picea mariana and Nothofagus pumilio and growing at cold high latitudes in North and South America. In this first modelling study on δ18OTR values in both northeastern Canada (53.86° N and western Argentina (41.10° S, we specifically aim at (1 evaluating the predictive skill of MAIDENiso to simulate δ18OTR values, (2 identifying the physical processes controlling δ18OTR by mechanistic modelling and (3 defining the origin of the temperature signal recorded in the two species. Although the linear regression models used here to predict daily δ18O of precipitation (δ18OP may need to be improved in the future, the resulting daily δ18OP values adequately reproduce observed (from weather stations and simulated (by global circulation model δ18OP series. The δ18OTR values of the two species are correctly simulated using the δ18OP estimation as MAIDENiso input, although some offset in mean δ18OTR levels is observed for the South American site. For both species, the variability in δ18OTR series is primarily linked to the effect of temperature on isotopic enrichment of the leaf water. We show that MAIDENiso is a powerful tool for investigating isotopic fractionation processes but that the lack of a denser isotope-enabled monitoring network recording oxygen fractionation in the soil–vegetation–atmosphere compartments limits our capacity to decipher the processes at play. This study proves that the eco-physiological modelling of δ18OTR values is necessary to interpret the recorded climate signal more reliably.

  10. Fragmentation patterns of evergreen oak woodlands in Southwestern Iberia: identifying key spatial indicators.

    Science.gov (United States)

    Costa, Augusta; Madeira, Manuel; Lima Santos, José; Plieninger, Tobias; Seixas, Júlia

    2014-01-15

    Mediterranean evergreen oak woodlands (composed of Quercus suber L. and Quercus rotundifolia Lam.) are becoming increasingly fragmented in the human-modified landscapes of Southwestern Portugal and Spain. Previous studies have largely neglected to assess the spatial changes of oak woodlands in relation to their surrounding landscape matrix, and to characterize and quantify woodland boundaries and edges. The present study aims to fill this gap by analyzing fragmentation patterns of oak woodlands over a 50-year period (1958-2007) in three landscapes. Using archived aerial imagery from 1958, 1995 and 2007, for two consecutive periods (1958-1995 and 1995-2007), we calculated a set of landscape metrics to compare woodland fragmentation over time. Our results indicated a continuous woodland fragmentation characterized by their edge dynamics. From 1958 to 2007, the replacement of open farmland by shrubland and by new afforestation areas in the oak woodland landscape surrounding matrix, led to the highest values for edge contrast length trends of 5.0 and 12.3, respectively. Linear discriminant analysis was performed to delineate fragmented woodland structures and identify metric variables that characterize woodland spatial configuration. The edge contrast length with open farmland showed a strong correlation with F1 (correlations ranging between 0.55 and 0.98) and may be used as a proxy for oak woodland mixedness in landscape matrix. The edge dynamics of oak woodlands may result in different patterns of oak recruitment and therefore, its study may be helpful in highlighting future baselines for the sustainable management of oak woodlands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Evapotranspiration from a Mediterranean evergreen oak savannah: The role of trees and pasture

    Science.gov (United States)

    Paço, Teresa A.; David, Teresa S.; Henriques, Manuel O.; Pereira, João S.; Valente, Fernanda; Banza, João; Pereira, Fernando L.; Pinto, Clara; David, Jorge S.

    2009-05-01

    SummaryMediterranean evergreen oak woodlands of southern Portugal ( montados) are savannah-type ecosystems with a widely sparse tree cover, over extensive grassland. Therefore, ecosystem water fluxes derive from two quite differentiated sources: the trees and the pasture. Partitioning of fluxes according to these different sources is necessary to quantify overall ecosystem water losses as well as to improve knowledge on its functional behaviour. In southern Iberia, these woodlands are subjected to recurrent droughts. Therefore, reaction/resilience to water stress becomes an essential feature of vegetation on these ecosystems. Long-term tree transpiration was recorded for 6 years from a sample of holm oak ( Quercus ilex ssp. rotundifolia) trees, using the Granier sap flow method. Ecosystem transpiration was measured by the eddy covariance technique for an 11-month period (February to December 2005), partly coincident with a drought year. Pasture transpiration was estimated as the difference between ecosystem (eddy covariance) and tree (sap flow) transpiration. Pasture transpiration stopped during the summer, when the surface soil dried up. In the other seasons, pasture transpiration showed a strong dependence on rainfall occurrence and on top soil water. Conversely, trees were able to maintain transpiration throughout the summer due to the deep root access to groundwater. Q. ilex trees showed a high resilience to both seasonal and annual drought. Tree transpiration represented more than half of ecosystem transpiration, in spite of the low tree density (30 trees ha -1) and crown cover fraction (21%). Tree evapotranspiration was dominated by transpiration (76%), and interception loss represented only 24% of overall tree evaporation.

  12. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    Science.gov (United States)

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans

    2014-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and

  13. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees

    Science.gov (United States)

    David Y. Hollinger

    1986-01-01

    Nitrogen and phosphorus flow in litterfall and throughfall were studied in two California Quercus species (the evergreen Q.agrifolia and deciduous Q. lobata) before, during, and after an outbreak of the California oak moth, Phryganidia californica. All of the foliage of both oak species was...

  14. Effects of rhododendron removal on the water use of hardwood species following eastern hemlock mortality

    Science.gov (United States)

    Hawthorne, S. N.; Miniat, C.; Elliott, K.

    2017-12-01

    Forest disturbance that alters vegetation species composition can affect ecosystem productivity and function. The loss of eastern hemlock (Tsuga canadensis) to hemlock woolly adelgid infestations in southern Appalachian Mountains has resulted in more than a two-fold increase in growth of co-occurring rhododendron (Rhododendron maximum) understory, evergreen shrubs. In contrast, the growth of hardwood species increased by 1.2 fold during the same 5 year period following infestation. This study examines the effects of mechanically removing the rhododendron shrub layer on water use and growth of hardwood species. The treatment—hypothesized to speed ecosystem recovery of structure and function—involved cutting, spreading and burning rhododendron stems to remove both rhododendron and soil O-horizon. Sap flow, soil moisture and micro-climate (humidity, temperature) were measured in a pair of reference and treated plots. Preliminary results from the relatively dry summer/fall 2016 have shown that the mean daily transpiration (Et) of the treated plot was 24% greater than the mean daily Et of hardwood trees in the reference plot (t-test, p treatment plots compared to the reference plots. This suggests that the removal of the shrub layer reduced competition for resources for the canopy and seedling trees, which may increase tree growth and recruitment. Thus, in the wake of hemlock loss, recovery of riparian forest structure and function may be aided with shrub layer removal.

  15. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought.

    Science.gov (United States)

    Limousin, Jean-Marc; Rambal, Serge; Ourcival, Jean-Marc; Rodríguez-Calcerrada, Jesus; Pérez-Ramos, Ignacio M; Rodríguez-Cortina, Raquel; Misson, Laurent; Joffre, Richard

    2012-06-01

    Mediterranean trees must adjust their canopy leaf area to the unpredictable timing and severity of summer drought. The impact of increased drought on the canopy dynamics of the evergreen Quercus ilex was studied by measuring shoot growth, leaf production, litterfall, leafing phenology and leaf demography in a mature forest stand submitted to partial throughfall exclusion for 7 years. The leaf area index rapidly declined in the throughfall-exclusion plot and was 19% lower than in the control plot after 7 years of treatment. Consequently, leaf litterfall was significantly lower in the dry treatment. Such a decline in leaf area occurred through a change in branch allometry with a decreased number of ramifications produced and a reduction of the leaf area supported per unit sapwood area of the shoot (LA/SA). The leafing phenology was slightly delayed and the median leaf life span was slightly longer in the dry treatment. The canopy dynamics in both treatments were driven by water availability with a 1-year lag: leaf shedding and production were reduced following dry years; in contrast, leaf turnover was increased following wet years. The drought-induced decrease in leaf area, resulting from both plasticity in shoot development and slower leaf turnover, appeared to be a hydraulic adjustment to limit canopy transpiration and maintain leaf-specific hydraulic conductivity under drier conditions.

  16. Zeaxanthin-independent energy quenching and alternative electron sinks cause a decoupling of the relationship between the photochemical reflectance index (PRI) and photosynthesis in an evergreen conifer during spring.

    Science.gov (United States)

    Fréchette, Emmanuelle; Wong, Christopher Y S; Junker, Laura Verena; Chang, Christine Yao-Yun; Ensminger, Ingo

    2015-12-01

    In evergreen conifers, the winter down-regulation of photosynthesis and its recovery during spring are the result of a reorganization of the chloroplast and adjustments of energy-quenching mechanisms. These phenological changes may remain undetected by remote sensing, as conifers retain green foliage during periods of photosynthetic down-regulation. The aim was to assess if the timing of the spring recovery of photosynthesis and energy-quenching characteristics are accurately monitored by the photochemical reflectance index (PRI) in the evergreen conifer Pinus strobus. The recovery of photosynthesis was studied using chlorophyll fluorescence, leaf gas exchange, leaf spectral reflectance, and photosynthetic pigment measurements. To assess if climate change might affect the recovery of photosynthesis, seedlings were exposed to cold spring conditions or warm spring conditions with elevated temperature. An early spring decoupling of the relationship between photosynthesis and PRI in both treatments was observed. This was caused by differences between the timing of the recovery of photosynthesis and the timing of carotenoid and chlorophyll pool size adjustments which are the main factors controlling PRI during spring. It was also demonstrated that zeaxanthin-independent NPQ mechanisms undetected by PRI further contributed to the early spring decoupling of the PRI-LUE relationship. An important mechanism undetected by PRI seems to involve increased electron transport around photosystem I, which was a significant energy sink during the entire spring transition, particularly in needles exposed to a combination of high light and cold temperatures. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Molecular diversity among Turkish oaks ( QUERCUS ) using random ...

    African Journals Online (AJOL)

    Turkey is one of the most important region of the world according to oak species number and variation. In this study, species belonging to evergreen oaks in Turkey were investigated to solve taxonomic problems and to design the limit of taxa by using random amplified polymorphic DNA (RAPD) data. Here, three species of ...

  18. Pre-Dispersal Seed Predation in a Species-Rich Forest Community: Patterns and the Interplay with Determinants.

    Directory of Open Access Journals (Sweden)

    Yue Xu

    Full Text Available Pre-dispersal seed predation (PDSP is commonly observed in woody plants, and recognized as a driver of seed production variability that is critical for successful regeneration. Earlier studies on PDSP and its determinants were mostly species specific, with community-level PDSP rarely estimated; and the interactions between the temporal variability of seed production and PDSP remain elusive. In this study, the community seed rain of woody plants in a mixed evergreen-deciduous broadleaf forest was monitored for seven years. We examined predation on collected seeds and analyzed the determinants of PDSP. PDSP was recorded in 17 out of 44 woody plant species, and three-quarters of PDSP was due to insect predators. Annual seed production varied substantially at community level, reversely linked with the temporal variation of PDSP rate. The PDSP rate was biased regarding fruit types, and being significantly correlated with seed mass when using phylogenetic independent contrasts (PICs or without taking into account phylogenetic relations, especially for nuts. PDSP rate was also negatively correlated with seed density, showing a threshold-related predator satiation effect. The community-level PDSP rate was primarily determined by tree height, fruit type, and interannual variation of seed production and seed mass. Our analysis revealed a causal link between seed production and the dynamics of PDSP rate at the community level. The predator satiation effect was primarily contributed by the dominant species, whereas the rare species seemed to apply a distinct "hide-and-seek" strategy to control the risk of PDSP. The mechanistic difference of seed production between the common and rare species can shed new light on species coexistence and community assembly. Long-term monitoring of both seed rain and seed predation is required for understanding the ecological and evolutionary implications of species regeneration strategies in a species-rich forest community.

  19. Functional groups in North Chilean desert shrub species, based on the water sources used

    International Nuclear Information System (INIS)

    Squeo, Francisco A; Olivares, Nancy; Olivares, Sandra; Jorquera, Carmen; Pollastri, Alberto; Aguirre, Evelyn; Aravena, Ramon; Ehleringer, James R

    1999-01-01

    Primary productivity and vegetation structure in arid ecosystems are determined by water availability. In studies conducted in the coastal dry land of North Central Chile (29 degrees 43'S; 71degrees 14'0, 300m), the mechanisms to use different water sources by shrubs species, in two contrasting rainfall years were compared. Information on pheno logical studies, root architecture and water sources used by shrubs through the use of stable isotopes is are discussed. Six functional groups based on water uptake and water use are recognized. The functional groups were defined based on their habits (deciduous and evergreen), their root systems, (shallow, dimorphic and deep), and their ability to use different water sources (surficial and/or deep). Because of the differential impact of the goat overgrazing on different functional groups, this would result on a lower utilization of surficial waters. A management and/or restoration plan should maximize the use of all water sources available to recover the primary productivity and the system stability

  20. Pines

    Science.gov (United States)

    C. Plomion; D. Chagne; D. Pot; S. Kumar; P.L. Wilcox; R.D. Burdon; D. Prat; D.G. Peterson; J. Paiva; P. Chaumeil; G.G. Vendramin; F. Sebastiani; C.D. Nelson; C.S. Echt; O. Savolainen; T.L. Kubisiak; M.T. Cervera; N. de Maria; M.N. Islam-Faridi

    2007-01-01

    Pinus is the most important genus within the Family Pinaceae and also within the gymnosperms by the number of species (109 species recognized by Farjon 2001) and by its contribution to forest ecosystems. All pine species are evergreen trees or shrubs. They are widely distributed in the northern hemisphere, from tropical areas to northern areas in America and Eurasia....

  1. Modeling Ecosystem Services for Park Trees: Sensitivity of i-Tree Eco Simulations to Light Exposure and Tree Species Classification

    Directory of Open Access Journals (Sweden)

    Rocco Pace

    2018-02-01

    Full Text Available Ecosystem modeling can help decision making regarding planting of urban trees for climate change mitigation and air pollution reduction. Algorithms and models that link the properties of plant functional types, species groups, or single species to their impact on specific ecosystem services have been developed. However, these models require a considerable effort for initialization that is inherently related to uncertainties originating from the high diversity of plant species in urban areas. We therefore suggest a new automated method to be used with the i-Tree Eco model to derive light competition for individual trees and investigate the importance of this property. Since competition depends also on the species, which is difficult to determine from increasingly used remote sensing methodologies, we also investigate the impact of uncertain tree species classification on the ecosystem services by comparing a species-specific inventory determined by field observation with a genus-specific categorization and a model initialization for the dominant deciduous and evergreen species only. Our results show how the simulation of competition affects the determination of carbon sequestration, leaf area, and related ecosystem services and that the proposed method provides a tool for improving estimations. Misclassifications of tree species can lead to large deviations in estimates of ecosystem impacts, particularly concerning biogenic volatile compound emissions. In our test case, monoterpene emissions almost doubled and isoprene emissions decreased to less than 10% when species were estimated to belong only to either two groups instead of being determined by species or genus. It is discussed that this uncertainty of emission estimates propagates further uncertainty in the estimation of potential ozone formation. Overall, we show the importance of using an individual light competition approach and explicitly parameterizing all ecosystem functions at the

  2. [Features of calcium crystals and calcium components in 54 plant species in salinized habitats of Tianjin].

    Science.gov (United States)

    Xu, Jing-Jing; Ci, Hua-Cong; He, Xing-Dong; Xue, Ping-Ping; Zhao, Xue-Lai; Guo, Jian-Tan; Gao, Yu-Bao

    2012-05-01

    Plant calcium (Ca) is composed of dissociated Ca2+ and easily soluble, slightly soluble, and hard soluble combined Ca salts. The hard soluble Ca salts can often engender Ca crystals. To understand the Ca status in different growth form plants in salinized habitats, 54 plant species were sampled from the salinized habitats in Tianjin, with the Ca crystals examined by microscope and the Ca components determined by sequential fractionation procedure. More Ca crystals were found in 38 of the 54 plant species. In 37 of the 38 plant species, drusy and prismatic Ca oxalate crystals dominated, whereas the cystolith of Ca carbonate crystal only appeared in the leaves of Ficus carica of Moraceae. The statistics according to growth form suggested that deciduous arbors and shrubs had more Ca oxalate crystal, liana had lesser Ca oxalate crystal, and herbs and evergreen arbors had no Ca oxalate crystal. From arbor, shrub, liana to herb, the concentration of HCl-soluble Ca decreased gradually, while that of water soluble Ca was in adverse. The concentration of water soluble Ca in herbs was significantly higher than that in arbors and shrubs. This study showed that in salinized habitats, plant Ca crystals and Ca components differed with plant growth form, and the Ca oxalate in deciduous arbors and shrubs played an important role in withstanding salt stress.

  3. Future stratospheric ozone depletion will affect a subarctic dwarf shrub ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Ulf

    1997-02-01

    The stratospheric ozone depletion and the concomitant increase in ultraviolet-B (UV-B, 280-320 nm) radiation is of global concern due to the effects of UV-B on living organisms. To investigate the effects of increased levels of UV-B, a field irradiation system was established at a subarctic dwarf shrub heath in Northern Sweden (68 deg N). An ozone depletion of 15% under clear sky conditions was simulated over a naturally growing ecosystem. The response of both individual components and processes was studied to reveal changes in ecosystem structure and function. Species with different life strategies (evergreen or deciduous) responded differently both in magnitude and direction. The evergreen species were more responsive to UV-B regarding shoot growth, which could be due to cumulative effects in long-lived tissues, since the retardation in relative growth increased over time of exposure. Leaves of evergreen species became thicker under enhanced UV-B, while leaves of deciduous species became thinner. Decomposition studies (laboratory and in situ) showed that indirect effects of UV-B, due to changes in leaf tissue chemistry affected microbial activity and slowed down the decomposition rate. More directly, UV-B decreased the abundance of some fungal species and hence the composition of species. However, no altered decomposition rate was found when decomposition progressed under high UV-B even if the microorganisms were fewer. This could be due to the increased direct photo degradation of litter that compensates for lower microbial activity. The decomposition rate is therefore strongly dependent on the interception of UV-B at the litter layer. This research has shown that ecosystem components and processes are affected in a number of ways and that there are indications of changes in species composition in a long-term perspective due to differences in responsiveness between the different species. 128 refs, 7 figs

  4. Development of multi-functional streetscape green infrastructure using a performance index approach

    International Nuclear Information System (INIS)

    Tiwary, A.; Williams, I.D.; Heidrich, O.; Namdeo, A.; Bandaru, V.; Calfapietra, C.

    2016-01-01

    This paper presents a performance evaluation framework for streetscape vegetation. A performance index (PI) is conceived using the following seven traits, specific to the street environments – Pollution Flux Potential (PFP), Carbon Sequestration Potential (CSP), Thermal Comfort Potential (TCP), Noise Attenuation Potential (NAP), Biomass Energy Potential (BEP), Environmental Stress Tolerance (EST) and Crown Projection Factor (CPF). Its application is demonstrated through a case study using fifteen street vegetation species from the UK, utilising a combination of direct field measurements and inventoried literature data. Our results indicate greater preference to small-to-medium size trees and evergreen shrubs over larger trees for streetscaping. The proposed PI approach can be potentially applied two-fold: one, for evaluation of the performance of the existing street vegetation, facilitating the prospects for further improving them through management strategies and better species selection; two, for planning new streetscapes and multi-functional biomass as part of extending the green urban infrastructure. - Highlights: • A performance evaluation framework for streetscape vegetation is presented. • Seven traits, relevant to street vegetation, are included in a performance index (PI). • The PI approach is applied to quantify and rank fifteen street vegetation species. • Medium size trees and evergreen shrubs are found more favourable for streetscapes. • The PI offers a metric for developing sustainable streetscape green infrastructure. - A performance index is developed and applied to fifteen vegetation species indicating greater preference to medium size trees and evergreen shrubs for streetscaping.

  5. Community patterns of tropical tree phenology derived from Unmanned Aerial Vehicle images: intra- and interspecific variation, association with species plant traits, and response to interannual climate variation

    Science.gov (United States)

    Bohlman, Stephanie; Rifai, Sami; Park, John; Dandois, Jonathan; Muller-Landau, Helene

    2017-04-01

    identities of 2000 crowns in the images by linking the crowns to stem tags in the field, thus producing a time series of cumulative annual deciduousness for 65 species. Deciduousness showed continuous variation among species rather than distinct phenological categories (ie evergreen and deciduous) that are commonly used in physiological, ecosystem and modeling studies. Some species labelled as evergreen by expert-based classification had annual deciduousness higher than those labelled as deciduous. We found significant, positive relationships between species mean deciduousness and species' leaf phosphorous, photosynthetic capacity and adult relative growth rate, suggesting that higher deciduousness is associated with greater resource acquisition. Comparing May 2015 (during an El Nino drought) and May 2014 (an non El Nino year with normal rainfall), mean deciduousness values for nearly all species was greater in 2015 but with differing levels of intraspecific variation. We discuss how the variation in deciduousness among species, its relationship with plant traits and response to the drought might be incorporated into terrestrial biosphere models of tropical forests to more accurately represent phenology and understand the consequences of community-level variation in phenology for ecosystem processes.

  6. Evergreen Valley College Matriculation Aide Intervention Evaluation: Success Rates of Fall 1992 Sections Using a Matriculation Aide Compared to Non-Intervention Sections for the Same Semester and Two Previous Semesters, English 321, 322, 330, and Math 12. Research Report #408.

    Science.gov (United States)

    Kangas, Jon

    In fall 1992, a study was performed at Evergreen Valley College, in San Jose, California, to determine whether the presence of full-time instructional aides and part-time matriculation aides in four specific courses (English 321, 322, 330, and Math 12) led to increases in student success. Success was defined as receipt of a grade of…

  7. Study on carbon-fixing,oxygen-releasing,temperature-reducing and humidity-increasing effects of evergreen plants in south highway

    Directory of Open Access Journals (Sweden)

    LIU Minmin

    2014-04-01

    Full Text Available Li-6400 portable photosynthesis system,was used to test the diurnal variations of photosynthetic rate and stomatal conductance of evergreen plants in Southern Highway,and to calculate their ability of absorbing carbon dioxide and releasing oxygen and to calculate the transpiring water volume and absorbing heat quantity of plants.Results showed that Euonymus fortunei Hand-Mazz,Hedera helix.Aucuba eriobotryaefolia had better carbon-fixing and oxygen-releasing effects,while Photinia serrulata,Trachycarpus fortunei,Radix Ophiopogonis had worse carbon-fixing and oxygen-releasing effects.Radix Ophiopogonis,Photinia glabra,Euonymus fortunei Hand.-Mazz had higher cooling and humidification ability,while Photinia serrulata,Trachycarpus fortunei did not act as well as them.Euonymus fortunei Hand.-Mazz and Hedera helix had higher leaf chlorophyll in per unit mass,values are 12.91、10.34、9.93 mg·g-1.Radix Ophiopogonis、Cinnamomum camphora(Linn. Presl and Trachycarpus fortunei had lower leaf chlorophyll in per unit mass,value is 3.55、2.67、2.06 mg·g-1.Releasing oxygen,fixing carbon,net assimilation and chlorophyll content has good correlation(P<0.05.

  8. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    Directory of Open Access Journals (Sweden)

    Madelon Lohbeck

    Full Text Available Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment and in 17 wet secondary forest sites (<1-25 years after abandonment. We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during

  9. Leaf phenology and its associated traits in the wintergreen species Aristotelia chilensis (Mol. Stuntz (Elaeocarpaceae Fenología foliar y sus caracteres asociados en la especie invierno-verde Aristotelia chilensis (Mol. Stuntz (Elaeocarpaceae

    Directory of Open Access Journals (Sweden)

    MARÍA ANGÉLICA DAMASCOS

    2001-12-01

    Full Text Available The post-summer leaf demography of the wintergreen species Aristotelia chilensis growing near San Carlos de Bariloche, Argentina, is described. Its specific leaf mass (SLM, g m-2 is compared to that of the deciduous and evergreen species of the Andean-Patagonian forests and to that of other communities abroad. The pattern of leaf emergence is intermediate, with leaf flush in spring (basal cohort, BC, followed by successive unfolding of the remaining leaves (distal cohort, DC during summer. The senescence of the BC occurs mainly in autumn, with a loss of 11-31 % of its SLM. The DC falls synchronously in mid-spring and the SLM loss in winter is 10-13 %. The SLM of A. chilensis (103.6 ± 6.2 g m-2 is intermediate when compared to the general mean values of deciduous (73.7 ± 15.9 g m-2 and evergreen species (154.8 ± 45.8 g m-2. The SLM of deciduous and evergreen species of three different forests near San Carlos de Bariloche varied significantly at the end of the growing season while that of A. chilensis showed more constant values. The periodicity of leaf production and senescence in A. chilensis allows the maintenance of one leaf cohort throughout the year, covering the carbon demand for flowering and leaf production in spring. This differentiates the deciduous from the wintergreen species, despite their similar mean leaf life span values, while the evergreen species have a longer leaf turnover. Considering the conditions for growth in each studied forest, the leaf life span was not the only factor determining the SLM value. This variable would also depend on multiple stresses that may act during the ontogenesis and evolution of the leaves in each phenological groupSe describe la demografía foliar después del verano de la especie invierno-verde Aristotelia chilensis, creciendo cerca de la ciudad de San Carlos de Bariloche, Argentina. Se compara su peso específico foliar (SLM, g m-2 con los valores de especies deciduas y siempreverdes de los

  10. Adsorption of Zn(II) in aqueous solution by activated carbons prepared from evergreen oak (Quercus rotundifolia L.).

    Science.gov (United States)

    Gómez-Tamayo, M del Mar; Macías-García, Antonio; Díaz Díez, M Angeles; Cuerda-Correa, Eduardo M

    2008-05-01

    In the present work activated carbons have been prepared from evergreen oak wood. Different samples have been prepared varying the concentration of the activating agent (H(3)PO(4)) and the treatment temperature. The yield of the process decreases with increasing phosphoric acid concentrations. Furthermore, high concentrations of activating agent lead to mainly mesoporous activated carbons to the detriment of the microporous texture. Treatment temperatures up to 450 degrees C lead to a progressive increase of the micro- and mesopore volumes. Values of specific surface area (S(BET)) as high as 1723 m(2) g(-1)have been obtained using appropriate phosphoric acid concentrations and treatment temperatures. The samples prepared have been successfully used in the removal of Zn(II) from aqueous solutions. From the adsorption kinetic data it may be stated that the equilibrium time is, in all cases, below 170 h. The adsorption process as a rule becomes faster as the mesopore volume and specific surface area of the samples increase. The adsorption isotherms in liquid phase point out that the adsorption capacity (n(0)(s)) and the affinity towards the solute (K(ci)) are higher for the sample showing the most developed mesoporous texture and surface area as well.

  11. Spatial Heterogeneity of the Forest Canopy Scales with the Heterogeneity of an Understory Shrub Based on Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Catherine K. Denny

    2017-04-01

    Full Text Available Spatial heterogeneity of vegetation is an important landscape characteristic, but is difficult to assess due to scale-dependence. Here we examine how spatial patterns in the forest canopy affect those of understory plants, using the shrub Canada buffaloberry (Shepherdia canadensis (L. Nutt. as a focal species. Evergreen and deciduous forest canopy and buffaloberry shrub presence were measured with line-intercept sampling along ten 2-km transects in the Rocky Mountain foothills of west-central Alberta, Canada. Relationships between overstory canopy and understory buffaloberry presence were assessed for scales ranging from 2 m to 502 m. Fractal dimensions of both canopy and buffaloberry were estimated and then related using box-counting methods to evaluate spatial heterogeneity based on patch distribution and abundance. Effects of canopy presence on buffaloberry were scale-dependent, with shrub presence negatively related to evergreen canopy cover and positively related to deciduous cover. The effect of evergreen canopy was significant at a local scale between 2 m and 42 m, while that of deciduous canopy was significant at a meso-scale between 150 m and 358 m. Fractal analysis indicated that buffaloberry heterogeneity positively scaled with evergreen canopy heterogeneity, but was unrelated to that of deciduous canopy. This study demonstrates that evergreen canopy cover is a determinant of buffaloberry heterogeneity, highlighting the importance of spatial scale and canopy composition in understanding canopy-understory relationships.

  12. Imprints of Climate Signals in a 204 Year δ18O Tree-Ring Record of Nothofagus pumilio From Perito Moreno Glacier, Southern Patagonia (50°S

    Directory of Open Access Journals (Sweden)

    Jussi Grießinger

    2018-04-01

    Full Text Available A 204 year-long record of δ18O in tree-ring cellulose of southern beech (Nothofagus pumilio from a site near Perito Moreno Glacier (50°S in Southern Patagonia was established to assess its potential for a climate reconstruction. The annually resolved oxygen isotope chronology is built out of seven individual tree-ring δ18O series with a significant mean inter-series correlation (r = 0.61 and is the first of its kind located in Southern America south of 50°S. Over a common period from 1960 to 2013 of available stationary and high-resolution gridded CRU TS v. 4.01 data, the δ18O chronology exhibits a strong sensitivity toward hydroclimatic as well as temperature parameters as revealed by correlation analyses. Among these, positive correlations with maximum temperature in the first part of the summer season (CRU rONDJ = 0.51, p < 0.01 and negative correlations with precipitation in the latter half of the vegetation period (CRU rONDJ = −0.54, p < 0.01 show the highest sensitivities. A strong supra-regional influence of the Southern Annular Mode (SAM is clearly recorded in this chronology as indicated by significant positive correlations during the vegetation period (rONDJ = 0.62, p < 0.01. This indicates that the presented δ18O-chronology shows great promise to reconstruct the influence and variability of the SAM within the last two centuries in southern South America. The modulation of positive and negative anomalies within this series can be interlinked to changes in moisture source origin as revealed by backward trajectory modeling. Additionally, these anomalies can be directly associated to positive or negative phases of the Antarctic Oscillation Index (AAOI and therefore the strength of the Westerlies. Aligned by the analysis on the influence of different main weather types on the δ18O chronology it is shown that such time-series hold the potential to additionally capture their respective influence and change during the last centuries.

  13. Soil microbial biomass under different management and tillage systems of permanent intercropped cover species in an orange orchard

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-12-01

    Full Text Available To mitigate soil erosion and enhance soil fertility in orange plantations, the permanent protection of the inter-rows by cover species has been suggested. The objective of this study was to evaluate alterations in the microbial biomass, due to different soil tillage systems and intercropped cover species between rows of orange trees. The soil of the experimental area previously used as pasture (Brachiaria humidicola was an Ultisol (Typic Paleudult originating from Caiuá sandstone in the northwestern part of the State of Paraná, Brazil. Two soil tillage systems were evaluated: conventional tillage (CT in the entire area and strip tillage (ST (strip width 2 m, in combination with different ground cover management systems. The citrus cultivar 'Pera' orange (Citrus sinensis grafted onto 'Rangpur' lime rootstock was used. Soil samples were collected after five years of treatment from a depth of 0-15 cm, under the tree canopy and in the inter-row, in the following treatments: (1 CT and an annual cover crop with the leguminous species Calopogonium mucunoides; (2 CT and a perennial cover crop with the leguminous peanut Arachis pintoi; (3 CT and an evergreen cover crop with Bahiagrass Paspalum notatum; (4 CT and a cover crop with spontaneous Brachiaria humidicola grass vegetation; and (5 ST and maintenance of the remaining grass (pasture of Brachiaria humidicola. Soil tillage and the different cover species influenced the microbial biomass, both under the tree canopy and in the inter-row. The cultivation of brachiaria increased C and N in the microbial biomass, while bahiagrass increased P in the microbial biomass. The soil microbial biomass was enriched in N and P by the presence of ground cover species and according to the soil P content. The grass species increased C, N and P in the soil microbial biomass from the inter-row more than leguminous species.

  14. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Science.gov (United States)

    Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo

    2015-01-01

    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  15. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Directory of Open Access Journals (Sweden)

    Rodrigo L L Orihuela

    Full Text Available We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  16. The Complete Chloroplast Genome of Catha edulis: A Comparative Analysis of Genome Features with Related Species

    Directory of Open Access Journals (Sweden)

    Cuihua Gu

    2018-02-01

    Full Text Available Qat (Catha edulis, Celastraceae is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA genes, 8 ribosomal RNA (rRNA genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae.

  17. The Complete Chloroplast Genome of Catha edulis: A Comparative Analysis of Genome Features with Related Species

    Science.gov (United States)

    Tembrock, Luke R.; Zheng, Shaoyu; Wu, Zhiqiang

    2018-01-01

    Qat (Catha edulis, Celastraceae) is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp) genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae. PMID:29425128

  18. Freedom of information applications as an "evergreening" tactic: Secretary, Department of Health and Ageing v iNOVA Pharmaceuticals (Australia) Pty Ltd (2010) 191 FCR 573; [2010] FCA 1442.

    Science.gov (United States)

    Vines, Tim; Faunce, Thomas

    2011-09-01

    A recent decision of the Federal Court of Australia illustrates how patent-holding pharmaceutical companies are attempting to use Australia's Freedom of Information Act 1982 (Cth) to force Australian safety, quality and efficacy regulators to disclose whether generic competitors are attempting to enter the market. In Secretary, Department of Health and Ageing v iNova Pharmaceuticals (Australia) Pty Ltd (2010) 191 FCR 573; [2010] FCA 1442 a single judge of the Federal Court overturned a decision of the Administrative Appeals Tribunal (AAT) that would have compelled the Australian Therapeutic Goods Administration (TGA) to reveal whether they were in possession of an application to register generic versions of two iNova products: imiquimod and phentermine. In its justification to the AAT for refusing to confirm or deny the existence of any application, the TGA argued that to reveal the existence of such a document would prejudice the proper administration of the National Health Act 1953 (Cth) as it could compromise the listing of a generic on the Pharmaceutical Benefits Scheme. The AAT failed to appreciate the extent to which this revelation to a competitor would have undercut 2004 amendments to the Therapeutic Goods Act 1989 (Cth) that provided penalties for evergreening tactics involving TGA notifications to drug patent-holders and 2006 amendments to the Patents Act 1990 (Cth) which protected the right of generic manufacturers to "springboard". The decision of the Federal Court is one of the first to explore the use of freedom of information legislation by patent-holders as a potential "evergreening" technique to prolong royalties by marginalising generic competition. Because of the significant amounts of money involved in ensuring rapid market entry of low-cost generic products, the issue has considerable public health significance.

  19. Regionalización biogeográfica de la mastofauna de los bosques tropicales perennifolios de Mesoamérica Biogeographic regionalization of the mammals of tropical evergreen forests in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Héctor C. Olguín-Monroy

    2013-06-01

    Full Text Available Este trabajo presenta una propuesta de regionalización biogeográfica de los bosques tropicales perennifolios de Mesoamérica, resultado de un análisis de parsimonia de endemismos (PAE, utilizando modelos de nicho ecológico (GARP con mamíferos terrestres, usando 41 527 registros para las 233 especies de mamíferos reconocidas. La regionalización propuesta muestra que los bosques tropicales perennifolios de Mesoamérica se dividen por el istmo de Tehuantepec en Oaxaca en: a un grupo septentrional que comprende la Sierra Madre de Chiapas-Guatemala y la Península de Yucatán, y b un grupo austral, que contiene la vertiente pacífica hacia el sur incluyendo Centroamérica. Además se encontró congruencia con trabajos filogenéticos, lo que sugiere una historia biogeográfica común.Mesoamerica is a biologically complex zone that expands from Southern Mexico to extreme Northern Colombia. The biogeographical patterns and relationships of the mammalian fauna associated to the Mesoamerican Tropical Evergreen Forest (MTEF are poorly understood, in spite of the wide distribution of this kind of habitat in the region. We compiled a complete georeferenced database of mammalian species distributed in the MTEF of specimens from museum collections and scientific literature. This database was used to create potential distribution maps through the use of environmental niche models (ENMs by using the Genetic Algorithm for Rule-Set Production (GARP using 22 climatic and topographic layers. Each map was used as a representation of the geographic distribution of the species and all available maps were summed to obtain general patterns of species richness in the region. Also, the maps were used to construct a presence-absence matrix in a grid of squares of 0.5 degrees of side, that was analyzed in a Parsimony Analysis of Endemicity (PAE, which resulted in a hypothesis of the biogeographic scheme in the region. We compiled a total of 41 527 records of 233

  20. Systematic studies of Oryzomyine rodents (Muridae, Sigmodontinae): diagnoses and distributions of species formerly assigned to Oryzomys 'capito'

    Science.gov (United States)

    Musser, G.G.; Carleton, M.D.; Brothers, E.M.; Gardner, A.L.

    1998-01-01

    We describe the morphological species-boundaries and geographic distributions of ten Neotropical Oryzomys based on analyses of museum specimens (skins and skulls, examples preserved in fluid, chromosomal spreads, and information about collection sites from skin tags, field catalogs, and other sources). These species have been regarded as members of an Oryzomys capito complex and for a long time were consolidated into a single entity identified as O. capito. Our study documents the following: 1. Defining the limits of species within the O. capito complex first requires a comprehensive review and rigorous definition of O. capito itself. We consider Fischer's (1814) Mus megacephalus to be valid and available, designate a neotype to bear the name, and reinstate it as a senior synonym of capito Olfers (1818). We then provide a working definition of O. megacephalus and its close relative, O. laticeps, derived from analyses of morphometric variation, estimates of geographic distributions, and evaluations of synonyms. In our view, O. megacephalus occurs in Amazonia but also extends into eastern Paraguay; its synonyms are capito Olfers (1818), cephalotes Desmarest (1819), velutinus Allen and Chapman (1893), goeldi Thomas (1897), modestus Allen (1899), and perenensis Allen (1901). Oryzomys laticeps Lund (1840) occurs in the Atlantic Forest region of eastern Brazil. We designate a lectotype for laticeps and allocate the names saltator Winge (1887) and oniscus Thomas (1904) as synonyms. 2. We provide the first comprehensive taxonomic revision of Oryzomys yunganus Thomas (1902). Its range covers tropical evergreen rainforest formations in the Guiana region and the Amazon Basin where, as documented by voucher specimens, it has been collected at the same localities as O. megacephalus, O. nitidus, and O. tern of carotid arterial circulation, occlusal patterns of second upper and lower molars, cranial proportions, and chromosomal features. Appreciable intraspecific geographic

  1. Hitting an Unintended Target: Phylogeography of Bombus brasiliensis Lepeletier, 1836 and the First New Brazilian Bumblebee Species in a Century (Hymenoptera: Apidae.

    Directory of Open Access Journals (Sweden)

    José Eustáquio Santos Júnior

    Full Text Available This work tested whether or not populations of Bombus brasiliensis isolated on mountain tops of southeastern Brazil belonged to the same species as populations widespread in lowland areas in the Atlantic coast and westward along the Paraná-river valley. Phylogeographic and population genetic analyses showed that those populations were all conspecific. However, they revealed a previously unrecognized, apparently rare, and potentially endangered species in one of the most threatened biodiversity hotspots of the World, the Brazilian Atlantic Forest. This species is described here as Bombus bahiensis sp. n., and included in a revised key for the identification of the bumblebee species known to occur in Brazil. Phylogenetic analyses based on two mtDNA markers suggest this new species to be sister to B. brasiliensis, from which its workers and queens can be easily distinguished by the lack of a yellow hair-band on the first metasomal tergum. The results presented here are consistent with the hypothesis that B. bahiensis sp. n. may have originated from an ancestral population isolated in an evergreen-forest refuge (the so-called Bahia refuge during cold, dry periods of the Pleistocene. This refuge is also known as an important area of endemism for several animal taxa, including other bees. Secondary contact between B. bahiensis and B. brasiliensis may be presently prevented by a strip of semi-deciduous forest in a climate zone characterized by relatively long dry seasons. Considering the relatively limited range of this new species and the current anthropic pressure on its environment, attention should be given to its conservation status.

  2. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity.

    Science.gov (United States)

    Hipp, Andrew L; Manos, Paul S; González-Rodríguez, Antonio; Hahn, Marlene; Kaproth, Matthew; McVay, John D; Avalos, Susana Valencia; Cavender-Bares, Jeannine

    2018-01-01

    Oaks (Quercus, Fagaceae) are the dominant tree genus of North America in species number and biomass, and Mexico is a global center of oak diversity. Understanding the origins of oak diversity is key to understanding biodiversity of northern temperate forests. A phylogenetic study of biogeography, niche evolution and diversification patterns in Quercus was performed using 300 samples, 146 species. Next-generation sequencing data were generated using the restriction-site associated DNA (RAD-seq) method. A time-calibrated maximum likelihood phylogeny was inferred and analyzed with bioclimatic, soils, and leaf habit data to reconstruct the biogeographic and evolutionary history of the American oaks. Our highly resolved phylogeny demonstrates sympatric parallel diversification in climatic niche, leaf habit, and diversification rates. The two major American oak clades arose in what is now the boreal zone and radiated, in parallel, from eastern North America into Mexico and Central America. Oaks adapted rapidly to niche transitions. The Mexican oaks are particularly numerous, not because Mexico is a center of origin, but because of high rates of lineage diversification associated with high rates of evolution along moisture gradients and between the evergreen and deciduous leaf habits. Sympatric parallel diversification in the oaks has shaped the diversity of North American forests. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Documenting biogeographical patterns of African timber species using herbarium records: a conservation perspective based on native trees from Angola.

    Directory of Open Access Journals (Sweden)

    Maria M Romeiras

    Full Text Available In many tropical regions the development of informed conservation strategies is hindered by a dearth of biodiversity information. Biological collections can help to overcome this problem, by providing baseline information to guide research and conservation efforts. This study focuses on the timber trees of Angola, combining herbarium (2670 records and bibliographic data to identify the main timber species, document biogeographic patterns and identify conservation priorities. The study recognized 18 key species, most of which are threatened or near-threatened globally, or lack formal conservation assessments. Biogeographical analysis reveals three groups of species associated with the enclave of Cabinda and northwest Angola, which occur primarily in Guineo-Congolian rainforests, and evergreen forests and woodlands. The fourth group is widespread across the country, and is mostly associated with dry forests. There is little correspondence between the spatial pattern of species groups and the ecoregions adopted by WWF, suggesting that these may not provide an adequate basis for conservation planning for Angolan timber trees. Eight of the species evaluated should be given high conservation priority since they are of global conservation concern, they have very restricted distributions in Angola, their historical collection localities are largely outside protected areas and they may be under increasing logging pressure. High conservation priority was also attributed to another three species that have a large proportion of their global range concentrated in Angola and that occur in dry forests where deforestation rates are high. Our results suggest that timber tree species in Angola may be under increasing risk, thus calling for efforts to promote their conservation and sustainable exploitation. The study also highlights the importance of studying historic herbarium collections in poorly explored regions of the tropics, though new field surveys remain

  4. Documenting biogeographical patterns of African timber species using herbarium records: a conservation perspective based on native trees from Angola.

    Science.gov (United States)

    Romeiras, Maria M; Figueira, Rui; Duarte, Maria Cristina; Beja, Pedro; Darbyshire, Iain

    2014-01-01

    In many tropical regions the development of informed conservation strategies is hindered by a dearth of biodiversity information. Biological collections can help to overcome this problem, by providing baseline information to guide research and conservation efforts. This study focuses on the timber trees of Angola, combining herbarium (2670 records) and bibliographic data to identify the main timber species, document biogeographic patterns and identify conservation priorities. The study recognized 18 key species, most of which are threatened or near-threatened globally, or lack formal conservation assessments. Biogeographical analysis reveals three groups of species associated with the enclave of Cabinda and northwest Angola, which occur primarily in Guineo-Congolian rainforests, and evergreen forests and woodlands. The fourth group is widespread across the country, and is mostly associated with dry forests. There is little correspondence between the spatial pattern of species groups and the ecoregions adopted by WWF, suggesting that these may not provide an adequate basis for conservation planning for Angolan timber trees. Eight of the species evaluated should be given high conservation priority since they are of global conservation concern, they have very restricted distributions in Angola, their historical collection localities are largely outside protected areas and they may be under increasing logging pressure. High conservation priority was also attributed to another three species that have a large proportion of their global range concentrated in Angola and that occur in dry forests where deforestation rates are high. Our results suggest that timber tree species in Angola may be under increasing risk, thus calling for efforts to promote their conservation and sustainable exploitation. The study also highlights the importance of studying historic herbarium collections in poorly explored regions of the tropics, though new field surveys remain a priority to

  5. Chapter 22. Rosaceous shrubs

    Science.gov (United States)

    Nancy L. Shaw; Stephen B. Monsen; Richard Stevens

    2004-01-01

    Important shrubs of the Rose Family (Rosaceae) in the Intermountain region are distributed from blackbrush and salt desert shrub communities through high elevation forests and meadows. Growth habits of this group vary from trailing brambles to upright shrubs and small trees. Some species are evergreen while others are deciduous. Many of these species are highly valued...

  6. Preliminary data on growth and enzymatic abilities of soil fungus Humicolopsis cephalosporioides at different incubation temperatures.

    Science.gov (United States)

    Elíades, Lorena Alejandra; Cabello, Marta N; Pancotto, Verónica; Moretto, Alicia; Rago, María Melisa; Saparrat, Mario C N

    2015-01-01

    Nothofagus pumilio (Poepp & Endl.) Krasser, known as "lenga" is the most important timber wood species in southernmost Patagonia (Argentina). Humicolopsis cephalosporioides Cabral & Marchand is a soil fungus associated with Nothofagus pumilio forests, which has outstanding cellulolytic activity. However, there is no information about the ability of this fungus to use organic substrates other than cellulose, and its ability to produce different enzyme systems, as well as its response to temperature. The aim of this study was to examine the role of H. cephalosporioides in degradation processes in N. pumilio forests in detail by evaluating the in vitro ability of four isolates of this fungus to grow and produce different lytic enzyme systems, and their response to incubation temperature. The ability of the fungi to grow and produce enzyme systems was estimated by inoculating them on agar media with specific substrates, and the cultures were incubated at three temperatures. A differential behavior of each strain in levels of growth and enzyme activity was found according to the medium type and/or incubation temperature. A intra-specific variability was found in H. cephalosporioides. Likewise a possible link between the saprotrophic role of this fungus in N. pumilio forests and the degradation of organic matter under stress conditions, such as those from frosty environments, was also discussed. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  7. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level

    Science.gov (United States)

    Einzmann, Helena J. R.; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2015-01-01

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ13C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. PMID:25392188

  8. Removal of PM10 by Forests as a Nature-Based Solution for Air Quality Improvement in the Metropolitan City of Rome

    Directory of Open Access Journals (Sweden)

    Federica Marando

    2016-07-01

    Full Text Available Nature-based solutions have been identified by the European Union as being critical for the enhancement of environmental qualities in cities, where urban and peri-urban forests play a key role in air quality amelioration through pollutant removal. A remote sensing and geographic information system (GIS approach was applied to the Metropolitan City (MC of Rome to assess the seasonal particulate matter (PM10 removal capacity of evergreen (broadleaves and conifers and deciduous species. Moreover, a monetary evaluation of PM10 removal was performed on the basis of pollution externalities calculated for Europe. Deciduous broadleaves represent the most abundant tree functional group and also yielded the highest total annual PM10 deposition values (1769 Mg. By contrast, PM10 removal efficiency (Mg·ha−1 was 15%–22% higher in evergreen than in deciduous species. To assess the different removal capacity of the three functional groups in an area with homogeneous environmental conditions, a study case was performed in a peri-urban forest protected natural reserve (Castelporziano Presidential Estate. This study case highlighted the importance of deciduous species in summer and of evergreen communities as regards the annual PM10 removal balance. The monetary evaluation indicated that the overall PM10 removal value of the MC of Rome amounted to 161.78 million Euros. Our study lends further support to the crucial role played by nature-based solutions for human well-being in urban areas.

  9. Multiple recruitment limitation causes arrested succession in mediterranean cork oak systems

    NARCIS (Netherlands)

    Acacio, Vanda; Holmgren, Milena; Jansen, Patrick A.; Schrotter, Ondrej

    2007-01-01

    Lack of tree regeneration and persistency of species-poor shrublands represent a growing problem across Mediterranean evergreen oak forests. What constrains forest regeneration is poorly understood, and restoration attempts have been largely unsuccessful. We assessed the contribution of four

  10. Organic matter characterization and decomposition dynamics in sub-Antarctic streams impacted by invasive beavers Caracterización de la materia orgánica y la dinámica de descomposición en arroyos subantárticos impactados por castores invasores

    Directory of Open Access Journals (Sweden)

    Erica Ulloa

    2012-11-01

    Full Text Available Despite being a relatively remote and well conserved area, the sub-Antarctic ecoregion faces pressing global threats from climate change, the ozone hole and introduced species. Its freshwater ecosystems are one of the least studied components of this biome, but they are known to confront a host of invasive taxa including trout and beavers. We set out to understand the basic characterization and dynamics of organic matter processing and decomposition in sub-Antarctic streams under natural forest (NF conditions and in ponds constructed by North American beavers (Castor canadensis (BP. We found these streams have a naturally stable benthic organic matter regime throughout the year with a peak in leaf input from Nothofagus pumilio in autumn. Beaver ponds significantly increased the retention of organic matter and caused significantly higher decomposition rates, probably associated with increased density and biomass of Hyalella spp. As expected, leaf decay rates for N. pumilio, a deciduous species, were higher (NF: -0.0028 day- ± 0.0001 SE; BP: -0.0118 day-1 ± 0.0009 SE than N. betuloides (a broad-leaf evergreen (NF: -0.0018 day-1 ± 0.0005 SE; BP: -0.0040 day-1 ± 0.0003 SE. Overall these results indicate that the naturally low decomposition rates (slower than 89% of a global survey of decay rates for these cold, oligotrophic streams are being modified by introduced beavers to resemble more temperate latitudes.A pesar de ser una zona relativamente remota y bien conservado, la ecorregión subantártica se enfrenta a presiones por amenazas globales por el cambio climático, el agujero de ozono y las especies introducidas. Los ecosistemas de agua dulce son uno de los componentes menos estudiados de este bioma, pero se sabe que enfrentan una serie de taxones invasivos como la trucha y los castores. El propósito de este estudio es entender la caracterización básica y dinámica de descomposición de la materia orgánica en arroyos subantárticos de

  11. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    International Nuclear Information System (INIS)

    Blok, Daan; Michelsen, Anders; Elberling, Bo; Weijers, Stef; Löffler, Jörg; Welker, Jeffrey M; Cooper, Elisabeth J

    2015-01-01

    Deeper winter snow is hypothesized to favor shrub growth and may partly explain the shrub expansion observed in many parts of the arctic during the last decades, potentially triggering biophysical feedbacks including regional warming and permafrost thawing. We experimentally tested the effects of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen (δ 2 H), carbon (δ 13 C), nitrogen (δ 15 N) and oxygen (δ 18 O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient (c. 20 cm), medium (c. 100 cm), and deep snow (c. 150 cm) plots. The deep-snow treatment consistently and significantly increased C. tetragona growth during the 2008–2011 manipulation period compared to growth in ambient-snow plots. Stem δ 15 N and stem N concentration values were significantly higher in deep-snow individuals compared to individuals growing in ambient-snow plots during the course of the experiment, suggesting that soil N-availability was increased in deep-snow plots as a result of increased soil winter N mineralization. Although inter-annual growing season-precipitation δ 2 H and stem δ 2 H records closely matched, snow depth did not change stem δ 2 H or δ 18 O, suggesting that water source usage by C. tetragona was unaltered. Instead, the deep insulating snowpack may have protected C. tetragona shrubs against frost damage, potentially compensating the detrimental effects of a shortened growing season and associated phenological delay on growth. Our findings suggest that an increase in winter precipitation in the High Arctic, as predicted by climate models, has

  12. Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species.

    Directory of Open Access Journals (Sweden)

    Lina Fusaro

    Full Text Available The effects of nitrogen (N deposition, tropospheric ozone (O3 and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous and Quercus ilex L. (evergreen, having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively, in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes. Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.

  13. Yucca L.: yucca

    Science.gov (United States)

    Robert R. Alexander; Floyd W. Pond; Jane E. Rodgers

    2008-01-01

    There are about 30 species of yucca native to North America and the West Indies. Although most of these long-lived, evergreen plants grow in the arid southwestern United States and on Mexican tablelands, yuccas are found up to 2,400 m in elevation in the mountains of Colorado (Arnott 1962; Webber 1953). Four western species are considered here (table 1). Great Plains...

  14. [Vertical distribution and community diversity of butterflies in Yaoluoping National Nature Reserve, Anhui, China].

    Science.gov (United States)

    Wang, Song; Bao, Fang-yin; Mei, Bai-mao; Ding, Shi-chao

    2009-09-01

    By the methods of fixed point, line intercept, and random investigation, the vertical distribution and community diversity of butterflies in Yaoluoping National Nature Reserve were investigated from 2005 to 2008. A total of 3681 specimen were collected, belonging to 111 species, 69 genera, and 10 families, among which, Nymphalidae had the higher species number, individual's number, and diversity index than the other families. The butterflies in the study area were a mixture of Oriental and Palaearetic species, with the Oriental species diminished gradually and the Palaearetic components increased gradually with increasing altitude. Among the three vertical zones ( 1200 m in elevation), that of 800-1200 m had the most abundant species of butterflies; and among the six habitat types (deciduous broad-leaved forest, evergreen conifer forest, conifer-broad leaf mixed forest, bush and secondary forest, farmland, and residential area), bush and secondary forest had the higher species number, individual's number, and diversity index of butterflies, while farmland had the lowest diversity index. The similarity coefficient of butterfly species between the habitats was mainly dependent on vegetation type, i.e., the more the difference of vegetation type, the lesser the species similarity coefficient between the habitats, which was the highest (0.61) between conifer-broad leaf mixed forest and bush and secondary forest, and the lowest (0. 20) between evergreen conifer forest and bush and secondary forest.

  15. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.

    Science.gov (United States)

    Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom

    2015-07-01

    Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved

  16. The C-household of young broad-leaved and conifer tree species exposed to long-term carbon limitation by shading

    Science.gov (United States)

    Weber, Raphael; Hoch, Günter

    2017-04-01

    Non-structural carbohydrates (NSC, i.e. free sugars and starch) are regarded as freely available carbon (C) reserves in plants. They are often quantified to estimate a plant's C-balance, assuming that NSC are controlled by the net-balance between photo-assimilation and C-usage (respiration, growth and other sinks). Within a recent field experiment, we investigated the extent, to which C-reserves (NSC) can be formed in young trees against prevailing C-sink demands (growth) under C-limitation. A total of almost 1000 individuals of two-year-old tree saplings from 6 deciduous, broadleaved species and 4 evergreen conifer species were planted on a field side. Half of the trees per species were treated with long-term C-limitation by exposing them to continuous deep shade conditions (5% of natural PPFD) under a permanent shading tent. C gas-exchange, growth and NSC tissue concentrations were analyzed in shaded and unshaded saplings for two consecutive years. Three months after the beginning of the experiment, leaf photosynthesis acclimatized to the low light conditions, with leaves of shaded trees showing significantly higher SLA and lower light saturation and maximum photosynthesis. During the second season of the experiment, most species exhibited very strong reductions in NSC, but much less pronounced reductions in growth. In contrast, other species, with few exceptions, kept NSC concentrations similar to unshaded controls, while growth virtually stopped under deep shade. In conclusion, we found species-specific strategies in the trees' C-household after two years of C-limitation, that fall into two major carbon allocation strategies: 1) "C-spenders", which deplete C reserves in order to keep up significant growth, and 2) "C-savers", which reduce C sink activities to a minimum in order to store substantial amounts of C reserves. Overall, early-successional species tended to follow the first strategy, while late-successional species tended to save higher C reserve pools

  17. Rooting Response of Azalea Cultivars Using Hot Water Treatments to Control Pathogens

    Science.gov (United States)

    Azalea web blight is an annual problem on some evergreen azalea cultivars grown in containerized nursery production in the southern and eastern United States. The binucleate Rhizoctonia species, which cause the disease, are spread on new shoot growth harvested for propagation. Rhizoctonia can be eli...

  18. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    DEFF Research Database (Denmark)

    Blok, Daan; Weijers, Stef; Welker, Jeffrey M

    2015-01-01

    Deeper winter snow is hypothesized to favor shrub growth and may partly explain the shrub expansion observed in many parts of the arctic during the last decades, potentially triggering biophysical feedbacks including regional warming and permafrost thawing. We experimentally tested the effects...... of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen ( δ2H), carbon ( δ13C), nitrogen ( δ15N) and oxygen ( δ18O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried...... closely matched, snow depth did not change stem δ 2 H or δ 18 O, suggesting that water source usage by C. tetragona was unaltered. Instead, the deep insulating snowpack may have protected C. tetragona shrubs against frost damage, potentially compensating the detrimental effects of a shortened growing...

  19. PARKS OF RECREATIONAL COMPLEXES OF SUDAK CITY

    Directory of Open Access Journals (Sweden)

    Irina L. Potapenko

    2017-01-01

    Full Text Available Aim. Development of optimal paths of landscaping recreational complexes South-Eastern Crimea (Sudak for example, taking into account climatic, geographical and historical characteristics of the region. Material. Green plantings of recreational complexes have been surveyed in 2015–2016: the sanatorium "Sudak" of the Ministry of defense of the Russian Federation, the area is 26 ha; the pension "Crimean spring", an area is 10 ha; the pension "Zvezdniy", an area is 3 ha; the sanatorium "Sokol", an area is 3 ha; the Tourist and recreational complex "Sudak", an area is 17 ha. Results. Dendroflora of Sudak recreational facilities includes 151 species belonging to 90 genera and 47 families. The most represented species in the following families: Rosaceae – 27 (17,9%, Oleaceae – 12 (7,9%, Pinaceae – 12 (7,9%, Cupressaceae – 10 (6,7%, Fabaceae – 7 (4,6%. The greatest form variety is possessed by representatives of the family Cupressaceae (8, or 33,0%, the pyramidal form of cypress evergreen (Cupressus sempervirens `Pyramidalis` dominates among them. An assortment of ornamental trees and shrubs in the studied sites are quite diverse – 175 species and forms. Deciduous trees and shrubs prevail here – 60 (34,3% and 37 (21,1% species and forms respectively. There are 37 (21,1% species and forms of coniferous trees and shrubs. There are 24 (13,7% types and forms of evergreen foliage plants: shrubs – 18 (10,3%, trees – 4 (2,3%, lianas – 2 (1,1%. Main conclusions. The source of introductory material for the green construction of South-Eastern Crimea should be the representatives of families Cupressaceae, Pinaceae, Rosaceae, Oleaceae, Fabaceae those are the most adapted to the soil and climatic conditions of the region. Increasing the diversity of ornamental trees and shrubs should be achieved through the use of coniferous and evergreen plants. To create picturesque groups of plants with different emotional conten increasing the number of

  20. Stand structure and regeneration of harvested Araucaria araucana ...

    African Journals Online (AJOL)

    Stand structure and regeneration of harvested Araucaria araucana–Nothofagus stands in central Chile. Rafael M Navarro-Cerrillo, Fernando Olave, Francisco Moreno, Sergio de Miguel, Margarita Clemente ...

  1. Leaf morphophysiology of a Neotropical mistletoe is shaped by seasonal patterns of host leaf phenology.

    Science.gov (United States)

    Scalon, Marina Corrêa; Rossatto, Davi Rodrigo; Domingos, Fabricius Maia Chaves Bicalho; Franco, Augusto Cesar

    2016-04-01

    Several mistletoe species are able to grow and reproduce on both deciduous and evergreen hosts, suggesting a degree of plasticity in their ability to cope with differences in intrinsic host functions. The aim of this study was to investigate the influence of host phenology on mistletoe water relations and leaf gas exchange. Mistletoe Passovia ovata parasitizing evergreen (Miconia albicans) hosts and P. ovata parasitizing deciduous (Byrsonima verbascifolia) hosts were sampled in a Neotropical savanna. Photosynthetic parameters, diurnal cycles of stomatal conductance, pre-dawn and midday leaf water potential, and stomatal anatomical traits were measured during the peak of the dry and wet seasons, respectively. P. ovata showed distinct water-use strategies that were dependent on host phenology. For P. ovata parasitizing the deciduous host, water use efficiency (WUE; ratio of photosynthetic rate to transpirational water loss) was 2-fold lower in the dry season than in the wet season; in contrast, WUE was maintained at the same level during the wet and dry seasons in P. ovata parasitizing the evergreen host. Generally, mistletoe and host diurnal cycles of stomatal conductance were linked, although there were clear differences in leaf water potential, with mistletoe showing anisohydric behaviour and the host showing isohydric behaviour. Compared to mistletoes attached to evergreen hosts, those parasitizing deciduous hosts had a 1.4-fold lower stomatal density and 1.2-fold wider stomata on both leaf surfaces, suggesting that the latter suffered less intense drought stress. This is the first study to show morphophysiological differences in the same mistletoe species parasitizing hosts of different phenological groups. Our results provide evidence that phenotypical plasticity (anatomical and physiological) might be essential to favour the use of a greater range of hosts.

  2. Using ground observations of a digital camera in the VIS-NIR range for quantifying the phenology of Mediterranean woody species

    Science.gov (United States)

    Weil, Gilad; Lensky, Itamar M.; Levin, Noam

    2017-10-01

    The spectral reflectance of most plant species is quite similar, and thus the feasibility of identifying most plant species based on single date multispectral data is very low. Seasonal phenological patterns of plant species may enable to face the challenge of using remote sensing for mapping plant species at the individual level. We used a consumer-grade digital camera with near infra-red capabilities in order to extract and quantify vegetation phenological information in four East Mediterranean sites. After illumination corrections and other noise reduction steps, the phenological patterns of 1839 individuals representing 12 common species were analyzed, including evergreen trees, winter deciduous trees, semi-deciduous summer shrubs and annual herbaceous patches. Five vegetation indices were used to describe the phenology: relative green and red (green/red chromatic coordinate), excess green (ExG), normalized difference vegetation index (NDVI) and green-red vegetation index (GRVI). We found significant differences between the phenology of the various species, and defined the main phenological groups using agglomerative hierarchical clustering. Differences between species and sites regarding the start of season (SOS), maximum of season (MOS) and end of season (EOS) were displayed in detail, using ExG values, as this index was found to have the lowest percentage of outliers. An additional visible band spectral index (relative red) was found as useful for characterizing seasonal phenology, and had the lowest correlation with the other four vegetation indices, which are more sensitive to greenness. We used a linear mixed model in order to evaluate the influences of various factors on the phenology, and found that unlike the significant effect of species and individuals on SOS, MOS and EOS, the sites' location did not have a direct significant effect on the timing of phenological events. In conclusion, the relative advantage of the proposed methodology is the

  3. Aspectos florísticos e fitossociológicos de um trecho de Floresta Estacional Perenifólia na Fazenda Trairão, Bacia do rio das Pacas, Querência-MT Floristic and phytosociological aspects of a Seasonal Evergreen Forest area in the Trairão Farm, rio das Pacas Basin, Querência-MT

    Directory of Open Access Journals (Sweden)

    Sustanis Horn Kunz

    2008-01-01

    , the objective of this study was to identify the floristic composition and phytosociological structure of the arborous component from a forest area in the Trairão Farm, Querência - MT, Brazil. The vegetation sampling was composed of the distribution of 200 quadrant-points in which the four individuals closest to each point, with DAP (diameter to height breast equal or superior to 10 cm were considered. The total density of the sampled area was 728 ind./ha distributed into 49 species, 39 genera and 24 families. The species presenting the highest richness was Fabaceae (five species, followed by Burseraceae and Euphorbiaceae, with four species each, and considered as the richest in some Amazon forest areas. The species of highest Importance Value (IV were Ocotea leucoxylon (Sw. Laness., Xylopia amazonica R.E. Fr. and Myrcia multiflora (Lam. DC., Chaetocarpus echinocarpus (Baill. Ducke and Protium pilosissimum Engl., but did not present the same representativity as in other Seasonal Evergreen Forest area, evidencing structural differences within this phytogeographic unit. The majority of individuals from this community present slender size, with diameter ranging from 10 to 14.9 cm and height from 10.6 to 16.5 m. The Shannon index (3.17 may be considered as low in relation to the Amazon Forest in which the diversity is above 4.0.

  4. Lycopodium: Careful Harvest Fact Sheet

    Science.gov (United States)

    Elizabeth Nauertz

    2003-01-01

    Lycopodium comes from the Greek words "luko" (wolf) and "podos" (foot); thus the common name of "wolf's paw" or "Wolf's foot." Despite the common names of clubmoss, Lycopodium species are not related to mosses, but rather to ferns. They are evergreen, perennial, clonal, and rhizomatous in nature.

  5. Diversity patterns in the flora of the Campo-Ma'an rain forest, Cameroon: do tree species tell it all?

    NARCIS (Netherlands)

    Tchouto, M.G.P.; Boer, de W.F.; Wilde, de J.J.F.E.; Maesen, van der L.J.G.

    2006-01-01

    This study describes diversity patterns in the flora of the Campo-Ma¿an rain forest, in south Cameroon. In this area, the structure and composition of the forests change progressively from the coastal forest on sandy shorelines through the lowland evergreen forest rich in Caesalpinioideae with

  6. Assessing the impact of plantation forestry on plant biodiversity

    Directory of Open Access Journals (Sweden)

    Andreas Ch. Braun

    2017-04-01

    Full Text Available Effects of plantation forestry on biodiversity are controversially discussed in literature. While some authors stress positive effects, others tend to attribute a largely negative influence to plantations. One important factor steering the influence on biodiversity are management practices. A second important factor is the environmental matrix. Chile offers the option to analyse both factors jointly. The coastal range of central Chile has experienced rapid and widespread replacement of native Nothofagus spp. forests in favour of Pinus radiata plantations. Here, native forests remain limited to small patches surrounded by an environmental matrix of plantations. Management is rather intensive and not designed to maintain biodiversity. While in the coastal range of central Chile the transformation from native forests to non-native tree plantations has almost come to an end, spatial extension of P. contorta and P. ponderosa plantations has just recently begun in Chilean Patagonia. While the management is similar to central Chile, plantations rather exist as small patches surrounded by an environmental matrix of native plant formations (e.g. Nothofagus spp. forests and Nothofagus spp. scrublands. In the framework of this work, effects of the two diametric land usages on biodiversity are assessed and compared. Biodiversity is assessed at the α-, β- and γ-scale. At the α-scale, biodiversity impacts are inferred statistically, using one-way ANOVA and Tukey’s PostHoc test. Biodiversity of plants at both sites is significantly reduced in plantations when compared to native forests or scrublands. Plantation forestry lowers α-biodiversity and does not provide additional habitats for specialists. At the β-scale, weak edge effects due to the presence of native forests are observed. In total, plantation forestry tends to promote plant invasions and impairs the survival of endemics. At the γ-scale, plant species communities where predominantly native

  7. Frost and leaf-size gradients in forests: global patterns and experimental evidence.

    Science.gov (United States)

    Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin

    2018-05-16

    Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  8. Changes in radiocesium contamination from Fukushima in foliar parts of 10 common tree species in Japan between 2011 and 2013

    International Nuclear Information System (INIS)

    Yoshihara, Toshihiro; Matsumura, Hideyuki; Tsuzaki, Masaharu; Wakamatsu, Takashi; Kobayashi, Takuya; Hashida, Shin-nosuke; Nagaoka, Toru; Goto, Fumiyuki

    2014-01-01

    Yearly changes in radiocesium ( 137 Cs) contamination, primarily due to the Fukushima accident of March 2011, were observed in the foliar parts of 10 common woody species in Japan (Chamaecyparis obtusa, Cedrus deodara, Pinus densiflora, Cryptomeria japonica, Phyllostachys pubescens, Cinnamomum camphora, Metasequoia glyptostroboides, Prunus × yedoensis, Acer buergerianum, and Aesculus hippocastanum). The samples were obtained from Abiko (approximately 200 km SSW of the Fukushima Dai-ichi Nuclear Power Plant) during each growing season between 2011 and 2013, and the foliar parts were examined based on their year of expansion and location in each trees. The radiocesium concentrations generally decreased with time; however, the concentrations and rates of decrease varied among species, age of foliar parts, and locations. The radiocesium concentrations in the 2012 current-year foliar parts were 29%–220% of those from 2011, while those from 2013 fell to between 14% and 42% of the 2011 values. The net decontamination in the foliage was higher in evergreen species than in deciduous species. The radiocesium concentrations in the upper foliar parts were higher than those in the lower parts particularly in C. japonica. In addition, the radiocesium concentrations were higher in the current-year foliar parts than in the 1-year-old foliar parts, particularly in 2013. Thus, the influence of the direct deposition of the fallout was reduced with time, and the translocation ability of radiocesium from old to new tissues became more influential. Similar to the behavior of potassium in trees, Cs redistribution probably occurred primarily due to internal nutrient translocation mechanisms. - Highlights: • 137 Cs concentrations of foliar parts expanded in 2013 was 14–42% of those in 2011. • The rates of decrease varied with the species, sampling part, and position. • Newly expanded foliar parts contain higher 137 Cs concentrations than older parts. • 137 Cs translocation

  9. Two new Liolaemus lizards from the Andean highlands of Southern Chile (Squamata, Iguania, Liolaemidae)

    Science.gov (United States)

    Troncoso-Palacios, Jaime; Diaz, Hugo A.; Puas, German I.; Riveros-Riffo, Edvin; Elorza, Alvaro A.

    2016-01-01

    Abstract Liolaemus is a diverse genus of lizards, subdivided into two subgenera: Liolaemus (sensu stricto) and Eulaemus, distributed mainly in Chile and Argentina. The Liolaemus elongatus-kriegi complex is the most diverse group within Liolaemus (sensu stricto), especially the species closely related to Liolaemus elongatus, which form a clade currently comprising nine species. Several Chilean species of this group have been recently described, mainly from volcanoes and poorly explored mountains. Here molecular and morphological evidence are provided for a new species of the Liolaemus elongatus clade, which is characterized by its small size and lack of dorsal pattern, unusual features for the species of this group of lizards. Additionally, the lack of precloacal pores in males of Liolaemus (sensu stricto) is a trait found in few species, which do not constitute a monophyletic group. A second new southern Chilean species is also described, without precloacal pores and supported by molecular phylogenetics to be related to Liolaemus villaricensis. Both new species were found in the same locality, near a lake located in a pre-Andean zone with Araucaria and Nothofagus forest. The two species are dedicated to prominent Lonkos (tribal chiefs) of the Mapuche and Pehuenche people: Janequeo and Leftraru. Additionally, the phylogenetic results suggest that Liolaemus lonquimayensis is a synonym of Liolaemus elongatus. PMID:27920609

  10. Changes in radiocesium contamination from Fukushima in foliar parts of 10 common tree species in Japan between 2011 and 2013.

    Science.gov (United States)

    Yoshihara, Toshihiro; Matsumura, Hideyuki; Tsuzaki, Masaharu; Wakamatsu, Takashi; Kobayashi, Takuya; Hashida, Shin-Nosuke; Nagaoka, Toru; Goto, Fumiyuki

    2014-12-01

    Yearly changes in radiocesium ((137)Cs) contamination, primarily due to the Fukushima accident of March 2011, were observed in the foliar parts of 10 common woody species in Japan (Chamaecyparis obtusa, Cedrus deodara, Pinus densiflora, Cryptomeria japonica, Phyllostachys pubescens, Cinnamomum camphora, Metasequoia glyptostroboides, Prunus × yedoensis, Acer buergerianum, and Aesculus hippocastanum). The samples were obtained from Abiko (approximately 200 km SSW of the Fukushima Dai-ichi Nuclear Power Plant) during each growing season between 2011 and 2013, and the foliar parts were examined based on their year of expansion and location in each trees. The radiocesium concentrations generally decreased with time; however, the concentrations and rates of decrease varied among species, age of foliar parts, and locations. The radiocesium concentrations in the 2012 current-year foliar parts were 29%-220% of those from 2011, while those from 2013 fell to between 14% and 42% of the 2011 values. The net decontamination in the foliage was higher in evergreen species than in deciduous species. The radiocesium concentrations in the upper foliar parts were higher than those in the lower parts particularly in C. japonica. In addition, the radiocesium concentrations were higher in the current-year foliar parts than in the 1-year-old foliar parts, particularly in 2013. Thus, the influence of the direct deposition of the fallout was reduced with time, and the translocation ability of radiocesium from old to new tissues became more influential. Similar to the behavior of potassium in trees, Cs redistribution probably occurred primarily due to internal nutrient translocation mechanisms. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    A study on the microarthropod community with special reference to species diversity of Oribatid and Collembola communities (Microarthropoda: Oribatei and Collembola) in Tam Dao National Park of Vietnam, a subtropical evergreen broad leaf alpine forest, was undertaken with the aim to explain how they are related to ...

  12. Growth response by big-leaf mahogany (Swietenia macrophylla) advance seedling regeneration to overhead canopy release in southeast Pará, Brazil

    Science.gov (United States)

    James Grogana; R. Matthew Landisc; Mark S. Ashtona; Jurandir Galva˜od

    2005-01-01

    Big-leaf mahogany (Swietenia macrophylla) is a valuable neotropical timber species whose seedling survival and growth dynamics in natural forests are poorly understood. To document regeneration dynamics of mahogany in seasonal transitional evergreen forests of southeast Pará, Brazil, we followed naturally established seedlings in the forest understory...

  13. Estimating Rhododendron maximum L. (Ericaceae) Canopy Cover Using GPS/GIS Technology

    Science.gov (United States)

    Tyler J. Tran; Katherine J. Elliott

    2012-01-01

    In the southern Appalachians, Rhododendron maximum L. (Ericaceae) is a key evergreen understory species, often forming a subcanopy in forest stands. Little is known about the significance of R. maximum cover in relation to other forest structural variables. Only recently have studies used Global Positioning System (GPS) technology...

  14.   Diversity and composition of palm communities (Arecaceae) in Quintana Roo Mexico

    DEFF Research Database (Denmark)

    Alvarado, Arturo A.; Calvo, Luz M.; Duno, Rodrigo

      We compared composition and diversity of palm (Arecaceae) communities in three forest types along a gradient from dry deciduous, over intermediate to wet evergreen forest in Quintana Roo, Mexico. In forty-nine 5×500-m transects, we counted 52,612 individuals representing 14 species in 11 genera...

  15. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters

    Science.gov (United States)

    Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui

    2016-07-01

    Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.

  16. Xylem traits, leaf longevity and growth phenology predict growth and mortality response to defoliation in northern temperate forests.

    Science.gov (United States)

    Foster, Jane R

    2017-09-01

    Defoliation outbreaks are biological disturbances that alter tree growth and mortality in temperate forests. Trees respond to defoliation in many ways; some recover rapidly, while others decline gradually or die. Functional traits such as xylem anatomy, growth phenology or non-structural carbohydrate (NSC) storage could explain these responses, but idiosyncratic measures used by defoliation studies have frustrated efforts to generalize among species. Here, I test for functional differences with published growth and mortality data from 37 studies, including 24 tree species and 11 defoliators from North America and Eurasia. I synthesized data into standardized variables suitable for numerical models and used linear mixed-effects models to test the hypotheses that responses to defoliation vary among species and functional groups. Standardized data show that defoliation responses vary in shape and degree. Growth decreased linearly or curvilinearly, least in ring-porous Quercus and deciduous conifers (by 10-40% per 100% defoliation), whereas growth of diffuse-porous hardwoods and evergreen conifers declined by 40-100%. Mortality increased exponentially with defoliation, most rapidly for evergreen conifers, then diffuse-porous, then ring-porous species and deciduous conifers (Larix). Goodness-of-fit for functional-group models was strong (R2c = 0.61-0.88), if lower than species-specific mixed-models (R2c = 0.77-0.93), providing useful alternatives when species data are lacking. These responses are consistent with functional differences in leaf longevity, wood growth phenology and NSC storage. When defoliator activity lags behind wood-growth, either because xylem-growth precedes budburst (Quercus) or defoliator activity peaks later (sawflies on Larix), impacts on annual wood-growth will always be lower. Wood-growth phenology of diffuse-porous species and evergreen conifers coincides with defoliation and responds more drastically, and lower axial NSC storage makes them

  17. Carry-over effect of Thidiazuron on banana in vitro proliferation at ...

    African Journals Online (AJOL)

    Thidiazuron (TDZ) is an active cytokinin that was shown to induce increased shoot proliferation and habituation in black walnut, Phaseolus lunatus and evergreen azalea, which are tree species but has not been widely investigated in bananas. Unlike other cytokines commonly in use that are adeninebased, TDZ is a urea ...

  18. Short Communicat Short Communication

    African Journals Online (AJOL)

    RAGHAVENDRA

    biodiversity hotspots (also one among hotspots of biodiversity) of the world. W encompass a wide range of forest types tropical wet evergreen forests to grasslan rich flora and fauna evident from the several species of flowering plants, butte birds, mammals, fishes and amphibians. Western Ghats are known to be a varietal.

  19. Alsophila weidenbrueckii (Cyatheaceae), a new scaly tree fern from Papua New Guinea

    NARCIS (Netherlands)

    Lehnert, M.

    2016-01-01

    The scaly tree fern Alsophila weidenbrueckii is described and illustrated as new to science. It occurs in the Bismarck range in north-eastern New Guinea at 1200–2100 m in evergreen wet mountain forest. The species reaches maturity at a comparatively old age and large size and regenerates only in

  20. Cold in the common garden: comparative low-temperature tolerance of boreal and temperate conifer foliage

    Science.gov (United States)

    G. Richard Strimbeck; Trygve D. Kjellsen; Paul G. Schaberg; Paula F. Murakami

    2007-01-01

    Because they maintain green foliage throughout the winter season, evergreen conifers may face special physiological challenges in a warming world. We assessed the midwinter low-temperature (LT) tolerance of foliage from eight temperate and boreal species in each of the genera Abies, Picea, and Pinus growing in an arboretum in...

  1. Comprehensive transcriptome analyses reveal differential gene expression profiles of Camellia sinensis axillary buds at para-, endo-, ecodormancy, and bud flush stages

    Science.gov (United States)

    Winter dormancy is an important biological feature for tea plant to survive cold winters, and it also affects the economic output of tea plant, one of the few woody plants in the world whose leaves are harvested and one of the few non-conifer evergreen species with characterized dormancies. To disco...

  2. Leaf life span plasticity in tropical seedlings grown under contrasting light regimes

    OpenAIRE

    Vincent, Grégoire

    2006-01-01

    Background and Aims The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative importance to the plant carbon balance under limiting light. Methods Seedlings of four tropical tree species with contrasting light requirements (...

  3. OBSERVATIONS ON THE BEHAVIOUR OF VERVET MONKEYS ...

    African Journals Online (AJOL)

    C. K. BRAIN ... The species involved are the vervet C. aethiops and the samango or blue ... an extended southerly distribution, being found in isolated patches of evergreen forest right ...... This observation is of interest in view of Andrew's theory ... Top LEFT: An infant making its medium intensity wanting call, with lips ...

  4. Notes on bolete taxonomy

    NARCIS (Netherlands)

    Singer, R.

    1973-01-01

    Newly discovered mycorrhizal relationships of boletes (with Nothofagus, Shorea, Quercus humboldtii, Alnus jorullenses, Eucalyptus, and Leptospermum) are discussed. Type studies on Fistulinella, Boletus granulatus var. capricollensis, Boletogaster, and Gastroboletus are reported. The following new

  5. Micromycetes colonizing and damaging leaves of evergreen rhododendron (Rhododendron L. in nursery

    Directory of Open Access Journals (Sweden)

    Maria Kowalik

    2015-07-01

    Full Text Available In May and October 2010–2012, mycological studies were conducted on 10 cultivars of rhododendron bushes growing in containers in the nursery of ornamental plants. Out of 3000 specimens of infested leaf fragments, 2566 fungal colonies belonging to 41 species were isolated. The following species colonizing the leaves and causing their necrosis were extracted in the largest number of colonies: Alternaria alternata, Aspergillus niger, Epicoccum nigrum, Humicola grisea, Pestalotiopsis sydowiana, Phoma pomorum, Sordaria fimicola, Trichoderma koningii, Trichoderma polysporum, Truncatella truncata, Umbelopsis isabellina and others. The research showed that the micromycetes colonies colonizing and damaging rhododendron leaves varied in species composition and number of colonies in different years and at different times. The study determined which rhododendron cultivars were characterized by good health and which had the greatest susceptibility to infection by micromycetes.

  6. Myxomycetes from the bark of the evergreen oak Quercus ilex

    Directory of Open Access Journals (Sweden)

    Wrigley de Basanta, Diana

    1998-06-01

    Full Text Available The results of 81 moist chamber cultures of bark from living Quercus ilex trees are reponed. A total of 37 taxa are cited, extending the number of species found on this substrate to 55. The presence of Licea deplanata on the Iberian Península is confirmed. Seven new records are included for the province of Madrid. Some data are contributed on species frequency and incubation times.Se presentan los resultados de 81 cultivos en cámara húmeda de corteza de Quercus ilex vivo. Se citan 37 táxones, que amplían a 55 el número de especies de mixomicetes encontrados sobre este sustrato. Se confirma la presencia en la Península Ibérica de Licea deplanata, y se incluyen siete nuevas citas para la provincia de Madrid. Se aportan datos sobre frecuencia de aparición y tiempos de incubación de algunas especies.

  7. Floristic structure and biomass distribution of a tropical seasonal rain forest in Xishuangbanna, southwest China

    Energy Technology Data Exchange (ETDEWEB)

    Shanmughavel, P.; Zheng Zheng; Sha Liqing; Cao Min [Chinese Academy of Sciences, Kunming (China). Dept. of Forest Ecology

    2001-07-01

    The aim of this research was to study the forest community structure, tree species diversity and biomass production of a tropical seasonal rain forest in Xishuangbanna, southwest China. The community structure showed a diversified species composition and supported many species of economic significance. This tropical rain forest in closely related to Malaysian forests. The biomass and its distribution were studied using standard regression analysis and the clear-cut method for shrubs and herbs. The total biomass was 360.9 t/ha and its allocation in different layers was: tree layer 352.5 t/ha, shrub layer 4.7 t/ha, liana 3.1 t/ha and herb layer 0.5 t/ha. Most of the biomass was concentrated in the trees: stem 241.2 t/ha, root 69.6 t/ha, branch 37.2 t/ha and leaves 4.3 t/ha. The DBH class allocation of the tree biomass was concentrated in the middle DBH class. The biomass of six DBH classes from 20 to 80 cm was 255.4 t/ha. There are twenty-six species with biomass over 0.5% of the total biomass of the tree layer, and three species with biomass over 5%, i.e., Pometia tomentosa, Barringtonia macrostachya (5.4%) and Terminalia myriocarpa (5.2%). Data on stem, branch, leaves and root of the individual tree species were used to develop regression models. D{sup 2}H was found to be the best estimator of the biomass in this tropical rain forest. However, higher biomass figures have been reported from tropical forests elsewhere e.g., 415-520 t/ha in the tropical forests of Cambodia, the tropical moist mixed dipterocarp forests, and the tropical moist logged moist evergreen-high, medium, and low yield forests of Sri Lanka. In some forests, lower accumulation of biomass was reported, e.g., 10-295 t/ha in the tropical moist forests of Bangladesh, the tropical moist dense forest of Cambodia, the tropical dry forests of India, the tropical moist forests of Peninsular-Malaysia, the tropical moist mixed dipterocarp forests of Sarawak-Malaysia, the tropical evergreen forests of

  8. Ephedra L.: ephedra or Mormon-tea

    Science.gov (United States)

    Susan E. Meyer

    2008-01-01

    The genus Ephedra - known in much of North America as Mormontea - comprises about 40 shrubby species that are found throughout the arid and semiarid regions of the Northern Hemisphere. Ephedras are gymnosperms that are characterized by their greatly reduced, bractlike leaves and their evergreen, broomlike photosynthetic stems. They are common plants in the semiarid...

  9. Cryptic Rhinolophus pusillus Temminck, 1834 (Chiroptera, Rhinolophidae): a new distribution record from the Chittagong Hill Tracts, Bangladesh

    OpenAIRE

    Saha, Anik; Feeroz, Mohammed Mostafa; Hasan, Md Kamrul

    2017-01-01

    Rhinolophus pusillus is a common species of India and Nepal in South Asia. Here, we report a new record of this bat captured in the mixed evergreen forest in Rangamati, southeastern part of Bangladesh. The identification was based on external morphology along with cranio-dental measurements. Roost counts was conducted through direct observation. 

  10. Composition and Digestibility of Deer Browse in Southern Forests

    Science.gov (United States)

    Henry L. Short; Robert M. Blair; E.A. Epps

    1975-01-01

    Twigs were most nutritious and digestible during early growth in spring; they were high in fiber content and low in digestibility during summer, autumn, and winter. Evergreen leaves did not vary substantially in nutrient content and digestibility throughout the year. By contrast, leaves of deciduous species were reduced in quality and digestibility after leaf-fall....

  11. Dispersal limitation at the expanding range margin of an evergreen tree in urban habitats?

    DEFF Research Database (Denmark)

    Møller, Linda Agerbo; Skou, Anne-Marie Thonning; Kollmann, Johannes Christian

    2012-01-01

    Dispersal limitations contribute to shaping plant distribution patterns and thus are significant for biodiversity conservation and urban ecology. In fleshy-fruited plants, for example, any preference of frugivorous birds affects dispersal capacities of certain fruit species. We conducted a removal...... landscapes. The results should be included in urban forestry and planting of potentially invasive ornamental species. © 2011 Elsevier GmbH. All rights reserved....... experiment with fruits of Ilex aquifolium, a species that is currently expanding its range margin in northern Europe in response to climate change. The species is also a popular ornamental tree and naturalization has been observed in many parts of its range. Fruits of native I. aquifolium and of three...

  12. Genetic structure of Notholithocarpus densiflorus(Fagaceae) from the species to the local scale: A review of our knowledge for conservation and replanting

    Science.gov (United States)

    Richard S Dodd; Alejandro Nettel; Jessica W. Wright; Zara Afzal-Rafii

    2013-01-01

    Tanoak, Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S. H. Oh (Fagaceae), is an important component of mixed-evergreen forests and woodlands in coastal California and Oregon, with incursions into the Sierra Nevada and the Klamath Ranges. Sudden Oak Death (SOD) is causing severe dieback and mortality in tanoak and could...

  13. Rainforests north of the Tropic of Cancer: Physiognomy, floristics and diversity in ‘lowland rainforests’ of Meghalaya, India

    Directory of Open Access Journals (Sweden)

    Uma Shankar

    2017-02-01

    Full Text Available The lowland rainforests of Meghalaya, India represent the westernmost limit of the rainforests north of the Tropic of Cancer. These forests, on the Shillong plateau, are akin to Whitmore's ‘tropical lowland evergreen rainforest’ formation and exhibit striking similarities and conspicuous differences with the equatorial rainforests in Asia-Pacific as well as tropical seasonal rainforests in southwestern China near the Tropic of Cancer. We found these common attributes of the rainforests in Meghalaya: familial composition with predominance of Euphorbiaceae, Lauraceae, Meliaceae, Moraceae, Myrsiticaceae, Myrtaceae and Rubiaceae; deciduousness in evergreen physiognomy; dominance of mega- and mesophanerophytic life-forms; abundance of species with low frequency of occurrence (rare and aggregated species; low proportional abundance of the abundant species; and truncated lognormal abundance distribution. The levels of stand density and stand basal area were comparable with seasonal rainforests in southwestern China, but were lower than equatorial rainforests. Tropical Asian species predominated flora, commanding 95% of the abundance. The differences include overall low stature (height of the forest, inconspicuous stratification in canopy, fewer species and individuals of liana, thicker understory, higher proportion of rare species, absence of locally endemic species and relatively greater dominance of Fagaceae and Theaceae. The richness of species per hectare (S was considerably lower at higher latitudes in Meghalaya than in equatorial rainforests, but was comparable with seasonal rainforests. Shannon's diversity index (H′ = 4.40 nats for ≥10 cm gbh and 4.25 nats for ≥30 cm gbh was lower on higher latitudes in Meghalaya in comparison to species-rich equatorial rainforests, but it was the highest among all lowland rainforests near the Tropic of Cancer.

  14. Saurios de la reserva de la biósfera "Sierra del Rosario" Pinar del río, Cuba. Evaluación ecológica de tres comunidades

    Directory of Open Access Journals (Sweden)

    Mercedes Martínez Reyes

    1995-01-01

    Full Text Available At present, integrated studies about flora and fauna are being carried out in the Biosphere Reserve Sierra del Rosario, Pinar del Río, Cuba; and as a contribution to them, it is offered information about its composition of saurians and the structure of three communities belonging to this faunistic group; the two first were associated to the secundary vegetation, while the third one to an evergreen forest. Visual countings were done in eigth locations during the wich the kind of substratum where every animal as found was taken down. After being achieved the final data by means of the transects method, some ecological evaluations were performed. Thirteen species of lizards were observed, eleven of them belonging to the Polychridae family, one to the Tropiduridae family and one to the Gekkonidae family. Tree and bush trunks as well as the ground were the substratums most traveled. The community which habitat presented a lesser degree of anthropical damage was the one with higher endemism. The species Anolis homolechis, A. alutaceus and A. sagrai were abundant in the secundary vegetation, while A. allogus was abundant in the evergreen forest. The higher faunistic similarity was observed in communities associated to similar vegetal formations. Species riches, diversity, equitativity and concentration of species showed higher values in communities which lived in a secundary vegetation.

  15. Regeneration of different plant functional types in a Masson pine forest following pine wilt disease.

    Science.gov (United States)

    Hu, Guang; Xu, Xuehong; Wang, Yuling; Lu, Gao; Feeley, Kenneth J; Yu, Mingjian

    2012-01-01

    Pine wilt disease is a severe threat to the native pine forests in East Asia. Understanding the natural regeneration of the forests disturbed by pine wilt disease is thus critical for the conservation of biodiversity in this realm. We studied the dynamics of composition and structure within different plant functional types (PFTs) in Masson pine forests affected by pine wilt disease (PWD). Based on plant traits, all species were assigned to four PFTs: evergreen woody species (PFT1), deciduous woody species (PFT2), herbs (PFT3), and ferns (PFT4). We analyzed the changes in these PFTs during the initial disturbance period and during post-disturbance regeneration. The species richness, abundance and basal area, as well as life-stage structure of the PFTs changed differently after pine wilt disease. The direction of plant community regeneration depended on the differential response of the PFTs. PFT1, which has a higher tolerance to disturbances, became dominant during the post-disturbance regeneration, and a young evergreen-broad-leaved forest developed quickly after PWD. Results also indicated that the impacts of PWD were dampened by the feedbacks between PFTs and the microclimate, in which PFT4 played an important ecological role. In conclusion, we propose management at the functional type level instead of at the population level as a promising approach in ecological restoration and biodiversity conservation.

  16. Plant and microbial uptake and allocation of organic and inorganic nitrogen related to plant growth forms and soil conditions at two subarctic tundra sites in Sweden

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Clemmensen, Karina Engelbrecht; Michelsen, Anders

    2008-01-01

    organic matter. At both sites the deciduous dwarf shrub Betula nana and the evergreen Empetrum hermaphroditum absorbed added 15N at rates in the order: NH4 + . NO3 2 . glycine, in contrast to the graminoid Carex species which took up added 15N at rates in the orderNO3 2 . NH4 + . glycine. Carex...

  17. Biomorphology and rhythm of seasonal development of the relic species Lobelia dortmanna in oligotrophic lakes of Tver region

    Directory of Open Access Journals (Sweden)

    A. G. Lapirov

    2017-07-01

    Full Text Available This article covers the morphology of the vegetative and generative sphere of a rare relic species, Lobelia dortmanna L. (Lobelioideae. This is the first time that using the modular approach a study has analysed the shoot system of this species and described the structures of all three categories: elementary (EM, universal (UM and basic (OM. This paper describes the life form and analyses the rhythm of seasonal development of the species in the lakes of Tver oblast, and provides data on the seed productivity. As a life form, L. dortmanna is a herbaceous polycarpic, un clearly polycentric shallow-rooted plant with a fibrous root system and non-specialized morphological disintegration. The sympodially growing shoot-system of the plant is formed by two types of different-aged anisotropic replacement shoots: dicyclic vegetative-generative semirosette and annual vegetative rosette shoots. The indicator of actual seed productivity equals on average up to 1621 ± 451 seeds per single vegetative-generative shoot. The module structure of L. dortmanna is presented by 10 variants of elementary modules. The main modules are formed on the basis of a monocarpic dicyclic anisotropic monopodial shoot with the following morpho-functional zones distinguished: 1 the lower zone of inhibition; 2 the recovery zone; 3 the upper zone of inhibition 4 the latent generative zone; 5 the main inflorescence. The functional role of the first three morpho-functional zones of a monocarpic shoot is performed by a minimum number of variants of elementary modules. In the rhythm of seasonal development, the authors distinguished 7 consecutive stages: 1 the period of relative rest; 2 vegetative phase; 3 the phase of budding; 4 flowering; 5 frui ting; 6 secondary activities. By the character of rhythm of seasonal development, L. dortmanna belongs to the group of evergreen plants with a long growing season and middle-late summer flowering.

  18. A preliminary checklist of butterflies recorded from Jeypore-Dehing forest, eastern Assam, India

    Directory of Open Access Journals (Sweden)

    M.J. Gogoi

    2013-02-01

    Full Text Available The paper describes some of the rare butterfly species recorded during February 2010-October 2011 in the lowland semi-evergreen Jeypore rainforest of upper Assam along with a preliminary checklist of the area. Altogether, 292 species were recorded based on the survey conducted in different seasons. Important sightings include the report of White Punch longicaudata, Pale Striped Dawnfly Capilia zennara, Blue Quaker Pithecops fulgens etc and range extension of Andaman Yellow-banded Flat Celaenorrhinus andamanicus hanna to northeastern India.

  19. Miocene Antarctic Terrestrial Realm

    Science.gov (United States)

    Ashworth, A. C.; Lewis, A.; Marchant, D. R.

    2009-12-01

    The discovery of several locations in the Transantarctic Mountains that contain macrofossils and pollen is transforming our understanding of late Cenozoic Antarctica. The most southerly location is on the Beardmore Glacier (85.1°S) about 500 km from the South Pole. The environment was an active glacial margin in which plants, insects and freshwater mollusks inhabited the sand and gravel bars and small lakes on an outwash plain. In addition to leaves and wood of dwarf Nothofagus (Southern Beech) shrubs, achenes of Ranunculus (Buttercup), in situ cushion growth forms of mosses and a vascular plant, the assemblages contains various exoskeletal parts of carabid and curculionid beetles and a cyclorrhaphan fly, the shells of freshwater bivalve and gastropod species and a fish tooth. Initially the deposits were assigned a Pliocene age (3.5 Ma) but a mid- to early Miocene age is more probable (c. 14 - 25 Ma) based on correlation of fossil pollen from the deposits with 39Ar/40Ar dated pollen assemblages from the McMurdo Dry Valleys locations. The oldest location within the Dry Valleys also involved an active ice margin but was part of a valley system that was completely deglaciated for intervals long enough for thick paleosols to develop. The Friis Hills fossil deposits of the Taylor Valley region (77.8°S) are at least 19.76 Ma based on the 39Ar/40Ar age of a volcanic ash bed. The valley floor during the non-glacial phases had poorly-drained soils and the extensive development of mossy mires. Wood and leaves of Nothofagus are abundant in lacustrine deposits. The silts of shallow fluvial channels contain abundant megaspores and spiky leaves of the aquatic lycopod Isoetes (Quillwort). Fossils of beetles are also present in these deposits. During the glacial phases, proglacial lakes were surrounded by dwarfed, deciduous Nothofagus shrubs. The youngest fossils recovered from the Dry Valleys are from the Olympus Range (77.5°S) with an age of 14.07 Ma. The environment was an

  20. The early to mid-Miocene environment of Antarctica

    Science.gov (United States)

    Ashworth, A. C.; Lewis, A.

    2012-12-01

    Paleoecological studies in the Transantarctic Mountains of the McMurdo region provide evidence that the climate was both warmer and wetter in the early to mid-Miocene than it was during the late Miocene. The climate change was accompanied by a shift from wet- to cold-based glaciation in the TAM and the probable growth of the polar ice sheet. Terrestrial and freshwater aquatic fossil assemblages from the Friis Hills (77°S) and the Olympus Range (77°S), with endpoint 40Ar/39Ar ages on tephras of 19.76 Ma and 14.07 Ma, respectively, indicate climatic cooling during the interval. At c.14 Ma, the temperature dropped below the threshold required to support the plants and insects of a tundra biome, and they became extinct. This interpretation is supported by pollen studies from Ross Sea cores. The extinction of the tundra biota on the continent appears to have been time-transgressive, occurring at 12.8 Ma on the Antarctic Peninsula. Evidence of climatic cooling from early to mid-Miocene is based on a decrease in biodiversity. During interglacial phases of the early Miocene, the poorly drained valley of the Friis Hills supported a sexually-reproducing moss community dominated by Campylium cf. polygamum, which today grows on the margins of lakes and in soil between boulders. Wood and leaves of Nothofagus (Southern Beech), and the seeds of at least five other angiosperm species are preserved as fossils. In addition, there are abundant megaspores and spiny, curved leaves of the aquatic lycopod Isoetes (Quillwort), as well as chitinous remains of curculionid beetles and Chironomidae (midges). During glacial phases, the only fossils found are Nothofagus leaves of a species which appears to be different than that associated with the interglacial phases. Pollen supports the interpretation that there was more than one species of Nothofagus in the vegetation. The types and numbers of species indicate that the vegetation was a shrub tundra. The closest modern analog for the fossil

  1. Foliar photochemical processes and carbon metabolism under favourable and adverse winter conditions in a Mediterranean mixed forest, Catalonia (Spain)

    Science.gov (United States)

    Sperlich, D.; Chang, C. T.; Peñuelas, J.; Gracia, C.; Sabaté, S.

    2014-10-01

    Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (Arbutus unedo L.). Therefore, we collected twigs from the field during a period of mild winter conditions and after a sudden cold period. After both periods, the state of the photosynthetic machinery was tested in the laboratory by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc, max), the maximum photosynthetic electron transport rate (Jmax), and the optimal fluorometric quantum yield of photosystem II (Fv/Fm). The responses of Vc, max and Jmax were highly species specific, with Q. ilex exhibiting the highest and P. halepensis the lowest reductions. In contrast, the optimal fluorometric quantum yield of photosystem II (Fv/Fm) was significantly lower in A. unedo after the cold period. The leaf position played an important role in Q. ilex showing a stronger winter effect on sunlit leaves in comparison to shaded leaves. Our results generally agreed with the previous classifications of photoinhibition-tolerant (P. halepensis) and photoinhibition-avoiding (Q. ilex) species on the basis of their susceptibility to dynamic

  2. Fog reduces transpiration in tree species of the Canarian relict heath-laurel cloud forest (Garajonay National Park, Spain).

    Science.gov (United States)

    Ritter, Axel; Regalado, Carlos M; Aschan, Guido

    2009-04-01

    The ecophysiologic role of fog in the evergreen heath-laurel 'laurisilva' cloud forests of the Canary Islands has not been unequivocally demonstrated, although it is generally assumed that fog water is important for the survival and the distribution of this relict paleoecosystem of the North Atlantic Macaronesian archipelagos. To determine the role of fog in this ecosystem, we combined direct transpiration measurements of heath-laurel tree species, obtained with Granier's heat dissipation probes, with micrometeorological and artificial fog collection measurements carried out in a 43.7-ha watershed located in the Garajonay National Park (La Gomera, Canary Islands, Spain) over a 10-month period. Median ambient temperature spanned from 7 to 15 degrees C under foggy conditions whereas higher values, ranging from 9 to 21 degrees C, were registered during fog-free periods. Additionally, during the periods when fog water was collected, global solar radiation values were linearly related (r2=0.831) to those under fog-free conditions, such that there was a 75+/-1% reduction in median radiation in response to fog. Fog events greatly reduced median diurnal tree transpiration, with rates about 30 times lower than that during fog-free conditions and approximating the nighttime rates in both species studied (the needle-like leaf Erica arborea L. and the broadleaf Myrica faya Ait.). This large decrease in transpiration in response to fog was independent of the time of the day, tree size and species and micrometeorological status, both when expressed on a median basis and in cumulative terms for the entire 10-month measuring period. We conclude that, in contrast to the turbulent deposition of fog water droplets on the heath-laurel species, which may be regarded as a localized hydrological phenomenon that is important for high-altitude wind-exposed E. arborea trees, the cooler, wetter and shaded microenvironment provided by the cloud immersion belt represents a large-scale effect

  3. Dendroecological analysis of a Fitzroya cupressoides and a Nothofagus nitida stand in the Cordillera Pelada, Chile

    Science.gov (United States)

    Margaret S. Devall; Bernard R. Parresol; Juan J. Armesto

    1998-01-01

    Lumbering of Fitzroya cupressoides in Chile began in 1599 and continued until 1976, when the species was declared a national monument and cutting of live trees was prohibited. Today, F. cupressoides is threatened; many of the remaining stands in the coastal range appear to be declining, with a predominance of standing dead stems and patchy, sparse regeneration. The...

  4. Final Environmental Assessment for Aircraft Maintenance Operations Center

    Science.gov (United States)

    2014-06-01

    lies within the Southern Mixed Forest Province that is typically characterized by forests of broadleaf deciduous and needleleaf evergreen trees ...virginiana), pin oak (Q. palustris), and southern magnolia (Magnolia grandiflora). Small tree and shrub species include the eastern red cedar, eastern ...this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington

  5. Temperate heath plant response to dry conditions depends on growth strategy and less on physiology

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Kongstad, J.; Schmidt, I. K.

    2012-01-01

    of these differences in response in dry versus rewetting conditions can be used to highlight the limitations coherent in different strategies adopted by, for example, evergreen shrubs and grasses. We investigated the leaf-level photosynthetic performance, leaf C, N and d13C along with vegetation cover and biomass...... in the evergreen dwarf shrub Calluna vulgaris and the grass species Deschampsia flexuosa in a temperate heath during seasonal changes in soil moisture. Higher photosynthetic capacity compensated for lower stomatal conductance and sustained higher rates of photosynthesis in the grass compared to the dwarf shrub....... In combination with dieback of aboveground biomass and reduction of stomatal conductance reduction during dry conditions, the grass continued to have high carbon uptake in the remaining leaves. The dwarf shrub endured the dry conditions by preserving shoot biomass and reducing stomatal conductance. Soil...

  6. Impacts of Extreme Events on Phenology: Drought-Induced Changes in Productivity of Mixed Woody-Herbaceous Ecosystems

    Science.gov (United States)

    Rich, P. M.; Breshears, D. D.; White, A. B.

    2006-12-01

    Ecosystem responses to key climate drivers are reflected in phenological dynamics such as the timing and degree of "greenup" that integrate responses over spatial scales from individual plants to ecosystems. This integration is clearest in ecosystems dominated by a single species or life form, such as seasonally dynamic grasslands or more temporally constant evergreen forests. Yet many ecosystems have substantial contribution of cover from both herbaceous and woody evergreen plants. Responses of mixed woody- herbaceous ecosystems to climate are of increasing concern due to their extensive nature, the potential for such systems to yield more complex responses than those dominated by a single life form, and projections that extreme climate and weather events will increase in frequency and intensity with global warming. We present responses of a mixed woody-herbaceous ecosystem type to an extreme event: regional scale piñon pine mortality following an extended drought and the subsequent herbaceous greenup following the first wet period after the drought. This example highlights how reductions in greenness of the slower, more stable evergreen woody component can rapidly be offset by increases associated with resources made available to the relatively more responsive herbaceous component. We hypothesize that such two-phase phenological responses to extreme events are characteristic of many mixed woody-herbaceous ecosystems.

  7. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.

    Science.gov (United States)

    Michelot, Alice; Simard, Sonia; Rathgeber, Cyrille; Dufrêne, Eric; Damesin, Claire

    2012-08-01

    Monitoring cambial phenology and intra-annual growth dynamics is a useful approach for characterizing the tree growth response to climate change. However, there have been few reports concerning intra-annual wood formation in lowland temperate forests with high time resolution, especially for the comparison between deciduous and coniferous species. The main objective of this study was to determine how the timing, duration and rate of radial growth change between species as related to leaf phenology and the dynamics of non-structural carbohydrates (NSC) under the same climatic conditions. We studied two deciduous species, Fagus sylvatica L. and Quercus petraea (Matt.) Liebl., and an evergreen conifer, Pinus sylvestris L. During the 2009 growing season, we weekly monitored (i) the stem radial increment using dendrometers, (ii) the xylem growth using microcoring and (iii) the leaf phenology from direct observations of the tree crowns. The NSC content was also measured in the eight last rings of the stem cores in April, June and August 2009. The leaf phenology, NSC storage and intra-annual growth were clearly different between species, highlighting their contrasting carbon allocation. Beech growth began just after budburst, with a maximal growth rate when the leaves were mature and variations in the NSC content were low. Thus, beech radial growth seemed highly dependent on leaf photosynthesis. For oak, earlywood quickly developed before budburst, which probably led to the starch decrease quantified in the stem from April to June. For pine, growth began before the needles unfolding and the lack of NSC decrease during the growing season suggested that the substrates for radial growth were new assimilates of the needles from the previous year. Only for oak, the pattern determined from the intra-annual growth measured using microcoring differed from the pattern determined from dendrometer data. For all species, the ring width was significantly influenced by growth duration

  8. Comparing growth phenology of co-occurring deciduous and evergreen conifers exposed to drought.

    Science.gov (United States)

    Swidrak, Irene; Schuster, Roman; Oberhuber, Walter

    2013-12-01

    Plant phenological events are influenced by climate factors such as temperature and rainfall. To evaluate phenological responses to water availability in a Spring Heath-Pine wood (Erico-Pinetum typicum), the focus of this study was to determine intra-annual dynamics of apical and lateral growth of co-occurring early successional Larix decidua and Pinus sylvestris and late successional Picea abies exposed to drought. The effect of reduced plant water availability on growth phenology was investigated by conducting a rainfall exclusion experiment. Timing of key phenological dates (onset, maximum rate, end, duration) of growth processes were compared among species at the rain-sheltered and control plot during 2011 and 2012. Shoot and needle elongation were monitored on lateral branches in the canopy at c . 16 m height and radial growth was recorded by automatic dendrometers at c . 1.3 m height of > 120 yr old trees. Different sequences in aboveground growth phenology were detected among the three species under the same growing conditions. While onset of radial growth in April through early May was considerably preceded by onset of needle growth in Larix decidua (5 - 6 weeks) and shoot growth in Pinus sylvestris ( c . 3 weeks), it occurred quite simultaneously with onset of shoot growth in Picea abies . Low water availability had a minor impact on onset of aboveground growth, which is related to utilization of stored water, but caused premature cessation of aboveground growth. At the control plot mean growing season length was 130 days in Pinus sylvestris , 95 days in Larix decidua and 73 days in Picea abies supporting the hypothesis that early successional species are resource expenders, while late successional species are more efficient in utilizing resources and develop safer life strategies. High synchronicity found in culmination of radial growth in late spring (mid-May through early June) prior to occurrence of more favourable environmental conditions in summer

  9. Multiyear Multiseasonal Changes in Leaf and Canopy Traits Measured by AVIRIS over Ecosystems with Different Functional Type Characteristics Through the Progressive California Drought 2013-2015

    Science.gov (United States)

    Ustin, S.; Roth, K. L.; Huesca, M.; Casas, A.; Adeline, K.; Drewry, D.; Koltunov, A.; Ramirez, C.

    2015-12-01

    Given the known heterogeneity in ecological processes within plant communities in California, we questioned whether the concept of conventional plant functional types (cPFTs) was adequate to characterize the functionality of the dominant species in these communities. We examined seasonal (spring, summer, fall) airborne AVIRIS and MASTER imagery collected during three years of progressive drought in California, and airborne LiDAR acquired once, for ecosystems that represent a wide range of plant functional types, from annual agriculture and herbaceous perennial wetlands, to forests and shrublands, including broadleaf deciduous and evergreen species and conifer species. These data were used to determine the extent to which changes in canopy chemistry could be detected, quantified, and related to leaf and canopy traits that are indicators of physiological functioning (water content, Leaf Mass Area, total C, N, and pigments (chlorophyll a, b, and carotenoids). At the canopy scale we measured leaf area index, and for forests — species, height, canopy area, DBH, deciduous or evergreen, broadleaf or needleleaf, and gap size. Strong correlations between leaf and canopy traits were predictable and quantifiable from spectroscopy data. Key structural properties of canopy height, biomass and complexity, a measure of spatial and vertical heterogeneity, were predicted by AVIRIS and validated against LiDAR data. Our data supports the hypothesis that optical sensors provide more detailed information about the distribution and variability in leaf and canopy traits related to plant functionality than cPFTs.

  10. How competitive is drought deciduousness in tropical forests? A combined eco-hydrological and eco-evolutionary approach

    Science.gov (United States)

    Vico, Giulia; Dralle, David; Feng, Xue; Thompson, Sally; Manzoni, Stefano

    2017-06-01

    Drought-deciduous and evergreen species are both common in tropical forests, where there is the need to cope with water shortages during periodic dry spells and over the course of the dry season. Which phenological strategy is favored depends on the long-term balance of carbon costs and gains that leaf phenology imposes as a result of the alternation of wet and dry seasons and the unpredictability of rainfall events. This study integrates a stochastic eco-hydrological framework with key plant economy traits to derive the long-term average annual net carbon gain of trees exhibiting different phenological strategies in tropical forests. The average net carbon gain is used as a measure of fitness to assess which phenological strategies are more productive and more evolutionarily stable (i.e. not prone to invasion by species with a different strategy). The evergreen strategy results in a higher net carbon gain and more evolutionarily stable communities with increasing wet season lengths. Reductions in the length of the wet season or the total rainfall, as predicted under climate change scenarios, should promote a shift towards more drought-deciduous communities, with ensuing implications for ecosystem functioning.

  11. Accuracy of LiDAR-based tree height estimation and crown recognition in a subtropical evergreen broad-leaved forest in Okinawa, Japan

    Directory of Open Access Journals (Sweden)

    Azita Ahmad Zawawi

    2015-04-01

    Full Text Available Aim of study: To present an approach for estimating tree heights, stand density and crown patches using LiDAR data in a subtropical broad-leaved forest. Area of study: The study was conducted within the Yambaru subtropical evergreen broad-leaved forest, Okinawa main island, Japan. Materials and methods: A digital canopy height model (CHM was extracted from the LiDAR data for tree height estimation and a watershed segmentation method was applied for the individual crown delineation. Dominant tree canopy layers were estimated using multi-scale filtering and local maxima detection. The LiDAR estimation results were then compared to the ground inventory data and a high resolution orthophoto image for accuracy assessment. Main results: A Wilcoxon matched pair test suggests that LiDAR data is highly capable of estimating tree height in a subtropical forest (z = 4.0, p = 0.345, but has limitation to detect small understory trees and a single tree delineation. The results show that there is a statistically significant different type of crown detection from LiDAR data over forest inventory (z = 0, p = 0.043. We also found that LiDAR computation results underestimated the stand density and overestimated the crown size. Research highlights: Most studies involving crown detection and tree height estimation have focused on the analysis of plantations, boreal forests and temperate forests, and less was conducted on tropical and/or subtropical forests. Our study tested the capability of LiDAR as an effective application for analyzing a highly dense forest

  12. Subantarctic forest ecology : case study of a conifer-broadleaved stand in Patagonia, Argentina

    NARCIS (Netherlands)

    Dezzotti, A.

    2000-01-01

    In the temperate rainforests of southern South America, the tree genus Nothofagus (Nothofagaceae) is the dominant in extension and abundance on zonal soils at different latitudes and altitudes, as well as on intrazonal (e.g., wetlands) and azonal soils (e.g., morrenic

  13. Baseline Inventory of amphibians and reptiles of Kurupukari, Guyana

    Science.gov (United States)

    MacCulloch, Ross D.; Reynolds, Robert P.

    2013-01-01

    The habitat in the vicinity of Kurupukari, on the Essequibo River in central Guyana, is tall evergreen lowland forest. The area has suffered some human disturbance from agriculture, road construction and ferry activity. The area was sampled for 10 days in 1990 and 12 days in 1997; seven days in rainy season and 15 in dry season. During this sampling 23 anuran and 17 reptile species were collected. Some differences exist between species collected on either side of the river. Comparisons are made with collections from other locations in Guyana.

  14. Antifungal Efficacy of Myrtus communis Linn

    OpenAIRE

    Sadeghi Nejad; Erfani Nejad; Yusef Naanaie; Zarrin

    2014-01-01

    Background The ethanolic extract of Myrtus communis Linn. leaves was assayed in vitro as a growth inhibitor against opportunistic fungi such as Candida and Aspergillus species. Myrtus communis Linn. (Family, Myrtaceae) is an aromatic evergreen shrub or small tree. It is native to the Mediterranean region. Objectives This study aimed to assess antifungal activity (in vitro) of the ethanolic extracts of Myrtus communis leaves as a g...

  15. Ecological Analysis of the Dendroflora of Futoški Park in the City of Novi Sad

    Directory of Open Access Journals (Sweden)

    Kurjakov Aleksandar

    2017-07-01

    Full Text Available The purpose of this paper is to analyze the floristic composition, abundance, biological spectrum and ecological effects of Futoški Park trees and shrubs on the basis of bioindicators. The field research was conducted in Futoški Park, which is one of the oldest and largest parks in the City of Novi Sad, covering an area of 81,306 m2. Upon determining the floristic composition of Futoški Park and the protection zone around the Park hotel, a total of 121 genotypes were recorded, out of which 34 species and lower taxa belong to the Gymnosperm phylum (Pinophyta and 87 species and lower taxa belong to the Angiosperm phylum (Magnoliophyta. A total of 5,228 representatives of dendroflora were found. The biological range of trees and shrubs in the study area mostly includes deciduous nanophanerophytes (34.98% and evergreen nanophanerophytes (33.72%, whereas the remainder includes evergreen phanerophytes (16.35% and the least prevalent deciduous phanerophytes (14.94%. The analysis of ecological indices shows that the greatest number of species meet the environmental requirements, and are successfully acclimated to the climatic and soil conditions. On the basis of the overall vitality and ornamental features of the dendroflora analyzed, it can be argued that Futoški Park is a unique ecological and environmental entity in the urban structure of the city.

  16. Knowing and doing: research leading to action in the conservation of forest genetic diversity of Patagonian temperate forests.

    Science.gov (United States)

    Gallo, Leonardo A; Marchelli, Paula; Chauchard, Luis; Peñalba, Marcelo Gonzalez

    2009-08-01

    Researchers dealing with conservation subjects usually do not put the results of their work into practice, even when the primary purpose of their research is the preservation of biodiversity. In the South American temperate forests we identified an area with the highest genetic diversity in Argentina of Nothofagus nervosa, one of the most relevant southern beech species. Based on the information of our scientific study and our recommendations, the authorities of Lanin National Park changed the protection status of this area to avoid logging. The new forestry management plans include consideration of "high genetic diversity" in decisions on where logging will be allowed. Results of our initial genetic study induced the analysis of biodiversity at the species and ecosystems levels, which yielded results similar to our genetic studies. A strong connection among researchers and managers from the onset of our study and the awareness of the former about the importance of the implementation of the research work were key to bridging the gap between conservation research and conservation practice.

  17. Some notes on the butterflies (Lepidoptera: Papilionoidea of Tantirimale Archaeological Site, Anuradhapura District, Sri Lanka

    Directory of Open Access Journals (Sweden)

    M.D.C. Asela

    2009-07-01

    Full Text Available There are 243 species of butterflies which including 5 families in Sri Lanka and 20 of them are endemic. However out of the 243 species 37 butterfly species belonging to 4 families was discovered from Tanthirimale Archaeological Forest area. This forest is classified as a Tropical dry mixed evergreen forests and its situated dry zone in Anuradapura district of Sri Lanka. We select three habitat types such as: forests, Rock outcrops and scrublands for studding composition and structure of butterflies in Archaeological Forest area. However, this important forest is threatened by harmful human activities such as man made fire, illegal logging, chena cultivation and road kills.

  18. 78 FR 46258 - Drawbridge Operation Regulation Lake Washington, Seattle, WA

    Science.gov (United States)

    2013-07-31

    ... that governs the Evergreen Point Floating Bridge (State Route 520 across Lake Washington) at Seattle... Department of Transportation has requested that the draw span of the Evergreen Point Floating Bridge (State... this time, which would divert road traffic onto the Evergreen Point Floating Bridge. The closure of the...

  19. The temporal response to drought in a Mediterranean evergreen tree: comparing a regional precipitation gradient and a throughfall exclusion experiment.

    Science.gov (United States)

    Martin-Stpaul, Nicolas K; Limousin, Jean-Marc; Vogt-Schilb, Hélène; Rodríguez-Calcerrada, Jesus; Rambal, Serge; Longepierre, Damien; Misson, Laurent

    2013-08-01

    Like many midlatitude ecosystems, Mediterranean forests will suffer longer and more intense droughts with the ongoing climate change. The responses to drought in long-lived trees differ depending on the time scale considered, and short-term responses are currently better understood than longer term acclimation. We assessed the temporal changes in trees facing a chronic reduction in water availability by comparing leaf-scale physiological traits, branch-scale hydraulic traits, and stand-scale biomass partitioning in the evergreen Quercus ilex across a regional precipitation gradient (long-term changes) and in a partial throughfall exclusion experiment (TEE, medium term changes). At the leaf scale, gas exchange, mass per unit area and nitrogen concentration showed homeostatic responses to drought as they did not change among the sites of the precipitation gradient or in the experimental treatments of the TEE. A similar homeostatic response was observed for the xylem vulnerability to cavitation at the branch scale. In contrast, the ratio of leaf area over sapwood area (LA/SA) in young branches exhibited a transient response to drought because it decreased in response to the TEE the first 4 years of treatment, but did not change among the sites of the gradient. At the stand scale, leaf area index (LAI) decreased, and the ratios of stem SA to LAI and of fine root area to LAI both increased in trees subjected to throughfall exclusion and from the wettest to the driest site of the gradient. Taken together, these results suggest that acclimation to chronic drought in long-lived Q. ilex is mediated by changes in hydraulic allometry that shift progressively from low (branch) to high (stand) organizational levels, and act to maintain the leaf water potential within the range of xylem hydraulic function and leaf photosynthetic assimilation. © 2013 John Wiley & Sons Ltd.

  20. Interannual variation of carbon fluxes from three contrasting evergreen forests: the role of forest dynamics and climate.

    Science.gov (United States)

    Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S

    2009-10-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results

  1. Interannual variation of carbon fluxes from three contrasting evergreen forests: The role of forest dynamics and climate

    Science.gov (United States)

    Sierra, C.A.; Loescher, H.W.; Harmon, M.E.; Richardson, A.D.; Hollinger, D.Y.; Perakis, S.S.

    2009-01-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed ?? 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show

  2. Isolation and characterization of 20 microsatellite loci for laurel species (Laurus, Lauraceae).

    Science.gov (United States)

    Arroyo, Juan M; Rigueiro, Cristina; Rodríguez, Rocío; Hampe, Arndt; Valido, Alfredo; Rodríguez-Sánchez, Francisco; Jordano, Pedro

    2010-05-01

    Microsatellite primers were developed for the evergreen tree Laurus to investigate population genetic structure and patterns of gene flow via animal-dispersed pollen and seeds. Twenty polymorphic nuclear microsatellite markers were developed using CA, GA, AAC, and ATG n-enriched genomic libraries. Given the tetraploidy of the sampled populations, we analyzed our data both as dominant loci and as codominant genotypic data to calculate allele frequencies and genetic diversity. A total of 196 and 222 alleles were found in 37 Mediterranean (L. nobilis) and 26 Macaronesian islands (L. azorica) individuals, respectively. Levels of polymorphism of the reported markers are adequate for studies of diversity and parentage in natural populations of this Tertiary relict tree.

  3. Carbon and Hydrogen Isotopic Composition of Plant Wax n-Alkanes: A Tool for Characterizing Soil Provenance in Forensic Science

    Science.gov (United States)

    Pedentchouk, N.; Wagner, T.; Jones, M.

    2009-04-01

    Forensic science is an integrative discipline that requires material evidence from diverse sources. Geochemical evidence derived from inorganic and organic substances is becoming increasingly popular among law enforcement agencies in industrialized countries. Previous investigations indicate that the relative distributions of individual plant-derived biomarkers found in soils are linked to the biomarker patterns found in the overlying vegetation. However, identification of soil provenance based on the distribution of plant-derived biomarkers for forensic purposes is inhibited by the fact that a significant number of terrestrial plant species have overlapping biomarker distributions. In order to enhance the resolving power of plant-derived biomarker signal, we propose to enhance the molecular approach by adding a stable isotope component, i.e. the delta13C/deltaD values of individual biomarkers. The first objective of this project is to determine the delta13C/deltaD signatures of n-alkanes derived from various higher plant types commonly growing in the UK. The second objective is to investigate whether the same species/plant types differ isotopically between two locations affected by different weather patterns in the UK: a relatively warmer and drier Norwich, Norfolk and a cooler and wetter Newcastle-upon-Tyne in NE England. The n-C29 alkane data from 14 tree species sampled during July 2007 and August 2008 in Newcastle show a clear negative trend between delta13C and deltaD values. When these data are plotted against each other, the six deciduous angiosperms (delta13C: c. -39 to -35 per mil; deltaD: c. -155 to -130 per mil) are completely separated from four evergreen angiosperms (delta13C: c. -33 to -28 per mil; deltaD: c. -195 to -165 per mil). The four gymnosperm species data plot between those of the deciduous and evergreen angiosperms. Because all 14 species in Newcastle experience the same environmental conditions, we suggest that the observed isotopic

  4. Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes.

    Science.gov (United States)

    Tautenhahn, Susanne; Lichstein, Jeremy W; Jung, Martin; Kattge, Jens; Bohlman, Stephanie A; Heilmeier, Hermann; Prokushkin, Anatoly; Kahl, Anja; Wirth, Christian

    2016-06-01

    Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods

  5. Resurrection of Bronchocela burmana Blanford, 1878 for the Green Crested Lizard (Squamata, Agamidae of southern Myanmar

    Directory of Open Access Journals (Sweden)

    George R. Zug

    2017-02-01

    Full Text Available Recent fieldwork in southern Tanintharyi revealed the presence of a small Green Crested Lizard in the wet evergreen forest. We generated mtDNA sequence data (ND2 that demonstrates that this population’s nearest relative is Bronchocela rayaensis Grismer et al., 2015 of Pulau Langkawi, northwestern Peninsular Malaysia and Phuket Island. Morphologically the Burmese Bronchocela shares many features with B. rayaensis, which potentially would make this recently described Thai-Malay species a synonym of Bronchocela burmana Blanford, 1878; however, we interpret the genetic and morphological differences to reflect evolutionary divergence and recommend the recognition of both species.

  6. I. Identification and characterization of dasheen mosaic virus in Chinese evergreen plants (Aglaonema commutatum) in California. II. New approaches for detecting plant viruses

    International Nuclear Information System (INIS)

    Kositratana, W.

    1985-01-01

    Chinese evergreen plants (Aglaonema commutatum) with symptoms of mild stunting, chlorosis, leaf distortion and mosaic, were observed in Southern California. Flexuous rods (ca. 750 nm) were detected in leaf dip and partially purified preparations. Dasheen mosac virus (DMV) was identified as the causal agent on the basis of host range, morphology and reaction with DMV antiserum in immunodouble diffusion and immunosorbent electron microscopy (ISEM) tests. Tetragonia expansa was found to be a new host of this virus. Surveys indicate that DMV is not widespread in cultivars of A. commutatum in Southern California. The virus was purified from leaves of seedling Philodendron selloum by clarification with CCl 4 , CHCl 3 , and Triton X-100, precipitation with PEG-8000 and centrifugation in either Cs 2 SO 4 -sucrose cushion gradients or Cs 2 SO 4 equilibrium density gradients. Purified virions formed a single UV-absorbing infectious band with densities of 1.31 and 1.245 g/ml in CsCl 2 and Cs 2 SO 4 equilibrium density gradients, respectively, and a sedimentation coefficient of 154 S as determined by a linear-log sucrose density gradient centrifugation. Dasheen mosaic virus has a plus-sense ssRNA with the M.W. of 3.2 x 10 6 under denaturing conditions. Molecular hybridization analysis using 3 H-complementary DNA specific to DMV-Ca RNA showed that DMV-Ca isolate was more closely related to DMV-Fiji isolate than to DMV-Fla isolate, and was very distantly related to ZYMV, TEV. PeMoC and PVY

  7. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands.

    Science.gov (United States)

    Simard, Sonia; Giovannelli, Alessio; Treydte, Kerstin; Traversi, Maria Laura; King, Gregory M; Frank, David; Fonti, Patrick

    2013-09-01

    The presence of soluble carbohydrates in the cambial zone, either from sugars recently produced during photosynthesis or from starch remobilized from storage organs, is necessary for radial tree growth. However, considerable uncertainties on carbohydrate dynamics and the consequences on tree productivity exist. This study aims to better understand the variation in different carbon pools at intra-annual resolution by quantifying how cambial zone sugar and starch concentrations fluctuate over the season and in relation to cambial phenology. A comparison between two physiologically different species growing at the same site, i.e., the evergreen Picea abies Karst. and the deciduous Larix decidua Mill., and between L. decidua from two contrasting elevations, is presented to identify mechanisms of growth limitation. Results indicate that the annual cycle of sugar concentration within the cambial zone is coupled to the process of wood formation. The highest sugar concentration is observed when the number of cells in secondary wall formation and lignification stages is at a maximum, subsequent to most radial growth. Starch disappears in winter, while other freeze-resistant non-structural carbohydrates (NSCs) increase. Slight differences in NSC concentration between species are consistent with the differing climate sensitivity of the evergreen and deciduous species investigated. The general absence of differences between elevations suggests that the cambial activity of trees growing at the treeline was not limited by the availability of carbohydrates at the cambial zone but instead by environmental controls on the growing season duration.

  8. Changes in soil carbon and nutrients following 6 years of litter removal and addition in a tropical semi-evergreen rain forest

    Directory of Open Access Journals (Sweden)

    E. V. J. Tanner

    2016-11-01

    Full Text Available Increasing atmospheric CO2 and temperature may increase forest productivity, including litterfall, but the consequences for soil organic matter remain poorly understood. To address this, we measured soil carbon and nutrient concentrations at nine depths to 2 m after 6 years of continuous litter removal and litter addition in a semi-evergreen rain forest in Panama. Soils in litter addition plots, compared to litter removal plots, had higher pH and contained greater concentrations of KCl-extractable nitrate (both to 30 cm; Mehlich-III extractable phosphorus and total carbon (both to 20 cm; total nitrogen (to 15 cm; Mehlich-III calcium (to 10 cm; and Mehlich-III magnesium and lower bulk density (both to 5 cm. In contrast, litter manipulation did not affect ammonium, manganese, potassium or zinc, and soils deeper than 30 cm did not differ for any nutrient. Comparison with previous analyses in the experiment indicates that the effect of litter manipulation on nutrient concentrations and the depth to which the effects are significant are increasing with time. To allow for changes in bulk density in calculation of changes in carbon stocks, we standardized total carbon and nitrogen on the basis of a constant mineral mass. For 200 kg m−2 of mineral soil (approximately the upper 20 cm of the profile about 0.5 kg C m−2 was “missing” from the litter removal plots, with a similar amount accumulated in the litter addition plots. There was an additional 0.4 kg C m−2 extra in the litter standing crop of the litter addition plots compared to the control. This increase in carbon in surface soil and the litter standing crop can be interpreted as a potential partial mitigation of the effects of increasing CO2 concentrations in the atmosphere.

  9. Surviving in Mountain Climate Refugia: New Insights from the Genetic Diversity and Structure of the Relict Shrub Myrtus nivellei (Myrtaceae) in the Sahara Desert

    OpenAIRE

    Migliore , Jérémy; Baumel , Alex; Juin , Marianick; Fady , Bruno; Roig , Anne; Duong , Nathalie; Médail , Frédéric

    2013-01-01

    International audience; The identification of past glacial refugia has become a key topic for conservation under environmental change, since they contribute importantly to shaping current patterns of biodiversity. However, little attention has been paid so far to interglacial refugia despite their key role for the survival of relict species currently occurring in climate refugia. Here, we focus on the genetic consequences of range contraction on the relict populations of the evergreen shrub M...

  10. Ecology of an endemic insular species: Cyclamen balearicum Willk. In the Balearic Islands

    Directory of Open Access Journals (Sweden)

    Grandjanny, Michel

    1997-06-01

    Full Text Available We studied Cyclamen balearicum Willk. in the Balearic Islands with the following two objectives: 1 to describe and discuss its ecology, 2 to discuss the type of rarity it represents. The species grows on Ibiza, Cabrera, Menorca and Mallorca; it is much more frequent on the latter two islands, and is abundant in the moutainous northern part of Mallorca. It is absent from Formentera. The species was found along the entire elevation gradient, thus experiencing a large range of rainfall and temperature conditions. It was encountered not only on limestone but also, occasionally on sandstone and schist in Menorca. Its local habitat is sheltered and shady, with a northern exposure, under a high cover of evergreen woody plants, with a stony soil. Quercus ilex L. and Pinus halepensis Mill, trees and Pistacia lentiscus L. shrubs are the more commonly observed dominant species where C. balearicum occuis. The usual entena applied in defining plant raríty are inadequate in this case, particularly where habitat specificity is concemed.Cyclamen balearicum Willk. ha sido estudiado en las Islas Baleares con dos objetivos principales: 1 describir y discutir su ecología, 2 discutir el tipo de especie rara que representa. La especie se encuentra en Ibiza. Cabrera, Menorca y Mallorca, aunque es mucho más frecuente en las dos últimas islas y abundante en la región montañosa del norte de Mallorca. No se ha encontrado en Formentera. La especie es capaz de crecer bajo una amplia gama de condiciones de precipitación y temperatura, puesto que se encuentra a lo largo de todo el gradiente altitudinal. Crece sobre rocas calcáreas y también, en Menorca, más raramente, sobre areniscas y esquistos. Se desarrolla principalmente en ambientes protegidos y sombreados orientados al norte, bajo la cubierta de árboles perennifohos, sobre suelos pedregosos. Quercus ilex L. y Pinus halepensis Mill, son las especies arbóreas, y Pistacia lentiscus L. la especie arbustiva, que

  11. Modulation of Fire Regimes by Vegetation and Site Type in Southwestern Patagonia Since 13 ka

    Directory of Open Access Journals (Sweden)

    Patricio I. Moreno

    2018-04-01

    Full Text Available The degree to which vegetation and site type have influenced fire regimes through the Holocene has not been investigated in detail in the temperate ecosystems of southern Patagonia. Here we present a first attempt using a paired-basin approach to study the evolution of fire regimes in sectors dominated by humid Nothofagus forests and the xeric Patagonian steppe in the Magallanes region of Chilean Patagonia (51°S. We analyzed sediment cores from two small lakes and a bog located within the same climate zone on opposite sides of the forest-steppe ecotone, ~28 km apart. The position of this biological boundary east of the Andes is controlled by the strength and position of the southern westerly winds, which constitute the sole source of precipitation throughout western Patagonia. Our results indicate that fires have occurred in the study region repeated times over the last ~13,000 years at bi- and tridecadal timescales. Sectors currently dominated by Patagonian steppe feature high frequency and low magnitude of local fires, and vice versa in humid forests. Climate-driven expansion of Nothofagus scrubland/woodland into steppe environments over the last ~4,200 years increased the magnitude and lowered the frequency of fire events, culminating with peak Nothofagus abundance, fire magnitude and frequency during the last millennium. We also detect divergences between lake-based vs. bog-based paleofire histories among paired sites located within the Patagonian steppe, ~12 km apart, which we attribute to local burning of the bog at times of lowered water table. This divergence suggests to us that bog-based vegetation and fire histories exacerbate a local, azonal, signal blurring extra-local or regional regimes, thus accounting for some discrepancies in the Quaternary paleovegetation/paleoclimate literature of southern Patagonia.

  12. Is deciduousness a key to climate resilience among iconic California savanna oak species? Relating phenological habits to seasonal indicators of tree physiological and water stress across field, hyperspectral, drone (UAS)-based multispectral and thermal image data

    Science.gov (United States)

    Mayes, M. T.; Caylor, K. K.; Ehlmann, B. L.; Greenberger, R. N.; Estes, L. D.

    2017-12-01

    In California (CA) savannas, oak trees (genus Quercus) play keystone roles in water and nutrient cycling, support biodiversity and many land-use activities. Declines in oak basal area of up to 25% from the 1930s-2000s, which have occurred alongside climate trends such as increasing variability of rainfall and prevalence of hotter droughts, threaten the services and ecological functions these trees provide. It is particularly unclear how climate relates to productivity and stress across oak species. Past work has found that seedling recruitment has varied inversely with "deciduousness." That is, evergreen oaks (e.g. Quercus agrifola. Coast Live Oak) are reproducing more successfully than drought-deciduous (e.g. Quercus douglassi, Blue Oak), which in turn are more successful than fully deciduous species (e.g. Quercus lobata, Valley Oak). However, there is poor understanding of how these ecological trends by species, corresponding with phenological habit, relate to physiological and ecohydrological processes such as carbon assimilation, water or nutrient use efficiency in mature tree stands. This limits predictive capability for which species will be most resilient to harsher future growing conditions, and, how to monitor stress and productivity in long-lived mature oak communities across landscapes via tools including remotely sensed data. This project explores how ecophysiological variables (e.g. stomatal conductance) relate to phenological habits across three oak species (Coast Live, Blue and Valley) over a seasonal dry-down period in Santa Barbara County, CA. Our goal is to probe if deciduousness is a key to resilience in productivity and water stress across iconic oak species. We test relationships between leaf and canopy-level field data, and indicators from multiple new sources of remotely sensed data, including ground hyperspectral, drone (UAS)-based multi-spectral and thermal image data, as means of monitoring tree physiological and water stress from scales

  13. Phylogeographical variation of chloroplast DNA in holm oak (Quercus ilex L.).

    Science.gov (United States)

    Lumaret, R; Mir, C; Michaud, H; Raynal, V

    2002-11-01

    Variation in the lengths of restriction fragments (RFLPs) of the whole chloroplast DNA molecule was studied in 174 populations of Quercus ilex L. sampled over the entire distribution of this evergreen and mainly Mediterranean oak species. By using five endonucleases, 323 distinct fragments were obtained. From the 29 and 17 cpDNA changes identified as site and length mutations, respectively, 25 distinct chlorotypes were distinguished, mapped and treated cladistically with a parsimony analysis, using as an outgroup Q. alnifolia Poech, a closely related evergreen oak species endemic to Cyprus where Q. ilex does not grow. The predominant role of Q. ilex as maternal parent in hybridization with other species was reflected by the occurrence of a single very specific lineage of related chlorotypes, the most ancestral and recent ones being located in the southeastern and in the northwestern parts of the species' geographical distribution, respectively. The lineage was constituted of two clusters of chlorotypes observed in the 'ilex' morphotyped populations of the Balkan and Italian Peninsulas (including the contiguous French Riviera), respectively. A third cluster was divided into two subclusters identified in the 'rotundifolia' morphotyped populations of North Africa, and of Iberia and the adjacent French regions, respectively. Postglacial colonization probably started from three distinct southerly refugia located in each of the three European peninsulas, and a contact area between the Italian and the Iberian migration routes was identified in the Rhône valley (France). Chlorotypes identical or related to those of the Iberian cluster were identified in the populations from Catalonia and the French Languedoc region, which showed intermediate morphotypes, and in the French Atlantic populations which possessed the 'ilex' morphotype, suggesting the occurrence of adaptive morphological changes in the northern part of the species' distribution.

  14. The butterflies of Turquino National Park, Sierra Maestra, Cuba (Lepidoptera, Papilionoidea

    Directory of Open Access Journals (Sweden)

    Núñez, R.

    2012-01-01

    Full Text Available Between February and November 2011, we conducted a species inventory, created a natural history database and a made a first approach to the composition and structure of the butterfly communities present at several vegetation types in the Turquino National Park. The inventory included 83 species, 29 of them endemic. We recorded 57 species (18 endemic in transects along main vegetation pathways. In disturbed vegetation, species richness was higher (48 and abundance was better distributed, but the proportion of endemism was lower (23%. Species richness decreased and the dominance and proportion of endemism increased with altitude. Numbers of species and the proportions of endemism at natural habitats sampled were: 19 and 58% for evergreen forest, 10 and 60% for rainforest, eight and 100% for cloud forest, and four and 100% for the elfin thicket. Flowers of 27 plants were recorded as nectar sources for 30 butterfly species, and host plants were recorded for nine species.

  15. Ecological Value of Soil Organic Matter at Tropical Evergreen Aglaia-Streblus Forest of Meru Betiri National Park, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Hari Sulistiyowati

    2016-09-01

    Full Text Available As part of carbon pools, forest soil stores soil organic matter (SOM that contains many elements including organic C, N, P, and K. These elements contribute nutrients for biogeochemical cycles within the ecosystem. This study was done to determine the ecological value of forest soil organic matter at tropical evergreen Aglaia-Streblus forest of Meru Betiri National Park (MBNP, East Java, Indonesia. The data were sampled along gradient topography in Pringtali tropical forest of TMBNP. Direct measurements of soil moisture, temperature, and pH were taken in the field. The soil samples were extracted from 6 points of soil solum using soil auger, and then oven-dried to get value of dry-weight. The elements content of organic C, N, P, and K were analyzed and estimated at the laboratory. The ecoval of SOM was appraised using developed ecological valuation tool. The result showed that SOM contributed higher ecoval of organic C (66.03 Mg ha-1 than other elements. Compared to P and K elements, N had the highest stock of element content. However, comparing to other two tropical forest ecosystems of Asia the ecoval of SOM elements in TMBNP was relatively low because of its natural geomorphological features.The ecoval of SOM elements in TMBNP was relatively low because of its natural geomorphological features. The ecovals contributed about 2.440,64 - 6.955,50 USD or 31.271.923,73 - 89.120.837,23 IDR per hectare of ecological value (d to the ecosystem. This value was mainly contributed by organic C stock in the TMBNP forest SOM. It means the forest SOM had higher element content of organic C than N, P, and K elements. This d value is an indicator for TMBNP to protect the SOM elements meaning protecting their resources to sustain the biogeochemical cycles in the forest ecosystem. All the management and policy correlated to this protected area should consider this valuable information for their plan and actions.

  16. A pollen-based record of late glacial-Holocene climatic variability in the southern lake district, Chile

    NARCIS (Netherlands)

    Vargas-Ramirez, L.; Roche, E.; Gerrienne, P.; Hooghiemstra, H.

    2008-01-01

    A pollen record from Puyehue area (40°S; 72°W) in the southern Lake District, Chile, indicates that prior to 13,410 14C yr BP (ca. 16,500-15,200 cal yr BP), cold resistant and hygrophilous vegetation, particularly Nothofagus forest and myricaceous vegetation, covered the area. From ca. 15,000 cal yr

  17. 西表島の海岸漂着ゴミヘの一考察

    OpenAIRE

    馬場, 繁幸; 石垣, 圭一; 伊谷, 玄; 茂木, 紀夫; Baba, Shigeyuki; Ishigaki, Keiichi; Itani, Gen; Motegi, Norio

    2011-01-01

    Iriomote Island is the second largest island in Okinawa Prefecture, Japan. The island is mostly covered with beautiful subtropical evergreen broad-leaf-tree forests. The forests support many endemic species, such as the Iriomote Wildcat (Prionailurus bengalensis iriomotensis). The population of the island was 2,284 as of December 2009, while the number of tourists who visited in 2009 was 304,440. Many islanders and some volunteers have been collecting marine litter on beaches of the island. T...

  18. Chemistry is Evergreen

    Indian Academy of Sciences (India)

    Srimath

    2008 Nobel Prize in Chemistry. Swagata Dasgupta. Swagata Dasgupta is an ... would get excited. The GFP would then emit green light. (509 nm) and return to the ground state. com ponents required. T hese include a photoprotein,ae- quorin (F igure 2) w hich em its .... a chemical reaction which originates in an organism.

  19. Endangered Species Day | Endangered Species Coalition

    Science.gov (United States)

    Annual Top 10 Report Protecting the Endangered Species Act Wildlife Voices Stand for Wolves Endangered Campaigns Wildlife Voices Protecting the Endangered Species Act Annual Top 10 Report Endangered Species Day Stand for Wolves Vanishing BOOK: A Wild Success The Endangered Species Act at 40 Endangered Species The

  20. The fauna of phlebotomines (Diptera, Psychodidae in different phytogeographic regions of the state of Maranhão, Brazil Fauna de flebotomíneos (Diptera, Psychodidae em municípios de diferentes fitorregiões, no estado do Maranhão, Brasil

    Directory of Open Access Journals (Sweden)

    José Manuel Macário Rebêlo

    2010-01-01

    Full Text Available Phlebotomine specimens were captured in domiciliary and forest environments in 47 municipalities between 1982 and 2005 with the aid of CDC light traps. A total of 91 species were found, of which four belonged to genus Brumptomyia and 87 to genus Lutzomyia, distributed among the following subgenera: Evandromyia (6, Lutzomyia (5, Micropygomyia (2, Nyssomyia (9, Pintomyia (2, Pressatia (3, Psathyromyia (6, Psychodopygus (14, Sciopemyia (4, Trichophoromyia (2, Viannamyia (2; species groups: Aragaoi (2, Baityi (1, Dreisbachi (1, Migonei (12, Oswaldoi (8, Pilosa (1, Saulensis (2, Verrucarum (4 and ungrouped (1. Species diversity was greatest in areas where there was dense evergreen seasonal forest (52 species, ombrophilous forest (31 and meridional cerrados (23 and lowest in areas with mixed forest (forest with babassu palms, cerrado and caatinga. The greatest similarity index was observed for restinga and open evergreen seasonal forest (J=0.48. Dense evergreen seasonal forest had greatest similarity with ombrophilous forest (J=0.38. The phlebotomine fauna was species rich and unevenly distributed in Maranhão, reflecting the phytogeographical complexity of the state, which is a result of the great variety of ecosystems and climate zones.Espécimes de flebotomíneos foram capturados nos anos de 1982 a 2005, em ambientes domiciliares e florestais de 47 municípios, com uso de armadilhas luminosas CDC. Foram encontradas 91 espécies, sendo quatro pertencentes ao gênero Brumptomyia e 87 ao gênero Lutzomyia, distribuídas nos seguintes subgêneros: Evandromyia (6, Lutzomyia (5, Micropygomyia (2, Nyssomyia (9, Pintomyia (2, Pressatia (3, Psathyromyia (6, Psychodopygus (14, Sciopemyia (4, Trychophoromyia (2, Viannamyia (2; grupo de espécies: Aragaoi (2, Baityi (1, Dreisbachi (1, Migonei (12, Oswaldoi (8, Pilosa (1, Saulensis (2, Verrucarum (4 e não agrupada (1. A diversidade de espécies foi maior nas áreas de floresta estacional perenifólia densa (52

  1. Life-forms and seasonal patterns in the pteridophytes in Zambia

    Directory of Open Access Journals (Sweden)

    Jan Kornaś

    2015-01-01

    Full Text Available 146 species of pteridophytes occurring in Zambia were classified into Raunkiaer's life-form classes. The hemicryptophytes are dominant and include the most widely distributed species. The phanerophytes (tree-ferns and lianas and the epiphytes are rather scarce and limited to or concentrated in the higher-rainfall areas in the northern part of the country. Simplified diagrams of periodicity were constructed for all Zambian pteridophyte species. Three major types of seasonal pattern of growth and dormancy were distinguished: the evergreen type, the poikilohydrous type, and the "summer-green" type. The first of them is connected with the local conditions of continuously wet non-zonal sites, while the two others clearly reflect the peculiarities of the zonal climate of Zambia.

  2. Mapping Distinct Forest Types Improves Overall Forest Identification Based on Multi-Spectral Landsat Imagery for Myanmar’s Tanintharyi Region

    Directory of Open Access Journals (Sweden)

    Grant Connette

    2016-10-01

    Full Text Available We investigated the use of multi-spectral Landsat OLI imagery for delineating mangrove, lowland evergreen, upland evergreen and mixed deciduous forest types in Myanmar’s Tanintharyi Region and estimated the extent of degraded forest for each unique forest type. We mapped a total of 16 natural and human land use classes using both a Random Forest algorithm and a multivariate Gaussian model while considering scenarios with all natural forest classes grouped into a single intact or degraded category. Overall, classification accuracy increased for the multivariate Gaussian model with the partitioning of intact and degraded forest into separate forest cover classes but slightly decreased based on the Random Forest classifier. Natural forest cover was estimated to be 80.7% of total area in Tanintharyi. The most prevalent forest types are upland evergreen forest (42.3% of area and lowland evergreen forest (21.6%. However, while just 27.1% of upland evergreen forest was classified as degraded (on the basis of canopy cover <80%, 66.0% of mangrove forest and 47.5% of the region’s biologically-rich lowland evergreen forest were classified as degraded. This information on the current status of Tanintharyi’s unique forest ecosystems and patterns of human land use is critical to effective conservation strategies and land-use planning.

  3. Decoupling of unpolluted temperate forests from rock nutrient sources revealed by natural 87Sr/86Sr and 84Sr tracer addition

    Science.gov (United States)

    Kennedy, Martin J.; Hedin, Lars O.; Derry, Louis A.

    2002-01-01

    An experimental tracer addition of 84Sr to an unpolluted temperate forest site in southern Chile, as well as the natural variation of 87Sr/86Sr within plants and soils, indicates that mechanisms in shallow soil organic horizons are of key importance for retaining and recycling atmospheric cation inputs at scales of decades or less. The dominant tree species Nothofagus nitida feeds nearly exclusively (>90%) on cations of atmospheric origin, despite strong variations in tree size and location in the forest landscape. Our results illustrate that (i) unpolluted temperate forests can become nutritionally decoupled from deeper weathering processes, virtually functioning as atmospherically fed ecosystems, and (ii) base cation turnover times are considerably more rapid than previously recognized in the plant available pool of soil. These results challenge the prevalent paradigm that plants largely feed on rock-derived cations and have important implications for understanding sensitivity of forests to air pollution. PMID:12119394

  4. Carbon dynamics in the deciduous broadleaf tree Erman's birch (Betula ermanii) at the subalpine treeline on Changbai Mountain, Northeast China.

    Science.gov (United States)

    Wang, Qing-Wei; Qi, Lin; Zhou, Wangming; Liu, Cheng-Gang; Yu, Dapao; Dai, Limin

    2018-01-01

    The growth limitation hypothesis (GLH) and carbon limitation hypothesis (CLH) are two dominant explanations for treeline formation. The GLH proposes that low temperature drives the treeline through constraining C sinks more than C sources, and it predicts that non-structural carbohydrate (NSC) levels are static or increase with elevation. Although the GLH has received strong support globally for evergreen treelines, there is still no consensus for deciduous treelines, which experience great asynchrony between supply and demand throughout the year. We investigated growth and the growing-season C dynamics in a common deciduous species, Erman's birch (Betula ermanii), along an elevational gradient from the closed forest to the treeline on Changbai Mountain, Northeast China. Samples were collected from developing organs (leaves and twigs) and main storage organs (stems and roots) for NSC analysis. Tree growth decreased with increasing elevation, and NSC concentrations differed significantly among elevations, organs, and sampling times. In particular, NSC levels varied slightly during the growing season in leaves, peaked in the middle of the growing season in twigs and stems, and increased continuously throughout the growing season in roots. NSCs also tended to increase or vary slightly in developing organs but decreased significantly in mature organs with increasing elevation. The decrease in NSCs with elevation in main storage organs indicates support for the CLH, while the increasing or static trends in new developing organs indicate support for the GLH. Our results suggest that the growth limitation theory may be less applicable to deciduous species' growth than to that of evergreen species. © 2018 Botanical Society of America.

  5. On the issue of drought-tolerant ornamental woody plants the Black Sea coast (near Sochi

    Directory of Open Access Journals (Sweden)

    Karpun Yuriy Nikolaevich

    2017-12-01

    Full Text Available The summer-autumn drought, when rainfall in July - September, less than 200 mm, a significant limiting factor for ornamental woody plants of the Black Sea coast of the Caucasus. In the region under dry periods are irregular, the study of their impact on plants is problematic and delayed for many years. The last drought was in 2015, when the three months fell only 87 mm of rainfall. In the last days of the dry period were examined 501 views and intraspecific taxa belonging to 112 genera, bushy evergreen shrubs and trees, as the most vulnerable. Evaluation of drought resistance was evaluated according to our 3-point system, and the results were analyzed in the context of consolidated floristic regions. The results showed adequate drought tolerance, not less than 65 %, cultivated in the region of evergreen shrubs and bushy trees mainly from East Asia and the Mediterranean. Among the species that are recommended for mass plantings, for the pre-emptive use of landscaping and street-resistant plants 67-80 %. All this ensures stability and high decorative plants ofSochi city.

  6. Re-evaluating the isotopic divide between angiosperms and gymnosperms using n-alkane δ13C values

    Science.gov (United States)

    Bush, R. T.; McInerney, F. A.

    2009-12-01

    Angiosperm δ13C values are typically 1-3‰ more negative than those of co-occurring gymnosperms. This is known for both bulk leaf and compound-specific values from n-alkanes, which are stable, straight-chain hydrocarbons (C23-C35) found in the epicuticular leaf wax of vascular plants. For n-alkanes, there is a second distinction between the δ13C values of angiosperms and gymnosperms—δ13C values generally decrease with increasing chain-length in angiosperms, while in gymnosperms they increase. These two distinctions have been used to support the ‘plant community change hypothesis’ explaining the difference between the terrestrial and marine carbon isotope excursions during the Paleocene-Eocene Thermal Maximum (PETM.) Preserved n-alkanes from terrestrial paleosols in the Bighorn Basin, Wyoming reveal a negative carbon isotope excursion during the PETM of 4-5‰, which is 1-2‰ greater than the excursion recorded by marine carbonates. The local plant community, known from macrofossils as well as palynoflora, shifted from a deciduous, mixed angiosperm/gymnosperm flora to a suite of evergreen angiosperm species during the PETM. At the end of the PETM, the community returned to a mixed deciduous flora very similar to the original. This change in the plant community could thus magnify the terrestrial negative carbon isotope excursion to the degree necessary to explain its divergence from the marine record. However, the comparison between modern angiosperms and gymnosperms has been made mostly between broadleaf, deciduous angiosperms and evergreen, coniferous gymnosperms. New data analyzing deciduous, coniferous gymnosperms, including Metasequoia glyptostroboides and Taxodium distichum, suggests that the division previously ascribed to taxonomy may actually be based on leaf habit and physiology, specifically broadleaf, deciduous versus needle-leaf, evergreen plants. If differences in n-alkane δ13C values can be described not as angiosperms versus gymnosperms

  7. Variation of Annual ET Determined from Water Budgets Across Rural Southeastern Basins Differing in Forest Types

    Science.gov (United States)

    Younger, S. E.; Jackson, C. R.

    2017-12-01

    In the Southeastern United States, evapotranspiration (ET) typically accounts for 60-70% of precipitation. Watershed and plot scale experiments show that evergreen forests have higher ET rates than hardwood forests and pastures. However, some plot experiments indicate that certain hardwood species have higher ET than paired evergreens. The complexity of factors influencing ET in mixed land cover watersheds makes identifying the relative influences difficult. Previous watershed scale studies have relied on regression to understand the influences or low flow analysis to indicate growing season differences among watersheds. Existing studies in the southeast investigating ET rates for watersheds with multiple forest cover types have failed to identify a significant forest type effect, but these studies acknowledge small sample sizes. Trends of decreasing streamflow have been recognized in the region and are generally attributed to five key factors, 1.) influences from multiple droughts, 2.) changes in distribution of precipitation, 3.) reforestation of agricultural land, 4.) increasing consumptive uses, or 5.) a combination of these and other factors. This study attempts to address the influence of forest type on long term average annual streamflow and on stream low flows. Long term annual ET rates were calculated as ET = P-Q for 46 USGS gaged basins with daily data for the 1982 - 2014 water years, >40% forest cover, and no large reservoirs. Land cover data was regressed against ET to describe the relationship between each of the forest types in the National Land Cover Database. Regression analysis indicates evergreen land cover has a positive relationship with ET while deciduous and total forest have a negative relationship with ET. Low flow analysis indicates low flows tend to be lower in watersheds with more evergreen cover, and that low flows increase with increasing deciduous cover, although these relationships are noisy. This work suggests considering forest

  8. In the right place at the right time: habitat representation in protected areas of South American Nothofagus-dominated plants after a dispersal constrained climate change scenario.

    Directory of Open Access Journals (Sweden)

    Diego Alarcón

    Full Text Available In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions.

  9. Relationships between NDVI, canopy structure, and photosynthesis in three California vegetation types

    International Nuclear Information System (INIS)

    Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R.

    1995-01-01

    In a range of plant species from three Californian vegetation types, we examined the widely used ''normalized difference vegetation index'' (NDVI) and ''simple ratio'' (SR) as indicators of canopy structure, light absorption, and photosynthetic activity. These indices, which are derived from canopy reflectance in the red and near-infrared wavebands, highlighted phenological differences between evergreen and deciduous canopies. They were poor indicators of total canopy biomass due to the varying abundance of non-green standing biomass in these vegetation types. However, in sparse canopies (leaf area index (LAI) apprxeq 0-2), NDVI was a sensitive indicator of canopy structure and chemical content (green biomass, green leaf area index, chlorophyll content, and foliar nitrogen content). At higher canopy green LAI values ( gt 2; typical of dense shrubs and trees), NDVI was relatively insensitive to changes in canopy structure. Compared to SR, NDVI was better correlated with indicators of canopy structure and chemical content, but was equivalent to the logarithm of SR. In agreement with theoretical expectations, both NDVI and SR exhibited near-linear correlations with fractional PAR intercepted by green leaves over a wide range of canopy densities. Maximum daily photosynthetic rates were positively correlated with NDVI and SR in annual grassland and semideciduous shrubs where canopy development and photosynthetic activity were in synchrony. The indices were also correlated with peak springtime canopy photosynthetic rates in evergreens. However, over most of the year, these indices were poor predictors of photosynthetic performance in evergreen species due to seasonal reductions in photosynthetic radiation-use efficiency that occurred without substantial declines in canopy greenness. Our results support the use of these vegetation indices as remote indicators of PAR absorption, and thus potential photosynthetic activity, even in

  10. Effects of environmental factors and soil properties on topographic variations of soil respiration

    OpenAIRE

    Tamai, K.

    2010-01-01

    Soil respiration rates were measured along different parts of a slope in (a) an evergreen forest with common brown forest soil and (b) a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soi...

  11. Behavioral Pattern of Endemic Sri Lanka Grey Hornbill (Ocyceros gingalensis) within the Breeding and Nonbreeding Seasons

    OpenAIRE

    Wijerathne, Iresha; Wickramasinghe, Sriyani

    2018-01-01

    The hornbills are among the most extraordinary looking birds in the world. Out of two species of hornbill, the Ocyceros gingalensis is the only endemic grey hornbill in Sri Lanka. This study was conducted in Mihintale Sanctuary which is comprised of secondary dry mixed evergreen forest patches and semiurbanized area from 2013 to 2015. Ad libitum focal animal sampling was used to construct an ethogram for the behavior of Sri Lanka grey hornbill (SLGh). The study recorded 35 behavioral events i...

  12. Factors influencing density of the Northern Mealy Amazon in three forest types of a modified rainforest landscape in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Miguel Ángel. De Labra-Hernández

    2017-06-01

    Full Text Available The high rate of conversion of tropical moist forest to secondary forest makes it imperative to evaluate forest metric relationships of species dependent on primary, old-growth forest. The threatened Northern Mealy Amazon (Amazona guatemalae is the largest mainland parrot, and occurs in tropical moist forests of Mesoamerica that are increasingly being converted to secondary forest. However, the consequences of forest conversion for this recently taxonomically separated parrot species are poorly understood. We measured forest metrics of primary evergreen, riparian, and secondary tropical moist forest in Los Chimalapas, Mexico. We also used point counts to estimate density of Northern Mealy Amazons in each forest type during the nonbreeding (Sept 2013 and breeding (March 2014 seasons. We then examined how parrot density was influenced by forest structure and composition, and how parrots used forest types within tropical moist forest. Overall, parrot density was high in the breeding season, with few parrots present during the nonbreeding season. During the breeding season, primary forest had significantly greater density of 18.9 parrots/km² in evergreen forest and 35.9 parrots/km² in riparian forest, compared with only 3.4 parrots/km² in secondary forest. Secondary forest had significantly lower tree species richness, density, diameter, total height, and major branch ramification height, as well as distinct tree species composition compared with both types of primary forest. The number of parrots recorded at point counts was related to density of large, tall trees, characteristic of primary forest, and parrots used riparian forest more than expected by availability. Hence, the increased conversion of tropical moist forest to secondary forest is likely to lead to reduced densities of forest-dependent species such as the Northern Mealy Amazon. Furthermore, the species' requirement for primary tropical moist forest highlights the need to reevaluate

  13. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast

    Science.gov (United States)

    Libkind, Diego; Hittinger, Chris Todd; Valério, Elisabete; Gonçalves, Carla; Dover, Jim; Johnston, Mark; Gonçalves, Paula; Sampaio, José Paulo

    2011-01-01

    Domestication of plants and animals promoted humanity's transition from nomadic to sedentary lifestyles, demographic expansion, and the emergence of civilizations. In contrast to the well-documented successes of crop and livestock breeding, processes of microbe domestication remain obscure, despite the importance of microbes to the production of food, beverages, and biofuels. Lager-beer, first brewed in the 15th century, employs an allotetraploid hybrid yeast, Saccharomyces pastorianus (syn. Saccharomyces carlsbergensis), a domesticated species created by the fusion of a Saccharomyces cerevisiae ale-yeast with an unknown cryotolerant Saccharomyces species. We report the isolation of that species and designate it Saccharomyces eubayanus sp. nov. because of its resemblance to Saccharomyces bayanus (a complex hybrid of S. eubayanus, Saccharomyces uvarum, and S. cerevisiae found only in the brewing environment). Individuals from populations of S. eubayanus and its sister species, S. uvarum, exist in apparent sympatry in Nothofagus (Southern beech) forests in Patagonia, but are isolated genetically through intrinsic postzygotic barriers, and ecologically through host-preference. The draft genome sequence of S. eubayanus is 99.5% identical to the non-S. cerevisiae portion of the S. pastorianus genome sequence and suggests specific changes in sugar and sulfite metabolism that were crucial for domestication in the lager-brewing environment. This study shows that combining microbial ecology with comparative genomics facilitates the discovery and preservation of wild genetic stocks of domesticated microbes to trace their history, identify genetic changes, and suggest paths to further industrial improvement. PMID:21873232

  14. Saccharomyces eubayanus and Saccharomyces uvarum associated with the fermentation of Araucaria araucana seeds in Patagonia.

    Science.gov (United States)

    Rodríguez, M Eugenia; Pérez-Través, Laura; Sangorrín, Marcela P; Barrio, Eladio; Lopes, Christian A

    2014-09-01

    Mudai is a traditional fermented beverage, made from the seeds of the Araucaria araucana tree by Mapuche communities. The main goal of the present study was to identify and characterize the yeast microbiota responsible of Mudai fermentation as well as from A. araucana seeds and bark from different locations in Northern Patagonia. Only Hanseniaspora uvarum and a commercial bakery strain of Saccharomyces cerevisiae were isolated from Mudai and all Saccharomyces isolates recovered from A. araucana seed and bark samples belonged to the cryotolerant species Saccharomyces eubayanus and Saccharomyces uvarum. These two species were already reported in Nothofagus trees from Patagonia; however, this is the first time that they were isolated from A. araucana, which extends their ecological distribution. The presence of these species in A. araucana seeds and bark samples, led us to postulate a potential role for them as the original yeasts responsible for the elaboration of Mudai before the introduction of commercial S. cerevisiae cultures. The molecular and genetic characterization of the S. uvarum and S. eubayanus isolates and their comparison with European S. uvarum strains and S. eubayanus hybrids (S. bayanus and S. pastorianus), allowed their ecology and evolution us to be examined. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Philodryas chamissonis (Reptilia: Squamata: Colubridae preys on the arboreal marsupial Dromiciops gliroides (Mammalia: Microbiotheria: Microbiotheriidae Philodryas chamissonis (Reptilia: Squamata: Dipsadidae predando o marsupial arborícola Dromiciops gliroides (Mammalia: Microbiotheria: Microbiotheriidae

    Directory of Open Access Journals (Sweden)

    S. Muñoz-Leal

    2013-02-01

    Full Text Available Philodryas chamissonis, the Chilean long-tailed snake, is a diurnal predator mainly of Liolaemus lizards, but also of amphibians, birds, rodents and juvenile rabbits. Dromiciops gliroides (Colocolo opossum is an arboreal marsupial endemic of temperate rainforest of southern South America. Little information is available about this marsupial's biology and ecology. Here we report the predation of one Colocolo opossum by an adult female P. chamissonis in a mixed Nothofagus forest, composed mainly by N. dombeyi, N. glauca and N. alpina trees, in the "Huemules de Niblinto" National Reserve, Nevados de Chillán, Chile. Since these two species have different activity and habitat use patterns, we discuss how this encounter may have occurred. Although it could just have been an opportunistic event, this finding provides insights into the different components of food chains in forest ecosystems of Chile.Philodryas chamissonis, cobra de cauda comprida ("Culebra de cola larga", é uma cobra diurna, predadora principalmente de lagartos do gênero Liolaemus, mas também de anfíbios, aves, roedores e coelhos jovens. Dromiciops gliroides (colocolo é um marsupial arborícola endêmico das florestas temperadas do sul da América do Sul. Há pouca informação disponível sobre a biologia e a ecologia deste marsulpial. É reportada, neste estudo, a predação de um colocolo por uma fêmea adulta de P. chamissonis, em uma floresta mista de Nothofagus, composta principalmente por árvores N. dombeyi, N. glauca e N. alpina, na Reserva Nacional de Huemules de Niblinto, Nevados de Chillán, Chile. Uma vez que estas duas espécies possuem diferentes padrões de atividade e de uso de habitat, discute-se como este evento poder ter ocorrido. Embora este possa ter sido apenas um evento oportunístico, o achado fornece novas informações sobre os diferentes componentes da cadeia alimentar nos ecossistemas florestais do Chile.

  16. Riparian leaf litter processing by benthic macroinvertebrates in a woodland stream of central Chile Procesamiento de detritus ripariano por macroinvertebrados bentónicos en un estero boscoso de Chile central

    Directory of Open Access Journals (Sweden)

    CLAUDIO VALDOVINOS

    2001-06-01

    Full Text Available Leaf litter input from riparian landscapes has been identified as both a major energy flow to stream ecosystems and as a food source for stream macroinvertebrates. In riparian landscapes of woodland streams of central Chile, the native deciduous hardwoods are being artificially replaced by exotic coniferous trees at a large spatial scale. It is suggested that this process has a significant impact on the stream communities of central Chile. Today, exotic plantations occur throughout central Chile, with Pinus radiata (D. Don (Monterrey pine accounting for about 80 % of the more than 1,800,000 ha of exotic forests. The objective of this paper was to analyze the effect of the litter beds of a dominant native species (Nothofagus pumilio and an exotic species (P. radiata on the detritus processing carried out by benthic macroinvertebrates, in an experimental catchment of central Chile (Rucúe Creek; 36° 26'00" S, 71° 35'40" W. Results revealed that processing rates of native leaf packs are higher than rates of coniferous leaf packs, suggesting that the replacement of the native hardwoods by exotic coniferous riparian flora has an important impact on the stream energy flow in central Chile. The decay rate coefficients (k were 0.0072 for N. pumilio, and 0.0027 for P. radiata. The greater abundance and biomass of shredders per gram of leaf pack of native Nothofagus would explain the differences in leaf processing rates, especially through the activity of two Plecoptera Gripopterygidae, Limnoperla jaffueli and Antarctoperla michaelseniLa entrada de detritus foliar procedente de áreas riparianas ha sido reconocido como un componente importante en la energética de ecosistemas fluviales y como fuente de alimento de macroinvertebrados acuáticos. En áreas riparianas de esteros boscosos de Chile central los componentes nativos caducifolios están siendo artificialmente reemplazados a gran escala por coníferas exóticas, sugiriendo que este proceso tiene

  17. Leaf anatomical changes in Populus trichocarpa, Quercus rubra, Pseudotsuga menziesii and Pinus ponderosa exposed to enhanced ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Nagel, L.M.; Bassman, J.H.; Edwards, G.E.; Robberecht, R.; Franceshi, V.R.

    1998-01-01

    Leaf anatomical characteristics are important in determining the degree of injury sustained when plants are exposed to natural and enhanced levels of ultraviolet-B (UV-B) radiation (280–320 nm). The degree to which leaf anatomy can adapt to the increasing levels of UV-B radiation reaching the earth's surface is poorly understood in most tree species. We examined four tree species, representing a wide range of leaf anatomical characteristics, to determine responses of leaf area, specific leaf weight, and leaf tissue parameters after exposure to ambient and enhanced levels of UV-B radiation. Seedlings were grown in a greenhouse with photosynthetically active radiation of 39 mol m −2 day −1 and under one of three daily irradiances of biologically effective UV-B radiation (UV-BBE) supplied for 10 h per day: (1) approximate ambient level received at Pullman, Washington on June 21 (1 x ); two times ambient (2 x ), or three times ambient (3 x ). We hypothesized the response of each species to UV-B radiation would be related to inherent anatomical differences. We found that the conifers responded anatomically to nearly an equal degree as the broad-leaved trees, but that different tissues were involved. Populus trichocarpa, an indeterminate broadleaf species, showed significantly thicker palisade parenchyma in recently mature leaves at the 3 x level and in older leaves under the 2 x level. In addition, individual leaf area was generally greater with increased UV-B irradiance. Quercus rubra, a semi-determinate broadleaf species, exhibited significantly thicker palisade parenchyma at the 2 x and 3 x levels as compared to controls. Psuedotsuga menziesii, an evergreen coniferous species with bifacially flattened needles, and Pinus ponderosa, an evergreen coniferous species with a complete hypodermis, showed no significant change in leaf area or specific leaf weight under enhanced UV-B radiation. Epidermal thickness was unchanged in P. menziesii. However, P. ponderosa

  18. Relating ring width of Mediterranean evergreen species to seasonal and annual variations of precipitation and temperature

    NARCIS (Netherlands)

    Nijland, W.; Jansma, E.; Addink, E.A.; Domínguez Delmás, M.; Jong, S.M. de

    2011-01-01

    Plant growth in Mediterranean landscapes is limited by the typical summer-dry climate. Forests in these areas are only marginally productive and may be quite susceptible to modern climate change. To improve our understanding of forest sensitivity to annual and seasonal climatic variability, we

  19. Water cycle observations in forest watersheds of Cambodia

    Science.gov (United States)

    Shimizu, A.; Tamai, K.; Kabeya, N.; Shimizu, T.; Iida, S. I.

    2015-12-01

    The Lower Mekong River flows through Cambodia, where forests cover ~60% of the country and are believed to have a marked effect on the water cycle. These tropical seasonal forests in the Cambodian flat lands are very precious in the Indochinese Peninsula as few forests of this type remain. However, few hydrological observations have been conducted in these areas. In Cambodia, deciduous and evergreen forests make up 42% and 33% of the total forest area, respectively. We established experimental watersheds both in deciduous and evergreen forests containing meteorological observation towers in Cambodia and collected various observational data since 2003 (O'Krieng, deciduous forest watershed including a 30-m-high observation tower, 2,245 km2; Stung Chinit, evergreen forest watershed including a 60-m-high observation tower, 3,700 km2 including three small watersheds). The basic data from these sites included various kinds of information related to the composition of vegetation, soil characteristics, etc. Hydrologic data was collected and linked to the above data; the main hydrologic research results follow. The water budget for each watershed was determined using an observational rainfall and runoff dataset. The evapotranspiration rate in an evergreen forest was obtained using various observational methods including the Bowen energy-balance ratio and the bandpass eddy covariance method. The annual evapotranspiration of evergreen forests, estimated using the Bowen energy-balance ratio method and water balance, was about 1100-1200 mm, corresponding to 70-80% of annual rainfall. While considering the importance of the presence of evergreen forest, we conducted sap flow measurements to analyze the transpiration process that maintains water uptake through root systems that reach to depths exceeding 8 m. Characteristics of the evaporation from the forest floor that form an important element of the evaporation system were estimated in both evergreen and deciduous forests.

  20. Phytosociological studies of the sacred grove of Kanyakumari district, Tamilnadu, India

    Directory of Open Access Journals (Sweden)

    S. Sukumaran

    2018-04-01

    Full Text Available Sacred groves are forest patches conserved by the local people through religious and cultural practices. These groves are important reservoirs of biodiversity, preserving indigenous plant species and serving as asylum of Rare, Endangered and Threatened (RET species. The present study was carried out in Muppuram coastal sacred grove of Kanyakumari district to reveal the plant diversity, structure and regeneration pattern of trees using quadrate method. About 102 plant species were recorded from the total area (0.2 ha of the grove studied. The vegetation of the grove clearly indicates tropical dry evergreen forest. Malvaceae was the dominant family. Young plant species were dominating than older ones (> 160 cm. To avoid the rapid environmental degradation of the sacred grove, conserving the groves is urgent and it is necessary to conduct more researches on this grove as well as other groves of the district.

  1. Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon

    Science.gov (United States)

    Burbridge, Rachel E.; Mayle, Francis E.; Killeen, Timothy J.

    2004-03-01

    Pollen and charcoal records from two large, shallow lakes reveal that throughout most of the past 50,000 yr Noel Kempff Mercado National Park, in northeastern lowland Bolivia (southwestern Amazon Basin), was predominantly covered by savannas and seasonally dry semideciduous forests. Lowered atmospheric CO 2 concentrations, in combination with a longer dry season, caused expansion of dry forests and savannas during the last glacial period, especially at the last glacial maximum. These ecosystems persisted until the mid-Holocene, although they underwent significant species reassortment. Forest communities containing a mixture of evergreen and semideciduous species began to expand between 6000 and 3000 14C yr B.P. Humid evergreen rain forests expanded to cover most of the area within the past 2000 14C yr B.P., coincident with a reduction in fire frequencies. Comparisons between modern pollen spectra and vegetation reveal that the Moraceae-dominated rain forest pollen spectra likely have a regional source area at least 2-3 km beyond the lake shore, whereas the grass- and sedge-dominated savanna pollen spectra likely have a predominantly local source area. The Holocene vegetation changes are consistent with independent paleoprecipitation records from the Bolivian Altiplano and paleovegetation records from other parts of southwestern Amazonia. The progressive expansion in rain forests through the Holocene can be largely attributed to enhanced convective activity over Amazonia, due to greater seasonality of insolation in the Southern Hemisphere tropics driven by the precession cycle according to the Milankovitch Astronomical Theory.

  2. A Quantitative Index of Forest Structural Sustainability

    Directory of Open Access Journals (Sweden)

    Jonathan A. Cale

    2014-07-01

    Full Text Available Forest health is a complex concept including many ecosystem functions, interactions and values. We develop a quantitative system applicable to many forest types to assess tree mortality with respect to stable forest structure and composition. We quantify impacts of observed tree mortality on structure by comparison to baseline mortality, and then develop a system that distinguishes between structurally stable and unstable forests. An empirical multivariate index of structural sustainability and a threshold value (70.6 derived from 22 nontropical tree species’ datasets differentiated structurally sustainable from unsustainable diameter distributions. Twelve of 22 species populations were sustainable with a mean score of 33.2 (median = 27.6. Ten species populations were unsustainable with a mean score of 142.6 (median = 130.1. Among them, Fagus grandifolia, Pinus lambertiana, P. ponderosa, and Nothofagus solandri were attributable to known disturbances; whereas the unsustainability of Abies balsamea, Acer rubrum, Calocedrus decurrens, Picea engelmannii, P. rubens, and Prunus serotina populations were not. This approach provides the ecological framework for rational management decisions using routine inventory data to objectively: determine scope and direction of change in structure and composition, assess excessive or insufficient mortality, compare disturbance impacts in time and space, and prioritize management needs and allocation of scarce resources.

  3. CEPF Western Ghats Special Series : Diversity and distribution of anurans in Phansad Wildlife Sanctuary (PWS, northern Western Ghats of India

    Directory of Open Access Journals (Sweden)

    U. Katwate

    2013-02-01

    Full Text Available In global consequences of rapidly changing climate and increased amphibian population decline, mapping amphibian diversity in biodiversity hotspots is essential. In this study we have systematically studied anurans of Phansad Wildlife Sanctuary in terms of species diversity, population structure, threat status and distribution. We recorded a total of 22 anuran species, of which 11 species are endemic to Western Ghats biodiversity hotspot. Family Dicroglossidae was found to be more species-rich. Spatial and temporal variation in anuran diversity was observed by using Shannon diversity and evenness indices. Most of the endemic and threatened anuran species are found to be associated with evergreen undisturbed forest patches. Habitat parameters like humidity, forest type, canopy coverage, riparian canopy coverage, stream persistence and litter depth are found to be major variables governing species diversity and distribution. Major anthropogenic threats to amphibians of Phansad Wildlife Sanctuary are discussed along with future conservation objectives. With range extension of species like Fejervarya caperata and Minervarya sahyadris further north in the Western Ghats, taxonomic ambiguities recorded during study are discussed briefly.

  4. Estimating contribution of anthocyanin pigments to osmotic adjustment during winter leaf reddening.

    Science.gov (United States)

    Hughes, Nicole M; Carpenter, Kaylyn L; Cannon, Jonathan G

    2013-01-15

    The association between plant water stress and synthesis of red, anthocyanin pigments in leaves has led some plant biologists to propose an osmotic function of leaf reddening. According to this hypothesis, anthocyanins function as a solute in osmotic adjustment (OA), contributing to depression of osmotic potential (Ψ(π)) and maintenance of turgor pressure during drought-stressed conditions. Here we calculate the percent contribution of anthocyanin to leaf Ψ(π) during OA in two angiosperm evergreen species, Galax urceolata and Gaultheria procumbens. Both species exhibit dramatic leaf reddening under high light during winter, concomitant with declines in leaf water potential and accumulation of solutes. Data previously published by the authors on osmotic potential at full turgor (Ψ(π,100)) of G. urceolata and G. procumbens leaves before and after leaf reddening were used to estimate OA. In vivo molar concentrations of anthocyanin, glucose, fructose, and sucrose measured from the same individuals were converted to pressure equivalents using the Ideal Gas Law, and percent contribution to OA was estimated. Estimated mean OA during winter was -0.7MPa for G. urceolata and -0.8MPa for G. procumbens. In vivo concentrations of anthocyanin (3-10mM) were estimated to account for ∼2% of OA during winter, and comprised <0.7% of Ψ(π,100) in both species. Glucose, fructose, and sucrose combined accounted for roughly 50 and 80% of OA for G. urceolata and G. procumbens, respectively, and comprised ∼20% of Ψ(π,100). We observed that a co-occurring, acyanic species (Vinca minor) achieved similar OA without synthesizing anthocyanin. We conclude that anthocyanins represent a measurable, albeit meager, component of OA in red-leafed evergreen species during winter. However, due to their low concentrations, metabolic costliness relative to other osmolytes, and striking red color (unnecessary for an osmotic function), it is unlikely that they are synthesized solely for an

  5. Can we relate respiration rates of bark and wood with tissue nitrogen concentrations and branch-level CO2 fluxes across woody species?

    Science.gov (United States)

    Eller, A. S.; Wright, I.; Cernusak, L. A.

    2013-12-01

    Respiration from above-ground woody tissue is generally responsible for 5-15% of ecosystem respiration (~ 30% of total above-ground respiration). The CO2 respired by branches comes from both the sapwood and the living layers within the bark, but because there is considerable movement of respired CO2 within woody tissues (e.g. in the transpiration stream), and because the bark can present a considerable barrier to CO2 diffusion, it can be difficult to interpret measured CO2 efflux from intact branches in relation to the respiration rates of the component tissues, and to relative mass allocation to each. In this study we investigated these issues in 15 evergreen tree and shrub species native to the Sydney area in eastern Australia. We measured CO2 efflux and light-dependent refixation of respired CO2 in photosynthetic bark from the exterior surfaces of branches (0.5-1.5 cm in diameter), and measured the tissue-specific respiration rates of the bark and wood from those same branches. We also measured the nitrogen content and tissue density of the wood and bark to determine: 1) Among species, what is the relationship between %N and tissue respiration? 2) How is photosynthetic refixation of CO2 related to respiration and %N in the bark and underlying wood? and 3) What is the relationship between branch CO2 efflux and the respiration rates of the underlying wood and bark that make up the branch? Across the 15 species %N was a better predictor of respiration in wood than in bark. CO2 efflux measured from the exterior of the stem in the dark was positively correlated with photosynthetic refixation and explained ~40% of the variation in rates of refixation. Refixation rates were not strongly related to bark or wood %N. Differences among species in CO2 efflux rates were not well explained by differences in bark or wood %N and there was a stronger relationship between bark respiration and CO2 efflux than between wood respiration and CO2 efflux. These results suggest that the

  6. Evolutionarily stable strategy of carbon and nitrogen investments in forest leaves and its application in vegetation dynamic modeling

    Science.gov (United States)

    Weng, E.; Farrior, C.; Dybzinski, R.; Pacala, S. W.

    2015-12-01

    Leaf mass per area (LMA) and leaf lifespan (LL) are two highly correlated plant traits that are key to plant physiological and ecological properties. Usually, low LMA means short LL, high nitrogen (N) content per unit mass, and fast turnover rates of nutrients; high LMA leads to long LL, low N content, and slow turnover rates. Deciduous trees with low LMA and short lifespan leaves have low carbon cost but high nitrogen demand; and evergreen trees, with high LMA and long lifespan leaves, have high carbon cost but low nitrogen demand. These relationships lead to: 1) evergreen trees have higher leaf area index than deciduous trees; 2) evergreen trees' carbon use efficiency is lower than the deciduous trees' because of their thick leaves and therefore high maintenance respiration; 3) the advantage of evergreens trees brought by their extra leaves over deciduous trees diminishes with increase N in ecosystem. These facts determine who will win when trees compete with each other in a N-limited ecosystem. In this study, we formulate a mathematical model according to the relationships between LMA, LL, leaf nitrogen, and leaf building and maintenance cost, where LMA is the fundamental variable determining the other three. We analyze the evolutionarily stable strategies (ESSs) of LMA with this mathematical model by examining the benefits of carbon and nitrogen investments to leaves in ecosystems with different N. The model shows the ESS converges to low LMA at high N and high LMA at low N. At intermediate N, there are two ESSs at low and high ends of LMA, respectively. The ESS also leads to low forest productivity by outcompeting the possible high productive strategies. We design a simulation scheme in an individual-based competition model (LM3-PPA) to simulate forest dynamics as results of the competition between deciduous and evergreen trees in three different biomes, which are temperate deciduous forest, deciduous-evergreen mixed forest, and boreal evergreen forest. The

  7. Effects of seed mass on seedling success in Artocarpus heterophyllus L., a tropical tree species of north-east India

    Science.gov (United States)

    Khan, M. L.

    2004-03-01

    I examined the effects of seed mass on performance of seedlings of Artocarpus heterophyllus L. (Moraceae), a large evergreen late successional shade-tolerant tree species in three contrasting light conditions. Seed mass varied many fold from 1.5 to 14 g in A. heterophyllus. Germination and germination time showed a significant correlation with seed mass. Germination differed significantly among three light regimes (50%, 25% and 3%). Seed mass and light level significantly affected seedling survival. The seedlings that emerged from large seeds survived better than those from small seeds under all light regimes. Survival of seedlings was maximum in 25% light regime for all seed mass classes but did not differ significantly from that at 50% light regime. Survival was significantly lower in 3% light as compared to 50% and 25% light regimes. Seedling vigor (expressed in terms of seedling height, leaf area and dry weight) was also significantly affected by seed mass and light regimes. Seedlings that emerged from larger seeds and grew under 50% light regime produced the heaviest seedlings, while those resulting from smaller seeds and grown under 3% light regime produced the lightest seedlings. Resprouting capacity of seedlings after clipping was significantly affected by seed mass and light regime. Seedlings emerging from larger seeds were capable of resprouting several times successively. Resprouting was more pronounced under 50% and 25% light regimes as compared to 3% light. Success of A. heterophyllus regeneration appears to be regulated by an interactive effect of seed mass and light regime.

  8. Inventory of land snails from Boquerones, Ciego de Avila, Cuba

    Directory of Open Access Journals (Sweden)

    Félix Jonathan Pereira-Miller

    2015-10-01

    Full Text Available A census of mollusks in Boquerones, Ciego de Avila, Cuba was carried out. Biodiversity index were studied by vegetal formation, which are: Evergreen Forest, Semideciduous Forest and Mogote Vegetation Complex. The families best represented were Helicinidae, Annularidae, Urocoptidae and Subulinidae, taking the 97.6% of the species some degree of national endemism and being the 45.24% of these local endemic. The most widely distributed species was Farcimen camaguayanum Torre & Bartsch 1941 and the rarest was Euclastaria euclasta Shuttleworth 1852. The highest biodiversity values were observed in the Mogote Vegetation Complex being of 2,856 according to Shannon-Wiener (H´ index. So far species extinction events are not seen but not discarded for the future due to a decline in local rainfall during the last 15 years as well as human activities such as agriculture and local tourism.

  9. Plant Responses to Increased UV-B Radiation: A Research Project

    Science.gov (United States)

    DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    because there is anecdotal evidence of plant damage on the saguaros that has been linked to increased UV radiation, and (3) the forests of Nothofagus spp. and the steppe of Patagonia where the risk of plant damage at 35S is 5% and increases to as much as 15% at 55S due to increased UV-B radiation. Measurements of UV-B radiation impinging on the surface at 55S largely exceed the predicted UV-B radiation values at 50 latitude and 0% ozone depletion. Preliminary HPLC analyses of UV-B absorbing compounds in Nothofagus antartica, N. pumilio, N. betuloides and Rumex sp. in natural conditions show species-specific patterns. The spectrum of N. antartica grown at 38S differs significantly from that of N. antartica in natural conditions in Ushuaia (55S). These results suggest that the selected main area (Patagonia) is appropriate for assessing the problem and its magnitude and that Nothofagus is appropriate for our study.

  10. 77 FR 39571 - Frank Sherman, FSCS Corporation, TMS West Coast, Inc.,

    Science.gov (United States)

    2012-07-03

    ..., Inc. and Cabana Coaches, LLC--Acquisition and Consolidation of Assets--America Charters, LTD., American Coach Lines of Jacksonville, Inc., American Coach Lines of Miami, Inc., American Coach Lines of... noncarrier holding company; Evergreen Trails, Inc. d/b/a Horizon Coach Lines (Evergreen), an interstate motor...

  11. Effects of logging and recruitment on community phylogenetic structure in 32 permanent forest plots of Kampong Thom, Cambodia.

    Science.gov (United States)

    Toyama, Hironori; Kajisa, Tsuyoshi; Tagane, Shuichiro; Mase, Keiko; Chhang, Phourin; Samreth, Vanna; Ma, Vuthy; Sokh, Heng; Ichihashi, Ryuji; Onoda, Yusuke; Mizoue, Nobuya; Yahara, Tetsukazu

    2015-02-19

    Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations

    Directory of Open Access Journals (Sweden)

    Chiara Corbari

    2017-11-01

    Full Text Available The Food and Agricultural Organization (FAO method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.

  13. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations.

    Science.gov (United States)

    Corbari, Chiara; Ravazzani, Giovanni; Galvagno, Marta; Cremonese, Edoardo; Mancini, Marco

    2017-11-18

    The Food and Agricultural Organization (FAO) method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.

  14. Soil seed banks along elevational gradients in tropical, subtropical and subalpine forests in Yunnan Province, southwest China

    Institute of Scientific and Technical Information of China (English)

    Xiaqin Luo; Min Cao; Min Zhang; Xiaoyang Song; Jieqiong Li; Akihiro Nakamura; Roger Kitching

    2017-01-01

    Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported,how soil seed banks vary with elerational gradients in different climatic zones is still unknown.This paper investigates seed density,species composition and nonconstituent species of forest soil seed banks in Yunnan Province,southwest China.Similarity between the soil seed bank and standing vegetation was also examined.We collected soil samples from sites spanning 12 elevations in tropical rain forests,subtropical evergreen broadleaved forests and subalpine coniferous forests,and transported them to a glasshouse for germination trials for species identification.The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests.Seeds of woody species dominated the soil seed banks of tropical and subtropical forests,while herbs dominated those of subalpine forests.The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests,followed by subtropical forests but were completely absent from subalpine forests.

  15. Soil seed banks along elevational gradients in tropical, subtropical and subalpine forests in Yunnan Province, southwest China

    Directory of Open Access Journals (Sweden)

    Xiaqin Luo

    2017-10-01

    Full Text Available Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration. Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients in different climatic zones is still unknown. This paper investigates seed density, species composition and nonconstituent species of forest soil seed banks in Yunnan Province, southwest China. Similarity between the soil seed bank and standing vegetation was also examined. We collected soil samples from sites spanning 12 elevations in tropical rain forests, subtropical evergreen broad-leaved forests and subalpine coniferous forests, and transported them to a glasshouse for germination trials for species identification. The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests. Seeds of woody species dominated the soil seed banks of tropical and subtropical forests, while herbs dominated those of subalpine forests. The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests, followed by subtropical forests but were completely absent from subalpine forests.

  16. Effects of environmental factors and soil properties on topographic variations of soil respiration

    Directory of Open Access Journals (Sweden)

    K. Tamai

    2010-03-01

    Full Text Available Soil respiration rates were measured along different parts of a slope in (a an evergreen forest with common brown forest soil and (b a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soil moisture and soil temperature. These results may be explained by the fact that different soil properties matured within different environments. It can be argued that the low soil respiration rates in the low parts of the slope in the evergreen forest resulted from soil properties and not from wet soil conditions. In the deciduous forest, soil respiration rates were more strongly affected by soil moisture and soil temperature than by soil properties. These effects were likely due to the immaturity of the forest soil.

  17. [Early responses of soil fauna in three typical forests of south subtropical China to simulated N deposition addition].

    Science.gov (United States)

    Xu, Guolian; Mo, Jiangming; Zhou, Guoyi

    2005-07-01

    In this paper, simulated N deposition addition (0, 50, 100 and 150 kg x hm(-2) x yr(-1)) by spreading water or NH4NO3 was conducted to study the early responses of soil fauna in three typical native forests (monsoon evergreen broadleaf forest, pine forest, and broadleaf-pine mixed forest) of subtropical China. The results showed that in monsoon evergreen broadleaf forest, N deposition addition had an obviously negative effect on the three indexes for soil fauna, but in pine forest, the positive effect was significant (P soil fauna community could reach the level in mixed forest, even that in monsoon evergreen broadleaf forest at sometime. The responses in mixed forest were not obvious. In monsoon evergreen broadleaf forest, the negative effects were significant (P soil fauna groups. The results obtained might imply the N saturation-response mechanisms of forest ecosystems in subtropical China, and the conclusions from this study were also consisted with some related researches.

  18. [Distribution pattern of rare plants along riparian zone and its implication for conservation in Shennongjia area].

    Science.gov (United States)

    Jiang, Mingxi; Deng, Hongbing; Cai, Qinghua

    2002-11-01

    Due to the importance of riparian zone in maintaining and protecting regional biodiversity, more and more ecologists paid their attentions to riparian zone, and had been aware of the important effects of riparian zone in basic study and practical management. In this study, forty sampling belts (10 m x 100 m) parallel to the bank of Xiangxi River at different elevations in Shennongjia area were selected to investigate the riparian vegetation and rare plants. Fourteen species of rare plants were found in riparian zone, accounting for 42.4% of total rare plant species in Shennongjia area. The main distribution range of the fourteen rare plant species was the mixed evergreen and deciduous broadleaved forest at elevation of 1200-1800 m, where species diversity of plant community was the maximum at the moderate elevation. Fourteen rare plant species could be divided into three groups against the elevation, namely low elevation species group, moderate elevation species group, and high elevation group. In the paper, the authors discussed the reasons forming the distribution pattern of rare plant species, and pointed out the important function of riparian zone on rare plant species protection.

  19. Endangered Species

    Science.gov (United States)

    EPA's Endangered Species Protection Program helps promote recovery of listed species. The ESPP determines if pesticide use in a geographic area may affect any listed species. Find needed limits on pesticide use in Endangered Species Protection Bulletins.

  20. The role of deep nitrogen and dynamic rooting profiles on vegetation dynamics and productivity in response to permafrost thaw and climate change in Arctic tundra

    Science.gov (United States)

    Hewitt, R. E.; Helene, G.; Taylor, D. L.; McGuire, A. D.; Mack, M. C.

    2017-12-01

    The release of permafrost-derived nitrogen (N) has the potential to fertilize tundra vegetation, modulating plant competition, stimulating productivity, and offsetting carbon losses from thawing permafrost. Dynamic rooting, mycorrhizal interactions, and coupling of N availability and root N uptake have been identified as gaps in ecosystem models. As a first step towards understanding whether Arctic plants can access deep permafrost-derived N, we characterized rooting profiles and quantified acquisition of 15N tracer applied at the permafrost boundary by moist acidic tundra plants subjected to almost three decades of warming at Toolik Lake, Alaska. In the ambient control plots the vegetation biomass is distributed between five plant functional types (PFTs): sedges, evergreen and deciduous shrubs, mosses and in lower abundance, forbs. The warming treatment has resulted in the increase of deciduous shrub biomass and the loss of sedges, evergreen shrubs, and mosses. We harvested roots by depth increment down to the top of the permafrost. Roots were classified by size class and PFT. The average thaw depth in the warmed plots was 58.3 cm ± 6.4 S.E., close to 18 cm deeper than the average thaw depth in the ambient plots (40.8 cm ± 1.8 S.E.). Across treatments the deepest rooting species was Rubus chamaemorus (ambient 40.8 cm ± 1.8 S.E., warmed 50.3 cm ± 9.8 S.E.), a non-mycorrhizal forb, followed by Eriophorum vaginatum, a non-mycorrhizal sedge. Ectomycorrhizal deciduous and ericoid mycorrhizal evergreen shrubs were rooted at more shallow depths. Deeply rooted non-mycorrhizal species had the greatest uptake of 15N tracer within 24 hours across treatments. Tracer uptake was greatest for roots of E. vaginatum in ambient plots and R. chamaemorus in warmed plots. Root profiles were integrated into a process-based ecosystem model coupled with a dynamic vegetation model. Functions modeling dynamic rooting profile relative to thaw depth were implemented for each PFT. The

  1. Sécurité alimentaire : une lutte sur plusieurs fronts | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    1 févr. 2011 ... From green to evergreen: Updating the food revolution. Hunger can be eradicated “in my lifetime,” says the man known as the father of the Green Revolution in India. M.S.. View moreFrom green to evergreen: Updating the food revolution ...

  2. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species.

    Science.gov (United States)

    Xie, Hongtao; Yu, Mukui; Cheng, Xiangrong

    2018-03-01

    Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed

  3. The nuclear question: rethinking species importance in multi-species animal groups.

    Science.gov (United States)

    Srinivasan, Umesh; Raza, Rashid Hasnain; Quader, Suhel

    2010-09-01

    1. Animals group for various benefits, and may form either simple single-species groups, or more complex multi-species associations. Multi-species groups are thought to provide anti-predator and foraging benefits to participant individuals. 2. Despite detailed studies on multi-species animal groups, the importance of species in group initiation and maintenance is still rated qualitatively as 'nuclear' (maintaining groups) or 'attendant' (species following nuclear species) based on species-specific traits. This overly simplifies and limits understanding of inherently complex associations, and is biologically unrealistic, because species roles in multi-species groups are: (i) likely to be context-specific and not simply a fixed species property, and (ii) much more variable than this dichotomy indicates. 3. We propose a new view of species importance (measured as number of inter-species associations), along a continuum from 'most nuclear' to 'least nuclear'. Using mixed-species bird flocks from a tropical rainforest in India as an example, we derive inter-species association measures from randomizations on bird species abundance data (which takes into account species 'availability') and data on 86 mixed-species flocks from two different flock types. Our results show that the number and average strength of inter-species associations covary positively, and we argue that species with many, strong associations are the most nuclear. 4. From our data, group size and foraging method are ecological and behavioural traits of species that best explain nuclearity in mixed-species bird flocks. Parallels have been observed in multi-species fish shoals, in which group size and foraging method, as well as diet, have been shown to correlate with nuclearity. Further, the context in which multi-species groups occur, in conjunction with species-specific traits, influences the role played by a species in a multi-species group, and this highlights the importance of extrinsic factors in

  4. Ecological and Geographical Analysis of the Distribution of the Mountain Tapir (Tapirus pinchaque) in Ecuador: Importance of Protected Areas in Future Scenarios of Global Warming

    Science.gov (United States)

    Ortega-Andrade, H. Mauricio; Prieto-Torres, David A.; Gómez-Lora, Ignacio; Lizcano, Diego J.

    2015-01-01

    In Ecuador, Tapirus pinchaque is considered to be critically endangered. Although the species has been registered in several localities, its geographic distribution remains unclear, and the effects of climate change and current land uses on this species are largely unknown. We modeled the ecological niche of T. pinchaque using MaxEnt, in order to assess its potential adaptation to present and future climate change scenarios. We evaluated the effects of habitat loss due by current land use, the ecosystem availability and importance of Ecuadorian System of Protected Areas into the models. The model of environmental suitability estimated an extent of occurrence for species of 21,729 km2 in all of Ecuador, mainly occurring along the corridor of the eastern Ecuadorian Andes. A total of 10 Andean ecosystems encompassed ~98% of the area defined by the model, with herbaceous paramo, northeastern Andean montane evergreen forest and northeastern Andes upper montane evergreen forest being the most representative. When considering the effect of habitat loss, a significant reduction in model area (~17%) occurred, and the effect of climate change represented a net reduction up to 37.86%. However, the synergistic effect of both climate change and habitat loss, given current land use practices, could represent a greater risk in the short-term, leading to a net reduction of 19.90 to 44.65% in T. pinchaque’s potential distribution. Even under such a scenarios, several Protected Areas harbor a portion (~36 to 48%) of the potential distribution defined by the models. However, the central and southern populations are highly threatened by habitat loss and climate change. Based on these results and due to the restricted home range of T. pinchaque, its preference for upland forests and paramos, and its small estimated population size in the Andes, we suggest to maintaining its current status as Critically Endangered in Ecuador. PMID:25798851

  5. Ecological and geographical analysis of the distribution of the mountain tapir (Tapirus pinchaque in Ecuador: importance of protected areas in future scenarios of global warming.

    Directory of Open Access Journals (Sweden)

    H Mauricio Ortega-Andrade

    Full Text Available In Ecuador, Tapirus pinchaque is considered to be critically endangered. Although the species has been registered in several localities, its geographic distribution remains unclear, and the effects of climate change and current land uses on this species are largely unknown. We modeled the ecological niche of T. pinchaque using MaxEnt, in order to assess its potential adaptation to present and future climate change scenarios. We evaluated the effects of habitat loss due by current land use, the ecosystem availability and importance of Ecuadorian System of Protected Areas into the models. The model of environmental suitability estimated an extent of occurrence for species of 21,729 km2 in all of Ecuador, mainly occurring along the corridor of the eastern Ecuadorian Andes. A total of 10 Andean ecosystems encompassed ~98% of the area defined by the model, with herbaceous paramo, northeastern Andean montane evergreen forest and northeastern Andes upper montane evergreen forest being the most representative. When considering the effect of habitat loss, a significant reduction in model area (~17% occurred, and the effect of climate change represented a net reduction up to 37.86%. However, the synergistic effect of both climate change and habitat loss, given current land use practices, could represent a greater risk in the short-term, leading to a net reduction of 19.90 to 44.65% in T. pinchaque's potential distribution. Even under such a scenarios, several Protected Areas harbor a portion (~36 to 48% of the potential distribution defined by the models. However, the central and southern populations are highly threatened by habitat loss and climate change. Based on these results and due to the restricted home range of T. pinchaque, its preference for upland forests and paramos, and its small estimated population size in the Andes, we suggest to maintaining its current status as Critically Endangered in Ecuador.

  6. Ecological and geographical analysis of the distribution of the mountain tapir (Tapirus pinchaque) in Ecuador: importance of protected areas in future scenarios of global warming.

    Science.gov (United States)

    Ortega-Andrade, H Mauricio; Prieto-Torres, David A; Gómez-Lora, Ignacio; Lizcano, Diego J

    2015-01-01

    In Ecuador, Tapirus pinchaque is considered to be critically endangered. Although the species has been registered in several localities, its geographic distribution remains unclear, and the effects of climate change and current land uses on this species are largely unknown. We modeled the ecological niche of T. pinchaque using MaxEnt, in order to assess its potential adaptation to present and future climate change scenarios. We evaluated the effects of habitat loss due by current land use, the ecosystem availability and importance of Ecuadorian System of Protected Areas into the models. The model of environmental suitability estimated an extent of occurrence for species of 21,729 km2 in all of Ecuador, mainly occurring along the corridor of the eastern Ecuadorian Andes. A total of 10 Andean ecosystems encompassed ~98% of the area defined by the model, with herbaceous paramo, northeastern Andean montane evergreen forest and northeastern Andes upper montane evergreen forest being the most representative. When considering the effect of habitat loss, a significant reduction in model area (~17%) occurred, and the effect of climate change represented a net reduction up to 37.86%. However, the synergistic effect of both climate change and habitat loss, given current land use practices, could represent a greater risk in the short-term, leading to a net reduction of 19.90 to 44.65% in T. pinchaque's potential distribution. Even under such a scenarios, several Protected Areas harbor a portion (~36 to 48%) of the potential distribution defined by the models. However, the central and southern populations are highly threatened by habitat loss and climate change. Based on these results and due to the restricted home range of T. pinchaque, its preference for upland forests and paramos, and its small estimated population size in the Andes, we suggest to maintaining its current status as Critically Endangered in Ecuador.

  7. Native species that can replace exotic species in landscaping

    Directory of Open Access Journals (Sweden)

    Elisabeth Regina Tempel Stumpf

    2015-08-01

    Full Text Available Beyond aesthetics, the contemporary landscaping intends to provide other benefits for humans and environment, especially related to the environmental quality of urban spaces and conservation of the species. A trend in this direction is the reduction in the use of exotic plants in their designs, since, over time, they can become agents of replacement of native flora, as it has occurred in Rio Grande do Sul with many species introduced by settlers. However, the use of exotic species is unjustifiable, because the flora diversity of the Bioma Pampa offers many native species with appropriate features to the ornamental use. The commercial cultivation and the implantation of native species in landscaped areas constitute innovations for plant nurseries and landscapers and can provide a positive reduction in extractivism, contributing to dissemination, exploitation and preservation of native flora, and also decrease the impact of chemical products on environment. So, this work intends to identify native species of Bioma Pampa with features and uses similar to the most used exotic species at Brazilian landscaping. The species were selected from consulting books about native plants of Bioma Pampa and plants used at Brazilian landscaping, considering the similarity on habit and architecture, as well as characteristics of leafs, flowers and/or fruits and environmental conditions of occurrence and cultivation. There were identified 34 native species able to properly replace exotic species commonly used. The results show that many native species of Bioma Pampa have interesting ornamental features to landscape gardening, allowing them to replace exotic species that are traditionally cultivated.

  8. Amphibians and reptiles of Guyana, South America: illustrated keys, annotated species accounts, and a biogeographic synopsis

    Science.gov (United States)

    Cole, Charles J.; Townsend, Carol R.; Reynolds, Robert P.; MacCulloch, Ross D.; Lathrop, Amy

    2013-01-01

    at seven lowland sites (in rainforest, savanna, and mixed habitats below 500 m elevation) and three isolated highland sites (in montane forest and evergreen high-tepui forest above 1400 m elevation). Comparisons of these sites are preliminary because sampling of the local faunas remains incomplete. Nevertheless, it is certain that areas of about 2.5 km2 of lowland rainforest can support more than 130 species of amphibians and reptiles (perhaps actually more than 150), while many fewer species (fewer than 30 documented so far) occur in a comparable area of isolated highlands, where low temperatures, frequent cloudiness, and poor soils are relatively unfavorable for amphibians and reptiles. Furthermore, insufficient study has been done in upland sites of intermediate elevations, where lowland and highland faunas overlap significantly, although considerable work is being accomplished in Kaieteur National Park by other investigators. Comparisons of the faunas of the lowland and isolated highland sites showed that very few species occur in common in both the lowlands and isolated highlands; that those few are widespread lowland species that tolerate highland environments; that many endemic species (mostly amphibians) occur in the isolated highlands of the Pakaraima Mountains; and that each of the isolated highlands, lowland savannas, and lowland rainforests at these 10 sites have distinctive faunal elements. No two sites were identical in species composition. Much more work is needed to compare a variety of sites, and especially to incorporate upland sites of intermediate elevations in such comparisons. Five species of sea turtles utilize the limited areas of Atlantic coastal beaches to the northwest of Georgetown. All of these are listed by the International Union for the Conservation of Nature as being of global concern for long-term survival, mostly owing to human predation. The categories of Critically Endangered or Endangered are applied to four of the local sea

  9. ConSpeciFix: Classifying prokaryotic species based on gene flow.

    Science.gov (United States)

    Bobay, Louis-Marie; Ellis, Brian Shin-Hua; Ochman, Howard

    2018-05-16

    Classification of prokaryotic species is usually based on sequence similarity thresholds, which are easy to apply but lack a biologically-relevant foundation. Here, we present ConSpeciFix, a program that classifies prokaryotes into species using criteria set forth by the Biological Species Concept, thereby unifying species definition in all domains of life. ConSpeciFix's webserver is freely available at www.conspecifix.com. The local version of the program can be freely downloaded from https://github.com/Bobay-Ochman/ConSpeciFix. ConSpeciFix is written in Python 2.7 and requires the following dependencies: Usearch, MCL, MAFFT and RAxML. ljbobay@uncg.edu.

  10. Western equatorial African forest-savanna mosaics: a legacy of late Holocene climatic change?

    Directory of Open Access Journals (Sweden)

    A. Ngomanda

    2009-10-01

    Full Text Available Past vegetation and climate changes reconstructed using two pollen records from Lakes Maridor and Nguène, located in the coastal savannas and inland rainforest of Gabon, respectively, provide new insights into the environmental history of western equatorial African rainforests during the last 4500 cal yr BP. These pollen records indicate that the coastal savannas of western equatorial Africa did not exist during the mid-Holocene and instead the region was covered by evergreen rainforests. From ca. 4000 cal yr BP a progressive decline of inland evergreen rainforest, accompanied by the expansion of semi-deciduous rainforest, occurred synchronously with grassland colonisation in the coastal region of Gabon. The contraction of moist evergreen rainforest and the establishment of coastal savannas in Gabon suggest decreasing humidity from ca. 4000 cal yr BP. The marked reduction in evergreen rainforest and subsequent savanna expansion was followed from 2700 cal yr BP by the colonization of secondary forests dominated by the palm, Elaeis guineensis, and the shrub, Alchornea cordifolia (Euphorbiaceae. A return to wetter climatic conditions from about 1400 cal yr BP led to the renewed spread of evergreen rainforest inland, whereas a forest-savanna mosaic still persists in the coastal region. There is no evidence to suggest that the major environmental changes observed were driven by human impact.

  11. Lichen Persistence and Recovery in Response to Varied Volcanic Disturbances

    Science.gov (United States)

    Nelson, P.; Wheeler, T. B.

    2015-12-01

    Volcanic eruptions produce many ecological disturbances that structure vegetation. While lichens are sensitive to disturbances, little is known about their responses to volcanic disturbances, except for colonization of lava. We examined lichen community responses through time to different disturbances produced by the May 1, 2008 eruption of Volcan Chaiten in south-central Chile. Pre-eruption vegetation near the volcano was old-growth Valdivian temperate rainforest dominated by closed-canopy Nothofagus sp... In 2012, we installed thirteen 1-acre plots across volcanic disturbance zones on which a time-constrained search was done for all macrolichen species, each of which was assigned an approximate log10 categorical abundance. We also installed a 0.2 m2 quadrat on two representative trees per plot for repeat photography of lichen cover. We remeasured at least one plot per disturbance zone in 2014 and re-photographed tree quadrats in 2013 and 2014. We then analyzed species composition and abundance differences among disturbance zones. In 2012, the blast (pyroclastic density flow), scorch (standing scorched forest at the edge of the blast) and deep tephra (>10 cm) zones had the lowest lichen species richness (5-13 species), followed by reference (unimpacted) and shallow (lichen species since 2012 while the light tephra and reference were essentially unchanged. Gravel rain, gravel rain + pumice and flooded forest plots all had about the same number of species in 2014 as 2012. Lichen colonization and growth in tree quadrats varied widely, from very little colonization in the blast to prolific colonization in the gravel rain + pumice zone. Lichen's varied responses to different volcanic disturbances were attributable to varying degrees of mortality and subsequent availability of substrate, quantity of light and removal of competitors. While sensitive to disturbance, lichens are apparently resilient to and can quickly recolonize after a variety of large, violent volcanic

  12. Estimating Effects of Species Interactions on Populations of Endangered Species.

    Science.gov (United States)

    Roth, Tobias; Bühler, Christoph; Amrhein, Valentin

    2016-04-01

    Global change causes community composition to change considerably through time, with ever-new combinations of interacting species. To study the consequences of newly established species interactions, one available source of data could be observational surveys from biodiversity monitoring. However, approaches using observational data would need to account for niche differences between species and for imperfect detection of individuals. To estimate population sizes of interacting species, we extended N-mixture models that were developed to estimate true population sizes in single species. Simulations revealed that our model is able to disentangle direct effects of dominant on subordinate species from indirect effects of dominant species on detection probability of subordinate species. For illustration, we applied our model to data from a Swiss amphibian monitoring program and showed that sizes of expanding water frog populations were negatively related to population sizes of endangered yellow-bellied toads and common midwife toads and partly of natterjack toads. Unlike other studies that analyzed presence and absence of species, our model suggests that the spread of water frogs in Central Europe is one of the reasons for the decline of endangered toad species. Thus, studying population impacts of dominant species on population sizes of endangered species using data from biodiversity monitoring programs should help to inform conservation policy and to decide whether competing species should be subject to population management.

  13. Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought

    Science.gov (United States)

    Werner, Christiane; Correia, Otilia; Beyschlag, Wolfram

    1999-02-01

    The adaptive strategies to high radiation and water stress of the drought tolerant evergreen sclerophylls Quercus coccifera and Arbutus unedo are compared to those of the semi-deciduous Cistus spp. ( C. albidus and C. monspeliensis). Cistus spp. partially avoided drought by a marked reduction of their transpirational surface through leaf abscission during summer, when predawn water potential declined below -5.5 MPa. Chlorophyll fluorescence measurements revealed a reversible diurnal decrease of maximum photochemical efficiency of PSII (F v/F m), which became more accentuated during summer drought in all species. An important strategy to avoid damage by excessive radiation levels in Cistus spp. was the structural regulation of light interception through leaf angle changes, from a more horizontal orientation in spring ( 70°). Horizontal orientated leaves were highly susceptible to photoinhibition, and excessive radiation often resulted in irreversible photodamage followed by leaf abscission during summer, whereas vertical leaf orientation appeared to protect the leaf from severe photoinhibition. Still, these mechanisms were not fully successful in avoiding chronic photoinhibition, and predawn F v/F m values remained low in Cistus spp. during summer (only exhibiting a partial overnight recovery). Evergreen sclerophylls were less susceptible to photoinhibition, and the diurnal decline in F v/F m remained fully reversible during drought. Structural regulation of light interception was not found to be an important strategy in these species, and only small, though significant changes in leaf angle occurred. The ecological importance of the adaptive strategies of each functional group is discussed.

  14. Pilot Inventory of mammals, reptiles, and amphibians, Golden Gate National Recreation Area, California, 1990-1997

    Science.gov (United States)

    Semenoff-Irving, M.; Howell, J.A.

    2005-01-01

    The United States Geological Survey Golden Gate Field Station conducted a baseline inventory of terrestrial vertebrates within the Golden Gate National Recreation Area (GGNRA), Marin, San Francisco, and San Mateo Counties, California between 1990 and 1997. We established 456 permanent study plots in 6 major park habitats, including grassland, coastal scrub, riparian woodland, coastal wetland, broad-leaved evergreen forest, and needle-leaved evergreen forest. We tested multiple inventory methods, including live traps, track plate stations, and artificial cover boards, across all years and habitats. In most years, sampling occurred in 3?4 primary sampling sessions between July and September. In 1994, additional sampling occurred in February and May in conjunction with an assessment of Hantavirus exposure in deer mice (Peromyscus maniculatus). Overall, we detected 32 mammal, 14 reptile, and 6 amphibian species during 25,222 trap-nights of effort. The deer mouse?the most abundant species detected--accounted for 67% of total captures. We detected the Federal Endangered salt marsh harvest mouse (Reithrodontomys raviventris) at one coastal wetland plot in 1992. This project represents the first phase in the development of a comprehensive terrestrial vertebrate inventory and monitoring program for GGNRA. This report summarizes data on relative abundance, frequency of occurrence, distribution across habitat types, and trap success for terrestrial vertebrates detected during this 7-year effort. It includes comprehensive descriptions of the inventory methods and sampling strategies employed during this survey and is intended to help guide the park in the implementation of future longterm ecological monitoring programs.

  15. 3 The Traditional Cloth Dyeing Enterprise.cdr

    African Journals Online (AJOL)

    Administrator

    reconnaissance visits and necessary changes ... difficulty in accessing fuelwood for boiling .... precipitation of 600 mm up to over 4000 mm, and a mean annual temperature of 15–28 °C. ... Found in evergreen fringing forest along water, swamp forest, ... drier evergreen forest and thickets, from sea-level up to 1500 m altitude.

  16. Confronting species distribution model predictions with species functional traits.

    Science.gov (United States)

    Wittmann, Marion E; Barnes, Matthew A; Jerde, Christopher L; Jones, Lisa A; Lodge, David M

    2016-02-01

    Species distribution models are valuable tools in studies of biogeography, ecology, and climate change and have been used to inform conservation and ecosystem management. However, species distribution models typically incorporate only climatic variables and species presence data. Model development or validation rarely considers functional components of species traits or other types of biological data. We implemented a species distribution model (Maxent) to predict global climate habitat suitability for Grass Carp (Ctenopharyngodon idella). We then tested the relationship between the degree of climate habitat suitability predicted by Maxent and the individual growth rates of both wild (N = 17) and stocked (N = 51) Grass Carp populations using correlation analysis. The Grass Carp Maxent model accurately reflected the global occurrence data (AUC = 0.904). Observations of Grass Carp growth rate covered six continents and ranged from 0.19 to 20.1 g day(-1). Species distribution model predictions were correlated (r = 0.5, 95% CI (0.03, 0.79)) with observed growth rates for wild Grass Carp populations but were not correlated (r = -0.26, 95% CI (-0.5, 0.012)) with stocked populations. Further, a review of the literature indicates that the few studies for other species that have previously assessed the relationship between the degree of predicted climate habitat suitability and species functional traits have also discovered significant relationships. Thus, species distribution models may provide inferences beyond just where a species may occur, providing a useful tool to understand the linkage between species distributions and underlying biological mechanisms.

  17. Species delimitation in the Stenocereus griseus (Cactaceae) species complex reveals a new species, S. huastecorum.

    Science.gov (United States)

    Alvarado-Sizzo, Hernán; Casas, Alejandro; Parra, Fabiola; Arreola-Nava, Hilda Julieta; Terrazas, Teresa; Sánchez, Cristian

    2018-01-01

    The Stenocereus griseus species complex (SGSC) has long been considered taxonomically challenging because the number of taxa belonging to the complex and their geographical boundaries remain poorly understood. Bayesian clustering and genetic distance-based methods were used based on nine microsatellite loci in 377 individuals of three main putative species of the complex. The resulting genetic clusters were assessed for ecological niche divergence and areolar morphology, particularly spination patterns. We based our species boundaries on concordance between genetic, ecological, and morphological data, and were able to resolve four species, three of them corresponding to S. pruinosus from central Mexico, S. laevigatus from southern Mexico, and S. griseus from northern South America. A fourth species, previously considered to be S. griseus and commonly misidentified as S. pruinosus in northern Mexico showed significant genetic, ecological, and morphological differentiation suggesting that it should be considered a new species, S. huastecorum, which we describe here. We show that population genetic analyses, ecological niche modeling, and morphological studies are complementary approaches for delimiting species in taxonomically challenging plant groups such as the SGSC.

  18. Species delimitation in the Stenocereus griseus (Cactaceae species complex reveals a new species, S. huastecorum.

    Directory of Open Access Journals (Sweden)

    Hernán Alvarado-Sizzo

    Full Text Available The Stenocereus griseus species complex (SGSC has long been considered taxonomically challenging because the number of taxa belonging to the complex and their geographical boundaries remain poorly understood. Bayesian clustering and genetic distance-based methods were used based on nine microsatellite loci in 377 individuals of three main putative species of the complex. The resulting genetic clusters were assessed for ecological niche divergence and areolar morphology, particularly spination patterns. We based our species boundaries on concordance between genetic, ecological, and morphological data, and were able to resolve four species, three of them corresponding to S. pruinosus from central Mexico, S. laevigatus from southern Mexico, and S. griseus from northern South America. A fourth species, previously considered to be S. griseus and commonly misidentified as S. pruinosus in northern Mexico showed significant genetic, ecological, and morphological differentiation suggesting that it should be considered a new species, S. huastecorum, which we describe here. We show that population genetic analyses, ecological niche modeling, and morphological studies are complementary approaches for delimiting species in taxonomically challenging plant groups such as the SGSC.

  19. High frequency/ultrasonic communication in a critically endangered nocturnal primate, Claire's mouse lemur (Microcebus mamiratra).

    Science.gov (United States)

    Hasiniaina, Alida F; Scheumann, Marina; Rina Evasoa, Mamy; Braud, Diane; Rasoloharijaona, Solofonirina; Randrianambinina, Blanchard; Zimmermann, Elke

    2018-05-02

    The critically endangered Claire's mouse lemur, only found in the evergreen rain forest of the National Park Lokobe (LNP) and a few lowland evergreen rain forest fragments of northern Madagascar, was described recently. The present study provides the first quantified information on vocal acoustics of calls, sound associated behavioral context, acoustic niche, and vocal activity of this species. We recorded vocal and social behavior of six male-female and six male-male dyads in a standardized social-encounter paradigm in June and July 2016 at the LNP, Nosy Bé island. Over six successive nights per dyad, we audio recorded and observed behaviors for 3 hr at the beginning of the activity period. Based on the visual inspection of spectrograms and standardized multiparametric sound analysis, we identified seven different call types. Call types can be discriminated based on a combination of harmonicity, fundamental frequency variation, call duration, and degree of tonality. Acoustic features of tonal call types showed that for communication, mouse lemurs use the cryptic, high frequency/ultrasonic frequency niche. Two call types, the Tsak and the Grunt call, were emitted most frequently. Significant differences in vocal activity of the Tsak call were found between male-female and male-male dyads, linked primarily to agonistic conflicts. Dominant mouse lemurs vocalized more than subdominant ones, suggesting that signaling may present an honest indicator of fitness. A comparison of our findings of the Claire's mouse lemur with published findings of five bioacoustically studied mouse lemur species points to the notion that a complex interplay between ecology, predation pressure, and phylogenetic relatedness may shape the evolution of acoustic divergence between species in this smallest-bodied primate radiation. Thus, comparative bioacoustic studies, using standardized procedures, are promising to unravel the role of vocalization for primate species diversity and evolution

  20. Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy.

    Science.gov (United States)

    Panchen, Zoe A; Primack, Richard B; Nordt, Birgit; Ellwood, Elizabeth R; Stevens, Albert-Dieter; Renner, Susanne S; Willis, Charles G; Fahey, Robert; Whittemore, Alan; Du, Yanjun; Davis, Charles C

    2014-09-01

    Leaf out phenology affects a wide variety of ecosystem processes and ecological interactions and will take on added significance as leaf out times increasingly shift in response to warming temperatures associated with climate change. There is, however, relatively little information available on the factors affecting species differences in leaf out phenology. An international team of researchers from eight Northern Hemisphere temperate botanical gardens recorded leaf out dates of c. 1600 woody species in 2011 and 2012. Leaf out dates in woody species differed by as much as 3 months at a single site and exhibited strong phylogenetic and anatomical relationships. On average, angiosperms leafed out earlier than gymnosperms, deciduous species earlier than evergreen species, shrubs earlier than trees, diffuse and semi-ring porous species earlier than ring porous species, and species with smaller diameter xylem vessels earlier than species with larger diameter vessels. The order of species leaf out was generally consistent between years and among sites. As species distribution and abundance shift due to climate change, interspecific differences in leaf out phenology may affect ecosystem processes such as carbon, water, and nutrient cycling. Our open access leaf out data provide a critical framework for monitoring and modelling such changes going forward. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  1. Save Our Species: Protecting Endangered Species from Pesticides.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This full-size poster profiles 11 wildlife species that are endangered. Color illustrations of animals and plants are accompanied by narrative describing their habitats and reasons for endangerment. The reverse side of the poster contains information on the Endangered Species Act, why protecting endangered and threatened species is important, how…

  2. Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images.

    Science.gov (United States)

    Xiangming Xiao; Stephen Hagen; Qingyuan Zhang; Michael Keller; Berrien Moore III

    2006-01-01

    Leaf phenology of tropical evergreen forests affects carbon and water fluxes. In an earlier study of a seasonally moist evergreen tropical forest site in the Amazon basin, time series data of Enhanced Vegetation Index (EVI) from the VEGETATION and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors showed an unexpected seasonal pattern, with higher EVI in the...

  3. Midday stomatal closure in Mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber : II. Effect of the complex of leaf temperature and air humidity on gas exchange of Arbutus unedo and Quercus ilex.

    Science.gov (United States)

    Tenhunen, J D; Lange, O L; Braun, M

    1981-08-01

    Shrubs of the Mediterranean sclerophyllous species Arbutus unedo and Quercus ilex were studied under simulated habitat conditions in an environmental chamber. Temperature, humidity, and light intensity were altered stepwise to simulate diurnal changes in conditions similar to those measured in an evergreen macchia in Sobreda, Portugal. Leaves were enclosed in cuvettes which reproduced the growth chamber climate and which allowed measurement of gas exchange. Increasing atmospheric stress in the form of higher temperature and lower humidity on successive days gradually results in midday depression of transpiration rate and net photosynthesis rate of leaves due to midday stomatal closure.

  4. Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S.

    Science.gov (United States)

    Hadley, J. L.; Kuzeja, P.; Mulcahy, T.; Singh, S.

    2008-12-01

    indicates that annual carbon storage will not necessarily increase over the long term after hemlock trees are killed by the hemlock woolly adelgid and replaced by deciduous species. Maximum monthly carbon storage in the hemlock forest occurred in spring (April and May) and was enhanced by early soil thawing and cessation of nighttime frost. This pattern is probably common to many evergreen conifers in the northeastern U.S., so climate warming that includes an earlier end to freezing temperatures in spring should increase C storage by conifer forests in the northeastern U.S. - unless this effect is canceled out by reduced C uptake or enhanced C loss due to changes in summer and fall climate.

  5. Seasonal embolism and xylem vulnerability in deciduous and evergreen Mediterranean trees influenced by proximity to a carbon dioxide spring

    Energy Technology Data Exchange (ETDEWEB)

    Tognetti, R.; Raschi, A. [Consiglio Nazionale della Ricerche, Firenze (Italy); Longobucco, A. [Centro Studi per l`Informatica applicata all`Agricoltura, Firenze (Italy)

    1999-04-01

    The effect of proximity to natural CO{sub 2} springs on seasonal patterns of xylem embolism in various species of Quercus (oak), Fraxinus, Populus (poplar) and Arbutus was studied. Xylem embolism was evaluated in both artificially dehydrated branches and in hydrated apical branches collected at monthly intervals over a 20-month period. Species-dependent differences in xylem hydraulic properties in response to elevated CO{sub 2} were noted. Populus tremula was the most embolized, an Arbutus unedo was the least embolized among the species examined. The actual differences in xylem vulnerability between trees growing near the CO{sub 2} spring and those growing in control area were small, however, these differences combined with the interaction of seasonal stress events, may be of great importance in determining future community composition in Mediterranean forest ecosystems. Causes and ecological significance of such differences are discussed vis-a-vis elevated carbon dioxide concentration and other environmental factors. 48 refs., 2 tabs., 3 figs.

  6. Species choice, provenance and species trials among native Brazilian species

    Energy Technology Data Exchange (ETDEWEB)

    Drumond, M A

    1982-01-01

    Six papers from the conference are presented. Drumond, M.A., Potential of species native to the semi-arid tropics, 766-781, (Refs. 18), reports on Anadenanthera macrocarpa, Mimosa species, Schinopsis brasiliensis, Spondias tuberosa, Ziziphus joazeiro, Cnidoscolus phyllacanthus, Bursera leptophleos (leptophloeos), Tabebuia impetiginosa, Astronium urundeuva, and Mimosa caesalpinia. Monteiro, R.F.R., Speltz, R.M., Gurgel, J.T. do A.; Silvicultural performance of 24 provenances of Araucaria angustifolia in Parana, 814-824, (Refs. 8). Pires, C.L. da S., Kalil Filho, A.N., Rosa, P.R.F. da, Parente, P.R., Zanatto, A.C.S.; Provenance trials of Cordia alliodora in the State of Sao Paulo, 988-995, (Refs. 9). Nogueira, J.C.B., Siqueira, A.C.M.F., Garrido, M.A.O., Gurgel Garrido, L.M. do A., Rosa, P.R.F., Moraes, J.L. de, Zandarin, M.A., Gurgel Filho, O.A., Trials of some native species in various regions of the State of Sao Paulo, 1051-1063, (Refs. 9) describes Centrolobium tomentosum, Peltophorum dubium, Tabebuia vellosoi, Cariniana legalis, and Balfourodendron riedelianum. Batista, M.P., Borges, J.F., Franco, M.A.B.; Early growth of a native species in comparison with exotics in northeastern Para, Brazil, 1105-1110, (Refs. 3). Jacaranda copaia is compared with Gmelina arborea, Pinus caribaea various hondurensis, Eucalyptus deglupta, and E. urophylla. Lima, P.C.F., Souza, S.M. de, Drumond, M.A.; Trials of native forest species at Petrolina, Pernambuco, 1139-1148, (Refs. 8), deals with Anadenanthera macrocarpa, Piptadenia obliqua, Pithecellobium foliolosum, Astronium urundeuva, Schinopsis brasiliensis, Cassia excelsa, Caesalpinia pyramidalis, Parkia platycephala, Pseudobombax simplicifolium, Tabebuia impetiginosa, Caesalpinia ferrea, and Aspidosperma pyrifolium. 18 references.

  7. Flacourtia montana

    Indian Academy of Sciences (India)

    Admin

    Flacourtia montana Graham, referred to as Indian plum or mountain sweet thorn is restricted only to the evergreen and semi-evergreen forests of the Western Ghats. It belongs to the willow family, i.e., Salicaceae. The tree trunk at its base bears several long, sharp thorns. In the dry season the plant produces scarlet colored, ...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The dominant forest type is tropical semi-evergreen which comprises 21,678 km2 (35.2%) of the total forest area of Western Ghats, followed by wet evergreen forest (30.6%), moist deciduous forest (24.8%) and dry deciduous forest (8.1%) in 2013. Even though it has the highest population density among the hotspots, there ...

  9. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland.

    Science.gov (United States)

    Skelton, Robert P; Brodribb, Timothy J; McAdam, Scott A M; Mitchell, Patrick J

    2017-09-01

    Drought can cause major damage to plant communities, but species damage thresholds and postdrought recovery of forest productivity are not yet predictable. We used an El Niño drought event as a natural experiment to test whether postdrought recovery of gas exchange could be predicted by properties of the water transport system, or if metabolism, primarily high abscisic acid concentration, might delay recovery. We monitored detailed physiological responses, including shoot sapflow, leaf gas exchange, leaf water potential and foliar abscisic acid (ABA), during drought and through the subsequent rehydration period for a sample of eight canopy and understory species. Severe drought caused major declines in leaf water potential, elevated foliar ABA concentrations and reduced stomatal conductance and assimilation rates in our eight sample species. Leaf water potential surpassed levels associated with incipient loss of leaf hydraulic conductance in four species. Following heavy rainfall gas exchange in all species, except those trees predicted to have suffered hydraulic impairment, recovered to prestressed rates within 1 d. Recovery of plant gas exchange was rapid and could be predicted by the hydraulic safety margin, providing strong support for leaf vulnerability to water deficit as an index of damage under natural drought conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. Terrestrial animals as invasive species and as species at risk from invasions

    Science.gov (United States)

    Deborah M. Finch; Dean Pearson; Joseph Wunderle; Wayne Arendt

    2010-01-01

    Including terrestrial animal species in the invasive species strategy plan is an important step in invasive species management. Invasions by nonindigenous species threaten nearly 50 percent of imperiled native species in the United States and are the Nation's second leading cause of species endangerment. Invasion and conversion of native habitats by exotic species...

  11. Rare species contribute disproportionately to the functional structure of species assemblages.

    Science.gov (United States)

    Leitão, Rafael P; Zuanon, Jansen; Villéger, Sébastien; Williams, Stephen E; Baraloto, Christopher; Fortunel, Claire; Mendonça, Fernando P; Mouillot, David

    2016-04-13

    There is broad consensus that the diversity of functional traits within species assemblages drives several ecological processes. It is also widely recognized that rare species are the first to become extinct following human-induced disturbances. Surprisingly, however, the functional importance of rare species is still poorly understood, particularly in tropical species-rich assemblages where the majority of species are rare, and the rate of species extinction can be high. Here, we investigated the consequences of local and regional extinctions on the functional structure of species assemblages. We used three extensive datasets (stream fish from the Brazilian Amazon, rainforest trees from French Guiana, and birds from the Australian Wet Tropics) and built an integrative measure of species rarity versus commonness, combining local abundance, geographical range, and habitat breadth. Using different scenarios of species loss, we found a disproportionate impact of rare species extinction for the three groups, with significant reductions in levels of functional richness, specialization, and originality of assemblages, which may severely undermine the integrity of ecological processes. The whole breadth of functional abilities within species assemblages, which is disproportionately supported by rare species, is certainly critical in maintaining ecosystems particularly under the ongoing rapid environmental transitions. © 2016 The Author(s).

  12. Diversity and uses of Zingiberaceae in Nam Nao National Park, Chaiyaphum and Phetchabun provinces, Thailand, with a new record for Thailand

    Directory of Open Access Journals (Sweden)

    Surapon Saensouk

    2016-11-01

    Full Text Available Three tribes, 12 genera and 38 species of the ginger family (Zingiberaceae along five routes in Nam Nao National Park were surveyed between January 2012 and December 2013 to determine their diversity, ecological data, phenology, uses and conservation status. The highest diversity was found in the tribe Zingibereae (6 genera and 21 species, of which the genera Curcuma and Zingiber comprised the highest number species (eight species each. A species key was constructed based on morphology. The ginger family was found in four forest-types—deciduous dipterocarp forest, mixed deciduous forest, dry evergreen forest and pine forest. The most flowering bloom of the ginger family in Nam Nao National Park was during March to August and the most fruiting bloom was during June to September. The popular uses of Zingiberaceae were as a food, spice, in medicine, as ornamentation and in rituals. Eight species have been evaluated as of least concern and are presented in the IUCN Red List, while two rare species were reported in Thailand Red Data: Plants, while six rare Zingiberaceae species were identified based on the evaluation criteria of Saensouk (2011. Four species were endemic to Thailand. Moreover, Etlingera yunnanensis (T. L. Wu & S. J. Chen R. M. Smith was a new record for Thailand.

  13. Core-satellite species hypothesis and native versus exotic species in secondary succession

    Science.gov (United States)

    Martinez, Kelsey A.; Gibson, David J.; Middleton, Beth A.

    2015-01-01

    A number of hypotheses exist to explain species’ distributions in a landscape, but these hypotheses are not frequently utilized to explain the differences in native and exotic species distributions. The core-satellite species (CSS) hypothesis predicts species occupancy will be bimodally distributed, i.e., many species will be common and many species will be rare, but does not explicitly consider exotic species distributions. The parallel dynamics (PD) hypothesis predicts that regional occurrence patterns of exotic species will be similar to native species. Together, the CSS and PD hypotheses may increase our understanding of exotic species’ distribution relative to natives. We selected an old field undergoing secondary succession to study the CSS and PD hypotheses in conjunction with each other. The ratio of exotic to native species (richness and abundance) was observed through 17 years of secondary succession. We predicted species would be bimodally distributed and that exotic:native species ratios would remain steady or decrease through time under frequent disturbance. In contrast to the CSS and PD hypotheses, native species occupancies were not bimodally distributed at the site, but exotic species were. The exotic:native species ratios for both richness (E:Nrichness) and abundance (E:Ncover) generally decreased or remained constant throughout supporting the PD hypothesis. Our results suggest exotic species exhibit metapopulation structure in old field landscapes, but that metapopulation structures of native species are disrupted, perhaps because these species are dispersal limited in the fragmented landscape.

  14. Two-species occupancy modeling accounting for species misidentification and nondetection

    Science.gov (United States)

    Chambert, Thierry; Grant, Evan H. Campbell; Miller, David A. W.; Nichols, James; Mulder, Kevin P.; Brand, Adrianne B,

    2018-01-01

    1. In occupancy studies, species misidentification can lead to false positive detections, which can cause severe estimator biases. Currently, all models that account for false positive errors only consider omnibus sources of false detections and are limited to single species occupancy. 2. However, false detections for a given species often occur because of the misidentification with another, closely-related species. To exploit this explicit source of false positive detection error, we develop a two-species occupancy model that accounts for misidentifications between two species of interest. As with other false positive models, identifiability is greatly improved by the availability of unambiguous detections at a subset of site-occasions. Here, we consider the case where some of the field observations can be confirmed using laboratory or other independent identification methods (“confirmatory data”). 3. We performed three simulation studies to (1) assess the model’s performance under various realistic scenarios, (2) investigate the influence of the proportion of confirmatory data on estimator accuracy, and (3) compare the performance of this two-species model with that of the single-species false positive model. The model shows good performance under all scenarios, even when only small proportions of detections are confirmed (e.g., 5%). It also clearly outperforms the single-species model.

  15. Incorporating Context Dependency of Species Interactions in Species Distribution Models.

    Science.gov (United States)

    Lany, Nina K; Zarnetske, Phoebe L; Gouhier, Tarik C; Menge, Bruce A

    2017-07-01

    Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same

  16. Response of Termite (Blattodea: Termitoidae) Assemblages to Lower Subtropical Forest Succession: A Case Study in Dinghushan Biosphere Reserve, China.

    Science.gov (United States)

    Li, Zhi-Qiang; Ke, Yun-Ling; Zeng, Wen-Hui; Zhang, Shi-Jun; Wu, Wen-Jing

    2016-02-01

    Termite (Blattodea: Termitoidae) assemblages have important ecological functions and vary in structure between habitats, but have not been studied in lower subtropical forests. To examine whether differences in the richness and relative abundance of termite species and functional groups occur in lower subtropical regions, termite assemblages were sampled in Dinghushan Biosphere Reserve, China, among pine forest, pine and broad-leaved mixed forest (mixed forest), and monsoon evergreen broad-leaved forest (monsoon forest). The dominant functional group was wood-feeding termites (family Termitidae), and the mixed forest hosted the greatest richness and relative abundance. Soil-feeding termites were absent from the lower subtropical system, while humus-feeding termites were sporadically distributed in mixed forest and monsoon forest. The species richness and functional group abundance of termites in our site may be linked to the forest succession. Altitude, soil temperature, air temperature, surface air relative humidity, and litter depth were significant influences on species and functional group diversity.

  17. Avifaunal diversity in the peripheral areas of the Maduruoya National Park in Sri Lanka: With conservation and management implications

    Directory of Open Access Journals (Sweden)

    Dinesh E. Gabadage

    2015-06-01

    Full Text Available A survey was randomly conducted in the marginal areas of Maduruoya National Park, Sri Lanka for a period of > 7 years. These study sites are located within the dry zone and the intermediate zone. The main vegetation type of the area is dry mixed evergreen forest. We recorded 196 bird species belonging to 66 families, and they included 161 breeding residents, 25 purely migrants, nine both resident and migrants, one vagrant, 14 nationally threatened, three globally threatened, and 10 endemic species. We also report the first-ever records of Chestnut-backed Owlet, Red-faced Malkoha, and Spot-winged Thrush from this dry area. However, these precious habitats and its species are threatened because of irresponsible human activities such as forest fires, land filings, hunting, road kills, encroachments, garbage dumping, agrochemicals, granite-rock blasting, logging, and road constructions. Therefore, we recommend that relevant authorities take immediate conservation action to increase the protection of these marginal areas or buffer zone in the near future.

  18. Change in Caco-2 cells following treatment with various lavender essential oils.

    Science.gov (United States)

    Donadu, M G; Usai, D; Mazzarello, V; Molicotti, P; Cannas, S; Bellardi, M G; Zanetti, S

    2017-09-01

    Lavender is an aromatic evergreen shrub diffused in the Mediterranean basin appreciated since antiquity. The genus Lavandula is part of Lamiaceae family and includes more than 20 species, among which true lavender (L. vera D.C. or L. angustifolia Miller.) and spike lavender (L. latifolia Medikus); there are also numerous hybrids known as lavandins (L. hybrida Rev.). L. vera, spike lavender and several hybrids are the most intensely used breeding species for the production of essential oils. Lavender and lavandin essential oils have been applied in food, pharmaceutical and other agro industries as biological products. In their chemical composition, terpenes linalool and linalyl acetate along with terpenoids such as 1,8-cineole are mostly responsible for biological and therapeutic activities. This study evaluates cytotoxic activity of essential oils derived from four lavender species on human epithelial colorectal adenocarcinoma cells. Analysis of pre- and post-treatment cell morphology has been performed using scanning electron microscope.

  19. Agroforestry Species Switchboard

    DEFF Research Database (Denmark)

    Kindt, R.; John, I.; Ordonez, J.

    2016-01-01

    The current version of the Agroforestry Species Switchboard documents the presence of a total of 26,135 plant species (33,813 species including synonyms) across 19 web-based databases. When available, hyperlinks to information on the selected species in particular databases are provided. In total...

  20. Ring species as demonstrations of the continuum of species formation

    DEFF Research Database (Denmark)

    Pereira, Ricardo José Do Nascimento; Wake, David B.

    2015-01-01

    In the mid-20th century, Ernst Mayr (1942) and Theodosius Dobzhansky (1958) championed the significance of 'circular overlaps' or 'ring species' as the perfect demonstration of the gradual nature of species formation. As an ancestral species expands its range, wrapping around a geographic barrier......? What conditions favour their formation? Modelling studies have attempted to address these knowledge gaps by estimating the biological parameters that result in stable ring species (Martins et al. 2013), and determining the necessary topographic parameters of the barriers encircled (Monahan et al. 2012......). However, any generalization is undermined by a major limitation: only a handful of ring species are known to exist in nature. In addition, many of them have been broken into multiple species presumed to be evolving independently, usually obscuring the evolutionary dynamics that generate diversity. A paper...

  1. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation.

    Science.gov (United States)

    Demmig-Adams, Barbara; Adams, William W

    2006-01-01

    This review places photoprotection into the context of ecology and species diversity. The focus is on photoprotection via the safe removal - as thermal energy - of excess solar energy absorbed by the light collecting system, which counteracts the formation of reactive oxygen species. An update on the surprisingly complex, multiple variations of thermal energy dissipation is presented, placing these different forms into ecological and genetic contexts. Zeaxanthin-facilitated, flexible thermal dissipation associated with the PsbS protein and controlled by the trans-thylakoid pH gradient apparently occurs ubiquitously in plants, and can become sustained (and thus less flexible) at low temperatures. Long-lived, slow-growing plants with low intrinsic capacities for photosynthesis have greater capacities for this flexible dissipation than short-lived, fast-growing species. Furthermore, potent, but inflexible (zeaxanthin-facilitated) thermal dissipation, prominent in evergreen species under prolonged environmental stress, is characterized with respect to the involvement of photosystem II core rearrangement and/or degradation as well as the absence of control by trans-thylakoid pH and, possibly, PsbS. A role of PsbS-related proteins in photoprotection is discussed.

  2. Indicator species of essential forest tree species in the Burdur district.

    Science.gov (United States)

    Negiz, Mehmet Güvenç; Eser, Yunus; Kuzugüdenll, Emre; Izkan, Kürşad

    2015-01-01

    The forests of Burdur district for long have been subjected to over grazing and individual selection. As a result of this, majority of the forest areas in the district were degraded. In the district, afforestation efforts included majority of forestry implementations. It is well known that selecting suitable species plays an important role for achieving afforestation efforts. In this context, knowing the indicator species among the target species would be used in afforestation efforts, studies on the interrelationships between environmental factors and target species distribution is vital for selecting suitable species for a given area. In this study, Anatolian Black pine (Pinus nigra), Red pine (Pinus brutia), Crimean juniper (Juniperus excelsa) and Taurus cedar (Cedrus libani), essential tree species, were considered as target species. The data taken from 100 sample plots in Burdur district was used. Interspecific correlation analysis was performed to determine the positive and negative indicator species among each of the target species. As a result of ICA, 2 positive (Berberis crataegina, Juniperus oxycedrus), 2 negative (Phillyrea latifolia, Quercus coccifera) for Crimean Juniper, I positive (Juniperus oxycedrus), 3 negative (Onopordium acanthium, Fraxinus ornus, Phillyrea latifolia) for Anatolian black pine, 3 positive (Paliurus spina-christi, Quercus coccifer, Crataegus orientalis), 2 negative (Berberis crataegina, Astragalus nanus) for Red pine and 3 positive (Berberis crataegina, Rhamnus oleoides, Astragalus prusianus) 2 negative (Paliurus spina-christi, Quercus cerris) for Taurus cedarwere defined as indicator plant species. In this way, practical information was obtained for selecting the most suitable species, among the target species, for afforestation efforts in Burdur district.

  3. Species concept and speciation

    Directory of Open Access Journals (Sweden)

    Amal Y. Aldhebiani

    2018-03-01

    Full Text Available Defining and recognizing a species has been a controversial issue for a long time. To determine the variation and the limitation between species, many concepts have been proposed. When a taxonomist study a particular taxa, he/she must adopted a species concept and provide a species limitation to define this taxa. In this paper some of species concepts are discussed starting from the typological species concepts to the phylogenetic concept. Positive and negative aspects of these concepts are represented in addition to their application. Keywords: Species concept, Species limitation, Species, Taxonomy, Classification

  4. Plant Functional Traits Are More Consistent Than Plant Species on Periglacial Patterned Ground in the Rocky Mountains of Montana

    Science.gov (United States)

    Apple, M. E.; Ricketts, M. K.; Gallagher, J. H. R.

    2017-12-01

    Periglacial patterned ground exists as stripes and hexagons near glaciers and snowfields, some of which are former glaciers. The patterns are accentuated by profound differences in plant cover between the sloping surfaces, generally perceived as green, and the flat treads, generally perceived as brown but which are not devoid of plant life. On four sites in the Rocky Mountains of Montana we detected strong similarities in plant functional traits on the sloping surfaces of striped and hexagonal periglacial patterned ground. On Mt. Keokirk in the Pioneer Mountains, Kinnickinnick, Arctostaphylos uva-ursi, dominates narrow green stripes. On Goat Flat in the Pintler Mountains, Mountain Avens, Dryas octopetala, dominates the side walls of hexagonally patterned ground and narrow green stripes. At Glacier National Park, D. octopetala and the Arctic Willow, Salix arctica, co-dominate the green risers of widely-spaced striped periglacial patterned system at Siyeh Pass, while D. octopetala, S. arctica, and the Mountain Heather, Phyllodoce glanduliflora, co-dominate the green risers of the widely-spaced stripes of Piegan Pass. All four of these dictotyledonous angiosperm species are adventitiously-rooted dwarf shrubs with simple leaves. Of these, P. glanduliflora, A. uva-ursi and D. octopetala are evergreen. D. octopetala is symbiotic with N-fixing Frankia sp. All are mycorrhizal, although D. octopetala and S. arctica are ectomycorrhizal and P. glanduliflora and A. uva-ursi have ericaceous mycorrhizae. In contrast, dwarf shrubs are scarce on flat treads and within hexagons, which are chiefly inhabited by herbaceous, taprooted or rhizomatous, VAM angiosperms. As the green stripes and hexagon walls have greater plant cover, they likely have greater organic material due to leaf buildup and root turnover, anchor themselves and the soil with adventitious roots, their clonality suggests long lives, and N-fixing influences N dynamics of the periglacial patterned ground.

  5. Estimating Resistance and Resilience of Military Lands Using Vegetation Indices

    Science.gov (United States)

    2017-05-17

    considered more resistant to maneuver damage because they have flex- ible, horizontal, and branching stems , narrow leaves, below-ground repro- ductive... stems with reproductive capacity more elevated than the graminoids, which make them far more sensitive to maneuver training im- pacts (Tolvanen et...Tree- Evergreen 3.2 2.2 Southeast Florida Coastal Strand and Maritime Hammock Coccoloba uvifera Shrub- Evergreen 2.7 2.4 Southwest Florida Coastal

  6. Species-area relationships are controlled by species traits.

    Science.gov (United States)

    Franzén, Markus; Schweiger, Oliver; Betzholtz, Per-Eric

    2012-01-01

    The species-area relationship (SAR) is one of the most thoroughly investigated empirical relationships in ecology. Two theories have been proposed to explain SARs: classical island biogeography theory and niche theory. Classical island biogeography theory considers the processes of persistence, extinction, and colonization, whereas niche theory focuses on species requirements, such as habitat and resource use. Recent studies have called for the unification of these two theories to better explain the underlying mechanisms that generates SARs. In this context, species traits that can be related to each theory seem promising. Here we analyzed the SARs of butterfly and moth assemblages on islands differing in size and isolation. We tested whether species traits modify the SAR and the response to isolation. In addition to the expected overall effects on the area, traits related to each of the two theories increased the model fit, from 69% up to 90%. Steeper slopes have been shown to have a particularly higher sensitivity to area, which was indicated by species with restricted range (slope = 0.82), narrow dietary niche (slope= 0.59), low abundance (slope= 0.52), and low reproductive potential (slope = 0.51). We concluded that considering species traits by analyzing SARs yields considerable potential for unifying island biogeography theory and niche theory, and that the systematic and predictable effects observed when considering traits can help to guide conservation and management actions.

  7. Floristic Inventory, Ecological Characteristics and Biological Spectrum of Plants of Parachinar, Kurram Agency, Pakistan

    International Nuclear Information System (INIS)

    Badshah, L; Hussain, F.; Sher, Z.

    2016-01-01

    The present work was carried out to evaluate the floristic checklist and environmental distinctiveness of Plants of Parachinar, Kurram Agency across the year during 2014- 2015. A total of 283 species of 222 genera among 85 families were recorded. Asteraceae with (29 Sp.) was the most dominant followed by, Poaceae with (20 Sp.), Papilionaceae, Lamiaceae each with (19 Sp.), Brassicaceae (16 Sp.), Solanaceae (13 Sp.), Rosaceae (9 Sp.) and Polygonaceae (7 Sp.). While Euphorbiaceae, Caryophylaceae and Pinaceaeeach with (6 Sp.) were the co-dominant taxa. Rest of the families possessed either 5 or fewer species. Based on the habitat 252 (89.04 percent) species were grew in dry places as wild mesophytes and xerophytes. Seventeen species (6.00 percent) were cultivated while 11 species (3.88 percent) were aquatic. There were 18 spiny species (6.36 percent). Among the perennial, majority were evergreen. Three species (1.06 percent) namely Cuscutareflexa, Periplocaaphylla and P. calophyllawere leafless. The leaf lamina was simple in 230 species (81.27 percent) and 50 species (17.66 percent) contained composite foliage. Therophytes107 (37.80 percent) and nanophanerophyte 47 species (16.66 percent) respectively were dominant life form groups. Leaf spectra revealed that nanophylls with 121 species (42.75 percent) and leptophylls with 89 (31.44 percent) were dominant leaf size classes. The vegetation was also characterized by microphylls and mesophylls but of least concern. (author)

  8. Long-term addition of fertilizer, labile carbon, and fungicide alters the biomass of plant functional groups in a subarctic-alpine community

    DEFF Research Database (Denmark)

    Haugwitz-Hardenberg-Reventlow, M S; Michelsen, A.

    2011-01-01

    experiment on a subarctic-alpine fellfield dominated by woody evergreen shrubs, bryophytes, and lichens. To manipulate nutrient availability additions of NPK fertilizer, labile C, and fungicide (benomyl) were done in a fully factorial design, replicated in six blocks. The treatments were run for 10 years...... vascular plant groups. Also, limitation of soil nutrient availability caused by labile C addition decreased the relative proportion of green shoots in evergreen shrubs, although these were expected to cope better with the nutrient limitation than the opportunistic graminoids, which, by contrast, were...... unaffected. Reduced fungal biomass due to benomyl addition was accompanied by increased evergreen shrub and clubmoss biomass. Taken together, the effects of treatments were most pronounced 16 years after initiation of the experiment, but despite changes in biomass the overall plant community composition...

  9. Synopsis of the Oxyethira flavicornis species group with new Japanese Oxyethira species (Trichoptera, Hydroptilidae

    Directory of Open Access Journals (Sweden)

    Oláh, J.

    2013-06-01

    Full Text Available A brief synopsis of the Oxyethira flavicornis species group is produced by the examination of type materials. Diagrammatic drawings with similar style were prepared for all the known and for the new species. Short description of genus Oxyethira, subgenus Oxyethira, species group of Oxyethira flavicornis are presented together with the description of five species clusters: O. datra new species cluster, O. ecornuta new species cluster, O. flavicornis new species cluster, O. hiroshima new species cluster, O. tiunovae new species cluster. Five new species are described from the O. flavicornis species group: O chitosea sp. n., O. hena sp. n., O. hiroshima sp. n., O. kakida sp. n., O. mekunna sp. n. One new species is described from the Oxyethira grisea species group: Oxyethira ozea sp. n. and two new species from the Oxyethira ramosa species group: Oxyethira miea sp. n., Oxyethira okinawa sp. n.

  10. [Edge effect of the plant community structure on land-bridge islands in the Thousand Island Lake].

    Science.gov (United States)

    Su, Xiao-Fei; Yuan, Jin-Feng; Hu, Guang; Xu, Gao-Fu; Yu, Ming-Jian

    2014-01-01

    The research was conducted on 29 land-bridge islands in the Thousand Island Lake (TIL), where long-term monitoring plots were set up during 2009-2010. The community attributes including species richness, Shannon index, plant mean height, plant mean diameter at breast height (DBH) and plant density along the edge-interior gradient from edge to interior forest were calculated to investigate the edge effect. The results showed that the species richness and Shannon index were affected through the whole gradient (larger than 50 m), while the range of edge effect was 20-30 m on mean plant height, and 10 m on plant density and mean DBH. Community attributes differed significantly among the edge gradients. The species richness and Shannon index peaked at the intermediate edge gradient. Plant density decreased and plant mean height increased along the edge to interior gradient. All five community attributes were significantly associated with the edge gradient, also different functional groups, evergreen or deciduous species, trees or shrubs, shade tolerant or shade intolerant species, were differentially influenced by the edge effect. It was demonstrated the influence of edge effect on the fragmented forest community varied with community attributes and functional groups.

  11. Relating species abundance distributions to species-area curves in two Mediterranean-type shrublands

    Science.gov (United States)

    Keeley, Jon E.

    2003-01-01

    Based on both theoretical and empirical studies there is evidence that different species abundance distributions underlie different species-area relationships. Here I show that Australian and Californian shrubland communities (at the scale from 1 to 1000 m2) exhibit different species-area relationships and different species abundance patterns. The species-area relationship in Australian heathlands best fits an exponential model and species abundance (based on both density and cover) follows a narrow log normal distribution. In contrast, the species-area relationship in Californian shrublands is best fit with the power model and, although species abundance appears to fit a log normal distribution, the distribution is much broader than in Australian heathlands. I hypothesize that the primary driver of these differences is the abundance of small-stature annual species in California and the lack of annuals in Australian heathlands. Species-area is best fit by an exponential model in Australian heathlands because the bulk of the species are common and thus the species-area curves initially rise rapidly between 1 and 100 m2. Annuals in Californian shrublands generate very broad species abundance distributions with many uncommon or rare species. The power function is a better model in these communities because richness increases slowly from 1 to 100 m2 but more rapidly between 100 and 1000 m2due to the abundance of rare or uncommon species that are more likely to be encountered at coarser spatial scales. The implications of this study are that both the exponential and power function models are legitimate representations of species-area relationships in different plant communities. Also, structural differences in community organization, arising from different species abundance distributions, may lead to different species-area curves, and this may be tied to patterns of life form distribution.

  12. Evolução do uso e valorização das espécies madeiráveis da Floresta Estacional Decidual do Alto-Uruguai, SC

    Directory of Open Access Journals (Sweden)

    Ademir Roberto Ruschel

    2003-01-01

    Full Text Available Species identification and their market value and price evolution since the colonization time of the remnants of the Brazilian Semi-Evergreen Forest (Floresta Estacional Decidual do Rio Uruguai for potential timber production was assessed through 41 questionnaires, applied to timbermen and settlers from the surrounding region. The diversity of species for timber production commonly known by the people reached 63. From the 15 predominant species is relevant to mention Apuleia leiocarpa, Parapiptadenia rigida, Balfourodendron riedelianum, Nectandra megapotamica, Patagonula americana, Luehea divaricata, Cedrela fissilis, Ocotea diospyrifolia, Holocalyx balansae, Myrocarpus frondosus, Cabralea canjerana and Peltophorum dubium. The species with the highest commercial value were: Cordia trichotoma, Cedrela fissilis, Myrocarpus frondosus and Balfourodendron riedelianum. Data from the interviews suggest that several species from the Lauraceae family and Schefflera morototoni, Aralia warmingiana, Machaerium stipitatum, Chrysophyllum marginatum had an increment in use and commercial value during the last 15 years. Changing in the commercial value of a species was pointed out as due not only to the timber quality but also to the amount of the timber availability. Overall, it was detected that the species values changed across time and that the timber industry found several ways to adapt to the demands of forest products.

  13. Use of species-specific PCR for the identification of 10 sea cucumber species

    Science.gov (United States)

    Wen, Jing; Zeng, Ling

    2014-11-01

    We developed a species-specific PCR method to identify species among dehydrated products of 10 sea cucumber species. Ten reverse species-specific primers designed from the 16S rRNA gene, in combination with one forward universal primer, generated PCR fragments of ca. 270 bp length for each species. The specificity of the PCR assay was tested with DNA of samples of 21 sea cucumber species. Amplification was observed in specific species only. The species-specific PCR method we developed was successfully applied to authenticate species of commercial products of dehydrated sea cucumber, and was proven to be a useful, rapid, and low-cost technique to identify the origin of the sea cucumber product.

  14. Diversity of cuticular wax among Salix species and Populus species hybrids.

    Science.gov (United States)

    Cameron, Kimberly D; Teece, Mark A; Bevilacqua, Eddie; Smart, Lawrence B

    2002-08-01

    The leaf cuticular waxes of three Salix species and two Populus species hybrids, selected for their ability to produce high amounts of biomass, were characterized. Samples were extracted in CH(2)Cl(2) three times over the growing season. Low kV SEM was utilized to observe differences in the ultrastructure of leaf surfaces from each clone. Homologous series of wax components were classified into organic groups, and the variation in wax components due to clone, sample time, and their interaction was identified. All Salix species and Populus species hybrids showed differences in total wax load at each sampling period, whereas the pattern of wax deposition over time differed only between the Salix species. A strong positive relationship was identified between the entire homologous series of alcohols and total wax load in all clones. Similarly strong relationships were observed between fatty acids and total wax load as well as fatty acids and alcohols in two Salix species and one Populus species hybrid. One Salix species, S. dasyclados, also displayed a strong positive relationship between alcohols and alkanes. These data indicate that species grown under the same environmental conditions produce measurably different cuticular waxes and that regulation of wax production appears to be different in each species. The important roles cuticular waxes play in drought tolerance, pest, and pathogen resistance, as well as the ease of wax extraction and analysis, strongly suggest that the characteristics of the cuticular wax may prove to be useful selectable traits in a breeding program.

  15. Enhancement of phloem exudation from Fraxinus uhdei Wenz. (evergreen ash) using ethylenediaminetetraacetic acid

    International Nuclear Information System (INIS)

    Costello, L.R.; Bassham, J.A.; Calvin, M.

    1982-01-01

    Ethylenediaminetetraacetic acid (EDTA) enhanced the exudation of 14 C-labeled assimilates from excised leaflets and whole plant specimens of Fraxinus uhdei Wenz. A 2 millimolar EDTA concentration was found to be most effective in promoting exudation from excised leaflets, while 10 millimolar EDTA was most effective in whole plants experiments. Exudation rate reached a maximum after 24 hours in both experiments. The continuous presence of EDTA throughout the treatment period was required for maximum exudation from excised leaflets. Stachyose, raffinose, verbascose, and sucrose were the principal compounds found to occur in exudate samples. These compounds are typically transported in sieve elements of various Fraxinus species suggesting the exudate was of phloem orgin. Electron microscope studies of petiolule sieve plate pores from excisd leaflets showed substantially less callose appearing after treatment with EDTA than after H 2 O treatment. It is suggested that EDTA enhances phloem exudation by inhibiting or reducing callose formation in sieve plate pores. The exudation enhancement technique described for whole plant specimens is suggested as a useful means of collecting phloem sap and studying translocation in woody plants

  16. Scale dependence in species turnover reflects variance in species occupancy.

    Science.gov (United States)

    McGlinn, Daniel J; Hurlbert, Allen H

    2012-02-01

    Patterns of species turnover may reflect the processes driving community dynamics across scales. While the majority of studies on species turnover have examined pairwise comparison metrics (e.g., the average Jaccard dissimilarity), it has been proposed that the species-area relationship (SAR) also offers insight into patterns of species turnover because these two patterns may be analytically linked. However, these previous links only apply in a special case where turnover is scale invariant, and we demonstrate across three different plant communities that over 90% of the pairwise turnover values are larger than expected based on scale-invariant predictions from the SAR. Furthermore, the degree of scale dependence in turnover was negatively related to the degree of variance in the occupancy frequency distribution (OFD). These findings suggest that species turnover diverges from scale invariance, and as such pairwise turnover and the slope of the SAR are not redundant. Furthermore, models developed to explain the OFD should be linked with those developed to explain species turnover to achieve a more unified understanding of community structure.

  17. Cryptic species as a window into the paradigm shift of the species concept.

    Science.gov (United States)

    Fišer, Cene; Robinson, Christopher T; Malard, Florian

    2018-02-01

    The species concept is the cornerstone of biodiversity science, and any paradigm shift in the delimitation of species affects many research fields. Many biologists now are embracing a new "species" paradigm as separately evolving populations using different delimitation criteria. Individual criteria can emerge during different periods of speciation; some may never evolve. As such, a paradigm shift in the species concept relates to this inherent heterogeneity in the speciation process and species category-which is fundamentally overlooked in biodiversity research. Cryptic species fall within this paradigm shift: they are continuously being reported from diverse animal phyla but are poorly considered in current tests of ecological and evolutionary theory. The aim of this review is to integrate cryptic species in biodiversity science. In the first section, we address that the absence of morphological diversification is an evolutionary phenomenon, a "process" counterpart to the long-studied mechanisms of morphological diversification. In the next section regarding taxonomy, we show that molecular delimitation of cryptic species is heavily biased towards distance-based methods. We also stress the importance of formally naming of cryptic species for better integration into research fields that use species as units of analysis. Finally, we show that incorporating cryptic species leads to novel insights regarding biodiversity patterns and processes, including large-scale biodiversity assessments, geographic variation in species distribution and species coexistence. It is time for incorporating multicriteria species approaches aiming to understand speciation across space and taxa, thus allowing integration into biodiversity conservation while accommodating for species uncertainty. © 2018 John Wiley & Sons Ltd.

  18. A globally-distributed alien invasive species poses risks to United States imperiled species.

    Science.gov (United States)

    McClure, Meredith L; Burdett, Christopher L; Farnsworth, Matthew L; Sweeney, Steven J; Miller, Ryan S

    2018-03-28

    In the midst of Earth's sixth mass extinction event, non-native species are a driving factor in many imperiled species' declines. One of the most widespread and destructive alien invasive species in the world, wild pigs (Sus scrofa) threaten native species through predation, habitat destruction, competition, and disease transmission. We show that wild pigs co-occur with up to 87.2% of imperiled species in the contiguous U.S. identified as susceptible to their direct impacts, and we project increases in both the number of species at risk and the geographic extent of risks by 2025. Wild pigs may therefore present a severe threat to U.S. imperiled species, with serious implications for management of at-risk species throughout wild pigs' global distribution. We offer guidance for efficient allocation of research effort and conservation resources across species and regions using a simple approach that can be applied to wild pigs and other alien invasive species globally.

  19. Assessing species boundaries using multilocus species delimitation in a morphologically conserved group of neotropical freshwater fishes, the Poecilia sphenops species complex (Poeciliidae.

    Directory of Open Access Journals (Sweden)

    Justin C Bagley

    Full Text Available Accurately delimiting species is fundamentally important for understanding species diversity and distributions and devising effective strategies to conserve biodiversity. However, species delimitation is problematic in many taxa, including 'non-adaptive radiations' containing morphologically cryptic lineages. Fortunately, coalescent-based species delimitation methods hold promise for objectively estimating species limits in such radiations, using multilocus genetic data. Using coalescent-based approaches, we delimit species and infer evolutionary relationships in a morphologically conserved group of Central American freshwater fishes, the Poecilia sphenops species complex. Phylogenetic analyses of multiple genetic markers (sequences of two mitochondrial DNA genes and five nuclear loci from 10/15 species and genetic lineages recognized in the group support the P. sphenops species complex as monophyletic with respect to outgroups, with eight mitochondrial 'major-lineages' diverged by ≥2% pairwise genetic distances. From general mixed Yule-coalescent models, we discovered (conservatively 10 species within our concatenated mitochondrial DNA dataset, 9 of which were strongly supported by subsequent multilocus Bayesian species delimitation and species tree analyses. Results suggested species-level diversity is underestimated or overestimated by at least ~15% in different lineages in the complex. Nonparametric statistics and coalescent simulations indicate genealogical discordance among our gene tree results has mainly derived from interspecific hybridization in the nuclear genome. However, mitochondrial DNA show little evidence for introgression, and our species delimitation results appear robust to effects of this process. Overall, our findings support the utility of combining multiple lines of genetic evidence and broad phylogeographical sampling to discover and validate species using coalescent-based methods. Our study also highlights the

  20. Assessing the Fauna Diversity of Marudu Bay Mangrove Forest, Sabah, Malaysia, for Future Conservation

    Directory of Open Access Journals (Sweden)

    Mohamed Zakaria

    2015-04-01

    Full Text Available Mangrove is an evergreen, salt tolerant plant community, which grows in inter-tidal coastal zones of tropical and subtropical regions of the world. They are ecologically important for many fauna species and are rich in food resources and consist of many different vegetation structures. They serve as ideal foraging and nursery grounds for a wide array of species such as birds, mammals, reptiles, fishes and aquatic invertebrates. In spite of their crucial role, around 50% of mangrove habitats have been lost and degraded in the past two decades. The fauna diversity of mangrove habitat at Marudu Bay, Sabah, East Malaysia was examined using various methods: i.e. aquatic invertebrates by swap nets, fish by angling rods and cast nets, reptiles, birds, and mammals through direct sighting. The result showed that Marudu Bay mangrove habitats harbored a diversity of fauna species including 22 aquatic invertebrate species (encompassing 11 crustacean species, six mollusk species and four worm species, 36 fish species, 74 bird species, four reptile species, and four mammal species. The wide array of fauna species could be due to the availability of complex vegetation structures, sheltered beaches and tidal mudflats, which are rich in food resources and also offer safe foraging and breeding grounds for them. These heterogeneous habitats must be protected in a sustainable way in order to ensure the continued presence of aquatic and terrestrial fauna species for future generations.