WorldWideScience

Sample records for events nuclear explosions

  1. Trend analysis of explosion events at overseas nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Hiroki

    2008-01-01

    We surveyed failures caused by disasters (e.g., severe storms, heavy rainfall, earthquakes, explosions and fires) which occurred during the 13 years from 1995 to 2007 at overseas nuclear power plants (NPPs) from the nuclear information database of the Institute of Nuclear Safety System. Incorporated (INSS). The results revealed that explosions were the second most frequent type of failure after fires. We conducted a trend analysis on such explosion events. The analysis by equipment, cause, and effect on the plant showed that the explosions occurred mainly at electrical facilities, and thus it is essential to manage the maintenance of electrical facilities for preventing explosions. In addition, it was shown that explosions at transformers and batteries, which have never occurred at Japan's NPPs, accounted for as much as 55% of all explosions. The fact infers that this difference is attributable to the difference in maintenance methods of transformers (condition based maintenance adopted by NPPs) and workforce organization of batteries (inspections performed by utilities' own maintenance workers at NPPs). (author)

  2. Investigation and analysis of hydrogen ignition and explosion events in foreign nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasunori [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan)

    2002-09-01

    Reports about hydrogen ignition and explosion events in foreign nuclear power plants from 1980 to 2001 were investigated, and 31 events were identified. Analysis showed that they were categorized in (1) outer leakage ignition events and (2) inner accumulation ignition events. The dominant event for PWR (pressurized water reactor) was outer leakage ignition in the main generator, and in BWR (boiling water reactor) it was inner accumulation ignition in the off-gas system. The outer leakage ignition was a result of work process failure with the ignition source, operator error, or main generator hydrogen leakage. The inner accumulation ignition events were caused by equipment failure or insufficient monitoring. With careful preventive measures, the factors leading to these events could be eliminated. (author)

  3. Surface motion induced by nuclear explosions beneath Pahute Mesa. Part I. Halfbreak, Greeley, Scotch, Boxcar events

    International Nuclear Information System (INIS)

    Perret, W.R.

    1976-10-01

    Results of surface motion studies conducted by Sandia Laboratories during seven underground nuclear explosions detonated beneath Pahute Mesa, Areas 19 and 20 of the Nevada Test Site, between 1966 and 1973 are reported. The report is divided into two parts of which this, Part I, includes (1) descriptions of the Pahute Mesa geological environment and of the purposes and instrumentation used in these programs (Chapter 1), and (2) description of four events, the data derived from each, and analysis of these data. These Part I events are HALFBEAK (Chapter 2), GREELEY (Chapter 3), SCOTCH (Chapter 4), and BOXCAR (Chapter 5) for all of which a nominally radial array of gage stations yielded data as a function of distance primarily, although in a few cases data were derived from stations at widely separated azimuths from the explosion. Results of the analysis indicate that average propagation velocity through the geologic column between the explosions and mesa surface was about 8800 ft/sec and that for horizontal distances greater than shot depth, refraction occurred within rhyolite flows with characteristic velocity of about 12,300 ft/sec. There is evidence which suggests possible deeper refraction at a velocity between 18,000 and 21,000 ft/sec. Only the verticle motion peaks follow a pattern amenable to regression analysis because geometrical effects influence horizontal motion amplitudes differently as horizontal distances increase. Particle velocities vary roughly as the inverse square of slant or radial range with exponent values ranging from -3.9 to -1.3. Displacements follow a similar pattern with exponents ranging from about -6 to -2. Displacement profiles at various times during the motion and displacement hodographs in the vertical-radial plane aid in understanding several local phenomena implied by individual motion records

  4. Estimation of full moment tensors, including uncertainties, for earthquakes, volcanic events, and nuclear explosions

    Science.gov (United States)

    Alvizuri, Celso R.

    rather the confidence, is then given by the 'confidence curve' P( V), where P(V) is the probability that the true moment tensor for the event lies within the neighborhood of M that has fractional volume V. The area under the confidence curve provides a single, abbreviated 'confidence parameter' for M0. We apply the method to data from events in different regions and tectonic settings: 63 small (M w 4) earthquakes in the southern Alaska subduction zone, and 12 earthquakes and 17 nuclear explosions at the Nevada Test Site. Characterization of moment tensor uncertainties puts us in better position to discriminate among moment tensor source types and to assign physical processes to the events.

  5. Nuclear explosives and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P

    1971-10-01

    A nuclear explosive 12 in. in diam and producing very little tritium is feasible in France. Such a device would be well adapted for contained nuclear explosions set off for the purpose of hydrocarbon storage or stimulation. The different aspects of setting off the explosive are reviewed. In the particular case of gas storage in a nuclear cavity in granite, it is demonstrated that the dose of irradiation received is extremely small. (18 refs.)

  6. Uncertainties for seismic moment tensors and applications to nuclear explosions, volcanic events, and earthquakes

    Science.gov (United States)

    Tape, C.; Alvizuri, C. R.; Silwal, V.; Tape, W.

    2017-12-01

    When considered as a point source, a seismic source can be characterized in terms of its origin time, hypocenter, moment tensor, and source time function. The seismologist's task is to estimate these parameters--and their uncertainties--from three-component ground motion recorded at irregularly spaced stations. We will focus on one portion of this problem: the estimation of the moment tensor and its uncertainties. With magnitude estimated separately, we are left with five parameters describing the normalized moment tensor. A lune of normalized eigenvalue triples can be used to visualize the two parameters (lune longitude and lune latitude) describing the source type, while the conventional strike, dip, and rake angles can be used to characterize the orientation. Slight modifications of these five parameters lead to a uniform parameterization of moment tensors--uniform in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. For a moment tensor m that we have inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighborhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in our inference of m. The calculation of P(V) requires knowing both the probability P(w) and the fractional volume V(w) of the set of moment tensors within a given angular radius w of m. We apply this approach to several different data sets, including nuclear explosions from the Nevada Test Site, volcanic events from Uturuncu (Bolivia), and earthquakes. Several challenges remain: choosing an appropriate misfit function, handling time shifts between data and synthetic waveforms, and extending the uncertainty estimation to include more source parameters (e.g., hypocenter and source time function).

  7. Underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Gary H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  8. Underground nuclear explosions

    International Nuclear Information System (INIS)

    Higgins, Gary H.

    1970-01-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  9. Nuclear explosive driven experiments

    International Nuclear Information System (INIS)

    Ragan, C.E.

    1981-01-01

    Ultrahigh pressures are generated in the vicinity of a nuclear explosion. We have developed diagnostic techniques to obtain precise high pressures equation-of-state data in this exotic but hostile environment

  10. EVENT, Explosive Transients in Flow Networks

    International Nuclear Information System (INIS)

    Andrae, R.W.; Tang, P.K.; Bolstad, J.W.; Gregory, W.S.

    1985-01-01

    1 - Description of problem or function: A major concern of the chemical, nuclear, and mining industries is the occurrence of an explosion in one part of a facility and subsequent transmission of explosive effects through the ventilation system. An explosive event can cause performance degradation of the ventilation system or even structural failures. A more serious consequence is the release of hazardous materials to the environment if vital protective devices such as air filters, are damaged. EVENT was developed to investigate the effects of explosive transients through fluid-flow networks. Using the principles of fluid mechanics and thermodynamics, governing equations for the conservation of mass, energy, and momentum are formulated. These equations are applied to the complete network subdivided into two general components: nodes and branches. The nodes represent boundaries and internal junctions where the conservation of mass and energy applies. The branches can be ducts, valves, blowers, or filters. Since in EVENT the effect of the explosion, not the characteristics of the explosion itself, is of interest, the transient is simulated in the simplest possible way. A rapid addition of mass and energy to the system at certain locations is used. This representation is adequate for all of the network except the region where the explosion actually occurs. EVENT84 is a modification of EVENT which includes a new explosion chamber model subroutine based on the NOL BLAST program developed at the Naval Ordnance Laboratory, Silver Spring, Maryland. This subroutine calculates the confined explosion near-field parameters and supplies the time functions of energy and mass injection. Solid-phase or TNT-equivalent explosions (which simulate 'point source' explosions in nuclear facilities) as well as explosions in gas-air mixtures can be simulated. The four types of explosions EVENT84 simulates are TNT, hydrogen in air, acetylene in air, and tributyl phosphate (TBP or 'red oil

  11. Nonlinear Methodologies for Identifying Seismic Event and Nuclear Explosion Using Random Forest, Support Vector Machine, and Naive Bayes Classification

    Directory of Open Access Journals (Sweden)

    Longjun Dong

    2014-01-01

    Full Text Available The discrimination of seismic event and nuclear explosion is a complex and nonlinear system. The nonlinear methodologies including Random Forests (RF, Support Vector Machines (SVM, and Naïve Bayes Classifier (NBC were applied to discriminant seismic events. Twenty earthquakes and twenty-seven explosions with nine ratios of the energies contained within predetermined “velocity windows” and calculated distance are used in discriminators. Based on the one out cross-validation, ROC curve, calculated accuracy of training and test samples, and discriminating performances of RF, SVM, and NBC were discussed and compared. The result of RF method clearly shows the best predictive power with a maximum area of 0.975 under the ROC among RF, SVM, and NBC. The discriminant accuracies of RF, SVM, and NBC for test samples are 92.86%, 85.71%, and 92.86%, respectively. It has been demonstrated that the presented RF model can not only identify seismic event automatically with high accuracy, but also can sort the discriminant indicators according to calculated values of weights.

  12. Nuclear explosives testing readiness evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Valk, T.C.

    1993-09-01

    This readiness evaluation considers hole selection and characterization, verification, containment issues, nuclear explosive safety studies, test authorities, event operations planning, canister-rack preparation, site preparation, diagnostic equipment setup, device assembly facilities and processes, device delivery and insertion, emplacement, stemming, control room activities, readiness briefing, arming and firing, test execution, emergency response and reentry, and post event analysis to include device diagnostics, nuclear chemistry, and containment. This survey concludes that the LLNL program and its supporting contractors could execute an event within six months of notification, and a second event within the following six months, given the NET group`s evaluation and the following three restraints: (1) FY94 (and subsequent year) funding is essentially constant with FY93, (2) Preliminary work for the initial event is completed to the historical sic months status, (3) Critical personnel, currently working in dual use technologies, would be recallable as needed.

  13. The recovery and study of heavy nuclides produced in a nuclear explosion - the Hutch event

    International Nuclear Information System (INIS)

    Hoff, R.W.; Hulet, E.K.

    1970-01-01

    During the explosion of the Hutch device, the target ( 238 U and 232 Th) was subjected to a very high neutron exposure, 2.4 x 10 25 neutrons /cm 2 . Multiple neutron capture reactions resulted in the production of heavy nuclides, up to and including 257Fm. Results of the search for species with A > 257 were negative. The recovery and chemical processing of kilograms of Hutch debris has resulted in the isolation of 10 10 atoms of 257Fm, which is 10 2 times more material than has been available for experimentation in the past. Experimentally significant amounts of other rare nuclides, e.g., : 254 Cf, 251 Cf, 255 -Es, and 250 Cm, have also been separated from the Hutch debris. The production of these nuclides in thermonuclear explosions is shown to be a valuable supplement to the AEC program for reactor production of transplutonium elements. The neutron flux achieved in Hutch was insufficient to even approach production of nuclides in the region of 298 114. A much more intense neutron flux is required. In future experiments, considerable attention must be given to the problem of adequate sample recovery, in order to properly use the ability to subject targets to an exceedingly intense time-integrated neutron flux. (author)

  14. The recovery and study of heavy nuclides produced in a nuclear explosion - the Hutch event

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, R W; Hulet, E K [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    During the explosion of the Hutch device, the target ({sup 238}U and {sup 232}Th) was subjected to a very high neutron exposure, 2.4 x 10{sup 25} neutrons /cm{sup 2}. Multiple neutron capture reactions resulted in the production of heavy nuclides, up to and including 257Fm. Results of the search for species with A > 257 were negative. The recovery and chemical processing of kilograms of Hutch debris has resulted in the isolation of 10{sup 10} atoms of 257Fm, which is 10{sup 2} times more material than has been available for experimentation in the past. Experimentally significant amounts of other rare nuclides, e.g., :{sup 254}Cf, {sup 251}Cf, {sup 255}-Es, and {sup 250}Cm, have also been separated from the Hutch debris. The production of these nuclides in thermonuclear explosions is shown to be a valuable supplement to the AEC program for reactor production of transplutonium elements. The neutron flux achieved in Hutch was insufficient to even approach production of nuclides in the region of {sup 298}114. A much more intense neutron flux is required. In future experiments, considerable attention must be given to the problem of adequate sample recovery, in order to properly use the ability to subject targets to an exceedingly intense time-integrated neutron flux. (author)

  15. Peaceful nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-07-01

    Article V of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) specifies that the potential benefits of peaceful applications of nuclear explosions be made available to non-nuclear weapon states party to the Treaty 'under appropriate international observation and through appropriate international procedures'. The International Atomic Energy Agency's responsibility and technical competence in this respect have been recognized by its Board of Governors, the Agency's General Conference and the United Nations' General Assembly. Since 1968 when the United Nations Conference of Non-Nuclear Weapon States also recommended that the Agency initiate the necessary studies in the peaceful nuclear explosions (PNE) field, the Agency has taken the following steps: 1. The exchange of scientific and technical information has been facilitated by circulating information on the status of the technology and through the Agency's International Nuclear Information System. A bibliography of PNE-related literature was published in 1970. 2. In 1972, guidelines for 'the international observation of PNE under the provisions of NPT and analogous provisions in other international agreements' were developed and approved by the Board of Governors. These guidelines defined the basic purpose of international observation as being to verify that in the course of conducting a PNE project the intent and letter of Articles I and II of the NPT are not violated. 3. In 1974, an advisory group developed 'Procedures for the Agency to Use in Responding to Requests for PNE-Related Services'. These procedures have also been approved by the Board of Governors. 4. The Agency has convened a series of technical meetings which reviewed the 'state-of-the- art'. These meetings were convened in 1970, 1971, 1972 and in January 1975. The Fourth Technical Committee was held in Vienna from 20-24 January 1975 under the chairmanship of Dr. Allen Wilson of Australia with Experts from: Australia, France, Federal

  16. Nuclear explosions and their effects

    Energy Technology Data Exchange (ETDEWEB)

    1958-01-01

    A brief historical background is given of the development of the atomic bomb. Also included is an account of the Hiroshima-Nagasaki bombing, plus some information on the testing and production of nuclear weapons by the United States, United Kingdom, and Russia. More detailed consideration is given to the following: the scientific principles of fission and fusion explosions; the energy released in fission and the radioactivity of fission products; blast, thermal, and radiologicalal effects of nuclear explosions; long-term radiological hazards from fall-out; and genetic effects of nuclear explosions. A brief account is given of the fission chain process, the concept of critical size, and the principles of implosion as applied to nuclear explosions. Limited information is presented on the controlled release of thermonuclear energy and catalyzed fusion reaction. Discussions are included on dose rates from radiation sources inside and outside the body, the effect of nuclear explosions on the weather, and the contamination of fish and marine organisms.

  17. Peaceful applications of nuclear explosions

    International Nuclear Information System (INIS)

    Wallin, L.B.

    1975-12-01

    The intension of this report is to give a survey of the field of peaceful applications of nuclear explosions. As an introduction some examples of possibilities of application are given together with a simple description of nuclear explosions under ground. After a summary of what has been done and will be done in this field nationally and internationally, a short discussion of advantages and problems with peaceful application of nuclear explosions follows. The risks of spreading nuclear weapons due to this applications are also touched before the report is finished with an attempt to judge the future development in this field. (M.S.)

  18. Electromagnetic signals from underground nuclear explosions

    International Nuclear Information System (INIS)

    Malik, J.; Fitzhugh, R.; Homuth, F.

    1985-10-01

    Electromagnetic fields and ground currents resulting from underground nuclear explosions have been observed since the first such event. A few measurements have been reported, but most have not. There also have been some speculations as to their origin; the two most generally proposed are the magnetic bubble and the seismoelectric effect. The evidence seems to favor the latter mechanism. 15 refs., 36 figs

  19. Hydrocarbon production with nuclear explosives

    International Nuclear Information System (INIS)

    Wade Watkins, J.

    1970-01-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  20. Hydrocarbon production with nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wade Watkins, J [Petroleum Research, Bureau of Mines, U.S. Department of the Interior, Washington, DC (United States)

    1970-05-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  1. 8. Peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Musilek, L.

    1992-01-01

    The chapter deals with peaceful uses of nuclear explosions. Described are the development of the underground nuclear explosion, properties of radionuclides formed during the explosion, their distribution, the release of radioactive products of underground nuclear explosions into the air, their propagation in the atmosphere, and fallout in the landscape. (Z.S.). 1 tab., 8 figs., 19 refs

  2. Health Consequences and Management of Explosive Events

    Directory of Open Access Journals (Sweden)

    Abbas Ostadtaghizadeh

    2016-01-01

    Conclusion: Because of the wide range and adverse impacts of explosions, healthcare authorities and staff should have a good grasp of preventive principles, as well as protection and management of explosion sites. Besides they have to be familiar with treating the injured. It is recommended that training courses and simulated explosive events be designed and run by the healthcare sector.

  3. System for detecting nuclear explosions

    International Nuclear Information System (INIS)

    Rawls, L.E.

    1978-01-01

    Apparatus for detecting underground nuclear explosions is described that is comprised of an antenna located in the dielectric substance of a deep waveguide in the earth and adapted to detect low frequency electromagnetic waves generated by a nuclear explosion, the deep waveguide comprising the high conductivity upper sedimentary layers of the earth, the dielectric basement rock, and a high conductivity layer of basement rock due to the increased temperature thereof at great depths, and means for receiving the electromagnetic waves detected by said antenna means

  4. Magnitude determination for large underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Lawrence D [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    A method is presented for determining the local magnitudes for large underground nuclear explosions. The Gutenberg-Richter nomograph is applied to the peak amplitudes for 24 large underground nuclear explosions that took place in Nevada. The amplitudes were measured at 18 California Wood-Anderson stations located 150-810 km from the explosion epicenter. The variation of the individual station magnitudes and magnitude corrections and the variation of the average and rms error estimates in the magnitude determinations are examined with respect to distance, azimuth, and event location. The magnitude prediction capability of the Gutenberg-Richter nomograph is examined on the basis of these two criteria, and certain corrections are suggested. The azimuthal dependence of the individual station magnitudes is investigated, and corrections for the California stations are calculated. Statistical weighting schemes for two-component data are employed, and the assumptions and limitations in the use of peak amplitudes are discussed. (author)

  5. Nuclear Explosions 1945-1998

    Energy Technology Data Exchange (ETDEWEB)

    Bergkvist, Nils-Olov; Ferm, Ragnhild

    2000-07-01

    The main part of this report is a list of nuclear explosions conducted by the United States, the Soviet Union, the United Kingdom, France, China, India and Pakistan in 1945-98. The list includes all known nuclear test explosions and is compiled from a variety of sources including officially published information from the USA, Russia and France. The details given for each explosion (date, origin time, location, yield, type, etc.) are often compiled from more than one source because the individual sources do not give complete information. The report includes a short background to nuclear testing and provides brief information on the Comprehensive Nuclear-Test-Ban Treaty and the verification regime now being established to verify compliance with the treaty. It also summarizes nuclear testing country by country. The list should be used with some caution because its compilation from a variety of sources means that some of the data could be incorrect. This report is the result of cooperation between the Defence Research Establishment (FOA) and the Stockholm International Peace Research Institute (SIPRI)

  6. Seismic coupling of nuclear explosions

    International Nuclear Information System (INIS)

    Larson, D.B.

    1989-01-01

    The new Giant Magnet Experimental Facility employing digital recording of explosion induced motion has been constructed and successfully tested. Particle velocity and piezoresistance gage responses can be measured simultaneously thus providing the capability for determining the multi-component stress-strain history in the test material. This capability provides the information necessary for validation of computer models used in simulation of nuclear underground testing, chemical explosion testing, dynamic structural response, earth penetration response, and etc. This report discusses fully coupled and cavity decoupled explosions of the same energy (0.622 kJ) were carried out as experiments to study wave propagation and attenuation in polymethylmethacrylate (PMMA). These experiments produced particle velocity time histories at strains from 2 x 10 -3 to as low as 5.8 x 10 -6 . Other experiments in PMMA, reported recently by Stout and Larson 8 provide additional particle velocity data to strains of 10 -1

  7. Reduction of radioactivity produced by nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lessler, Richard M [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Four main sources contribute to the radioactivity produced by a nuclear explosive: 1. Fission products from the nuclear explosive, 2. Fusion products from the nuclear explosive, 3. Induced radioactivity in the nuclear explosive, 4. Induced radioactivity in the environment. This paper will summarize some of the work done at the Lawrence Radiation Laboratory at Livermore to reduce the radioactivity from these sources to levels acceptable for peaceful applications. Although it is theoretically possible to have no radioactivity produced by nuclear explosives, this goal has not been achieved.

  8. Experimental nuclear explosions and the arms race

    International Nuclear Information System (INIS)

    Lenci, F.

    1989-01-01

    This paper discusses how experimental nuclear explosions have basically three aims: a study of the effects of nuclear weapons; the development of new nuclear weapons; and control of the efficiency and security of nuclear weapons

  9. Does Explosive Nuclear Burning Occur in Tidal Disruption Events of White Dwarfs by Intermediate-mass Black Holes?

    Energy Technology Data Exchange (ETDEWEB)

    Tanikawa, Ataru; Sato, Yushi; Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken’ichi; Maeda, Keiichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Nakasato, Naohito, E-mail: tanikawa@ea.c.u-tokyo.ac.jp [Department of Computer Science and Engineering, University of Aizu, Tsuruga Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580 (Japan)

    2017-04-20

    We investigate nucleosynthesis in tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate-mass black holes. We consider various types of WDs with different masses and compositions by means of three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations. We model these WDs with different numbers of SPH particles, N , from a few 10{sup 4} to a few 10{sup 7} in order to check mass resolution convergence, where SPH simulations with N > 10{sup 7} (or a space resolution of several 10{sup 6} cm) have unprecedentedly high resolution in this kind of simulation. We find that nuclear reactions become less active with increasing N and that these nuclear reactions are excited by spurious heating due to low resolution. Moreover, we find no shock wave generation. In order to investigate the reason for the absence of a shock wave, we additionally perform one-dimensional (1D) SPH and mesh-based simulations with a space resolution ranging from 10{sup 4} to 10{sup 7} cm, using a characteristic flow structure extracted from the 3D SPH simulations. We find shock waves in these 1D high-resolution simulations, one of which triggers a detonation wave. However, we must be careful of the fact that, if the shock wave emerged in an outer region, it could not trigger the detonation wave due to low density. Note that the 1D initial conditions lack accuracy to precisely determine where a shock wave emerges. We need to perform 3D simulations with ≲10{sup 6} cm space resolution in order to conclude that WD TDEs become optical transients powered by radioactive nuclei.

  10. Initial concepts on energetics and mass releases during nonnuclear explosive events in fuel cycle facilities

    International Nuclear Information System (INIS)

    Halverson, M.A.; Mishima, J.

    1986-09-01

    Non-nuclear explosions are one of the initiating events (accidents) considered in the US Nuclear Regulatory Commission study of formal methods for estimating the airborne release of radionuclides from fuel cycle facilities. Methods currently available to estimate the energetics and mass airborne release from the four types of non-nuclear explosive events (fast and slow physical explosions and fast and slow chemical explosions) are reviewed. The likelihood that fast physical explosions will occur in fuel cycle facilities appears to be remote and this type of explosion is not considered. Methods to estimate the consequences of slow physical and fast chemical explosions are available. Methods to estimate the consequences of slow chemical explosions are less well defined

  11. Integrated control system for nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ragsdale, William F [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    The Integrated Control System (ICS) has been developed to facilitate Plowshare nuclear detonations by following a unified system approach. This system consolidates the techniques for firing, safety program, scientific program, and communications. Maximum emphasis is placed upon control and data transmission by radio rather than hardwire or coaxial cable. The ICS consists of a Command Point (CP) Trailer, a radio repeater station, a field station (the ICE Box), and several chassis located in the explosive canister. Commands originate in the CP and are transmitted via microwave radio to the ICE Box; monitors are returned to the CP from the canister, the ICE Box, and sensors near ground zero. The system allows complete checkout and operation before shipment to the field. The explosive canister may be dry-run at the assembly area (at NTS) before shipment to the field. The basic detonation functions for every event are: 1. Arming and firing commands in the explosive canister and at surface ground zero. 2. Environmental monitors and suitable arming monitors in the explosive canister. 3. Safety monitors at the zero site for weather, RAMS (Remote Area Monitoring System), and cavity collapse. Secondary functions that may be required for a specific project are: 4. Scientific program of phenomenology measurements. 5. Explosive performance measurements. 6. Ground zero television. 7. Auxiliary communications such as local telephones, VHF radio. By combining functions that have previously been performed by separate organizations and systems, the ICS attempts a minimum cost detonation service. Economy of operation results because: 1. Operating personnel work on more than one sub-system. 2. Interfaces and interface complexity are minimized. 3. A reduced dependence upon signal cables results from a microwave-based system. 4. Pre-fabrication allows test operation before shipment to the field and minimizes setup time in the field. The ICS is in use on the Sturtevant event and is

  12. Peaceful nuclear explosions and thermodynamics

    International Nuclear Information System (INIS)

    Prieto, F.E.

    1975-01-01

    Some theoretical advances in the thermodynamics of very high pressures are reviewed. A universal (system-independent) formulation of the thermodynamics is sketched, and some of the equations more frequently used are written in system-independent form. Among these equations are: Hugoniot pressure and temperature as functions of volume; the Mie-Gruneisen equation; and an explicit form for the equation of state. It is also shown that this formalism can be used to interpret and predict results from peaceful nuclear explosions. (author)

  13. Ideas for peaceful nuclear explosions in USSR

    International Nuclear Information System (INIS)

    1970-01-01

    Three papers prepared in USSR have been made available to the Agency for circulation among Member States. One examines radioactive contamination and methods for predicting it, of natural environments during underground explosions. Another deals with the mechanical effect of underground explosions. The third, which forms the basis of this article, reviews possible applications of peaceful nuclear explosions in the Soviet economy. (author)

  14. General phenomenology of underground nuclear explosions

    International Nuclear Information System (INIS)

    Derlich, S.; Supiot, F.

    1969-01-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [fr

  15. Environmental control for nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, A W; Wells, W H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Peaceful applications introduce some new environmental considerations into the design of nuclear explosives. Much of the experience gained in weapon work can be applied, but the requirement of survival in a very deep hole is not found in any military system. We will briefly mention the overall environment and make a few comparisons with some general characteristics of the weapon environment. The major portion of this paper is devoted to the special problems of pressure and temperature found in the emplacement environment. Potential users should know where we stand with regard to survival in hostile environments in terms of feasibility and possible effects on field operations. In all applications there are several things competing for the available diameter. Given that explosives can be made to work over a range of diameters and that necessary environmental control is feasible, all further discussions can be related to the cost of providing a hole big enough to accomplish the task. The items competing for diameter are: 1) bare nuclear assembly 2) insulation and cooling system if needed 3) pressure canister 4) shielding material 5) emplacement clearance All of these must be considered with the cost of the hole in optimizing an overall design. Conditions in a particular location will affect the shielding requirements and the emplacement clearance. The nuclear assembly can vary in size, but the long development time requires that decisions be made quite early, perhaps in ignorance of the economic details of a particular application. The pressure canister is a relatively straightforward design problem that can be resolved by giving appropriate consideration to all of the design requirements. In particular for 20,000 psi pressure in the emplacement hole, a canister of heat-treated alloy steel having a yield strength of 200,000 psi and a wall thickness which is about .07 times the outside diameter is adequate and straight- forward to fabricate. The insulation and cooling

  16. Nuclear explosion and internal contamination

    International Nuclear Information System (INIS)

    Aeberhardt, A.

    1956-01-01

    By the study of the conditions of internal contamination due to the radioactive mixture produced by a nuclear explosion, the parts played by the relative weights of the different elements and the mode of expression of the doses are considered. Only the knowledge of the weight composition of the contamination mixture and of its evolution as a function of time can provide the required basis for the study of its metabolism in the organism. The curves which give the composition of the fission product mixture - in number of nuclei - - as a function of time - have been established. These curves are applied to some practical examples, particularly relative to the nature of contamination, radiotoxicity of some elements and assessment of hazards. (author) [fr

  17. Engineering effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Charles R [CER Geonuclear Corporation, Las Vegas, NV (United States)

    1970-05-01

    Useful effects of contained underground nuclear explosions are discussed in light of today's most promising potential applications. Relevant data obtained through exploration of explosion environments of nine U.S. tests in competent rock are summarized and presented as a practical basis for estimating magnitudes of effects. Effects discussed include chimney configuration, permeability, and volume as well as rubble particle size distributions and extents of permeability change in the chimney wall rock. Explosion mediums include shale, granite, dolomite, and salt. (author)

  18. Engineering effects of underground nuclear explosions

    International Nuclear Information System (INIS)

    Boardman, Charles R.

    1970-01-01

    Useful effects of contained underground nuclear explosions are discussed in light of today's most promising potential applications. Relevant data obtained through exploration of explosion environments of nine U.S. tests in competent rock are summarized and presented as a practical basis for estimating magnitudes of effects. Effects discussed include chimney configuration, permeability, and volume as well as rubble particle size distributions and extents of permeability change in the chimney wall rock. Explosion mediums include shale, granite, dolomite, and salt. (author)

  19. Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A. [DOE/NNSA

    2004-09-01

    The Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Explosion Monitoring Research and Engineering (NEM R&E) Program is dedicated to providing knowledge, technical expertise, and products to US agencies responsible for monitoring nuclear explosions in all environments and is successful in turning scientific breakthroughs into tools for use by operational monitoring agencies. To effectively address the rapidly evolving state of affairs, the NNSA NEM R&E program is structured around three program elements described within this strategic plan: Integration of New Monitoring Assets, Advanced Event Characterization, and Next-Generation Monitoring Systems. How the Program fits into the National effort and historical accomplishments are also addressed.

  20. Simple probabilistic method for relative risk evaluation of nuclear terrorism events

    International Nuclear Information System (INIS)

    Zhang Songbai; Wu Jun

    2006-01-01

    On the basis of the event-tree and probability analysis methods, a probabilistic method of nuclear terrorism risk was built, and the risk of terrorism events was analyzed. With the statistical data for and hypothetical data for relative events, the relative probabilities of the four kinds of nuclear terrorism events were obtained, as well as the relative risks of these four kinds of nuclear terrorism events were calculated by using this probabilistic method. The illustrated case show that the descending sequence of damages from the four kinds of nuclear terrorism events for single event is as following: nuclear explosive and improvised nuclear explosive, nuclear facility attacked, and 'dirty bomb'. Under the hypothetical condition, the descending sequence of possibilities for the four kinds of nuclear terrorism events is as following: 'dirty bomb', nuclear facility attacked, improvised nuclear explosive and nuclear explosive, but the descending sequence of risks is as following: 'dirty bomb', improvised nuclear explosive, nuclear facility attacked, and nuclear explosive . (authors)

  1. Soviet experience with peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Nordyke, M.D.

    1976-01-01

    The Soviet Union is pursuing an active program for developing peaceful uses of nuclear explosions (PNE). They have reported 16 explosions, with applications ranging from putting out oil-well fires and stimulating oil recovery to creating instant dams and canals. The data reported generally agree with U.S. experience. Seismic data collected by western sources on explosions outside the known Soviet test sites indicate that the Soviet program is at least twice as large as they have reported. The accelerated pace of these events suggests that in some applications the Soviet PNE program is approaching routine industrial technology

  2. Glossary on peaceful nuclear explosions terms

    International Nuclear Information System (INIS)

    1980-01-01

    The report presents a glossary of terms in the area of peaceful nuclear explosions. The terms are in English, French, Russian and Spanish with cross-references for the corresponding terms of the other languages

  3. Do peaceful nuclear explosions have a future

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The idea of peaceful uses for nuclear explosive devices arose almost simultaneously with the concept of the nuclear explosion itself. It has been a powerful idea in that it soon generated major study efforts in the United States and the USSR and also captured the interest of many developing nations. But in spite of this considerable interest and much expenditure of funds and effort, the expectation that economically viable uses will be found for peaceful nuclear explosions looks even more distant now that when the first studies were initiated. This, at least, is the conclusion of two recent U.S. studies of the economic feasibility and time scale for application of peaceful nuclear explosions by the United States. The larger of these two studies was prepared by the Gulf Universities Research Consortium, and dealt particularly with possibilities for use in the United States by 1990 of contained, i.e., underground, peaceful nuclear explosions. This paper provides briefer analysis by an ad hoc panel assesses the implications of the Gulf report, considers other uses for peaceful nuclear explosions, and summarizes the reasons why there is only a small possibility that there will be significant use of them by the United States before the year 2000

  4. Review of Soviet studies related to peaceful underground nuclear explosions

    International Nuclear Information System (INIS)

    Lin, W.

    1978-01-01

    Theoretical and empirical studies of contained and crater-forming underground nuclear explosions by USSR investigators are reviewed and summarized. Published data on U.S., USSR, and French cavity-forming nuclear explosions are compared with those predicted by the formula. Empirical studies on U.S. and USSR cratering explosions, both high explosions, both high explosive and nuclear are summarized. The parameters governing an excavation explosion are reviewed

  5. Relative source comparison of the NPE to underground nuclear explosions at local distances

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.T. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31

    The Non-Proliferation Experiment (NPE) provides an opportunity to compare broadband characteristics of chemical to nuclear explosions at a group of local stations (4 to 40 km distant). The locations for these stations were established on bedrock to record a small partially decoupled nuclear explosion and two nearby nuclear experiments, all shots within {open_quotes}N{close_quotes} Tunnel on Rainier Mesa, Area 12. These sites were also occupied to record aftershocks from the Little Skull Mountain earthquake and chemical explosions from the USGS Sierra Experiment. To minimize calibration errors during this period, redundant instrumentation were used for each event. THe analysis emphasizes the source characteristics of the different explosions. The 300-lb chemical calibration explosion allows removal of path effects from each explosion. The NPE and nearby experiments produce very similar waveforms. The decoupled nuclear explosion and the 300-lb chemical calibration explosion show higher frequency content consistent with a higher corner frequency for the sources.

  6. Radioactive and Other Effects of Nuclear Explosion

    International Nuclear Information System (INIS)

    Ilijas, B.; Cizmek, A.; Prah, M.; Medakovic, S.

    2008-01-01

    As a result of long lasting efforts of international community to definitely ban all test nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty (CTBT) was opened for signature in New York on 24 September 1996, when it was signed by 71 states, including Croatia. The State Office for Nuclear Safety (SONS) which, as an independent state regulatory authority has a responsibility for activities relating to nuclear safety, including the national authority over this Treaty, is actively engaged in CTBTO activities. The nuclear explosion causes a lot of effects (blast, thermal, radioactive, electromagnetic) which differs a lot in its nature, reach, lasting and other. The longest lasting aftermath is from the radioactive effects that cause a radioactive fallout and a lot of radioactive elements in the environment, created by the influence of a primary beam of radiation. Fission and fusion are the main source of radionuclide created by the nuclear explosion, and the longest lasting aftermaths are by the fission products, namely their offspring in natural disintegration chains. This can make contaminated areas inappropriate for life for very long periods. Even in the case of underground nuclear explosion (when underground cavity is formed with no effects on the surface), a leakage of radioactive gases through cracks is possible. A number of radionuclide is created by the neutron activation of elements naturally present in an environment, because a very strong neutron radiation appears in the moment of nuclear explosion. The abundance of particular radionuclide is a very much dependent of a place of performing nuclear explosion and a composition of soil or water in the vicinity.(author)

  7. Differences in coupling between chemical and nuclear explosions

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1992-01-01

    The teleseismic amplitude resulting from an underground explosion is proportional to the asymptotic value of the reduced displacement potential (φ∞) or, in physical terms, to the permanent change in volume measured anywhere beyond the range at which the outgoing wave has become elastic. φ∞ decreases with increasing initial cavity size (r o ) until the cavity is large enough to preclude inelastic behavior in the surrounding rock, at which point no further decrease occurs. With nuclear explosions, φ∞ can also be reduced by decreasing the initial cavity size over a certain range. This occurs because, in this range of r 0 W -1/3 (where W is the yield) the thermal pressure in the surrounding medium increases much more slowly than does the thermal energy. With chemical explosions, by contrast, r 0 W -1/3 cannot be decreased below the fully tamped limit because the energy density is bounded above. Moreover, for the most of the cavity expansion period the ratio of specific heats of the chemical explosion products is substantially higher than the equivalent ratio in a nuclear explosion, so that the cavity pressure in the former case is higher as well and this further amplifies the differences between the two. Calculations show that the teleseismic amplitude could be as much as 50% higher for an equivalent tamped chemical explosion in salt than was observed in the SALMON nuclear event

  8. Glass produced by underground nuclear explosions

    International Nuclear Information System (INIS)

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10 12 calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 μm scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity

  9. The long-term nuclear explosives predicament

    International Nuclear Information System (INIS)

    Swahn, J.

    1992-01-01

    A scenario is described, where the production of new military fissile materials is halted and where civil nuclear power is phased out in a 'no-new orders' case. It is found that approximately 1100 tonnes of weapons-grade uranium, 233 tonnes of weapons-grade plutonium and 3795 tonnes of reactor-grade plutonium have to be finally disposed of as nuclear waste. This material could be used for the construction of over 1 million nuclear explosives. Reactor-grade plutonium is found to be easier to extract from spent nuclear fuel with time and some physical characteristics important for the construction of nuclear explosives are improved. Alternative methods for disposal of the fissile material that will avoid the long-term nuclear explosives predicament are examined. Among these methods are dilution, denaturing or transmutation of the fissile material and options for practicably irrecoverable disposal in deep boreholes, on the sea-bed, and in space. It is found that the deep boreholes method for disposal should be the primary alternative to be examined further. This method can be combined with an effort to 'forget' where the material was put. Included in the thesis is also an evaluation of the possibilities of controlling the limited civil nuclear activities in a post-nuclear world. Some surveillance technologies for a post-nuclear world are described, including satellite surveillance. In a review part of the thesis, methods for the production of fissile material for nuclear explosives are described, the technological basis for the construction of nuclear weapons is examined, including use of reactor-grade plutonium for such purposes; also plans for the disposal of spent fuel from civil nuclear power reactors and for the handling of the fissile material from dismantled warheads is described. The Swedish plan for the handling and disposal of spent nuclear fuel is described in detail. (490 refs., 66 figs., 27 tabs.)

  10. A Parameter Study of Large Fast Reactor Nuclear Explosion Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Wiesel, J R

    1969-02-15

    An IBM-code EEM (Explosive Excursion Model) has been developed for calculating the energy releases associated with the explosive disassembly of a large fast reactor following a superprompt critical condition. The assumed failure chain of events and the possible core collapse following a fuel meltdown give the input data and initial conditions, the most important of which is the reactivity insertion rate at the moment of the explosive core disassembly. The dependence of the energy releases on the reactivity insertion rate, the Doppler reactivity feedback, the power form factor and the core size have been studied. The model enables a quick estimation of conservative values of the destructive mechanical energy releases following a nuclear explosion and gives suggestions as to how to reduce or even avoid such excursions.

  11. A Parameter Study of Large Fast Reactor Nuclear Explosion Accidents

    International Nuclear Information System (INIS)

    Wiesel, J.R.

    1969-02-01

    An IBM-code EEM (Explosive Excursion Model) has been developed for calculating the energy releases associated with the explosive disassembly of a large fast reactor following a superprompt critical condition. The assumed failure chain of events and the possible core collapse following a fuel meltdown give the input data and initial conditions, the most important of which is the reactivity insertion rate at the moment of the explosive core disassembly. The dependence of the energy releases on the reactivity insertion rate, the Doppler reactivity feedback, the power form factor and the core size have been studied. The model enables a quick estimation of conservative values of the destructive mechanical energy releases following a nuclear explosion and gives suggestions as to how to reduce or even avoid such excursions

  12. Neutron albedo effects of underground nuclear explosion

    International Nuclear Information System (INIS)

    Yang Bo; Ying Yangjun; Li Jinhong; Bai Yun

    2013-01-01

    The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device.The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device. (authors)

  13. Vapor explosion studies for nuclear and non-nuclear industries

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P. [Arden L. Bement, Jr. Professor Nuclear Engineering, School of Nuclear Engineering, 1290 Nuclear Engineering Building, Room 108C, Purdue University, West Lafayette, IN 47905 (United States)]. E-mail: rusi@purdue.edu

    2005-05-01

    Energetic melt-water explosions are a well-established contributor to risk for nuclear reactors, and even more so for the metal casting industry. In-depth studies were undertaken in an industry-national laboratory collaborative effort to understand the root causes of explosion triggering and to evaluate methods for prevention. The steam explosion triggering studies (SETS) facility was devised and implemented for deriving key insights into explosion prevention. Data obtained indicated that onset of base surface-entrapment induced explosive boiling-caused trigger shocks is a result of complex combination of surface wettability, type of coating (organic versus inorganic), degree of coating wearoff, existence of bypass pathways for pressure relief, charring and non-condensable gas (NCG) release potential. Of these parameters NCGs were found to play a preeminent role on explosion prevention by stabilizing the melt-water steam interface and acting as a shock absorber. The role of NCGs was experimentally confirmed using SETS for their effect on stable film boiling using a downward facing heated body through which gases were injected. The presence of NCGs in the steam film layer caused a significant delay in the transitioning of film-to-nucleate boiling. The role of NCGs on explosion prevention was thereafter demonstrated more directly by introducing molten metal drops into water pools with and without NCG bubbling. Whereas spontaneous and energetic explosions took place without NCG injection, only benign quenching occurred in the presence of NCGs. Gravimetric analyses of organic coatings which are known to prevent explosion onset were also found to release significant NCGs during thermal attack by melt in the presence of water. These findings offer a novel, simple, cost-effective technique for deriving fundamental insights into melt-water explosions as well as for explosion prevention under most conditions of interest to metal casting, and possibly for nuclear reactor

  14. Nuclear explosion and internal contamination; Explosion nucleaire et contamination interne

    Energy Technology Data Exchange (ETDEWEB)

    Aeberhardt, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    By the study of the conditions of internal contamination due to the radioactive mixture produced by a nuclear explosion, the parts played by the relative weights of the different elements and the mode of expression of the doses are considered. Only the knowledge of the weight composition of the contamination mixture and of its evolution as a function of time can provide the required basis for the study of its metabolism in the organism. The curves which give the composition of the fission product mixture - in number of nuclei - - as a function of time - have been established. These curves are applied to some practical examples, particularly relative to the nature of contamination, radiotoxicity of some elements and assessment of hazards. (author) [French] Etudiant les modalites de la contamination interne par les elements radioactifs apparus lors d'une explosion nucleaire, le role de la 'masse' et le mode d'expression des doses sont envisages. La connaissance de la composition en 'masse' du melange contaminant et de son evolution en fonction du temps peut seule apporter les bases necessaires a l'etude de son comportement dans l'organisme. Les courbes donnant la composition du melange de produits de fission - en nombre de noyaux - - en fonction du temps - ont ete etablies. Quelques applications pratiques, relatives en particulier a la nature de la contamination, a la radiotoxicite de certains elements et a l'evaluation de risque, sont envisagees a titre d'exemple. (auteur)

  15. Trends in Nuclear Explosion Monitoring Research & Development - A Physics Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Maceira, Monica [Los Alamos National Laboratory; Blom, Philip Stephen [Los Alamos National Laboratory; Maccarthy, Jonathan K. [Los Alamos National Laboratory; Marcillo, Omar Eduardo [Los Alamos National Laboratory; Euler, Garrett Gene [Los Alamos National Laboratory; Begnaud, Michael Lee [Los Alamos National Laboratory; Ford, Sean R. [Lawrence Livermore National Laboratory; Pasyanos, Michael E. [Lawrence Livermore National Laboratory; Orris, Gregory J. [Naval Research Laboratory; Foxe, Michael P. [Pacific Northwest National Laboratory; Arrowsmith, Stephen J. [Sandia National Laboratory; Merchant, B. John [Sandia National Laboratory; Slinkard, Megan E. [Sandia National Laboratory

    2017-06-01

    This document entitled “Trends in Nuclear Explosion Monitoring Research and Development – A Physics Perspective” reviews the accessible literature, as it relates to nuclear explosion monitoring and the Comprehensive Nuclear-Test-Ban Treaty (CTBT, 1996), for four research areas: source physics (understanding signal generation), signal propagation (accounting for changes through physical media), sensors (recording the signals), and signal analysis (processing the signal). Over 40 trends are addressed, such as moving from 1D to 3D earth models, from pick-based seismic event processing to full waveform processing, and from separate treatment of mechanical waves in different media to combined analyses. Highlighted in the document for each trend are the value and benefit to the monitoring mission, key papers that advanced the science, and promising research and development for the future.

  16. Seismic coupling of nuclear explosions. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D B [ed.; Defense Advanced Research Projects Agency, Arlington, VA (United States)

    1989-12-31

    The new Giant Magnet Experimental Facility employing digital recording of explosion induced motion has been constructed and successfully tested. Particle velocity and piezoresistance gage responses can be measured simultaneously thus providing the capability for determining the multi-component stress-strain history in the test material. This capability provides the information necessary for validation of computer models used in simulation of nuclear underground testing, chemical explosion testing, dynamic structural response, earth penetration response, and etc. This report discusses fully coupled and cavity decoupled explosions of the same energy (0.622 kJ) were carried out as experiments to study wave propagation and attenuation in polymethylmethacrylate (PMMA). These experiments produced particle velocity time histories at strains from 2 {times} 10{sup {minus}3} to as low as 5.8 {times} 10{sup {minus}6}. Other experiments in PMMA, reported recently by Stout and Larson{sup 8} provide additional particle velocity data to strains of 10{sup {minus}1}.

  17. Dose Prediction for surface nuclear explosions: case studies for Semipalatinsk and Lop Nur tests

    International Nuclear Information System (INIS)

    Takada, Jun

    2008-01-01

    Dose prediction method RAPS after surface nuclear explosion has been developed by using the empirical dose function of USA nuclear test. This method which provides us external total dose, dose rate at any distant, at any time for any yield of nuclear explosion, is useful for radiation protection in case of nuclear events such as terrorism and nuclear war. The validity of RAPS has been confirmed by application to historical surface nuclear test explosions. The first test case study which was done for the first test explosion of the former USSR at the Semipalatinsk Nuclear Test Site on August 29th 1949, shows a good agreement with luminescence dosimetry on a brick. This dose prediction method was applied nuclear tests in Lop Nur. The results indicate dangerous nuclear radiation influences including fatal risk in the wide Uygur area. (author)

  18. Better to detect nuclear explosions

    International Nuclear Information System (INIS)

    North, Bob

    1987-01-01

    In a 150 km 2 reserve just west of Yellowknife in the Northwest Territories, three GSC employees operate one of the most sensitive seismic arrays in existence for locating ground movement around the world. The array station is staffed year round despite the harsh climate. Since 1963 the Yellowknife seismic array has contributed data which will significantly aid international efforts to achieve a nuclear test ban treaty

  19. Propulsion of space ships by nuclear explosion

    Science.gov (United States)

    Linhart, J. G.; Kravárik, J.

    2005-01-01

    Recent progress in the research on deuterium-tritium (D-T) inertially confined microexplosions encourages one to reconsider the nuclear propulsion of spaceships based on the concept originally proposed in the Orion project. We discuss first the acceleration of medium-sized spaceships by D-T explosions whose output is in the range of 0.1 10 t of TNT. The launching of such a ship into an Earth orbit or beyond by a large nuclear explosion in an underground cavity is sketched out in the second section of the paper, and finally we consider a hypothetical Mars mission based on these concepts. In the conclusion it is argued that propulsion based on the Orion concept only is not the best method for interplanetary travel owing to the very large number of nuclear explosion required. A combination of a super gun and subsequent rocket propulsion using advanced chemical fuels appears to be the best solution for space flights of the near future.

  20. Explosive Infrasonic Events: Sensor Comparison Experiment (SCE)

    Energy Technology Data Exchange (ETDEWEB)

    Schnurr, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Garces, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-06

    SCE (sensor comparison experiment) 1 through 4 consists of a series of four controlled above-ground explosions designed to provide new data for overpressure propagation. Infrasound data were collected by LLNL iPhones and other sensors. Origin times, locations HOB, and yields are not being released at this time and are therefore not included in this report. This preliminary report will be updated as access to additional data changes, or instrument responses are determined.

  1. Horizontal dimensions of ionosphere agitation provoked by underground nuclear explosions

    International Nuclear Information System (INIS)

    Drobzheva, Ya.V.; Krasnov, V.M.; Sokolova, O.I.

    2001-01-01

    The horizontal dimensions of ionosphere agitation provoked by underground nuclear explosions have been experimentally determined for 13 explosions conducted at the Balapan test site of the Semipalatinsk test site. (author)

  2. Containment analysis for the simultaneous detonation of two nuclear explosives

    International Nuclear Information System (INIS)

    Terhune, R.W.; Glenn, H.D.; Burton, D.E.; Rambo, J.T.

    1977-01-01

    The explosive phenomenology associated with the simultaneous detonation of two 2.2-kt nuclear explosives is examined. A comprehensive spatial-time pictorial of the resultant shock-wave phenomenology is given. The explosives were buried at depths of 200 m and 280 m, corresponding to a separation of approximately 4 final cavity radii. Constitutive relations for the surrounding medium were derived from the geophysical logs and core samples taken from an actual emplacement configuration at the Nevada Test Site. Past calculational studies indicate that successful containment may depend upon the development of a strong tangential-stress field (or ''containment cage'') surrounding the cavity at late times. A series of conditions that must be met to insure formation of this cage are presented. Calculational results, based on one- and two-dimensional finite-difference codes of continuum mechanics, describe how each condition has been fulfilled and illustrate the dynamic sequence of events important to the formation of the containment cage. They also indicate, at least for the geological site chosen, that two nuclear explosives do not combine to threaten containment

  3. Natural gas production from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    1965-01-01

    A remote location in Rio Arriba County, NW. New Mexico, is being considered as the site for an experiment in the use of a nuclear explosive to increase production from a natural gas field. A feasibility study has been conducted by the El Paso Natural Gas Co., the U.S. Atomic Energy commission, and the U.S. Bureau of Mines. As presently conceived, a nuclear explosive would be set in an emplacement hole and detonated. The explosion would create a cylinder or ''chimney'' of collapsed rock, and a network of fractures extending beyond the chimney. The fractures are the key effect. These would consist of new fractures, enlargement of existing ones, and movement along planes where strata overlap. In addition, there are a number of intangible but important benefits that could accrue from the stimulating effect. Among these are the great increase in recoverable reserves and the deliverability of large volumes of gas during the periods of high demand. It is believed that this type of well stimulation may increase the total gas production of these low permeability natural gas fields by about 7 times the amounts now attainable.

  4. Underground nuclear explosions at Astrakhan, USSR

    International Nuclear Information System (INIS)

    Borg, I.Y.

    1982-01-01

    The three underground nuclear explosions recorded in 1980 and 1981 by Hagfors Observatory in Sweden are in the vicinity of Astrakhan on the Caspian Sea. They are believed to be associated with the development of a gas condensate field discovered in 1973. The gas producing horizons are in limestones at 4000 m depth. They are overlain by bedded, Kungarian salts. Salt domes are recognized in the area. Plans to develop the field are contained in the 11th Five Year Plan (1981-82). The USSR has solicited bids from western contractors to build gas separation and gas processing plant with an annual capacity of 6 billion m 3 . Ultimate expansion plans call for three plants with the total capacity of 18 billion m 3 . By analogy with similar peaceful nuclear explosions described in 1975 by the Soviets at another gas condensate field, the underground cavities are probably designed for storage of unstable, sour condensate after initial separation from the gaseous phases in the field. Assuming that the medium surrounding the explosions is salt, the volume of each cavity is on the order of 50,000 m 3

  5. Cavities produced by underground nuclear explosions

    International Nuclear Information System (INIS)

    Butkovich, T.R.

    1976-01-01

    This investigation studied the displacement of rock that formerly occupied cavities produced by underground nuclear explosions. There are three possible explanations for this displacement: the volume could be displaced to the free surface; it could occupy previously air-filled pores removed from the surrounding rock through compaction; or it could be accounted for by persisting compressive stresses induced by the outgoing shock wave. The analysis shows it unlikely that stored residual elastic stresses account for large fractions of cavity volumes. There is limited experimental evidence that free surface displacement accounts for a significant portion of this volume. Whenever the explosion mediums contain air-filled pores, the compaction of these pores most likely accounts for all the volume. Calculations show that 4 percent air-filled porosity can account for all the cavity volume within about 4 cavity radii and that even 1 percent can account for a significant fraction of the volume

  6. Surface effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  7. Delayed signatures of underground nuclear explosions

    Science.gov (United States)

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-03-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  8. Recognition structure of semipalatinsk residents caused by nuclear explosion tests

    International Nuclear Information System (INIS)

    Hirabayashi, Kyoko; Satoh, Kenichi; Ohtaki, Megu; Muldagaliyev, T.; Apsalikov, K.; Kawano, Noriyuki

    2012-01-01

    Authors' team of Hiroshima University and Scientific Research Institute of Radiation Medicine and Ecology (Kazakhstan) has been investigating the health state, exposure route, contents and mental effect of nuclear explosion tests of Semipalatinsk residents through their witness and questionnaire since 2002, to elucidate the humanistic damage of nuclear tests. Reported here is the recognition structure in the title statistically analyzed with use of frequently spoken words in the witness. The audit was performed in 2002-2007 to 994 residents who had experienced ground explosion tests during the period from 1949 to 1962 and were living in 26 villages near the old test site. Asked questions concerning nuclear tests involved such items as still unforgettable matters, dreadful events, regretting things, thought about the test, requests; and matters about themselves, their family, close friends and anything. The frequency of the test site-related words heard in the interview were analyzed with hierarchical clustering and multi-dimensional scaling with a statistic software R for computation and MeCab for morphological analysis. Residents' recognition was found to be of two structures of memory at explosion tests and anger/dissatisfaction/anxiety to the present state. The former contained the frequent words of mushroom cloud, flash, blast, ground tremble and outdoor evacuation, and the latter, mostly anxiety about health of themselves and family. Thus residents have had to be confronted with uneasiness of their health even 20 years after the closure of the test site. (T.T.)

  9. Explosive plugging of nuclear heat exchangers

    International Nuclear Information System (INIS)

    Crossland, B.; Bahrani, A.S.; Townsley, W.J.

    1977-01-01

    Explosive welding is a well established process for cladding one metal on another or for welding tubes to tubeplates or lap welding, etc. Recently, the process has been adapted to plugging of heat exchangers in conventional and nuclear power plant, where it has already been accepted especially in situations where the access is difficult and remote from the site of plugging. The paper describes the explosive plugging techniques developed in the Department of Mechanical and Industrial Engineering of The Queen's University of Belfast for the reheater and superheater of the PFR, and for the reheater of the AGR. For the PFR a point charge system has been used which causes a spherical expansion of the plug, which gives two zones of welding. Initially for the much larger plug required for the AGR it was proposed to use a parallel stand-off welding set-up, but it proved difficult or impossible to avoid a crevice. Consequently, a rim charge set-up has been developed which gives a circular ring expansion of the plug with two zones of welding. Besides the problem of the design of the plug and explosive charge geometry it has also been necessary to consider the distortion of holes adjoining the hole in which a plug is welded. Bunging of adjoining holes in order to reduce the distortion has also been investigated

  10. Nuclear Explosion Monitoring History and Research and Development

    Science.gov (United States)

    Hawkins, W. L.; Zucca, J. J.

    2008-12-01

    Within a year after the nuclear detonations over Hiroshima and Nagasaki the Baruch Plan was presented to the newly formed United Nations Atomic Energy Commission (June 14, 1946) to establish nuclear disarmament and international control over all nuclear activities. These controls would allow only the peaceful use of atomic energy. The plan was rejected through a Security Council veto primarily because of the resistance to unlimited inspections. Since that time there have been many multilateral, and bilateral agreements, and unilateral declarations to limit or eliminate nuclear detonations. Almost all of theses agreements (i.e. treaties) call for some type of monitoring. We will review a timeline showing the history of nuclear testing and the more important treaties. We will also describe testing operations, containment, phenomenology, and observations. The Comprehensive Nuclear Test Ban Treaty (CTBT) which has been signed by 179 countries (ratified by 144) established the International Monitoring System global verification regime which employs seismic, infrasound, hydroacoustic and radionuclide monitoring techniques. The CTBT also includes on-site inspection to clarify whether a nuclear explosion has been carried out in violation of the Treaty. The US Department of Energy (DOE) through its National Nuclear Security Agency's Ground-Based Nuclear Explosion Monitoring R&D Program supports research by US National Laboratories, and universities and industry internationally to detect, locate, and identify nuclear detonations. This research program builds on the broad base of monitoring expertise developed over several decades. Annually the DOE and the US Department of Defense jointly solicit monitoring research proposals. Areas of research include: seismic regional characterization and wave propagation, seismic event detection and location, seismic identification and source characterization, hydroacoustic monitoring, radionuclide monitoring, infrasound monitoring, and

  11. Nuclear explosives in water-resource management

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Arthur M [United States Department of the Interior, Geological Survey (United States)

    1970-05-15

    Nuclear explosives afford diverse tools for managing our water resources. These include principally: the rubble column of a fully contained underground detonation, the similar rubble column of a retarc, the crater by subsidence, the throwout crater of maximum volume (the latter either singly or in-line), and the ejecta of a valley-slope crater. By these tools, one can create space in which to store water, either underground or on the land surface - in the latter instance, to a considerable degree independently of the topography. Underground, one can accelerate movement of water by breaching a confining bed, a partition of a compartmented aquifer, or some other obstruction in the natural 'plumbing system'. Finally, on the land surface, one can modify the natural pattern of water flow, by canals excavated with in-line detonation. In all these applications, the potential advantage of a nuclear explosive rests chiefly in undertakings of large scale, under a consequent small cost per unit of mechanical work accomplished.

  12. Modelling of nuclear explosions in hard rock sites

    International Nuclear Information System (INIS)

    Brunish, W.M.; App, F.N.

    1993-01-01

    This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock

  13. Earthquake and nuclear explosion location using the global seismic network

    International Nuclear Information System (INIS)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30 0 distances, the largest deviation being around 10 seconds at 13-18 0 . At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations

  14. Earthquake and nuclear explosion location using the global seismic network

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30/sup 0/ distances, the largest deviation being around 10 seconds at 13-18/sup 0/. At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations.

  15. Detecting and identifying underground nuclear explosions

    International Nuclear Information System (INIS)

    Spiliopoulos, S.

    1996-01-01

    The monitoring of underground nuclear explosions involves, first determining that the signals have originated from a test site and if so, then a pattern recognition analysis is undertaken to determine whether the signals originate from an explosion rather than an earthquake. In this we are aided by seismic observations of previous explosions from each test site. To determine the origin of a signal use is first made of the two seismic arrays in central Australia. Each of these arrays consists of 20 spatially separated sensors (seismometers), and each of which can provide a preliminary estimate of the location of the source. In practice this is done automatically by inserting delays into the output of each of the sensors to compensate for a seismic signal taking a finite time to cross the array, and then adding the output of each sensor to form what are called 'array beams'. When the correct delays for a particular azimuth and wavespeed (corresponding to a particular source location) have been inserted, the signals recorded by each sensor will be in phase and the energy in the array beam will be a maximum. Because the seismic background noise at each sensor is not correlated, this beam forming also improves the signal-to-noise ratio. In this sense a seismic array is equivalent to other arrays of sensors - e.g. a radar antenna. Having determined that a signal originates from somewhere near a test site a more precise location can be obtained from the times that the signal arrives at different seismic stations

  16. Detecting and identifying underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Spiliopoulos, S. [Australian Geological Survey Organisation, Anzac Park, Canberra, ACT (Australia). Department of Primary Industry

    1996-12-31

    The monitoring of underground nuclear explosions involves, first determining that the signals have originated from a test site and if so, then a pattern recognition analysis is undertaken to determine whether the signals originate from an explosion rather than an earthquake. In this we are aided by seismic observations of previous explosions from each test site. To determine the origin of a signal use is first made of the two seismic arrays in central Australia. Each of these arrays consists of 20 spatially separated sensors (seismometers), and each of which can provide a preliminary estimate of the location of the source. In practice this is done automatically by inserting delays into the output of each of the sensors to compensate for a seismic signal taking a finite time to cross the array, and then adding the output of each sensor to form what are called `array beams`. When the correct delays for a particular azimuth and wavespeed (corresponding to a particular source location) have been inserted, the signals recorded by each sensor will be in phase and the energy in the array beam will be a maximum. Because the seismic background noise at each sensor is not correlated, this beam forming also improves the signal-to-noise ratio. In this sense a seismic array is equivalent to other arrays of sensors - e.g. a radar antenna. Having determined that a signal originates from somewhere near a test site a more precise location can be obtained from the times that the signal arrives at different seismic stations

  17. General phenomenology of underground nuclear explosions; Phenomenologie generale des explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S; Supiot, F [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [French] On donne une description essentiellement qualitative des phenomenes lies aux explosions nucleaires souterraines (explosion d'un seul engin, d'engins en ligne et explosions simultanees). Dans un premier chapitre sont decrits les phenomenes communs aux explosions contenues et aux explosions formant un cratere (formation et propagation d'une onde de choc provoquant la vaporisation, la fusion et la fracturation du milieu). Le deuxieme chapitre decrit les phenomenes lies aux tirs contenus (formation d'une cavite et d'une cheminee). Le troisieme chapitre est consacre a la phenomenologie des tirs formant un cratere et decrit notamment le mecanisme de formation et les differents types de crateres en fonction de la profondeur d'explosion et de la nature du terrain. Les phenomenes aeriens lies aux explosions formant un cratere: onde de pression aerienne et focalisation a grande distance, nuages de poussieres, sont egalement abordes. (auteurs)

  18. Radiological hazards from nuclear explosions and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Cockcroft, J D

    1955-01-01

    The level of radioactive contamination in the world produced by all the nuclear bomb explosions and peaceful atomic energy activities is at present so low that it should not cause any anxiety. The radiation level which gives rise to serious harmful effects is probably at least a thousand times the present level of contamination. We do not at present know this figure with any accuracy, and long-term genetic studies are required to determine this.

  19. U.S. nuclear exotica: Peaceful use of nuclear explosives

    International Nuclear Information System (INIS)

    Sylves, R.T.

    1986-01-01

    Project Plowshare, the U.S. Atomic Energy Commission (AEC) program to investigate possible non-military uses for nuclear explosives, was an offshoot of President Eisenhower's ''Atoms for Peace'' proposal. Plowshare was, in a sense, two separate programs. One was for nuclear excavation projects applied to grand-scale civil engineering ventures. Much of what had sustained nuclear excavation Plowshare in the 1960s was the hope and belief that this new instrument of civil engineering would prove its value in construction of a second great Pan-American canal. The other was for contained underground blasting to serve parties interested in mining, underground natural gas storage, and long-term disposal of toxic and radioactive materials. Both programs were intertwined with military and national security-related experiments. Given the heavy security which justifiably surrounded AEC use of thermonuclear devices, and fears of nuclear terrorism as well as nuclear proliferation concerns, even Plowshare's most ardent supporters never expected the project to hand private industry a thermonuclear explosive device

  20. A row-charge nuclear cratering explosion in alluvial rocks

    International Nuclear Information System (INIS)

    Kireev, V.V.; Kedrovskij, O.L.; Valentinov, Yu.A.; Myasnikov, K.V.; Nikiforov, G.A.; Prozorov, L.B.; Potapov, V.K.

    1975-01-01

    A brief description is given of the first row-charge nuclear cratering explosion in alluvial rocks carried out on the route of the Pechora-Kolva canal. The authors explain the purposes of the explosion, describe the geological conditions, indicate the emplacement parameters and yields of the charges, present data on the dynamics of development of the explosion and report on its seismic effects. The parameters of the resulting trench cut and the characteristics of the rock ejecta are also given. The possibility of using nuclear explosions for hydrotechnological projects requiring large excavations in a thick stratum of weak water-bearing rocks is considered

  1. SCOPE-RADTEST: Radioactivity from nuclear test explosions

    International Nuclear Information System (INIS)

    Shapiro, C.S.; Tsaturov, Y.

    1993-10-01

    The SCOPE-RADTEST program consists of an international collaborative study involving Russia, the USA, China, and Kazakhstan. It will focus on the releases of radioactivity that resulted from nuclear test explosions that have taken place at various test sites around the world for peaceful and military purposes. RADTEST will focus on these principal tasks: (1) To inventory data on measurements of radionuclide deposition densities, and identify gaps in these data. (2) To compare old and develop new models of radioactive transport to better understand the deposition densities of radionuclides both on and near the nuclear test sites, including areas downwind where potentially significant episodes of fallout have occurred (such as the Altaj Region of Russia). (3) To study the migration of the radionuclides through the biosphere, including all pathways to humans. This will include the study of the effects on other biota that have impacts on humans. The main focus will be to characterize the nature and magnitude of the dose to humans. This will include dose reconstructions from past events, and also an increased capability for dose prediction from possible future accidental or deliberate explosions. (4)To analyze the data on the effects of these doses (including low doses) on human health. The test sites to be studied would include the Nevada Test Site (USA), South Pacific Islands (USA), Novaja Zemla (Russia), Semipalatinsk (Kazakhstan) and Luc Bu Pu (Lop Nor) (China). Tests at these sites include most of the total of nuclear explosions that have been conducted. Other sites, (including the sites of the U.K. and France), as appropriate, may also be included where tests were conducted for peaceful or military purposes

  2. Cavity pressure history of contained nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, C E [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Knowledge of pressure in cavities created by contained nuclear explosions is useful for estimating the possibility of venting radioactive debris to the atmosphere. Measurements of cavity pressure, or temperature, would be helpful in evaluating the correctness of present code predictions of underground explosions. In instrumenting and interpreting such measurements it is necessary to have good theoretical estimates of cavity pressures. In this paper cavity pressure is estimated at the time when cavity growth is complete. Its subsequent decrease due to heat loss from the cavity to the surrounding media is also predicted. The starting pressure (the pressure at the end of cavity growth) is obtained by adiabatic expansion to the final cavity size of the vaporized rock gas sphere created by the explosion. Estimates of cavity size can be obtained by stress propagation computer codes, such as SOC and TENSOR. However, such estimates require considerable time and effort. In this paper, cavity size is estimated using a scheme involving simple hand calculations. The prediction is complicated by uncertainties in the knowledge of silica water system chemistry and a lack of information concerning possible blowoff of wall material during cavity growth. If wall material blows off, it can significantly change the water content in the cavity, compared to the water content in the ambient media. After cavity growth is complete, the pressure will change because of heat loss to the surrounding media. Heat transfer by convection, radiation and conduction is considered, and its effect on the pressure is calculated. Analysis of cavity heat transfer is made difficult by the complex nature of processes which occur at the wall where melting, vaporization and condensation of the gaseous rock can all occur. Furthermore, the melted wall material could be removed by flowing or dripping to the cavity floor. It could also be removed by expansion of the steam contained in the melt (blowoff) and by

  3. Underground Nuclear Explosions and Release of Radioactive Noble Gases

    Science.gov (United States)

    Dubasov, Yuri V.

    2010-05-01

    Over a period in 1961-1990 496 underground nuclear tests and explosions of different purpose and in different rocks were conducted in the Soviet Union at Semipalatinsk and anovaya Zemlya Test Sites. A total of 340 underground nuclear tests were conducted at the Semipalatinsk Test Site. One hundred seventy-nine explosions (52.6%) among them were classified as these of complete containment, 145 explosions (42.6%) as explosions with weak release of radioactive noble gases (RNG), 12 explosions (3.5%) as explosions with nonstandard radiation situation, and four excavation explosions with ground ejection (1.1%). Thirty-nine nuclear tests had been conducted at the Novaya Zemlya Test Site; six of them - in shafts. In 14 tests (36%) there were no RNG release. Twenty-three tests have been accompanied by RNG release into the atmosphere without sedimental contamination. Nonstandard radiation situation occurred in two tests. In incomplete containment explosions both early-time RNG release (up to ~1 h) and late-time release from 1 to 28 h after the explosion were observed. Sometimes gas release took place for several days, and it occurred either through tunnel portal or epicentral zone, depending on atmospheric air temperature.

  4. The effects of fallout from nuclear explosions

    International Nuclear Information System (INIS)

    Cook, J.

    1987-01-01

    Early fallout from surface or near surface nuclear explosions leads to radiation doses at levels sufficient to cause deaths from the acute effects of radiation over large areas, particularly if no means of avoiding exposure are available. For example, early fallout from a 10 megatonne weapon could lead to doses in excess of 4 or 5 grays (at which half of those exposed die) over an area of about 25,000 square kilometres, in a deposit perhaps 400 km long and 80 km wide. The survivors of early fallout are likely to experience a significant increase in thyroid disease (for children at the time of exposure), in leukaemia and a probably detectable increase in cancer. It is unlikely that there would be any significant increase in the incidence of genetic disability and ill-health in the children of the survivors. Delayed fallout would be distributed fairly uniformly around the earth. The additional cancer and genetic risks from delayed fallout are small, the cancer risk being less than 1 per cent of natural incidence and the genetic risk being undetectable

  5. Subsidence caused by an underground nuclear explosion

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, W W [Environmental Research Corp., Alexandria, VA (United States)

    1970-05-15

    An underground nuclear detonation creates a cavity, which may be followed by the formation of a rubble chimney and possibly by a surface subsidence crater. A knowledge of the mechanisms of surface and subsurface subsidence is valuable not only because of the potential engineering uses of the chimneys and craters that may form, but also for the prevention of surface damage. Some of the parameters that are of interest in the subsidence phenomenon are the height and volume of the chimney, the porosity of the chimney, the crater size (depth and radius) and shape, and the time required after detonation for formation of the chimney or crater. The influence of the properties of the subsidence medium on the geometry of the subsidence crater must be considered. The conditions under which partial or complete subsidence is prevented must also be studied. The applicability of the relations that have been developed for the flow of bulk solids for relatively small masses and low pressures to the subsidence problem associated with nuclear explosions is examined. Rational modifications are made to describe the subsidence problem. Sensitivity of the subsidence parameters to material properties and the prevailing geometry is shown. Comparison with observed results at the Nevada Test Site is made and the variations encountered are found to be within reasonable limits. The chimney size and subsidence crater dimensions are found to be a function of the bulking characteristics of the medium, the strength parameters, the dimensions of the subsurface cavity, and the depth of the cavity. The great influence of the strength parameters on the collapse times is shown. For a given medium, the prevention of subsidence is dependent on the cavity size. (author)

  6. The imitator of nuclear explosion signals for field operations

    International Nuclear Information System (INIS)

    Wang Lusong; Xie Yujun; Tan Youjin; Wang Liping

    1999-01-01

    According to the present system of the nuclear explosion monitoring equipment (NEME), the imitator of nuclear explosion signals for field operation is urgently needed by NEME, which has been fitted out to the army and some new types that will be finalized soon. The authors have made the imitator for the equipment, and as the cause of this research, it can be used not only in training and maintenance for army but also in research and production for scientific research institutions and industrial enterprise. Function of this imitator is to imitate the NEMP, the light and shock wave signals of nuclear explosion in proper order. The time difference of the process accords with the true location of nuclear explosion. This research is of great military importance

  7. Gas pressure from a nuclear explosion in oil shale

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1975-01-01

    The quantity of gas and the gas pressure resulting from a nuclear explosion in oil shale is estimated. These estimates are based on the thermal history of the rock during and after the explosion and the amount of gas that oil shale releases when heated. It is estimated that for oil shale containing less than a few percent of kerogen the gas pressure will be lower than the hydrostatic pressure. A field program to determine the effects of nuclear explosions in rocks that simulate the unique features of oil shale is recommended. (U.S.)

  8. Potentially lethal effects of astrophysical high energy explosive events

    International Nuclear Information System (INIS)

    Zarauza, Dario; Martin, Osmel; Rolando Cardenas

    2007-01-01

    In this work we compare the biological extinction risks posed by different types of high energy explosive events, if they occur at distances close enough to inhabited planets. These events are several kinds of supernovae and gamma ray bursts. We mainly consider the ozone depletion, leaving other effects, as photon retransmission and muon showers, for future work. In order to estimate the damage on ozonosphere, we use a simple analytical model for ozone depletion. We also mention some hints to look for the signatures of these events on Earth biogeochemical record, and evaluate the possibility of applying these results to the astrobiologically interesting sample of stars gathered by Porto de Mello, del Peloso and Ghezzi. (Author)

  9. Modelling of nuclear explosions in hard rock sites

    International Nuclear Information System (INIS)

    Brunish, W.M.; App, F.N.

    1993-01-01

    This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock. In order to learn more about the response of hard rock to underground nuclear explosions, we have attempted to model the PILEDRIVER event. PILEDRIVER was fired on June 2, 1966 in the granite stock of Area 15 at the Nevada Test Site. The working point was at a depth of 462.7 m and the yield was determined to be 61 kt. Numerous surface, sub-surface and free-field measurements were made and analyzed by SRI. An attempt was made to determine the contribution of spall to the teleseismic signal, but proved unsuccessful because most of the data from below-shot-level gauges was lost. Nonetheless, there is quite a bit of good quality data from a variety of locations. We have been able to obtain relatively good agreement with the experimental PILEDRIVER waveforms. In order to do so, we had to model the granodiorite as being considerably weaker than ''good quality'' granite, and it had to undergo considerable weakening due to shock damage as well. In addition, the near-surface layers had to be modeled as being weak and compressible and as have a much lower sound speed than the material at depth. The is consistent with a fractured and jointed material at depth, and a weathered material near the surface

  10. Industry potential of large scale uses for peaceful nuclear explosives

    International Nuclear Information System (INIS)

    Russell, P.L.

    1969-01-01

    The industrial potential for peaceful uses of nuclear explosions entering a critical stage of development. Should Project Gasbuggy, an experiment to determine to what extent an underground nuclear explosion can stimulate the production of natural gas from low-permeability formations, prove a technical or economic success, a great step forward will have been made. Should other experiments now being considered in natural gas, oil shale, copper, coal, water resources, underground storage, and others, also demonstrate technical or economic advantage, it is conceivable to expect peaceful nuclear explosion to grow from our current rate of one or two experimental shots per year to hundreds of production explosions per year. This growth rate could be severely restricted or reduced to zero if public safety and environmental control cannot be exercised. (author)

  11. Industry potential of large scale uses for peaceful nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Russell, P L [Bureau of Mines, Denver, CO (United States)

    1969-07-01

    The industrial potential for peaceful uses of nuclear explosions entering a critical stage of development. Should Project Gasbuggy, an experiment to determine to what extent an underground nuclear explosion can stimulate the production of natural gas from low-permeability formations, prove a technical or economic success, a great step forward will have been made. Should other experiments now being considered in natural gas, oil shale, copper, coal, water resources, underground storage, and others, also demonstrate technical or economic advantage, it is conceivable to expect peaceful nuclear explosion to grow from our current rate of one or two experimental shots per year to hundreds of production explosions per year. This growth rate could be severely restricted or reduced to zero if public safety and environmental control cannot be exercised. (author)

  12. High explosive characterization for the dice throw event

    Energy Technology Data Exchange (ETDEWEB)

    Helm, F.; Finger, M.; Hayes, B.; Lee, E.; Cheung, H.; Walton, J.

    1976-06-16

    An equation of state for detonation products was developed to describe the detonation of large charges of ammonium nitrate/fuel oil (ANFO). The equation of state will be used to predict air-blast and ground-motion effects in the Dice Throw Event. The explosive performance of ANFO is highly dependent on charge size. The equation developed from this work is applicable to heavily confined detonations 101.6 mm in diameter or larger. The equation of state is based on results from experiments in cylinders and hemispheres, and a large field test. The report contains a detailed discussion of the diagnostic and initiation techniques used in these experiments.

  13. Performance of electrical contact pins near a nuclear explosion

    International Nuclear Information System (INIS)

    Ragan, C.E.; Silbert, M.G.; Ellis, A.N.; Robinson, E.E.; Daddario, M.J.

    1977-09-01

    The pressures attainable in equation-of-state studies using nuclear-explosion-driven shock waves greatly exceed those that can be reached in normal laboratory conditions. However, the diagnostic instrumentation must survive in the high-radiation environment present near such an explosion. Therefore, a set of experiments were fielded on the Redmud event to test the feasibility of using electrical contact pins in this environment. In these experiments a 60-cm-high shield of boron-lead was placed on the rack lid approximately 1 m from the device. A sample consisting of slabs of molybdenum and 238 U was placed on top of the shield, and twelve electrical contact pins were embedded to five different depths in the materials. Five different multiplexing-charging circuits were used for the pins, and a piezoelectric quartz gauge was placed on top of the uranium to obtain an estimate of the fission-energy deposition. All of the charged pins survived the radiation and produced signals indicating shock arrival. The uncertainty in determining the pin-closure time was approximately 3 ns. The signal from the quartz gauge corresponded to a pressure that was consistent with the calculated neutron fluence

  14. Coda Spectral Peaking for Nevada Nuclear Test Site Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, K R; Mayeda, K; Walter, W R

    2007-09-10

    We have applied the regional S-wave coda calibration technique of Mayeda et al. (2003) to earthquake data in and around the Nevada Test Site (NTS) using 4 regional broadband stations from the LLNL seismic network. We applied the same path and site corrections to tamped nuclear explosion data and averaged the source spectra over the four stations. Narrowband coda amplitudes from the spectra were then regressed against inferred yield based on the regional m{sub b}(Pn) magnitude of Denny et al. (1987), along with the yield formulation of Vergino and Mensing (1990). We find the following: (1) The coda-derived spectra show a peak which is dependent upon emplacement depth, not event size; (2) Source size estimates are stable for the coda and show a dependence upon the near-source strength and gas porosity; (3) For explosions with the same m{sub b}(Pn) or inferred yield, those in weaker material have lower coda amplitudes at 1-3 Hz.

  15. Testing Event Discrimination over Broad Regions using the Historical Borovoye Observatory Explosion Dataset

    Science.gov (United States)

    Pasyanos, Michael E.; Ford, Sean R.; Walter, William R.

    2014-03-01

    We test the performance of high-frequency regional P/S discriminants to differentiate between earthquakes and explosions at test sites and over broad regions using a historical dataset of explosions recorded at the Borovoye Observatory in Kazakhstan. We compare these explosions to modern recordings of earthquakes at the same location. We then evaluate the separation of the two types of events using the raw measurements and those where the amplitudes are corrected for 1-D and 2-D attenuation structure. We find that high-frequency P/S amplitudes can reliably identify earthquakes and explosions, and that the discriminant is applicable over broad regions as long as propagation effects are properly accounted for. Lateral attenuation corrections provide the largest improvement in the 2-4 Hz band, the use of which may successfully enable the identification of smaller, distant events that have lower signal-to-noise at higher frequencies. We also find variations in P/S ratios among the three main nuclear testing locations within the Semipalatinsk Test Site which, due to their nearly identical paths to BRVK, must be a function of differing geology and emplacement conditions.

  16. Effects of Containment on Radionuclide Releases from Underground Nuclear Explosions

    Science.gov (United States)

    Carrigan, C. R.; Sun, Y.

    2016-12-01

    Confirming the occurrence of an underground nuclear explosion can require capturing short-lived noble gas radioisotopes produced by the explosion, sometimes referred to as the "smoking gun" for nuclear explosion detection. It is well known that the radioisotopic distribution resulting from the detonation evolves with time in the explosion cavity. In effect, the explosion cavity or chimney behaves as a chemical reactor. As long as the parent and daughter radionuclides remain in a closed and well-mixed cavity, parameters, such as radioxenon isotopic ratios, can be calculated analytically from a decay-chain network model. When gases from the cavity migrate into the containment regime, consideration of a "leaky reactor" model is more appropriate. We consider several implications of such a leaky reactor model relevant to interpretations of gas samples from the subsurface during an on-site inspection that could potentially be carried out under the Comprehensive Nuclear Test Ban Treaty. Additionally, we have attempted to validate our leaky reactor model against atmospheric observations of radioactive xenon isotopes detected by radionuclide monitoring stations in Japan and Russia following the February 2013 DPRK underground nuclear explosion (Carrigan et al., 2016). While both model uncertainty and observational error are significant, our model of isotopic evolution appears to be in broad agreement with radionuclide observations, and for the first time links atmospheric measurements of radioxenon isotopic ratios to estimates of seismic yield. Carrigan et al., Scientific Reports 6, Article number: 23032 (2016) doi:10.1038/srep23032

  17. Chapter 2. Peculiarities of radioactive particle formation and isotope fractionation resulted from underground nuclear explosions

    International Nuclear Information System (INIS)

    1996-01-01

    Radioactive particles, forming terrain fallouts from underground nuclear explosion differ sufficiently from radioactive particles, produced by atmospheric nuclear explosions. Patterns of underground nuclear explosion development, release of radioactivity to the atmosphere, formation of a cloud and base surge, peculiarities of formed radioactive particles, data on isotope fractionation in radioactive particles are presented. Scheme of particle activation, resulted from underground explosions is given

  18. Underground nuclear explosion effects in granite rock fracturing

    International Nuclear Information System (INIS)

    Derlich, S.

    1970-01-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  19. Underground nuclear explosion effects in granite rock fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S [Commissariat a l' Energie Atomique, Centre d' Etude de Bruyeres-le-Chatel (France)

    1970-05-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  20. Benefits of explosive cutting for nuclear-facility applications

    International Nuclear Information System (INIS)

    Hazelton, R.F.; Lundgren, R.A.; Allen, R.P.

    1981-06-01

    The study discussed in this report was a cost/benefit analysis to determine: (1) whether explosive cutting is cost effective in comparison with alternative metal sectioning methods and (2) whether explosive cutting would reduce radiation exposure or provide other benefits. Two separate approaches were pursued. The first was to qualitatively assess cutting methods and factors involved in typical sectioning cases and then compare the results for the cutting methods. The second was to prepare estimates of work schedules and potential radiation exposures for candidate sectioning methods for two hypothetical, but typical, sectioning tasks. The analysis shows that explosive cutting would be cost effective and would also reduce radiation exposure when used for typical nuclear facility sectioning tasks. These results indicate that explosive cutting should be one of the principal cutting methods considered whenever steel or similar metal structures or equipment in a nuclear facility are to be sectioned for repair or decommissioning. 13 figures, 7 tables

  1. Radioactive rare gases emission at underground nuclear explosions

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.

    2016-01-01

    The examples of radioactive rare gases emission at underground nuclear explosions conducted in the USSR on the Novaya Zemlya and Semipalatinsk test sites are considered. It is pointed out that in the case of evasive explosion in vertical wells without apparent radioactive gases emission the samples of subsurface gas must contain the traces of radioactive rare gases. Under the inspection of evasive explosion in horizontal workings of rock massif, one should guided by the analysis of atmospheric air samples in the inspected area [ru

  2. Underground nuclear explosions. Study of the cavity radius

    International Nuclear Information System (INIS)

    Michaud, L.

    1968-11-01

    An underground nuclear explosion creates a cavity due to the expansion of the surrounding medium vaporized by the shot. The cavity radius is related to the energy of explosion and to the overburden pressure of the medium. The introduction of new elements such as the environment of the device (in a deep hole or in a tunnel) and the cohesion of the medium leads to a relationship which determines this radius. The known French and American underground explosions performed in various media, energy and overburden conditions, satisfy this relationship with a good precision. (author) [fr

  3. Investigations of gas explosions in a nuclear coal gasification plant

    International Nuclear Information System (INIS)

    Schulte, K.

    1981-01-01

    The safety research program on gas cloud explosions is performed in the context of the German project of the Prototype Plant Nuclear Process Heat. By the work within this project, it is tried to extend the use of nuclear energy to non-electric application. The programme comprises efforts in several scientific disciplines. The final goal is to provide a representative pressure-time-function or a set of such functions. These functions should be the basis for safe design and construction of the nuclear reactor system of a coal gasification plant. No result yet achieved contradicts the assumption that released process gas is only able to deflagrate. It should be possible to demonstrate that, if unfavourable configurations are avoided, a design pressure of 300 mbar is sufficient to withstand an explosion of process gas; this pressure should never be exceeded by process gas explosions irrespective of gas mass released and distance to release point, except possibly in relatively small areas

  4. Yield estimation for nuclear explosions of semipalatinsk using rayleigh waves recorded at SRO, Mashhad

    International Nuclear Information System (INIS)

    Naghizadeh, M.; Javaherian, A.; Sadidkhooy, A.

    2005-01-01

    Surface wave amplitudes from explosion sources show less variation for a given event than body wave amplitudes, so it is natural to expect that yield estimation derived from surface waves will be more accurate than yield estimation derived from body waves. However yield estimation from surface waves is complicated by the presence of tectonic strain release, which acts like one or more earthquake sources superimposed on the explosion. Explosions on an island or near a mountain slope can exhibit anomalous surface waves similar to those caused by tectonic strain release. One of the methods in estimating the yield of nuclear explosions is to determine a relationship between the magnitude and the yield of an explosion. The kind of magnitude employed has an important role in this regard. In this paper, vertical component of long period seismograms at SRO, Mashhad from explosions occurred in semipalatinsk test site, semipalatinsk test site east of Kazakhstan) are considered. First, by using the relationships of IASPEI and Rezapour and Pearce (1998), we determined surface wave magnitude (MS) which is defined as the logarithm of the amplitude plus a distance correction. Then we derived a relation for M S versus yield for a data set which includes a 15 long period seismograms recorded at SRO Mashhad station from semipalatinsk test site nuclear explosions. Furthermore, by digitizing the vertical component of seismograms and transforming them to the frequency domain, the mean amplitude of records at frequency ranges of 0.04-0.06 Hz were calculated. Then, surface wave magnitudes in the frequency domain (M Sf ) and their corresponding yield-magnitude relationship were obtained. By comparing correlation coefficients of these two yield-magnitude relationships, following relationship M S = 1.079 log(Y) + 1.714, was chosen for estimating the yield of semipalatinsk test site nuclear explosion from seismograms of SRO

  5. The nonproliferation treaty and peaceful uses of nuclear explosives

    International Nuclear Information System (INIS)

    Ehrlich, Thomas

    1970-01-01

    In the past, nuclear arms control and peaceful uses of nuclear explosives were seen by many proponents of each as competing - if not opposing - interests. At one extreme, some viewed peaceful uses as an annoying irritant on the way to general and complete disarmament. At the other extreme, some considered arms-control arrangements - particularly those limiting nuclear testing - as bothersome barriers to realizing the full benefits of peaceful nuclear explosions. Most people found themselves somewhere between those extremes. But most also felt a continuing tension between essentially opposing forces. This polarity has been significantly altered by the 1968 Treaty on the Nonproliferation of Nuclear Weapons. It is believed that the future use of nuclear explosives for peaceful purposes will depend in large measure on the international arrangements worked out under the treaty. I also believe that the success of the treaty in checking proliferation of nuclear weapons is contingent, in substantial part, on those peaceful-uses arrangements. In the areas covered by the treaty, therefore, one could view an active development of peaceful uses for nuclear explosives as complementing rather than conflicting with nuclear arms control. The treaty is primarily a security agreement. It is aimed at reducing the risk of nuclear war by establishing permanency in the current separation of nuclear-weapon and non-nuclear-weapon nations. By its terms, each nuclear-weapon state agrees not to transfer nuclear weapons or other nuclear explosive devices to any recipient, and each non-nuclear-weapon state agrees not to receive such weapons or devices. The non-nuclear- weapon parties are also obligated to negotiate safeguards agreements with the International Atomic Energy Agency covering peaceful-uses activities. And all signatories agree not to transfer fissionable material to those parties unless they are subject to such agreements. These provisions are all part of a scheme to limit the

  6. The nonproliferation treaty and peaceful uses of nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlich, Thomas [School of Law, Stanford University, CA (United States)

    1970-05-01

    In the past, nuclear arms control and peaceful uses of nuclear explosives were seen by many proponents of each as competing - if not opposing - interests. At one extreme, some viewed peaceful uses as an annoying irritant on the way to general and complete disarmament. At the other extreme, some considered arms-control arrangements - particularly those limiting nuclear testing - as bothersome barriers to realizing the full benefits of peaceful nuclear explosions. Most people found themselves somewhere between those extremes. But most also felt a continuing tension between essentially opposing forces. This polarity has been significantly altered by the 1968 Treaty on the Nonproliferation of Nuclear Weapons. It is believed that the future use of nuclear explosives for peaceful purposes will depend in large measure on the international arrangements worked out under the treaty. I also believe that the success of the treaty in checking proliferation of nuclear weapons is contingent, in substantial part, on those peaceful-uses arrangements. In the areas covered by the treaty, therefore, one could view an active development of peaceful uses for nuclear explosives as complementing rather than conflicting with nuclear arms control. The treaty is primarily a security agreement. It is aimed at reducing the risk of nuclear war by establishing permanency in the current separation of nuclear-weapon and non-nuclear-weapon nations. By its terms, each nuclear-weapon state agrees not to transfer nuclear weapons or other nuclear explosive devices to any recipient, and each non-nuclear-weapon state agrees not to receive such weapons or devices. The non-nuclear- weapon parties are also obligated to negotiate safeguards agreements with the International Atomic Energy Agency covering peaceful-uses activities. And all signatories agree not to transfer fissionable material to those parties unless they are subject to such agreements. These provisions are all part of a scheme to limit the

  7. Swords into plowshares: the 'invention' of peaceful nuclear explosions

    International Nuclear Information System (INIS)

    Findlay, T.

    1986-11-01

    This paper examines the early history of so-called peaceful nuclear explosions or PNEs: the proposed use of nuclear explosives for non-military purposes such as digging canals, building harbours, mining precious metals and increasing the flow of oil wells and natural gas deposits. It traces the origins of the United States PNE program, Project Plowshare, with particular focus on the role of Edward Teller and the Lawrence Livermore Laboratory. The paper also deals with the relationship between Plowshare and the 1958-61 nuclear test moratorium and the nuclear fallout controversy during that period. A key question addressed is whether Project Plowshare was simply a 'political' ploy designed to advance the anti-moratorium, anti-test ban and pro-nuclear weapon cause or whether its roots are to be found in the almost manic enthusiasm of the time for exploiting the 'peaceful atom'. The paper concludes that peaceful nuclear explosions were indeed largely a product of the same 1950s' ethos that gave the world such atomic-age 'white elephants' as the nuclear powered rocket, the nuclear-powered aircraft and the plutonium pacemaker

  8. Steam explosion - physical foundations and relation to nuclear reactor safety

    International Nuclear Information System (INIS)

    Schumann, U.

    1982-08-01

    'Steam explosion' means the sudden evaporation of a fluid by heat exchange with a hotter material. Other terms are 'vapour explosion', 'thermal explosion', and 'energetic fuel-coolant interaction (FCI)'. In such an event a large fraction of the thermal energy initially stored in the hot material may possibly be converted into mechanical work. For pressurized water reactors one discusses (e.g. in risk analysis studies) a core melt-down accident during which molten fuel comes into contact with water. In the analysis of the consequences one has to investigate steam explosions. In this report an overview over the state of the knowledge is given. The overview is based on an extensive literature review. The objective of the report is to provide the basic knowledge which is required for understanding of the most important theories on the process of steam explosions. Following topics are treated: overview on steam explosion incidents, work potential, spontaneous nucleation, concept of detonation, results of some typical experiments, hydrodynamic fragmentation of drops, bubbles and jets, coarse mixtures, film-boiling, scenario of a core melt-down accident with possible steam-explosion in a pressurized water reactor. (orig.) [de

  9. Conditions of external loading of nuclear power plant structures by vapor cloud explosions and design requirements

    International Nuclear Information System (INIS)

    Geiger, W.

    1977-01-01

    In the design of nuclear power plant structures in the Federal Republic of Germany (FRG) the external loading by pressure waves from unconfined vapor cloud explosions is taken into account. The loading conditions used are based on simplified model considerations for the sequence of events which generates the pressure wave. The basic assumption is that the explosion of unconfined vapor clouds can evolve only in the form of a deflagration wave with a maximum overpressure of 0.3 bar. The research on gas explosions conducted in the FRG with a view to external reactor safety just as similar work in other countries demonstrates that there are still various problems which need further clarification. The principal issues are the maximum conceivable load and the modes of structrual response. This paper presents the main results of a status report commissioned by the German Ministry of the Inertior in which the whole sequence of events leading to the external loading of nuclear power plants and the corresponding response of the structure was scrutinized. Constitutive in establishing the status report have been thorough discussions with experts of the various fields. The following problem areas are discussed in the paper. Incidents leading to the release of large amounts of liquefied gas; Formation of explosive vapor clouds, ignition conditions; Development of the explosion, generation of the pressure wave; Interaction between pressure wave and reactor building. It is outlined where definite statements are possible and where uncertainties and information gaps exist. (Auth.)

  10. Genetical effects of radiations from products of nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Spiers, F W

    1955-01-01

    Relative radiation dose-rates to man and to Drosophila are discussed. Data previously presented by Prof. J.B.S. Haldane on the genetical effects of radiation resulting from nuclear explosions are reviewed. A reply from Prof. Haldane presents revised calculations of radiation dose rates.

  11. Discrimination of nuclear-explosion and lightning electromagnetic pulse

    International Nuclear Information System (INIS)

    Qi Shufeng; Li Ximei; Han Shaoqing; Niu Chao; Feng Jun; Liu Daizhi

    2012-01-01

    The discrimination of nuclear-explosion and lightning electromagnetic pulses was studied using empirical mode decomposition and the fractal analytical method. The box dimensions of nuclear-explosion and lightning electromagnetic pulses' original signals were calculated, and the box dimensions of the intrinsic mode functions (IMFs) of nuclear-explosion and lightning electromagnetic pulses' original signals after empirical mode decomposition were also obtained. The discrimination of nuclear explosion and lightning was studied using the nearest neighbor classification. The experimental results show that, the discrimination rate of the box dimension based on the first and second IMF after the original signal empirical mode decomposition is higher than that based on the third and forth IMF; the discrimination rate of the box dimension based on the original signal is higher than that based on any IMF; and the discrimination rate based on two-dimensional and three-dimensional characters is higher and more stable than that based on one-dimensional character, besides, the discrimination rate based on three-dimensional character is over 90%. (authors)

  12. External man-induced events on nuclear power plants

    International Nuclear Information System (INIS)

    Paganini, C.E.

    1982-01-01

    These notes for the postgraduate course on Radiological Protection and Nuclear Safety deal with the effects produced by some human activities on the siting and design of a nuclear installation. The existing activities, as well as the foreseen or foreseeable future ones are evaluated. In the first place, the potential sources of events are identified and classified in two categories: stationary and mobile, and the events are classified in five groups: 1) Aircraft crash; 2) Chemical explosions; 3) Discharge of dangerous fluids (explosive, toxic or corrosive); 4) Fire, and 5) Sabotage, terrorism, guerrillas. Then, the effects which may result from these events and affect the nuclear installation are studied: 1) pressure waves; 2) Impact of missiles; 3) Heat, fire; 4) Smoke and dust; 5) Gas or inflammable and/or explosive dust clouds; 6) Toxic and/or corrosive gases and liquids; 7) Ground shaking; 8) Flooding or lack of water; 9) Foundations failure or collapse. Next, the methods for making a deterministic and/or a probabilistic study (or both) are indicated for each event considered, and from these studies the ''screening'' values which allow to determine if an event can be rejected or must be considered are established. For this second case, the method for obtaining the ''design event'' that shall serve as a basis for the design of the plant is indicated. (M.E.L.) [es

  13. The CTBT Verification Regime: Monitoring the Earth for nuclear explosions

    International Nuclear Information System (INIS)

    2011-03-01

    The Comprehensive nuclear-Test-Ban Treaty (CTBT) bans all nuclear weapon tests. Its unique verification regime is designed to detect nuclear explosions anywhere on the planet - in the oceans, underground and in the atmosphere. once complete, the international Monitoring system (iMs) will consist of 337 facilities located in 89 countries around the globe. The iMs is currently operating in test mode so that data are already transmitted for analysis from monitoring facilities to the international Data Centre (iDC) at the headquarters of the preparatory Commission for the Comprehensive nuclear-Test-Ban Treaty Organization (CTBTO) in Vienna. Data and analysis results are shared with Member states.

  14. Possible hazard reduction by using distributed phased nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Chilton, Frank [Theoretical Physics Program, Stanford Research Institute, Menio Park, CA (United States); [Department of Applied Science, University of California, Davis, CA (United States); Cheney, James A [Department of Civil Engineering, University of California, Davis, CA (United States)

    1970-05-15

    The use of two or more nuclear devices, phased together in order to constructively add their respective particle velocities, is proposed herein. By directing the seismic waves of the nuclear explosions to make them more efficient in accomplishing the intended construction, we hope to be able to reduce the radioactivity, seismic, and airblast hazards substantially. Experiments are being performed with one gram charges of PETN. (author)

  15. Damage caused to houses and equipment by underground nuclear explosions

    International Nuclear Information System (INIS)

    Delort, F.; Guerrini, C.

    1969-01-01

    A description is given of the damaged caused to various structures, buildings, houses, mechanical equipment and electrical equipment by underground nuclear explosions in granite. For each type of equipment or building are given the limiting distances for a given degree of damage. These distances have been related to a parameter characterizing the movement of the medium; it is thus possible to generalize the results obtained in granite, for different media. The problem of estimating the damage caused at a greater distance from the explosion is considered. (authors) [fr

  16. Consideration of impact of atmospheric intrusion in subsurface sampling for investigation of suspected underground nuclear explosions

    International Nuclear Information System (INIS)

    Lowrey, J.D.; Bowyer, T.W.; Haas, D.A.; Hayes, J.C.; Biegalski, S.R.

    2016-01-01

    Radioactive noble gases radioxenon and radioargon constitute the primary smoking gun of an underground nuclear explosion. The aim of subsurface sampling of soil gas as part of an on-site inspection (OSI) is to search for evidence of a suspected underground nuclear event. It has been hypothesized that atmospheric gas can disturb soil gas concentrations and therefore potentially add to problems in civilian source discrimination verifying treaty compliance under the comprehensive nuclear-test ban treaty. This work describes a study of intrusion of atmospheric air into the subsurface and its potential impact on an OSI using results of simulations from the underground transport of environmental xenon (UTEX) model. (author)

  17. Weapons of mass destruction: Overview of the CBRNEs (Chemical, Biological, Radiological, Nuclear, and Explosives).

    Science.gov (United States)

    Prockop, Leon D

    2006-11-01

    The events of September 11, 2001, made citizens of the world acutely aware of disasters consequent to present-day terrorism. This is a war being waged for reasons obscure to many of its potential victims. The term "NBCs" was coined in reference to terrorist weapons of mass destruction, i.e., nuclear, biological and chemical. The currently accepted acronym is "CBRNE" which includes Chemical, Biological, Radiological, Nuclear, and Explosive weapons. Non-nuclear explosives are the most common terrorist weapon now in use. Nuclear and radiological weapons are beyond the scope of this publication, which focuses on the "CBEs", i.e. chemical, biological and explosive weapons. Although neurologists will not be the first responders to CBEs, they must know about the neurological effects in order to provide diagnosis and treatment to survivors. Neurological complications of chemical, biological and explosive weapons which have or may be used by terrorists are reviewed by international experts in this publication. Management and treatment profiles are outlined.

  18. The Air Blast Wave from a Nuclear Explosion

    Science.gov (United States)

    Reines, Frederick

    The sudden, large scale release of energy in the explosion of a nuclear bomb in air gives rise, in addition to nuclear emanations such as neutrons and gamma rays, to an extremely hot, rapidly expanding mass of air.** The rapidly expanding air mass has an initial temperature in the vicinity of a few hundred thousand degrees and for this reason it glows in its early stages with an intensity of many suns. It is important that the energy density in this initial "ball of fire" is of the order of 3 × 103 times that found in a detonating piece of TNT and hence that the initial stages of the large scale air motion produced by a nuclear explosion has no counterpart in an ordinary. H. E. explosion. Further, the relatively low temperatures ˜2,000°C associated with the initial stages of an H. E. detonation implies that the thermal radiation which it emits is a relatively insignificant fraction of the total energy involves. This point is made more striking when it is remembered that the thermal energy emitted by a hot object varies directly with the temperature in the Rayleigh Jeans region appropriate to the present discussion. The expansion of the air mass heated by the nuclear reaction produces, in qualitatively the same manner as in an H.E. explosion or the bursting of a high pressure balloon, an intense sharp pressure pulse, a shock wave, in the atmosphere. As the pressure pulse spreads outward it weakens due to the combined effects of divergence and the thermodynamically irreversible nature of the shock wave. The air comprising such a pressure pulse or blast wave moves first radially outward and then back towards the center as the blast wave passes. Since a permanent outward displacement of an infinite mass of air would require unlimited energy, the net outward displacement of the air distant from an explosion must approach zero with increasing distance. As the distance from the explosion is diminished the net outward displacement due to irreversible shock heating of

  19. Direct calibration of the yield of nuclear explosion

    International Nuclear Information System (INIS)

    Nakanishi, K.; Nikolayev, A.

    1994-06-01

    The determination of the power of underground nuclear explosions (UNE) is of great significance. The seismic method of UNE yield determination allows monitoring at large distances, but is less precise than local monitoring methods. A way is proposed to calibrate UNE based on the idea of the vibroseis method in which powerful vibrators are used to produce seismic waves in the UNE epicenter; UNE calibration is carried out by comparison of the vibroseis record with a UNE seismogram. Results of preliminary work on the problem are presented. It is based on experience with vibrosounding of the Earth as well as earthquakes and chemical and nuclear explosions wave field structure studies. It is concluded that UNE calibration with the aid of seismic vibrators is both possible and expedient

  20. Peaceful uses of nuclear explosions. Vol.2 (1969-1979)

    International Nuclear Information System (INIS)

    1980-01-01

    The present bibliography on Peaceful Uses of Nuclear Explosions is the 43rd in the Bibliographical Series of the International Atomic Energy Agency and the second such IAEA publication on PNE. It deals with theoretical aspects and peaceful applications of nuclear explosions. The bibliography contains 1335 references to the literature published in the period from 1969 to 1979. Most references have been supplied with abstracts in English. The material is listed by subject; within each subject it is arranged alphabetically by author. An Author Index including corporate authors and a Subject Index are given at the end of the bibliography. The Subject Index is basically a permutated-title keyword-in-context index

  1. Stresses on nuclear power plant buildings by extraordinary events

    International Nuclear Information System (INIS)

    Woelfel, E.

    1977-01-01

    Nuclear power plant buildings must be functional to such an extend that even after the occurence of extraordinary events (earthquake, airoplane crash, gas cloud explosion), the reactor can be safety shut off, in order to avoid danger from the nuclear power plant. Evidence for this can only be given by calculations which shall meet the following requirements: The calculation results shall be safe and reliable. The calculation effort shall match the realizable accuracy. The calculation shall lead to an economical determination. An example of ascertainment of nuclear power plants in regard to earthquakes, shows the difficulties standing against a fulfillment of these requirements. (orig.) [de

  2. Nuclear Explosion Monitoring Advances and Challenges

    Science.gov (United States)

    Baker, G. E.

    2015-12-01

    We address the state-of-the-art in areas important to monitoring, current challenges, specific efforts that illustrate approaches addressing shortcomings in capabilities, and additional approaches that might be helpful. The exponential increase in the number of events that must be screened as magnitude thresholds decrease presents one of the greatest challenges. Ongoing efforts to exploit repeat seismic events using waveform correlation, subspace methods, and empirical matched field processing holds as much "game-changing" promise as anything being done, and further efforts to develop and apply such methods efficiently are critical. Greater accuracy of travel time, signal loss, and full waveform predictions are still needed to better locate and discriminate seismic events. Important developments include methods to model velocities using multiple types of data; to model attenuation with better separation of source, path, and site effects; and to model focusing and defocusing of surface waves. Current efforts to model higher frequency full waveforms are likely to improve source characterization while more effective estimation of attenuation from ambient noise holds promise for filling in gaps. Censoring in attenuation modeling is a critical problem to address. Quantifying uncertainty of discriminants is key to their operational use. Efforts to do so for moment tensor (MT) inversion are particularly important, and fundamental progress on the statistics of MT distributions is the most important advance needed in the near term in this area. Source physics is seeing great progress through theoretical, experimental, and simulation studies. The biggest need is to accurately predict the effects of source conditions on seismic generation. Uniqueness is the challenge here. Progress will depend on studies that probe what distinguishes mechanisms, rather than whether one of many possible mechanisms is consistent with some set of observations.

  3. Origins of displacements caused by underground nuclear explosions

    International Nuclear Information System (INIS)

    Rinehart, John S.

    1970-01-01

    Elastic theory has been used to calculate the relative displacement that will occur between the two sides of a loose boundary when a plane wave strikes the boundary obliquely. The calculations suggest that the displacements produced along loose fractures and faults close in to the underground nuclear explosions are a direct consequence of reflection of the transient stress wave at this loose boundary. Quantitatively the results agree fairly well with the limited data that are available. (author)

  4. Origins of displacements caused by underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, John S [ESSA Research Laboratories, and Department of Mechanical Engineering, University of Colorado, Boulder, CO (United States)

    1970-05-15

    Elastic theory has been used to calculate the relative displacement that will occur between the two sides of a loose boundary when a plane wave strikes the boundary obliquely. The calculations suggest that the displacements produced along loose fractures and faults close in to the underground nuclear explosions are a direct consequence of reflection of the transient stress wave at this loose boundary. Quantitatively the results agree fairly well with the limited data that are available. (author)

  5. Time-domain study of tectonic strain-release effects on seismic waves from underground nuclear explosions

    International Nuclear Information System (INIS)

    Nakanishi, K.K.; Sherman, N.W.

    1982-09-01

    Tectonic strain release affects both the amplitude and phase of seismic waves from underground nuclear explosions. Surface wave magnitudes are strongly affected by the component of tectonic strain release in the explosion. Amplitudes and radiation patterns of surface waves from explosions with even small tectonic components change magnitudes significantly and show a strong dependence on receiver locations. A thrust-slip source superimposed on an isotropic explosion can explain observed reversals in waveform at different azimuths and phase delays between normal and reversed Rayleigh waves. The mechanism of this reversal is due to the phase relationship between reasonable explosion and tectonic release sources. Spallation or an unusual source time function are not required. The observations of Shagan River events imply thrust-slip motion along faults in a northwest-southeast direction, which is consistent with regional tectonics

  6. Emplacement and stemming of nuclear explosives for Plowshare applications

    International Nuclear Information System (INIS)

    Cramer, J.L.

    1970-01-01

    This paper will discuss the various methods used for emplacement and design considerations that must be taken into account when the emplacement and stemming method is selected. The step-by-step field procedure will not be discussed in this paper. The task of emplacing and stemming the nuclear explosive is common to all Plowshare experiments today. All present-day applications of a nuclear explosive for Plowshare experiments require that the detonation take place some distance below the surface of the ground. This is normally done by lowering the explosive into an emplacement hole to a desired depth and then backfilling the hole with a suitable stemming material. At first glance it scenes like a very straightforward, simple task to perform. It would appear to be a task that could become a standard procedure for all experiments; however, this is not the case. In actuality, the emplacement and stemming of a nuclear explosive must almost be a custom design. It varies with the application of the experiment, i.e., cratering or underground engineering. It also varies with the condition of the hole, the available equipment to do the job, the actual purpose of the stemming, possible postshot reentry, hydrology, geology, and future production. A very important item that must always be considered is the protection of the firing and signal cables during the downhole and stemming operation. Each of these things must be considered; ignoring any one of them could jeopardize one of the objectives of the experiment or perhaps even the experiment itself. It should be emphasized that for a multiple-shot program such as would be used to develop a gas field where the geology, depths of burial etc. are the same, the emplacement and stemming operation would be standardized, as would all other parts of the program. However, for individual experiments in totally different areas, complete standardization of the emplacement and stemming is impossible

  7. Emplacement and stemming of nuclear explosives for Plowshare applications

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, J L [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    This paper will discuss the various methods used for emplacement and design considerations that must be taken into account when the emplacement and stemming method is selected. The step-by-step field procedure will not be discussed in this paper. The task of emplacing and stemming the nuclear explosive is common to all Plowshare experiments today. All present-day applications of a nuclear explosive for Plowshare experiments require that the detonation take place some distance below the surface of the ground. This is normally done by lowering the explosive into an emplacement hole to a desired depth and then backfilling the hole with a suitable stemming material. At first glance it scenes like a very straightforward, simple task to perform. It would appear to be a task that could become a standard procedure for all experiments; however, this is not the case. In actuality, the emplacement and stemming of a nuclear explosive must almost be a custom design. It varies with the application of the experiment, i.e., cratering or underground engineering. It also varies with the condition of the hole, the available equipment to do the job, the actual purpose of the stemming, possible postshot reentry, hydrology, geology, and future production. A very important item that must always be considered is the protection of the firing and signal cables during the downhole and stemming operation. Each of these things must be considered; ignoring any one of them could jeopardize one of the objectives of the experiment or perhaps even the experiment itself. It should be emphasized that for a multiple-shot program such as would be used to develop a gas field where the geology, depths of burial etc. are the same, the emplacement and stemming operation would be standardized, as would all other parts of the program. However, for individual experiments in totally different areas, complete standardization of the emplacement and stemming is impossible.

  8. Enhanced coupling and decoupling of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Terhune, R.W.; Snell, C.M.; Rodean, H.C.

    1979-09-04

    The seismic coupling efficiency of nuclear explosions was studied in granite by means of computer calculations as a function of scaled explosion source radius. The scaled source radii were varied from 0.1 m/kt/sup 1/3/ (point source) to 20 m/kt/sup 1/3/ (representing a nearly full decoupling cavity). It was found that seismic coupling efficiency is at a maximum when the scaled source radius is approximately 2 m/kt/sup 1/3/. The primary cause of this maximum in seismic wave source strength is the effect of initial source radius on peak particle velocity and pulse duration of the outgoing elastic wave. A secondary cause is that rock vaporization (an energy sink) does not occur for scaled source radii somewhat greater than 1 m/kt/sup 1/3/. Therefore, for scaled source radii greater than 1 m/kt/sup 1/3/, there is additional energy available for seismic wave generations. Available data for some nuclear explosions at the Nevada Test Site do not provide sufficient evidence to either support or negate the enhanced coupling that is indicated by calculations at scaled source radii of 1-2 m/kt/sup 1/3/.

  9. Enhanced coupling and decoupling of underground nuclear explosions

    International Nuclear Information System (INIS)

    Terhune, R.W.; Snell, C.M.; Rodean, H.C.

    1979-01-01

    The seismic coupling efficiency of nuclear explosions was studied in granite by means of computer calculations as a function of scaled explosion source radius. The scaled source radii were varied from 0.1 m/kt/sup 1/3/ (point source) to 20 m/kt/sup 1/3/ (representing a nearly full decoupling cavity). It was found that seismic coupling efficiency is at a maximum when the scaled source radius is approximately 2 m/kt/sup 1/3/. The primary cause of this maximum in seismic wave source strength is the effect of initial source radius on peak particle velocity and pulse duration of the outgoing elastic wave. A secondary cause is that rock vaporization (an energy sink) does not occur for scaled source radii somewhat greater than 1 m/kt/sup 1/3/. Therefore, for scaled source radii greater than 1 m/kt/sup 1/3/, there is additional energy available for seismic wave generations. Available data for some nuclear explosions at the Nevada Test Site do not provide sufficient evidence to either support or negate the enhanced coupling that is indicated by calculations at scaled source radii of 1-2 m/kt/sup 1/3/

  10. The present status of scientific applications of nuclear explosions

    International Nuclear Information System (INIS)

    Cowan, G.A.; Diven, B.C.

    1970-01-01

    This is the fourth in a series of symposia which started, in 1957 at Livermore with the purpose of examining the peaceful uses of nuclear explosives. Although principal emphasis has b een placed on technological applications, the discussions have, from the outset, included the fascinating question of scientific uses. Of the possible scientific applications which were mentioned at the 1957 meeting, the proposals which attracted most attention involved uses of nuclear explosions for research in seismology. It is interesting to note that since then a very large and stimulating body of data in the field of seismology has been collected from nuclear tests. Ideas for scientific applications of nuclear explosions go back considerably further than 1957. During the war days Otto Frisch at Los Alamos suggested that a fission bomb would provide an excellent source of fast neutrons which could be led down a vacuum pipe and used for experiments in a relatively unscattered state. This idea, reinvented, modified, and elaborated upon in the ensuing twenty-five years, provides the basis for much of the research discussed in this morning's program. In 1952 a somewhat different property of nuclear explosions, their ability to produce intense neutron exposures on internal targets and to synthesize large quantities of multiple neutron capture products, was dramatically brought to our attention by analysis of debris from the first large thermonuclear explosion (Mike) in which the elements einsteinium and fermiun were observed for the first time. The reports of the next two Plowshare symposia in 1959 and 1964 help record the fascinating development of the scientific uses of neutrons in nuclear explosions. Starting with two 'wheel' experiments in 1958 to measure symmetry of fission in 235-U resonances, the use of external beams of energy-resolved neutrons was expanded on the 'Gnome' experiment in 1961 to include the measurement of neutron capture excitation functions for 238-U, 232-Th

  11. The present status of scientific applications of nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, G A; Diven, B C [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1970-05-15

    This is the fourth in a series of symposia which started, in 1957 at Livermore with the purpose of examining the peaceful uses of nuclear explosives. Although principal emphasis has {sup b}een placed on technological applications, the discussions have, from the outset, included the fascinating question of scientific uses. Of the possible scientific applications which were mentioned at the 1957 meeting, the proposals which attracted most attention involved uses of nuclear explosions for research in seismology. It is interesting to note that since then a very large and stimulating body of data in the field of seismology has been collected from nuclear tests. Ideas for scientific applications of nuclear explosions go back considerably further than 1957. During the war days Otto Frisch at Los Alamos suggested that a fission bomb would provide an excellent source of fast neutrons which could be led down a vacuum pipe and used for experiments in a relatively unscattered state. This idea, reinvented, modified, and elaborated upon in the ensuing twenty-five years, provides the basis for much of the research discussed in this morning's program. In 1952 a somewhat different property of nuclear explosions, their ability to produce intense neutron exposures on internal targets and to synthesize large quantities of multiple neutron capture products, was dramatically brought to our attention by analysis of debris from the first large thermonuclear explosion (Mike) in which the elements einsteinium and fermiun were observed for the first time. The reports of the next two Plowshare symposia in 1959 and 1964 help record the fascinating development of the scientific uses of neutrons in nuclear explosions. Starting with two 'wheel' experiments in 1958 to measure symmetry of fission in 235-U resonances, the use of external beams of energy-resolved neutrons was expanded on the 'Gnome' experiment in 1961 to include the measurement of neutron capture excitation functions for 238-U, 232

  12. Establishment of data base of regional seismic recordings from earthquakes, chemical explosions and nuclear explosions in the Former Soviet Union

    Energy Technology Data Exchange (ETDEWEB)

    Ermolenko, N.A.; Kopnichev, Yu.F.; Kunakov, V.G.; Kunakova, O.K.; Rakhmatullin, M.Kh.; Sokolova, I.N.; Vybornyy, Zh.I. [AN SSSR, Moscow (Russian Federation). Inst. Fiziki Zemli

    1995-06-01

    In this report results of work on establishment of a data base of regional seismic recordings from earthquakes, chemical explosions and nuclear explosions in the former Soviet Union are described. This work was carried out in the Complex Seismological Expedition (CSE) of the Joint Institute of Physics of the Earth of the Russian Academy of Sciences and Lawrence Livermore National Laboratory. The recording system, methods of investigations and primary data processing are described in detail. The largest number of digital records was received by the permanent seismic station Talgar, situated in the northern Tien Shan, 20 km to the east of Almaty city. More than half of the records are seismograms of underground nuclear explosions and chemical explosions. The nuclear explosions were recorded mainly from the Semipalatinsk test site. In addition, records of the explosions from the Chinese test site Lop Nor and industrial nuclear explosions from the West Siberia region were obtained. Four records of strong chemical explosions were picked out (two of them have been produced at the Semipalatinsk test site and two -- in Uzbekistan). We also obtained 16 records of crustal earthquakes, mainly from the Altai region, close to the Semipalatinsk test site, and also from the West China region, close to the Lop Nor test site. In addition, a small number of records of earthquakes and underground nuclear explosions, received by arrays of temporary stations, that have been working in the southern Kazakhstan region are included in this report. Parameters of the digital seismograms and file structure are described. Possible directions of future work on the digitizing of unique data archive are discussed.

  13. Prohibiting and Preventing Nuclear Explosions: Background Information for Parliamentarians on the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

    International Nuclear Information System (INIS)

    2010-07-01

    The object and purpose of the CTBT is to ban comprehensively nuclear weapon test explosions and any other nuclear explosion in any environment in an effectively verifiable manner. The CTBT aims at eliminating nuclear weapons by constraining the development and qualitative improvement of new or more advanced nuclear weapons. It plays a crucial role in the prevention of nuclear proliferation and in nuclear disarmament, thus contributing to a safer and more secure world. When the Treaty enters into force it will establish a treaty-implementing body (the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)), including an on-site inspection mechanism and confidence-building measures as well as an International Monitoring System (IMS) and International Data Centre (IDC). The IMS and IDC are already being created and are being provisionally operated during the preparatory phase by the Preparatory Commission for the CTBTO and its Provisional Technical Secretariat in Vienna. Seismic, hydroacoustic, infrasound and radionuclide data are collected through the stations of the IMS and transmitted to Member States via the IDC. The IDC also processes the raw data received from the stations to derive objective products and services which will support the Treaty verification responsibilities. If the collected and analysed data indicate an ambiguous event, States may address concerns about possible noncompliance with the Treaty through a consultation and clarification process after it enters into force and may request an on-site inspection by the CTBTO.

  14. A Study on intelligent measurement of nuclear explosion equivalent in atmosphere

    International Nuclear Information System (INIS)

    Wang Desheng; Wu Xiaohong

    1999-01-01

    Measurement of nuclear explosion equivalent in atmosphere is an important subject for nuclear survey. Based on the relations between nuclear explosion equivalent and the minimum illuminance time of light radiation from nuclear explosion. The method of RC differential valley time detection and mean-time taking is presented the method, using a single-chip computer as a intelligent part, can realize intelligent measurement of minimum illuminance time with high reliability and low power consumption. This method provides a practical mean for quick, accurate and reliable measurement of nuclear explosion equivalent in atmosphere

  15. Environmental contamination due to nuclear weapon tests and peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Petr, I.; Jandl, J.

    1979-01-01

    The effect of nuclear weapons tests and of the peaceful uses of nuclear explosions on the environment is described. The local and global fallout and the fallout distribution are analysed for the weapon tests. The radiation effects of external and internal irradiation on the population are discussed and the overall radiation risk is estimated. (author)

  16. Advancing Explosion Source Theory through Experimentation: Results from Seismic Experiments Since the Moratorium on Nuclear Testing

    Science.gov (United States)

    Bonner, J. L.; Stump, B. W.

    2011-12-01

    On 23 September 1992, the United States conducted the nuclear explosion DIVIDER at the Nevada Test Site (NTS). It would become the last US nuclear test when a moratorium ended testing the following month. Many of the theoretical explosion seismic models used today were developed from observations of hundreds of nuclear tests at NTS and around the world. Since the moratorium, researchers have turned to chemical explosions as a possible surrogate for continued nuclear explosion research. This talk reviews experiments since the moratorium that have used chemical explosions to advance explosion source models. The 1993 Non-Proliferation Experiment examined single-point, fully contained chemical-nuclear equivalence by detonating over a kiloton of chemical explosive at NTS in close proximity to previous nuclear explosion tests. When compared with data from these nearby nuclear explosions, the regional and near-source seismic data were found to be essentially identical after accounting for different yield scaling factors for chemical and nuclear explosions. The relationship between contained chemical explosions and large production mining shots was studied at the Black Thunder coal mine in Wyoming in 1995. The research led to an improved source model for delay-fired mining explosions and a better understanding of mining explosion detection by the International Monitoring System (IMS). The effect of depth was examined in a 1997 Kazakhstan Depth of Burial experiment. Researchers used local and regional seismic observations to conclude that the dominant mechanism for enhanced regional shear waves was local Rg scattering. Travel-time calibration for the IMS was the focus of the 1999 Dead Sea Experiment where a 10-ton shot was recorded as far away as 5000 km. The Arizona Source Phenomenology Experiments provided a comparison of fully- and partially-contained chemical shots with mining explosions, thus quantifying the reduction in seismic amplitudes associated with partial

  17. A portable system for nuclear, chemical agent, and explosives identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.; Caffrey, A.J.

    2001-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electromechanically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine a prompt-gamma neutron-activation analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  18. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Caffrey, A.J.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.

    2000-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  19. ISC origin times for announced and presumed underground nuclear explosions at several test sites

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1979-01-01

    Announced data for US and French underground nuclear explosions indicate that nearly all detonations have occurred within one or two tenths of a second after the minute. This report contains ISC origin-time data for announced explosions at two US test sites and one French test site, and includes similar data for presumed underground nuclear explosions at five Soviet sites. Origin-time distributions for these sites are analyzed for those events that appeared to be detonated very close to the minute. Particular attention is given to the origin times for the principal US and Soviet test sites in Nevada and Eastern Kazakhstan. The mean origin times for events at the several test sites range from 0.4 s to 2.8 s before the minute, with the earlier mean times associated with the Soviet sites and the later times with the US and French sites. These times indicate lower seismic velocities beneath the US and French sites, and higher velocities beneath the sites in the USSR 9 figures, 8 tables

  20. Nuclear winter: Global consequences of multiple nuclear explosions

    International Nuclear Information System (INIS)

    Turco, R.P.; Toon, O.B.; Ackerman, T.P.; Pollack, J.B.; Sagan, C.

    1984-01-01

    Concern has been raised over the short- and long-term consequences of the dust, smoke, radioactivity, and toxic vapors that would be generated by a nuclear war. The discovery that dense clouds of soil particles may have played a major role in past mass extinctions of life on Earth has encouraged the reconsideration of nuclear war effects. These developments have led the authors to calculate, using new data and improved models, the potential global environmental effects of dust and smoke clouds (henceforth referred to as nuclear dust and smoke) generated in a nuclear war. They neglect the short-term effects of blast, fire, and radiation. Most of the world's population could probably survive the initial nuclear exchange and would inherit the postwar environment. Accordingly, the longer-term and global-scale aftereffects of nuclear war might prove to be as important as the immediate consequences of the war

  1. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  2. The Use of Nuclear Explosives To Disrupt or Divert Asteroids

    Energy Technology Data Exchange (ETDEWEB)

    Dearborn, D S; Patenaude, S; Managan, R A

    2007-02-20

    Nuclear explosives are a mature technology with well-characterized effects. Proposed utilizations include a near asteroid burst to ablate surface material and nudge the body to a safer orbit, or a direct sub-surface burst to fragment the body. For this latter method, previous estimates suggest that for times as short as 1000 days, over 99.999% of the material is diverted, and no longer impacts the Earth, a huge mitigation factor. To better understand these possibilities, we have used a multidimensional radiation/hydrodynamics code to simulate sub-surface and above surface bursts on an inhomogeneous, 1 km diameter body with an average density of 2 g/cc. The body, or fragments (up to 750,000) are then tracked along 4 representative orbits to determine the level of mitigation achieved. While our code has been well tested in simulations on terrestrial structures, the greatest uncertainty in these results lies in the input. These results, particularly the effort to nudge a body into a different orbit, are dependant on NEO material properties, like the dissipation of unconsolidated material in a low gravity environment, as well as the details on an individual body's structure. This problem exists in simulating the effect of any mitigation technology. In addition to providing an greater understanding of the results of applying nuclear explosives to NEO-like bodies, these simulations suggest what must be learned about these bodies to improve the predictive capabilities. Finally, we will comment on some of the popular misinformation abounding about the utility of nuclear explosives.

  3. Chernobyl explosion bombshell

    International Nuclear Information System (INIS)

    Martin, S.; Arnott, D.

    1988-01-01

    It is suggested that the explosion at the Chernobyl-4 reactor in April 1986 was a nuclear explosion. The evidence for this is examined. The sequence of events at Chernobyl is looked at to see if the effects were like those from a nuclear explosion. The question of whether a United Kingdom reactor could go prompt critical is discussed. It is concluded that prompt criticality excursions are possible, but the specific Chernobyl sequence is impossible. (UK)

  4. The tank's dynamic response under nuclear explosion blast wave

    International Nuclear Information System (INIS)

    Xu Mei; Wang Lianghou; Li Xiaotian; Yu Suyuan; Zhang Zhengming; Wan Li

    2005-01-01

    To weapons and equipment, blast wave is the primary destructive factor. In this paper, taken the real model-59 tank as an example, we try to transform the damage estimation problem into computing a fluid structure interaction problem with finite element method. The response of tank under nuclear explosion blast wave is computed with the general-coupling algorithm. Also, the dynamical interaction of blast wave and tank is reflected in real time. The deformation of each part of the tank is worked out and the result corresponds to the real-measured data. (authors)

  5. Simulated nuclear optical signatures using explosive light sources (ELS)

    International Nuclear Information System (INIS)

    Glaser, R.F.

    1979-05-01

    Four Explosive Light Source (aluminium powder and oxygen) tests were conducted on the test range at Sandia Laboratories in Albuquerque (SLA) from 28 February through 7 March 1978. Although several types of measuring devices were used, the report documents only the optical time histories measured by the bhangmeters and the NBDS, and explains the conclusions reached. In general, the four shots made it possible to gather clear-air optical transmission data, determine the suitability of ELS to simulate the optical effects of a nuclear burst, and provide experience for the larger scale ELS tests to be conducted at Fort Ord, CA in April

  6. Simulated nuclear optical signatures using explosive light sources (ELS)

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, R.F.

    1979-05-01

    Four Explosive Light Source (aluminium powder and oxygen) tests were conducted on the test range at Sandia Laboratories in Albuquerque (SLA) from 28 February through 7 March 1978. Although several types of measuring devices were used, the report documents only the optical time histories measured by the bhangmeters and the NBDS, and explains the conclusions reached. In general, the four shots made it possible to gather clear-air optical transmission data, determine the suitability of ELS to simulate the optical effects of a nuclear burst, and provide experience for the larger scale ELS tests to be conducted at Fort Ord, CA in April.

  7. Appraisal of the radiological situation following a nuclear explosion

    International Nuclear Information System (INIS)

    Andreev, E.

    1976-01-01

    The physical laws governing a nuclear explosion and the characteristics of initial and residual radiation are set forth for an atomic and a neutron bomb. Consequent issues are successively discussed for local, continental, and global fallout, and formation of the radioactive trace. Impact aspects considered include: physico-chemical characteristics of fission products; inhalation, ingestion, and percutaneous routes of intake; distribution, localization, and removal from the body. Assessment is also made of external gamma irradiation from the radioactive trace. Finally, consideration is given to problems of radiation injuries sorting, of dosimetry, and early diagnostics in an emergency situation. (A.B.)

  8. Studies of radioactivity from nuclear explosions for peaceful purposes

    Energy Technology Data Exchange (ETDEWEB)

    Siddons, R A [AWRE, Aldermaston (United Kingdom)

    1970-05-01

    Estimates are made of the extent and duration of hazards from radioactivity to the general public due to fallout from a cratering explosion. The nuclear explosive is assumed to be 'clean' in the sense that only a small fraction of the yield is derived from fission. Hypothetical examples take an explosive of total yield 100 kT, of which 10 kT, 1 kT and zero - the ultimate in cleanliness - are derived from fission. The maximum permitted level to the public is taken as 0.5 rem in a period of one year. Sources of activity considered are fission products, residual thermonuclear material (tritium), neutron induced activity in the device materials and neutron induced activity in the surrounding rock. Estimates of the production are made, and are associated with a distribution function derived from the Sedan fallout measurements. The hazards from radioactivity associated with the creation of a storage reservoir for natural gas have also been considered. In this case the main problem is contamination of the product by tritium left in the chimney. The possibility of flushing out this tritium with water is discussed. (author)

  9. Studies of radioactivity from nuclear explosions for peaceful purposes

    International Nuclear Information System (INIS)

    Siddons, R.A.

    1970-01-01

    Estimates are made of the extent and duration of hazards from radioactivity to the general public due to fallout from a cratering explosion. The nuclear explosive is assumed to be 'clean' in the sense that only a small fraction of the yield is derived from fission. Hypothetical examples take an explosive of total yield 100 kT, of which 10 kT, 1 kT and zero - the ultimate in cleanliness - are derived from fission. The maximum permitted level to the public is taken as 0.5 rem in a period of one year. Sources of activity considered are fission products, residual thermonuclear material (tritium), neutron induced activity in the device materials and neutron induced activity in the surrounding rock. Estimates of the production are made, and are associated with a distribution function derived from the Sedan fallout measurements. The hazards from radioactivity associated with the creation of a storage reservoir for natural gas have also been considered. In this case the main problem is contamination of the product by tritium left in the chimney. The possibility of flushing out this tritium with water is discussed. (author)

  10. A simple dynamic rising nuclear cloud based model of ground radioactive fallout for atmospheric nuclear explosion

    International Nuclear Information System (INIS)

    Zheng Yi

    2008-01-01

    A simple dynamic rising nuclear cloud based model for atmospheric nuclear explosion radioactive prediction was presented. The deposition of particles and initial cloud radius changing with time before the cloud stabilization was considered. Large-scale relative diffusion theory was used after cloud stabilization. The model was considered reasonable and dependable in comparison with four U.S. nuclear test cases and DELFIC model results. (authors)

  11. Underground nuclear explosions. Geological survey of the cavities; Explosions nucleaires souterraines etude geologique des cavites

    Energy Technology Data Exchange (ETDEWEB)

    Faure, J [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    A geological survey of underground nuclear explosions makes it possible to determine the main characteristics of the cavity formed. The lower portion is spherical; the same was very likely true of the roof, which collapses in the majority of media with the exception of rock-salt. Its radius, for a given bomb size, can vary by a factor of two according to the type of rock. The lay-out of its contents depends on the characteristics of the solid and liquid products at the moment of the roof collapse; according to the medium involved, mixing of the rubble and the mud-flow occurs (granite) or does not occur (tuff and alluvia). In all media, the average physical properties can be evaluated. (author) [French] L'etude geologique d'explosions nucleaires souterraines permet de determiner les principaux caracteres de la cavite creee. Sa partie inferieure est spherique; il en etait vraisemblablement de meme de sa voute, effondree dans la plupart des milieux a l'exception du sel gemme. Son rayon, a energie d'engin egale, varie selon les roches du simple au double. La disposition de son contenu depend des caracteristiques des produits solides et liquides au moment de la chute du toit; selon le cas, il n'y a pas (tuf et alluvions) ou il y a (granite) melange des eboulis et des laves. Dans tous les milieux, les proprietes physiques moyennes peuvent etre evaluees. (auteur)

  12. Real-time detection and characterization of nuclear explosion using broadband analyses of regional seismic stations

    Science.gov (United States)

    Prastowo, T.; Madlazim

    2018-01-01

    This preliminary study aims to propose a new method of real-time detection and characterization of nuclear explosions by analyzing broadband seismic waveforms acquired from a network of regional seismic stations. Signal identification generated by a nuclear test was differentiated from natural sources of either earthquakes or other natural seismo-tectonic events by verifying crucial parameters, namely source depth, type of first motion, and P-wave domination of the broadband seismic wavesunder consideration. We examined and analyzed a recently hypothetical nuclear test performed by the North Koreangovernment that occurred on September 3, 2017 as a vital point to study. From spectral analyses, we found that the source of corresponding signals associated with detonations of the latest underground nuclear test was at a much shallower depth below the surface relatively compared with that of natural earthquakes, the suspected nuclear explosions produced compressional waves with radially directed outward from the source for their first motions, and the waves were only dominated by P-components. The results are then discussed in the context of potential uses of the proposed methodology for human-induced disaster early warning system and/or the need of rapid response purposes for minimizing the disaster risks.

  13. Calculation of isodose curves from initial neutron radiation of a hypothetical nuclear explosion using Monte Carlo Method

    International Nuclear Information System (INIS)

    Medeiros, Marcos P.C.; Rebello, Wilson F.; Andrade, Edson R.; Silva, Ademir X.

    2015-01-01

    Nuclear explosions are usually described in terms of its total yield and associated shock wave, thermal radiation and nuclear radiation effects. The nuclear radiation produced in such events has several components, consisting mainly of alpha and beta particles, neutrinos, X-rays, neutrons and gamma rays. For practical purposes, the radiation from a nuclear explosion is divided into i nitial nuclear radiation , referring to what is issued within one minute after the detonation, and 'residual nuclear radiation' covering everything else. The initial nuclear radiation can also be split between 'instantaneous or 'prompt' radiation, which involves neutrons and gamma rays from fission and from interactions between neutrons and nuclei of surrounding materials, and 'delayed' radiation, comprising emissions from the decay of fission products and from interactions of neutrons with nuclei of the air. This work aims at presenting isodose curves calculations at ground level by Monte Carlo simulation, allowing risk assessment and consequences modeling in radiation protection context. The isodose curves are related to neutrons produced by the prompt nuclear radiation from a hypothetical nuclear explosion with a total yield of 20 KT. Neutron fluency and emission spectrum were based on data available in the literature. Doses were calculated in the form of ambient dose equivalent due to neutrons H*(10) n - . (author)

  14. Calculation of isodose curves from initial neutron radiation of a hypothetical nuclear explosion using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Marcos P.C.; Rebello, Wilson F.; Andrade, Edson R., E-mail: rebello@ime.eb.br, E-mail: daltongirao@yahoo.com.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Silva, Ademir X., E-mail: ademir@nuclear.ufrj.br [Corrdenacao dos Programas de Pos-Graduacao em Egenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Nuclear explosions are usually described in terms of its total yield and associated shock wave, thermal radiation and nuclear radiation effects. The nuclear radiation produced in such events has several components, consisting mainly of alpha and beta particles, neutrinos, X-rays, neutrons and gamma rays. For practical purposes, the radiation from a nuclear explosion is divided into {sup i}nitial nuclear radiation{sup ,} referring to what is issued within one minute after the detonation, and 'residual nuclear radiation' covering everything else. The initial nuclear radiation can also be split between 'instantaneous or 'prompt' radiation, which involves neutrons and gamma rays from fission and from interactions between neutrons and nuclei of surrounding materials, and 'delayed' radiation, comprising emissions from the decay of fission products and from interactions of neutrons with nuclei of the air. This work aims at presenting isodose curves calculations at ground level by Monte Carlo simulation, allowing risk assessment and consequences modeling in radiation protection context. The isodose curves are related to neutrons produced by the prompt nuclear radiation from a hypothetical nuclear explosion with a total yield of 20 KT. Neutron fluency and emission spectrum were based on data available in the literature. Doses were calculated in the form of ambient dose equivalent due to neutrons H*(10){sub n}{sup -}. (author)

  15. The Soviet program for peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Nordyke, M.D.

    1996-01-01

    The concept of utilizing the weapons of war to serve the peaceful pursuits of mankind is as old as civilization itself. Perhaps the most famous reference to this basic desire is recorded in the Book of Micah where the great prophet Isiah called upon his people 'to turn your spears into pitchforks and your swords into plowshares.' As the scientists at Los Alamos worked on developing the world's first atomic bomb, thoughts of how this tremendous new source of energy could be used for peaceful purposes generally focused on using the thermal energy generated by the slow fission of uranium in a reactor, such as those being used to produce Plutonium to drive electric power stations. However, being scientists in a new, exciting field, it was impossible to avoid letting their minds wander from the task at hand to other scientific or non-military uses for the bombs themselves. During the Manhattan Project, Otto Frisch, one of the pioneers in the development of nuclear fission process in the 1930s, first suggested using an atomic explosion as a source for a large quantities of neutrons which could used in scientific experiments designed to expand their understanding of nuclear physics. After the war was over, many grandiose ideas appeared in the popular press on how this new source of energy should be to serve mankind. Not to be left out of the growing enthusiasm for peaceful uses of atomic energy, the Soviet Union added their visions to the public record. This document details the Soviet program for using nuclear explosions in peacetime pursuits

  16. The Soviet program for peaceful uses of nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Nordyke, M.D.

    1996-07-24

    The concept of utilizing the weapons of war to serve the peaceful pursuits of mankind is as old as civilization itself. Perhaps the most famous reference to this basic desire is recorded in the Book of Micah where the great prophet Isiah called upon his people `to turn your spears into pitchforks and your swords into plowshares.` As the scientists at Los Alamos worked on developing the world`s first atomic bomb, thoughts of how this tremendous new source of energy could be used for peaceful purposes generally focused on using the thermal energy generated by the slow fission of uranium in a reactor, such as those being used to produce Plutonium to drive electric power stations. However, being scientists in a new, exciting field, it was impossible to avoid letting their minds wander from the task at hand to other scientific or non-military uses for the bombs themselves. During the Manhattan Project, Otto Frisch, one of the pioneers in the development of nuclear fission process in the 1930s, first suggested using an atomic explosion as a source for a large quantities of neutrons which could used in scientific experiments designed to expand their understanding of nuclear physics. After the war was over, many grandiose ideas appeared in the popular press on how this new source of energy should be to serve mankind. Not to be left out of the growing enthusiasm for peaceful uses of atomic energy, the Soviet Union added their visions to the public record. This document details the Soviet program for using nuclear explosions in peacetime pursuits.

  17. Nuclear Winter: Global Consequences of Multiple Nuclear Explosions

    Science.gov (United States)

    Turco, R. P.; Toon, O. B.; Ackerman, T. P.; Pollack, J. B.; Sagan, Carl

    1983-12-01

    The potential global atmospheric and climatic consequences of nuclear war are investigated using models previously developed to study the effects of volcanic eruptions. Although the results are necessarily imprecise, due to a wide range of possible scenarios and uncertainty in physical parameters, the most probable first-order effects are serious. Significant hemispherical attenuation of the solar radiation flux and subfreezing land temperatures may be caused by fine dust raised in high-yield nuclear surface bursts and by smoke from city and forest fires ignited by airbursts of all yields. For many simulated exchanges of several thousand megatons, in which dust and smoke are generated and encircle the earth within 1 to 2 weeks, average light levels can be reduced to a few percent of ambient and land temperatures can reach -15 degrees to -25 degrees C. The yield threshold for major optical and climatic consequences may be very low: only about 100 megatons detonated over major urban centers can create average hemispheric smoke optical depths greater than 2 for weeks and, even in summer, subfreezing land temperatures for months. In a 5000-megaton war, at northern mid-latitude sites remote from targets, radioactive fallout on time scales of days to weeks can lead to chronic mean doses of up to 50 rads from external whole-body gamma-ray exposure, with a likely equal or greater internal dose from biologically active radionuclides. Large horizontal and vertical temperature gradients caused by absorption of sunlight in smoke and dust clouds may greatly accelerate transport of particles and radioactivity from the Northern Hemisphere to the Southern Hemisphere. When combined with the prompt destruction from nuclear blast, fires, and fallout and the later enhancement of solar ultraviolet radiation due to ozone depletion, long-term exposure to cold, dark, and radioactivity could pose a serious threat to human survivors and to other species.

  18. Brazilian participation in the International Monitoring System for Nuclear Explosions

    International Nuclear Information System (INIS)

    Veloso, Jose Alberto Vivas

    1995-01-01

    On January 1, 1995, Brazil was integrated to the world-wide seismic system, through the Seismological Observatory of the University of Brasilia, dedicated to detect and identify underground nuclear explosions. This is an unprecedented global effort program to conduct a seismic test of rapid data collection, distribution and processing evolving the most advanced sensors, global communications and data processing technologies. By the end of February, 49 countries were incorporated and the present test represents a first training step towards the final definition of an International Monitoring System to monitoring a Comprehensive test Band Treaty. Besides accomplishing its main goal, the global monitoring program will be able to supply rapidly, through the International Data Center, important information to the seismological community. (author). 2 figs

  19. Symposium on engineering with nuclear explosives. Proceedings. Volume 2

    International Nuclear Information System (INIS)

    1970-05-01

    This symposium on 'Engineering with Nuclear Explosives' reports to the Plowshare community, both national and international, the progress achieved since April 1964, the date of the Third Plowshare Symposium. In structuring the technical presentations, contributions of broadest interest were placed at the beginning, thus forming a common base of current information and applied science understanding developed in support of Plowshare technology. Sessions of speciality or pertaining to specific areas of application and engineering follow logically in the program. The Plenary Session reviewed the current status of the Plowshare Program from the technical, government, and industrial points of view. The 112 papers presented at 15 technical sessions covered all technical aspects of the Plowshare Program. The conference summary reviewed principal themes, areas of significant advance, and subjects requiring further attention that emerged during the technical conference. This proceedings is the record of the symposium

  20. Symposium on engineering with nuclear explosives. Proceedings. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-05-01

    This symposium on 'Engineering with Nuclear Explosives' reports to the Plowshare community, both national and international, the progress achieved since April 1964, the date of the Third Plowshare Symposium. In structuring the technical presentations, contributions of broadest interest were placed at the beginning, thus forming a common base of current information and applied science understanding developed in support of Plowshare technology. Sessions of speciality or pertaining to specific areas of application and engineering follow logically in the program. The Plenary Session reviewed the current status of the Plowshare Program from the technical, government, and industrial points of view. The 112 papers presented at 15 technical sessions covered all technical aspects of the Plowshare Program. The conference summary reviewed principal themes, areas of significant advance, and subjects requiring further attention that emerged during the technical conference. These proceedings are the record of the symposium.

  1. Symposium on engineering with nuclear explosives. Proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-05-15

    This symposium on 'Engineering with Nuclear Explosives' reports to the Plowshare community, both national and international, the progress achieved since April 1964, the date of the Third Plowshare Symposium. In structuring the technical presentations, contributions of broadest interest were placed at the beginning, thus forming a common base of current information and applied science understanding developed in support of Plowshare technology. Sessions of speciality or pertaining to specific areas of application and engineering follow logically in the program. The Plenary Session reviewed the current status of the Plowshare Program from the technical, government, and industrial points of view. The 112 papers presented at 15 technical sessions covered all technical aspects of the Plowshare Program. The conference summary reviewed principal themes, areas of significant advance, and subjects requiring further attention that emerged during the technical conference. This proceedings is the record of the symposium.

  2. Symposium on engineering with nuclear explosives. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    1970-05-01

    This symposium on 'Engineering with Nuclear Explosives' reports to the Plowshare community, both national and international, the progress achieved since April 1964, the date of the Third Plowshare Symposium. In structuring the technical presentations, contributions of broadest interest were placed at the beginning, thus forming a common base of current information and applied science understanding developed in support of Plowshare technology. Sessions of speciality or pertaining to specific areas of application and engineering follow logically in the program. The Plenary Session reviewed the current status of the Plowshare Program from the technical, government, and industrial points of view. The 112 papers presented at 15 technical sessions covered all technical aspects of the Plowshare Program. The conference summary reviewed principal themes, areas of significant advance, and subjects requiring further attention that emerged during the technical conference. These proceedings are the record of the symposium

  3. Mass casualties of radiation injuries after nuclear weapon explosion

    International Nuclear Information System (INIS)

    Messerschmidt, O.

    1980-01-01

    Burns, mechanical lesions, radiation injuries as well as combinations of these types of injuries as a consequence of a nuclear explosion demand different basic lines of triage. The lack of a suitable physical dosimetry is a special problem for the evaluation of radiation injuries. While in cases of wounds and burns treatment, like surgery, is recommended to take place early, for example, within hours or days after those injuries, treatment of radiation victims is necessary only in the stage of severe haematologic changes including disturbances of coagulation and occurrence of high fever which appears after one or two weeks subsequent to exposure. The lack of medical personnel and medical equipment result in even a worse prognosis for the various injuries than in peace time accidents. (orig.) [de

  4. International scaling of nuclear and radiological events

    International Nuclear Information System (INIS)

    Wang Yuhui; Wang Haidan

    2014-01-01

    Scales are inherent forms of measurement used in daily life, just like Celsius or Fahrenheit scales for temperature and Richter for scale for earthquakes. Jointly developed by the IAEA and OECD/NEA in 1990, the purpose of International Nuclear and Radiological Event Scale (INES) is to help nuclear and radiation safety authorities and the nuclear industry worldwide to rate nuclear and radiological events and to communicate their safety significance to the general public, the media and the technical community. INES was initially used to classify events at nuclear power plants only. It was subsequently extended to rate events associated with the transport, storage and use of radioactive material and radiation sources, from those occurring at nuclear facilities to those associated with industrial use. Since its inception, it has been adopted in 69 countries. Events are classified on the scale at seven levels: Levels 1-3 are called 'incidents' and Levels 4-7 'accidents'. The scale is designed so that the severity of an event is about ten times greater for each increase in level on the scale. Events without safety significance are called 'deviations' and are classified Below Scale/Level 0. INES classifies nuclear and radiological accidents and incidents by considering three areas of impact: People and the Environment; Radiological Barriers and Control; Defence-in-Depth. By now, two nuclear accidents were on the highest level of the scale: Chernobyl and Fukumashi. (authors)

  5. Gas cloud explosions and their effect on nuclear power plant, basic development of explosion codes

    International Nuclear Information System (INIS)

    Hall, S.F.; Martin, D.; MacKenzie, J.

    1985-01-01

    The study of factors influencing the pressure and velocity fields produced by the burning of flammable substances has been in progress at SRD for some years. This paper describes an extension of these studies by using existing codes for a parametric survey, and modifying codes to produce more realistic representations of explosions and developing a two dimensional combustion code, FLARE. The one dimensional combustion code, GASEX1, has been used to determine the pressure from a burning gas cloud for a number of different fuels, concentrations and burning velocities. The code was modified so that gas concentrations could be modelled. Results for concentration gradients showed the pressure depended on local conditions and the burning velocity. The two dimensional code, GASEX2, was modified to model the interaction of pressure waves with structures. It was used, with results from GASEX1, to model the interaction of a pressure wave from the combustion of a gas cloud with a rigid structure representing a nuclear power plant. The two dimensional code FLARE has been developed to model the interaction of flames and pressure waves with structures. The code incorporates a simple turbulence model with a turbulence dependent reaction rate. Validation calculations have been carried out for the code. (author)

  6. Ascertaining the impact of catastrophic events on dengue outbreak: The 2014 gas explosions in Kaohsiung, Taiwan

    Science.gov (United States)

    2017-01-01

    Infectious disease outbreaks often occur in the aftermath of catastrophic events, either natural or man-made. While natural disasters such as typhoons/hurricanes, flooding and earthquakes have been known to increase the risk of infectious disease outbreak, the impact of anthropogenic disasters is less well-understood. Kaohsiung City is located in southern Taiwan, where most dengue outbreaks had occurred in the past two decades. It is also the center of petrochemical industry in Taiwan with pipelines running underneath city streets. Multiple underground gas explosions occurred in Kaohsiung in the evening of July 31, 2014 due to chemical leaks in the pipelines. The explosions caused 32 deaths, including five firefighters and two volunteer firefighters, and injured 321 persons. Historically, dengue outbreaks in southern Taiwan occurred mostly in small numbers of around 2000 cases or less, except in 2002 with over 5000 cases. However, in the months after the gas explosions, the city reported 14528 lab-confirmed dengue cases from August to December. To investigate the possible impact, if any, of the gas explosions on this record-breaking dengue outbreak, a simple mathematical model, the Richards model, is utilized to study the temporal patterns of the spread of dengue in the districts of Kaohsiung in the proximity of the explosion sites and to pinpoint the waves of infections that had occurred in each district in the aftermath of the gas explosions. The reproduction number of each wave in each district is also computed. In the aftermath of the gas explosions, early waves occurred 4–5 days (which coincides with the minimum of human intrinsic incubation period for dengue) later in districts with multiple waves. The gas explosions likely impacted the timing of the waves, but their impact on the magnitude of the 2014 outbreak remains unclear. The modeling suggests the need for public health surveillance and preparedness in the aftermath of future disasters. PMID:28520740

  7. Trends and characteristics observed in nuclear events based on international nuclear event scale reports

    International Nuclear Information System (INIS)

    Watanabe, Norio

    2001-01-01

    The International Nuclear Event Scale (INES) is jointly operated by the IAEA and the OECD-NEA as a means designed for providing prompt, clear and consistent information related to nuclear events, that occurred at nuclear facilities, and facilitating communication between the nuclear community, the media and the public. Nuclear events are reported to the INES with the Scale', a consistent safety significance indicator, which runs from level 0, for events with no safety significance, to level 7 for a major accident with widespread health and environmental effects. Since the operation of INES was initiated in 1990, approximately 500 events have been reported and disseminated. The present paper discusses the trends observed in nuclear events, such as overall trends of the reported events and characteristics of safety significant events with level 2 or higher, based on the INES reports. (author)

  8. Relationship between eruption plume heights and seismic source amplitudes of eruption tremors and explosion events

    Science.gov (United States)

    Mori, A.; Kumagai, H.

    2016-12-01

    It is crucial to analyze and interpret eruption tremors and explosion events for estimating eruption size and understanding eruption phenomena. Kumagai et al. (EPS, 2015) estimated the seismic source amplitudes (As) and cumulative source amplitudes (Is) for eruption tremors and explosion events at Tungurahua, Ecuador, by the amplitude source location (ASL) method based on the assumption of isotropic S-wave radiation in a high-frequency band (5-10 Hz). They found scaling relations between As and Is for eruption tremors and explosion events. However, the universality of these relations is yet to be verified, and the physical meanings of As and Is are not clear. In this study, we analyzed the relations between As and Is for eruption tremors and explosion events at active volcanoes in Japan, and estimated As and Is by the ASL method. We obtained power-law relations between As and Is, in which the powers were different between eruption tremors and explosion events. These relations were consistent with the scaling relations at Tungurahua volcano. Then, we compared As with maximum eruption plume heights (H) during eruption tremors analyzed in this study, and found that H was proportional to 0.21 power of As. This relation is similar to the plume height model based on the physical process of plume rise, which indicates that H is proportional to 0.25 power of volumetric flow rate for plinian eruptions. This suggests that As may correspond to volumetric flow rate. If we assume a seismic source with volume changes and far-field S-wave, As is proportional to the source volume rate. This proportional relation and the plume height model give rise to the relation that H is proportional to 0.25 power of As. These results suggest that we may be able to estimate plume heights in realtime by estimating As during eruptions from seismic observations.

  9. To the issue about negative consequences of underground nuclear explosions in the salt domes

    International Nuclear Information System (INIS)

    Belyashov, D.N.; Mokhov, V.A.; Murzadilov, T.D.

    1998-01-01

    I. From 1970 to 1984, 26 underground explosions were conducted at Azgir test site salt domes and Karachaganak gas-condensate deposit (KGKD) of Kazakhstan. Consequence, 9 and 6, relatively, underground cavities were created. At Azgir test site 5 cavities were filled by water and brines. Some of them were destroyed with surface spotting formation. It is noticed the spreading of radionuclides out of cavities bounds. At the KGKD gas-condensate is loaded into 4 cavities, another 2 cavities are in the accident condition, the last one (5TK) was filled by brine. There are characters of radioecological situation degradation above the last cavity. Radioactive logging in the cavity shown that the γ-activity of rock was increased more then 8 times in the distance of depths 0-64 m for 3 years. Apparently, outbreak of radioactive brines takes place along the zones of fissuring on the bound of casing tubes into the 5TK borehole and along enclosing rocks with sorption of radioactive isotopes in clay rocks. 2. There are examples of negative evolution of events at the Astrakhan gas-condensate deposit, where 15 nuclear cavities were created from 1980 to 1984 years. In 1986 year, 13 of them stopped to exist because of tectonic shearing, triggering by underground nuclear explosion in the salt dome. Many of them are flooded and they throw out the radioactive brines, reaching the surface. 3. Negative development of radioecological situation is occurred because of depressurization of cavities, their flooding, displacement of radionuclides with salt into the brines, destroying of cavities, extrusion of radioactive brines along the permeable zones, more often along the militant and observation boreholes. It is possible to spread of radioactive contamination along horizontal at the distance for l,5-3 km. In 2 years after the underground nuclear explosion at the Grachev oil deposit of Bashkiria radioactive tritium was detected in underground water and in the ground more then 3 km far from

  10. The feasibility of uranium enrichment in Brazil for use in nuclear bombs and the conceptual project of a nuclear explosive

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1990-05-01

    This work reports the steps to define a brazilian system of nuclear safeguards under the congress responsibility. It discusses as well the feasibility of uranium enrichment for nuclear weapons, the construction of a nuclear submarine and the conceptual project of a nuclear explosive. (A.C.A.S.)

  11. Summary of USSR reports on mechanical and radioactivity effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Paul [Civil Engineering Department, Stanford University, Stanford, CA (United States)

    1970-05-01

    Two reports have been issued by the USSR which examine the mechanical effects and radioactive contamination of the environment from underground nuclear explosions. In reviewing the mechanical effects, the institute of Terrestrial Physics of the USSR Academy of Sciences emphasizes the advantages of nuclear explosives, namely the tremendous power and small dimensions, in the industrial and construction fields. The authors note that the mechanical effects are based not only upon the explosive yield but also upon the thermodynamic properties of the cavity gases during expansion. These properties may vary widely depending upon the rock material. A list of the basic parameters affecting the mechanical effects of contained nuclear explosions includes: cavity volume, dimensions of the chimney, degree of rock fracturing, intensity of the compression wave as a function of distance from shot point, and seismic effects. The second paper describes the phenomenology of radioactive contamination of the environment for both contained and excavation explosions.

  12. Summary of USSR reports on mechanical and radioactivity effects of underground nuclear explosions

    International Nuclear Information System (INIS)

    Kruger, Paul

    1970-01-01

    Two reports have been issued by the USSR which examine the mechanical effects and radioactive contamination of the environment from underground nuclear explosions. In reviewing the mechanical effects, the institute of Terrestrial Physics of the USSR Academy of Sciences emphasizes the advantages of nuclear explosives, namely the tremendous power and small dimensions, in the industrial and construction fields. The authors note that the mechanical effects are based not only upon the explosive yield but also upon the thermodynamic properties of the cavity gases during expansion. These properties may vary widely depending upon the rock material. A list of the basic parameters affecting the mechanical effects of contained nuclear explosions includes: cavity volume, dimensions of the chimney, degree of rock fracturing, intensity of the compression wave as a function of distance from shot point, and seismic effects. The second paper describes the phenomenology of radioactive contamination of the environment for both contained and excavation explosions

  13. The 20th nuclear explosion test of the Peoples' Republic of China (underground nuclear test)

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    (1) The New China News Agency and the Radio Peking announced that China conducted the underground nuclear explosion test on 17 October, 1976. However, no exact data concerning the data, the place and the scale of this test was stated in above announcement. (2) However, relatively high radioactivity than that of normal level was detected in the rain and dry fallout samples collected from several prefectures. (author)

  14. Engineering with nuclear explosives near populated areas - A survey from the technological and economic viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Parker, K [AWRE, Aldermaston (United Kingdom)

    1970-05-01

    Current experience with underground firings of nuclear explosives and of large charges of conventional explosives is largely confined to sparsely populated areas such as the Nevada and Sahara deserts and parts of Siberia. On the other hand many of the commercial applications proposed for nuclear explosives are directly relevant to industrialized areas, where consumptions of energy and natural resources are high, as are population densities. In many of these areas there is a need to increase the efficiency with which natural gas, oil and electrical power are supplied and to make safe disposal of fluid wastes; completely contained nuclear explosions could be a useful tool in achieving some or all of these aims. Whilst radioactivity and air blast hazards are likely to rule out nuclear cratering operations near densely populated areas, the prospects for carrying out completely contained explosions are much better, providing seismic damage is kept within reasonable bounds. In large areas of Western Europe and on the eastern, southern and western seaboards of the United States this might be achieved by using nuclear explosions beneath the seabed at a reasonable distance from the nearest coastline, always provided the relevant political issues can be resolved. Stimulation and storage of North Sea natural gas, construction of off-shore oil storage and storage of electrical energy are areas where engineering with nuclear explosives merits more detailed investigation and some of the relevant technical problems are discussed. (author)

  15. Engineering with nuclear explosives near populated areas - A survey from the technological and economic viewpoint

    International Nuclear Information System (INIS)

    Parker, K.

    1970-01-01

    Current experience with underground firings of nuclear explosives and of large charges of conventional explosives is largely confined to sparsely populated areas such as the Nevada and Sahara deserts and parts of Siberia. On the other hand many of the commercial applications proposed for nuclear explosives are directly relevant to industrialized areas, where consumptions of energy and natural resources are high, as are population densities. In many of these areas there is a need to increase the efficiency with which natural gas, oil and electrical power are supplied and to make safe disposal of fluid wastes; completely contained nuclear explosions could be a useful tool in achieving some or all of these aims. Whilst radioactivity and air blast hazards are likely to rule out nuclear cratering operations near densely populated areas, the prospects for carrying out completely contained explosions are much better, providing seismic damage is kept within reasonable bounds. In large areas of Western Europe and on the eastern, southern and western seaboards of the United States this might be achieved by using nuclear explosions beneath the seabed at a reasonable distance from the nearest coastline, always provided the relevant political issues can be resolved. Stimulation and storage of North Sea natural gas, construction of off-shore oil storage and storage of electrical energy are areas where engineering with nuclear explosives merits more detailed investigation and some of the relevant technical problems are discussed. (author)

  16. A proposal to use chlorine-36 for monitoring the movement of radionuclides from nuclear explosions

    International Nuclear Information System (INIS)

    Phillips, F.M.; Davis, S.N.; Kubik, P.

    1990-01-01

    Chlorine-36 has been produced in large amounts by hundreds of nuclear explosions on the Nevada Test Site as well as 12 off-site explosions at eight locations in five states. Continued monitoring of the redistribution of radionuclides by subsurface water is of concern in most of the areas affected by the detonations. Chlorine-36 has the following advantages as a built-in tracer for this redistribution: its mobility is equal to or greater than water, its long half-life assures its continued usefulness over long periods, collection and storage of samples is simple, it is not subject to vapor transport at ordinary temperatures, its natural background is very low, and it does not form insoluble precipitates. Chlorine-36 from the Gnome event near Carlsbad, New Mexico, illustrates how 36 Cl can be used to help study the redistribution of radionuclides in the soil profile. Chlorine-36 is also potentially useful as a tracer to study movement of contaminants around large nuclear reactor complexes and near repositories for radioactive waste

  17. The research development on the movement of the gas in nuclear explosion clouds

    International Nuclear Information System (INIS)

    Li Xiaoli; Zheng Yi; Zhu Shilei

    2010-01-01

    This paper is intends to analysis several experimental research and also the numerical modeling on the movement of explosion clouds. Following this, the paper gives some development of the numerical modeling and also its restriction during its application to the gas in Nuclear Explosion Clouds. Finally, the model applied to different stage are pointed out. (authors)

  18. Numerical simulation of the ionization effects of low- and high-altitude nuclear explosions

    International Nuclear Information System (INIS)

    Zhao Zhengyu; Wang Xiang

    2007-01-01

    Low-altitude and high-altitude nuclear explosions are sources of intensive additional ionization in ionosphere. In this paper, in terms of the ionization equilibrium equation system and the equation of energy deposition of radiation in atmosphere, and considering the influence of atmosphere, the temporal and spatial distribution of ionization effects caused by atmospheric nuclear detonation are investigated. The calculated results show that the maximum of additional free electron density produced by low-altitude nuclear explosion is greater than that by the high-altitude nuclear burst. As to the influence of instant nuclear radiation, there is obvious difference between the low-altitude and the high-altitude explosions. The influence range and the continuance time caused by delayed nuclear radiation is less for the low-altitude nuclear detonation than that for the high-altitude one. (authors)

  19. Study of the chimney produced by an underground nuclear explosion; Etude de la cheminee creee par une explosion nucleaire souterraine

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    Underground nuclear explosions lead to the formation of a cavity which is roughly of spherical shape. The roof of this cavity is unstable and collapses in most cases, leading to the formation of a chimney. The height and the diameter depend on the energy of the charge and on the nature of the surroundings. The chronology of the various stages can be determined by seismic observations. The interior of the chimney is filled, either partially or completely, with rubble earth. This phenomenon is of great importance as far as the use of nuclear explosions for industrial applications is concerned. (author) [French] Les explosions nucleaires souterraines creent une cavite de forme grossierement spherique. La voute de cette cavite est instable et s'effondre dans la plupart des cas, donnant lieu a la formation d'une cheminee. La hauteur et le diametre sont fonction de l'energie du tir et de la nature du milieu. La chronologie des evenements peut etre determinee par des observations seismiques. L'interieur des cheminees est occupe, en partie ou en totalite, par des eboulis. Ce phenomene presente un grand interet pour l'utilisation des explosions nucleaires a des fins industrielles. (auteur)

  20. Radioactive contamination of copper produced using nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Crouse, D J; Arnold, W D; Hurst, F J

    1970-05-15

    Laboratory tests simulating the processing of copper ore after fracturing with nuclear explosives indicate that only very small fractions of the radioactive fission products will be dissolved on leaching with dilute sulfuric acid. Tritium (as tritiated water) will be by far the dominant radionuclide in the circulating leach liquor, assuming use of a fusion device. Only 106Ru appears of significant importance with respect to contamination of the cement copper. It is rejected effectively in electrolytic purification and, therefore, the final copper product should be very low in radiocontamination and not hazardous to the customer. The activity level may be high enough, however, to make the copper unsuitable for some specific uses. If necessary, solvent extraction can be used as an alternative to the cementation process to reduce the radioactivity of the copper products. The tritium in the circulating liquor and the 106Ru in the cement copper are potential hazards at the plant site and must be given consideration in designing and operating the facility. However since the activity levels will be low, the protection necessary to ensure safety of the operating personnel should be neither difficult nor costly to provide. (author)

  1. The ionization effects from nuclear explosions in high-altitude and their effect to radio propagation

    International Nuclear Information System (INIS)

    Guan Rongsheng; Li Qin

    1997-01-01

    A high-altitude nuclear explosions releases large quantities of energetic particles and electromagnetic radiation capable of producing ionization in the atmosphere. These particles and rays radiation character in the atmosphere are discussed. Ionizations due to explosion X rays, γ rays, neutrons and β particles are considered separately. The time-space distribution of additional electron density is computed and its nature is analyzed. The effects of explosion-induced ionization on the absorption of radio wave is considered and the dependence of the absorption on explosion characteristics, distance from the earth's atmosphere, and frequency of the radio wave is determined

  2. OCENER, a one-dimensional computer code for the numerical simulation of the mechanical effects of peaceful underground nuclear explosions in rocks

    International Nuclear Information System (INIS)

    Gupta, S.C.; Sikka, S.K.; Chidambaram, R.

    1979-01-01

    An account is given of a one-dimensional spherical symmetric computer code for the numerical simulation of the effects of peaceful underground nuclear explosions in rocks (OCENER). In the code, the nature of the stress field and response of the medium to this field are modelled numerically by finite difference form of the laws of continuum mechanics and the constitutive relations of the rock medium in which the detonation occurs. It enables to approximate well the cavity growth and fracturing of the surrounding rock for contained explosions and the events upto the time the spherical symmetry is valid for cratering-type explosions. (auth.)

  3. Wavelet analysis and it's applications to recognition of nuclear explosion and lightning

    International Nuclear Information System (INIS)

    Zhang Zhongshan; Zhang Enshan; Gao Chunxia

    1999-01-01

    An approach to feature extraction and recognition of the characteristic signal is studied. And the method is applied to recognition of nuclear explosions and lightning. The results show the method is valid

  4. UTEX modeling of xenon signature sensitivity to geology and explosion cavity characteristics following an underground nuclear explosion

    Science.gov (United States)

    Lowrey, J. D.; Haas, D.

    2013-12-01

    Underground nuclear explosions (UNEs) produce anthropogenic isotopes that can potentially be used in the verification component of the Comprehensive Nuclear-Test-Ban Treaty. Several isotopes of radioactive xenon gas have been identified as radionuclides of interest within the International Monitoring System (IMS) and in an On-Site Inspection (OSI). Substantial research has been previously undertaken to characterize the geologic and atmospheric mechanisms that can drive the movement of radionuclide gas from a well-contained UNE, considering both sensitivities on gas arrival time and signature variability of xenon due to the nature of subsurface transport. This work further considers sensitivities of radioxenon gas arrival time and signatures to large variability in geologic stratification and generalized explosion cavity characteristics, as well as compares this influence to variability in the shallow surface.

  5. Characteristics of acoustic wave from atmospheric nuclear explosions conducted at the USSR Test Sites

    Science.gov (United States)

    Sokolova, Inna

    2015-04-01

    Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for

  6. Recognition of underground nuclear explosion and natural earthquake based on neural network

    International Nuclear Information System (INIS)

    Yang Hong; Jia Weimin

    2000-01-01

    Many features are extracted to improve the identified rate and reliability of underground nuclear explosion and natural earthquake. But how to synthesize these characters is the key of pattern recognition. Based on the improved Delta algorithm, features of underground nuclear explosion and natural earthquake are inputted into BP neural network, and friendship functions are constructed to identify the output values. The identified rate is up to 92.0%, which shows that: the way is feasible

  7. Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares

    Science.gov (United States)

    Lyutikov, Maxim; Komissarov, Serguei; Sironi, Lorenzo

    2018-04-01

    We develop a model of gamma-ray flares of the Crab Nebula resulting from the magnetic reconnection events in a highly magnetised relativistic plasma. We first discuss physical parameters of the Crab Nebula and review the theory of pulsar winds and termination shocks. We also review the principle points of particle acceleration in explosive reconnection events [Lyutikov et al., J. Plasma Phys., vol. 83(6), p. 635830601 (2017a); J. Plasma Phys., vol. 83(6), p. 635830602 (2017b)]. It is required that particles producing flares are accelerated in highly magnetised regions of the nebula. Flares originate from the poleward regions at the base of the Crab's polar outflow, where both the magnetisation and the magnetic field strength are sufficiently high. The post-termination shock flow develops macroscopic (not related to the plasma properties on the skin-depth scale) kink-type instabilities. The resulting large-scale magnetic stresses drive explosive reconnection events on the light-crossing time of the reconnection region. Flares are produced at the initial stage of the current sheet development, during the X-point collapse. The model has all the ingredients needed for Crab flares: natural formation of highly magnetised regions, explosive dynamics on the light travel time, development of high electric fields on macroscopic scales and acceleration of particles to energies well exceeding the average magnetic energy per particle.

  8. Numerical simulation of stress wave propagation from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, J T; Petersen, F L [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    This paper presents a numerical model of stress wave propagation (SOC) which uses material properties data from a preshot testing program to predict the stress-induced effects on the rock mass involved in a Plowshare application. SOC calculates stress and particle velocity history, cavity radius, extent of brittle failure, and the rock's efficiency for transmitting stress. The calculations are based on an equation of state for the rock, which is developed from preshot field and laboratory measurements of the rock properties. The field measurements, made by hole logging, determine in situ values of the rock's density, water content, and propagation velocity for elastic waves. These logs also are useful in judging the layering of the rock and in choosing which core samples to test in the laboratory. The laboratory analysis of rock cores includes determination of hydrostatic compressibility to 40 kb, triaxial strength data, tensile strength, Hugoniot elastic limit, and, for the rock near the point of detonation, high-pressure Hugoniot data. Equation-of-state data are presented for rock from three sites subjected to high explosive or underground nuclear shots, including the Hardhat and Gasbuggy sites. SOC calculations of the effects of these two shots on the surrounding rock are compared with the observed effects. In both cases SOC predicts the size of the cavity quite closely. Results of the Gasbuggy calculations indicate that useful predictions of cavity size and chimney height can be made when an adequate preshot testing program is run to determine the rock's equation of state. Seismic coupling is very sensitive to the low-pressure part of the equation of state, and its successful prediction depends on agreement between the logging data and the static compressibility data. In general, it appears that enough progress has been made in calculating stress wave propagation to begin looking at derived numbers, such as number of cracks per zone, for some insight into the

  9. Numerical simulation of stress wave propagation from underground nuclear explosions

    International Nuclear Information System (INIS)

    Cherry, J.T.; Petersen, F.L.

    1970-01-01

    This paper presents a numerical model of stress wave propagation (SOC) which uses material properties data from a preshot testing program to predict the stress-induced effects on the rock mass involved in a Plowshare application. SOC calculates stress and particle velocity history, cavity radius, extent of brittle failure, and the rock's efficiency for transmitting stress. The calculations are based on an equation of state for the rock, which is developed from preshot field and laboratory measurements of the rock properties. The field measurements, made by hole logging, determine in situ values of the rock's density, water content, and propagation velocity for elastic waves. These logs also are useful in judging the layering of the rock and in choosing which core samples to test in the laboratory. The laboratory analysis of rock cores includes determination of hydrostatic compressibility to 40 kb, triaxial strength data, tensile strength, Hugoniot elastic limit, and, for the rock near the point of detonation, high-pressure Hugoniot data. Equation-of-state data are presented for rock from three sites subjected to high explosive or underground nuclear shots, including the Hardhat and Gasbuggy sites. SOC calculations of the effects of these two shots on the surrounding rock are compared with the observed effects. In both cases SOC predicts the size of the cavity quite closely. Results of the Gasbuggy calculations indicate that useful predictions of cavity size and chimney height can be made when an adequate preshot testing program is run to determine the rock's equation of state. Seismic coupling is very sensitive to the low-pressure part of the equation of state, and its successful prediction depends on agreement between the logging data and the static compressibility data. In general, it appears that enough progress has been made in calculating stress wave propagation to begin looking at derived numbers, such as number of cracks per zone, for some insight into the

  10. Surface motion near underground nuclear explosions in desert alluvium Operation Nougat I, Area 3, Nevada Test Site

    International Nuclear Information System (INIS)

    Perret, W.R.

    1978-05-01

    During Operation Nougat I, which was conducted in late 1961 and the first half of 1962, Sandia Laboratories measured surface motion in the vicinity of all contained underground nuclear explosions conducted by the Los Alamos Scientific Laboratory in Area 3 of the Nevada Test Site. This report presents and analyses most of the data derived from that study. Propagation velocities in the desert alluvium, 4440 ft/sec, and underlying tuff, 6020 ft/sec, are typical of those derived from later measurements. Motion attenuation data exhibit considerable scatter, in part because of early measurement and data reduction techniques but primarily because of differences in the characteristics of the geologic media which had not then been recognized. However, regression fits to the scaled data show attenuation of scaled acceleration at a rate 35% greater than that observed for Merlin event data (Merlin was conducted later in Area 3). The attenuation rate for particle velocity data from Nougat I events was 47% less than that for Merlin data, and the Nougat I scaled displacement data attenuation rate was 87% less than that for Merlin data. Analysis of data from a vertical string of gages extending to the surface above the Mink explosion has established a significant difference between normal spallation above contained explosions in competent rock and the reaction of uncemented alluvium to similar explosive loading

  11. Moment tensor analysis of the 3 September 2017 DPRK announced nuclear explosion and collapse aftershock

    Science.gov (United States)

    Ichinose, G. A.; Ford, S. R.; Chiang, A.; Walter, W. R.; Dreger, D. S.

    2017-12-01

    The Democratic People's Republic of Korea (DPRK) conducted its sixth announced nuclear test on 3 September 2017, 03:30:00 with a magnitude of 6.1 (IDC mb). At 03:38:27, there was an aftershock of magnitude 4.1 (IDC mb). Moment tensor analysis using regional long-period surface waves was performed to identify the source type of these two events. The first event was an explosive isotropic source with total seismic moment magnitude of Mw 5.34 (Mo=1.16e+17 Nm) with strong 66% isotropic component (eigenvalues: 1.30e+17, 0.75e+17, 0.44e+17 Nm). The second event was a closing crack source with an Mw 4.64 (Mo=1.04e+17 Nm) also with a strong 68% isotropic component (eigenvalues: -4.82e+16, -5.33e+16, -10.93e+16 Nm). We used the same stations within 360-1140 km for inversion of both events (stations: IC.MDJ, IC.BJT, IC.HIA) and predict the long-period displacements at KG.TJN and IU.INCN. We used a 1-D velocity model appropriate for active tectonic regions and band pass the data between periods of 20 and 100 sec. Waveform time-shifts were incorporated from previous event-station pairs to account for velocity model inadequacies. Both DPRK events source-types plot within the population of other NNSS nuclear and western US collapse events (Ford et al., 2009) on the fundamental lune (Tape and Tape, 2012). The DPRK collapse event is similar to the hole collapse 0h21m26s after the 5 September 1982 Atrisco shot at NNSS (Springer et al., 2002; DOE NV-209). The DPRK collapse could be explained by a complete or partial apical cavity collapse. The estimated collapse volume is 122000-277000 m3 and crack radius is 30-40 m given the seismic moment, elastic moduli for granite and a closing crack model (Mueller, 2001). In comparison to Denny and Johnson (1994) cavity-yield scaling in granite, the cavity radius ranges from 40 to 60 m given an explosion yield range of 140-400 kT. This collapse event is noteworthy because large aftershocks are rare in nuclear testing and even more rare are

  12. NATO Advanced Research Workshop on Explosives Detection Using Magnetic and Nuclear Resonance Techniques

    CERN Document Server

    Fraissard, Jacques

    2009-01-01

    Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to bui...

  13. Explosion Monitoring with Machine Learning: A LSTM Approach to Seismic Event Discrimination

    Science.gov (United States)

    Magana-Zook, S. A.; Ruppert, S. D.

    2017-12-01

    The streams of seismic data that analysts look at to discriminate natural from man- made events will soon grow from gigabytes of data per day to exponentially larger rates. This is an interesting problem as the requirement for real-time answers to questions of non-proliferation will remain the same, and the analyst pool cannot grow as fast as the data volume and velocity will. Machine learning is a tool that can solve the problem of seismic explosion monitoring at scale. Using machine learning, and Long Short-term Memory (LSTM) models in particular, analysts can become more efficient by focusing their attention on signals of interest. From a global dataset of earthquake and explosion events, a model was trained to recognize the different classes of events, given their spectrograms. Optimal recurrent node count and training iterations were found, and cross validation was performed to evaluate model performance. A 10-fold mean accuracy of 96.92% was achieved on a balanced dataset of 30,002 instances. Given that the model is 446.52 MB it can be used to simultaneously characterize all incoming signals by researchers looking at events in isolation on desktop machines, as well as at scale on all of the nodes of a real-time streaming platform. LLNL-ABS-735911

  14. Safety related events at nuclear installations in 1995

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C

    1996-01-01

    Nuclear safety related events of significance at least corresponding to level 2 of the International Nuclear Event Scale are described. In 1995 only two events occured at nuclear power plants, and four events occured at plants using ionizing radiation for processing or research.......Nuclear safety related events of significance at least corresponding to level 2 of the International Nuclear Event Scale are described. In 1995 only two events occured at nuclear power plants, and four events occured at plants using ionizing radiation for processing or research....

  15. Control of the dynamic environment produced by underground nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D L; Jackson, E C; Miller, A B [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    One important aspect of any underground nuclear explosion is recording, retrieval and analysis of experiment and/or device performance. Most of the information is recorded or conditioned on sensitive electronic equipment and often transmitted via antennas that must remain in alignment. Sometimes diagnostic packages are located in towers near surface ground zero (SGZ). Also, some equipment is needed for timing and firing as well as safety requirements. Generally it is desirable to locate this equipment as close to SGZ as possible. This paper is a summary of LRL's method of controlling the dynamic environment in order to get good quality data and protect equipment while optimizing the cost. The overall problem blends together: (1) definition of input, i.e. ground shock parameters; (2) shock sensitivity or fragility level of equipment to the input and purpose (i.e. does it record or transmit through shock arrival time?); and (3) design of a fail-safe shock mount (SM) system to modify the shock environment when required. Before any SM system can be designed, items I and 2 must be answered as the ground shock can vary over a wide range and the sensitivity/fragility of the equipment can vary from less than 1/2 g to more than 100 g's, particularly if recording is done through shock arrival time. Keeping antennas in alignment is a somewhat different problem. Whenever possible the design of the SM system is based only on peak input parameters of the ground motion since detailed time histories of the ground motions are very difficult to predict. For towers and other systems which require detailed time histories, computer codes have been developed which allow a parametric study of the input ground motion's effect on the response of the system. This paper deals mainly with the close-in region where the dynamic environment is quite severe. In this region, non-standard methods and analysis are required. Out of this region, more standard methods can be used. (author)

  16. Control of the dynamic environment produced by underground nuclear explosives

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Jackson, E.C.; Miller, A.B.

    1970-01-01

    One important aspect of any underground nuclear explosion is recording, retrieval and analysis of experiment and/or device performance. Most of the information is recorded or conditioned on sensitive electronic equipment and often transmitted via antennas that must remain in alignment. Sometimes diagnostic packages are located in towers near surface ground zero (SGZ). Also, some equipment is needed for timing and firing as well as safety requirements. Generally it is desirable to locate this equipment as close to SGZ as possible. This paper is a summary of LRL's method of controlling the dynamic environment in order to get good quality data and protect equipment while optimizing the cost. The overall problem blends together: (1) definition of input, i.e. ground shock parameters; (2) shock sensitivity or fragility level of equipment to the input and purpose (i.e. does it record or transmit through shock arrival time?); and (3) design of a fail-safe shock mount (SM) system to modify the shock environment when required. Before any SM system can be designed, items I and 2 must be answered as the ground shock can vary over a wide range and the sensitivity/fragility of the equipment can vary from less than 1/2 g to more than 100 g's, particularly if recording is done through shock arrival time. Keeping antennas in alignment is a somewhat different problem. Whenever possible the design of the SM system is based only on peak input parameters of the ground motion since detailed time histories of the ground motions are very difficult to predict. For towers and other systems which require detailed time histories, computer codes have been developed which allow a parametric study of the input ground motion's effect on the response of the system. This paper deals mainly with the close-in region where the dynamic environment is quite severe. In this region, non-standard methods and analysis are required. Out of this region, more standard methods can be used. (author)

  17. Explosively free-formed pass partition plate for a nuclear steam generator

    International Nuclear Information System (INIS)

    Schroeder, J.W.

    1980-01-01

    A large flow-separating dished plate of a complex shape was manufactured by near-contact explosive forming in which only an edge die was used. The shape of the part, for service in a large, nuclear steam generator, was obtained by careful sizing and placement of the explosive charge. The development of the technique and the manufacture of the plate are described. 4 refs

  18. Nuclear crime - a threat? Trade with nuclear explosives in Europe, political and social background

    International Nuclear Information System (INIS)

    Baumann, W.; Becker, D.; Brunner, H.; Fechner, J.; Frenzel, E.; Kaul, A.; Kesten, J.; Koschel, P.; Mattausch, E.; Mertens, D.; Nosske, D.; Stoll, W.; Willuhn, K.

    1995-01-01

    Nuclear Crime defined as illegal trade, transport and possession of fissille and other radioactive material, increasingly keeps government and public in suspense. As shown already by the two parts of the term, both Radiation Protection and Prosecution Authorities are concerned. In the focal theme of this issue, their opinions and experiences will be compiled with the aim of treating this really explosive topic critically, but factually correct from all sides. This intention requires answering several broad questions: -Where does the nuclear material come from? - What experiences with nuclear crime do exist? - What countermeasures are we able and ready to take? - What measurement techniques are at hand to recognize and avert the danger? and, with particular reference to the nuclear weapons material Plutonium: - Who is producing Pu, and in what shape and mixtures? - What is the real radiological risk of the 'ultra-poison' Pu? - What possibilities exist to remove Pu contaminations, and to decomparate it? The following contributions of competent authors from Germany and Switzerland convey a comprehensive picture of the present situation demonstrating equally that means and knowledge exist in both countries to efficiently overt the threat of Nuclear Crime. (orig.) [de

  19. Spectral content of seismic movements produced by underground nuclear explosions; Contenu spectral des mouvements seismiques dus aux explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Albaret, A; Duclaux, F [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    After a summary of available data, both theoretical and experimental, concerning the spectral content of seismic movements, a description is given of the experiments carried out during the French nuclear explosions in the Sahara, and of the results obtained on the volume waves. A comparison is then made with certain American results. A new method is described for studying the amplitude spectra; it has made it possible to show that the amount of low frequencies in the spectrum increases with the power of the explosion, and decreases with the distance to the zero point and with the filtering effect of the weathered zone. A calculation is then made of the low cut-off ground filter, this giving a better representation of the initial seismic phenomenon. (authors) [French] Apres avoir resume les connaissances disponibles, aussi bien theoriques qu'experimentales, sur le contenu spectral des mouvements seismiques, on decrit les experiences effectuees a l'occasion des explosions nucleaires francaises du Sahara et les resultats obtenus sur les ondes de volume. Puis on les compare avec certains resultats americains. On decrit une nouvelle methode d'etude des spectres d'amplitudes qui montre que le spectre est d'autant plus riche en basses frequences que la puissance de l'explosion est grande, que la distance au point zero est faible et qu'il est moins filtre par la zone alteree superficielle. Puis on calcule le filtre terrain coupe-bas qui permet de donner une representation plus fidele du phenomene seismique initial. (auteurs)

  20. Extreme meteorological events and nuclear facilities safety

    International Nuclear Information System (INIS)

    Almeida, Patricia Moco Princisval

    2006-01-01

    An External Event is an event that originates outside the site and whose effects on the Nuclear Power Plants (NPP) should be considered. Such events could be of natural or human induced origin and should be identified and selected for design purposes during the site evaluation process. This work shows that the subtropics and mid latitudes of South America east of the Andes Mountain Range have been recognized as prone to severe convective weather. In Brazil, the events of tornadoes are becoming frequent; however there is no institutionalized procedure for a systematic documentation of severe weather. The information is done only for some scientists and by the newspapers. Like strong wind can affect the structural integrity of buildings or the pressure differential can affect the ventilation system, our concern is the safety of NPP and for this purpose the recommendations of International Atomic Energy Agency, Nuclear Regulatory Commission and Comissao Nacional de Energia Nuclear are showed and also a data base of tornadoes in Brazil is done. (author)

  1. Material movement of medium surrounding an underground nuclear explosion; Mouvement materiel du milieu environnant une explosion nucleaire souterraine

    Energy Technology Data Exchange (ETDEWEB)

    Guerrini, C; Garnier, J L [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    The results of measurements of the mechanical effects in the, intermediate zone around underground nuclear explosions in Sahara granite are presented. After a description of the main characteristics of the equipment used, the laws drawn up using experimental results for the acceleration, the velocity, and the material displacement are presented. These laws are compared to those published in other countries for nuclear tests in granite, in tuff and in alluvial deposits. (authors) [French] Les resultats de mesures d'effets mecaniques en zone intermediaire autour d'essais nucleaires souterrains dans le granite du Sahara sont exposes. Apres avoir decrit, dans leurs grandes lignes, les materiels utilises, on presente les lois etablies avec les resultats experimentaux pour l'acceleration, la vitesse et le deplacement materiel. Ces lois sont comparees a celles publiees a l'etranger pour des essais nucleaires dans le granite, le tuf et les alluvions. (auteur)

  2. Tidal Disruption Events from Eccentric Nuclear Disks

    Science.gov (United States)

    Wernke, Heather N.; Madigan, Ann-Marie

    2018-04-01

    Stars that get too close to a supermassive black hole are in danger of being tidally disrupted. Stellar two-body relaxation is commonly assumed to be the main driver of these events. Recent work has shown, however, that secular gravitational torques from eccentric nuclear disks can push stars to extreme eccentricities at much higher rates than predicted by two-body relaxation. This work did not include the effects of general relativity, however, which could quench secular torques via rapid apsidal precession. Here we show that, for a star in danger of disruption, general relativity acts on a timescale of less than an orbital period. This short timescale means that general relativity does not have enough time to have a major effect on the orbit. When driven by secular torques from eccentric nuclear disks, tidal disruption event rates are not affected by general relativity.

  3. Some predicted peak ground motions for nuclear cratering explosions along the Qattara alignment in Egypt

    International Nuclear Information System (INIS)

    Bryan, J.B.

    1980-01-01

    Some predicted peak free-field ground motions at shot depth for the nuclear explosive excavation of a canal in Egypt are summarized. Peak values of displacement, velocity, acceleration, and radial stress are presented as a function of slant range from the working point. Results from two-dimensional TENSOR cratering calculations are included. Fits to ground motion measurements in other media are also shown. This summary is intended to help specify engineering design requirements for detonating nuclear explosive salvos which are required to efficiently excavate the canal. It also should be useful in guiding estimates for gage response ranges in ground motion measurements

  4. Data of the 21st nuclear explosion test of the People's Republic of China

    International Nuclear Information System (INIS)

    1977-01-01

    The news of Kyodo-Reuter said that on 17 November 1976 the Energy Research and Development Administration (ERDA), U.S.A., announced for the 21st nuclear explosion test of the People's Republic of China. The radioactivity surveillance was carried out for the period from 18 November 1976 to 25 November 1976. From the results of the surveillance, a few effects of this nuclear explosion test were detected in the radioactivity measurement of rain, dry fallout, and air-borne dust. (author)

  5. Data of the 22nd nuclear explosion test of the People's Republic of China

    International Nuclear Information System (INIS)

    1978-01-01

    US. Energy Research and Development Administration (US ERDA) announced for the 22 nd nuclear explosion test of the People's Republic of China. The radioactivity surveillance was carried out for the period from September 19, to September 28, 1977. From the results of this surveillance, the effects of this nuclear explosion test were detected in the radioactivity measurement of rainwater, dry fallout, air-borne dusts in upper atmosphere, and raw milk samples. Survey on iodine-131 concentrations in raw milk was continued until October 11, 1977. The results of radioactivity surveillance were described in the following articles. (author)

  6. A line technology of subterranean mining by means of nuclear explosions

    International Nuclear Information System (INIS)

    Gushchin, V.V.; Vasin, K.D.; Nifontov, B.I.; Odrov, Yu.L.; Myasnikov, K.V.; Kol'tsov, V.M.; Kornev, G.N.; Degtyarev, V.A.

    1976-01-01

    The basic principles of a line technology of extracting firm ores, including break-up of ore by means of subterranean nuclear explosions, the removal of ore from sorting blocks by means of vibrator feeders and transporting it to intermediate levels via a new type of belt conveyor on mobile supports are considered. A method of crushing ore by nuclear explosions on reflecting surfaces is proposed to obtain a more uniform fragmentation of ore, increase the output of fragmented ore per unit capacity, and to preserve mining output. The basic principles of designing a system of mining based on a line technology are formulated and one variant of such a system is presented

  7. Development of a Risk-Based Decision-Support-Model for Protecting an Urban Medical Center from a Nuclear Explosion

    International Nuclear Information System (INIS)

    Ben-Dor, G.; Shohet, I.M.; Ornai, D.; Brosh, B.

    2014-01-01

    Nuclear explosion is the worst man-made physical threat on the human society. The nuclear explosion includes several consequences, some of them are immediate and others are long term. The major influences are: long duration blast, extreme thermal release, nuclear radiations, and electro-magnetic pulse (EMP). Their damage range is very wide. When nuclear explosion occurs above or in an urban area it is possible that one or more medical centers will be affected. Medical centers include several layers of structures defined by their resistance capacity to the nuclear explosion influences, beginning with the structure's frame and ending with different systems and with vulnerable medical critical infrastructures such as communications, medical gas supply, etc. A comprehensive literature survey revealed that in spite of the necessity and the importance of medical centers in the daily life and especially in emergency and post nuclear explosion, there is a lack of research on this topic

  8. The role of atmospheric nuclear explosions on the stagnation of global warming in the mid 20th century

    Science.gov (United States)

    Fujii, Yoshiaki

    2011-04-01

    This study suggests that the cause of the stagnation in global warming in the mid 20th century was the atmospheric nuclear explosions detonated between 1945 and 1980. The estimated GST drop due to fine dust from the actual atmospheric nuclear explosions based on the published simulation results by other researchers (a single column model and Atmosphere-Ocean General Circulation Model) has served to explain the stagnation in global warming. Atmospheric nuclear explosions can be regarded as full-scale in situ tests for nuclear winter. The non-negligible amount of GST drop from the actual atmospheric explosions suggests that nuclear winter is not just a theory but has actually occurred, albeit on a small scale. The accuracy of the simulations of GST by IPCC would also be improved significantly by introducing the influence of fine dust from the actual atmospheric nuclear explosions into their climate models; thus, global warming behavior could be more accurately predicted.

  9. A Study on distinguishing seismic waves caused by natural earthquakes and underground nuclear explosion within North Korean Context

    Science.gov (United States)

    Premlet, B.; Sabu, S.; Kamarudheen, R.; Subair, S.

    2017-12-01

    Since the first nuclear test on 15 July 1945 , there have been over 2,051 other weapon tests around the world . The waveforms of a natural earthquake which generates strong S waves and an underground explosion which is dominated by P waves were distinguished from the analysis of data corresponding to a 2005 M5.0 Earthquake and a 2016 North Korean nuclear test , both at similar distances from seismometer . Further differences between the seismograms were evaluated and successfully distinguished between the origins of the elastic waves through the data using Moment Tensor Solution using stations BJT , HIA and INCN . North Korea has developed a nuclear fuel cycle capability and has both plutonium and enriched uranium programs at Pyongyang . Seismic recordings of vertical ground motion at Global Seismographic Network station IC.MDJ of the 4 seismic events at Punggye-ri , North Korea , which occurred on the 9th of October 2006 , 25th of May 2009, 12th of February 2013 and on the 6th of January and 9th of September , 2016 were examined and the P waves of these seismic waves , which show very similar wave form , were inspected and compared to the seismic data of the latest underground nuclear test on the 3rd of September 2017 at 03:30 UTC at the same site which is many times more powerful than the previous tests . The country , which is the only nation to have tested nuclear weapons in this millennium , has successfully prevented the release of radioactive isotopes and hampered data collection but further studies were done using acoustic data which was analysed from sonograms of the 4 North Korean tests at station MDJ. The latest explosion data from 3rd September was also compared to 42 presumed underground explosions which occurred in China , India , the U.S.S.R , Iran , Turkey and recorded at Arkansas Seismic Network.

  10. Comparison of the effects in the rock mass of large-scale chemical and nuclear explosions. Final technical report, June 9, 1994--October 9, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, A.A.

    1995-04-01

    It was found that in the first approximation the mechanical effect of underground nuclear explosion is analogous to the effect of chemical explosion. Really qualitative analysis shows that accompanying mechanical effects of nuclear and chemical explosions are the same: in the both cases explosion consequences are characterized by formation of the camouplet cavity (crater after explosion near free surface), destruction of the rock massif near explosion centre, creation of the stress wave, which forms seismoexplosive effect a long distance from explosion epicentre. Qualitative likeness of underground nuclear explosions and chemical explosions is the base of modelling the mechanical effects of the underground nuclear explosion. In this paper we`ll compare two explosions: nuclear (15-04-84) and chemical (27.06.95) with large power. These explosions were realized at the same geological conditions at Degelen test area, which is a part of the Semipalatinsk Test Site. In the case of the nuclear explosion, the charge was disposed in the face of the deep horizontal gallery. The charge of the chemical explosion was a semisphere from explosives at the rock massif surface. In the both case rock massif behavior after explosions was investigated at underground conditions (in the case of chemical explosion -- in the long underground excavation from explosion epicentre). Mechanical effects from the nuclear and chemical explosions were investigated with the same methods. The changes in geological medium after a large-scale explosive actions will be analyzed in detail too. Investigations of the influence of tectonic energy on the mechanical effects after underground nuclear, explosions represents the main interest. In this paper we`ll discuss this question on the data from underground nuclear explosion, realized 08.09.89 in the deep well at the Balapan test area, at the Semipalatinsk Test Site.

  11. Strategies for the disposition of high explosives resulting from dismantlement of nuclear weapons

    International Nuclear Information System (INIS)

    Pruneda, C.; Humphrey, J.

    1993-03-01

    Many thousands of pounds of high quality main-charge explosives will result as surplus from the dismantlement of returns from the US nuclear weapons stockpile. The method most often employed for dealing with this surplus explosive is destruction by open burning. However, open burning as a means of treating excess explosives is losing favor because of environmental concerns associated with such an uncontrolled thermal destruction process. Thus, alternative processes for treatment of excess explosives from weapon dismantlement is discussed. These alternatives include: reformulation, crystalline component recovery, chemical conversion of the crystalline component to higher value products which may have civilian or military applications and, when necessary, treatment as waste in an environmentally benign fashion

  12. [Assessment of modern radioecological situation at nuclear explosion "Chagan" (Balapan Site, Semipalatinsk Nuclear Test Site, Kazakhstan)].

    Science.gov (United States)

    Evseeva, T I; Maĭstrenko, T A; Geras'kin, S A; Belykh, E S; Umarov, M A; Sergeeva, I Iu; Sergeev, V Iu

    2008-01-01

    Results on estimation of modern radioecological situation at nuclear explosion "Chagan" based on large-scale cartographic studies (1:25000) of a test area (4 km2) are presented. Maximum gamma-irradiation doses were observed at bulk of ground surrounded a crater and at radioactive fall-outs extended to the North-East and to the SouthWest from the crater. Based on data on artificial radionuclide specific activity most part of soil samples were attributed to radioactive wastes according to IAEA (1996) and OSPORB (1999). Natural decrease of soil radioactivity up to safety level due to 60Co, 137Cs, 90Sr, 152Eu, 154Eu radioactive decay and 241Am accumulation-decay will not take place within the next 60 years at the studied area.

  13. Nuclear EMP induced chaos. [Effect of nuclear explosion on power and communication facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dance, B

    1983-04-01

    It is anticipated that a single nuclear explosion, of adequate size, on the outside of the atmosphere would generate a pulse of sufficient intensity to damage communications equipment (including telephones, radio transmitters and receivers), and to disrupt main power supplies. This damage could be done by a very intense, short duration electro-magnetic pulse (EMP). The article discusses the generation and history of EMP, the test facilities that are needed for EMP test, and techniques that can be used to harden equipment against EMP. It is also important to protect extensive systems against EMP. The article points out that fibre-optics are very useful, because they are EMP resistant and a single fibre can also carry a very high data rate.

  14. Evaluation of the pressure loads generated by hydrogen explosion in auxiliary nuclear building

    International Nuclear Information System (INIS)

    Ahmed Bentaib; Alexandre Bleyer; Pierre Pailhories; Jean-Pierre L'heriteau; Bernard Chaumont; Jerome Dupas; Jerome Riviere

    2005-01-01

    Full text of publication follows: In the framework of nuclear safety, a hydrogen leaks in the auxiliary nuclear building would raise a explosion hazard. A local ignition of the combustible mixture would give birth initially to a slow flame, rapidly accelerated by obstacles. This flame acceleration is responsible for high pressure loads that can damage the auxiliary building and destroy safety equipments in it. In this paper, we evaluate the pressure loads generated by an hydrogen explosion for both bounding and realistic explosion scenarios. The bounding scenarios use stoichiometric hydrogen-air mixtures and the realistic scenarios correspond to hydrogen leaks with mass flow rate varying between 1 g/s and 9 g/s. For every scenario, the impact of the ignition location and ignition time are investigated. The hydrogen dispersion and explosion are computed using the TONUS code. The dispersion model used is based on a finite element solver and the explosion is simulated by a structured finite volumes EULER equation solver and the combustion model CREBCOM which simulates the hydrogen/air turbulent flame propagation, taking into account 3D complex geometry and reactants concentration gradients. The pressure loads computed are then used to investigate the occurrence of a mechanical failure of the tanks located in the auxiliary nuclear building and containing radioactive fluids. The EUROPLEXUS code is used to perform 3D mechanical calculations because the loads are non uniform and of rather short deviation. (authors)

  15. Review of possible peaceful applications of nuclear explosions in the national economy of the Soviet Union

    International Nuclear Information System (INIS)

    Witherspoon, Paul A.

    1970-01-01

    The following review will give some of the current thinking of Soviet scientists and engineers on the possibilities of using nuclear explosions for peaceful purposes in the Soviet Union. This review is taken from a more detailed report that was presented under the same title by Soviet participants at an information-exchange meeting that was held in Vienna between the Soviet Union and the United States in April, 1969. Aside from a very brief review of one explosion in salt, the report does not give details on nuclear explosion effects (mechanical, seismic, radiation, or thermal). Rather, the report summarizes the results of design calculations and indicates the direction of Soviet planning for a variety of industrial applications. A complete translation of this report will be published by the Division of Technical Information and Education of AEC at Oakridge. (author)

  16. Review of possible peaceful applications of nuclear explosions in the national economy of the Soviet Union

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, Paul A [University of California, Berkeley (United States)

    1970-05-15

    The following review will give some of the current thinking of Soviet scientists and engineers on the possibilities of using nuclear explosions for peaceful purposes in the Soviet Union. This review is taken from a more detailed report that was presented under the same title by Soviet participants at an information-exchange meeting that was held in Vienna between the Soviet Union and the United States in April, 1969. Aside from a very brief review of one explosion in salt, the report does not give details on nuclear explosion effects (mechanical, seismic, radiation, or thermal). Rather, the report summarizes the results of design calculations and indicates the direction of Soviet planning for a variety of industrial applications. A complete translation of this report will be published by the Division of Technical Information and Education of AEC at Oakridge. (author)

  17. Explosion-evaporation model for fragment production in intermediate-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.; Randrup, J.

    1981-01-01

    Nuclear collisions at intermediate energies may create transient systems of hot nuclear matter that decay into many nuclear fragments. The disassembly of such a nuclear fireball is described as a two-stage process. In the primary explosion stage the system quickly fragments into nucleons and composite nuclei according to the available phase space. The explosion produces excited nuclei with half-lives longer than the time associated with the breakup. In the secondary evaporation stage, these nuclei decay, first by sequential emission of light particles (neutrons, protons, alphas), later by electromagnetic radiation. The secondary stage in general changes the relative abundancies of the various fragment species. This general feature makes it essential to take account of the composite fragments before using d/p as a measure of the entropy of the initial source. The formation of unbound nuclei at the explosion stage also has the desirable effect of enhancing the final abundancies of particularly stable nuclei, e.g., 4 He. For neutron-excessive sources the presence of composite nuclei amplifies the ratio of observed neutrons and protons; this effect persists for heavier mirror systems. Predictions of the model are qualitatively compared to available experimental data. The model offers a convenient way to augment existing dynamical models, such as intra-nuclear cascade and nuclear fluid dynamics, to yield actual nuclear fragments rather than merely matter distributions

  18. Africa's contribution to putting an end to nuclear explosions

    International Nuclear Information System (INIS)

    2010-09-01

    African States play an important role in worldwide efforts towards nuclear non-proliferation and disarmament. All 53 African States are parties to the Nuclear Non-Proliferation Treaty (NPT), which aims at preventing the spread of nuclear weapons and weapons technology, advancing nuclear disarmament, and facilitating the peaceful uses of nuclear energy. Of Africa's 53 States, 51 have signed the Comprehensive Nuclear-Test-Ban Treaty (CTBT) and 38 have also ratified it as of September 2010. Mauritius and Somalia are the only two States still to sign the Treaty. The States that have signed but not yet ratified are: Angola, Chad, Comoros, Congo, Egypt, Equatorial Guinea, Gambia, Ghana, Guinea, Guinea-Bissau, Sao Tome and Principe, Swaziland and Zimbabwe. Egypt's ratification is of particular importance as it is one of those States whose ratification is required for the Treaty's entry into force.

  19. Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Kevin B [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, Otis R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benjamin, Russ [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlop, William H [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-29

    A computational study was performed to examine the differences in near-surface ground-waves and air-blast waves generated by high-explosive energy sources and those generated by much higher energy - density low - yield nuclear sources. The study examined the effect of explosive-source emplacement (i.e., height-of-burst, HOB, or depth-of-burial, DOB) over a range from depths of -35m to heights of 20m, for explosions with an explosive yield of 1-kt . The chemical explosive was modeled by a JWL equation-of-state model for a ~14m diameter sphere of ANFO (~1,200,000kg – 1 k t equivalent yield ), and the high-energy-density source was modeled as a one tonne (1000 kg) plasma of ‘Iron-gas’ (utilizing LLNL’s tabular equation-of-state database, LEOS) in a 2m diameter sphere, with a total internal-energy content equivalent to 1 k t . A consistent equivalent-yield coupling-factor approach was developed to compare the behavior of the two sources. The results indicate that the equivalent-yield coupling-factor for air-blasts from 1 k t ANFO explosions varies monotonically and continuously from a nearly perfec t reflected wave off of the ground surface for a HOB ≈ 20m, to a coupling factor of nearly zero at DOB ≈ -25m. The nuclear air - blast coupling curve, on the other hand, remained nearly equal to a perfectly reflected wave all the way down to HOB’s very near zero, and then quickly dropped to a value near zero for explosions with a DOB ≈ -10m. The near - surface ground - wave traveling horizontally out from the explosive source region to distances of 100’s of meters exhibited equivalent - yield coupling - factors t hat varied nearly linearly with HOB/DOB for the simulated ANFO explosive source, going from a value near zero at HOB ≈ 5m to nearly one at DOB ≈ -25m. The nuclear-source generated near-surface ground wave coupling-factor remained near zero for almost all HOB’s greater than zero, and then appeared to vary nearly - linearly with depth

  20. The threat of nuclear terrorism: Nuclear weapons or other nuclear explosive devices

    International Nuclear Information System (INIS)

    Maerli, Morten Bremer

    2001-01-01

    Full text: Conventional weaponry and tactics are likely to remain the primary terrorist means for a definitive majority of sub-national groups. No non-state actors have ever deployed or used a nuclear device. However, recent developments in international terrorism may point in the direction of future terrorist uses of weapons of mass destruction, including nuclear devices. Some terrorist groups with a high international profile have showed disturbing interests in acquiring nuclear weapon capabilities. As the 'terrorist nuclear weapon standards' are likely to be lower than the strict requirements for traditional state nuclear weapons, technical barriers should not be considered sufficient to avoid future nuclear terrorist violence. Preventing any extremist group from achieving their goals of large-scale nuclear killing is likely best done by preventing the access to fissile materials through state compliances to rigorous standards of Material Protection, Control and Accountability (MPC and A). (author)

  1. On-site inspection for the radionuclide observables of an underground nuclear explosion

    International Nuclear Information System (INIS)

    Burnett, J.L.

    2015-01-01

    Under the Comprehensive Nuclear-Test-Ban Treaty an on-site inspection (OSI) may be undertaken to identify signatures from a potential nuclear explosion. This includes the measurement of 17 particulate radionuclides ( 95 Zr, 95 Nb, 99 Mo, 99m Tc, 103 Ru, 106 Rh, 132 Te, 131 I, 132 I, 134 Cs, 137 Cs, 140 Ba, 140 La, 141 Ce, 144 Ce, 144 Pr, 147 Nd). This research provides an assessment of the potential to detect these radionuclides during an OSI within 1 week to 2 years after a nuclear explosion at two locations. A model has been developed that simulates the underground detonation of a 1 kT 235 U nuclear weapon with 1 % venting. This indicates a requirement to minimise the time since detonation with accurate determination of the test location. (author)

  2. Fire and the related effects of nuclear explosions. 1982 Asilomar Conference

    International Nuclear Information System (INIS)

    Martin, S.B.; Alger, R.S.

    1982-11-01

    This report summarizes the proceedings of a Federal Emergency Management Agency-sponsored Conference on fire and the related effects of nuclear explosions (with passing attention to earthquakes and other nonnuclear mishaps). This conference, the fifth of an annual series (formally called Blast/Fire Interaction Conferences), was held during the week of April 25, 1982, again at Asilomar, California

  3. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures

  4. Radioactive fallout in France after the second Chinese nuclear explosion: atmospheric transfer processes

    International Nuclear Information System (INIS)

    Doury, A.; Bourgeon, P.

    1966-05-01

    The products released into the atmosphere by the second Chinese nuclear explosion were detected and measured in France during the months of May, June and July 1965. The main results are presented here and discussed. They are considered in particular in the light of the meteorological conditions as a function of the most recent hypotheses concerning transfer processes. (authors) [fr

  5. Lightning vulnerability of nuclear explosive test systems at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hasbrouck, R.T.

    1985-01-01

    A task force chartered to evaluate the effects of lightning on nuclear explosives at the Nevada Test Site has made several recommendations intended to provide lightning-invulnerable test device systems. When these recommendations have been implemented, the systems will be tested using full-threat-level simulated lightning

  6. Fire and the related effects of nuclear explosions. 1982 Asilomar Conference

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.B.; Alger, R.S. (eds.)

    1982-11-01

    This report summarizes the proceedings of a Federal Emergency Management Agency-sponsored Conference on fire and the related effects of nuclear explosions (with passing attention to earthquakes and other nonnuclear mishaps). This conference, the fifth of an annual series (formally called Blast/Fire Interaction Conferences), was held during the week of April 25, 1982, again at Asilomar, California.

  7. TOWARD END-TO-END MODELING FOR NUCLEAR EXPLOSION MONITORING: SIMULATION OF UNDERGROUND NUCLEAR EXPLOSIONS AND EARTHQUAKES USING HYDRODYNAMIC AND ANELASTIC SIMULATIONS, HIGH-PERFORMANCE COMPUTING AND THREE-DIMENSIONAL EARTH MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A; Vorobiev, O; Petersson, A; Sjogreen, B

    2009-07-06

    shear waves, while an explosion in low strength, high-porosity alluvium results in much weaker compressional waves and low-frequency compressional and shear waves of nearly equal amplitude. Further work will attempt to model available near-field seismic data from explosions conducted at NTS, where we have accurate characterization of the sub-surface from the wealth of geological and geophysical data from the former nuclear test program. Secondly, we are modeling seismic wave propagation with free-surface topography in WPP. We have model the October 9, 2006 and May 25, 2009 North Korean nuclear tests to investigate the impact of rugged topography on seismic waves. Preliminary results indicate that the topographic relief causes complexity in the direct P-waves that leads to azimuthally dependent behavior and the topographic gradient to the northeast, east and southeast of the presumed test locations generate stronger shear-waves, although each test gives a different pattern. Thirdly, we are modeling intermediate period motions (10-50 seconds) from earthquakes and explosions at regional distances. For these simulations we run SPECFEM3D{_}GLOBE (a spherical geometry spectral element code). We modeled broadband waveforms from well-characterized and well-observed events in the Middle East and central Asia, as well as the North Korean nuclear tests. For the recent North Korean test we found that the one-dimensional iasp91 model predicts the observed waveforms quite well in the band 20-50 seconds, while waveform fits for available 3D earth models are generally poor, with some exceptions. Interestingly 3D models can predict energy on the transverse component for an isotropic source presumably due to surface wave mode conversion and/or multipathing.

  8. Shell and explosive hydrogen burning. Nuclear reaction rates for hydrogen burning in RGB, AGB and Novae

    Energy Technology Data Exchange (ETDEWEB)

    Boeltzig, A. [Gran Sasso Science Institute, L' Aquila (Italy); Bruno, C.G.; Davinson, T. [University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh (United Kingdom); Cavanna, F.; Ferraro, F. [Dipartimento di Fisica, Universita di Genova (Italy); INFN, Genova (Italy); Cristallo, S. [Osservatorio Astronomico di Collurania, INAF, Teramo (Italy); INFN, Napoli (Italy); Depalo, R. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN, Padova (Italy); DeBoer, R.J.; Wiescher, M. [University of Notre Dame, Institute for Structure and Nuclear Astrophysics, Joint Institute for Nuclear Astrophysics, Notre Dame, Indiana (United States); Di Leva, A.; Imbriani, G. [Dipartimento di Fisica, Universita di Napoli Federico II, Napoli (Italy); INFN, Napoli (Italy); Marigo, P. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); Terrasi, F. [Dipartimento di Matematica e Fisica Seconda Universita di Napoli, Caserta (Italy); INFN, Napoli (Italy)

    2016-04-15

    The nucleosynthesis of light elements, from helium up to silicon, mainly occurs in Red Giant and Asymptotic Giant Branch stars and Novae. The relative abundances of the synthesized nuclides critically depend on the rates of the nuclear processes involved, often through non-trivial reaction chains, combined with complex mixing mechanisms. In this paper, we summarize the contributions made by LUNA experiments in furthering our understanding of nuclear reaction rates necessary for modeling nucleosynthesis in AGB stars and Novae explosions. (orig.)

  9. Nuclear structure near the particle drip-lines and explosive nucleosynthesis processes

    International Nuclear Information System (INIS)

    Kratz, K.L.; Pfeiffer, B.; Moeller, P.; Thielemann, F.K.; Wiescher, M.

    1999-01-01

    In this paper, we discuss the nuclear physics input for a selected set of explosive nucleosynthesis scenarios leading to rapid proton-- and neutron--capture processes. Observables (like e.g. luminosity curves or elemental abundance distributions) witness the interplay between nuclear structure aspects near the particle drip-lines and the appropriate astrophysical environments, and can give guidance to and constraints on stellar conditions and the associated nucleosynthesis. (authors)

  10. Surface-wave generation by underground nuclear explosions releasing tectonic strain

    International Nuclear Information System (INIS)

    Patton, H.J.

    1980-01-01

    Seismic surface-wave generation by underground nuclear explosions releasing tectonic strain is studied through a series of synthetic radiation-pattern calculations based on the earthquake-trigger model. From amplitude and phase radiation patterns for 20-s Rayleigh waves, inferences are made about effects on surface-wave magnitude, M/sub s/, and waveform character. The focus of this study is a comparison between two mechanisms of tectonic strain release: strike-slip motion on vertical faults and thrust motion on 45 0 dipping faults. The results of our calculations show that Rayleigh-wave amplitudes of the dip-slip model at F values between 0.75 and 1.5 are significantly lower than amplitudes of the strike-slip model or of the explosion source alone. This effect translates into M/sub s/ values about 0.5 units lower than M/sub s/ of the explosion alone. Waveform polarity reversals occur in two of four azimuthal quadrants for the strike-slip model and in all azimuths of the dip-slip-thrust model for F values above about 3. A cursory examination of waveforms from presumed explosions in eastern Kazakhstan suggests that releases of tectonic strain are accompanying the detonation of many of these explosions. Qualitatively, the observations seem to favor the dip-slip-thrust model, which, in the case of a few explosions, must have F values above 3

  11. Gas cloud explosions and their effect on nuclear power plant. Phase 1: basic development of explosion codes

    International Nuclear Information System (INIS)

    Hall, S.F.; Martin, D.; MacKenzie, J.

    1984-01-01

    The study of factors influencing the pressure and velocity fields produced by the burning of clouds of flammable substances has been in progress in SRD for some years. During this time several computer codes have been developed to aid these studies. This report concerns an extension of these studies, which involves firstly, the use of the existing codes for systematic parameter surveys and secondly, the removal of some of the limitations on the code capabilities so that they become capable of producing more realistic representations of real explosions. This work is all aimed at the study of wave and velocity fields and the influence of rigid boundaries, such as the presence of strong buildings, e.g. nuclear power plants. These existing computer models have been used to investigate the scope and range of possible pressure loadings produced by gas cloud explosions and the interaction of their pressure fields with structures. Calculations have been undertaken for a number of different fuels and at different concentrations and burning velocities. The results of some of these calculations have been used in two-dimensional wave-structure interaction calculations with structures representative of nuclear power plant buildings. Finally, the development of a two-dimensional code capable of modelling flame and pressure wave interactions with structures is presented. This code has user-oriented input and output routines with particular attention having been paid to initial conditions, obstacles and graphics. The flux corrected transport method (the state-of-the-art method for dealing with flow with shocks) is used to solve a system of equations consisting of the usual conservation equations and a simple turbulence model (two-equation K-E model) including a simple turbulence-dependent chemical reaction rate

  12. Application of IAEA's International Nuclear Event Scale to events at testing/research reactors in Japan

    International Nuclear Information System (INIS)

    Nozawa, Masao; Watanabe, Norio

    1999-01-01

    The International Nuclear Event Scale (INES) is a means for providing prompt, clear and consistent information related to nuclear events and facilitating communication between the nuclear community, the media and the public on such events. This paper describes the INES rating process for events at testing/research reactors and nuclear fuel processing facilities and experience on the application of the INES scale in Japan. (author)

  13. Transition-Region Ultraviolet Explosive Events in IRIS Si IV: A Statistical Analysis

    Science.gov (United States)

    Bartz, Allison

    2018-01-01

    Explosive events (EEs) in the solar transition region are characterized by broad, non-Gaussian line profiles with wings at Doppler velocities exceeding the speed of sound. We present a statistical analysis of 23 IRIS (Interface Region Imaging Spectrograph) sit-and-stare observations, observed between April 2014 and March 2017. Using the IRIS Si IV 1394 Å and 1403 Å spectral windows and the 1400Å Slit Jaw images we have identified 581 EEs. We found that most EEs last less than 20 min. and have a spatial scale on the slit less than 10”, agreeing with measurements in previous work. We observed most EEs in active regions, regardless of date of observation, but selection bias of IRIS observations cannot be ruled out. We also present preliminary findings of optical depth effects from our statistical study.

  14. Whistleblower litigation: A potential explosion in the nuclear industry

    International Nuclear Information System (INIS)

    Kowitt, A.J.; Panich, D.

    1990-01-01

    This article examines the protection offered nuclear employees and the limits of a nuclear employer's liability under section 210 of the Energy Reorganization Act. The author's warn that review by the US Supreme Court is not necessary but could only serve to expose the nuclear industry to an onslaught of litigation resulting from the assertion by an employee subjected to an adverse employment decision that the employee was engaged in a protected activity and as a result has a right to protection from retaliation by the employer

  15. Traveling ionospheric disturbances triggered by the 2009 North Korean underground nuclear explosion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Tang, L. [Wuhan Univ. (China). School of Geodesy and Geomatics

    2015-04-01

    Underground nuclear explosions (UNEs) can induce acoustic-gravity waves, which disturb the ionosphere and initiate traveling ionospheric disturbances (TIDs). In this paper, we employ a multi-step and multi-order numerical difference method with dual-frequency GPS data to detect ionospheric disturbances triggered by the North Korean UNE on 25 May 2009. Several International GNSS Service (IGS) stations with different distances (400 to 1200 km) from the epicenter were chosen for the experiment. The results show that there are two types of disturbances in the ionospheric disturbance series: high-frequency TIDs with periods of approximately 1 to 2 min and low-frequency waves with period spectrums of 2 to 5 min. The observed TIDs are situated around the epicenter of the UNE, and show similar features, indicating the origin of the observed disturbances is the UNE event. According to the amplitudes, periods and average propagation velocities, the high-frequency and low-frequency TIDs can be attributed to the acoustic waves in the lower ionosphere and higher ionosphere, respectively. (orig.)

  16. An exemplary case of a bromine explosion event linked to cyclone development in the Arctic

    Directory of Open Access Journals (Sweden)

    A.-M. Blechschmidt

    2016-02-01

    Full Text Available Intense, cyclone-like shaped plumes of tropospheric bromine monoxide (BrO are regularly observed by GOME-2 on board the MetOp-A satellite over Arctic sea ice in polar spring. These plumes are often transported by high-latitude cyclones, sometimes over several days despite the short atmospheric lifetime of BrO. However, only few studies have focused on the role of polar weather systems in the development, duration and transport of tropospheric BrO plumes during bromine explosion events. The latter are caused by an autocatalytic chemical chain reaction associated with tropospheric ozone depletion and initiated by the release of bromine from cold brine-covered ice or snow to the atmosphere. In this manuscript, a case study investigating a comma-shaped BrO plume which developed over the Beaufort Sea and was observed by GOME-2 for several days is presented. By making combined use of satellite data and numerical models, it is shown that the occurrence of the plume was closely linked to frontal lifting in a polar cyclone and that it most likely resided in the lowest 3 km of the troposphere. In contrast to previous case studies, we demonstrate that the dry conveyor belt, a potentially bromine-rich stratospheric air stream which can complicate interpretation of satellite retrieved tropospheric BrO, is spatially separated from the observed BrO plume. It is concluded that weather conditions associated with the polar cyclone favoured the bromine activation cycle and blowing snow production, which may have acted as a bromine source during the bromine explosion event.

  17. Detection of explosive cough events in audio recordings by internal sound analysis.

    Science.gov (United States)

    Rocha, B M; Mendes, L; Couceiro, R; Henriques, J; Carvalho, P; Paiva, R P

    2017-07-01

    We present a new method for the discrimination of explosive cough events, which is based on a combination of spectral content descriptors and pitch-related features. After the removal of near-silent segments, a vector of event boundaries is obtained and a proposed set of 9 features is extracted for each event. Two data sets, recorded using electronic stethoscopes and comprising a total of 46 healthy subjects and 13 patients, were employed to evaluate the method. The proposed feature set is compared to three other sets of descriptors: a baseline, a combination of both sets, and an automatic selection of the best 10 features from both sets. The combined feature set yields good results on the cross-validated database, attaining a sensitivity of 92.3±2.3% and a specificity of 84.7±3.3%. Besides, this feature set seems to generalize well when it is trained on a small data set of patients, with a variety of respiratory and cardiovascular diseases, and tested on a bigger data set of mostly healthy subjects: a sensitivity of 93.4% and a specificity of 83.4% are achieved in those conditions. These results demonstrate that complementing the proposed feature set with a baseline set is a promising approach.

  18. General considerations on fire and explosions in a nuclear facility. Interaction with ventilation

    International Nuclear Information System (INIS)

    Savornin, J.

    1983-05-01

    After a brief survey of French regulations and documents used in defining fire and explosion precautions, a number of fires which have broken out in French nuclear power plants and their effects on ventilation are mentioned. Past or current tests and experiments in France are described, and the provisions made to create computer codes for refining fire safety analysis are presented. The regulations which have been established to reduce the risk of fire or explosion and to contain it without failure of the containment barrier provided by the ventilation system are then given [fr

  19. Characteristics of seismic waves from Soviet peaceful nuclear explosions in salt

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V.; Kaazik, P.B.; Kostyuchenko, V.N.; Kuznetsov, O.P.; Nedoshivin, N.I.; Rubinshtein, K.D.; Sultanov, D.D. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres

    1995-04-01

    The report is carried out by the Institute for Dynamics of the Geospheres, Russian Academy of Sciences under contract NB280344 with Lawrence Livermore National Laboratory, University of California. The work includes investigation of seismic waves generation and propagation from Soviet peaceful underground nuclear explosions in salt based on the data from temporary and permanent seismic stations. The explosions were conducted at the sites Azgir and Vega within the territory of the Caspian depression of the Russian platform. The data used were obtained in the following conditions of conduction: epicentral distance range from 0 to 60 degrees, yields from 1 to 65 kt and depths of burial from 160 to 1500 m.

  20. Analysis and modeling of flow blockage-induced steam explosion events in the High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Lestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.; Kirkpatrick, J.

    1993-01-01

    This paper provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor during flow blockage events. The overall workscope included modeling and analysis of core melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several miliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. Therefore, it is judged that the HFIR vessel and top head structure will be able to withstand loads generated from thermally driven steam explosions initiated by any credible flow blockage event. A substantial margin to safety was demonstrated

  1. Nuclear explosives, ionizin.o. radiation and the effects on the biota of the natural environment

    International Nuclear Information System (INIS)

    Schultz, Vincent; Ward Whicker, F.

    1980-01-01

    After giving a general discussion of nuclear explosives, weapons testing and peaceful use of nuclear explosives under Plowshare project, ecological studies carried out at weapon test sites and Plowshare project sites in United States are reviewed. It is noted that though considerable data are available on the behaviour of radionuclides in natural environments on these sites, only a few observations of effects of ionizing radiations on the biota of the natural environments of these sites have been made. The major effects on the natural environments of these sites have been attributed to physical effects of nuclear detonations and site preparation. These effects are physical destruction of plants and animals and habitat modification such as soil disturbances. Recolonization of ground zeros and adjacent areas is observed to follow the successional pattern unique to the site. Observed effects of ionizing radiation on shrubs in the vicinity of cratering tests appear to be inconsequential when one considers the ecosystem as a whole. (M.G.B.)

  2. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

    2008-09-23

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    2011-01-01

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Proceedings of the 23rd Seismic Research Symposium: Worldwide Monitoring of Nuclear Explosions

    International Nuclear Information System (INIS)

    Warren, N. Jill; Chavez, Francesca C.

    2001-01-01

    These proceedings contain papers prepared for the 23rd Seismic Research Review: Worldwide Monitoring of Nuclear Explosions, held 2-5 October, 2001 in Jackson Hole, Wyoming. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Patterson, Eileen F.

    2010-01-01

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2006-01-01

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2007-01-01

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  12. Risk assessment for transportation of radioactive materials and nuclear explosives

    International Nuclear Information System (INIS)

    Clauss, D.B.; Wilson, R.K.; Hartman, W.F.

    1991-01-01

    Sandia National Laboratories has the lead technical role for probabilistic risk assessments of transportation of nuclear weapons, components, and special nuclear material in support of the US Department of Energy. The emphasis of the risk assessments is on evaluating the probability of inadvertent disposal of radioactive material and the consequences of such a release. This paper will provide an overview of the methodology being developed for the risk assessment and will discuss the interpretation and use of the results. The advantages and disadvantages of using risk assessment as an alternative to performance-based criteria for packaging will be described. 2 refs., 1 fig

  13. Use of Kazakh nuclear explosions for testing dilatancy diffusion model of earthquake prediction

    International Nuclear Information System (INIS)

    Srivastava, H.N.

    1979-01-01

    P wave travel time anomalies from Kazakh explosions during the years 1965-1972 were studied with reference to Jeffreys Bullen (1952) and Herrin Travel time tables (1968) and discussed using F ratio test at seven stations in Himachal Pradesh. For these events, the temporal and spatial variations of travel time residuals were examined from the point of view of long term changes in velocity known to precede earthquakes and local geology. The results show perference for Herrin Travel time tables at these epicentral distances from Kazakh explosions. F ratio test indicated that variation between sample means of different stations in the network showed more variation than can be attributed to the sampling error. Although the spatial variation of mean residuals (1965-1972) could generally be explained on the basis of the local geology, the temporal variations of such residuals from Kazakh explosions offer limited application in the testing of dilatancy model of earthquake prediction. (auth.)

  14. Nuclear event time histories and computed site transfer functions for locations in the Los Angeles region

    Science.gov (United States)

    Rogers, A.M.; Covington, P.A.; Park, R.B.; Borcherdt, R.D.; Perkins, D.M.

    1980-01-01

    This report presents a collection of Nevada Test Site (NTS) nuclear explosion recordings obtained at sites in the greater Los Angeles, Calif., region. The report includes ground velocity time histories, as well as, derived site transfer functions. These data have been collected as part of a study to evaluate the validity of using low-level ground motions to predict the frequency-dependent response of a site during an earthquake. For this study 19 nuclear events were recorded at 98 separate locations. Some of these sites have recorded more than one of the nuclear explosions, and, consequently, there are a total of 159, three-component station records. The location of all the recording sites are shown in figures 1–5, the station coordinates and abbreviations are given in table 1. The station addresses are listed in table 2, and the nuclear explosions that were recorded are listed in table 3. The recording sites were chosen on the basis of three criteria: (1) that the underlying geological conditions were representative of conditions over significant areas of the region, (2) that the site was the location of a strong-motion recording of the 1971 San Fernando earthquake, or (3) that more complete geographical coverage was required in that location.

  15. Refinement of parameters of weak nuclear explosions conducted at the Semipalatinsk test site on the basis of historical seismograms study

    Science.gov (United States)

    Sokolova, Inna

    2014-05-01

    Many researchers working in the field of monitoring and discriminating of nuclear tests encounter the problem of lacking in seismic catalogues the information about source parameters for weak nuclear explosions. As usual, the information about origin time, coordinates and magnitude is absent, there is information about date, approximate coordinates and information about explosion yield. Huge work conducted on recovery of parameters of small underground nuclear explosions conducted at the Semipalatinsk Test Site using records of analogue seismic stations of the USSR located at regional distances was conducted by V. Khalturin, T. Rayutian, P. Richards (Pure and Applied Geophysics, 2001). However, if underground nuclear explosions are studied and described in literature quite well, then air and contact explosions were small and were not recorded by standard permanent seismic stations. In 1961-1962 maximum number of air and contact explosions was conducted at Opytnoye polye site of the STS. We managed to find and analyze additional seismic data from some temporary and permanent stations. That time IPE AS USSR installed a network of high-sensitive stations along Pamir-Baykal profile to study earth crust structure and upper mantle, the profile length was 3500 km. Epicentral distance from some stations of the profile to Opytnoye polye was 300-400 km. In addition, a permanent seismic station Semipalatinsk (SEM) located 175 km away from the site started its operation. The seismograms from this station became available recently. The digitized historical seismograms allowed to recover and add parameters for more than 36 air and surface explosions. Origin time, coordinates, magnitudes mpv, MLV and energy class K were determined for explosions. A regional travel-time curve for Central Kazakhstan constructed using records of calibration chemical explosions conducted at the STS in 1997-2000 and ground-truth underground nuclear explosions was used to determine kinematic parameters

  16. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  17. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    International Nuclear Information System (INIS)

    Warren, N. Jill

    2002-01-01

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  18. Measurements of Argon-39 at the U20az underground nuclear explosion site.

    Science.gov (United States)

    McIntyre, J I; Aalseth, C E; Alexander, T R; Back, H O; Bellgraph, B J; Bowyer, T W; Chipman, V; Cooper, M W; Day, A R; Drellack, S; Foxe, M P; Fritz, B G; Hayes, J C; Humble, P; Keillor, M E; Kirkham, R R; Krogstad, E J; Lowrey, J D; Mace, E K; Mayer, M F; Milbrath, B D; Misner, A; Morley, S M; Panisko, M E; Olsen, K B; Ripplinger, M D; Seifert, A; Suarez, R

    2017-11-01

    Pacific Northwest National Laboratory reports on the detection of 39 Ar at the location of an underground nuclear explosion on the Nevada Nuclear Security Site. The presence of 39 Ar was not anticipated at the outset of the experimental campaign but results from this work demonstrated that it is present, along with 37 Ar and 85 Kr in the subsurface at the site of an underground nuclear explosion. Our analysis showed that by using state-of-the-art technology optimized for radioargon measurements, it was difficult to distinguish 39 Ar from the fission product 85 Kr. Proportional counters are currently used for high-sensitivity measurement of 37 Ar and 39 Ar. Physical and chemical separation processes are used to separate argon from air or soil gas, yielding pure argon with contaminant gases reduced to the parts-per-million level or below. However, even with purification at these levels, the beta decay signature of 85 Kr can be mistaken for that of 39 Ar, and the presence of either isotope increases the measurement background level for the measurement of 37 Ar. Measured values for the 39 Ar measured at the site ranged from 36,000 milli- Becquerel/standard-cubic-meter-of-air (mBq/SCM) for shallow bore holes to 997,000 mBq/SCM from the rubble chimney from the underground nuclear explosion. Published by Elsevier Ltd.

  19. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    International Nuclear Information System (INIS)

    Chavez, Francesca C.; Benson, Jody; Hanson, Stephanie; Mark, Carol; Wetovsky, Marvin A.

    2004-01-01

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  20. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Francesca C. [Editor; Mendius, E. Louise [Editor

    2003-09-23

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  1. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    Energy Technology Data Exchange (ETDEWEB)

    Warren, N. Jill [Editor

    2002-09-17

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  2. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-01-01

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Francesca C [Editor; Benson, Jody [Editor; Hanson, Stephanie [Editor; Mark, Carol [Editor; Wetovsky, Marvin A [Editor

    2004-09-21

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    International Nuclear Information System (INIS)

    Chavez, Francesca C.; Mendius, E. Louise

    2003-01-01

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Smoke production from multiple nuclear explosions in nonurban areas

    International Nuclear Information System (INIS)

    Small, R.D.; Bush, B.W.

    1985-01-01

    The amount of smoke that may be produced by wildland or rural fires as a consequence of a large-scale nuclear exchange is estimated. The calculation is based on a compilation of rural military facilities, identified from a wide variety of unclassified sources, together with data on their geographic positions, surrounding vegetation (fuel), and weather conditions. The ignition area (corrected for fuel moisture) and the amount of fire spread are used to calculate the smoke production. The results show a substantially lower estimated smoke production (from wildland fires) than in earlier nuclear winter studies. The amount varies seasonally and at its peak is less by an order of magnitude than the estimated threshold level necessary for a major attenuation of solar radiation. 32 references, 6 figures, 2 tables

  7. DELFIC-TES, Gamma Doses from Nuclear Explosion Radioactive Clouds

    International Nuclear Information System (INIS)

    1991-01-01

    1 - Description of program or function: DELFIC-TES computes the transit gamma exposure from the airborne cloud resulting from a nuclear burst for fixed targets located on or above the earth's surface. 2 - Method of solution - The system is based on a method of producing 'snapshots' of the moving cloud of airborne particles during the transport process of DELFIC. Each particle in each snapshot is then assigned an activity and these data are used to calculate transit exposure by employing an energy-dependent buildup factor technique

  8. Proceedings for the symposium on public health aspects of peaceful uses of nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-07-01

    The Southwestern Radiological Health Laboratory is very pleased to have sponsored this Symposium on the Public Health Aspects of the Peaceful Uses of Nuclear Explosives. The primary purpose of the Symposium was to disseminate and document current information and data on the public health aspects of this promising new technical field. In addition, it served to identify potential problem areas, stimulated discussion, and provided an opportunity for exchange of ideas and rapport between and among various individuals and groups sharing interests in various facets of Plowshare technology. These proceedings should serve these objectives and provide a resource of relevant information which may be used to evaluate what is presently known and unknown in the public health and safety area of the technology for peaceful applications of nuclear explosives.

  9. Study of the mineralogical transformations of granite by underground nuclear explosions

    International Nuclear Information System (INIS)

    Faure, Jean

    1970-01-01

    The object of the following communication is to prove new data about the petrographic effects of the underground nuclear explosions. It is founded on the results of trench tests in granite rock. The samples are collected by drilling and the temperature of the rock was measured in the hole. Four types of melted rocks can be sorted, grey-green glass and pumices, beige to red-brown pumices, dark lavas, dark veinlets and crushed granite. The distribution of these rocks is studied. Optical microscopy, X-rays and chemical analysis, study by electron probe, are made. The results complete previously published data. They are interesting as far as the use of nuclear explosions for industrial applications is concerned. (author)

  10. Proceedings for the symposium on public health aspects of peaceful uses of nuclear explosives

    International Nuclear Information System (INIS)

    1969-01-01

    The Southwestern Radiological Health Laboratory is very pleased to have sponsored this Symposium on the Public Health Aspects of the Peaceful Uses of Nuclear Explosives. The primary purpose of the Symposium was to disseminate and document current information and data on the public health aspects of this promising new technical field. In addition, it served to identify potential problem areas, stimulated discussion, and provided an opportunity for exchange of ideas and rapport between and among various individuals and groups sharing interests in various facets of Plowshare technology. These proceedings should serve these objectives and provide a resource of relevant information which may be used to evaluate what is presently known and unknown in the public health and safety area of the technology for peaceful applications of nuclear explosives

  11. Study of the mineralogical transformations of granite by underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Faure, Jean [Commissariat a I' Energie Atomique, Centre d' Etudes de Bruyeres-le-Chatel (France)

    1970-05-15

    The object of the following communication is to prove new data about the petrographic effects of the underground nuclear explosions. It is founded on the results of trench tests in granite rock. The samples are collected by drilling and the temperature of the rock was measured in the hole. Four types of melted rocks can be sorted, grey-green glass and pumices, beige to red-brown pumices, dark lavas, dark veinlets and crushed granite. The distribution of these rocks is studied. Optical microscopy, X-rays and chemical analysis, study by electron probe, are made. The results complete previously published data. They are interesting as far as the use of nuclear explosions for industrial applications is concerned. (author)

  12. Yield Estimation for Semipalatinsk Underground Nuclear Explosions Using Seismic Surface-wave Observations at Near-regional Distances

    Science.gov (United States)

    Adushkin, V. V.

    - A statistical procedure is described for estimating the yields of underground nuclear tests at the former Soviet Semipalatinsk test site using the peak amplitudes of short-period surface waves observed at near-regional distances (Δ Semipalatinsk explosions, including the Soviet JVE explosion of September 14, 1988, and it is demonstrated that it provides seismic estimates of explosion yield which are typically within 20% of the yields determined for these same explosions using more accurate, non-seismic techniques based on near-source observations.

  13. Ionospheric disturbances due to underground nuclear explosions and other sources: an elementary discussion, Part I

    International Nuclear Information System (INIS)

    Wouters, L.F.

    1971-01-01

    The possible effect of verticle ground surface motion on the ionosphere, as a consequence of acoustic propagation, is discussed. Estimates of R. F. phase path perturbations are developed for several representative sources and several propagative modes (both terrestrial and atmospheric). In particular, amplitude models for ionospheric density perturbations are used. The discrimination of earth quakes and nuclear explosive disturbances is considered and some detailed properties of the extended atmosphere are described. A list of references is provided. (U.S.)

  14. Prototype explosives detection system based on nuclear resonance absorption in nitrogen

    International Nuclear Information System (INIS)

    Morgado, R.E.; Arnone, G.J.; Cappiello, C.C.

    1996-01-01

    A laboratory prototype system has been developed for the experimental evaluation of an explosives detection technique based on nuclear resonance absorption of gamma rays in nitrogen. Major subsystems include a radiofrequency quadrupole proton accelerator and associated beam transport system, a high-power gamma-ray production target, an airline-luggage tomographic inspection system, and an image- processing/detection-alarm subsystem. The detection system performance, based on a limited experimental test, is reported

  15. Peaceful nuclear explosions as a provocation and tasks of international organizations

    International Nuclear Information System (INIS)

    Welck, S. Freiherr von

    1975-01-01

    First there is a brief survey on how to make use of peaceful nuclear explosions and on the present state of technological development. Before their use on an international level materializes, a number of political, technical, legal, and ecological problems have to be solved at least provisionally. The extent to which international organizations can help to find these solutions is examined in detail. (HP/LN) [de

  16. Comparison of the inelastic response of steel building frames to strong earthquake and underground nuclear explosion ground motion

    International Nuclear Information System (INIS)

    Murray, R.C.; Tokarz, F.J.

    1976-01-01

    Analytic studies were made of the adequacy of simulating earthquake effects at the Nevada Test Site for structural testing purposes. It is concluded that underground nuclear explosion ground motion will produce inelastic behavior and damage comparable to that produced by strong earthquakes. The generally longer duration of earthquakes compared with underground nuclear explosions does not appear to significantly affect the structural behavior of the building frames considered. A comparison of maximum ductility ratios, maximum story drifts, and maximum displacement indicate similar structural behavior for both types of ground motion. Low yield (10 - kt) underground nuclear explosions are capable of producing inelastic behavior in large structures. Ground motion produced by underground nuclear explosions can produce inelastic earthquake-like effects in large structures and could be used for testing large structures in the inelastic response regime. The Nevada Test Site is a feasible earthquake simulator for testing large structures

  17. Explosive cutting techniques for dismantling of concrete structures in a nuclear power station following decommissioning

    International Nuclear Information System (INIS)

    Freund, H.U.; Fleischer, C.C.

    1993-01-01

    This report describes the work that has been jointly carried out, based on a common and complementary research programme, by the Battelle Institut e.V., Frankfurt and Taylor Woodrow Construction Ltd., Southall, on the controlled use of explosives for the cutting and safe removal of activated and contaminated parts of nuclear facilities without impairing the overall structural integrity. Previous work had demonstrated the feasibility of using explosive techniques for the stripping off of an equivalent thickness of concrete, for radiation protection, from the inside walls of nuclear facilities. The present research work aims at complementing, improving and optimizing the foregoing work. Extensive investigations have been executed on the adjustment of blasting parameters, material and structural effects, drilling techniques, particle distribution and on procedures for remote handling. The report presents the results obtained from field trials and theoretical analysis undertaken to augment the development programme. It concludes that the controlled use of explosives offers a safe and favourable dismantling technique for the decommissioning of nuclear facilities

  18. Evaluation of the uncertainty in the azimuth calculation for the detection and localization of atmospheric nuclear explosions

    International Nuclear Information System (INIS)

    Schuff, J.A.

    2006-01-01

    Low-frequency acoustic signal below about 1 Hz can travel for hundreds or thousands of kilometers through in the Earth atmosphere. If a source produces infrasonic energy, it can be detected by a remote sensor. Atmospheric strong explosions as the nuclear detonation contains low-frequency components that can travel long distances with measurable signal levels. This fact can be useful for detection and localization of clandestine events. The international regime on the non-proliferation of nuclear requires the ability to detect, localize, and discriminate nuclear events on a global scale. Monitoring systems such as the Inter national Monitoring System (I.M.S.) rely on several sensor technologies to perform these functions. The current I.M.S. infra sound system design includes a network of low-frequency atmospheric acoustic sensor arrays, which contribute primarily to the detection and localization of atmospheric nuclear events. There have been observed differences between the azimuth measurements and the true directions of the sources of infra sound waves in artificial and natural events such as explosive eruptions of strong volcanoes. The infra sound waves are reflected in stratospheric and thermospheric layers near 50 km and 120 km in height respectively. The azimuth deviation is affected by meteorological disturbances in the troposphere and stratosphere. This paper describe new elements to obtain the uncertainty in the azimuth calculation of arrival wave plane passing across of a not plane array of infra sound sensors. It also presents a 3D computation of infra sound propagation and estimation of the azimuth deviation using the zonal horizontal wind model and M.S.I.S.E.-90 model of the upper atmosphere to obtain temperature, density and concentration of the principal components of the air for altitudes of up to 120 km. Deviations of up to 12 degrees in the azimuth were obtained, depending on the location of the source of infra sound, the point of measurement and

  19. Hydrologic effects of natural disruptive events on nuclear repositories

    International Nuclear Information System (INIS)

    Davis, S.N.

    1979-01-01

    This report describes some possible hydrogeologic effects of disruptive events which may affect repositories for nuclear waste. The report concentrates on the effects of natural events which are judged to be most probable

  20. Explosion and detonation of ozone in mixtures with carrier gases employed in nuclear technology

    International Nuclear Information System (INIS)

    Weh, M.M.L.

    1988-09-01

    Explosive ozone is known to be formed during low temperature radiolysis of oxygen. Detailed knowledge on the explosion and the detonation of ozone is therefore required for safety considerations of nuclear installations such as proposed for the cryogenic separation of 85 krypton from the head end off gas of a reprocessing plant. The explosion properties of gaseous ozone in mixtures with oxygen, nitrogen, helium, argon, krypton, xenon and difluorodichloromethane were studied by varying the ozone concentration, the initial pressure and the shape of the vessel containing the gas. Detonation velocities were determined for gaseous mixtures of ozone with oxygen, argon, krypton or xenon as functions of the ozone concentration. In addition, the initial pressure was varied for ozone-xenon mixtures. The effect of a packing such as used in the 85 Kr-separation plant 'KRETA' in KfK on ozone-xenon detonation was investigated. In addition, the effect of low amounts of carbon monoxide, methane and nitrogen dioxide on the explosion (O 3 /Ar) and the detonation (O 3 /Xe) of an ozone-noble gas mixture was determined. (orig.) [de

  1. The study of steam explosions in nuclear systems. Advanced Reactor Severe Accident Program

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Yuen, W.W.; Angelini, S.; Chen, X.

    1995-01-01

    This report presents an overview of the steam explosion issue in nuclear reactor safety and our approach to assessing it. Key physics, models, and computational tools are described, and illustrative results are presented for ex-vessel steam explosions in an open pool geometry. An extensive set of appendices facilitate access to previously reported work that is an integral part of this effort. These appendices include key developments in our approach, key advances in our understanding from physical and numerical experiments, and details of the most advanced computational results presented in this report. Of major significance are the following features: A consistent two-dimensional treatment for both premixing and propagation which in practical settings are ostensibly at least two-dimensional phenomena; experimental demonstration of voiding and microinteractions which represent key behaviors in premixing and propagation respectively; demonstration of the explosion venting phenomena in open pool geometries which, therefore, can be counted on as a very important mitigative feature; and introduction of the idea of penetration cutoff as a key mechanism prohibiting large-scale premixing in usual ex-vessel situations involving high pour velocities and subcooled pools. This report is intended as an overview and is to be followed by code manuals for PM-ALPHA and ESPROSE.m, respective verification reports, and application documents for reactor-specific applications. The applications will employ the Risk Oriented Accident Analysis Methodology (ROAAM) to address the safety importance of potential steam explosions phenomena in evaluated severe accidents for passive Advanced Light Water Reactors (ALWRs)

  2. Fermi bubbles: the explosive nuclear activity of the Galaxy

    Science.gov (United States)

    Bland-Hawthorn, Joss

    2015-08-01

    The Galaxy's supermassive black hole (Sgr A*) is a hundred times closer than any other massive singularity. It is surrounded by a highly unstable gas disk so why is the black hole so peaceful at the present time? This mystery has led to a flurry of models in order to explain why Sgr A* is radiating far below (1 part in 10^8) the Eddington accretion limit. But has this always been so? Evidence is gathering that Sgr A* has been far more active in the recent past, on timescales of thousands of years and longer. The bipolar wind discovered by MSX, the gamma-ray bubbles discovered by Fermi-LAT, the WMAP haze, the positronium flash confirmed by INTEGRAL, are suggestive of something truly spectacular in the recent past. We present exciting new evidence that the Galactic Centre was a full blown "active galaxy" just two million years ago. The echo of this incredible event can be seen today imprinted across the Galaxy.

  3. Tritium and chlorine-36 migration from a nuclear explosion cavity

    International Nuclear Information System (INIS)

    Burbey, T.J.; Wheatcraft, S.W.

    1986-04-01

    The Radionuclide Migration (RNM) Experiment consists of a 600 gpm pumping well placed approximately 90 m away from the center of the rubble chimney and cavity created by the 1965 Cambric event. The purpose of the experiment is to deliberately draw radionuclides away from the cavity and produce breakthrough curves of the migrating radionuclides at the pumping well. Tritium and chlorine-36 are the most mobile radionuclides and they have produced breakthrough curves that are very amenable to analysis. The other radionuclides that have been observed at the pumping well are ruthenium-106, Kr-85 and I-129, in very small quantities. A conceptual model of the Cambric cavity and surrounding hydrogeologic environment was formulated using available field data such as core samples and the breakthrough curves of tritium and chlorine-36. Results show that the cavity hydraulic conductivity is about one-tenth as large as the average hydraulic conductivity of the surrounding medium. The calibrated model required the addition of retardation of the tritium. The breakthrough curve was relatively insensitive to variations in the other parameters tested in the sensitivity study

  4. Analysis and modeling of flow-blockage-induced steam explosion events in the high-flux isotope reactor

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Gat, U.; Lepard, B.L.; Cook, D.H.; Freels, J.; Chang, S.J.; Luttrell, C.; Gwaltney, R.C.

    1994-01-01

    This article provides a perspective overview of the analysis and modeling work done to evaluate the threat from steam explosion loads in the High-Flux Isotope Reactor (HFIR) during flow blockage events. The overall work scope included modeling and analysis of core-melt initiation, melt propagation, bounding and best-estimate steam explosion energetics, vessel failure from fracture, bolts failure from exceedance of elastic limits, and, finally, missile evolution and transport. Aluminum ignition was neglected. Evaluations indicated that a thermally driven steam explosion with more than 65 MJ of energy insertion in the core region over several milliseconds would be needed to cause a sufficiently energetic missile with a capacity to cause early confinement failure. This amounts to about 65% of the HFIR core mass melting and participating in a steam explosion. Conservative melt propagation analyses have indicated that at most only 24% of the HFIR core mass could melt during flow blockage events under full-power conditions. 19 refs., 11 figs

  5. APSTNG: Neutron interrogation for detection of nuclear and CW weapons, explosives, and drugs

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.; De Volpi, A.; Peters, C.W.

    1992-01-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed- portal requirements for nondestructive verification of sealed munitions and detection of contraband explosives and drugs. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron inelastic scattering and fission reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from determined from detection times of the gamma-rays and alpha-particles yield a separate tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system; a collimator is not required since scattered neutrons are removed by ''electronic collimation'' (detected neutrons not having the proper flight time to be uncollided are discarded). The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs

  6. APSTNG: Neutron interrogation for detection of explosives and drugs and nuclear and CW materials

    International Nuclear Information System (INIS)

    Rhodes, E.; Peters, C.W.

    1993-01-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed-portal requirements for nondestructive detection, including monitoring of contraband explosives, drugs, and weapon materials, and treaty verification of sealed munitions. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutron generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in explosives, drugs, and chemical warfare agents, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from detection times of the gamma rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs. The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Surveillance systems based on APSTNG technology can avoid the large physical size, high capital and operating expenses, and reliability problems associated with complex accelerators

  7. Initial approaches to the establishment of a Russian data bank on nuclear explosions and compatibility with similar foreign data banks

    International Nuclear Information System (INIS)

    Izrael, Y.A.; Ognev, B.I.; Ryaboshapko, A.G.; Stukin, E.D.

    1998-01-01

    Nuclear-weapons tests and peaceful nuclear explosions, which had been conducted over the territory of the former USSR for 40 years, enabled the collection of a huge volume of information about the explosion parameters and radioactive contamination of natural environments. Presently, the information is being shared by various institutions that too part in the nuclear tests. The information is generally used for solving individual applied problems related to the studies of the consequences of nuclear tests. The relevant computerized data banks, which are being set up, are of an applied nature, i.e., they are oriented towards a limited number of applied programs. A unified Russian computer-aided information system on this problem does not exist. At the same time, the recently heightened public concern about medico-radiological, radioactivity and environmental consequences of nuclear explosions requires that the range of applied problems, which were not planned previously, should be expanded. (orig./GL)

  8. A safety evaluation of fire and explosion in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji; Miyata, Teijirou

    1996-01-01

    The demonstration test was performed in JAERI to prove the adequacy of a safety evaluation for an air-ventilation system in the case of solvent fire and red-oil explosion in a nuclear fuel reprocessing plant. The test objectives were to obtain data of the safety evaluation on a thermofluid behavior and a confinement effect of radioactive materials during fire and explosion while the system is operating in a cell. The computer code was developed to evaluate the safety of associated network in the ventilation system and to estimate the confinement of radioactive materials in the system. The code was verified by comparison of code calculations with results of the demonstration test. (author)

  9. Search for evidence of nuclear involvement in the fatal explosion of a 'cold fusion' experiment

    International Nuclear Information System (INIS)

    Grant, P.M.; Whipple, R.E.; Andresen, B.D.; Russo, R.E.; Bazan, F.; Brunk, J.L.; Wong, K.M.

    1995-01-01

    Forensic analyses of debris from the fatal explosion of an electrochemical 'cold fusion' cell at SRI International were conducted at LLNL at the request of Cal-OSHA. One investigation focused on the possibility of conventional nuclear reaction mechanisms contributing to the total energy inventory of the incident. Selected metal components of the electrolysis apparatus were subjected to nondestructive γ-ray spectrometry with high-sensitivity, low-background Ge detector systems. The anticipated analytes in these studies were radioactivation products potentially induced in the explosion residue by either fast or thermal neutrons. The results of this investigation were negative within the temporal constraints of the incident and the analytical sensitivities of the instrumentation. (author) 5 refs.; 1 fig.; 2 tabs

  10. Simulation of the chemical environment of a nuclear explosion with exploding wires

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Walter; Block, Oliver U.J. [Nuclear Engineering, Kansas State University, Manhattan, KS (United States)

    1970-05-15

    The chemical processes in an expanding underground cavity resulting from a nuclear explosion cannot be predicted or controlled as well as such physical characteristics as crater size, magnitude of the outgoing shock wave, or the extent of rock fracturing. However in most underground nuclear explosions it would be desirable to control the chemical and/or physical form and amount of radioactive fallout venting from the explosion. The high temperatures and corresponding high energy densities produced by exploding wires are sufficient to produce in the wire and material immediately surrounding it the temperature (a few thousand degrees) required to simulate the chemical environment of a nuclear explosion in the time interval just preceding the venting of the cavity. The economics and the size of exploding wire apparatus make this type of experiment readily applicable to laboratory study. Design of exploding wire circuits to obtain particular temperatures or energy densities can be completed using several different combinations of circuit and wire conditions. Since the circuit parameters, including charging voltage, capacitor bank capacitance and circuit inductance primarily determine the cost of the necessary laboratory equipment, these parameters should be selected by theoretical expressions while also considering economic factors. Wire parameters are then experimentally determined to produce the most energetic explosions with the selected circuit parameters. A theoretical method applicable to designing exploding wire circuits to produce the desired high temperatures and energy densities in the wire and surrounding sample material has been obtained. The method assumes that a thermal spike of energy is deposited in a low conductivity material (typical of the earth's crust) surrounding the wire. From the assumed temperature distribution in the surrounding sample material the energy which must be deposited in the thermal spike to produce the desired temperature and

  11. THE ELECTRON DENSITY IN EXPLOSIVE TRANSITION REGION EVENTS OBSERVED BY IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Doschek, G. A.; Warren, H. P. [Space Science Division, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States); Young, P. R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2016-11-20

    We discuss the intensity ratio of the O iv line at 1401.16 Å to the Si iv line at 1402.77 Å in Interface Region Imaging Spectrograph ( IRIS ) spectra. This intensity ratio is important if it can be used to measure high electron densities that cannot be measured using line intensity ratios of two different O iv lines from the multiplet within the IRIS wavelength range. Our discussion is in terms of considerably earlier observations made from the Skylab manned space station and other spectrometers on orbiting spacecraft. The earlier data on the O iv and Si iv ratio and other intersystem line ratios not available to IRIS are complementary to IRIS data. In this paper, we adopt a simple interpretation based on electron density. We adopt a set of assumptions and calculate the electron density as a function of velocity in the Si iv line profiles of two explosive events. At zero velocity the densities are about 2–3 × 10{sup 11} cm{sup -3}, and near 200 km s{sup -1} outflow speed the densities are about 10{sup 12} cm{sup -3}. The densities increase with outflow speed up to about 150 km s{sup -1} after which they level off. Because of the difference in the temperature of formation of the two lines and other possible effects such as non-ionization equilibrium, these density measurements do not have the precision that would be available if there were some additional lines near the formation temperature of O iv.

  12. Effects from airplane crashes and gas explosions to Leningrad nuclear plant

    International Nuclear Information System (INIS)

    Junttila, K.; Varpasuo, P.

    1998-01-01

    In this study the effects of aircraft crash and gas explosion to Leningrad Nuclear Power Plant has been researched. One of the two reactor buildings is modeled with finite element method using the pre-processor program MSC/PATRAN and analyzed with MSC/NASTRAN analysis program. In MSC/PATRAN or FEMAP, which is a pre-processor program of MSC/NASTRAN for Windows, the reactor building of the plant has been modeled with shell and beam elements and the load sets describing the aircraft crash and gas explosion have been developed. The crash loads are from Cessna 210 civil airplane crash with impact velocity 360 km/h and maximum impact force of 7 MN and Phantom RF-43 military airplane crash with impact velocity 215 m/s and with maximum impact force of 110 MN. The gas explosion pressure wave simulates the deflagration wave with maximum pressure of 0,045 MPa. Seven Cessna 210 airplane crash locations, two Phantom RF-43 airplane crash locations and one gas explosion load case is modeled. Airplane crash loads were from different directions and to different points of impact in the reactor building. The gas explosion load was assumed to affect the reactor building from one side parallel to one of the global coordinate axes of the model. With MSC/NASTRAN reactions from loads are analyzed. All loads were timedependent; their magnitude varied with time and consequently the analysis was carried out with the aid of transient response analysis. Time step in Cessna 210 analysis was 0,003 s and in Phantom RF-43 and gas explosion analyses 0,01 s. The greatest displacement from Cessna 210 loads was 12 mm and from Phantom RF-43 load 344 mm. The last value shows that construction would fail with that load. The greatest displacement from gas explosion load was 68 mm. Stresses are not so interesting in this preliminary analysis of the effects, but they are shown in pictures embedded in the report text. Displacements were greatest in upper part of the reactor building, where no intersections

  13. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    International Nuclear Information System (INIS)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository

  14. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.

  15. Device for Detection of Explosives, Nuclear and Other Hazardous Materials in Luggage and Cargo Containers

    Science.gov (United States)

    Kuznetsov, Andrey; Evsenin, Alexey; Gorshkov, Igor; Osetrov, Oleg; Vakhtin, Dmitry

    2009-12-01

    Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types—based on BGO, NaI and LaBr3 crystals is presented.

  16. Device for Detection of Explosives, Nuclear and Other Hazardous Materials in Luggage and Cargo Containers

    International Nuclear Information System (INIS)

    Kuznetsov, Andrey; Evsenin, Alexey; Osetrov, Oleg; Vakhtin, Dmitry; Gorshkov, Igor

    2009-01-01

    Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types--based on BGO, NaI and LaBr 3 crystals is presented.

  17. The performance of transmission lines and cables subjected to electromagnetic radiation from a nuclear explosion (NEMP)

    International Nuclear Information System (INIS)

    Aguet, M.; Ianovici, M.; Lin, C.C.; Fornerod, F.

    1980-01-01

    The use of armoured cables for telecommunication and data transmission systems is practically essential to avoid electromagnetic interference. The authors have made a mathematical study of the probable effect of a high altitude nuclear explosion. Using a simplified model, the voltages and currents induced into single and multiple-sheathed, overhead and buried cables subjected to an intense magnetic pulse (50kV/m) from high altitude, are determined by computer. It is found that, contrary to expectations the current intensity in the second case is seven times greater than for the overhead conductor. (F.N.S.)

  18. Radioactive contamination of the biosphera after nuclear explosion, for an arbitrary wind field

    International Nuclear Information System (INIS)

    Tomon, S.

    1981-01-01

    Theoretical foundations have been developed of a method for defining the degree of air- and surface contamination following a nuclear explosion, for the variable wind vector in time and space. The wind description is taken to be discrete in time and horizontal plane as well as continuous (polynomial-approximated) in the perpendicular one. A stabilized clouds has been assumed, with initial normal distribution of activity. The formulae derived permit the volumetric activity in air as well as the dosage rate above the surface of the c ontaminated ground, to be determined. (author)

  19. Prototype selection based on FCM and its application in discrimination between nuclear explosion and earthquake

    International Nuclear Information System (INIS)

    Han Shaoqing; Li Xihai; Song Zibiao; Liu Daizhi

    2007-01-01

    The synergetic pattern recognition is a new way of pattern recognition with many excellent features such as noise resistance and deformity resistance. But when it is used in the discrimination between nuclear explosion and earthquake using existing methods of prototype selection, the results are not satisfying. A new method of prototype selection based on FCM is proposed in this paper. First, each group of training samples is clustered into c groups using FCM; then c barycenters or centers are chosen as prototypes. Experiment results show that compared with existing methods of prototype selection this new method is effective and it increases the recognition ratio greatly. (authors)

  20. Application of CPML to two-dimension numerical simulation of nuclear electromagnetic pulse from air explosions

    International Nuclear Information System (INIS)

    Gao Chunxia; Wang Lianghou

    2005-01-01

    The characteristics of different types of PML were analyzed and the convolutional PML was chosen to truncate the open boundaries in numerical simulation of nuclear electromagnetic pulse from air explosions. On the basis of the split-field PML and the plane-wave solution of electromagnetic field in free space, the unsplit-field PML was constructed. By applying the convolutional theorem of Fourier transform, the discrete iterative equations of electromagnetic field components were presented in the CPML media under the two-dimension prolate-spheroidal coordinate system. The numerical results indicate that the method of CPML can largely decrease calculation errors of boundary fields. (authors)

  1. Analysis of external events - Nuclear Power Plant Dukovany

    International Nuclear Information System (INIS)

    Hladky, Milan

    2000-01-01

    PSA of external events at level 1 covers internal events, floods, fires, other external events are not included yet. Shutdown PSA takes into account internal events, floods, fires, heavy load drop, other external events are not included yet. Final safety analysis report was conducted after 10 years of operation for all Dukovany operational units. Probabilistic approach was used for analysis of aircraft drop and external man-induced events. The risk caused by man-induced events was found to be negligible and was accepted by State Office for Nuclear Safety (SONS)

  2. Nuclear Security Systems and Measures for Major Public Events. Implementing Guide

    International Nuclear Information System (INIS)

    2012-01-01

    Terrorism remains a threat to international stability and security. High profile international and national major public events occur regularly, capturing great public interest and receiving intense media coverage. It is widely acknowledged that there is a substantial threat of a terrorist attack on major public events such as high profile political or economic summit meetings or major sporting contests. The threat of nuclear and radiological terrorism remains on the international security agenda. Nevertheless, to reduce this risk, the international community has made great progress in securing nuclear and other radioactive material that could otherwise be used in a terrorist act. This progress is contingent on the efforts of all States to adopt strong nuclear security systems and measures. There are large quantities of diverse radioactive material in existence, which are used in areas such as health, the environment, agriculture and industry. The hazards of this material vary according to composition and intensity. Additionally, the use of explosives in combination with this material can drastically enhance the impact of a criminal or terrorist act. If a criminal or terrorist group managed to detonate a so-called 'dirty' bomb in an urban area, the result could be mass panic, widespread radioactive contamination and major economic and social disruption. Major public events are seldom held in the same State or at the same location or even at the same venue. At the national level, the hosting of major public events with proper nuclear security arrangements can provide a foundation on which to build an enduring national framework for nuclear security; one that can exist long after the event. The organization of a major public event in which large numbers of people congregate presents complex security challenges for the State hosting such an event. Criminal or terrorist acts involving nuclear or other radioactive material at any major public event could result in

  3. Nuclear Security Systems and Measures for Major Public Events. Implementing Guide (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Terrorism remains a threat to international stability and security. High profile international and national major public events occur regularly, capturing great public interest and receiving intense media coverage. It is widely acknowledged that there is a substantial threat of a terrorist attack on major public events such as high profile political or economic summit meetings or major sporting contests. The threat of nuclear and radiological terrorism remains on the international security agenda. Nevertheless, to reduce this risk, the international community has made great progress in securing nuclear and other radioactive material that could otherwise be used in a terrorist act. This progress is contingent on the efforts of all States to adopt strong nuclear security systems and measures. There are large quantities of diverse radioactive material in existence, which are used in areas such as health, the environment, agriculture and industry. The hazards of this material vary according to composition and intensity. Additionally, the use of explosives in combination with this material can drastically enhance the impact of a criminal or terrorist act. If a criminal or terrorist group managed to detonate a so-called 'dirty' bomb in an urban area, the result could be mass panic, widespread radioactive contamination and major economic and social disruption. Major public events are seldom held in the same State or at the same location or even at the same venue. At the national level, the hosting of major public events with proper nuclear security arrangements can provide a foundation on which to build an enduring national framework for nuclear security; one that can exist long after the event. The organization of a major public event in which large numbers of people congregate presents complex security challenges for the State hosting such an event. Criminal or terrorist acts involving nuclear or other radioactive material at any major public event could result in

  4. Event shape analysis in ultrarelativistic nuclear collisions

    OpenAIRE

    Kopecna, Renata; Tomasik, Boris

    2016-01-01

    We present a novel method for sorting events. So far, single variables like flow vector magnitude were used for sorting events. Our approach takes into account the whole azimuthal angle distribution rather than a single variable. This method allows us to determine the good measure of the event shape, providing a multiplicity-independent insight. We discuss the advantages and disadvantages of this approach, the possible usage in femtoscopy, and other more exclusive experimental studies.

  5. Radioactive particles after different nuclear events in the USSR (overview and modern data)

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.K.; Stukin, E.D.; Kvasnikova, E.V. [Institute of Global Climate and Ecology, Moscow (Russian Federation)

    2004-07-01

    Institute of Global Climate and Ecology participated in all stages of investigations concerning spreading of the radioactive particles formed after nuclear explosions. Since 1963 the radioactive particles from the surface nuclear explosions on the Semipalatinsk Test Site were investigated. Since 1964 the study of the environmental contamination from the underground nuclear explosions (including the cratering nuclear explosions) was carried out. Simultaneously the secondary radioactive aerosols released into the atmosphere from ventilated underground explosions were investigated. Since 1986 the forming and spreading of the radioactive aerosols from Chernobyl accident was studied. An overview of retrospective data will be presented. For example, the fragmentation radionuclides {sup 90}Sr, {sup 137}Cs and {sup 155}Eu, radionuclides induced by neutrons {sup 60}Co, {sup 152}Eu, {sup 154}Eu and transuranium radionuclides {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am were estimated in 15 particles of August, 29, 1949 explosion using the semiconductor spectrometry and radiochemical analysis. Data collection include the samples taken on local traces of ground and underground excavation nuclear explosions, this information will be added by the modern data from soil samples near '1004' explosion (lake Chagan), October 2003. The results of comparison of radionuclide fractionation in the radioactive particles in slag from cratering nuclear explosions and in melt samples will be presented. Main results obtained under the IAEA Research Contract no. 11468. (author)

  6. Close-in airblast from underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Vortman, L J [Sandia Laboratories, Albuquerque, NM (United States)

    1970-05-15

    Air overpressures as a function of time have been measured from surface zero to about 170 ft/lb{sup 1/3} along the ground from nuclear and chemical explosions. Charge depths varied from the surface to depths below which explosion gases are contained. A ground-shock-induced air pressure pulse is clearly distinguishable from the pulse caused by venting gases. Measured peak overpressures show reasonable agreement with the theoretical treatment by Monta. In a given medium the suppression of blast with explosion burial depth is a function of the relative distance at which the blast is observed. Rates of suppression of peak overpressure with charge burial are different for the two pulses. Rates are determined for each pulse over the range of distances at which measurements have been made of air overpressure from chemical explosions in several media. Nuclear data are available from too few shots for similar dependence on burial depth and distance to be developed, but it is clear that the gas venting peak overpressure from nuclear explosions is much more dependent on medium than that from chemical explosions. For above-ground explosions, experiment has shown that airblast from a I-kiloton nuclear explosion is equal to that from a 0.5-kiloton TNT explosion. Data on ground-shock-induced airblast is now sufficient to show that a similar relationship may exist for buried explosions. Because of medium dependence of the gas venting pulse from nuclear explosions, data from additional nuclear events will be required before a chemical/nuclear airblast equivalence can be determined for the gas-venting pulse. (author)

  7. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    International Nuclear Information System (INIS)

    Michael Kruzic

    2007-01-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D and D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release

  8. The destabilizing influence of heat flow on the geological environment during underground nuclear explosions

    International Nuclear Information System (INIS)

    Politikov, M.I.; Kamberov, I.M.; Krivchenko, V.F.; Lukashenko, S.N.; Solodukhin, V.P.

    2001-01-01

    The study has determined the fact that the processes of gas-radioactive ectoplasm intrusion from nuclear cavities in the geological environment bring the significant contribution in bosom destabilizing besides the mechanical rock destruction as affected by underground nuclear explosions. Not only heat field forming that reduces the rock resistance and increases its porosity is related to it, but also the forming, on the way, of man-caused contamination aureoles of the geological environment, including the underground water bearing horizon. Unfortunately, this problem is hardly studied, mainly for the lack of reliable apparatus and methods. Judging by the results of information search, the best way to solve the problem is not yet known. (author)

  9. Preventing nuclear explosive testing. Submitted to the House of Representatives, Ninety-Ninth Congress, First Session

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    H.J. Resolution 3 banning the testing of nuclear weapons over 150 kilotons seeks to slow the arms race by urging Congress to ratify the 1974 Threshold Test Ban Treaty and the 1976 Peaceful Nuclear Explosions Treaty and urging the President to resume negotiations with the Soviet Union. The House Foreign Affairs Committee report supports the concept after a series of hearings with verification experts and the weapons and intelligence establishments. Verification and weapons reliability were the key issues of concern, but the committee concluded that politics rather than technology prevented a comprehensive test ban. The report also includes the reminder in the minority view that talks were suspended after the Soviet invasion of Afghanistan and that scientists need further testing to make weapons safer and less vulnerable to terrorist action

  10. Synthetic seismograms - II. Synthesis of amplitude spectra and seismograms of P waves from underground nuclear explosions

    International Nuclear Information System (INIS)

    Banghar, A.R.

    1980-01-01

    As a part of programme of seismic detection of underground nuclear explosions, step by step variations in the amplitude spectra and waveforms of P wave signal, as it propagates from source to receiver region, are investigated. Influences on the amplitude spectra and waveforms of teleseismic p waves due to : (1) variation in the shape of reduced displacement potential, (2) variation of mantle Q values, (3) change in depth, (4) various yields, (5) spalling, and (6) variation of crustal structure at source as well as at receiver are studied. The results show that for a yield of 85 kilotons, the time structure of seismograms is nearly same for four types of reduced displacement potentials considered here. The duration of waveforms is affected both by crustal structure at source as well as due to spalling. In general, effect of receiver crust on seismograms is found to be minor. Synthesized and observed P wave seismograms for Longshot, Milrow and Cannikin underground nuclear explosions are computed at various seismometer array stations of the UKAEA. Computed seismograms compare well with the recorded ones. It is seen that: (1) overburden P wave velocity inferred from seismograms is less as compared to its value obtained from on-site measurements, and (2) the source function, the source crust transfer function, the mantle transfer function and the spalling function are the most important factors that influence shaping of spectra and seismograms. (M.G.B.)

  11. Use of nuclear explosions to create gas condensate storage in the USSR. LLL Treaty Verification Program

    International Nuclear Information System (INIS)

    Borg, I.Y.

    1982-01-01

    The Soviet Union has described industrial use of nuclear explosions to produce underground hydrocarbon storage. To examples are in the giant Orenburg gas condensate field. There is good reason to believe that three additional cavities were created in bedded salt in the yet to be fully developed giant Astrakhan gas condensate field in the region of the lower Volga. Although contrary to usual western practice, the cavities are believed to be used to store H 2 S-rich, unstable gas condensate prior to processing in the main gas plants located tens of kilometers from the producing fields. Detonations at Orenburg and Astrakhan preceded plant construction. The use of nuclear explosions at several sites to create underground storage of highly corrosive liquid hydrocarbons suggests that the Soviets consider this time and cost effective. The possible benefits from such a plan include degasification and stabilization of the condensate before final processing, providing storage of condensate during periods of abnormally high natural gas production or during periods when condensate but not gas processing facilities are undergoing maintenance. Judging from information provided by Soviet specialists, the individual cavities have a maximum capacity on the order of 50,000 m 3

  12. Status report on the conceivable outside pressure exerted on nuclear power stations by gaseous explosions

    International Nuclear Information System (INIS)

    Geiger, W.

    1977-01-01

    The following incidents to be taken into account in the whole process beginning with gas release and ending with a possible stress exerted on the power plant building are discussed in detail: Conditions leading to the release of large amounts of gas; formation of an explorable gas mixture cloud; ignition and course of explosion; pressure wave propagation in the surrounding air; construction dynamics and damaging effects. Experimental results obtainable so far and analyses of large explosions are discussed with a view to their consequences. Special emphasis is placed on the question as to whether extremely unfavourable conditions may lead to a detonation of the cloud instead of a deflagration. Considering the physical laws of cloud formation and the special initiation conditions governing free gas-air-mixtures as a result of gas dynamics and reaction kinetics it can be concluded that a detonation seems to be very unlikely. It is examined what kind of studies are still to be canied out in order to clarity the question of a possible detonation. On the other hand, it is not yet possible to give a decisive answer to the question of whether and to what extent nuclear power plants are endangered by gas cloud deflagration. Due to the complex wave field resulting from diffraction and reflexion of the incoming pressure wave by the buildings of the nuclear power station, a variety of stress functions are possible that may, under certain circumstances, lead to a selective excitation of single vibration modes of the structure. (orig.) [de

  13. INES: The International Nuclear Event Scale user's manual

    International Nuclear Information System (INIS)

    1992-09-01

    The revised and extended addition of the International Nuclear Event Scale is presented. The manual is comprised of four parts. Part 1 contains a summary of the basis of the scale and of the procedure to be used for rating events. Part 2 contains the detailed guidance required to rate events in terms of off-site and on-site impact. These two parts are applicable to all nuclear facilities. Parts 3 and 4 contain the detailed guidance required to rate events in terms of defence in depth for reactors and other facilities, respectively. 5 figs, 2 tabs

  14. Nuclear terrorism and reality

    International Nuclear Information System (INIS)

    St Sauver, J.E.

    1983-01-01

    Unlike conventional terrorist violence, bona-fide nuclear terrorism is a self-publicizing phenomenon. It is a public event by the very scope of its impact. Apocalyptic and catastrophically destructive, a nuclear explosion is the ideal instrument of mass terror. Rational nuclear insurgents would not inform authorities that a nuclear device is about to be detonated. Advance warning of an impending nuclear explosion would reduce the maximum potential effectiveness of any response to such an event

  15. External Events Excluding Earthquakes in the Design of Nuclear Power Plants. Safety Guide

    International Nuclear Information System (INIS)

    2008-01-01

    This Safety Guide provides recommendations and guidance on design for the protection of nuclear power plants from the effects of external events (excluding earthquakes), i.e. events that originate either off the site or within the boundaries of the site but from sources that are not directly involved in the operational states of the nuclear power plant units. In addition, it provides recommendations on engineering related matters in order to comply with the safety objectives and requirements established in the IAEA Safety Requirements publication, Safety of Nuclear Power Plants: Design. It is also applicable to the design and safety assessment of items important to the safety of land based stationary nuclear power plants with water cooled reactors. Contents: 1. Introduction; 2. Application of safety criteria to the design; 3. Design basis for external events; 4. Aircraft crash; 5. External fire; 6. Explosions; 7. Asphyxiant and toxic gases; 8. Corrosive and radioactive gases and liquids; 9. Electromagnetic interference; 10. Floods; 11. Extreme winds; 12. Extreme meteorological conditions; 13. Biological phenomena; 14. Volcanism; 15. Collisions of floating bodies with water intakes and UHS components; Annex I: Aircraft crashes; Annex II: Detonation and deflagration; Annex III: Toxicity limits.

  16. INES: The International Nuclear Event Scale. User's manual

    International Nuclear Information System (INIS)

    1990-08-01

    The International Nuclear Event Scale (INES) is being introduced for a trial period, the primary purpose being to facilitate communication between the nuclear community, the media and the public on such events. The scale runs from zero, for events with no safety significance, to seven for a major accident. The scale has been circulated to Member States of the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development and it is presently anticipated that the trial period will last until late 1991. Provision has been made for the scale to be refined thereafter in the light of experience. It is designed as an important tool in providing prompt, clear and consistent information on nuclear events wherever and whenever they may occur. 2 figs, 2 tabs

  17. Computer code TRANS-ACE predicting for fire and explosion accidents in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Abe, Hitoshi; Nishio; Gunji; Naito, Yoshitaka

    1993-11-01

    The accident analysis code TRANS-ACE was developed to evaluate the safety of a ventilation system in a reprocessing plant in the event of fire and explosion accidents. TRANS-ACE can evaluate not only the integrity of a ventilation system containing HEPA filters but also the source term of radioactive materials for release out of a plant. It calculates the temperature, pressure, flow rate, transport of combustion materials and confinement of radioactive materials in the network of a ventilation system that might experience a fire or explosion accident. TRANS-ACE is based on the one-dimensional compressible thermo-fluid analysis code EVENT developed by Los Alamos National Laboratory (LANL). Calculational functions are added for the radioactive source term, heat transfer and radiation to cell and duct walls and HEPA filter integrity. For the second edition in the report, TRANS-ACE has been improved incorporating functions for the initial steady-state calculation to determine the flow rates, pressure drops and temperature in the network before an accident mode analysis. It is also improved to include flow resistance calculations of the filters and blowers in the network and to have an easy to use code by simplifying the input formats. This report is to prepare an explanation of the mathematical model for TRANS-ACE code and to be the user's manual. (author)

  18. Trend analysis of cables failure events at nuclear power plants

    International Nuclear Information System (INIS)

    Fushimi, Yasuyuki

    2007-01-01

    In this study, 152 failure events related with cables at overseas nuclear power plants are selected from Nuclear Information Database, which is owned by The Institute of Nuclear Safety System, and these events are analyzed in view of occurrence, causal factor, and so on. And 15 failure events related with cables at domestic nuclear power plants are selected from Nuclear Information Archives, which is owned by JANTI, and these events are analyzed by the same manner. As a result of comparing both trends, it is revealed following; 1) A cable insulator failure rate is lower at domestic nuclear power plants than at foreign ones. It is thought that a deterioration diagnosis is performed broadly in Japan. 2) Many buried cables failure events have been occupied a significant portion of cables failure events during work activity at overseas plants, however none has been occurred at domestic plants. It is thought that sufficient survey is conducted before excavating activity in Japan. 3) A domestic age related cables failure rate in service is lower than the overseas one and domestic improper maintenance rate is higher than the overseas one. Maintenance worker' a skill improvement is expected in order to reduce improper maintenance. (author)

  19. Low-frequency electromagnetic measurements as a zero-time discriminant of nuclear and chemical explosions - OSI research final report

    International Nuclear Information System (INIS)

    Sweeney, J.J.

    1996-12-01

    This is the final report on a series of investigations of low frequency (1-40 Hz) electromagnetic signals produced by above ground and underground chemical explosions and their use for confidence building under the Comprehensive Test-Ban Treaty. I conclude that low frequency electromagnetic measurements can be a very powerful tool for zero-time discrimination of chemical and nuclear explosions for yields of 1 Kt or greater, provided that sensors can be placed within 1-2 km of the suspected detonation point in a tamper-proof, low noise environment. The report includes descriptions and analyses of low frequency electromagnetic measurements associated with chemical explosions carried out in a variety of settings (shallow borehole, open pit mining, underground mining). I examine cavity pressure data from the Non-Proliferation Experiment (underground chemical explosion) and present the hypothesis that electromagnetic signals produced by underground chemical explosions could be produced during rock fracturing. I also review low frequency electromagnetic data from underground nuclear explosions acquired by Lawrence Livermore National Laboratory during the late 1980s. (author)

  20. Hydrologic processes and radionuclide distribution in a cavity and chimney produced by the Cannikin nuclear explosion, Amchitka Island, Alaska

    International Nuclear Information System (INIS)

    Claassen, H.C.

    1978-01-01

    An analysis of hydraulic, chemical, and radiochemical data obtained in the vicinity of the site of a nuclear explosion (code-named Cannikin, 1971), on Amchitka Island, Alaska, was undertaken to describe the hydrologic processes associated with the saturation of subsurface void space produced by the explosion. Immediately after detonation of the explosive, a subsurface cavity was created surrounding the explosion point. This cavity soon was partly filled by collapse of overburden, producing void volume in a rubble chimney extending to land surface and forming a surface-collapse sink. Surface and groundwater immediately began filling the chimney but was excluded for a time from the cavity by the presence of steam. When the steam condensed, the accumulated water in the chimney flowed into the cavity region, picking up and depositing radioactive materials along its path. Refilling of the chimney voids then resumed and was nearly complete about 260 days after the explosion. The hydraulic properties of identified aquifers intersecting the chimney were used with estimates of surface-water inflow, chimney dimensions, and the measured water-level rise in the chimney to estimate the distribution of explosion-created porosity in the chimney, which ranged from about 10 percent near the bottom to 4 percent near the top. Chemical and radiochemical analyses of water from the cavity resulted in identification of three aqueous phases: groundwater, surface water, and condensed steam. Although most water samples represented mixtures of these phases, they contained radioactivity representative of all radioactivity produced by the explosion

  1. Indemnification of damage in the event of a nuclear accident

    International Nuclear Information System (INIS)

    2003-01-01

    The Workshop on the Indemnification of Damage in the Event of a Nuclear Accident, organised by the OECD Nuclear Energy Agency in close co-operation with the French authorities, was held in Paris from 26 to 28 November 2001. This event was an integral part of the International Nuclear Emergency Exercise INEX 2000. It attracted wide participation from national nuclear authorities, regulators, operators of nuclear installations, nuclear insurers and international organisations. The objective was to test the capacity of the existing nuclear liability and compensation mechanisms in the 29 countries represented at the workshop to manage the consequences of a nuclear emergency. This workshop was based upon the scenario used for the INEX 2000 Exercise, i.e. an accident simulated at the Gravelines nuclear power plant in the north of France in May 2001. These proceedings contain a comparative analysis of legislative and regulatory provisions governing emergency response and nuclear third party liability, based upon country replies to a questionnaire. This publication also includes the full responses provided to that questionnaire, as well as the texts of presentations made by special guests from Germany and Japan describing the manner in which the public authorities in their respective countries responded to two nuclear accidents of a very different nature and scale. (authors)

  2. Porous chromatographic materials as substrates for preparing synthetic nuclear explosion debris particles

    International Nuclear Information System (INIS)

    Harvey, S.D.; Carman, A.J.; Martin Liezers; Antolick, K.C.; Garcia, B.J.; Eiden, G.C.; Sweet, L.E.

    2013-01-01

    Several porous chromatographic materials were investigated as synthetic substrates for preparing surrogate nuclear explosion debris particles. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110 deg C) to drive off water, and then treating them at high temperatures (up to 800 deg C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies characterized material balance and the formation of recalcitrant species. Metal loading was 1.5-3 times higher than expected from the pore volume alone, a result attributed to surface coating. Most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating selective loading. High-temperature treatments caused reduced solubility of several metals, and the loss of some volatile species (rhenium and tellurium). Sample preparation reproducibility was high (the inter- and intra-batch relative standard deviations were 7.8 and 0.84 %, respectively) indicating suitability for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in radioanalytical methods development and/or serve as a starting material for the synthesis of more complex nuclear explosion debris forms (e.g., Trinitite). (author)

  3. The International Nuclear Event Scale (INES) user's manual. 2001 edition

    International Nuclear Information System (INIS)

    2001-12-01

    The International Nuclear Event Scale (INES) was introduced in March 1990 jointly by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA). Its primary purpose is to facilitate communication and understanding between the nuclear community, the media and the public on the safety significance of events occurring at nuclear installations. The scale was refined in 1992 in the light of experience gained and extended to be applicable to any event associated with radioactive material and/or radiation, including the transport of radioactive materials.This edition of the INES User's Manual incorporates experience gained from applying the 1992 version of the scale and the document entitled 'Clarification of Issues Raised'. As such, it replaces those earlier publications. It does not amend the technical basis of the INES rating procedure but is expected to facilitate the task of those who are required to rate the safety significance of events using the INES scale. The INES communication network currently receives and disseminates event information to the INES National Officers of 60 Member States on special Event Rating Forms which represent official information on the events, including the rating. The INES communication process has led each participating country to set up an internal network which ensures that all events are promptly communicated and rated whenever they have to be reported outside or inside the country. The IAEA provides training services on the use of INES on request

  4. INES - The International Nuclear Event Scale. User's manual

    International Nuclear Information System (INIS)

    2005-01-01

    The International Nuclear Event Scale (INES) was introduced in March 1990 jointly by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA). Its primary purpose is to facilitate communication and understanding between the nuclear community, the media and the public on the safety significance of events occurring at nuclear installations. The scale was refined in 1992 in the light of experience gained and extended to be applicable to any event associated with radioactive material and/or radiation, including the transport of radioactive materials. This edition of the INES User's Manual incorporates experience gained from applying the 1992 version of the scale and the document entitled 'Clarification of Issues Raised'. As such, it replaces those earlier publications. It does not amend the technical basis of the INES rating procedure but is expected to facilitate the task of those who are required to rate the safety significance of events using the INES scale. The INES communication network currently receives and disseminates event information to the INES National Officers of 60 Member States on special Event Rating Forms which represent official information on the events, including the rating. The INES communication process has led each participating country to set up an internal network which ensures that all events are promptly communicated and rated whenever they have to be reported outside or inside the country. The IAEA provides training services on the use of INES on request

  5. The International Nuclear Event Scale (INES) user's manual. 2001 edition

    International Nuclear Information System (INIS)

    2001-02-01

    The International Nuclear Event Scale (INES) was introduced in March 1990 jointly by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA). Its primary purpose is to facilitate communication and understanding between the nuclear community, the media and the public on the safety significance of events occurring at nuclear installations. The scale was refined in 1992 in the light of experience gained and extended to be applicable to any event associated with radioactive material and/or radiation, including the transport of radioactive materials.This edition of the INES User's Manual incorporates experience gained from applying the 1992 version of the scale and the document entitled ''Clarification of Issues Raised''. As such, it replaces those earlier publications. It does not amend the technical basis of the INES rating procedure but is expected to facilitate the task of those who are required to rate the safety significance of events using the INES scale. The INES communication network currently receives and disseminates event information to the INES National Officers of 60 Member States on special Event Rating Forms which represent official information on the events, including the rating. The INES communication process has led each participating country to set up an internal network which ensures that all events are promptly communicated and rated whenever they have to be reported outside or inside the country. The IAEA provides training services on the use of INES on request

  6. The Soviet program for peaceful uses of nuclear explosions. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Nordyke, M.D.

    1996-10-01

    An extensive review is given of the US and Russian efforts on peaceful uses of nuclear explosions (PNE). The Soviet PNE program was many times larger than the US Plowshare program in terms of both the number of applications explored with field experiments and the extent to which they were introduced into industrial use. Several PNE applications, such as deep seismic sounding and oil stimulation, have been explored in depth and appear to have had a positive cost benefit at minimal public risk. Closure of runaway gas wells is another possible application where all other techniques fail. However, the fundamental problem with PNEs is the fact that, if they are to be economically significant, there must be widespread use of the technology, involving large numbers of sites, each of which presents a potential source of radioactivity to the environment and nearby communities. Russia now has more than 100 sites where significant high-level radioactivity has been buried. Experience over the last 20 years in US and in today`s Russia shows that it is virtually impossible to gain public acceptance of such applications of nuclear energy. In addition, PNEs also pose a difficult problem in the arms control area. Under a comprehensive test ban, any country conducting PNEs would, in appearance if not in fact, receive information useful for designing new nuclear weapons or maintaining an existing nuclear stockpile, information denied to the other parties to the treaty. 6 tabs, 10 figs.

  7. Biological consequences of atomic explosions

    International Nuclear Information System (INIS)

    Messerschmidt, O.

    1984-01-01

    After an introductory chapter of the development and properties of nuclear weapons and the events of Hiroshima and Nagasaki, this books shows the effects of atomic explosions for man: effects of the pressure wave, thermal radiation, initial nuclear radiation alone or in conjunction and possible medical help. In addition the less massive damage caused by induced radioactivity and fallout, their prevention resp. treatment and the malignant/nonmalignant late effects are discussed. A further chapter deals with the psychological and epidemiological effects of atomic explosions, the consequences for food and water supply, and the construction of shetters. The last chapter is concerned with the problem of organising medical help. (MG) [de

  8. Radioactive Emissions from Fission-Based Medical Isotope Production and Their Effect on Global Nuclear Explosion Detection

    International Nuclear Information System (INIS)

    Bowyer, T.; Saey, P.

    2015-01-01

    The use of medical isotopes, such as Tc-99m, is widespread with over 30 million procedures being performed every year, but the fission-based production of isotopes used for medical procedures causes emissions into the environment. This paper will show that gaseous radioactive isotopes of xenon, such as Xe-133, are released in high quantities, because they have a high fission cross section and they are difficult to scrub from the processes used to produce the medical isotopes due to their largely unreactive nature. Unfortunately, the reasons that large amounts of radioactive xenon isotopes are emitted from isotope production are the same as those that make these isotopes the most useful isotopes for the detection of underground nuclear explosions. Relatively recently, the nuclear explosion monitoring community has established a provisional monitoring network for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) that includes radioactive xenon monitoring as a major component. This community has discovered that emissions from medical isotope production present a more serious problem to nuclear explosion monitoring than thought when the network was first conceived. To address the growing problem, a group of scientists in both the monitoring and the isotope production communities have come together to attempt to find scientific and pragmatic ways to address the emissions problems, recognizing that medical isotope production should not be adversely affected, while monitoring for nuclear explosions should remain effective as isotope production grows, changes, and spreads globally. (author)

  9. Joint maximum-likelihood magnitudes of presumed underground nuclear test explosions

    Science.gov (United States)

    Peacock, Sheila; Douglas, Alan; Bowers, David

    2017-08-01

    Body-wave magnitudes (mb) of 606 seismic disturbances caused by presumed underground nuclear test explosions at specific test sites between 1964 and 1996 have been derived from station amplitudes collected by the International Seismological Centre (ISC), by a joint inversion for mb and station-specific magnitude corrections. A maximum-likelihood method was used to reduce the upward bias of network mean magnitudes caused by data censoring, where arrivals at stations that do not report arrivals are assumed to be hidden by the ambient noise at the time. Threshold noise levels at each station were derived from the ISC amplitudes using the method of Kelly and Lacoss, which fits to the observed magnitude-frequency distribution a Gutenberg-Richter exponential decay truncated at low magnitudes by an error function representing the low-magnitude threshold of the station. The joint maximum-likelihood inversion is applied to arrivals from the sites: Semipalatinsk (Kazakhstan) and Novaya Zemlya, former Soviet Union; Singer (Lop Nor), China; Mururoa and Fangataufa, French Polynesia; and Nevada, USA. At sites where eight or more arrivals could be used to derive magnitudes and station terms for 25 or more explosions (Nevada, Semipalatinsk and Mururoa), the resulting magnitudes and station terms were fixed and a second inversion carried out to derive magnitudes for additional explosions with three or more arrivals. 93 more magnitudes were thus derived. During processing for station thresholds, many stations were rejected for sparsity of data, obvious errors in reported amplitude, or great departure of the reported amplitude-frequency distribution from the expected left-truncated exponential decay. Abrupt changes in monthly mean amplitude at a station apparently coincide with changes in recording equipment and/or analysis method at the station.

  10. Associated-particle sealed-tube neutron probe: Detection of explosives, contraband, and nuclear materials

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.

    1996-01-01

    Continued research and development of the APSTNG shows the potential for practical field use of this technology for detection of explosives, contraband, and nuclear materials. The APSTNG (associated-particle sealed-tube generator) inspects the item to be examined using penetrating 14-MeV neutrons generated by the deuterium-tritium reaction inside a compact accelerator tube. An alpha detector built into the sealed tube detects the alpha-particle associated with each neutron emitted in a cone encompassing the volume to be inspected. Penetrating high-energy gamma-rays from the resulting neutron reactions identify specific nuclides inside the volume. Flight-times determined from the detection times of gamma-rays and alpha-particles separate the prompt and delayed gamma-ray spectra and allow a coarse 3-D image to be obtained of nuclides identified in the prompt spectrum. The generator and detectors can be on the same side of the inspected object, on opposite sides, or with intermediate orientations. Thus, spaces behind walls and other confined regions can be inspected. Signals from container walls can be discriminated against using the flight-time technique. No collimators or shielding are required, the neutron generator is relatively small, and commercial-grade electronics are employed. The use of 14-MeV neutrons yields a much higher cross-section for detecting nitrogen than that for systems based on thermal-neutron reactions alone, and the broad range of elements with significant 14-MeV neutron cross-sections extends explosives detection to other elements including low-nitrogen compounds, and allows detection of many other substances. Proof-of-concept experiments have been successfully performed for conventional explosives, chemical warfare agents, cocaine, and fissionable materials

  11. Nuclear facility safeguards systems modeling using discrete event simulation

    International Nuclear Information System (INIS)

    Engi, D.

    1977-01-01

    The threat of theft or dispersal of special nuclear material at a nuclear facility is treated by studying the temporal relationships between adversaries having authorized access to the facility (insiders) and safeguards system events by using a GASP IV discrete event simulation. The safeguards system events--detection, assessment, delay, communications, and neutralization--are modeled for the general insider adversary strategy which includes degradation of the safeguards system elements followed by an attempt to steal or disperse special nuclear material. The performance measure used in the analysis is the estimated probability of safeguards system success in countering the adversary based upon a predetermined set of adversary actions. An exemplary problem which includes generated results is presented for a hypothetical nuclear facility. The results illustrate representative information that could be utilized by safeguards decision-makers

  12. The use of contained nuclear explosions to create underground reservoirs, and experience of operating these for gas condensate storage

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Myasnikov, K.V.; Leonov, E.A.; Romadin, N.M.; Dorodnov, V.F.; Nikiforov, G.A.

    1975-01-01

    Investigations on the creation of underground reservoirs by means of nuclear explosions have been going on in the Soviet Union for many years. In this paper the authors consider three main kinds of sites or formations that can be used for constructing reservoirs by this method, namely, low-permeable rocks, worked-out mines and rock salt formations. Formulae are given for predicting the mechanical effect of an explosion in rocks, taking their strength characteristics into account. Engineering procedures are described for sealing and restoring the emplacement holes, so that they can be used for operating the underground reservoir. Experience with the contruction and operation of a 50 000 m 3 gas-condensate reservoir in a rock salt formation is described. In the appendix to the paper a method is presented for calculating the stability of spherical cavities created by nuclear explosions in rock salt, allowing for the development of elasto-plastic deformations and creep

  13. Performance evaluation of spectral deconvolution analysis tool (SDAT) software used for nuclear explosion radionuclide measurements

    International Nuclear Information System (INIS)

    Foltz Biegalski, K.M.; Biegalski, S.R.; Haas, D.A.

    2008-01-01

    The Spectral Deconvolution Analysis Tool (SDAT) software was developed to improve counting statistics and detection limits for nuclear explosion radionuclide measurements. SDAT utilizes spectral deconvolution spectroscopy techniques and can analyze both β-γ coincidence spectra for radioxenon isotopes and high-resolution HPGe spectra from aerosol monitors. Spectral deconvolution spectroscopy is an analysis method that utilizes the entire signal deposited in a gamma-ray detector rather than the small portion of the signal that is present in one gamma-ray peak. This method shows promise to improve detection limits over classical gamma-ray spectroscopy analytical techniques; however, this hypothesis has not been tested. To address this issue, we performed three tests to compare the detection ability and variance of SDAT results to those of commercial off- the-shelf (COTS) software which utilizes a standard peak search algorithm. (author)

  14. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1981-01-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain, for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy

  15. Damage caused to houses and equipment by underground nuclear explosions; Degats dus aux explosions nucleaires souterraines sur les habitations et les equipements

    Energy Technology Data Exchange (ETDEWEB)

    Delort, F; Guerrini, C [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    A description is given of the damaged caused to various structures, buildings, houses, mechanical equipment and electrical equipment by underground nuclear explosions in granite. For each type of equipment or building are given the limiting distances for a given degree of damage. These distances have been related to a parameter characterizing the movement of the medium; it is thus possible to generalize the results obtained in granite, for different media. The problem of estimating the damage caused at a greater distance from the explosion is considered. (authors) [French] Les degats sur diverses structures, constructions, habitations, equipements mecaniques et materiels electriques provoques par des explosions nucleaires souterraines dans le granite sont decrits. On a indique pour chaque type de materiel ou de construction, les distances limites correspondant a un degre de gravite de dommage observe. Ces distances ont ete reliees a un parametre caracterisant le mouvement du milieu, permettant ainsi de generaliser les resultats obtenus dans le granite, a differents milieux. Le probleme de la prevision des degats en zone lointaine a ete aborde. (auteurs)

  16. The International Nuclear and Radiological Event Scale (INES): 20 Years of Nuclear Communication

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: Today, the International Atomic Energy Agency (IAEA) and the OECD Nuclear Energy Agency (NEA) are celebrating the 20th anniversary of the International Nuclear and Radiological Event Scale (INES). Jointly developed by the IAEA and the NEA in 1990, in the aftermath of the Chernobyl accident, the purpose of INES is to help nuclear and radiation safety authorities and the nuclear industry worldwide to rate nuclear and radiological events and to communicate their safety significance to the general public, the media and the technical community. INES has often been compared to other scales used to measure physical properties such as temperature - the Celsius, Kelvin or Fahrenheit scales - or rate events such as earthquakes - the Richter scale. Like these scales, INES also has a sound technical background and can be easily understood. INES was initially used to classify events at nuclear power plants only. It was subsequently extended to rate events occurring in any nuclear facility and during the transport of radioactive material, thus also covering events related to the overexposure of workers. Since 2008, INES has been extended to any event associated with the transport, storage and use of radioactive material and radiation sources, from those occurring at nuclear facilities to those associated with industrial use. More generally, INES has also become a crucial nuclear communications tool. Since its inception, it has been adopted in 69 countries, and an increasing number of countries have expressed their interest in using INES and have designated INES national officers. Over the years, national nuclear safety authorities have made growing use of INES, while the public and the media have become more familiar with the scale and its significance. This is where the true success of INES stands, having helped to foster transparency and provide a better understanding of nuclear-related events and activities. For a full description of the International Nuclear and

  17. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach.

  18. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach

  19. Some possible applications of peaceful nuclear explosions in the recovery of natural resources from beneath the seabed

    International Nuclear Information System (INIS)

    Parker, K.

    1975-01-01

    The technical, economic and environmental advantages and disadvantages of using nuclear explosions as an aid to recovering natural resources from beneath the seabed are discussed and compared with those in applications on land. Particular consideration is given to their use in assisting petroleum production as offshore development moves into deeper waters. (author)

  20. A methodology for nuclear power plant operational events evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jeferson, E-mail: jeferson@cnen.gov.br [Comissao Nacional de Energia Nuclear (CGRC/CNEN), Rio de janeiro, RJ (Brazil). Coordenacao Geral de Reatores e do Ciclo de Combustivel; Costa, Sergio Dias, E-mail: sergiodiascosta@hotmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Operational events are normal occurrences in industrial plants and in nuclear power plants. The evaluation of operational events gains importance when it comes specifically to nuclear power plants due to the proportions that the impact and the consequences of these events may cause to the installation itself, their workers, the external area of the nuclear installation, the environment and to the public in general. These consequences, for the operation of these facilities can range from very little, until the consequences that lead to accidents and can cause significant impacts. Operational events may be associated or have influence in many fields of knowledge, such as operation, maintenance, engineering, Radiological Protection, physical protection, chemistry, Human or Organizational Factors and external events, among others. The accident at the Fukushima Daichi nuclear power plant, shows the importance of exhausting all the studies concerning operational events in order to improve the operational safety of nuclear plants, considering all the causes and possible consequences. In this context, the evaluation of operational events discipline emerges as an important and relevant tool to contribute to the maintenance and/or improvement of the operational safety of nuclear installations. Not without reason the nuclear industry actively participates in programs of exchange of operational experience, where relevant events are thoroughly evaluated and discussed in specific forums, such as power plant operators, regulators and/or joint technical meetings, always with the purpose to prevent, minimize or mitigate its consequences. Any evaluation of operational events passes necessarily by an in-depth study of the circumstances of the event, culminating with the identification of your cause and proposition of corrective actions to prevent recurrence of similar events. Additionally, the events should not be studied individually, but evaluated within a temporal context in order

  1. A methodology for nuclear power plant operational events evaluation

    International Nuclear Information System (INIS)

    Araujo, Jeferson

    2015-01-01

    Operational events are normal occurrences in industrial plants and in nuclear power plants. The evaluation of operational events gains importance when it comes specifically to nuclear power plants due to the proportions that the impact and the consequences of these events may cause to the installation itself, their workers, the external area of the nuclear installation, the environment and to the public in general. These consequences, for the operation of these facilities can range from very little, until the consequences that lead to accidents and can cause significant impacts. Operational events may be associated or have influence in many fields of knowledge, such as operation, maintenance, engineering, Radiological Protection, physical protection, chemistry, Human or Organizational Factors and external events, among others. The accident at the Fukushima Daichi nuclear power plant, shows the importance of exhausting all the studies concerning operational events in order to improve the operational safety of nuclear plants, considering all the causes and possible consequences. In this context, the evaluation of operational events discipline emerges as an important and relevant tool to contribute to the maintenance and/or improvement of the operational safety of nuclear installations. Not without reason the nuclear industry actively participates in programs of exchange of operational experience, where relevant events are thoroughly evaluated and discussed in specific forums, such as power plant operators, regulators and/or joint technical meetings, always with the purpose to prevent, minimize or mitigate its consequences. Any evaluation of operational events passes necessarily by an in-depth study of the circumstances of the event, culminating with the identification of your cause and proposition of corrective actions to prevent recurrence of similar events. Additionally, the events should not be studied individually, but evaluated within a temporal context in order

  2. Gas induced fire and explosion frequencies

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1997-01-01

    The use and handling of flammable gases poses a fire and explosion hazard to many DOE nuclear facilities. This hazard is not unique to DOE facilities. Each year over 2,900 non-residential structural fires occur in the U.S. where a gas is the first item ignited. Details from these events are collected by the National Fire Incident Reporting System (NFIRS) through an extensive reporting network. This extensive data set (800,000 fires in non-residential structures over a 5-year period) is an underutilized resource within the DOE community. Explosions in nuclear facilities can have very severe consequences. The explosion can both damage the facility containment and provide a mechanism for significant radiological dispersion. In addition, an explosion can have significant worker safety implications. Because of this a quantitative frequency estimate for explosions in an SRS laboratory facility has been prepared using the NFIRS data. 6 refs., 1 tab

  3. Closing remarks at the American Nuclear Society-Atomic Energy Commission sponsored Symposium on engineering with nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Werth, Glenn C [Plowshare, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-15

    All 112 papers have been presented, at the 17 technical sessions. The technical highlights are divided into three parts: the highlights of the data from nuclear events, highlights from the broader research papers, and a discussion of some of the application papers.

  4. Closing remarks at the American Nuclear Society-Atomic Energy Commission sponsored Symposium on engineering with nuclear explosives

    International Nuclear Information System (INIS)

    Werth, Glenn C.

    1970-01-01

    All 112 papers have been presented, at the 17 technical sessions. The technical highlights are divided into three parts: the highlights of the data from nuclear events, highlights from the broader research papers, and a discussion of some of the application papers

  5. A review for identification of initiating events in event tree development process on nuclear power plants

    International Nuclear Information System (INIS)

    Riyadi, Eko H.

    2014-01-01

    Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events

  6. A review for identification of initiating events in event tree development process on nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Riyadi, Eko H., E-mail: e.riyadi@bapeten.go.id [Center for Regulatory Assessment of Nuclear Installation and Materials, Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada 8 Jakarta 10120 (Indonesia)

    2014-09-30

    Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events.

  7. IAEA safeguards to prevent nuclear matrials diversion for fabrication of nuclear explosives

    International Nuclear Information System (INIS)

    Preuschen von und zu Liebenstein, R.

    1982-01-01

    The IAEA precautionary measures in accordance with the Non-Proliferation Treaty can be characterized as measures creating confidence. They constitute at present the essential basis for peaceful use of atomic energy. Even though there is a lot of criticism concerning the efficiency of the precautionary measures, and all justified calls for the elaboration of further legal instruments against nuclear materials diversion must not be neglected, the IAEA precautionary measures have already in a credible way contributed to contain the proliferation of nuclear weapons. (orig./HSCH) [de

  8. The 2010 explosive eruption of Java's Merapi volcano—A ‘100-year’ event

    Science.gov (United States)

    Surono,; Jousset, Philippe; Pallister, John S.; Boichu, Marie; Buongiorno, M. Fabrizia; Budisantoso, Agus; Costa, Fidel; Andreastuti, Supriyati; Prata, Fred; Schneider, David; Clarisse, Lieven; Humaida, Hanik; Sumarti, Sri; Bignami, Christian; Griswold, Julia P.; Carn, Simon A.; Oppenheimer, Clive; Lavigne, Franck

    2012-01-01

    Merapi volcano (Indonesia) is one of the most active and hazardous volcanoes in the world. It is known for frequent small to moderate eruptions, pyroclastic flows produced by lava dome collapse, and the large population settled on and around the flanks of the volcano that is at risk. Its usual behavior for the last decades abruptly changed in late October and early November 2010, when the volcano produced its largest and most explosive eruptions in more than a century, displacing at least a third of a million people, and claiming nearly 400 lives. Despite the challenges involved in forecasting this ‘hundred year eruption’, we show that the magnitude of precursory signals (seismicity, ground deformation, gas emissions) was proportional to the large size and intensity of the eruption. In addition and for the first time, near-real-time satellite radar imagery played an equal role with seismic, geodetic, and gas observations in monitoring eruptive activity during a major volcanic crisis. The Indonesian Center of Volcanology and Geological Hazard Mitigation (CVGHM) issued timely forecasts of the magnitude of the eruption phases, saving 10,000–20,000 lives. In addition to reporting on aspects of the crisis management, we report the first synthesis of scientific observations of the eruption. Our monitoring and petrologic data show that the 2010 eruption was fed by rapid ascent of magma from depths ranging from 5 to 30 km. Magma reached the surface with variable gas content resulting in alternating explosive and rapid effusive eruptions, and released a total of ~ 0.44 Tg of SO2. The eruptive behavior seems also related to the seismicity along a tectonic fault more than 40 km from the volcano, highlighting both the complex stress pattern of the Merapi region of Java and the role of magmatic pressurization in activating regional faults. We suggest a dynamic triggering of the main explosions on 3 and 4 November by the passing seismic waves generated by regional

  9. Wave Pattern Peculiarities of Different Types of Explosions Conducted at Semipalatinsk Test Site

    Science.gov (United States)

    Sokolova, Inna

    2014-05-01

    The historical seismograms of the explosions conducted at the STS in 1949 - 1989 are of great interest for the researchers in the field of monitoring. Large number of air (86), surface (30) and underground nuclear explosions were conducted here in boreholes and tunnels (340). In addition to nuclear explosions, large chemical explosions were conducted at the Test Site. It is known that tectonic earthquakes occur on the Test Site territory and near it. Since 2005 the Institute of Geophysical Researches conducts works on digitizing the historical seismograms of nuclear explosions. Currently, the database contains more than 6000 digitized seismograms of nuclear explosions used for investigative monitoring tasks, major part of them (4000) are events from the STS region. Dynamic parameters of records of air, surface and underground nuclear explosions, as well as large chemical explosions with compact charge laying were investigated for seismic stations located on the territory of Kazakhstan using digitized records of the STS events. In addition, the comparison between salvo wave pattern and single explosions was conducted. The records of permanent and temporary seismic stations (epicentral distances range 100 - 800 km) were used for the investigations. Explosions spectra were analyzed, specific features of each class of events were found. The seismograms analysis shows that the wave pattern depends significantly on the explosion site and on the source type.

  10. Alternate Explosions: Collapse and Accretion Events with Red Holes instead of Black Holes

    OpenAIRE

    Graber, James S.

    1999-01-01

    A red hole is "just like a black hole" except it lacks an event horizon and a singularity. As a result, a red hole emits much more energy than a black hole during a collapse or accretion event. We consider how a red hole solution can solve the "energy crisis" and power extremely energetic gamma ray bursts and hypernovae.

  11. Nuclear target foil fabrication for the Romano Event

    International Nuclear Information System (INIS)

    Weed, J.W.; Romo, J.G. Jr.; Griggs, G.E.

    1984-01-01

    The Vacuum Processes Lab, of LLNL's M.E. Dept. - Material Fabrication Division, was requested to provide 250 coated Parylene target foils for a nuclear physics experiment titled the ROMANO Event. Due to the developmental nature of some of the fabrication procedures, approximately 400 coated foils were produced to satisfy the event's needs. The foils were used in the experiment as subkilovolt x-ray, narrow band pass filters, and wide band ultraviolet filters. This paper is divided into three sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, and (3) foil and substrate inspections

  12. External events analysis of the Ignalina Nuclear Power Plant

    International Nuclear Information System (INIS)

    Liaukonis, Mindaugas; Augutis, Juozas

    1999-01-01

    This paper presents analysis of external events impact on the safe operation of the Ignalina Nuclear Power Plant (INPP) safety systems. Analysis was based on the probabilistic estimation and modelling of the external hazards. The screening criteria were applied to the number of external hazards. The following external events such as aircraft failure on the INPP, external flooding, fire, extreme winds requiring further bounding study were analysed. Mathematical models were developed and event probabilities were calculated. External events analysis showed rather limited external events danger to Ignalina NPP. Results of the analysis were compared to analogous analysis in western NPPs and no great differences were specified. Calculations performed show that external events can not significantly influence the safety level of the Ignalina NPP operation. (author)

  13. Assessment of the nuclear installation's safety significant events

    International Nuclear Information System (INIS)

    Vidican, D.

    2005-01-01

    This document tries to establish, based on the available documentation, the main steps in development of Assessment of the Events in Nuclear Installations. It takes into account: selection of the safety significant occurrences, establishing the direct cause and contributors as well as the root cause and contributors. Also, the document presents the necessary corrective actions and generic lessons to be learned from the event. The document is based especially on IAEA - ASSET guidelines and DOE root cause analysis Guidance. (author)

  14. Application of the international nuclear events scale in Mexico

    International Nuclear Information System (INIS)

    Ramirez, R.

    1997-01-01

    Currently in Mexico, there are two nuclear power reactors and one research reactor operating. Any event related have to be reported to the regulatory body which is in charge of the evaluation and classification using the IAEA INES system. This system has been used since its creation, process in which personnel from the regulatory body was involved. This paper describes the reporting, evaluation and classification process by which events go through with the use of the INES system

  15. Innovative concept for a major breakthrough in atmospheric radioactive xenon detection for nuclear explosion monitoring

    International Nuclear Information System (INIS)

    Le Petit, G.; Cagniant, A.; Gross, P.; Achim, P.; Douysset, G.; Taffary, T.; Moulin, C.; Morelle, M.

    2013-01-01

    The verification regime of the comprehensive test ban treaty (CTBT) is based on a network of three different waveform technologies together with global monitoring of aerosols and noble gas in order to detect, locate and identify a nuclear weapon explosion down to 1 kt TNT equivalent. In case of a low intensity underground or underwater nuclear explosion, it appears that only radioactive gases, especially the noble gas which are difficult to contain, will allow identification of weak yield nuclear tests. Four radioactive xenon isotopes, 131m Xe, 133m Xe, 133 Xe and 135 Xe, are sufficiently produced in fission reactions and exhibit suitable half-lives and radiation emissions to be detected in atmosphere at low level far away from the release site. Four different monitoring CTBT systems, ARIX, ARSA, SAUNA, and SPALAX TM have been developed in order to sample and to measure them with high sensitivity. The latest developed by the French Atomic Energy Commission (CEA) is likely to be drastically improved in detection sensitivity (especially for the metastable isotopes) through a higher sampling rate, when equipped with a new conversion electron (CE)/X-ray coincidence spectrometer. This new spectrometer is based on two combined detectors, both exhibiting very low radioactive background: a well-type NaI(Tl) detector for photon detection surrounding a gas cell equipped with two large passivated implanted planar silicon chips for electron detection. It is characterized by a low electron energy threshold and a much better energy resolution for the CE than those usually measured with the existing CTBT equipments. Furthermore, the compact geometry of the spectrometer provides high efficiency for X-ray and for CE associated to the decay modes of the four relevant radioxenons. The paper focus on the design of this new spectrometer and presents spectroscopic performances of a prototype based on recent results achieved from both radioactive xenon standards and air sample

  16. Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles

    International Nuclear Information System (INIS)

    Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.; Garcia, Ben J.; Sweet, Lucas E.; Carman, April J.; Eiden, Gregory C.

    2013-01-01

    In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in

  17. Human based roots of failures in nuclear events investigations

    Energy Technology Data Exchange (ETDEWEB)

    Ziedelis, Stanislovas; Noel, Marc; Strucic, Miodrag [Commission of the European Communities, Petten (Netherlands). European Clearinghouse on Operational Experience Feedback for Nuclear Power Plants

    2012-10-15

    This paper aims for improvement of quality of the event investigations in the nuclear industry through analysis of the existing practices, identifying and removing the existing Human and Organizational Factors (HOF) and management related barriers. It presents the essential results of several studies performed by the European Clearinghouse on Operational Experience. Outcomes of studies are based on survey of currently existing event investigation practices typical for nuclear industry of 12 European countries, as well as on insights from analysis of numerous event investigation reports. System of operational experience feedback from information based on event investigation results is not enough effective to prevent and even to decrease frequency of recurring events due to existing methodological, HOF-related and/or knowledge management related constraints. Besides that, several latent root causes of unsuccessful event investigation are related to weaknesses in safety culture of personnel and managers. These weaknesses include focus on costs or schedule, political manipulation, arrogance, ignorance, entitlement and/or autocracy. Upgrades in safety culture of organization's personnel and its senior management especially seem to be an effective way to improvement. Increasing of competencies, capabilities and level of independency of event investigation teams, elaboration of comprehensive software, ensuring of positive approach, adequate support and impartiality of management could also facilitate for improvement of quality of the event investigations. (orig.)

  18. Human based roots of failures in nuclear events investigations

    International Nuclear Information System (INIS)

    Ziedelis, Stanislovas; Noel, Marc; Strucic, Miodrag

    2012-01-01

    This paper aims for improvement of quality of the event investigations in the nuclear industry through analysis of the existing practices, identifying and removing the existing Human and Organizational Factors (HOF) and management related barriers. It presents the essential results of several studies performed by the European Clearinghouse on Operational Experience. Outcomes of studies are based on survey of currently existing event investigation practices typical for nuclear industry of 12 European countries, as well as on insights from analysis of numerous event investigation reports. System of operational experience feedback from information based on event investigation results is not enough effective to prevent and even to decrease frequency of recurring events due to existing methodological, HOF-related and/or knowledge management related constraints. Besides that, several latent root causes of unsuccessful event investigation are related to weaknesses in safety culture of personnel and managers. These weaknesses include focus on costs or schedule, political manipulation, arrogance, ignorance, entitlement and/or autocracy. Upgrades in safety culture of organization's personnel and its senior management especially seem to be an effective way to improvement. Increasing of competencies, capabilities and level of independency of event investigation teams, elaboration of comprehensive software, ensuring of positive approach, adequate support and impartiality of management could also facilitate for improvement of quality of the event investigations. (orig.)

  19. External man-induced events in relation to nuclear power plant design

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide deals with the basic design requirements for nuclear power plants, and presents a general design approach for protection against the effects of man-induced events. Section 2 discusses the general design approach. Section 3 outlines the development of the basic information necessary for an evaluation of the adequacy of a design against the effects of aircraft crashes, fires, explosions, and the release of toxic gases or corrosive substances. Section 4 outlines the design logic for protection against external man-induced events. It indicates possible methods of ensuring overall plant safety, including protection against possible secondary effects. Included for each event are: a methodology for calculating the design input parameters from the data generated in the siting study, system protection considerations from the effects of this man-induced event, and criteria for judging the adequacy of the protection provided. Specific design guidance related to acts of sabotage is not provided in this Guide. It should be recognized, however, that for certain situations such acts can be important to safety and could constitute the controlling postulated initiating event for design. The list of events covered is not necessarily complete. However, important events on which enough work has already been done in various Member States to enable their effects to be converted into generally accepted design parameters are included. In addition, other man-induced events such as dam ruptures, ship collisions, construction accidents and the like are identified but no general guidelines for design can be specified for these at present. These events need to be considered on an ad hoc basis, in order to arrive at design input parameters for them

  20. The application of a figure of merit for nuclear explosive utility as a metric for material attractiveness in a nuclear material theft scenario

    International Nuclear Information System (INIS)

    King, Wayne E.; Bradley, Keith; Jones, Edwin D.; Kramer, Kevin J.; Latkowski, Jeffery F.; Robel, Martin; Sleaford, Brad W.

    2010-01-01

    Effective integration of nonproliferation management into the design process is key to the broad deployment of advanced nuclear energy systems, and is an explicit goal of the Laser Inertial Fusion Energy (LIFE) project at Lawrence Livermore National Laboratory. The nuclear explosives utility of a nuclear material to a state (proliferator) or sub-state (terrorist) is a critical factor to be assessed and is one aspect of material attractiveness. In this work, we approached nuclear explosives utility through the calculation of a 'figure of merit' (FOM) that has recently been developed to capture the relative viability and difficulty of constructing nuclear explosives starting from various nuclear material forms and compositions. We discuss the integration of the figure of merit into an assessment of a nuclear material theft scenario and its use in the assessment. This paper demonstrates that material attractiveness is a multidimensional concept that embodies more than the FOM. It also seeks to propose that other attributes may be able to be quantified through analogous FOMs (e.g., transformation) and that, with quantification, aggregation may be possible using concepts from the risk community.

  1. The application of a figure of merit for nuclear explosive utility as a metric for material attractiveness in a nuclear material theft scenario

    Energy Technology Data Exchange (ETDEWEB)

    King, Wayne E., E-mail: weking@llnl.go [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Bradley, Keith [Global Security Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Jones, Edwin D. [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Kramer, Kevin J.; Latkowski, Jeffery F. [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Robel, Martin [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Sleaford, Brad W. [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2010-11-15

    Effective integration of nonproliferation management into the design process is key to the broad deployment of advanced nuclear energy systems, and is an explicit goal of the Laser Inertial Fusion Energy (LIFE) project at Lawrence Livermore National Laboratory. The nuclear explosives utility of a nuclear material to a state (proliferator) or sub-state (terrorist) is a critical factor to be assessed and is one aspect of material attractiveness. In this work, we approached nuclear explosives utility through the calculation of a 'figure of merit' (FOM) that has recently been developed to capture the relative viability and difficulty of constructing nuclear explosives starting from various nuclear material forms and compositions. We discuss the integration of the figure of merit into an assessment of a nuclear material theft scenario and its use in the assessment. This paper demonstrates that material attractiveness is a multidimensional concept that embodies more than the FOM. It also seeks to propose that other attributes may be able to be quantified through analogous FOMs (e.g., transformation) and that, with quantification, aggregation may be possible using concepts from the risk community.

  2. Study of chemical reactions in the nuclear underground explosion - Incidence on radioactivity

    International Nuclear Information System (INIS)

    Picq, Jean Maurice

    1970-01-01

    In order to find out and state the theoretical or semi-empirical laws governing the reaction of radioactivity in contained nuclear explosion, we are studying the chemical reactions during the different stages of the cavity and chimney formation, as well as thermal transfers. At the same time, we are carrying an experimental study on melted rock and gas samples taken from the French underground explosions. The results of which can be found in this paper are derived from our present experiments at the plant (have been obtained from partial studies). During the French underground explosions, we took gaseous samples. The gas analysis, without taking water vapour into consideration, showed that those samples were composed of hydrogen, carbon dioxide, carbon monoxide with small quantities of hydrocarbons (chiefly methane - about one per cent). The total amount of gas being quite large and proportional to the burst power, we came to the conclusion that those gases were produced by rock reactions (that rock was granite). We considered the following reagents because they were found in sufficient quantities to alter the balance between the different components: ferrous ions contained in mica, biotite, carbon dioxide from carbonates and water, either free or in a component state, contained in the rock. A comparison between theoretical and experimental results led us to notice among other things: the temperature of rock re-solidification; pressure nearing lithostatic pressure. Since the components of the environment, water not included, is quite homogeneous, the gas volume produced by '1 kiloton' is quite constant. On the other hand, the relative proportion of the gases undergoes a few changes, particularly the ratio CO/CO 2 which normally depends on the quantity of water contained in the environment. This statement is verified by the calculation of thermodynamic equilibriums. In order to calculate the simultaneous chemical equilibrium we have first selected five reactions. We

  3. Nuclear and Radiological Event Scale Turns 20. INES Helps Authorities Rate Events and Communicate Their Significance

    International Nuclear Information System (INIS)

    Verlini, Giovanni

    2011-01-01

    Originally developed in the 1990s jointly by IAEA and Nuclear Energy Agency of the Organization for Economic Co-operation and Development (OECD/NEA) and Member States experts, INES was last revised in 2008 to become a more versatile and informative tool. INES is now designed to address events associated with the transport, storage and use of radioactive material and radiation sources, whether they occur at a nuclear installation or not.

  4. A brief introduction to high altitude nuclear explosion and a review on high altitude nuclear tests of usa and former USSR

    International Nuclear Information System (INIS)

    Sun Jingwen

    1999-11-01

    The author briefly introduces some knowledge about high altitude nuclear explosion (HANE) and presents a general review on high altitude nuclear tests of USA and former USSR. Physical phenomenon generated by HANE is given. The effects of HANE on space flyer, artificial satellite and communication are discussed. Some aspects of a mechanism of antimissile for HANE are described and the effect and role of HANE for USA and USSR are reviewed

  5. Statistical calculation of complete events in medium-energy nuclear collisions

    International Nuclear Information System (INIS)

    Randrup, J.

    1984-01-01

    Several heavy-ion accelerators throughout the world are presently able to deliver beams of heavy nuclei with kinetic energies in the range from tens to hundreds of MeV per nucleon, the so-called medium or intermediate energy range. At such energies a large number of final channels are open, each consisting of many nuclear fragments. The disassembly of the collision system is expected to be a very complicated process and a detailed dynamical description is beyond their present capability. However, by virtue of the complexity of the process, statistical considerations may be useful. A statistical description of the disassembly yields the least biased expectations about the outcome of a collision process and provides a meaningful reference against which more specific dynamical models, as well as the data, can be discussed. This lecture presents the essential tools for formulating a statistical model for the nuclear disassembly process. The authors consider the quick disassembly (explosion) of a hot nuclear system, a so-called source, into multifragment final states, which complete according to their statistical weight. First some useful notation is introduced. Then the expressions for exclusive and inclusive distributions are given and the factorization of an exclusive distribution into inclusive ones is carried out. In turn, the grand canonical approximation for one-fragment inclusive distributions is introduced. Finally, it is outlined how to generate a statistical sample of complete final states. On this basis, a model for statistical simulation of complete events in medium-energy nuclear collisions has been developed

  6. Protection of nuclear power plants against external events

    International Nuclear Information System (INIS)

    Kinet, P.; Roch, R.

    1978-01-01

    The paper describes the methodology of the safety design of nuclear power plants against external events with particular emphasis of the Belgian Plants. The site analysis and potential hazards evaluation are explained. The different designs incorporating various combinations of reinforced structures and dedicated systems are analysed. The particular lay-out and systems of the Belgian Plants are explained. (author)

  7. Protection of nuclear power plants against external events

    International Nuclear Information System (INIS)

    Suetterlin, L.

    1978-01-01

    The different aspects for the selection of external events to be accounted for in designing nuclear power plants and in defining load assumptions are illustrated: 1) In case of earthquake the severest possible events according to the state of science and technology are assumed. 2) For events where it is not or only to a certain extent possible to apply this method, e.g. in the load case airplane crash, load assumptions are defined in a combined probabilitic-deterministic way. By the example of plant protection, it is shown that by integrating all measures for protecting against interference of third parties (sabotage) or other external events, optimum protection concepts may be achieved. In all considerations on interference of third parties or other external events, one has to take into account that absolute protection is not possible. Nevertheless, it may be confirmed that nuclear power plants not only have a much higher level of protection than other, non-nuclear plants with equal or even higher potential hazard, but also that they meet the requirement not to increase significantly the current risk of society. (orig./HP) [de

  8. Recurring Events in the Finnish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Suksi, Seija; Olander, Ronnie; Tiippana, Petteri

    2003-01-01

    An analysis and evaluation of event investigation methods applied by the Radiation and Nuclear Safety Authority (STUK), and the two Finnish nuclear power plant operators Teollisuuden Voima Oy (TVO) and Fortum Power and Heat Oy (Fortum) was carried out by the Technical Research Centre (VIT) on an assignment from STUK. The study aimed at providing a broad overview of the whole organisational framework to support event investigation practices at the regulatory body and at the utilities. The study was part of the IAEA Co-ordinated Research Programme (CRP) on 'Investigation of Methodologies for Incident Analysis'. The main objective of the research was to evaluate the adequacy and reliability of event investigation analysis methods and practices in the Finnish nuclear power industry and based on the results to further develop them. In general, the direct causes of identified events could be detected and eliminated, but more emphasis should be given to the prevention of recurrence of events and identification of common causes and latent failures. The study showed that the evaluated organisations had rather comprehensive incident analysis arrangements. The study also showed that more focus and prioritisation are needed. Deficiencies were identified mostly in the areas of recording, assessment and classification of new events, use of existing operating experience data, utilisation of information technology tools, and allocation of work and resources. Also the indicators or measures for the effectiveness of event investigation and operating experience feedback were missing. All organisations should maintain adequate resources in this area. The researchers suggested a more effective operating experience feedback loop. Especially more attention should be paid to root cause analysis of significant events, tasks and activities where the initial errors have occurred, and weaknesses of defensive barriers. It was also recommended that implementing periodic operational experience

  9. Analysis of water hammer events in nuclear power plants

    International Nuclear Information System (INIS)

    Sato, Masahiro; Yanagi, Chihiro

    1999-01-01

    A water hammer issue in nuclear power plants was one of unresolved safety issues listed by the United States Nuclear Regulatory Commission and was regarded as resolved. But later on, the water hammer events are still experienced intermittently, while the number of the events is decreasing. We collected water hammer events of PWRs in Japan and the United States and relevant documents, analyzed them, and studied corrective actions taken by Japanese plants. As a result, it is confirmed that preventive measured in design, operation etc. have been already taken and that mitigation mechanisms against water hammer have also been considered. However, it is clarified that attention should be continuously paid to operation of valves and/or pumps, as the prevention of water hammer still relies on operation. (author)

  10. Indemnification of Damage in the Event of a Nuclear Accident

    International Nuclear Information System (INIS)

    2006-01-01

    The Second International Workshop on the Indemnification of Nuclear Damage was held in Bratislava, Slovak Republic, from 18 to 20 May 2005. The workshop was co-organised by the OECD Nuclear Energy Agency and the Nuclear Regulatory Authority of the Slovak Republic. It attracted wide participation from national nuclear authorities, regulators, operators of nuclear installations, nuclear insurers and international organisations. The purpose of the workshop was to assess the third party liability and compensation mechanisms that would be implemented by participating countries in the event of a nuclear accident taking place within or near their borders. To accommodate this objective, two fictitious accident scenarios were developed: one involving a fire in a nuclear installation located in the Slovak Republic and resulting in the release of significant amounts of radioactive materials off-site, and the other a fire on board a ship transporting enriched uranium hexafluoride along the Danube River. The first scenario was designed to involve the greatest possible number of countries, with the second being restricted to countries with a geographical proximity to the Danube. These proceedings contain the papers presented at the workshop, as well as reports on the discussion sessions held. (author)

  11. Recovery operations in the event of a nuclear accident or radiological emergency

    International Nuclear Information System (INIS)

    1990-01-01

    Much progress has been made over the last decade in the field of emergency planning and preparedness, including the development of guidance, criteria, training programmes, regulations and comprehensive plans in the support of nuclear facilities. To provide a forum for international review and discussion of actual experiences gained and lessons learned from the different aspects of recovery techniques and operations in response to serious accidents at nuclear facilities and accidents associated with radioactive materials, the IAEA organized the International Symposium on Recovery Operations in the Event of a Nuclear Accident or Radiological Emergency. The symposium was held from 6 to 10 November 1989 in Vienna, Austria, and was attended by over 250 experts from 35 Member State and 7 international organizations. Although the prime focus was on on-site and off-site recovery from nuclear reactor accidents and on recovery from radiological accidents unrelated to nuclear power plants, development of emergency planning and preparedness resources was covered as well. From the experiences reported, lessons learned were identified. While further work remains to be done to improve concepts, plans, materials, communications and mechanisms to assemble quickly all the special resources needed in the event of an accident, there was general agreement that worldwide preparations to handle any possible future radiological emergencies had vastly improved. A special feature of the symposium programme was the inclusion of a full session on an accident involving a chemical explosion in a high level waste tank a a plutonium extraction plant in the Southern Urals in the USSR in 1957. Information was presented on the radioactive release, its dissemination and deposition, the resultant radiation situation, dose estimates, health effects follow-up, and the rehabilitation of contaminated land. This volume contains the full text of the 49 papers presented at the symposium together with a

  12. Communicating about nuclear events: Some suggestions to improve INES

    International Nuclear Information System (INIS)

    Kermisch, Céline; Labeau, Pierre-Etienne

    2013-01-01

    This paper provides a critical analysis of the International Nuclear and Radiological Event Scale (INES) and its use, both from an epistemic and an ethical perspective. As very few papers have been dedicated to this subject, our critical analysis is mainly based on the INES 2009 User's Manual and on technical information issued by different nuclear agencies. Our critical analysis leads to suggest several elements, which could contribute to the improvement of the INES scale and thereby to a better communication about nuclear events. First, we show that multiple criteria are used to assign an INES rating, which could lead to an insufficient differentiation between events. In order to avoid this issue, we suggest to clarify the criteria that are used to assess the level of the event. Then, we show that level 7 of the INES scale is ill-defined as it does not allow to properly take differences in severity between disasters into account. In this regard, we recommend to use an open scale instead. Moreover, we highlight the fact that INES is able to take into account neither events with long-term evolution nor events involving multiple initiators. In this respect, we suggest providing additional guidelines and reflecting about the data on which to rely, in order to assess an INES level. Furthermore, we reflect on who should be rating a nuclear event and we recommend that, for severe events, an independent and plural agency should be in charge. Finally, we show why INES appears to be insufficient for a global communication, and we suggest to complement the INES rating with additional information in parallel. -- Highlights: •We provide a critical analysis of the INES scale and suggestions to improve it. •The rating criteria should be clarified to allow differentiation between events. •An open scale should be used to differentiate between level-7 accidents. •Additional guidelines should be provided for complex and evolving events. •We provide suggestions to satisfy

  13. On the fallout by nuclear explosion experiment and the radioactive iodine in animal organism

    International Nuclear Information System (INIS)

    Tanaka, Giichiro

    1974-01-01

    Radioactive iodine (mainly 131 I, 132 I, 133 I, and 135 I) was measured with fallout, cow milk, human urine, and thyroid glands (human and cattles) after the first nuclear explosion experiment in China. Analysing method was determined by placing emphasis on rapidity and perfect separation from other nuclides. The detectable limit employing this method was about several p Ci. The identification of radioactive iodine was performed with a simultaneous counting type β - ray spectrometer, and 131 I, 132 I, and 133 I were identified by their half lives. 131 I in cow milk increased from around the 4th day after the experiment, and it had been detected for a month continuously, the maximum amount being 437 p Ci/l. In thyroid glands, 131 I was detected for 100 days in a milch cow, the maximum being 88, 1p Ci/g, while it was somewhat low in Japanese cows and pigs. 131 I in the thyroid gland of a human infant (accidentally died after 12 days) was 1.29p Ci/g. 131 I in human urine was 6.3p Ci/l on the 7th day. (Kobatake, H.)

  14. Possible techniques for decontamination of natural gas from gas wells stimulated by a nuclear explosion

    Energy Technology Data Exchange (ETDEWEB)

    Wethington, Jr, John A [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Decontamination of the products from gas wells stimulated by nuclear explosions requires the removal of T, present as HT, CH{sub 3}T, C{sub 2}H{sub 5}T, etc., and {sup 85}Kr from the production stream. Flaring of large volumes of gas from the Gasbuggy well led to the replacement of radioactive cavity gas with inactive formation gas, but this would not be a satisfactory production procedure because it releases T and {sup 85}Kr into the atmosphere and wastes large amounts of product gas. Exchange reactions appear to offer promise for removing the tritium. For example, water or steam flowing countercurrent to tritiated gas in the presence of a suitable catalyst can participate in the exchange reactions CH{sub 3}T + H{sub 2}O {r_reversible} CH{sub 4} + HTO, HT + H{sub 2}O {r_reversible} H{sub 2} + HTO, resulting in the transfer of T from gas into water. Other possibilities for utilizing exchange reactions include exchange of the gas with ethylene glycol used in the gas dryer, with silicate rocks introduced into the gas stream, or with a countercurrent stream of NH{sub 3} or H{sub 2}S. As another approach, use of the contaminated gas for the manufacture of ammonia synthesis gas has potential for removal of both T and {sup 85}Kr. (author)

  15. The 23rd nuclear explosion test of the People's Republic of China

    International Nuclear Information System (INIS)

    1978-01-01

    Concerning the 23 rd nuclear explosion test of the People's Republic of China, the results of measurements of radioactivity, etc. in Japan are presented. (1) As for gross beta-radioactivity in upper air, high radioactivity was measured in western Japan. (2) As for gross beta-radioactivity in surface air at monitoring posts, relatively high radioactivity was detected in south-western Japan. (3) As for gross beta-radioactivity in rain and dry fallout, 130 mCi/km 2 in Hachijo Island and 101.9 mCi/km 2 in Saitama Prefecture were detected, and as for dry fallout, 82 mCi/km 2 was measured at National Institute of Radiological Sciences (Chiba Prefecture). (4) As for gross beta-radioactivity in air-borne dust, higher radioactivity than normal was measured in several prefectures. (5) As for the radioactive iodine concentration in raw milk, relatively high concentration of radioactive iodine was detected by National Institute of Radiological Sciences. (6) Hot particles. (7) Analysis of radionuclides. (8) Other related data. (J.P.N.)

  16. Multi-wavelength Observations of Two Explosive Events and Their Effects on the Solar Atmosphere

    Directory of Open Access Journals (Sweden)

    Agustinus G. Admiranto

    2016-09-01

    Full Text Available We investigated two flares in the solar atmosphere that occurred on June 3, 2012 and July 6, 2012 and caused propagation of Moreton and EIT waves. In the June 3 event, we noticed a filament winking which presumably was caused by the wave propagation from the flare. An interesting feature of this event is that there was a reflection of this wave by a coronal hole located alongside the wave propagation, but not all of this wave was transmitted by the coronal hole. Using the running difference method, we calculated the speed of Moreton and EIT waves and we found values of 926 km/s before the reflection and 276 km/s after the reflection (Moreton wave and 1,127 km/s before the reflection and 46 km/s after the reflection (EIT wave. In the July 6 event, this phenomenon was accompanied by type II and type III solar radio bursts, and we also performed a running difference analysis to find the speed of the Moreton wave, obtaining a value of 988 km/s. The speed derived from the analysis of the solar radio burst was 1,200 km/s, and we assume that this difference was caused by the different nature of the motions in these phenomena, where the solar radio burst was caused by the propagating particles, not waves.

  17. Development of an air cleaning system for dissolving high explosives from nuclear warheads

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Wilson, K.; Staggs, K.; Wapman, D. [Lawrence Livermore National Lab., CA (United States)

    1997-08-01

    The Department of Energy (DOE) has a major effort underway in dismantling nuclear weapons. In support of this effort we have been developing a workstation for removing the high explosive (HE) from nuclear warheads using hot sprays of dimethyl sulfoxide (DMSO) solvent to dissolve the HE. An important component of the workstation is the air cleaning system that is used to contain DMSO aerosols and vapor and radioactive aerosols. The air cleaning system consists of a condenser to liquefy the hot DMSO vapor, a demister pad to remove most of the DMSO aerosols, a high efficiency particulate air (HEPA) filter to remove the remaining aerosols, an activated carbon filter to remove the DMSO vapor, and a final HEPA filter to meet the redundancy requirement for HEPA filters in radioactive applications. The demister pad is a 4{double_prime} thick mat of glass and steel fibers and was selected after conducting screening tests on promising candidates. We also conducted screening tests on various activated carbons and found that all had a similar performance. The carbon breakthrough curves were fitted to a modified Wheeler`s equation and gave excellent predictions for the effect of different flow rates. After all of the components were assembled, we ran a series of performance tests on the components and system to determine the particle capture efficiency as a function of size for dioctyl sebacate (DOS) and DMSO aerosols using laser particle counters and filter samples. The pad had an efficiency greater than 990% for 0.1 {mu}m DMSO particles. Test results on the prototype carbon filter showed only 70% efficiency, instead of the 99.9% in small scale laboratory tests. Thus further work will be required to develop the prototype carbon filter. 7 refs., 18 figs., 10 tabs.

  18. Calculation of the shock-wave in the region close to an underground nuclear explosion (method Cades); Calcul de l'onde de choc en zone proche d'une explosion nucleaire souterraine (methode cades)

    Energy Technology Data Exchange (ETDEWEB)

    Supiot, F; Brugies, J [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    The outline of a method is presented for calculating the characteristics of a shock wave produced by an underground nuclear explosion (pressure, wave velocity, velocity of the medium, energy left in the medium by the shock, etc.). By means of an application to a granitic medium and of a comparison with results obtained during French nuclear explosions, it has been possible to show the good agreement existing between the calculations and the experimental results. The advantages of such a method for studying the industrial applications of underground nuclear explosions are stressed. (authors) [French] On expose les grandes lignes d'une methode de calcul des caracteristiques de l'onde de choc issue d'une explosion nucleaire souterraine (pression, vitesse de l'onde, vitesse du milieu, energie deposee par le choc dans le milieu...). Une application a un milieu granitique et une comparaison aux resultats obtenus au cours d'explosions nucleaires francaises permet de montrer la bonne concordance entre le calcul et les resultats experimentaux. On souligne l'interet d'une telle, methode pour l'etude d'applications industrielles des explosions nucleaires souterraines. (auteurs)

  19. Monitoring of surface chemical and underground nuclear explosions with help of ionospheric radio-sounding above test site

    International Nuclear Information System (INIS)

    Krasnov, V.M.; Drobzheva, Ya.V.

    2000-01-01

    We describe the basic principles, advantages and disadvantages of ionospheric method to monitor surface chemical and underground nuclear explosions. The ionosphere is 'an apparatus' for the infra-sound measurements immediately above the test site. Using remote radio sounding of the ionosphere you can obtain that information. So you carry out the inspection at the test site. The main disadvantage of the ionospheric method is the necessity to sound the ionosphere with radio waves. (author)

  20. Spatial selection of focal of underground nuclear explosion by means of directed investigation and a method of vibroseismic oscillation

    International Nuclear Information System (INIS)

    Voskobojnikova, G.M.; Sedukhina, G.F.; Khajretdinov, M.S.

    2006-01-01

    An approach to task solving on parameters localization and determination within focal area of underground nuclear explosion (UNE) by scanning the inspected area by vibroseismic translucent field is considered. For the method, which application has been justified for task solving on On-Site Inspection (OSI), results of numerical modeling of seismic antenna orientation specifications are given, results of experiments on directed method of vibroseismic oscillation is described, questions on practical application of On-Site Inspection tasks are discussed. (author)

  1. Health of children living in Panfilov distract of Almaty region after Chernobyl accident and nuclear explosions at Lobnor test site

    International Nuclear Information System (INIS)

    Mit, A.A.; Chasnikov, I.Ya.; Chastnicova, S.S.; Mukhametzhanov, M.M.; Zhantagulova, T.K.

    1999-01-01

    It is known that Panfilov district of Almaty region was affected with radiation contamination during nuclear explosions at Lobnor test site and after Chernobyl accident, which impaired the health of its population [1]. In addition, the children's mortality rate was turned out to be the highest one among other districts of the region. This report presents some other information related to an increase of children's sickness rate in Panfilov district

  2. FIREDATA, Nuclear Power Plant Fire Event Data Base

    International Nuclear Information System (INIS)

    Wheelis, W.T.

    2001-01-01

    1 - Description of program or function: FIREDATA contains raw fire event data from 1965 through June 1985. These data were obtained from a number of reference sources including the American Nuclear Insurers, Licensee Event Reports, Nuclear Power Experience, Electric Power Research Institute Fire Loss Data and then collated into one database developed in the personal computer database management system, dBASE III. FIREDATA is menu-driven and asks interactive questions of the user that allow searching of the database for various aspects of a fire such as: location, mode of plant operation at the time of the fire, means of detection and suppression, dollar loss, etc. Other features include the capability of searching for single or multiple criteria (using Boolean 'and' or 'or' logical operations), user-defined keyword searches of fire event descriptions, summary displays of fire event data by plant name of calendar date, and options for calculating the years of operating experience for all commercial nuclear power plants from any user-specified date and the ability to display general plant information. 2 - Method of solution: The six database files used to store nuclear power plant fire event information, FIRE, DESC, SUM, OPEXPER, OPEXBWR, and EXPERPWR, are accessed by software to display information meeting user-specified criteria or to perform numerical calculations (e.g., to determine the operating experience of a nuclear plant). FIRE contains specific searchable data relating to each of 354 fire events. A keyword concept is used to search each of the 31 separate entries or fields. DESC contains written descriptions of each of the fire events. SUM holds basic plant information for all plants proposed, under construction, in operation, or decommissioned. This includes the initial criticality and commercial operation dates, the physical location of the plant, and its operating capacity. OPEXPER contains date information and data on how various plant locations are

  3. Near-surface velocity modeling at Yucca Mountain using borehole and surface records from underground nuclear explosions

    International Nuclear Information System (INIS)

    Durrani, B.A.

    1996-09-01

    The Department of Energy is investigating Yucca Mountain, Nevada as a potential site for commercial radioactive waste disposal in a mined geologic repository. One critical aspect of site suitability is the tectonic stability of the repository site. The levels of risk from both actual fault displacements in the repository block and ground shaking from nearby earthquakes are being examined. In particular, it is necessary to determine the expected level of ground shaking at the repository depth for large seismic sources such as nearby large earthquakes or underground nuclear explosions (UNEs). Earthquakes are expected to cause the largest ground motions at the site, however, only underground nuclear explosion data have been obtained at the repository depth level (about 350m below the ground level) to date. In this study we investigate ground motion from Nevada Test Site underground nuclear explosions recorded at Yucca Mountain to establish a compressional velocity model for the uppermost 350m of the mountain. This model is useful for prediction of repository-level ground motions for potential large nearby earthquakes

  4. Near-surface velocity modeling at Yucca Mountain using borehole and surface records from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, B.A. [Texas Univ., El Paso, TX (United States). Dept. of Geological Sciences; Walck, M.C. [Sandia National Labs., Albuquerque, NM (United States)

    1996-09-01

    The Department of Energy is investigating Yucca Mountain, Nevada as a potential site for commercial radioactive waste disposal in a mined geologic repository. One critical aspect of site suitability is the tectonic stability of the repository site. The levels of risk from both actual fault displacements in the repository block and ground shaking from nearby earthquakes are being examined. In particular, it is necessary to determine the expected level of ground shaking at the repository depth for large seismic sources such as nearby large earthquakes or underground nuclear explosions (UNEs). Earthquakes are expected to cause the largest ground motions at the site, however, only underground nuclear explosion data have been obtained at the repository depth level (about 350m below the ground level) to date. In this study we investigate ground motion from Nevada Test Site underground nuclear explosions recorded at Yucca Mountain to establish a compressional velocity model for the uppermost 350m of the mountain. This model is useful for prediction of repository-level ground motions for potential large nearby earthquakes.

  5. Overburden stripping from deeply buried orebodies by controlled nuclear explosive casting

    Energy Technology Data Exchange (ETDEWEB)

    Saperstein, L W; Mishra, R [Department of Mining, The Pennsylvania State University, University Park, PA (United States)

    1970-05-15

    Previous schemes to strip the overburden from a deeply-buried orebody by nuclear explosives have been hampered by various constraints. These are the notions that surface topography should slope in the desired direction to facilitate casting; that the orebody should be stripped all at once, meaning that an unsafe and unnaturally high yield will be detonated; or that the overburden be broken and cast, in a manner akin to conventional blasting, with a series of explosions linked by milli-second delays, such delays being an unproven and, perhaps non-permissible technology; and, finally, that the schemes leave an excessive amount of overburden to be removed by conventional means. It is proposed that deep orebodies, idealized by a 250-ft. thick copper porphyry under 600 feet of cover, be stripped in successive rows, using available row-charge technology. A first row, of greater magnitude than those succeeding, is used to expose the orebody. The second row is placed so as to throw overburden into the void created by the first. All rows are placed so as not to damage the ore. Except for the first row, all rows utilize directed throwing. After a row is detonated, the ore beneath it would be removed by conventional means. The void thus created would provide space for the successive row to fire into. Further, the additional free-face provided by the void imparts a major direction to the ejecta. Because of the directed nature of the throw, ore removal does not have to proceed directly beneath the row slope. Advantages to this scheme are its adaptability to terrain; its reduction in overburden to be removed by conventional methods; its increased speed in uncovering ore; its reduction of unit costs; audits adaptability to production rates. An example, utilizing the idealized orebody shows that production of ore can begin within a year of project approval versus four or five years for the same orebody developed conventionally; that no more than eight percent of the overburden has

  6. Overburden stripping from deeply buried orebodies by controlled nuclear explosive casting

    International Nuclear Information System (INIS)

    Saperstein, L.W.; Mishra, R.

    1970-01-01

    Previous schemes to strip the overburden from a deeply-buried orebody by nuclear explosives have been hampered by various constraints. These are the notions that surface topography should slope in the desired direction to facilitate casting; that the orebody should be stripped all at once, meaning that an unsafe and unnaturally high yield will be detonated; or that the overburden be broken and cast, in a manner akin to conventional blasting, with a series of explosions linked by milli-second delays, such delays being an unproven and, perhaps non-permissible technology; and, finally, that the schemes leave an excessive amount of overburden to be removed by conventional means. It is proposed that deep orebodies, idealized by a 250-ft. thick copper porphyry under 600 feet of cover, be stripped in successive rows, using available row-charge technology. A first row, of greater magnitude than those succeeding, is used to expose the orebody. The second row is placed so as to throw overburden into the void created by the first. All rows are placed so as not to damage the ore. Except for the first row, all rows utilize directed throwing. After a row is detonated, the ore beneath it would be removed by conventional means. The void thus created would provide space for the successive row to fire into. Further, the additional free-face provided by the void imparts a major direction to the ejecta. Because of the directed nature of the throw, ore removal does not have to proceed directly beneath the row slope. Advantages to this scheme are its adaptability to terrain; its reduction in overburden to be removed by conventional methods; its increased speed in uncovering ore; its reduction of unit costs; audits adaptability to production rates. An example, utilizing the idealized orebody shows that production of ore can begin within a year of project approval versus four or five years for the same orebody developed conventionally; that no more than eight percent of the overburden has

  7. Intelligent decision aids for abnormal events in nuclear power plants

    International Nuclear Information System (INIS)

    Kafka, P.; Polke, H.

    1988-01-01

    German nuclear power plants are characterized by a high degree of automation, not only for normal operation but also for abnormal events. Therefore the role of the operating personnel is mainly a supervisory function. Nevertheless, for a spectrum of unexpected events the operating personnel have to react with manual recovery actions. In order to minimize human error in such recovery actions, different kinds of intelligent decision aid support the operators today. In this paper such aids are discussed and one of them is described in more detail. (author)

  8. Discrimination between underground explosions and earthquakes using discriminant functions: Examples for Eurasia and North America

    International Nuclear Information System (INIS)

    Nowroozi, A.A.

    1986-01-01

    Discriminant functions are extensively used as a technical tool in educational and psychological research as well as in some branches of geological sciences. The application of this technique to the problem of discrimination between underground nuclear explosions and earthquakes has been reported. Here we apply this technique to a known population of underground nuclear explosions and earthquakes for the determination of various statistical parameters needed for setting up the discriminant function equations for discrimination between unknown population of earthquakes, anomalous events, and underground explosions, then we classify earthquakes, explosions and anomalous events in Eurasia and North America

  9. Global and Regional 3D Tomography for Improved Seismic Event Location and Uncertainty in Explosion Monitoring

    Science.gov (United States)

    Downey, N.; Begnaud, M. L.; Hipp, J. R.; Ballard, S.; Young, C. S.; Encarnacao, A. V.

    2017-12-01

    The SALSA3D global 3D velocity model of the Earth was developed to improve the accuracy and precision of seismic travel time predictions for a wide suite of regional and teleseismic phases. Recently, the global SALSA3D model was updated to include additional body wave phases including mantle phases, core phases, reflections off the core-mantle boundary and underside reflections off the surface of the Earth. We show that this update improves travel time predictions and leads directly to significant improvements in the accuracy and precision of seismic event locations as compared to locations computed using standard 1D velocity models like ak135, or 2½D models like RSTT. A key feature of our inversions is that path-specific model uncertainty of travel time predictions are calculated using the full 3D model covariance matrix computed during tomography, which results in more realistic uncertainty ellipses that directly reflect tomographic data coverage. Application of this method can also be done at a regional scale: we present a velocity model with uncertainty obtained using data obtained from the University of Utah Seismograph Stations. These results show a reduction in travel-time residuals for re-located events compared with those obtained using previously published models.

  10. Review of geomechanics data from French nuclear explosions in the Hoggar granite, with some comparisons to tests in US granite

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1983-05-01

    Numerous unclassified reports on the French nuclear explosions in the Hoggar (1961-1966) were reviewed from the standpoint of geomechanics. The following aspects of the tests are summarized: spectral content of the tests compared to U.S. results; shock front positions with time; cavity radius as a function of yield, coupling, density of rock, rock shear strength, and overburden; radial pressure, tangential pressure and peak velocity as a function of distance and yield; pressure vs. time at various distances; mechanical properties of granite; scaling laws for acceleration, velocity and displacement as a function of yield and distance for all Hoggar shots; extent of tunnel damage as a function of distance and yield; time to collapse of chimney as a function of yield, or cavity radius; extent of granite crushing and disking as a function of distance and yield cavity height relation to cavity radius; faulting and jointing on the Taourirt Tan Afella massif; and influence of water content on cavity radius vs. yield. Whenever possible, these French data are compared to corresponding data obtained in the U.S. granite events Hard Hat, Shoal, and Piledriver. The following results emerge from the comparison: (1) agreement is found between the French and U.S. experience for: mechanical properties of the granites, rock damage due to the blast, and yield-scaled peak values of acceleration, velocity and displacement; and (2) lack of agreement exists for: cavity size, chminey height, and time to cavity collapse. Average spacing of rock joints also was about 5 times greater in the Hoggar

  11. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    International Nuclear Information System (INIS)

    Michael R, Kruzic

    2008-01-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D and D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  12. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  13. On-Site inspections as a tool for nuclear explosion monitoring in the framework of the Comprehensive Nuclear Test Ban Treaty

    Science.gov (United States)

    Arndt, R.; Gaya-Pique, L.; Labak, P.; Tanaka, J.

    2009-04-01

    On-site inspections (OSIs) constitute the final verification measure under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). OSIs are launched to establish whether or not a nuclear explosion has been carried out, thus they are conducted to verify States' compliance with the Treaty. During such an inspection, facts are gathered within a limited investigation area of 1000 Km2 to identify possible violators of the Treaty. Time scale (referring both to the preparation of the inspection as well as to the conduct of an OSI itself) is one of the challenges that an inspection team has to face when conducting an OSI. Other challenges are the size of the team - which is limited to 40 inspectors - and political limitations imposed by the Treaty in the use of allowed techniques. The Integrated Field Exercise 2008 (IFE08) recently conducted in Kazakhstan was the first large-scale, as well as the most comprehensive, on site inspection exercise ever conducted by the Preparatory Commission of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). The exercise took place in a deserted area south east of Kurchatov, within the former Soviet Union's Semipalatinsk nuclear test site. In this paper we will provide an overview of the technical activities conducted by the inspection team during IFE08 in order to collect evidence for a hypothetical nuclear explosion test. The techniques applied can be distributed in four different blocks: visual observation (to look for man-made changes in the geomorphology as well as anthropogenic features related to an underground nuclear explosion, UNE); passive seismic monitoring (to identify possible aftershocks created by the UNE); radionuclide measurements (to collect evidence for radionuclide isotopes related to a nuclear explosion); and finally geophysical surveys (to identify geophysical signatures related to an UNE in terms of changes in the geological strata, to the hydrogeological regime, and in terms of the shallow remains of the

  14. Trend analysis of fire events at nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Hiroki

    2007-01-01

    We performed trend analyses to compare fire events occurring overseas (1995-2005) and in Japan (1966-2006). We decided to do this after extracting data on incidents (storms, heavy rain, tsunamis, fires, etc.) occurring at overseas nuclear power plants from the Events Occurred at Overseas Nuclear Power Plants recorded in the Nuclear Information Database at the Institute of Nuclear Safety System (INSS) and finding that fires were the most common of the incidents. Analyses compared the number of fires occurring domestically and overseas and analyzed their causes and the effect of the fires on the power plants. As a result, we found that electrical fires caused by such things as current overheating and electric arcing, account for over one half of the domestic and overseas incidents of fire, which indicates that maintenance management of electric facilities is the most important aspect of fire prevention. Also, roughly the same number of operational fires occurred at domestic and overseas plants, judging from the figures for annual occurrences per unit. However, the overall number of fires per unit at domestic facilities is one fourth that of overseas facilities. We surmise that, while management of operations that utilizes fire is comparable for overseas and domestic plants, this disparity results from differences in the way maintenance is carried out at facilities. (author)

  15. Safety of Basic nuclear facilities (INB) other than electronuclear reactors. Lessons learned from declared significant events in 2011 and 2012

    International Nuclear Information System (INIS)

    2013-01-01

    The first part of this report presents the different types of basic nuclear facilities other than electronuclear reactors. These installations can be industrial installations dedicated or not to the nuclear fuel cycle, research and support installations, be definitively stopped or being dismantled, or radioactive waste storage installations. After a comment of the main trends noticed in 2011 and 2012, the report proposes a transverse analysis of events which occurred in these installations. These events are related to various risks: dissemination of radioactive materials, exposure to ionizing radiations, criticality, fire and explosion, handling operations, loss of electric supplies or fluids, external aggression. Other events are those significant for the environment with a radiological component, or related to periodic controls and tests. The causes of these events are analysed. Specific events are presented which occurred on different sites (in the MELOX plant, in Areva sites in La Hague, Pierrelatte, in CEA sites in Cadarache and Saclay, in a fuel factory in Romans). Other topics are finally addressed: safety measures after the Fukushima accident, safety and radiation protection management systems of Areva and CEA, dismantling of nuclear installations

  16. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Zucca, J J; Walter, W R; Rodgers, A J; Richards, P; Pasyanos, M E; Myers, S C; Lay, T; Harris, D; Antoun, T

    2008-11-19

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of Earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D Earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes two specific paths by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas. Seismic monitoring agencies are tasked with detection, location, and characterization of seismic activity in near real time. In the case of nuclear explosion monitoring or seismic hazard, decisions to further investigate a suspect event or to launch disaster relief efforts may rely heavily on real-time analysis and results. Because these are weighty decisions, monitoring agencies are regularly called upon to meticulously document and justify every aspect of their monitoring system. In order to meet this level of scrutiny and maintain operational robustness requirements, only mature technologies are considered for operational monitoring systems, and operational technology necessarily lags

  17. Hydrogeologic effects of natural disruptive events on nuclear waste repositories

    International Nuclear Information System (INIS)

    Davis, S.N.

    1980-06-01

    Some possible hydrogeologic effects of disruptive events that may affect repositories for nuclear waste are described. A very large number of combinations of natural events can be imagined, but only those events which are judged to be most probable are covered. Waste-induced effects are not considered. The disruptive events discussed above are placed into four geologic settings. Although the geology is not specific to given repository sites that have been considered by other agencies, the geology has been generalized from actual field data and is, therefore, considered to be physically reasonable. The geologic settings considered are: (1) interior salt domes of the Gulf Coast, (2) bedded salt of southeastern New Mexico, (3) argillaceous rocks of southern Nevanda, and (4) granitic stocks of the Basin and Range Province. Log-normal distributions of permeabilities of rock units are given for each region. Chapters are devoted to: poresity and permeability of natural materials, regional flow patterns, disruptive events (faulting, dissolution of rock forming minerals, fracturing from various causes, rapid changes of hydraulic regimen); possible hydrologic effects of disruptive events; and hydraulic fracturing

  18. The initiating events in the Loviisa nuclear power plant history

    International Nuclear Information System (INIS)

    Sjoblom, K.

    1987-01-01

    During the 16 reactor years of Loviisa nuclear power plant operation no serious incident has endangered the high level of safety. The initiating events of plant incidents have been analyzed in order to get a view of plant operational safety experience. The initiating events have been placed in categories similar to those that EPRI uses. However, because of the very small number of scrams the study was extended to also cover transients with a relatively low safety importance in order to get more comprehensive statistics. Human errors, which contributed to 15% of the transients, were a special subject in this study. The conditions under which human failures occurred, and the nature and root causes of the human failures that caused the initiating events were analyzed. For future analyses it was noticed that it would be beneficial to analyze incidents immediately, to consult with the persons directly involved and to develop an international standard format for incident analyses

  19. Advanced nuclear plant design options to cope with external events

    International Nuclear Information System (INIS)

    2006-02-01

    With the stagnation period of nuclear power apparently coming to an end, there is a renewed interest in many Member States in the development and application of nuclear power plants (NPPs) with advanced reactors. Decisions on the construction of several NPPs with evolutionary light water reactors have been made (e.g. EPR Finland for Finland and France) and more are under consideration. There is a noticeable progress in the development and demonstration of innovative high temperature gas cooled reactors, for example, in China, South Africa and Japan. The Generation IV International Forum has defined the International Near Term Deployment programme and, for a more distant perspective, six innovative nuclear energy systems have been selected and certain R and D started by several participating countries. National efforts on design and technology development for NPPs with advanced reactors, both evolutionary and innovative, are ongoing in many Member States. Advanced NPPs have an opportunity to be built at many sites around the world, with very broad siting conditions. There are special concerns that safety of these advanced reactors may be challenged by external events following new scenarios and failure modes, different from those well known for the currently operated reactors. Therefore, the engineering community identified the need to assess the proposed design configurations in relation to external scenarios at the earliest stages of the design development. It appears that an early design optimization in relation to external events is a necessary requirement to achieve safe and economical advanced nuclear power plants. Reflecting on these developments, the IAEA has planned the preparation of a report to define design options for protection from external event impacts in NPPs with evolutionary and innovative reactors. The objective of this publication is to present the state-of-the-art in design approaches for the protection of NPPs with evolutionary and innovative

  20. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. IV. Coulomb explosion of molecular heteroclusters.

    Science.gov (United States)

    Last, Isidore; Jortner, Joshua

    2004-11-01

    In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for Icharges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)1) result in an isotope effect, predicting the enhancement (by 9%-11%) of E(H,av) for Coulomb explosion of (C(4+)H(4) (+))(eta) (eta=3) relative to E(D,av) for Coulomb explosion of (C(4+)D(4) (+))(eta) (eta=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters

  1. Systems for reporting unusual events in nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    Many Member States with nuclear power programmes have established, and are operating, systems for collecting, assessing and disseminating information on safety related events in nuclear power plants. The Agency has recognized the importance of such systems and of achieving compatibility between them. It also recognizes the advantage to be derived from international efforts to exchange operational experience on a worldwide basis. In response to requests put forward during the Special Session of the IAEA General Conference held in September 1986, and to the recommendations made by the International Nuclear Safety Advisory Group (INSAG) to strengthen international co-operation in nuclear safety and the exchange of information on operating experience, the IAEA has been following a two-step approach. Firstly, it continues to assist Member States to establish, improve or harmonize their national systems for collecting, assessing and disseminating safety related operational experience, and secondly, it continues to reinforce the IAEA system for reporting unusual events with safety significance (IAEA Incident Reporting System - IAEA-IRS). Although the prime objective of both activities is to assist regulatory bodies and operating organizations to improve operational safety, operating organizations may also benefit if a similar approach is used to improve equipment reliability and plant availability. The present Guide contains a recommended scheme based on national and international practice applicable to the management of safety related operational experience in nuclear power plants. The user will have to adapt this guidance for specific national conditions and practices. It is important to realize however that for an effective exchange of information through the IAEA-IRS it is a prerequisite to follow the procedures given in the relevant part of this Guide

  2. Estimating the size of the cavity and surrounding failed region for underground nuclear explosions from scaling rules

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Leo A [El Paso Natural Gas Company (United States)

    1970-05-01

    The fundamental physical principles involved in the formation of an underground cavity by a nuclear explosion and breakage of the rock surrounding the cavity are examined from the point of view of making preliminary estimates of their sizes where there is a limited understanding of the rock characteristics. Scaling equations for cavity formation based on adiabatic expansion are reviewed and further developed to include the strength of the material surrounding the shot point as well as the overburden above the shot point. The region of rock breakage or permanent distortion surround ing the explosion generated cavity is estimated using both the Von Mises and Coulomb-Mohr failure criteria. It is found that the ratio of the rock failure radius to the cavity radius for these two criteria becomes independent of yield and dependent only on the failure mechanics of the rock. The analytical solutions developed for the Coulomb-Mohr and Von Mises criteria are presented in graphical form. (author)

  3. Research on consequence analysis method for probabilistic safety assessment of nuclear fuel facilities (4). Investigation of safety evaluation method for fire and explosion incidents

    International Nuclear Information System (INIS)

    Abe, Hitoshi; Tashiro, Shinsuke; Ueda, Yoshinori

    2010-01-01

    A special committee on 'Research on the analysis methods for accident consequence of nuclear fuel facilities (NFFs)' was organized by the Atomic Energy Society of Japan (AESJ) under the entrustment of Japan Atomic Energy Agency (JAEA). The committee aims to research on the state-of-the-art consequence analysis method for Probabilistic Safety Assessment (PSA) of NFFs, such as fuel reprocessing and fuel fabrication facilities. The objective of this research is to obtain the useful information related to the establishment of quantitative performance objectives and to risk-informed regulation through qualifying issues needed to be resolved for applying PSA to NFFs. The research activities of the committee were mainly focused on the analysis method of consequences for postulated accidents with potentially large consequences in NFFs, e.g., events of criticality, spill of molten glass, hydrogen explosion, boiling of radioactive solution, and fire (including rapid decomposition of TBP complexes), resulting in the release of radio active materials into the environment. The results of the research were summarized in a series of six reports, which consist of a review report and five technical ones. In this technical report, the research results about basic experimental data and the method for safety evaluation of fire and explosion incidents were summarized. (author)

  4. First observations of tritium in ground water outside chimneys of underground nuclear explosions, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Crow, N.B.

    1976-01-01

    Abnormal levels of radionuclides had not been detected in ground water at the Nevada Test Site beyond the immediate vicinity of underground nuclear explosions until April 1974, when above-background tritium activity levels were detected in ground-water inflow from the tuff beneath Yucca Flat to an emplacement chamber being mined in hole U2aw in the east-central part of Area 2. No other radionuclides were detected in a sample of water from the chamber. In comparison with the amount of tritium estimated to be present in the ground water in nearby nuclear chimneys, the activity level at U2aw is very low. To put the tritium activity levels at U2aw into proper perspective, the maximum tritium activity level observed was significantly less than the maximum permissible concentration (MPC) for a restricted area, though from mid-April 1974 until the emplacement chamber was expended in September 1974, the tritium activity exceeded the MPC for the general public. Above-background tritium activity was also detected in ground water from the adjacent exploratory hole, Ue2aw. The nearest underground nuclear explosion detonated beneath the water table, believed to be the source of the tritium observed, is Commodore (U2am), located 465 m southeast of the emplacement chamber in U2aw. Commodore was detonated in May 1967. In May 1975, tritium activity May significantly higher than regional background. was detected in ground water from hole Ue2ar, 980 m south of the emplacement chamber in U2aw and 361 m from a second underground nuclear explosion, Agile (U2v), also detonated below the water table, in February 1967. This paper describes these occurrences of tritium in the ground water. A mechanism to account for the movement of tritium is postulated

  5. The fate and importance of radionuclides produced in nuclear events

    Energy Technology Data Exchange (ETDEWEB)

    Shore, B; Anspaugh, L; Chertok, R; Gofman, J; Harrison, F; Heft, R; Koranda, J; Ng, Y; Phelps, P; Potter, G; Tamplin, A [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1969-07-01

    Some of the major program at the Bio-Medical Division concerned with the fate and importance of the fission products, the radionuclides induced in the device materials, the radionuclides induced in the environment surrounding the device, and the tritium produced in Plowshare cratering events will be discussed. These programs include (1) critical unknowns in predicting organ and body burdens from radionuclides produced in cratering events; (2) the analysis with a high-resolution solid state gamma ray spectrometer of radionuclides in complex biological and environmental samples; (3) the characterization of radioactive particles from cratering detonation; (4) the biological availability to beagles, pigs and goats of radionuclides in Plowshare debris; (5) the biological availability to aquatic animals of radionuclides in Plowshare and other nuclear debris and the biological turnover of critical nuclides in specific aquatic animals; (6) the biological availability of Plowshare and other nuclear debris radionuclides to dairy cows and the transplacental transport of debris radionuclides in the dairy cow; (7) the persistence and behavior of radionuclides, particularly tritium, at sites of Plowshare and other nuclear detonations; and (8) somatic effects of Low Dose Radiation: Chromosome studies. (author)

  6. The fate and importance of radionuclides produced in nuclear events

    International Nuclear Information System (INIS)

    Shore, B.; Anspaugh, L.; Chertok, R.; Gofman, J.; Harrison, F.; Heft, R.; Koranda, J.; Ng, Y.; Phelps, P.; Potter, G.; Tamplin, A.

    1969-01-01

    Some of the major program at the Bio-Medical Division concerned with the fate and importance of the fission products, the radionuclides induced in the device materials, the radionuclides induced in the environment surrounding the device, and the tritium produced in Plowshare cratering events will be discussed. These programs include (1) critical unknowns in predicting organ and body burdens from radionuclides produced in cratering events; (2) the analysis with a high-resolution solid state gamma ray spectrometer of radionuclides in complex biological and environmental samples; (3) the characterization of radioactive particles from cratering detonation; (4) the biological availability to beagles, pigs and goats of radionuclides in Plowshare debris; (5) the biological availability to aquatic animals of radionuclides in Plowshare and other nuclear debris and the biological turnover of critical nuclides in specific aquatic animals; (6) the biological availability of Plowshare and other nuclear debris radionuclides to dairy cows and the transplacental transport of debris radionuclides in the dairy cow; (7) the persistence and behavior of radionuclides, particularly tritium, at sites of Plowshare and other nuclear detonations; and (8) somatic effects of Low Dose Radiation: Chromosome studies. (author)

  7. Radioecological zoning of territories of carrying out of underground nuclear explosions in conditions of Yakutia

    International Nuclear Information System (INIS)

    Yakovleva, V.D.; Stepanov, V.E.

    2005-01-01

    Full text: In territory of Yakutia on period 1974 - 1987 years in the industrial purposes 12 peace underground nuclear explosions (UNE) have been made seven from which is carried out on Average-Botuobinsk a deposit with the purpose of an intensification of an oil recovery and inflow of gas (a chink No. 42, 43, 47, 66, 61, 68) and one (No. 101) - for creation of underground capacity - storehouses of the oil, four explosions - for seismic sounding an earth's crust ('Kimberlit', 'Horizon - 4', 'Kraton-4', 'Kraton-3'), and one 'Crystal' - for creation of a dam by loosening of breeds. From them 'Crystal' and 'Kraton-3' are emergency where the dead woods forming impact zones were formed. Impact zones are the sites dated for places with attributes of changes of an environment from influence of radiation. Differently, impact zone can be characterized as a zone of shock influence of the radiating factor on an environment allocated on the basis of seen damages of a vegetative cover. On Average-Botuobinsk 'air-blast cleaning' a deposit are available local radioactive a stain, formed (educated) at 'air-blast cleaning' chinks 42, 43, 47, 68 after end of chisel works and opening potted component which is taking place under the cement bridge. As a result of it has taken place teknogen change of a radiating background as a local stain the area approximately from 4 up to 25 m 2 , adjoining to mouth blowing lines (in approximately 100 m from a mouth of chinks). As a result of radioecological researches on vicinities of objects UNE conclusions which further can be a basis of the concept are received. 1. radioactive pollution of objects UNE have spotty character, are found out: on emergency UNE - a) cesium - 137, americium - 241, cobalt - 60; 6) cesium - 134, antimony - 125, europium - 155; a) objects kamuflet cesium - 137 and americium -241. 2. Definition impact zones on objects UNE is based on attributes- a) the vegetative cover is damaged; the level of a scale - background is

  8. Root cause analysis for fire events at nuclear power plants

    International Nuclear Information System (INIS)

    1999-09-01

    Fire hazard has been identified as a major contributor to a plant' operational safety risk. The International nuclear power community (regulators, operators, designers) has been studying and developing tools for defending against this hazed. Considerable advances have been achieved during past two decades in design and regulatory requirements for fire safety, fire protection technology and related analytical techniques. The IAEA endeavours to provide assistance to Member States in improving fire safety in nuclear power plants. A task was launched by IAEA in 1993 with the purpose to develop guidelines and good practices, to promote advanced fire safety assessment techniques, to exchange state of the art information, and to provide engineering safety advisory services and training in the implementation of internationally accepted practices. This TECDOC addresses a systematic assessment of fire events using the root cause analysis methodology, which is recognized as an important element of fire safety assessment

  9. Deactivation of nuclear explosions cavities in the salt domes by freezing method

    International Nuclear Information System (INIS)

    Belyashov, D.N.; Mokhov, V.A.; Murzadilov, T.D.

    1998-01-01

    I. There is a lot of negative consequences of underground nuclear explosions, conducted for creating some cavities of the gas condensate saving at the Azgir site and Karachaganak deposit. Some of them are radioactivity escape, ground pollution, underground water pollution, as result of depressurization and irrigation of cavities. Besides that there are dissolution of infected salt, displacement of brine from the cavities. Existing prolonged exchanges of rock-salt, brines and water can be accompanied by accumulation and throw outing of free chlorine and hydrogen with hydrochloric acid formation, ('white fog' of Azgir site). These questions demand supplementary researches. 2. It is known that more dangerous fission fragments are 9 0S r and 1 31C s, with half life periods equaled 27.7 and 30.3. Duration of their existence determines a period of an object danger. Radionuclide migration come with rock dispersion or with their concentration on the different physical, chemical, including sorptive, barriers on the way of radioactive water displacement. 3. The task of prevention of negative consequences is to save the forms and sizes of cavities, to immobilize the radioactive fluid's in the cavities and closed zone for the half-life time of the main nuclide mass. 4. Solving the task by laying of empty space with hard materials (concrete, rock) demand of big expenses because of cavities size, occurrence depth (850-900 m), high value of materials, their processing and transportation. The problem to render harmless and to utilize of displacing radioactive brines is not solved yet. 5, Freezing of flooding cavities appears to be an alternative, which allows to fill the space by hard ice and to less the moving of radioactive brines into the rocks around the cavities, and, what is more important, along the bore-holes above the cavities, blocking the radionuclides moving into the fractured rocks. This process divides onto 2 stages: (1) freezing with organizing of intensive heat

  10. Measurement and evaluation of high-rise building response to ground motion generated by underground nuclear explosions

    International Nuclear Information System (INIS)

    Honda, K.K.

    1976-01-01

    As part of the structural response research program being conducted for ERDA, the response behavior of high-rise buildings in Las Vegas, Nevada, due to ground motion caused by underground nuclear explosions (UNEs) at the Nevada Test Site (NTS) has been measured for the past 12 years. Results obtained include variation in dynamic response properties as a function of amplitude of motion, influence of nonstructural partitions in the building response, and comparison of calculated and measured response. These data for three reinforced concrete high-rise buildings, all designed as moment-resisting space frames are presented

  11. On the change of fall-out measured by monitoring post at the time of nuclear explosion

    International Nuclear Information System (INIS)

    Nagai, Tatsuo; Honda, Tadashi; Imai, Toshio

    1977-01-01

    The measurement of the spatial distribution of gamma-ray by monitoring posts has been continued. The measurement has been made with scintillation counters. The annual variation of gamma dose in no-rain season was recorded as background. The depth of snow showed some correlation with the level of the background gamma dose. Natural radioactivity in the air emitted from the terrestrial surface may cause the activity of the air. The relation between rain and dose rate was investigated. The higher dose rate than the background was seen during rain fall. The increase of dose rate was observed after the Chinese nuclear explosion. After the analysis of data from various monitoring posts, the trace line of fall-out activity was determined. The trace of 500 mb, which means about 10 KT of explosion, did not cross Japan, and the trace of 300 mb, meaning 100 KT of explosion, was just over Japan. The movement of the fall out along the trace line was definitely observed. (Kato, T.)

  12. Three Dimensional Simulation of the Baneberry Nuclear Event

    Science.gov (United States)

    Lomov, Ilya N.; Antoun, Tarabay H.; Wagoner, Jeff; Rambo, John T.

    2004-07-01

    Baneberry, a 10-kiloton nuclear event, was detonated at a depth of 278 m at the Nevada Test Site on December 18, 1970. Shortly after detonation, radioactive gases emanating from the cavity were released into the atmosphere through a shock-induced fissure near surface ground zero. Extensive geophysical investigations, coupled with a series of 1D and 2D computational studies were used to reconstruct the sequence of events that led to the catastrophic failure. However, the geological profile of the Baneberry site is complex and inherently three-dimensional, which meant that some geological features had to be simplified or ignored in the 2D simulations. This left open the possibility that features unaccounted for in the 2D simulations could have had an important influence on the eventual containment failure of the Baneberry event. This paper presents results from a high-fidelity 3D Baneberry simulation based on the most accurate geologic and geophysical data available. The results are compared with available data, and contrasted against the results of the previous 2D computational studies.

  13. The acoustic field in the ionosphere caused by an underground nuclear explosion

    Czech Academy of Sciences Publication Activity Database

    Krasnov, Valerij Michailovič; Drobzheva, Yana Viktorovna

    2005-01-01

    Roč. 67, - (2005), s. 913-920 ISSN 1364-6826 R&D Projects: GA ČR GA205/04/2110 Institutional research plan: CEZ:AV0Z30420517 Keywords : Underground explosion * Acoustic wave * Atmosphere * Ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.309, year: 2005

  14. STIDP: A U.S. Department of Homeland Security program for countering explosives attacks at large public events and mass transit facilities

    Science.gov (United States)

    Knudson, Christa K.; Kemp, Michael C.; Lombardo, Nicholas J.

    2009-05-01

    The U.S. Department of Homeland Security's Standoff Technology Integration and Demonstration Program is designed to accelerate the development and integration of technologies, concepts of operations, and training to defeat explosives attacks at large public events and mass transit facilities. The program will address threats posed by suicide bombers, vehicle-borne improvised explosive devices, and leave-behind bombs. The program is focused on developing and testing explosives countermeasure architectures using commercial off-the-shelf and near-commercial standoff and remotely operated detection technologies in prototypic operational environments. An important part of the program is the integration of multiple technologies and systems to protect against a wider range of threats, improve countermeasure performance, increase the distance from the venue at which screening is conducted, and reduce staffing requirements. The program will routinely conduct tests in public venues involving successively more advanced technology, higher levels of system integration, and more complex scenarios. This paper describes the initial field test of an integrated countermeasure system that included infrared, millimeter-wave, and video analytics technologies for detecting person-borne improvised explosive devices at a public arena. The test results are being used to develop a concept for the next generation of integrated countermeasures, to refine technical and operational requirements for architectures and technologies, and engage industry and academia in solution development.

  15. Achieving world's highest level of nuclear safety learning from overseas nuclear trouble events

    International Nuclear Information System (INIS)

    Okumoto, Masaru

    2014-01-01

    Nuclear Information Research Project of Institute of Nuclear Safety System, Incorporated (INSS) had acquired trouble information of nuclear power plants (NPPs) up to annual several thousand events issued by overseas regulatory agencies for more than 20 years since INSS established and analyzed it in details respectively after the screening. Lessons extracted from the analysis were offered as suggestions to electric utilities having PWRs in Japan. Such activities would surely contribute to maintain and improve nuclear safety with no objection. However, they could not prevent the occurrence of accident of Fukushima Daiichi NPPs. Thus the project had reviewed usefulness of past activities and how improved could be by listening sincerely to outside opinions. This report introduced outlines of recent activities. Competent suggestions to electric utilities might be made with improved reflection of lessons to needed rules, deepened information sharing within the project and raised awareness of the problem. (T. Tanaka)

  16. Radiological investigations at the 'Taiga' nuclear explosion site: Site description and in situ measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ramzaev, V., E-mail: V.Ramzaev@mail.ru [Institute of Radiation Hygiene, Mira str. 8, 197101 St.-Petersburg (Russian Federation); Repin, V.; Medvedev, A.; Khramtsov, E.; Timofeeva, M.; Yakovlev, V. [Institute of Radiation Hygiene, Mira str. 8, 197101 St.-Petersburg (Russian Federation)

    2011-07-15

    In the summer of 2009, we performed a field survey of the 'Taiga' peaceful underground nuclear explosion site, the Perm region, Russia (61.30{sup o} N, 56.60{sup o} E). The explosion was carried out by the USSR in 1971. This paper provides an extended summary of the available published data on the 'Taiga' experiment. A detailed description of the site is illustrated by original aerial and ground-level photos. A large artificial lake (700 m long and 350 m wide) currently occupies the central area of the experimental site. The ground lip surrounding the lake is covered by a newly grown mixed forest. In situ measurements, performed in August 2009, revealed elevated levels of the {gamma}-ray dose rate in air on the banks of the lake 'Taiga'. Two hot spots were detected on the eastern bank of the lake. The excess of the {gamma}-ray radiation is attributable to the man-made radionuclides {sup 60}Co and {sup 137}Cs. The current external {gamma}-ray dose rate to a human from the contaminations associated with the 'Taiga' experiment was between 9 and 70 {mu}Sv per week. Periodic monitoring the site is recommended. - Highlights: > We studied a radiation anomaly at the 'Taiga' underground nuclear explosion site. > The anomaly currently has an area of approximately 1 km{sup 2}. > The excess of {gamma}-ray radiation at the site is mainly attributable to {sup 60}Co and {sup 137}Cs. > The external effective dose may currently exceed the negligible value of 10 {mu}Sv y{sup -1}.

  17. Modeling the Propagation of Atmospheric Gravity Waves Produced by an Underground Nuclear Explosion using the Transfer Function Model

    Science.gov (United States)

    Bruntz, R. J.; Mayr, H. G.; Paxton, L. J.

    2017-12-01

    We will present results from the Transfer Function Model (TFM), which simulates the neutral atmosphere, from 0 to 700 km, across the entire globe (pole to pole). The TFM is able to rapidly calculate the density and temperature perturbations created by a localized impulse. We have used TFM to simulate a ground-level explosion (equivalent to an underground nuclear explosion (UNE)) and its effects on the neutral atmosphere, including the propagation of gravity waves up to ionospheric heights. At ionospheric altitudes ion-neutral interactions are expected to lead to perturbations in the electron density. These perturbations can be observed as changes in the total electron content (TEC), a feature readily observed by the globally distributed network of global navigation satellite systems (GNSS) sensors. We will discuss the time and location of the maximum atmospheric disturbances at a number of altitudes, including the peaks of several ionospheric layers, including the F2 layer, which is often treated as the major driver of changes in GNSS-TEC observations. We will also examine the drop-off of atmospheric disturbances at those altitudes, both with increasing time and distance. The 6 known underground nuclear explosions (UNEs) by North Korea in the 21st century have sparked increased interest in UNE detection through atmospheric and ionospheric observations. The latest test by North Korea (3 Sept. 2017) was the largest UNE in over 2 decades. We will compare TFM results to the analysis of previous UNEs, including some tests by North Korea, and discuss possible confounding factors in predicting the time, location, and amplitude of atmospheric and ionospheric disturbances produced by a UNE.

  18. Detecting and modeling persistent self-potential anomalies from underground nuclear explosions at the Nevada Test Site

    International Nuclear Information System (INIS)

    McKague, H.L.; Kansa, E.; Kasameyer, P.W.

    1992-01-01

    Self-potential anomalies are naturally occurring, nearly stationary electric fields that are detected by measuring the potential difference between two points on (or in) the ground. SP anomalies arise from a number of causes: principally electrochemical reactions, and heat and fluid flows. SP is routinely used to locate mineral deposits, geothermal systems, and zones of seepage. This paper is a progress report on our work toward detecting explosion-related SP signals at the Nevada Test Site (NTS) and in understanding the physics of these anomalies that persist and continue changing over periods of time that range from months to years. As background, we also include a brief description of how SP signals arise, and we mention their use in other areas such as exploring for geothermal resources and locating seepage through dams. Between the years 1988 and 1991, we surveyed the areas around seven underground nuclear tests for persistent SP anomalies. We not only detected anomalies, but we also found that various phenomena could be contributing to them and that we did not know which of these were actually occurring. We analyzed our new data with existing steady state codes and with a newly developed time-dependent thermal modeling code. Our results with the new code showed that the conductive decay of the thermal pulse from an underground nuclear test could produce many of the observed signals, and that others are probably caused by movement of fluid induced by the explosion. 25 refs

  19. Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site.

    Science.gov (United States)

    Lyakhova, O N; Lukashenko, S N; Larionova, N V; Tur, Y S

    2012-11-01

    During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on "Degelen" site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water-atmosphere, tunnel air-atmosphere, soil water-atmosphere, vegetation-atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area "Degelen". Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T; Harris, D; Lay, T; Myers, S C; Pasyanos, M E; Richards, P; Rodgers, A J; Walter, W R; Zucca, J J

    2008-02-11

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes a path by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas.

  1. Extreme meteorological events and nuclear facilities safety; Fenomenos meteorologicos extremos e a seguranca das instalacoes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Patricia Moco Princisval

    2006-07-01

    An External Event is an event that originates outside the site and whose effects on the Nuclear Power Plants (NPP) should be considered. Such events could be of natural or human induced origin and should be identified and selected for design purposes during the site evaluation process. This work shows that the subtropics and mid latitudes of South America east of the Andes Mountain Range have been recognized as prone to severe convective weather. In Brazil, the events of tornadoes are becoming frequent; however there is no institutionalized procedure for a systematic documentation of severe weather. The information is done only for some scientists and by the newspapers. Like strong wind can affect the structural integrity of buildings or the pressure differential can affect the ventilation system, our concern is the safety of NPP and for this purpose the recommendations of International Atomic Energy Agency, Nuclear Regulatory Commission and Comissao Nacional de Energia Nuclear are showed and also a data base of tornadoes in Brazil is done. (author)

  2. The Principal of International Nuclear Event Scale Determination and Its Implementation

    International Nuclear Information System (INIS)

    Piping Supriatna

    2006-01-01

    International Nuclear Event Scale (INES) is a scale system for determination nuclear event level on an international scale. Comprehension of INES system commonly as a way to motivate communication between nuclear management and the public, in accordance with disturbance to public safety level as the impact of nuclear installation accident. By using INES as the scaling system, the nuclear event is easy to be understood by nuclear group, journalist or by the public directly. In this report has been analyzed the procedure of nuclear event level determination refer to INES scaling system and its implementation in the field. In order to get same perception in determination of nuclear event level, it is necessary to improve full comprehension for INES and its implementation. (author)

  3. Hipse: an event generator for nuclear collisions at intermediate energies

    International Nuclear Information System (INIS)

    Lacroix, D.; Van Lauwe, A.; Durand, D.

    2003-11-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. Based on the sudden approximation and on geometrical hypothesis, it can conveniently simulate heavy-ion interactions at all impact parameters and thus can constitute a valuable tool for the understanding of processes such as neck emission or multifragmentation in peripheral or/and central collisions. After a detailed description of the ingredients of the model, first comparisons with experimental data collected by the INDRA collaboration are shown. Special emphasis is put on the kinematical characteristics of fragments and light particles observed at all impact parameters for Xe+Sn reactions at 25 and 50 MeV/u and Ni + Ni at 82 MeV/u. (authors)

  4. Automated track recognition and event reconstruction in nuclear emulsion

    International Nuclear Information System (INIS)

    Deines-Jones, P.; Aranas, A.; Cherry, M.L.; Dugas, J.; Kudzia, D.; Nilsen, B.S.; Sengupta, K.; Waddington, C.J.; Wefel, J.P.; Wilczynska, B.; Wilczynski, H.; Wosiek, B.

    1997-01-01

    The major advantages of nuclear emulsion for detecting charged particles are its submicron position resolution and sensitivity to minimum ionizing particles. These must be balanced, however, against the difficult manual microscope measurement by skilled observers required for the analysis. We have developed an automated system to acquire and analyze the microscope images from emulsion chambers. Each emulsion plate is analyzed independently, allowing coincidence techniques to be used in order to reject background and estimate error rates. The system has been used to analyze a sample of high-multiplicity Pb-Pb interactions (charged particle multiplicities ∝ 1100) produced by the 158 GeV/c per nucleon 208 Pb beam at CERN. Automatically measured events agree with our best manual measurements on 97% of all the tracks. We describe the image analysis and track reconstruction techniques, and discuss the measurement and reconstruction uncertainties. (orig.)

  5. Symposium on Engineering With Nuclear Explosives January 14-16, 1970 Las Vegas, Nevada. Volume 2

    Science.gov (United States)

    1970-05-01

    stainless steel funnel over an enamel tub. Every attempt was made to slowly wet all the surfaces with no jetting, hydraulic washing, or mechanical...If the signals of shovel tooth wear and bucket filling factors indicate this, then drilling for high-explosive blasting will commence. Benches are...furnace. The whole range of states between undamaged granite and glass is indeed found : 1 - granite may be only whitened . The iron oxydes naturally

  6. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  7. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  8. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  9. Air blast effects on nuclear power plants from vapor cloud explosions

    International Nuclear Information System (INIS)

    Wiedermann, A.H.; Eichler, T.V.; Kot, C.A.

    1981-01-01

    To assess the hazards arising from the explosion of a large flammable vapor cloud a method was developed for estimating the air blast field assuming a detonation wave is established. The actual 'pancake' like geometry typical for negatively buoyant vapor clouds is taken into account. The cloud height and other characteristics are generated by a global cloud dynamics model for negatively buoyant clouds. This model provides the cloud height as a function of fuel vapor concentration and other pertinent variables. A two-dimensional Eulerian shock hydrodynamic computer code is utilized to compute the blast environment in the neighborhood of the end of the cloud. The initial field is taken to be a quasi-steady explosion field calculated by the method of characteristics for a thin Prandtl-Meyer expansion wave, and the upward driven air shock representing the combustion and pressure relief processes inherent in the pancake geometry. This initial fields is established in the 2-D hydrocode at a time corresponding to the arrival of the detonation front at the cloud edge. It is to be noted that the local blast environment scales with respect to the cloud height. The computational results indicate that it is essential to include the influence of cloud geometry for the realistic prediction of the air blast hazard arising from the explosion of a negatively buoyant vapor cloud. (orig./HP)

  10. Behavior of explosion debris clouds

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    In the normal course of events the behavior of debris clouds created by explosions will be of little concern to the atomic energy industry. However, two situations, one of them actual and one postulated, exist where the rise and spread of explosion clouds can affect site operations. The actual occurrence would be the detonation of nuclear weapons and the resultant release and transport of radioactive debris across the various atomic energy installations. Although the activity of the diffusing cloud is not of biological concern, it may still be sufficiently above background to play havoc with the normal readings of sensitive monitoring instruments. If it were not known that these anomalous readings resulted from explosion debris, considerable time and expense might be required for on-site testing and tracing. Fortunately it is usually possible, with the use of meteorological data and forecasts, to predict when individual sites are affected by nuclear weapon debris effects. The formation rise, and diffusion of weapon clouds will be discussed. The explosion of an atomic reactor is the postulated situation. It is common practice in reactor hazard analysis to assume a combination of circumstances which might result in a nuclear incident with a release of material to the atmosphere. It is not within the scope of this report to examine the manifold plausibilities that might lead to an explosion or the possible methods of release of gaseous and/or particulates from such an occurrence. However, if the information of a cloud is assumed and some idea of its energy content is obtainable, estimates of the cloud behavior in the atmosphere can be made

  11. Physics of phenomena in the zone close to an underground nuclear explosion; Physique des phenomenes en zone proche des explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Maury, J; Levret, C [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    After a description of the phenomenology of underground explosions, the basic laws governing the propagation in the ground of the energy produced by the explosion are given. The reports considers hydrodynamics, the mechanics of solids, the equations of state for solids and gases in the case of very high and medium pressures, and the dynamical strength of solids. These various elements make it possible to draw up a system of equations which define completely the changes with time of the shock-wave produced in the ground by the explosion. (authors) [French] Apres une description de la phenomenologie des explosions souterraines, on expose les lois fondamentales regissant la propagation dans le sol de l'energie degagee par l'explosion. L'expose comprend des developpements sur l'hydrodynamique, la mecanique des solides, les equations d'etat des solides et des gaz, aux tres fortes et moyennes pressions, et sur la resistance dynamique des solides. Ces differents elements permettent d'ecrire un systeme d'equations qui definissent completement l'evolution dans le temps de l'onde de choc emise dans le sol par l'explosion. (auteurs)

  12. Physics of phenomena in the zone close to an underground nuclear explosion; Physique des phenomenes en zone proche des explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Maury, J.; Levret, C. [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    After a description of the phenomenology of underground explosions, the basic laws governing the propagation in the ground of the energy produced by the explosion are given. The reports considers hydrodynamics, the mechanics of solids, the equations of state for solids and gases in the case of very high and medium pressures, and the dynamical strength of solids. These various elements make it possible to draw up a system of equations which define completely the changes with time of the shock-wave produced in the ground by the explosion. (authors) [French] Apres une description de la phenomenologie des explosions souterraines, on expose les lois fondamentales regissant la propagation dans le sol de l'energie degagee par l'explosion. L'expose comprend des developpements sur l'hydrodynamique, la mecanique des solides, les equations d'etat des solides et des gaz, aux tres fortes et moyennes pressions, et sur la resistance dynamique des solides. Ces differents elements permettent d'ecrire un systeme d'equations qui definissent completement l'evolution dans le temps de l'onde de choc emise dans le sol par l'explosion. (auteurs)

  13. A study of small explosions and earthquakes during 1961--1989 near the Semipalatinsk Test Site, Kazakhstan

    International Nuclear Information System (INIS)

    Khalturin, V.I.; Rautian, T.G.; Richards, P.G.; Columbia Univ., New York, NY

    1994-03-01

    Several Russian sources have stated that 343 underground nuclear explosions were conducted during 1961--1989 at the Semipalatinsk Test Site. However, only 282 of them appear to have been described, in the openly available technical literature, with well-determined coordinates; and only 272 have both good locations and magnitudes. The authors have used regional data from 52 stations to study 65 seismic sources initially thought to be in or near the Semipalatinsk region, additional to the 272 underground nuclear explosions with known locations and magnitudes. Of these 65 events, the authors believe 8 are not explosions on the test site, namely: two earthquakes close to the test site; three earthquakes or chemical explosions 100--300 km from the test site; and three events at greater distances from Semipalatinsk. Of the remaining 57 events: 10 were known to be underground nuclear explosions with known locations and the authors have supplied magnitudes where none were previously available; one was a chemical explosion at Degelen; they believe 21 were underground nuclear explosions; 13 were chemical explosions at Balapan; 8 were chemical explosions elsewhere on the test site; three were either nuclear or chemical explosions; and one was either a chemical explosion or a cavity collapse. The largest magnitude of their 44 possible underground nuclear explosions is around 5 (February 4, 1965, obscured at many teleseismic stations by a large Aleutian earthquake). Others lie in the magnitude range 3.5--4.5, and clearly most have sub kiloton yields. Their data set of small events is important for purposes of evaluating the detection capability of teleseismic arrays, and the detection and identification capability of regional stations

  14. Criticality safety in high explosives dissolution

    International Nuclear Information System (INIS)

    Troyer, S.D.

    1997-01-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig

  15. Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Lyakhova, O.N.; Lukashenko, S.N.; Larionova, N.V.; Tur, Y.S.

    2012-01-01

    During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on “Degelen” site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water–atmosphere, tunnel air–atmosphere, soil water–atmosphere, vegetation–atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area “Degelen”. - Highlights: ► The basic mechanisms for tritium distribution in the air of nuclear testing sites were examined. ► We researched the distribution of tritium in the systems such as water–atmosphere, tunnel air–atmosphere, soil water–atmosphere and vegetation–atmosphere. ► An analytical calculation of tritium concentration in the atmosphere was performed. ► We experimentally obtained the dependence for predictive assessment of tritium concentrations in

  16. A review of a field study of radionuclide migration from an underground nuclear explosion at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hoffman, D.C.; Daniels, W.R.; Wolfsberg, K.; Thompson, J.L.; Rundberg, R.S.; Fraser, S.L.; Daniels, K.S.

    1984-01-01

    Results from a long-term (9 year) field study of the distribution of radionuclides around an underground nuclear explosion cavity at the Nevada Test Site are reviewed. The goals of this Radionuclide Migration project are to examine the rates of migration underground in various media and to determine the potential for movement, both on and off the Nevada Test Site, of radioactivity from such explosions, with particular interest in possible contamination of water supplies. Initial studies were undertaken near the site of the low-yield test Cambric, which was detonated 73 m beneath the water table in tuffaceous alluvium. Solid samples were obtained from just below ground surface to 50 m below the detonation point, and water was sampled from five different regions in the vicinity of the explosion. Ten years after the test, most of the radioactivity was found to be retained in the fused debris in the cavity region and no activity above background was found 50 m below. Only tritium and 90 Sr were present in water in the cavity at levels greater than recommended concentration guides for water in uncontrolled areas. A satellite well is being used to remove water 91 m from the detonation point. During seven years (7x10 6 m 3 ) of pumping, tritium, 85 Kr, 36 Cl and 129 I have been detected in the water. Approximately 40% of the total tritium from the cavity region has been removed by pumping at the satellite well, and the maximum in the tritium concentration is clearly defined. Use of sensitive analytical techniques has permitted measurement of the very low concentrations of 36 Cl and 129 I present in the water. The 36 Cl peak precedes the tritiated water, possibly as a result of anion exclusion. Additional analyses are in progress to better define the shape of the 129 I concentration curve. (author)

  17. Review of a field study of radionuclide migration from an underground nuclear explosion at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hoffman, D.C.; Daniels, W.R.; Wolfsberg, K.; Thompson, J.L.; Rundberg, R.S.; Fraser, S.L.; Daniels, K.S.

    1983-01-01

    Results from a long-term (9 year) field study of the distribution of radionuclides around an underground nuclear explosion cavity at the Nevada Test Site are reviewed. The goals of this Radionuclide Migration project are to examine the rates of migration underground in various media and to determine the potential for movement, both on and off the Nevada Test Site, of radioactivity from such explosions, with particular interest in possible contamination of water supplies. Initial studies were undertaken near the site of the low-yield test Cambric, which was detonated 73 m beneath the water table in tuffaceous alluvium. Solid samples were obtained from just below ground surface to 50 m below the detonation point, and water was sampled from five different regions in the vicinity of the explosion. Ten years after the test, most of the radioactivity was found to be retained in the fused debris in the cavity region and no activity above background was found 50 m below. Only tritium and 90 Sr were presented in water in the cavity at levels greater than recommended concentration guides for water in uncontrolled areas. A satellite well is being used to remove water 91 m from the detonation point. During seven years (7 x 10 6 m 3 ) of pumping, tritium, 85 Kr, 36 Cl, and 129 I have been detected in the water. Approximately 40% of the total tritium from the cavity region has been removed by pumping at the satellite well, and the maximum in the tritium concentration is clearly defined. Use of sensitive analytical techniques has permitted measurement of the very low concentrations of 36 Cl and 129 I present in the water. The 36 Cl peak precedes the tritiated water, possibly as a result of anion exclusion. Additional analyses are in progress to better define the shape of the 129 I concentration curve

  18. Establishment of nuclear knowledge and information infrastructure; establishment of web-based database system for nuclear events

    Energy Technology Data Exchange (ETDEWEB)

    Park, W. J.; Kim, K. J. [Korea Atomic Energy Research Institute , Taejeon (Korea); Lee, S. H. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2001-05-01

    Nuclear events data reported by nuclear power plants are useful to prevent nuclear accidents at the power plant by examine the cause of initiating events and removal of weak points in the aspects of operational safety, and to improve nuclear safety in design and operation stages by backfitting operational experiences and practices 'Nuclear Event Evaluation Database : NEED' system distributed by CD-ROM media are upgraded to the NEED-Web (Web-based Nuclear Event Evaluation Database) version to manage event data using database system on network basis and the event data and the statistics are provided to the authorized users in the Nuclear Portal Site and publics through Internet Web services. The efforts to establish the NEED-Web system will improve the integrity of events data occurred in Korean nuclear power plant and the usability of data services, and enhance the confidence building and the transparency to the public in nuclear safety. 11 refs., 27 figs. (Author)

  19. GC Side Event: Future of Nuclear Energy: Engaging the Young Generation. Presentations

    International Nuclear Information System (INIS)

    2017-01-01

    This event presented the IAEA’s programmes for the education and training of a new generation of nuclear professionals. It also featured the annual European Master of Science in Nuclear Engineering (EMSNE) award ceremony

  20. Development of a software for predicting the effects of nuclear and radiological terrorism events in city areas

    International Nuclear Information System (INIS)

    Luo Lijuan; Chen Bo; Zhuo Weihai; Lu Shuyu

    2011-01-01

    Objective: To develop a new software system that can directly display the predicted results on an electronic map, in order to get a directly perceived understanding of the affected areas of nuclear and radiological terrorism events in city areas. Methods: Three scenarios of events including spreading radioactive materials, dirty bomb attack, and explosion or arson attacks on the radiation facilities were assumed. Gaussian diffusion model was employed to predict the spread and deposition of radioactive pollutants, and both the internal and external doses were estimated for the representative person by using the corresponding dose conversion factors. Through integration of the computing system and Mapinfo geographic information system (GIS), the predicted results were visually displayed on the electronic maps of a city. Results: The new software system could visually display the predicted results on the electronic map of a city, and the predicted results were consistent with those calculated by the similar software Hotspot®. The deviation between this system and Hotspot was less than 0.2 km for predicted isoplethic curves of dose rate downwind. Conclusions: The newly developed software system is of the practical value in predicting the effects of nuclear and radiological terrorism events in city areas. (authors)

  1. Chemical Explosion Experiments to Improve Nuclear Test Monitoring - Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    International Nuclear Information System (INIS)

    Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; Mellors, Robert J.; Patton, Howard J.; Sussman, Aviva J.; Townsend, Margaret J.; Walter, William R.

    2013-01-01

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy's National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poor performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth

  2. Use of canines for explosives detection in the personnel access control function at a nuclear facility

    International Nuclear Information System (INIS)

    Smith, J.C.

    1978-01-01

    Results of experiments in the use of canines for explosive detection are discussed. Results of the experiments show that the tests identified the training and environmental problems associated with the use of macrosmatic animals in this environment. There may be more problems discovered in subsequent programs, but it is felt that the major problems were identified. The encouraging thing is that the identified problems are solvable by fairly straightforward adjustments in the training and environmental areas. It appears that canines in the personnal search application can achieve a better than 95% probability of detection, with a false alarm rate of less that 5% and an average per person search time of 20 seconds

  3. Use of canines for explosives detection in the personnel access control function at a nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.C.

    1978-01-01

    Results of experiments in the use of canines for explosive detection are discussed. Results of the experiments show that the tests identified the training and environmental problems associated with the use of macrosmatic animals in this environment. There may be more problems discovered in subsequent programs, but it is felt that the major problems were identified. The encouraging thing is that the identified problems are solvable by fairly straightforward adjustments in the training and environmental areas. It appears that canines in the personnal search application can achieve a better than 95% probability of detection, with a false alarm rate of less that 5% and an average per person search time of 20 seconds.

  4. ACCIDENTS AND UNSCHEDULED EVENTS ASSOCIATED WITH NON-NUCLEAR ENERGY RESOURCES AND TECHNOLOGY

    Science.gov (United States)

    Accidents and unscheduled events associated with non-nuclear energy resources and technology are identified for each step in the energy cycle. Both natural and anthropogenic causes of accidents or unscheduled events are considered. Data concerning these accidents are summarized. ...

  5. Guidelines for the International Observation by the Agency of Nuclear Explosions for Peaceful Purposes under the Provisions of the Treaty on the Non-Proliferation of Nuclear Weapons or Analogous Provisions in Other International Agreements

    International Nuclear Information System (INIS)

    1973-01-01

    On 21 June 1972 the Board of Governors approved guidelines for the international observation by the Agency of nuclear explosions for peaceful purposes under the provisions of the Treaty on the Non-Proliferation of Nuclear Weapons or analogous provisions in other international agreements. These guidelines are now reproduced herein for the information of all Members

  6. Behaviour of model particles of local precipitations of surface nuclear explosion in food chain and digestive tract of farm animals

    International Nuclear Information System (INIS)

    Koz'min, G.V.; Epimakhov, V.G.; Sanzharova, N.I.

    2016-01-01

    The behaviour regularities of radioactive particles - simulators of nuclear surface explosion local fall outs in food chain and gastrointestinal tract (GIT) of farm animals are analyzed. The results show that there is a large difference in transport regularities of radioactive silicate particles and radioactive solutions in GIT. At intake of young fission products high concentrations of radionuclides in GIT content deal with sorption and concentrating of radionuclides on food particles and observe in third stomach, blind gut, terminals of middle and bung guts. Transport regularities of fused radioactive particles depend on digestive apparatus mobility, content consistency and morphological peculiarities of mucosa, which work towards transport slowing and storage of such particles in the part of sheep GIT with minimal dry substance content - abomasum [ru

  7. SLIFER measurement for explosive yield

    International Nuclear Information System (INIS)

    Bass, R.C.; Benjamin, B.C.; Miller, H.M.; Breding, D.R.

    1976-04-01

    This report describes the shorted location indicator by frequency of electrical resonance (SLIFER) system used at Sandia Laboratories for determination of explosive yield of under ground nuclear tests

  8. High incidence of micronuclei in lymphocytes from residents of the area near the Semipalatinsk nuclear explosion test site

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Hoshi, Masaharu; Kamada, Nanao; Tchaijunusova, N.J.; Takatsuji, Toshihiro; Gusev, B.I.; Sakerbaev, A.K.H.

    2000-01-01

    The Semipalatinsk area is highly contaminated with radioactive fallout from 40 years of continuous nuclear testing. The biological effects on human health in this area have not been studied. Significant remaining radioactivities include long-lived radioisotopes of 238, 239, 400 Pu, 137 Cs and 90 Sr. To evaluate the long-term biological effects of the radioactive fallout, the incidence of micronuclei in lymphocytes from residents of the area was observed. Blood was obtained from 10 residents (5 females and 5 males, aged 47 to 55 years old) from each of the 3 areas of Znamenka, Dolon and Semipalatinsk, which are about 50-150 km from the nuclear explosion test site. For micronucleus assay. PHA-stimulated lymphocytes were cultured for 72 h and cytochalasin B was added at 44 h for detecting binuclear lymphocytes. Five thousand binuclear lymphocytes in each resident were scored. The means of micronucleus counts in 1,000 lymphocytes in residents of Semipalatinsk, Dolon and Znamenka were 16.3, 12.6, and 7.80, respectively, which were higher than those of the normal Japanese persons (4.66). These values were equivalent to the results obtained from 0.187-0.47 Gy of chronic exposure to γ-rays at a dose rate of 0.02 cGy/min. The high incidence of micronuclei in residents of the Semipalatinsk nuclear test site area was mainly caused by internal exposure rather than external exposure received for the past 40 years. (author)

  9. LLNL's Regional Model Calibration and Body-Wave Discrimination Research in the Former Soviet Union using Peaceful Nuclear Explosions (PNEs)

    International Nuclear Information System (INIS)

    Bhattacharyya, J.; Rodgers, A.; Swenson, J.; Schultz, C.; Walter, W.; Mooney, W.; Clitheroe, G.

    2000-01-01

    Long-range seismic profiles from Peaceful Nuclear Explosions (PNE) in the Former Soviet Union (FSU) provide a unique data set to investigate several important issues in regional Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring. The recording station spacing (∼15 km) allows for extremely dense sampling of the propagation from the source to ∼ 3300 km. This allows us to analyze the waveforms at local, near- and far-regional and teleseismic distances. These data are used to: (1) study the evolution of regional phases and phase amplitude ratios along the profile; (2) infer one-dimensional velocity structure along the profile; and (3) evaluate the spatial correlation of regional and teleseismic travel times and regional phase amplitude ratios. We analyzed waveform data from four PNE's (m b = 5.1-5.6) recorded along profile KRATON, which is an east-west trending profile located in northern Sibertil. Short-period regional discriminants, such as P/S amplitude ratios, will be essential for seismic monitoring of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) at small magnitudes (m b o and 10 o , respectively

  10. Explosive hydrogen burning in novae

    International Nuclear Information System (INIS)

    Wiescher, M.; Goerres, J.; Thielemann, F.K.; Ritter, H.

    1986-01-01

    Recent observations (nova CrA 81 and Aql 82) reported large enhancements of element abundances beyond CNO nuclei in nova ejecta, which still wait for a clear theoretical explanation. Attempts to interprete these findings include scenarios like nova events on a O-Ne-Mg white dwarf or nuclear processing which enables the transfer of CNO material to heavier nuclei. In the present study we included all available nuclear information on proton-rich unstable nuclei, to update thermo-nuclear reaction rates in explosive hydrogen burning. They are applied in a systematic analysis of explosive hydrogen burning for a variety of temperature conditions, appropriate to nova explosions. We find that (a) for temperatures T>2 10 8 K, pre-existing material in Ne, Al, or Mg can be transferred to heavier nuclei following the flow pattern of a r(apid) p(roton-capture) process (b) for T> or approx.3.5 10 8 K CNO matter can be processed to heavier nuclei (in accordance with previous findings). On the basis of these results it seems unlikely that nova Aql 82 (which shows strong carbon and oxygen enrichment together with heavier elements) can be explained by a nova event on a bare O-Ne-Mg white dwarf but is rather a result of burning with T> or approx.3.5 10 8 K. An application to existing nova models shows a reduced 26 Al production, when compared to earlier predictions. Both conclusions, however, have to be verified by complete nova calculations which include the improved nuclear physics input, presented here. (orig.)

  11. Tropical shoreline ice in the late Cambrian: Implications for earth's climate between the Cambrian Explosion and the Great Ordovician Biodiversification Event

    Science.gov (United States)

    Runkel, Anthony C.; MacKey, T.J.; Cowan, Clinton A.; Fox, David L.

    2010-01-01

    Middle to late Cambrian time (ca. 513 to 488 Ma) is characterized by an unstable plateau in biodiversity, when depauperate shelf faunas suffered repeated extinctions. This poorly understood interval separates the Cambrian Explosion from the Great Ordovician Biodiversification Event and is generally regarded as a time of sustained greenhouse conditions. We present evidence that suggests a drastically different climate during this enigmatic interval: Features indicative of meteoric ice are well preserved in late Cambrian equatorial beach deposits that correspond to one of the shelf extinction events. Thus, the middle to late Cambrian Earth was at least episodically cold and might best be considered a muted analogue to the environmental extremes that characterized the Proterozoic, even though cooling in the two periods may have occurred in response to different triggers. Such later Cambrian conditions may have significantly impacted evolution preceding the Ordovician radiation.

  12. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  13. A test of a global seismic system for monitoring earthquakes and underground nuclear explosions

    International Nuclear Information System (INIS)

    Bowman, J.R.; Muirhead, K.; Spiliopoulos, S.; Jepsen, D.; Leonard, M.

    1993-01-01

    Australia is a member of the Group of Scientific Experts (GSE) to consider international cooperative measures to detect and identify events, an ad hoc group of the United Nations Conference on Disarmament. The GSE conducted a large-scale technical test (GSETT-2) from 22 April to 9 June 1991 that focused on the exchange and analysis of seismic parameter and waveform data. Thirty-four countries participated in GSETT-2, and data were contributed from 60 stations on all continents. GSETT-2 demonstrated the feasibility of collecting and transmitting large volumes (around 1 giga-byte) of digital data around the world, and of producing a preliminary bulletin of global seismicity within 48 hours and a final bulletin within 7 days. However, the experiment also revealed the difficulty of keeping up with the flow of data and analysis with existing resources. The Final Event Bulletins listed 3715 events for the 42 recording days of the test, about twice the number reported routinely by another international agency 5 months later. The quality of the Final Event Bulletin was limited by the uneven spatial distribution of seismic stations that contributed to GSETT-2 and by the ambiguity of associating phases detected by widely separated stations to form seismic events. A monitoring system similar to that used in GSETT-2 could provide timely and accurate reporting of global seismicity. It would need an improved distribution of stations, application of more conservative event formation rules and further development of analysis software. 8 refs., 9 figs

  14. Protection against internal fires and explosions in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Experience of the past two decades in the operation of nuclear power plants and modern analysis techniques confirm that fire may be a real threat to nuclear safety and should receive adequate attention from the beginning of the design process throughout the life of the plant. Within the framework of the NUSS programme, a Safety Guide on fire protection had therefore been developed to enlarge on the general requirements given in the Code. Since its first publication in 1979, there has been considerable development in protection technology and analysis methods and after the Chernobyl accident it was decided to revise the existing Guide. This Safety Guide supplements the requirements established in Safety of Nuclear Power Plants: Design. It supersedes Safety Series No. 50-SG-D2 (Rev. 1), Fire Protection in Nuclear Power Plants: A Safety Guide, issued in 1992.The present Safety Guide is intended to advise designers, safety assessors and regulators on the concept of fire protection in the design of nuclear power plants and on recommended ways of implementing the concept in some detail in practice

  15. SEISMIC SIMULATIONS USING PARALLEL COMPUTING AND THREE-DIMENSIONAL EARTH MODELS TO IMPROVE NUCLEAR EXPLOSION PHENOMENOLOGY AND MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A; Matzel, E; Pasyanos, M; Petersson, A; Sjogreen, B; Bono, C; Vorobiev, O; Antoun, T; Walter, W; Myers, S; Lomov, I

    2008-07-07

    The development of accurate numerical methods to simulate wave propagation in three-dimensional (3D) earth models and advances in computational power offer exciting possibilities for modeling the motions excited by underground nuclear explosions. This presentation will describe recent work to use new numerical techniques and parallel computing to model earthquakes and underground explosions to improve understanding of the wave excitation at the source and path-propagation effects. Firstly, we are using the spectral element method (SEM, SPECFEM3D code of Komatitsch and Tromp, 2002) to model earthquakes and explosions at regional distances using available 3D models. SPECFEM3D simulates anelastic wave propagation in fully 3D earth models in spherical geometry with the ability to account for free surface topography, anisotropy, ellipticity, rotation and gravity. Results show in many cases that 3D models are able to reproduce features of the observed seismograms that arise from path-propagation effects (e.g. enhanced surface wave dispersion, refraction, amplitude variations from focusing and defocusing, tangential component energy from isotropic sources). We are currently investigating the ability of different 3D models to predict path-specific seismograms as a function of frequency. A number of models developed using a variety of methodologies are available for testing. These include the WENA/Unified model of Eurasia (e.g. Pasyanos et al 2004), the global CUB 2.0 model (Shapiro and Ritzwoller, 2002), the partitioned waveform model for the Mediterranean (van der Lee et al., 2007) and stochastic models of the Yellow Sea Korean Peninsula region (Pasyanos et al., 2006). Secondly, we are extending our Cartesian anelastic finite difference code (WPP of Nilsson et al., 2007) to model the effects of free-surface topography. WPP models anelastic wave propagation in fully 3D earth models using mesh refinement to increase computational speed and improve memory efficiency. Thirdly

  16. Experience feedback of operation events in Ling'ao phase Ⅱ nuclear power plant

    International Nuclear Information System (INIS)

    Xiao Zhi; Tao Shusheng; Sun Guochen; Zhang Zengqing

    2012-01-01

    As a new operating nuclear power plant, Ling'ao Phase Ⅱ occurred 20 pieces of operational events in one year of first cycle. By analyzing the events in this paper, the causes of the events are mainly concentrated in three aspects: interface between commissioning and operating, DCS system and the management of human factors. Finally, author gives some suggestions on experience feedback, as a reference to other similar nuclear power plants. (authors)

  17. Steam explosions-induced containment failure studies for Swiss nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Zuchuat, O.; Schmocker, U. [Swiss Federal Nuclear Safety Inspectorate, Villigen (Switzerland); Esmaili, H.; Khatib-Rahbar, M.

    1998-01-01

    The assessment of the consequences of both in-vessel and ex-vessel energetic fuel-coolant interaction for Beznau (a Westinghouse pressurized water reactor with a large, dry containment), Goesgen (a Siemens/KWU pressurized water reactor with a large, dry containment) and Leibstadt (a General Electric boiling water reactor-6 with a free standing steel, MARK-III containment) nuclear power plants is presented in this paper. The Conditional Containment Failure Probability of the steel containment of these Swiss nuclear power plants is determined based on different probabilistic approaches. (author)

  18. Analysis of the effects of explosion of a hydrogen cylinder on the transfer of radioactive liquid wastes at nuclear power stations

    International Nuclear Information System (INIS)

    Lopes, Karina B.; Melo, Paulo Fernando F.F. e

    2011-01-01

    This work presents a study of explosion effects of a stored hydrogen cylinder on the transfer of radioactive liquid wastes at nuclear power plants. The peak overpressure is calculated, as well as the strength of resulting fragments, thus confirming the main harmful effect of an explosion of flammable vapor cloud, based on the TNT equivalent method. The scenarios identified are calculated and compared with the overpressure ranges of 1%, 50% and 99% of structural damages, which were determined by the Eisenberg's vulnerability model. The results show that the overpressure and the resulting fragments from the explosion of a hydrogen gas cylinder are not able to cause the overturning of the tanker under study, and also show that a minimum distance of 30 meters between the hydrogen cylinder and the tanker can be considered a safe distance to the passage of this tanker during the transfer of radioactive liquid waste, in which the likelihood of occurrence of structural damages is less than 1%. (author)

  19. Ground waves caused by gas cloud explosions and their effects on nuclear power plant structures

    International Nuclear Information System (INIS)

    Werkle, H.; Waas, G.

    1983-01-01

    The response of embedded structures to ground waves caused by the explosion of a gas cloud is studied. In the first step, the free field ground motion is analyzed; then the response of a PWR-building is computed. The analysis of the free-field motion is performed using a two-dimensional plane strain model, whereas the interaction problem of the structure excited by the free-field motion is investigated using an axisymmetric three-dimensional model. The soil is assumed to be viscoelastic and horizontally layered. The equations of motion for the viscoelastic continuum are solved in the frequency domain by a semianalytic method. The travelling surface loads from air pressure waves are represented by superposition of line loads. The superposition takes advantage of the mathematical properties of the Fourier transforms. Explicit ring load solutions are used to solve the three-dimensional interaction problem of a rigid embedded circular foundation excited by a two-dimensional wave field of Rayleigh wave type. (orig./WL)

  20. Primary explosives

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Robert; Pachman, Jiri [Pardubice Univ. (Czech Republic). Faculty of Chemical Technology

    2013-06-01

    The first chapter provides background such as the basics of initiation and differences between requirements on primary explosives used in detonators and igniters. The authors then clarify the influence of physical characteristics on explosive properties, focusing on those properties required for primary explosives. Furthermore, the issue of sensitivity is discussed. All the chapters on particular groups of primary explosives are structured in the same way, including introduction, physical and chemical properties, explosive properties, preparation and documented use.

  1. Preliminary Analysis of the Common Cause Failure Events for Domestic Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kang, Daeil; Han, Sanghoon

    2007-01-01

    It is known that the common cause failure (CCF) events have a great effect on the safety and probabilistic safety assessment (PSA) results of nuclear power plants (NPPs). However, the domestic studies have been mainly focused on the analysis method and modeling of CCF events. Thus, the analysis of the CCF events for domestic NPPs were performed to establish a domestic database for the CCF events and to deliver them to the operation office of the international common cause failure data exchange (ICDE) project. This paper presents the analysis results of the CCF events for domestic nuclear power plants

  2. A review of the developments of radioxenon detectors for nuclear explosion monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sivels, Ciara B.; McIntyre, Justin I.; Bowyer, Theodore W.; Kalinowski, Martin B.; Pozzi, Sara A.

    2017-09-27

    Developments in radioxenon monitoring since the implementation of the International Monitoring System are reviewed with emphasis on the most current technologies to improve detector sensitivity and resolution. The nuclear detectors reviewed include combinations of plastic and NaI(Tl) detectors, high purity germanium detectors, silicon detectors, and phoswich detectors. The minimum detectable activity and calibration methods for the various detectors are also discussed.

  3. Chemical, Biological, Radiological, Nuclear, and High-Yield Explosives Consequences Management

    Science.gov (United States)

    2006-10-02

    protective measures associated with such offensive operations. Since riot control agents and herbicides are not considered to be chemical warfare agents...control. Procedures to avoid, reduce, remove, or render harmless (temporarily or permanently) nuclear, radiological, biological, and chemical...destroying, neutralizing, making harmless , or removing chemical or biological agents, or by removing radioactive material clinging to or around it. (JP 1

  4. Symposium on Engineering With Nuclear Explosives January 14-16, 1970, Las Vegas, Nevada. Volume 1

    Science.gov (United States)

    1970-05-01

    by Senator Mike Gravel (D. - Alas .) and co- sponsored by Senator Edmund A. Muskie (D. -Me.) to establish a 15-member commission to examine the potential...Gasbuggy was an experiment in nuclear stimulation. of a gas-bearing formation in Rio Arriba County, New Mexico, sponsored jointly by the U. S. Atomic

  5. Initiating events in the safety probabilistic analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Stasiulevicius, R.

    1989-01-01

    The importance of the initiating event in the probabilistic safety analysis of nuclear power plants are discussed and the basic procedures necessary for preparing reports, quantification and grouping of the events are described. The examples of initiating events with its occurence medium frequency, included those calculated for OCONEE reactor and Angra-1 reactor are presented. (E.G.)

  6. The density jump at the inner core boundary using underground nuclear explosion records

    International Nuclear Information System (INIS)

    Krasnoshchekov, D.N.; Ovchinnikov, V.M.

    2001-01-01

    This paper presents the estimation of the minimum jump value using experimental wave forms reflected from the boundary between the Earth core and mantle (PcP) and the one between the inner and outer core (PKiKP) at a distance of 6 deg. Digital seismic records of underground nuclear tests conducted at the Semipalatinsk test site in 70s by Zerenda-Vostochny-Chkalovo seismic array have been used. (author)

  7. Surface Coatings as Xenon Diffusion Barriers for Improved Detection of Clandestine Nuclear Explosions

    OpenAIRE

    Bläckberg, Lisa

    2014-01-01

    This thesis investigates surface coatings as xenon diffusion barriers on plastic scintillators. The motivation for the work is improved radioxenon detection systems, used within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). One type of radioxenon detection systems used in this context is the Swedish SAUNA system. This system uses a cylindrical plastic scintillator cell to measure the beta decay from radioxenon isotopes. The detector cell also acts as a container...

  8. Proposed risk evaluation guidelines for use by the DOE-AL Nuclear Explosive Safety Division in evaluating proposed shipments of nuclear components

    International Nuclear Information System (INIS)

    Just, R.A.; Love, A.F.

    1997-10-01

    The licensing requirements of 10 CFR 71 (US Code of Federal Regulations) are the primary criteria used to license proposed US Department of Energy (DOE) shipments of nuclear components. However, if a shipment cannot meet 10 CFR 71 requirements, a Transportation System Risk Assessment (TSRA) is prepared to document: (1) the degree of compliance of proposed DOE shipments of nuclear components with applicable federal regulations, and (2) the risk associated with the proposed shipments. The Nuclear Explosive Safety Division (NESD) of the Department of Energy, Albuquerque Area Office (DOE-AL) is responsible for evaluating TSRAs and for preparing Safety Evaluation Reports (SERs) to authorize the off-site transport. Hazards associated with the transport may include the presence of fissile material, chemically and radiologically toxic uranium, and ionizing radiation. The Nuclear Regulatory Commission (NRC) has historically considered only radiological hazards in licensing the transport of radiological material because the US Department of Transportation considers licensing requirements of nonradiological (i.e., chemically toxic) hazards. The requirements of 10 CFR 71 are based primarily on consideration of radiological hazards. For completeness, this report provides information for assessing the effects of chemical toxicity. Evaluating the degree of compliance with the requirements of 10 CFR 71 is relatively straightforward. However, there are few precedents associated with developing TSRA risk assessments for packages that do not comply with all of the requirements of 10 CFR 71. The objective of the task is to develop Risk Evaluation Guidelines for DOE-AL to use when evaluating a TSRA. If the TSRA shows that the Risk Evaluation Guidelines are not exceeded, then from a risk perspective the TSRA should be approved if there is evidence that the ALARA (as low as reasonably achievable) principle has been applied

  9. Views on ASSET guidelines from event 'T5' of Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Hao Xiaofeng

    1997-01-01

    The event assessment methodology adopted by ASSET (Assessment of Safety Significant Events Team) of IAEA, and event 'T5' (abnormal control rod drop time) occurred in Daya Bay Nuclear Power Station, including the causes and the corrective actions are briefly presented. The assessment of the event is performed by using the ASSET methodology, some advantages and limits of the methodology in practice are pointed out

  10. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    International Nuclear Information System (INIS)

    Michael R. Kruzic

    2007-01-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D and D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D and D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D and D strategy is now being employed on the larger ''sister'' facility, Test Cell C

  11. RADIATION SAFETY JUSTIFICATION FOR THE LONG-TERM STORAGE OF GAS CONDENSATE IN THE UNDERGROUND RESERVOURS FORMED BY THE NUCLEAR EXPLOSION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2010-01-01

    Full Text Available The paper presents approaches to the safety justification of the gas condensate and brine long-term storage in the underground reservoirs formed by the nuclear explosion technology. Gas condensate and brine are the intermediate level liquid radioactive waste containing isotopes: 3Н, 137Cs and 90Sr, in traces - 239Pu, 235U, 241Am.Safety of the gas condensate and brine long-term storage in the underground reservoirs is assessed on the base of the multi-barrier principle implementation, used during radioactive waste disposal. It is shown that the gas condensate and brine long-term storage in the sealed underground reservoirs formed by nuclear explosion technologies in salt domes does not lead to the surface radioactive contamination and population exposure.

  12. Support for Nuclear Explosive Safety Division, Department of Energy, Albuquerque Operations. Effects of a postulated uranium transportation accident

    International Nuclear Information System (INIS)

    Just, R.A.

    1997-10-01

    Transportation System Risk Assessments (TSRAs) document the degree of compliance of proposed DOE shipments of nuclear components with applicable federal regulations and the risk associated with the proposed shipments. TSRAs must often evaluate the consequences of possible transportation accidents involving uranium. If a relatively simple bounding analysis can show that the consequences resulting from a worst case scenario are acceptably low, a more time intensive and costly risk analysis can be avoided. A bounding consequence analysis has been prepared for a worst case noncriticality transportation accident involving the shipment of uranium. In the absence of a criticality incident, a fire or explosion are the only plausible mechanisms identified for dispersing significant amounts of solid hazardous material. Therefore, three very conservative bounding accidents are considered: (1) analysis of the postulated direct radiation exposure, (2) the airborne release of uranium due to a fire, and (3) the release of uranium into a waterway and uptake into drinking water. This report provides the equations, assumptions, and reference information used to predict the consequences of possible transportation accidents involving natural, depleted, and highly enriched uranium

  13. Initiating Event Rates at U.S. Nuclear Power Plants. 1988 - 2013

    International Nuclear Information System (INIS)

    Schroeder, John A.; Bower, Gordon R.

    2014-01-01

    Analyzing initiating event rates is important because it indicates performance among plants and also provides inputs to several U.S. Nuclear Regulatory Commission (NRC) risk-informed regulatory activities. This report presents an analysis of initiating event frequencies at U.S. commercial nuclear power plants since each plant's low-power license date. The evaluation is based on the operating experience from fiscal year 1988 through 2013 as reported in licensee event reports. Engineers with nuclear power plant experience staff reviewed each event report since the last update to this report for the presence of valid scrams or reactor trips at power. To be included in the study, an event had to meet all of the following criteria: includes an unplanned reactor trip (not a scheduled reactor trip on the daily operations schedule), sequence of events starts when reactor is critical and at or above the point of adding heat, occurs at a U.S. commercial nuclear power plant (excluding Fort St. Vrain and LaCrosse), and is reported by a licensee event report. This report displays occurrence rates (baseline frequencies) for the categories of initiating events that contribute to the NRC's Industry Trends Program. Sixteen initiating event groupings are trended and displayed. Initiators are plotted separately for initiating events with different occurrence rates for boiling water reactors and pressurized water reactors. p-values are given for the possible presence of a trend over the most recent 10 years.

  14. Review of the work by Kondratyev and Nikolsky on the climatic effects of atmospheric nuclear explosions

    International Nuclear Information System (INIS)

    Luther, F.M.

    1992-01-01

    A recent article by Gribbin that discussed yet unpublished work by K. Ya. Kondratyev and G.A. Nikolsky has generated a great deal of interest (or controversy). The claim is made that the effect of the eruption of Mt. Agung on temperatures in the northern hemisphere has been overestimated by a factor of two and that the cooling effect of large releases of NO x to the stratosphere in the 1960s from nuclear tests was comparable to that of Mt. Agung. Following a chain of arguments, that are discussed below, Gribbin quotes the Soviet scientists as saying, in the case of a nuclear conflict, a global decrease of the Earth's surface temperature may reach 5-10 K, which will bring about disastrous consequences for man's economic activity. In order to evaluate these claims, the author has looked at each step in their argument as discussed in Gribbin's article and in an earlier publication of most of these ideas (Kondratyev and Nikolsky). He has attempted to identify (1) assumptions made in their argument, (2) unsubstantiated statements, and (3) gaps or omissions in their argument that may affect their conclusions. The Kondratyev and Nikolsky article is reviewed first, then the Gribbin article

  15. Study of event sequence database for a nuclear power domain

    International Nuclear Information System (INIS)

    Kusumi, Yoshiaki

    1998-01-01

    A retrieval engine developed to extract event sequences from an accident information database using a time series retrieval formula expressed with ordered retrieval terms is explored. This engine outputs not only a sequence which completely matches with a time series retrieval formula, but also sequence which approximately matches the formula (fuzzy retrieval). An event sequence database in which records consist of three ordered parameters, namely the causal event, the process and result. Then the database is used to assess the feasibility of this engine and favorable results were obtained. (author)

  16. Polar boundary layer bromine explosion and ozone depletion events in the chemistry-climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    Science.gov (United States)

    Falk, Stefanie; Sinnhuber, Björn-Martin

    2018-03-01

    Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.

  17. Analysis on typical illegal events for nuclear safety class 1 valve

    International Nuclear Information System (INIS)

    Tian Dongqing; Gao Runsheng; Jiao Dianhui; Yang Lili; Chen Peng

    2014-01-01

    Illegal welding events of nuclear safety class l valve forging occurred to the manufacturer, while the valve was returned to be repaired. Illegal nondestructive test event of nuclear safety class valve occurred also to the manufacturer in the manufacturing process. The two events have resulted in quality incipient fault for the installed valves and the valves in the manufacturing process. It was reflected that operation of the factory quality assurance system isn't activated, and nuclear power engineering and operating company have insufficient supervision. The event-related parties should strengthen quality management and process control, get rid of the quality incipient fault, and experience feedback should be done well to guarantee quality of equipment in nuclear power plant. (authors)

  18. Proceedings of the CSNI specialist meeting on interaction of fire and explosion with ventilation systems in nuclear facilities. Volume I

    International Nuclear Information System (INIS)

    1983-10-01

    Separate abstracts were prepared for the papers presented in the following areas: (1) fire and explosion perspectives; (2) fire, explosion, and radioactive source terms; and (3) development and verification of codes (a) mathematical and computer simulation and (b) analytical and experimental comparisons

  19. Calculations on seismic coupling of underground explosions in salt

    International Nuclear Information System (INIS)

    Heusinkveld, M.E.

    1981-01-01

    This report details the results of a theoretical study of seismic coupling and decoupling of underground explosions in a salt medium. A series of chemical and nuclear explosions was carried out years ago in salt domes for the Cowboy and the Dribble programs to provide experimental data on seismic coupling for both tamped explosions and explosions in cavities. The Cowboy program consisted of a series of chemical explosions, and the Dribble program consisted of the tamped nuclear Salmon event, the Sterling nuclear event in the Salmon cavity, and an associated site calibration effort. This report presents the results of extensive computer calculations, which are in satisfactory agreement with the experimental data. The calculations were extended to give general results on seismic coupling in salt. The measure of seismic coupling for most of this work was the residual reduced displacement potential (residual RDP). The decoupling associated with a shot in a cavity was expressed as the ratio of the resulting residual RDP to that of an equal-sized tamped shot

  20. Analysis of external flooding events occurred in foreign nuclear power plant sites

    International Nuclear Information System (INIS)

    Li Dan; Cai Hankun; Xiao Zhi; An Hongzhen; Mao Huan

    2013-01-01

    This paper screens and studies 17 external flooding events occurred in foreign NPP sites, analysis the characteristic of external flooding events based on the source of the flooding, the impact on the building, systems and equipment, as well as the threat to nuclear safety. Furthermore, based on the experiences and lessons learned from Fukushima nuclear accident relating to external flooding and countermeasures carried out in the world, some suggestions are proposed in order to improve external flooding response capacity for Chinese NPPs. (authors)

  1. External human induced events in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The purpose of the present Safety Guide is to provide recommendations and guidance for the examination of the region considered for site evaluation for a plant in order to identity hazardous phenomena associated with human induced events initiated by sources external to the plant. In some cases it also presents preliminary guidance for deriving values of relevant parameters for the design basis. This Safety Guide is also applicable for periodic site evaluation and site evaluation following a major human induced event, and for the design and operation of the site's environmental monitoring system. Site evaluation includes site characterization. Consideration of external events that could lead to a degradation of the safety features of the plant and cause a release of radioactive material from the plant and/or affect the dispersion of such material in the environment. And consideration of population issues and access issues significant to safety (such as the feasibility of evacuation, the population distribution and the location of resources). The process of site evaluation continues throughout the lifetime of the facility, from siting to design, construction, operation and decommissioning. The external human induced events considered in this Safety Guide are all of accidental origin. Considerations relating to the physical protection of the plant against wilful actions by third parties are outside its scope. However, the methods described herein may also have some application for the purposes of such physical protection. The present Safety Guide may also be used for events that may originate within the boundaries of the site, but from sources which are not directly involved in the operational states of the nuclear power plant units, such as fuel depots or areas for the storage of hazardous materials for the construction of other facilities at the same site. Special consideration should be given to the hazardous material handled during the construction, operation and

  2. Medical intervention in case of nuclear or radiation event

    International Nuclear Information System (INIS)

    Blanc, J.; Bourguignon, M.; Carli, P.; Carosella, E.; Challeton de Vathaire, C.; Court, L.; Ducousso, R.; Facon, A.; Fleutot, J.B.; Goldstein, P.; Gourmelon, P.; Herbelet, G.; Kolodie, H.; Lallemand, J.; Martin, J.C.; Menthonnex, P.; Masse, R.; Origny, S.; Pasnon, J.; Peton Klein, D.; Rougy, C.; Schoulz, D.; Romet, G.; Telion, C.; Vrousos, C.

    2002-01-01

    This guide aims to be a practical tool for intervenors in case of nuclear or radiation accident. It proposes many sheets to favor the reactivity and the implementing of adapted measures. It concerns the course of action to take in case of irradiation accident or contamination and the reception in medical structure or a hospital. (A.L.B.)

  3. An empirical study of the nuclear explosion-induced lightning seen on IVY-MIKE

    Science.gov (United States)

    Colvin, J. D.; Mitchell, C. K.; Greig, J. R.; Murphy, D. P.; Pechacek, R. E.; Raleigh, M.

    1987-05-01

    We report the results of a unique study of the lightninglike phenomena that were seen to accompany the MIKE shot of operation IVY on October 31 1952. MIKE was a thermonuclear surface burst yielding 10.4 MT, which took place on Enewetak Atoll. During the period of approximately 10 ms after detonation, five discrete luminous channels were seen to start from the ground or sea surface at a distance of approximately 1 km from the burst point and to grow up into the clouds. We have reexamined the original photographic records of IVY-MIKE, obtaining effective brightnesses (optical powers per unit length) for the luminous channels at different altitudes as functions of time. The absolute calibration for the MIKE records was deduced by comparison with the photographic records of other events of that era, laboratory measurements of film sensitivity, and use of atmospheric transmission data taken just prior to the MIKE event. Errors in this analysis lead to an uncertainty of a factor of ˜2 in the brightnesses of the luminous channels. In the laboratory we have used laser-guided electric discharges to create long (100 cm), arclike plasma channels to simulate the observed luminous channels and to allow determination of an empirical relation between the brightness of the channel and the electric current flowing in the channel. These laboratory discharges had peak currents up to 100 kA and periods of ˜2 ms. Spectroscopic analysis showed that the luminous channels consisted primarily of normal air plasma with typical ground-level contaminants. Photographic studies showed that these long-duration discharges are unstable to the m = 1 magnetohydrodynamic (MHD) instability and become severely distorted in less than 1 ms. By direct comparison of the luminous channels seen at MIKE and the laboratory discharges, we deduce: (1) the peak current in the prominent (brightest) channel at MIKE was between 200 and 600 kA. Here the most likely value of the peak current was 250±50 kA, but

  4. Cause trending analysis for licensing operational events in Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Wang Dewei

    2005-01-01

    The human causal factors for all human error licensing operational events on Daya Bay nuclear power station since 1993 to 2003 are categorized, the trend of these causal factors is analyzed. The emphasis is placed on analyzing the deficiencies on complying with and executing regulations and procedures. The results provide directional reference for nuclear power station to improve human performance. (author)

  5. Nuclear Security Systems and Measures for Major Public Events. Implementing Guide (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides an overview, based on practical experience and lessons learned, for establishing nuclear security systems and measures for major public events. It covers technical and administrative nuclear security measures for developing the necessary organizational structure, developing plans, strategies and concepts of operations, and making arrangements for implementing the developed plans, strategies and concepts.

  6. Information of the public, the media, and the population in the event of a nuclear incident. Seminar of the Working Group 'Emergency management'

    International Nuclear Information System (INIS)

    Bayer, A.

    1997-01-01

    Experience from the TMI accident and the accident at Chernobyl has shown that the population in an affected area quickly tends to take their own decisions and proceed to action spoiling all official emergency planning, if information to the population comes too late and is not adequately formulated. Rapid and understandable information about safety relevance of the emergency according to the INES event scale may be of higher value and effectiveness than any detailed account of the accident. For example, information given about an explosion o n the s i t e of XY NPP may easily become falsified on the dissemination pathway and end up as news about an explosion o f the XY NPP. Suitable accident management today primarily is a question of prompt, competent and adequately presented information through the responsible bodies. Technological emergency management may demand less manpower than the required public information campaign. In the event of an emergency in Europe, one has to reckon with several hundreds of journalists of the various news media gathering on site within short, demands for information coming in from a multitude of European countries or organisations, channeled through the IAEA (EMERCOM) or Brussels (ECURIE), and, last but not least, from the countries' populations. Realising these needs, the AKN decided to organise the seminar and hopes that it will contribute its share to underline the importance of information of the public in the event of a nuclear emergency. (orig/CB) [de

  7. Explosive performance on the non-proliferation experiment

    Energy Technology Data Exchange (ETDEWEB)

    McKown, T.O.

    1994-03-01

    The non-proliferation experiment, originally called the chemical kiloton experiment, was planned and executed by Lawrence Livermore National Laboratory to investigate the seismic yield relationship and distinguishing seismic signals between a nuclear event and a large mass conventional explosion. The Los Alamos National Laboratory planned and conducted experiments to further their studies of the source function for signals observed seismically. Since all investigations were contingent on the performance of the emplaced chemical explosive, an array of diagnostic measurements was fielded in the emplaced explosive. The CORRTEX system was used to investigate the explosive initiation and to determine the detonation velocities in multiple levels and in numerous directions. A description of the CORRTEX experiments fielded, a review of the data obtained and some interpretations of the data are reported.

  8. Tephra and cryptotephra in a 60,000-year-old lacustrine sequence from the Fucino Basin: new insights into the major explosive events in Italy

    Science.gov (United States)

    Di Roberto, Alessio; Smedile, Alessandra; Del Carlo, Paola; De Martini, Paolo Marco; Iorio, Marina; Petrelli, Maurizio; Pantosti, Daniela; Pinzi, Stefania; Todrani, Alessandro

    2018-03-01

    Two cores were sampled in the Fucino Basin (central Apennines, Italy), which represents an extensional intramountain basin filled by Pliocene to Quaternary continental alluvial and lacustrine deposits. The cores were investigated for tephra content and five visible tephras with thickness ranging from 1 to 8 cm were identified. Six additional cryptotephra were identified during the inspection of significant peaks of the magnetic susceptibility curve. Texture and mineralogy of five tephra and six cryptotephra layers were analyzed by means of scanning electron microscope coupled with energy-dispersive X-ray spectrometry system (SEM-EDS) and geochemical measurements were performed by an electron microprobe (EPMA) equipped with five wavelength-dispersive spectrometers (WDS) and using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) system on single glass shards. The results allowed us to assign tephra and cryptotephra to ten known volcanic eruptions that occurred over the last ca. 60 ka in the Campanian Province (Phlegrean Fields and Ischia Island), the Alban Hills volcanic complex, and Lipari island. In particular, we recognized the deposits of the Monte Epomeo Green Tuff and the Piroclastiti di Catavola eruptions of Ischia, the pre-Campanian Ignimbrite Tlc, the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions of the Phlegrean Fields, the Gabellotto-Fiume Bianco eruption of Lipari, and all the four explosive events belonging to the last cycle of volcanic activity of Albano maar (Albano 4-7). Deposits from five of these identified events (i.e., Piroclastiti di Catavola, Gabellotto-Fiume Bianco, Albano 5 and 6 eruptions, and Campanian Ignimbrite) were previously un-reported in the Fucino basin. These findings add new tephra layers to the list of possible tephrochronologic markers in the region and highlight that a comprehensive tephra record may be constructed when the study of cryptotephra layers is included. Moreover, results

  9. Notifiable events in German nuclear power plants in 1992

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    In 1992, there were 223 notifiable nuclear power plant incidents in the Federal Republic of Germany. 221 incidents belong to the category N (normal notification, INES 0), 2 incidents belong to the category E (immediate notification, INES 2). The report comprehensively lists all the incidents. No releases of radioactive materials above the, lincenced levels occupied and there were no hazards to persons and to the environment. (HP) [de

  10. Estimation of initiating event distribution at nuclear power plants by Bayesian procedure

    International Nuclear Information System (INIS)

    Chen Guangming

    1995-01-01

    Initiating events at nuclear power plants such as human errors or components failures may lead to a nuclear accident. The study of the frequency of these events or the distribution of the failure rate is necessary in probabilistic risk assessment for nuclear power plants. This paper presents Bayesian modelling methods for the analysis of the distribution of the failure rate. The method can also be utilized in other related fields especially where the data is sparse. An application of the Bayesian modelling in the analysis of distribution of the time to recover Loss of Off-Site Power ( LOSP) is discussed in the paper

  11. Event-by-Event Simulations of Early Gluon Fields in High Energy Nuclear Collisions

    Science.gov (United States)

    Nickel, Matthew; Rose, Steven; Fries, Rainer

    2017-09-01

    Collisions of heavy ions are carried out at ultra relativistic speeds at the Relativistic Heavy Ion Collider and the Large Hadron Collider to create Quark Gluon Plasma. The earliest stages of such collisions are dominated by the dynamics of classical gluon fields. The McLerran-Venugopalan (MV) model of color glass condensate provides a model for this process. Previous research has provided an analytic solution for event averaged observables in the MV model. Using the High Performance Research Computing Center (HPRC) at Texas A&M, we have developed a C++ code to explicitly calculate the initial gluon fields and energy momentum tensor event by event using the analytic recursive solution. The code has been tested against previously known analytic results up to fourth order. We have also have been able to test the convergence of the recursive solution at high orders in time and studied the time evolution of color glass condensate.

  12. Event classification related to overflow of solvent containing uranium according to the INES scale (International Nuclear and Radiological Event Scale)

    International Nuclear Information System (INIS)

    Dourado, Eneida R.G.; Assis, Juliana T. de; Lage, Ricardo F.; Lopes, Karina B.

    2013-01-01

    This paper aims to frame the event overflow organic solvent rich in uranium, from a decanter of ore beneficiation plant, caused by the fall in the supply of electricity, according to the criteria established by the International Nuclear Event Scale and radiological (INES), facilitating the understanding of the occurrence and communication with the public regarding the radiation safety aspects involved. With the fall of electricity, routine procedures in situations of installation stop were performed, however, due to operational failure, the valve on the transfer line liquor was not closed. Thus, the mixer continued being fed with liquor, that led the consequent leakage of solvent loaded with uranium. It reached the drainage system, and the box of rainwater harvesting of the plant. However, immediately after the detection of the event, corrective actions were initiated and the overflow was contained. Regulatory agencies followed the removal of the solvent and on the results of the analysis of environmental monitoring, found that the event did not provide exposure t