WorldWideScience

Sample records for event-related eeg potential-guided

  1. Event-related EEG changes preceding saccadic eye movements before and after dry immersion.

    Science.gov (United States)

    Tomilovskaya, E S; Kirenskaya, A V; Novototski-Vlasov, V Yu; Kozlovskaya, I B

    2004-07-01

    Objectives of this work were to quantify antisaccade characteristics, presaccadic slow negative EEG-potentials, and event-related EEG frequency band power (theta, alpha1, alpha2, beta1, beta2 and beta3) changes (ERD) in healthy volunteers before and after 6-day simulated weightlessness (dry immersion).

  2. Blind Source Separation of Event-Related EEG/MEG.

    Science.gov (United States)

    Metsomaa, Johanna; Sarvas, Jukka; Ilmoniemi, Risto Juhani

    2017-09-01

    Blind source separation (BSS) can be used to decompose complex electroencephalography (EEG) or magnetoencephalography data into simpler components based on statistical assumptions without using a physical model. Applications include brain-computer interfaces, artifact removal, and identifying parallel neural processes. We wish to address the issue of applying BSS to event-related responses, which is challenging because of nonstationary data. We introduce a new BSS approach called momentary-uncorrelated component analysis (MUCA), which is tailored for event-related multitrial data. The method is based on approximate joint diagonalization of multiple covariance matrices estimated from the data at separate latencies. We further show how to extend the methodology for autocovariance matrices and how to apply BSS methods suitable for piecewise stationary data to event-related responses. We compared several BSS approaches by using simulated EEG as well as measured somatosensory and transcranial magnetic stimulation (TMS) evoked EEG. Among the compared methods, MUCA was the most tolerant one to noise, TMS artifacts, and other challenges in the data. With measured somatosensory data, over half of the estimated components were found to be similar by MUCA and independent component analysis. MUCA was also stable when tested with several input datasets. MUCA is based on simple assumptions, and the results suggest that MUCA is robust with nonideal data. Event-related responses and BSS are valuable and popular tools in neuroscience. Correctly designed BSS is an efficient way of identifying artifactual and neural processes from nonstationary event-related data.

  3. Time is of the Essence: A Review of Electroencephalography (EEG) and Event-Related Brain Potentials (ERPs) in Language Research.

    Science.gov (United States)

    Beres, Anna M

    2017-12-01

    The discovery of electroencephalography (EEG) over a century ago has changed the way we understand brain structure and function, in terms of both clinical and research applications. This paper starts with a short description of EEG and then focuses on the event-related brain potentials (ERPs), and their use in experimental settings. It describes the typical set-up of an ERP experiment. A description of a number of ERP components typically involved in language research is presented. Finally, the advantages and disadvantages of using ERPs in language research are discussed. EEG has an extensive use in today's world, including medical, psychology, or linguistic research. The excellent temporal resolution of EEG information allows one to track a brain response in milliseconds and therefore makes it uniquely suited to research concerning language processing.

  4. ERPLAB: An Open-Source Toolbox for the Analysis of Event-Related Potentials

    Directory of Open Access Journals (Sweden)

    Javier eLopez-Calderon

    2014-04-01

    Full Text Available ERPLAB Toolbox is a freely available, open-source toolbox for processing and analyzing event-related potential (ERP data in the MATLAB environment. ERPLAB is closely integrated with EEGLAB, a popular open-source toolbox that provides many EEG preprocessing steps and an excellent user interface design. ERPLAB adds to EEGLAB’s EEG processing functions, providing additional tools for filtering, artifact detection, re-referencing, and sorting of events, among others. ERPLAB also provides robust tools for averaging EEG segments together to create averaged ERPs, for creating difference waves and other recombinations of ERP waveforms through algebraic expressions, for filtering and re-referencing the averaged ERPs, for plotting ERP waveforms and scalp maps, and for quantifying several types of amplitudes and latencies. ERPLAB’s tools can be accessed either from an easy-to-learn graphical user interface or from MATLAB scripts, and a command history function makes it easy for users with no programming experience to write scripts. Consequently, ERPLAB provides both ease of use and virtually unlimited power and flexibility, making it appropriate for the analysis of both simple and complex ERP experiments. Several forms of documentation are available, including a detailed user’s guide, a step-by-step tutorial, a scripting guide, and a set of video-based demonstrations.

  5. Joint Maximum Likelihood Time Delay Estimation of Unknown Event-Related Potential Signals for EEG Sensor Signal Quality Enhancement

    Science.gov (United States)

    Kim, Kyungsoo; Lim, Sung-Ho; Lee, Jaeseok; Kang, Won-Seok; Moon, Cheil; Choi, Ji-Woong

    2016-01-01

    Electroencephalograms (EEGs) measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI) studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP) signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE) schemes based on a joint maximum likelihood (ML) criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°. PMID:27322267

  6. Joint Maximum Likelihood Time Delay Estimation of Unknown Event-Related Potential Signals for EEG Sensor Signal Quality Enhancement

    Directory of Open Access Journals (Sweden)

    Kyungsoo Kim

    2016-06-01

    Full Text Available Electroencephalograms (EEGs measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE schemes based on a joint maximum likelihood (ML criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°.

  7. EEG Channel Selection Using Particle Swarm Optimization for the Classification of Auditory Event-Related Potentials

    Directory of Open Access Journals (Sweden)

    Alejandro Gonzalez

    2014-01-01

    Full Text Available Brain-machine interfaces (BMI rely on the accurate classification of event-related potentials (ERPs and their performance greatly depends on the appropriate selection of classifier parameters and features from dense-array electroencephalography (EEG signals. Moreover, in order to achieve a portable and more compact BMI for practical applications, it is also desirable to use a system capable of accurate classification using information from as few EEG channels as possible. In the present work, we propose a method for classifying P300 ERPs using a combination of Fisher Discriminant Analysis (FDA and a multiobjective hybrid real-binary Particle Swarm Optimization (MHPSO algorithm. Specifically, the algorithm searches for the set of EEG channels and classifier parameters that simultaneously maximize the classification accuracy and minimize the number of used channels. The performance of the method is assessed through offline analyses on datasets of auditory ERPs from sound discrimination experiments. The proposed method achieved a higher classification accuracy than that achieved by traditional methods while also using fewer channels. It was also found that the number of channels used for classification can be significantly reduced without greatly compromising the classification accuracy.

  8. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children.

    Science.gov (United States)

    Badcock, Nicholas A; Preece, Kathryn A; de Wit, Bianca; Glenn, Katharine; Fieder, Nora; Thie, Johnson; McArthur, Genevieve

    2015-01-01

    Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG) system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs) in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children. Method. An adapted Emotiv EPOC system and Neuroscan system were used to make simultaneous EEG recordings in nineteen 6- to 12-year-old children under "passive" and "active" listening conditions. In the passive condition, children were instructed to watch a silent DVD and ignore 566 standard (1,000 Hz) and 100 deviant (1,200 Hz) tones. In the active condition, they listened to the same stimuli, and were asked to count the number of 'high' (i.e., deviant) tones. Results. Intraclass correlations (ICCs) indicated that the ERP morphology recorded with the two systems was very similar for the P1, N1, P2, N2, and P3 ERP peaks (r = .82 to .95) in both passive and active conditions, and less so, though still strong, for mismatch negativity ERP component (MMN; r = .67 to .74). There were few differences between peak amplitude and latency estimates for the two systems. Conclusions. An adapted EPOC EEG system can be used to index children's late auditory ERP peaks (i.e., P1, N1, P2, N2, P3) and their MMN ERP component.

  9. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children

    Directory of Open Access Journals (Sweden)

    Nicholas A. Badcock

    2015-04-01

    Full Text Available Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children.Method. An adapted Emotiv EPOC system and Neuroscan system were used to make simultaneous EEG recordings in nineteen 6- to 12-year-old children under “passive” and “active” listening conditions. In the passive condition, children were instructed to watch a silent DVD and ignore 566 standard (1,000 Hz and 100 deviant (1,200 Hz tones. In the active condition, they listened to the same stimuli, and were asked to count the number of ‘high’ (i.e., deviant tones.Results. Intraclass correlations (ICCs indicated that the ERP morphology recorded with the two systems was very similar for the P1, N1, P2, N2, and P3 ERP peaks (r = .82 to .95 in both passive and active conditions, and less so, though still strong, for mismatch negativity ERP component (MMN; r = .67 to .74. There were few differences between peak amplitude and latency estimates for the two systems.Conclusions. An adapted EPOC EEG system can be used to index children’s late auditory ERP peaks (i.e., P1, N1, P2, N2, P3 and their MMN ERP component.

  10. Event-related oscillations (EROs) and event-related potentials (ERPs) comparison in facial expression recognition.

    Science.gov (United States)

    Balconi, Michela; Pozzoli, Uberto

    2007-09-01

    The study aims to explore the significance of event-related potentials (ERPs) and event-related brain oscillations (EROs) (delta, theta, alpha, beta, gamma power) in response to emotional (fear, happiness, sadness) when compared with neutral faces during 180-250 post-stimulus time interval. The ERP results demonstrated that the emotional face elicited a negative peak at approximately 230 ms (N2). Moreover, EEG measures showed that motivational significance of face (emotional vs. neutral) could modulate the amplitude of EROs, but only for some frequency bands (i.e. theta and gamma bands). In a second phase, we considered the resemblance of the two EEG measures by a regression analysis. It revealed that theta and gamma oscillations mainly effect as oscillation activity at the N2 latency. Finally, a posterior increased power of theta was found for emotional faces.

  11. Only low frequency event-related EEG activity is compromised in multiple sclerosis: insights from an independent component clustering analysis.

    Directory of Open Access Journals (Sweden)

    Hanni Kiiski

    Full Text Available Cognitive impairment (CI, often examined with neuropsychological tests such as the Paced Auditory Serial Addition Test (PASAT, affects approximately 65% of multiple sclerosis (MS patients. The P3b event-related potential (ERP, evoked when an infrequent target stimulus is presented, indexes cognitive function and is typically compared across subjects' scalp electroencephalography (EEG data. However, the clustering of independent components (ICs is superior to scalp-based EEG methods because it can accommodate the spatiotemporal overlap inherent in scalp EEG data. Event-related spectral perturbations (ERSPs; event-related mean power spectral changes and inter-trial coherence (ITCs; event-related consistency of spectral phase reveal a more comprehensive overview of EEG activity. Ninety-five subjects (56 MS patients, 39 controls completed visual and auditory two-stimulus P3b event-related potential tasks and the PASAT. MS patients were also divided into CI and non-CI groups (n = 18 in each based on PASAT scores. Data were recorded from 128-scalp EEG channels and 4 IC clusters in the visual, and 5 IC clusters in the auditory, modality were identified. In general, MS patients had significantly reduced ERSP theta power versus controls, and a similar pattern was observed for CI vs. non-CI MS patients. The ITC measures were also significantly different in the theta band for some clusters. The finding that MS patients had reduced P3b task-related theta power in both modalities is a reflection of compromised connectivity, likely due to demyelination, that may have disrupted early processes essential to P3b generation, such as orientating and signal detection. However, for posterior sources, MS patients had a greater decrease in alpha power, normally associated with enhanced cognitive function, which may reflect a compensatory mechanism in response to the compromised early cognitive processing.

  12. EEG-Annotate: Automated identification and labeling of events in continuous signals with applications to EEG.

    Science.gov (United States)

    Su, Kyung-Min; Hairston, W David; Robbins, Kay

    2018-01-01

    In controlled laboratory EEG experiments, researchers carefully mark events and analyze subject responses time-locked to these events. Unfortunately, such markers may not be available or may come with poor timing resolution for experiments conducted in less-controlled naturalistic environments. We present an integrated event-identification method for identifying particular responses that occur in unlabeled continuously recorded EEG signals based on information from recordings of other subjects potentially performing related tasks. We introduce the idea of timing slack and timing-tolerant performance measures to deal with jitter inherent in such non-time-locked systems. We have developed an implementation available as an open-source MATLAB toolbox (http://github.com/VisLab/EEG-Annotate) and have made test data available in a separate data note. We applied the method to identify visual presentation events (both target and non-target) in data from an unlabeled subject using labeled data from other subjects with good sensitivity and specificity. The method also identified actual visual presentation events in the data that were not previously marked in the experiment. Although the method uses traditional classifiers for initial stages, the problem of identifying events based on the presence of stereotypical EEG responses is the converse of the traditional stimulus-response paradigm and has not been addressed in its current form. In addition to identifying potential events in unlabeled or incompletely labeled EEG, these methods also allow researchers to investigate whether particular stereotypical neural responses are present in other circumstances. Timing-tolerance has the added benefit of accommodating inter- and intra- subject timing variations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Towards a Unified Understanding of Event-Related Changes in the EEG: The Firefly Model of Synchronization through Cross-Frequency Phase Modulation

    Science.gov (United States)

    Burgess, Adrian P.

    2012-01-01

    Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model. Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore, provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-frequency information processing. PMID:23049827

  14. Extracting visual evoked potentials from EEG data recorded during fMRI-guided transcranial magnetic stimulation.

    Science.gov (United States)

    Sadeh, Boaz; Yovel, Galit

    2014-05-12

    Transcranial Magnetic Stimulation (TMS) is an effective method for establishing a causal link between a cortical area and cognitive/neurophysiological effects. Specifically, by creating a transient interference with the normal activity of a target region and measuring changes in an electrophysiological signal, we can establish a causal link between the stimulated brain area or network and the electrophysiological signal that we record. If target brain areas are functionally defined with prior fMRI scan, TMS could be used to link the fMRI activations with evoked potentials recorded. However, conducting such experiments presents significant technical challenges given the high amplitude artifacts introduced into the EEG signal by the magnetic pulse, and the difficulty to successfully target areas that were functionally defined by fMRI. Here we describe a methodology for combining these three common tools: TMS, EEG, and fMRI. We explain how to guide the stimulator's coil to the desired target area using anatomical or functional MRI data, how to record EEG during concurrent TMS, how to design an ERP study suitable for EEG-TMS combination and how to extract reliable ERP from the recorded data. We will provide representative results from a previously published study, in which fMRI-guided TMS was used concurrently with EEG to show that the face-selective N1 and the body-selective N1 component of the ERP are associated with distinct neural networks in extrastriate cortex. This method allows us to combine the high spatial resolution of fMRI with the high temporal resolution of TMS and EEG and therefore obtain a comprehensive understanding of the neural basis of various cognitive processes.

  15. Extracting Visual Evoked Potentials from EEG Data Recorded During fMRI-guided Transcranial Magnetic Stimulation

    Science.gov (United States)

    Sadeh, Boaz; Yovel, Galit

    2014-01-01

    Transcranial Magnetic Stimulation (TMS) is an effective method for establishing a causal link between a cortical area and cognitive/neurophysiological effects. Specifically, by creating a transient interference with the normal activity of a target region and measuring changes in an electrophysiological signal, we can establish a causal link between the stimulated brain area or network and the electrophysiological signal that we record. If target brain areas are functionally defined with prior fMRI scan, TMS could be used to link the fMRI activations with evoked potentials recorded. However, conducting such experiments presents significant technical challenges given the high amplitude artifacts introduced into the EEG signal by the magnetic pulse, and the difficulty to successfully target areas that were functionally defined by fMRI. Here we describe a methodology for combining these three common tools: TMS, EEG, and fMRI. We explain how to guide the stimulator's coil to the desired target area using anatomical or functional MRI data, how to record EEG during concurrent TMS, how to design an ERP study suitable for EEG-TMS combination and how to extract reliable ERP from the recorded data. We will provide representative results from a previously published study, in which fMRI-guided TMS was used concurrently with EEG to show that the face-selective N1 and the body-selective N1 component of the ERP are associated with distinct neural networks in extrastriate cortex. This method allows us to combine the high spatial resolution of fMRI with the high temporal resolution of TMS and EEG and therefore obtain a comprehensive understanding of the neural basis of various cognitive processes. PMID:24893706

  16. Trial latencies estimation of event-related potentials in EEG by means of genetic algorithms

    Science.gov (United States)

    Da Pelo, P.; De Tommaso, M.; Monaco, A.; Stramaglia, S.; Bellotti, R.; Tangaro, S.

    2018-04-01

    Objective. Event-related potentials (ERPs) are usually obtained by averaging thus neglecting the trial-to-trial latency variability in cognitive electroencephalography (EEG) responses. As a consequence the shape and the peak amplitude of the averaged ERP are smeared and reduced, respectively, when the single-trial latencies show a relevant variability. To date, the majority of the methodologies for single-trial latencies inference are iterative schemes providing suboptimal solutions, the most commonly used being the Woody’s algorithm. Approach. In this study, a global approach is developed by introducing a fitness function whose global maximum corresponds to the set of latencies which renders the trial signals most aligned as possible. A suitable genetic algorithm has been implemented to solve the optimization problem, characterized by new genetic operators tailored to the present problem. Main results. The results, on simulated trials, showed that the proposed algorithm performs better than Woody’s algorithm in all conditions, at the cost of an increased computational complexity (justified by the improved quality of the solution). Application of the proposed approach on real data trials, resulted in an increased correlation between latencies and reaction times w.r.t. the output from RIDE method. Significance. The above mentioned results on simulated and real data indicate that the proposed method, providing a better estimate of single-trial latencies, will open the way to more accurate study of neural responses as well as to the issue of relating the variability of latencies to the proper cognitive and behavioural correlates.

  17. A cognitive stressor for event-related potential studies: the Portland arithmetic stress task.

    Science.gov (United States)

    Atchley, Rachel; Ellingson, Roger; Klee, Daniel; Memmott, Tabatha; Oken, Barry

    2017-05-01

    In this experiment, we developed and evaluated the Portland Arithmetic Stress Task (PAST) as a cognitive stressor to evaluate acute and sustained stress reactivity for event-related potential (ERP) studies. The PAST is a titrated arithmetic task adapted from the Montreal Imaging Stress Task (MIST), with added experimental control over presentation parameters, improved and synchronized acoustic feedback and generation of timing markers needed for physiological analyzes of real-time brain activity. Thirty-one older adults (M = 60 years) completed the PAST. EEG was recorded to assess feedback-related negativity (FRN) and the magnitude of the stress response through autonomic nervous system activity and salivary cortisol. Physiological measures other than EEG included heart rate, respiration rate, heart rate variability, blood pressure and salivary cortisol. These measures were collected at several time points throughout the task. Feedback-related negativity evoked-potential responses were elicited and they significantly differed depending on whether positive or negative feedback was received. The PAST also increased systolic blood pressure, heart rate variability and respiration rates compared to a control condition attentional task. These preliminary results suggest that the PAST is an effective cognitive stressor. Successful measurement of the feedback-related negativity suggests that the PAST is conducive to EEG and time-sensitive ERP experiments. Moreover, the physiological findings support the PAST as a potent method for inducing stress in older adult participants. Further research is needed to confirm these results, but the PAST shows promise as a tool for cognitive stress induction for time-locked event-related potential experiments.

  18. Multivariate spectral-analysis of movement-related EEG data

    International Nuclear Information System (INIS)

    Andrew, C. M.

    1997-01-01

    The univariate method of event-related desynchronization (ERD) analysis, which quantifies the temporal evolution of power within specific frequency bands from electroencephalographic (EEG) data recorded during a task or event, is extended to an event related multivariate spectral analysis method. With this method, time courses of cross-spectra, phase spectra, coherence spectra, band-averaged coherence values (event-related coherence, ERCoh), partial power spectra and partial coherence spectra are estimated from an ensemble of multivariate event-related EEG trials. This provides a means of investigating relationships between EEG signals recorded over different scalp areas during the performance of a task or the occurrence of an event. The multivariate spectral analysis method is applied to EEG data recorded during three different movement-related studies involving discrete right index finger movements. The first study investigates the impact of the EEG derivation type on the temporal evolution of interhemispheric coherence between activity recorded at electrodes overlying the left and right sensorimotor hand areas during cued finger movement. The question results whether changes in coherence necessarily reflect changes in functional coupling of the cortical structures underlying the recording electrodes. The method is applied to data recorded during voluntary finger movement and a hypothesis, based on an existing global/local model of neocortical dynamics, is formulated to explain the coherence results. The third study applies partial spectral analysis too, and investigates phase relationships of, movement-related data recorded from a full head montage, thereby providing further results strengthening the global/local hypothesis. (author)

  19. Brain wave correlates of attentional states: Event related potentials and quantitative EEG analysis during performance of cognitive and perceptual tasks

    Science.gov (United States)

    Freeman, Frederick G.

    1993-01-01

    The increased use of automation in the cockpits of commercial planes has dramatically decreased the workload requirements of pilots, enabling them to function more efficiently and with a higher degree of safety. Unfortunately, advances in technology have led to an unexpected problem: the decreased demands on pilots have increased the probability of inducing 'hazardous states of awareness.' A hazardous state of awareness is defined as a decreased level of alertness or arousal which makes an individual less capable of reacting to unique or emergency types of situations. These states tend to be induced when an individual is not actively processing information. Under such conditions a person is likely to let his/her mind wander, either to internal states or to irrelevant external conditions. As a result, they are less capable of reacting quickly to emergency situations. Since emergencies are relatively rare, and since the high automated cockpit requires progressively decreasing levels of engagement, the probability of being seduced into a lowered state of awareness is increasing. This further decreases the readiness of the pilot to react to unique circumstances such as system failures. The HEM Lab at NASA-Langley Research Center has been studying how these states of awareness are induced and what the physiological correlates of these different states are. Specifically, they have been interested in studying electroencephalographic (EEG) measures of different states of alertness to determine if such states can be identified and, hopefully, avoided. The project worked on this summer involved analyzing the EEG and the event related potentials (ERP) data collected while subjects performed under two conditions. Each condition required subjects to perform a relatively boring vigilance task. The purpose of using these tasks was to induce a decreased state of awareness while still requiring the subject to process information. Each task involved identifying an infrequently

  20. Event-Related EEG Oscillations to Semantically Unrelated Words in Normal and Learning Disabled Children

    Science.gov (United States)

    Fernandez, Thalia; Harmony, Thalia; Mendoza, Omar; Lopez-Alanis, Paula; Marroquin, Jose Luis; Otero, Gloria; Ricardo-Garcell, Josefina

    2012-01-01

    Learning disabilities (LD) are one of the most frequent problems for elementary school-aged children. In this paper, event-related EEG oscillations to semantically related and unrelated pairs of words were studied in a group of 18 children with LD not otherwise specified (LD-NOS) and in 16 children with normal academic achievement. We propose that…

  1. Assessing quantitative EEG spectrograms to identify non-epileptic events.

    Science.gov (United States)

    Goenka, Ajay; Boro, Alexis; Yozawitz, Elissa

    2017-09-01

    To evaluate the sensitivity and specificity of quantitative EEG (QEEG) spectrograms in order to distinguish epileptic from non-epileptic events. Seventeen patients with paroxysmal non-epileptic events, captured during EEG monitoring, were retrospectively assessed using QEEG spectrograms. These patients were compared to a control group of 13 consecutive patients (ages 25-60 years) with epileptic seizures of similar semiology. Assessment of raw EEG was employed as the gold standard against which epileptic and non-epileptic events were validated. QEEG spectrograms, available using Persyst 12 EEG system integration software, were each assessed with respect to their usefulness to distinguish epileptic from non-epileptic seizures. The given spectrogram was interpreted as indicating a seizure if, at the time of the clinically identified event, it showed a visually significant change from baseline. Eighty-two clinically identified paroxysmal events were analysed (46 non-epileptic and 36 epileptic). The "seizure detector trend analysis" spectrogram correctly classified 33/46 (71%) non-epileptic events (no seizure indicated during a clinically identified event) vs. 29/36 (81%) epileptic seizures (seizure indicated during a clinically identified event) (p=0.013). Similarly, "rhythmicity spectrogram", FFT spectrogram, "asymmetry relative spectrogram", and integrated-amplitude EEG spectrogram detected 28/46 (61%), 30/46 (65%), 22/46 (48%) and 27/46 (59%) non-epileptic events vs. 27/36 (75%), 25/36 (69%), 25/36 (69%) and 27/36 (75%) epileptic events, respectively. High sensitivities and specificities for QEEG seizure detection analyses suggest that QEEG may have a role at the bedside to facilitate early differentiation between epileptic seizures and non-epileptic events in order to avoid unnecessary administration of antiepileptic drugs and possible iatrogenic consequences.

  2. Emotion and attention : Event-related brain potential studies

    OpenAIRE

    Schupp, Harald Thomas; Flaisch, Tobias; Stockburger, Jessica; Junghöfer, Markus

    2006-01-01

    Emotional pictures guide selective visual attention. A series of event-related brain potential (ERP) studies is reviewed demonstrating the consistent and robust modulation of specific ERP components by emotional images. Specifically, pictures depicting natural pleasant and unpleasant scenes are associated with an increased early posterior negativity, late positive potential, and sustained positive slow wave compared with neutral contents. These modulations are considered to index different st...

  3. Clinical usefulness and feasibility of time-frequency analysis of chemosensory event-related potentials.

    Science.gov (United States)

    Huart, C; Rombaux, Ph; Hummel, T; Mouraux, A

    2013-09-01

    The clinical usefulness of olfactory event-related brain potentials (OERPs) to assess olfactory function is limited by the relatively low signal-to-noise ratio of the responses identified using conventional time-domain averaging. Recently, it was shown that time-frequency analysis of the obtained EEG signals can markedly improve the signal-to-noise ratio of OERPs in healthy controls, because it enhances both phase-locked and non phase-locked EEG responses. The aim of the present study was to investigate the clinical usefulness of this approach and evaluate its feasibility in a clinical setting. We retrospectively analysed EEG recordings obtained from 45 patients (15 anosmic, 15 hyposmic and 15 normos- mic). The responses to olfactory stimulation were analysed using conventional time-domain analysis and joint time-frequency analysis. The ability of the two methods to discriminate between anosmic, hyposmic and normosmic patients was assessed using a Receiver Operating Characteristic analysis. The discrimination performance of OERPs identified using conventional time-domain averaging was poor. In contrast, the discrimination performance of the EEG response identified in the time-frequency domain was relatively high. Furthermore, we found a significant correlation between the magnitude of this response and the psychophysical olfactory score. Time-frequency analysis of the EEG responses to olfactory stimulation could be used as an effective and reliable diagnostic tool for the objective clinical evaluation of olfactory function in patients.

  4. Adaptive autoregressive identification with spectral power decomposition for studying movement-related activity in scalp EEG signals and basal ganglia local field potentials

    Science.gov (United States)

    Foffani, Guglielmo; Bianchi, Anna M.; Priori, Alberto; Baselli, Giuseppe

    2004-09-01

    We propose a method that combines adaptive autoregressive (AAR) identification and spectral power decomposition for the study of movement-related spectral changes in scalp EEG signals and basal ganglia local field potentials (LFPs). This approach introduces the concept of movement-related poles, allowing one to study not only the classical event-related desynchronizations (ERD) and synchronizations (ERS), which correspond to modulations of power, but also event-related modulations of frequency. We applied the method to analyze movement-related EEG signals and LFPs contemporarily recorded from the sensorimotor cortex, the globus pallidus internus (GPi) and the subthalamic nucleus (STN) in a patient with Parkinson's disease who underwent stereotactic neurosurgery for the implant of deep brain stimulation (DBS) electrodes. In the AAR identification we compared the whale and the exponential forgetting factors, showing that the whale forgetting provides a better disturbance rejection and it is therefore more suitable to investigate movement-related brain activity. Movement-related power modulations were consistent with previous studies. In addition, movement-related frequency modulations were observed from both scalp EEG signals and basal ganglia LFPs. The method therefore represents an effective approach to the study of movement-related brain activity.

  5. EEG potentials associated with artificial grammar learning in the primate brain.

    Science.gov (United States)

    Attaheri, Adam; Kikuchi, Yukiko; Milne, Alice E; Wilson, Benjamin; Alter, Kai; Petkov, Christopher I

    2015-09-01

    Electroencephalography (EEG) has identified human brain potentials elicited by Artificial Grammar (AG) learning paradigms, which present participants with rule-based sequences of stimuli. Nonhuman animals are sensitive to certain AGs; therefore, evaluating which EEG Event Related Potentials (ERPs) are associated with AG learning in nonhuman animals could identify evolutionarily conserved processes. We recorded EEG potentials during an auditory AG learning experiment in two Rhesus macaques. The animals were first exposed to sequences of nonsense words generated by the AG. Then surface-based ERPs were recorded in response to sequences that were 'consistent' with the AG and 'violation' sequences containing illegal transitions. The AG violations strongly modulated an early component, potentially homologous to the Mismatch Negativity (mMMN), a P200 and a late frontal positivity (P500). The macaque P500 is similar in polarity and time of occurrence to a late EEG positivity reported in human AG learning studies but might differ in functional role. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Latency correction of event-related potentials between different experimental protocols

    Science.gov (United States)

    Iturrate, I.; Chavarriaga, R.; Montesano, L.; Minguez, J.; Millán, JdR

    2014-06-01

    Objective. A fundamental issue in EEG event-related potentials (ERPs) studies is the amount of data required to have an accurate ERP model. This also impacts the time required to train a classifier for a brain-computer interface (BCI). This issue is mainly due to the poor signal-to-noise ratio and the large fluctuations of the EEG caused by several sources of variability. One of these sources is directly related to the experimental protocol or application designed, and may affect the amplitude or latency of ERPs. This usually prevents BCI classifiers from generalizing among different experimental protocols. In this paper, we analyze the effect of the amplitude and the latency variations among different experimental protocols based on the same type of ERP. Approach. We present a method to analyze and compensate for the latency variations in BCI applications. The algorithm has been tested on two widely used ERPs (P300 and observation error potentials), in three experimental protocols in each case. We report the ERP analysis and single-trial classification. Main results. The results obtained show that the designed experimental protocols significantly affect the latency of the recorded potentials but not the amplitudes. Significance. These results show how the use of latency-corrected data can be used to generalize the BCIs, reducing the calibration time when facing a new experimental protocol.

  7. The Impact of Task Demands on Fixation-Related Brain Potentials during Guided Search.

    Directory of Open Access Journals (Sweden)

    Anthony J Ries

    Full Text Available Recording synchronous data from EEG and eye-tracking provides a unique methodological approach for measuring the sensory and cognitive processes of overt visual search. Using this approach we obtained fixation related potentials (FRPs during a guided visual search task specifically focusing on the lambda and P3 components. An outstanding question is whether the lambda and P3 FRP components are influenced by concurrent task demands. We addressed this question by obtaining simultaneous eye-movement and electroencephalographic (EEG measures during a guided visual search task while parametrically modulating working memory load using an auditory N-back task. Participants performed the guided search task alone, while ignoring binaurally presented digits, or while using the auditory information in a 0, 1, or 2-back task. The results showed increased reaction time and decreased accuracy in both the visual search and N-back tasks as a function of auditory load. Moreover, high auditory task demands increased the P3 but not the lambda latency while the amplitude of both lambda and P3 was reduced during high auditory task demands. The results show that both early and late stages of visual processing indexed by FRPs are significantly affected by concurrent task demands imposed by auditory working memory.

  8. Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms

    Directory of Open Access Journals (Sweden)

    Mads Jochumsen

    2017-01-01

    Full Text Available Detection of single-trial movement intentions from EEG is paramount for brain-computer interfacing in neurorehabilitation. These movement intentions contain task-related information and if this is decoded, the neurorehabilitation could potentially be optimized. The aim of this study was to classify single-trial movement intentions associated with two levels of force and speed and three different grasp types using EEG rhythms and components of the movement-related cortical potential (MRCP as features. The feature importance was used to estimate encoding of discriminative information. Two data sets were used. 29 healthy subjects executed and imagined different hand movements, while EEG was recorded over the contralateral sensorimotor cortex. The following features were extracted: delta, theta, mu/alpha, beta, and gamma rhythms, readiness potential, negative slope, and motor potential of the MRCP. Sequential forward selection was performed, and classification was performed using linear discriminant analysis and support vector machines. Limited classification accuracies were obtained from the EEG rhythms and MRCP-components: 0.48±0.05 (grasp types, 0.41±0.07 (kinetic profiles, motor execution, and 0.39±0.08 (kinetic profiles, motor imagination. Delta activity contributed the most but all features provided discriminative information. These findings suggest that information from the entire EEG spectrum is needed to discriminate between task-related parameters from single-trial movement intentions.

  9. Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity

    Science.gov (United States)

    Spüler, Martin; Niethammer, Christian

    2015-01-01

    When a person recognizes an error during a task, an error-related potential (ErrP) can be measured as response. It has been shown that ErrPs can be automatically detected in tasks with time-discrete feedback, which is widely applied in the field of Brain-Computer Interfaces (BCIs) for error correction or adaptation. However, there are only a few studies that concentrate on ErrPs during continuous feedback. With this study, we wanted to answer three different questions: (i) Can ErrPs be measured in electroencephalography (EEG) recordings during a task with continuous cursor control? (ii) Can ErrPs be classified using machine learning methods and is it possible to discriminate errors of different origins? (iii) Can we use EEG to detect the severity of an error? To answer these questions, we recorded EEG data from 10 subjects during a video game task and investigated two different types of error (execution error, due to inaccurate feedback; outcome error, due to not achieving the goal of an action). We analyzed the recorded data to show that during the same task, different kinds of error produce different ErrP waveforms and have a different spectral response. This allows us to detect and discriminate errors of different origin in an event-locked manner. By utilizing the error-related spectral response, we show that also a continuous, asynchronous detection of errors is possible. Although the detection of error severity based on EEG was one goal of this study, we did not find any significant influence of the severity on the EEG. PMID:25859204

  10. Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity

    Directory of Open Access Journals (Sweden)

    Martin eSpüler

    2015-03-01

    Full Text Available When a person recognizes an error during a task, an error-related potential (ErrP can be measured as response. It has been shown that ErrPs can be automatically detected in tasks with time-discrete feedback, which is widely applied in the field of Brain-Computer Interfaces (BCIs for error correction or adaptation. However, there are only a few studies that concentrate on ErrPs during continuous feedback.With this study, we wanted to answer three different questions: (i Can ErrPs be measured in electroencephalography (EEG recordings during a task with continuous cursor control? (ii Can ErrPs be classified using machine learning methods and is it possible to discriminate errors of different origins? (iii Can we use EEG to detect the severity of an error? To answer these questions, we recorded EEG data from 10 subjects during a video game task and investigated two different types of error (execution error, due to inaccurate feedback; outcome error, due to not achieving the goal of an action. We analyzed the recorded data to show that during the same task, different kinds of error produce different ErrP waveforms and have a different spectral response. This allows us to detect and discriminate errors of different origin in an event-locked manner. By utilizing the error-related spectral response, we show that also a continuous, asynchronous detection of errors is possible.Although the detection of error severity based on EEG was one goal of this study, we did not find any significant influence of the severity on the EEG.

  11. Identical event-related potentials to target and frequent stimuli of visual oddball task recorded by intracerebral electrodes

    Czech Academy of Sciences Publication Activity Database

    Kukleta, M.; Brázdil, M.; Roman, R.; Jurák, Pavel

    2003-01-01

    Roč. 114, č. 7 (2003), s. 1292 - 1297 ISSN 1388-2457 Institutional research plan: CEZ:AV0Z2065902 Keywords : event-related potential * intra-cerebral EEG recording in humans * oddball task Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.485, year: 2003

  12. Robust estimation of event-related potentials via particle filter.

    Science.gov (United States)

    Fukami, Tadanori; Watanabe, Jun; Ishikawa, Fumito

    2016-03-01

    In clinical examinations and brain-computer interface (BCI) research, a short electroencephalogram (EEG) measurement time is ideal. The use of event-related potentials (ERPs) relies on both estimation accuracy and processing time. We tested a particle filter that uses a large number of particles to construct a probability distribution. We constructed a simple model for recording EEG comprising three components: ERPs approximated via a trend model, background waves constructed via an autoregressive model, and noise. We evaluated the performance of the particle filter based on mean squared error (MSE), P300 peak amplitude, and latency. We then compared our filter with the Kalman filter and a conventional simple averaging method. To confirm the efficacy of the filter, we used it to estimate ERP elicited by a P300 BCI speller. A 400-particle filter produced the best MSE. We found that the merit of the filter increased when the original waveform already had a low signal-to-noise ratio (SNR) (i.e., the power ratio between ERP and background EEG). We calculated the amount of averaging necessary after applying a particle filter that produced a result equivalent to that associated with conventional averaging, and determined that the particle filter yielded a maximum 42.8% reduction in measurement time. The particle filter performed better than both the Kalman filter and conventional averaging for a low SNR in terms of both MSE and P300 peak amplitude and latency. For EEG data produced by the P300 speller, we were able to use our filter to obtain ERP waveforms that were stable compared with averages produced by a conventional averaging method, irrespective of the amount of averaging. We confirmed that particle filters are efficacious in reducing the measurement time required during simulations with a low SNR. Additionally, particle filters can perform robust ERP estimation for EEG data produced via a P300 speller. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. EEG potentials predict upcoming emergency brakings during simulated driving

    Science.gov (United States)

    Haufe, Stefan; Treder, Matthias S.; Gugler, Manfred F.; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin

    2011-10-01

    Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h-1 driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.

  14. The application of particle filters in single trial event-related potential estimation

    International Nuclear Information System (INIS)

    Mohseni, Hamid R; Nazarpour, Kianoush; Sanei, Saeid; Wilding, Edward L

    2009-01-01

    In this paper, an approach for the estimation of single trial event-related potentials (ST-ERPs) using particle filters (PFs) is presented. The method is based on recursive Bayesian mean square estimation of ERP wavelet coefficients using their previous estimates as prior information. To enable a performance evaluation of the approach in the Gaussian and non-Gaussian distributed noise conditions, we added Gaussian white noise (GWN) and real electroencephalogram (EEG) signals recorded during rest to the simulated ERPs. The results were compared to that of the Kalman filtering (KF) approach demonstrating the robustness of the PF over the KF to the added GWN noise. The proposed method also outperforms the KF when the assumption about the Gaussianity of the noise is violated. We also applied this technique to real EEG potentials recorded in an odd-ball paradigm and investigated the correlation between the amplitude and the latency of the estimated ERP components. Unlike the KF method, for the PF there was a statistically significant negative correlation between amplitude and latency of the estimated ERPs, matching previous neurophysiological findings

  15. Event-related potentials elicited by social commerce and electronic-commerce reviews.

    Science.gov (United States)

    Bai, Yan; Yao, Zhong; Cong, Fengyu; Zhang, Linlin

    2015-12-01

    There is an increasing interest regarding the use of electroencephalography (EEG) in social commerce and electronic commerce (e-commerce) research. There are several reviews in the field of social commerce or e-commerce; these have great potential value and mining them is fundamental and significant. To our knowledge, EEG is rarely applied to study these. In this study, we examined the neural correlates of social commerce reviews (SCRs) and e-commerce reviews (ECRs) by using them as stimuli to evoke event-related potentials. All SCRs were from friends through a social media platform, whereas ECRs were from strangers through an e-commerce platform. The experimental design was similar to that of a priming paradigm, and included 40 pairs of stimuli consisting of product information (prime stimulus) and reviews (target stimulus). The results showed that the P300 component was successfully evoked by SCR and ECR stimuli. Moreover, the P300 components elicited by SCRs had higher amplitudes than those elicited by ECRs. These findings indicate that participants paid more attention to SCRs than to ECRs. In addition, the associations between neural responses and reviews in social commerce have the potential to assist companies in studying consumer behaviors, thus permitting them to enhance their social commerce strategies.

  16. Association between waking electroencephalography and cognitive event-related potentials in patients with obstructive sleep apnea.

    Science.gov (United States)

    Baril, Andrée-Ann; Gagnon, Katia; Gagnon, Jean-François; Montplaisir, Jacques; Gosselin, Nadia

    2013-07-01

    Sleepiness, cognitive deficits, abnormal event-related potentials (ERP), and slowing of the waking electroencephalography (EEG) activity have been reported in patients with obstructive sleep apnea (OSA). Our study aimed at evaluating if an association exists between the severity of ERP abnormalities and EEG slowing to better understand cerebral dysfunctions in OSA. Twelve OSA patients and 12 age-matched controls underwent an overnight polysomnographic recording, an EEG recording of 10 min of wakefulness, and an auditory ERP protocol known to specifically recruit attention. P300 and P3a ERP components were measured as well as the spectral power in each frequency band of the waking EEG. Pearson product moment correlations were used to measure associations between ERP characteristics and EEG spectral power in OSA patients and control subjects. A positive correlation between the late P300 amplitude and θ power in the occipital region was observed in OSA subjects (P<.01). A positive correlation was also found between P3a amplitude and β1 power in central region in OSA subjects (P<.01). No correlation was observed for control subjects. ERP abnormalities observed in an attention task are associated with a slowing of the waking EEG recorded at rest in OSA. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Comparison of event related potentials with and without hypnagogic imagery.

    Science.gov (United States)

    Michida, N; Hayashi, M; Hori, T

    1998-04-01

    It is hypothesized that when hypnagogic imagery occurs, an appropriate attention may allocate to the imagery, resulting in the allocation of attention to the external tone stimuli being diminished. N3 amplitude of event related potentials (ERP) obtained a significant difference between the conditions with and without imagery. Arousal level of behavior and electroencephalography were not different between the conditions, therefore it is interpreted that the decrease of the N3 amplitude during imagining reflects the diminution of the allocation of attention to the external tone stimuli. Another late component of ERP, P3, did not make clear peaks in this study despite a large time constant (tau=3.2 s) used for EEG records.

  18. The effect of repetition of infrequent familiar and unfamiliar visual patterns on components of the event-related brain potential.

    NARCIS (Netherlands)

    Kok, A.; de Looren de Jong, H.

    1980-01-01

    Examined changes in the waveforms of the event-related brain potential (ERP) during repeated presentations of infrequent-familiar and infrequent-unfamiliar visual patterns; Ss were 12 male university students. The EEG waveforms were averaged separately for each presentation of the 2 types of stimuli

  19. [Event-related EEG potentials associated with error detection in psychiatric disorder: literature review].

    Science.gov (United States)

    Balogh, Lívia; Czobor, Pál

    2010-01-01

    Error-related bioelectric signals constitute a special subgroup of event-related potentials. Researchers have identified two evoked potential components to be closely related to error processing, namely error-related negativity (ERN) and error-positivity (Pe), and they linked these to specific cognitive functions. In our article first we give a brief description of these components, then based on the available literature, we review differences in error-related evoked potentials observed in patients across psychiatric disorders. The PubMed and Medline search engines were used in order to identify all relevant articles, published between 2000 and 2009. For the purpose of the current paper we reviewed publications summarizing results of clinical trials. Patients suffering from schizophrenia, anorexia nervosa or borderline personality disorder exhibited a decrease in the amplitude of error-negativity when compared with healthy controls, while in cases of depression and anxiety an increase in the amplitude has been observed. Some of the articles suggest specific personality variables, such as impulsivity, perfectionism, negative emotions or sensitivity to punishment to underlie these electrophysiological differences. Research in the field of error-related electric activity has come to the focus of psychiatry research only recently, thus the amount of available data is significantly limited. However, since this is a relatively new field of research, the results available at present are noteworthy and promising for future electrophysiological investigations in psychiatric disorders.

  20. Event-related potential correlates of emergent inference in human arbitrary relational learning.

    Science.gov (United States)

    Wang, Ting; Dymond, Simon

    2013-01-01

    Two experiments investigated the functional-anatomical correlates of cognition supporting untrained, emergent relational inference in a stimulus equivalence task. In Experiment 1, after learning a series of conditional relations involving words and pseudowords, participants performed a relatedness task during which EEG was recorded. Behavioural performance was faster and more accurate on untrained, indirectly related symmetry (i.e., learn AB and infer BA) and equivalence trials (i.e., learn AB and AC and infer CB) than on unrelated trials, regardless of whether or not a formal test for stimulus equivalence relations had been conducted. Consistent with previous results, event related potentials (ERPs) evoked by trained and emergent trials at parietal and occipital sites differed only for those participants who had not received a prior equivalence test. Experiment 2 further replicated and extended these behavioural and ERP findings using arbitrary symbols as stimuli and demonstrated time and frequency differences for trained and untrained relatedness trials. Overall, the findings demonstrate convincingly the ERP correlates of intra-experimentally established stimulus equivalence relations consisting entirely of arbitrary symbols and offer support for a contemporary cognitive-behavioural model of symbolic categorisation and relational inference. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Event-Related Potentials for Post-Error and Post-Conflict Slowing

    Science.gov (United States)

    Chang, Andrew; Chen, Chien-Chung; Li, Hsin-Hung; Li, Chiang-Shan R.

    2014-01-01

    In a reaction time task, people typically slow down following an error or conflict, each called post-error slowing (PES) and post-conflict slowing (PCS). Despite many studies of the cognitive mechanisms, the neural responses of PES and PCS continue to be debated. In this study, we combined high-density array EEG and a stop-signal task to examine event-related potentials of PES and PCS in sixteen young adult participants. The results showed that the amplitude of N2 is greater during PES but not PCS. In contrast, the peak latency of N2 is longer for PCS but not PES. Furthermore, error-positivity (Pe) but not error-related negativity (ERN) was greater in the stop error trials preceding PES than non-PES trials, suggesting that PES is related to participants' awareness of the error. Together, these findings extend earlier work of cognitive control by specifying the neural correlates of PES and PCS in the stop signal task. PMID:24932780

  2. Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects.

    Science.gov (United States)

    Jokeit, H; Makeig, S

    1994-01-01

    Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783

  3. Analysis of EEG Related Saccadic Eye Movement

    Science.gov (United States)

    Funase, Arao; Kuno, Yoshiaki; Okuma, Shigeru; Yagi, Tohru

    Our final goal is to establish the model for saccadic eye movement that connects the saccade and the electroencephalogram(EEG). As the first step toward this goal, we recorded and analyzed the saccade-related EEG. In the study recorded in this paper, we tried detecting a certain EEG that is peculiar to the eye movement. In these experiments, each subject was instructed to point their eyes toward visual targets (LEDs) or the direction of the sound sources (buzzers). In the control cases, the EEG was recorded in the case of no eye movemens. As results, in the visual experiments, we found that the potential of EEG changed sharply on the occipital lobe just before eye movement. Furthermore, in the case of the auditory experiments, similar results were observed. In the case of the visual experiments and auditory experiments without eye movement, we could not observed the EEG changed sharply. Moreover, when the subject moved his/her eyes toward a right-side target, a change in EEG potential was found on the right occipital lobe. On the contrary, when the subject moved his/her eyes toward a left-side target, a sharp change in EEG potential was found on the left occipital lobe.

  4. A feasibility study of using event-related potential as a biometrics.

    Science.gov (United States)

    Yih-Choung Yu; Sicheng Wang; Gabel, Lisa A

    2016-08-01

    The use of an individual's neural response to stimuli (the event-related potential or ERP) has potential as a biometric because it is highly resistant to fraud relative to other conventional authentication systems. P300 is an ERP in human electroencephalography (EEG) that occurs in response to an oddball stimulus when an individual is actively engaged in a target detection task. Because P300 is consistently detectable from almost every subject, it is considered a potential signal for biometric applications. This paper presents a feasibility study of using topological plots of P300 as a biometric in subject authentication. The variation in latency and location of P300 response of 24 participants performing the P300Speller task were studied. Data sets from four participants were used for algorithm training; data from the other 20 participants were used as imposters for algorithm validation. The result showed that the algorithm was able to correctly identify three out of these four participants. Validation test also proved that the algorithm was able to reject 95% of the imposters for those three authenticated participants.

  5. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions

    DEFF Research Database (Denmark)

    Thut, Gregor; Bergmann, Til Ole; Fröhlich, Flavio

    2017-01-01

    of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online...... and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned......Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension...

  6. Kernel PLS Estimation of Single-trial Event-related Potentials

    Science.gov (United States)

    Rosipal, Roman; Trejo, Leonard J.

    2004-01-01

    Nonlinear kernel partial least squaes (KPLS) regressior, is a novel smoothing approach to nonparametric regression curve fitting. We have developed a KPLS approach to the estimation of single-trial event related potentials (ERPs). For improved accuracy of estimation, we also developed a local KPLS method for situations in which there exists prior knowledge about the approximate latency of individual ERP components. To assess the utility of the KPLS approach, we compared non-local KPLS and local KPLS smoothing with other nonparametric signal processing and smoothing methods. In particular, we examined wavelet denoising, smoothing splines, and localized smoothing splines. We applied these methods to the estimation of simulated mixtures of human ERPs and ongoing electroencephalogram (EEG) activity using a dipole simulator (BESA). In this scenario we considered ongoing EEG to represent spatially and temporally correlated noise added to the ERPs. This simulation provided a reasonable but simplified model of real-world ERP measurements. For estimation of the simulated single-trial ERPs, local KPLS provided a level of accuracy that was comparable with or better than the other methods. We also applied the local KPLS method to the estimation of human ERPs recorded in an experiment on co,onitive fatigue. For these data, the local KPLS method provided a clear improvement in visualization of single-trial ERPs as well as their averages. The local KPLS method may serve as a new alternative to the estimation of single-trial ERPs and improvement of ERP averages.

  7. TopoToolbox: using sensor topography to calculate psychologically meaningful measures from event-related EEG/MEG.

    Science.gov (United States)

    Tian, Xing; Poeppel, David; Huber, David E

    2011-01-01

    The open-source toolbox "TopoToolbox" is a suite of functions that use sensor topography to calculate psychologically meaningful measures (similarity, magnitude, and timing) from multisensor event-related EEG and MEG data. Using a GUI and data visualization, TopoToolbox can be used to calculate and test the topographic similarity between different conditions (Tian and Huber, 2008). This topographic similarity indicates whether different conditions involve a different distribution of underlying neural sources. Furthermore, this similarity calculation can be applied at different time points to discover when a response pattern emerges (Tian and Poeppel, 2010). Because the topographic patterns are obtained separately for each individual, these patterns are used to produce reliable measures of response magnitude that can be compared across individuals using conventional statistics (Davelaar et al. Submitted and Huber et al., 2008). TopoToolbox can be freely downloaded. It runs under MATLAB (The MathWorks, Inc.) and supports user-defined data structure as well as standard EEG/MEG data import using EEGLAB (Delorme and Makeig, 2004).

  8. Lexical decision making in adults with dyslexia: an event-related potential study

    Directory of Open Access Journals (Sweden)

    Karen E. Waldie

    2012-12-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2012n63p37   Performance on a lexical decision task was investigated in 12 English speaking adults with dyslexia.  two age-matched comparison groups of unimpaired readers were included: 14 monolingual adults and 15 late proficient bilinguals. The aim of the study was to determine the timing of neural events with event-related potentials (ErPs during lexical decision-making between individuals with dyslexia and unimpaired readers (both unilingual and bilingual. ErPs were calculated for posterior sites in the left and right hemispheres and the P1 and n170 components were compared between groups. Event-related EEG  coherence (measuring  the synchrony of neural events during lexical tasks both between and within cerebral hemispheres was also calculated for seven electrode pairs (three pairs at symmetrical locations between hemispheres, and two pairs within each hemisphere. We chose to recruit two comparison groups of unimpaired readers to better clarify the findings resulting from the right hemisphere (EEG coherence analysis. That is, both late-proficient bilinguals and adults with dyslexia are thought to rely on right hemisphere resources during reading. We hypothesized that those with dyslexia would show less within-hemisphere coherence and more between-hemisphere coherence than bilingual individuals. dyslexics had both lower amplitude and longer latency n170 activation than unimpaired readers, suggesting asynchronous neural activity. Dyslexics showed greater synchrony between hemispheres in gamma range frequencies whereas the bilingual group showed greater synchrony in the theta frequency band (both within and between hemispheres. This study demonstrates that individuals with developmental dyslexia have reduced amplitudes in the n170 and higher synchrony between hemispheres during a reading task. The differences may be due to an asynchrony of neuronal activity at the point where

  9. Effects of rearranged vision on event-related lateralizations of the EEG during pointing.

    Science.gov (United States)

    Berndt, Isabelle; Franz, Volker H; Bülthoff, Heinrich H; Gotz, Karl G; Wascher, Edmund

    2005-01-01

    We used event-related lateralizations of the EEG (ERLs) and reversed vision to study visuomotor processing with conflicting proprioceptive and visual information during pointing. Reversed vision decreased arm-related lateralization, probably reflecting the simultaneous activity of left and right arm specific neurons: neurons in the hemisphere contralateral to the observed action were probably activated by visual feedback, neurons in the hemisphere contralateral to the response side by the somatomotor feedback. Lateralization related to the target in parietal cortex increased, indicating that visual to motor transformation in parietal cortex required additional time and resources with reversed vision. A short period of adaptation to an additional lateral displacement of the visual field increased arm-contralateral activity in parietal cortex during the movement. This is in agreement with the, which showed that adaptation to a lateral displacement of the visual field is reflected in increased parietal involvement during pointing.

  10. Probabilistic delay differential equation modeling of event-related potentials.

    Science.gov (United States)

    Ostwald, Dirk; Starke, Ludger

    2016-08-01

    "Dynamic causal models" (DCMs) are a promising approach in the analysis of functional neuroimaging data due to their biophysical interpretability and their consolidation of functional-segregative and functional-integrative propositions. In this theoretical note we are concerned with the DCM framework for electroencephalographically recorded event-related potentials (ERP-DCM). Intuitively, ERP-DCM combines deterministic dynamical neural mass models with dipole-based EEG forward models to describe the event-related scalp potential time-series over the entire electrode space. Since its inception, ERP-DCM has been successfully employed to capture the neural underpinnings of a wide range of neurocognitive phenomena. However, in spite of its empirical popularity, the technical literature on ERP-DCM remains somewhat patchy. A number of previous communications have detailed certain aspects of the approach, but no unified and coherent documentation exists. With this technical note, we aim to close this gap and to increase the technical accessibility of ERP-DCM. Specifically, this note makes the following novel contributions: firstly, we provide a unified and coherent review of the mathematical machinery of the latent and forward models constituting ERP-DCM by formulating the approach as a probabilistic latent delay differential equation model. Secondly, we emphasize the probabilistic nature of the model and its variational Bayesian inversion scheme by explicitly deriving the variational free energy function in terms of both the likelihood expectation and variance parameters. Thirdly, we detail and validate the estimation of the model with a special focus on the explicit form of the variational free energy function and introduce a conventional nonlinear optimization scheme for its maximization. Finally, we identify and discuss a number of computational issues which may be addressed in the future development of the approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Event-related potential correlates of mindfulness meditation competence.

    Science.gov (United States)

    Atchley, R; Klee, D; Memmott, T; Goodrich, E; Wahbeh, H; Oken, B

    2016-04-21

    This cross-sectional study evaluated event-related potentials (ERPs) across three groups: naïve, novice, and experienced meditators as potential physiological markers of mindfulness meditation competence. Electroencephalographic (EEG) data were collected during a target tone detection task and a Breath Counting task. The Breath Counting task served as the mindfulness meditation condition for the novice and experienced meditator groups. Participants were instructed to respond to target tones with a button press in the first task (Tones), and then ignore the primed tones while Breath Counting. The primary outcomes were ERP responses to target tones, namely the N2 and P3, as markers of stimulus discrimination and attention, respectively. As expected, P3 amplitudes elicited by target tones were attenuated within groups during the Breath Counting task in comparison to the Tones task (pmeditator groups displayed greater change in peak-to-trough P3 amplitudes, with higher amplitudes during the Tones condition and more pronounced reductions in P3 amplitudes during the Breath Counting meditation task in comparison to the naïve group. Meditators had stronger P3 amplitude responses to target tones when instructed to attend to the tones, and a greater attenuation of P3 amplitudes when instructed to ignore the same tones during the Breath Counting task. This study introduces the idea of identifying ERP markers as a means of measuring mindfulness meditation competence, and results suggest this may be a valid approach. This information has the potential to improve mindfulness meditation interventions by allowing objective assessment of mindfulness meditation quality. Published by Elsevier Ltd.

  12. A new method to detect event-related potentials based on Pearson's correlation.

    Science.gov (United States)

    Giroldini, William; Pederzoli, Luciano; Bilucaglia, Marco; Melloni, Simone; Tressoldi, Patrizio

    2016-12-01

    Event-related potentials (ERPs) are widely used in brain-computer interface applications and in neuroscience.  Normal EEG activity is rich in background noise, and therefore, in order to detect ERPs, it is usually necessary to take the average from multiple trials to reduce the effects of this noise.  The noise produced by EEG activity itself is not correlated with the ERP waveform and so, by calculating the average, the noise is decreased by a factor inversely proportional to the square root of N , where N is the number of averaged epochs. This is the easiest strategy currently used to detect ERPs, which is based on calculating the average of all ERP's waveform, these waveforms being time- and phase-locked.  In this paper, a new method called GW6 is proposed, which calculates the ERP using a mathematical method based only on Pearson's correlation. The result is a graph with the same time resolution as the classical ERP and which shows only positive peaks representing the increase-in consonance with the stimuli-in EEG signal correlation over all channels.  This new method is also useful for selectively identifying and highlighting some hidden components of the ERP response that are not phase-locked, and that are usually hidden in the standard and simple method based on the averaging of all the epochs.  These hidden components seem to be caused by variations (between each successive stimulus) of the ERP's inherent phase latency period (jitter), although the same stimulus across all EEG channels produces a reasonably constant phase. For this reason, this new method could be very helpful to investigate these hidden components of the ERP response and to develop applications for scientific and medical purposes. Moreover, this new method is more resistant to EEG artifacts than the standard calculations of the average and could be very useful in research and neurology.  The method we are proposing can be directly used in the form of a process written in the well

  13. EEG-guided meditation: A personalized approach.

    Science.gov (United States)

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Kallio-Tamminen, Tarja

    2015-12-01

    The therapeutic potential of meditation for physical and mental well-being is well documented, however the possibility of adverse effects warrants further discussion of the suitability of any particular meditation practice for every given participant. This concern highlights the need for a personalized approach in the meditation practice adjusted for a concrete individual. This can be done by using an objective screening procedure that detects the weak and strong cognitive skills in brain function, thus helping design a tailored meditation training protocol. Quantitative electroencephalogram (qEEG) is a suitable tool that allows identification of individual neurophysiological types. Using qEEG screening can aid developing a meditation training program that maximizes results and minimizes risk of potential negative effects. This brief theoretical-conceptual review provides a discussion of the problem and presents some illustrative results on the usage of qEEG screening for the guidance of mediation personalization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Frontal cortex electrophysiology in reward- and punishment-related feedback processing during advice-guided decision making: An interleaved EEG-DC stimulation study.

    Science.gov (United States)

    Wischnewski, Miles; Bekkering, Harold; Schutter, Dennis J L G

    2018-04-01

    During decision making, individuals are prone to rely on external cues such as expert advice when the outcome is not known. However, the electrophysiological correlates associated with outcome uncertainty and the use of expert advice are not completely understood. The feedback-related negativity (FRN), P3a, and P3b are event-related brain potentials (ERPs) linked to dissociable stages of feedback and attentional processing during decision making. Even though these ERPs are influenced by both reward- and punishment-related feedback, it remains unclear how extrinsic information during uncertainty modulates these brain potentials. In this study, the effects of advice cues on decision making were investigated in two separate experiments. In the first experiment, electroencephalography (EEG) was recorded in healthy volunteers during a decision-making task in which the participants received reward or punishment feedback preceded by novice, amateur, or expert advice. The results showed that the P3a component was significantly influenced by the subjective predictive value of an advice cue, whereas the FRN and P3b were unaffected by the advice cues. In the second, sham-controlled experiment, cathodal transcranial direct current stimulation (ctDCS) was administered in conjunction with EEG in order to explore the direct contributions of the frontal cortex to these brain potentials. Results showed no significant change in either advice-following behavior or decision times. However, ctDCS did decrease FRN amplitudes as compared to sham, with no effect on the P3a or P3b. Together, these findings suggest that advice information may act primarily on attention allocation during feedback processing, whereas the electrophysiological correlates of the detection and updating of internal prediction models are not affected.

  15. Dynamic functional coupling of high resolution EEG potentials related to unilateral internally triggered one-digit movements.

    Science.gov (United States)

    Urbano, A; Babiloni, C; Onorati, P; Babiloni, F

    1998-06-01

    Between-electrode cross-covariances of delta (0-3 Hz)- and theta (4-7 Hz)-filtered high resolution EEG potentials related to preparation, initiation. and execution of human unilateral internally triggered one-digit movements were computed to investigate statistical dynamic coupling between these potentials. Significant (P planning, starting, and performance of unilateral movement. The involvement of these cortical areas is supported by the observation that averaged spatially enhanced delta- and theta-bandpassed potentials were computed from the scalp regions where task-related electrical activation of primary sensorimotor areas and supplementary motor area was roughly represented.

  16. Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG

    Science.gov (United States)

    Bleichner, Martin G.; Debener, Stefan

    2017-01-01

    Electroencephalography (EEG) is an important clinical tool and frequently used to study the brain-behavior relationship in humans noninvasively. Traditionally, EEG signals are recorded by positioning electrodes on the scalp and keeping them in place with glue, rubber bands, or elastic caps. This setup provides good coverage of the head, but is impractical for EEG acquisition in natural daily-life situations. Here, we propose the transparent EEG concept. Transparent EEG aims for motion tolerant, highly portable, unobtrusive, and near invisible data acquisition with minimum disturbance of a user's daily activities. In recent years several ear-centered EEG solutions that are compatible with the transparent EEG concept have been presented. We discuss work showing that miniature electrodes placed in and around the human ear are a feasible solution, as they are sensitive enough to pick up electrical signals stemming from various brain and non-brain sources. We also describe the cEEGrid flex-printed sensor array, which enables unobtrusive multi-channel EEG acquisition from around the ear. In a number of validation studies we found that the cEEGrid enables the recording of meaningful continuous EEG, event-related potentials and neural oscillations. Here, we explain the rationale underlying the cEEGrid ear-EEG solution, present possible use cases and identify open issues that need to be solved on the way toward transparent EEG. PMID:28439233

  17. [The comparative analysis of changes of short pieces of EEG at perception of music on the basis of the event-related synchronization/desynchronization and wavelet-synchrony].

    Science.gov (United States)

    Oknina, L B; Kuptsova, S V; Romanov, A S; Masherov, E L; Kuznetsova, O A; Sharova, E V

    2012-01-01

    The going of present pilot study is an analysis of features changes of EEG short pieces registered from 32 sites, at perception of musical melodies healthy examinees depending on logic (cognizance) and emotional (it was pleasant it was not pleasant) melody estimations. For this purpose changes of event-related synchronization/desynchronization, and also wavelet-synchrony of EEG-responses at 31 healthy examinees at the age from 18 till 60 years were compared. It is shown that at a logic estimation of music the melody cognizance is accompanied the event-related desynchronization in the left fronto-parietal-temporal area. At an emotional estimation of a melody the event-related synchronization in left fronto - temporal area for the pleasant melodies, desynchronization in temporal area for not pleasant and desynchronization in occipital area for the melodies which are not causing the emotional response is typical. At the analysis of wavelet-synchrony of EEG characterizing jet changes of interaction of cortical zones, it is revealed that the most distinct topographical distinctions concern type of processing of the heard music: logic (has learned-hasn't learned) or emotional (it was pleasant-it was not pleasant). If at an emotional estimation changes interhemispheric communications between associative cortical zones (central, frontal, temporal), are more expressed at logic - between inter - and intrahemispheric communications of projective zones of the acoustic analyzer (temporal area). It is supposed that the revealed event-related synchronization/desynhronization reflects, most likely, an activation component of an estimation of musical fragments whereas the wavelet-analysis provides guidance on character of processing of musical stimulus.

  18. Emotion and attention: event-related brain potential studies.

    Science.gov (United States)

    Schupp, Harald T; Flaisch, Tobias; Stockburger, Jessica; Junghöfer, Markus

    2006-01-01

    Emotional pictures guide selective visual attention. A series of event-related brain potential (ERP) studies is reviewed demonstrating the consistent and robust modulation of specific ERP components by emotional images. Specifically, pictures depicting natural pleasant and unpleasant scenes are associated with an increased early posterior negativity, late positive potential, and sustained positive slow wave compared with neutral contents. These modulations are considered to index different stages of stimulus processing including perceptual encoding, stimulus representation in working memory, and elaborate stimulus evaluation. Furthermore, the review includes a discussion of studies exploring the interaction of motivated attention with passive and active forms of attentional control. Recent research is reviewed exploring the selective processing of emotional cues as a function of stimulus novelty, emotional prime pictures, learned stimulus significance, and in the context of explicit attention tasks. It is concluded that ERP measures are useful to assess the emotion-attention interface at the level of distinct processing stages. Results are discussed within the context of two-stage models of stimulus perception brought out by studies of attention, orienting, and learning.

  19. Multichannel linear descriptors analysis for event-related EEG of vascular dementia patients during visual detection task.

    Science.gov (United States)

    Lou, Wutao; Xu, Jin; Sheng, Hengsong; Zhao, Songzhen

    2011-11-01

    Multichannel EEG recorded in a task condition could contain more information about cognition. However, that has not been widely investigated in the vascular-dementia (VaD)- related studies. The purpose of this study was to explore the differences of brain functional states between VaD patients and normal controls while performing a detection task. Three multichannel linear descriptors, i.e. spatial complexity (Ω), field strength (Σ) and frequency of field changes (Φ), were applied to analyse four frequency bands (delta, theta, alpha and beta) of multichannel event-related EEG signals for 12 VaD patients (mean age ± SD: 69.25 ± 10.56 years ; MMSE score ± SD: 22.58 ± 4.42) and 12 age-matched healthy subjects (mean age ± SD: 67.17 ± 5.97 years ; MMSE score ± SD: 29.08 ± 0.9). The correlations between the three measures and MMSE scores were also analysed. VaD patients showed a significant higher Ω value in the delta (p = 0.013) and theta (p = 0.021) frequency bands, a lower Σ value (p = 0.011) and a higher Φ (p = 0.008) value in the delta frequency band compared with normal controls. The MMSE scores were negatively correlated with the Ω (r = -0.52, p = 0.01) and Φ (r = -0.47, p = 0.02) values in the delta frequency band. The results indicated the VaD patients presented a reduction of synchronization in the slow frequency band during target detection, and suggested more neurons might be activated in VaD patients compared with normal controls. The Ω and Φ measures in the delta frequency band might be used to evaluate the degree of cognitive dysfunction. The multichannel linear descriptors are promising measures to reveal the differences in brain functions between VaD patients and normal subjects, and could potentially be used to evaluate the degree of cognitive dysfunction in VaD patients. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. How do reference montage and electrodes setup affect the measured scalp EEG potentials?

    Science.gov (United States)

    Hu, Shiang; Lai, Yongxiu; Valdes-Sosa, Pedro A.; Bringas-Vega, Maria L.; Yao, Dezhong

    2018-04-01

    Objective. Human scalp electroencephalogram (EEG) is widely applied in cognitive neuroscience and clinical studies due to its non-invasiveness and ultra-high time resolution. However, the representativeness of the measured EEG potentials for the underneath neural activities is still a problem under debate. This study aims to investigate systematically how both reference montage and electrodes setup affect the accuracy of EEG potentials. Approach. First, the standard EEG potentials are generated by the forward calculation with a single dipole in the neural source space, for eleven channel numbers (10, 16, 21, 32, 64, 85, 96, 128, 129, 257, 335). Here, the reference is the ideal infinity implicitly determined by forward theory. Then, the standard EEG potentials are transformed to recordings with different references including five mono-polar references (Left earlobe, Fz, Pz, Oz, Cz), and three re-references (linked mastoids (LM), average reference (AR) and reference electrode standardization technique (REST)). Finally, the relative errors between the standard EEG potentials and the transformed ones are evaluated in terms of channel number, scalp regions, electrodes layout, dipole source position and orientation, as well as sensor noise and head model. Main results. Mono-polar reference recordings are usually of large distortions; thus, a re-reference after online mono-polar recording should be adopted in general to mitigate this effect. Among the three re-references, REST is generally superior to AR for all factors compared, and LM performs worst. REST is insensitive to head model perturbation. AR is subject to electrodes coverage and dipole orientation but no close relation with channel number. Significance. These results indicate that REST would be the first choice of re-reference and AR may be an alternative option for high level sensor noise case. Our findings may provide the helpful suggestions on how to obtain the EEG potentials as accurately as possible for

  1. Probing interval timing with scalp-recorded electroencephalography (EEG).

    Science.gov (United States)

    Ng, Kwun Kei; Penney, Trevor B

    2014-01-01

    Humans, and other animals, are able to easily learn the durations of events and the temporal relationships among them in spite of the absence of a dedicated sensory organ for time. This chapter summarizes the investigation of timing and time perception using scalp-recorded electroencephalography (EEG), a non-invasive technique that measures brain electrical potentials on a millisecond time scale. Over the past several decades, much has been learned about interval timing through the examination of the characteristic features of averaged EEG signals (i.e., event-related potentials, ERPs) elicited in timing paradigms. For example, the mismatch negativity (MMN) and omission potential (OP) have been used to study implicit and explicit timing, respectively, the P300 has been used to investigate temporal memory updating, and the contingent negative variation (CNV) has been used as an index of temporal decision making. In sum, EEG measures provide biomarkers of temporal processing that allow researchers to probe the cognitive and neural substrates underlying time perception.

  2. Event-related potential studies of outcome processing and feedback-guided learning

    Directory of Open Access Journals (Sweden)

    René eSan Martín

    2012-11-01

    Full Text Available In order to control behavior in an adaptive manner the brain has to learn how some situations and actions predict positive or negative outcomes. During the last decade cognitive neuroscientists have shown that the brain is able to evaluate and learn from outcomes within a few hundred milliseconds of their occurrence. This research has been primarily focused on the feedback-related negativity (FRN and the P3, two event-related potential (ERP components that are elicited by outcomes. The FRN is a frontally distributed negative-polarity ERP component that typically reaches its maximal amplitude 250 ms after outcome presentation and tends to be larger for negative than for positive outcomes. The FRN has been associated with activity in the anterior cingulate cortex. The P3 (~300-600 ms is a parietally distributed positive-polarity ERP component that tends to be larger for large magnitude than for small magnitude outcomes. The neural sources of the P3 are probably distributed over different regions of the cortex. This paper examines the theories that have been proposed to explain the functional role of these two ERP components during outcome processing. Special attention is paid to extant literature addressing how these ERP components are modulated by outcome valence (negative vs. positive, outcome magnitude (large vs. small, outcome probability (unlikely vs. likely and behavioral adjustment. The literature offers few generalizable conclusions, but is beset with a number of inconsistencies across studies. This paper discusses the potential reasons for these inconsistencies and points out some challenges that will shape the field over the next decade.

  3. Orthographic recognition in late adolescents: an assessment through event-related brain potentials.

    Science.gov (United States)

    González-Garrido, Andrés Antonio; Gómez-Velázquez, Fabiola Reveca; Rodríguez-Santillán, Elizabeth

    2014-04-01

    Reading speed and efficiency are achieved through the automatic recognition of written words. Difficulties in learning and recognizing the orthography of words can arise despite reiterative exposure to texts. This study aimed to investigate, in native Spanish-speaking late adolescents, how different levels of orthographic knowledge might result in behavioral and event-related brain potential differences during the recognition of orthographic errors. Forty-five healthy high school students were selected and divided into 3 equal groups (High, Medium, Low) according to their performance on a 5-test battery of orthographic knowledge. All participants performed an orthographic recognition task consisting of the sequential presentation of a picture (object, fruit, or animal) followed by a correctly, or incorrectly, written word (orthographic mismatch) that named the picture just shown. Electroencephalogram (EEG) recording took place simultaneously. Behavioral results showed that the Low group had a significantly lower number of correct responses and increased reaction times while processing orthographical errors. Tests showed significant positive correlations between higher performance on the experimental task and faster and more accurate reading. The P150 and P450 components showed higher voltages in the High group when processing orthographic errors, whereas N170 seemed less lateralized to the left hemisphere in the lower orthographic performers. Also, trials with orthographic errors elicited a frontal P450 component that was only evident in the High group. The present results show that higher levels of orthographic knowledge correlate with high reading performance, likely because of faster and more accurate perceptual processing, better visual orthographic representations, and top-down supervision, as the event-related brain potential findings seem to suggest.

  4. Cognitive deficits in amyotrophic lateral sclerosis evaluated by event-related potentials.

    Science.gov (United States)

    Ogawa, Tomohiro; Tanaka, Hideaki; Hirata, Koichi

    2009-04-01

    To determine the cognitive profiles in non-demented, relatively less handicapped patients with early-stage sporadic amyotrophic lateral sclerosis (ALS) by using neuropsychological tests, event-related potentials (ERPs) and clinical scale. We recruited 19 patients with sporadic ALS (eight with limb-onset, 11 with bulbar-onset) and 19 controls. In addition to the mini-mental state examination and the Wechsler adult intelligence scale-revised, we assessed the frontal lobe function with Wisconsin card sorting test, Stroop test and trail making test. We used auditory 'oddball' counting paradigm for the ERPs under 20-channel electroencephalogram (EEG) recording. Global field power (GFP) was computed, and its peak amplitudes and latencies of N1/N2/P3 were determined. The results of ERP and neuropsychological tests were correlated with respiratory function and clinical scale. No global cognitive impairment except for subtle frontal dysfunction was detected, although N1/N2/P3 GFP latencies were significantly prolonged in ALS patients than in the controls. Vital capacity correlated with P3 GFP amplitude, and the relative bulbar functional rating scale correlated with P3 GFP latency. Our findings indicated the presence of sub-clinical cognitive deficits in non-demented, sporadic ALS patients. In addition, clinical sub-types and respiratory function dependently influenced cognitive function in patients with sporadic ALS. ERP confirmed cognitive impairment in patients with sporadic ALS.

  5. Convolutional neural networks for event-related potential detection: impact of the architecture.

    Science.gov (United States)

    Cecotti, H

    2017-07-01

    The detection of brain responses at the single-trial level in the electroencephalogram (EEG) such as event-related potentials (ERPs) is a difficult problem that requires different processing steps to extract relevant discriminant features. While most of the signal and classification techniques for the detection of brain responses are based on linear algebra, different pattern recognition techniques such as convolutional neural network (CNN), as a type of deep learning technique, have shown some interests as they are able to process the signal after limited pre-processing. In this study, we propose to investigate the performance of CNNs in relation of their architecture and in relation to how they are evaluated: a single system for each subject, or a system for all the subjects. More particularly, we want to address the change of performance that can be observed between specifying a neural network to a subject, or by considering a neural network for a group of subjects, taking advantage of a larger number of trials from different subjects. The results support the conclusion that a convolutional neural network trained on different subjects can lead to an AUC above 0.9 by using an appropriate architecture using spatial filtering and shift invariant layers.

  6. Deficient multisensory integration in schizophrenia: an event-related potential study.

    Science.gov (United States)

    Stekelenburg, Jeroen J; Maes, Jan Pieter; Van Gool, Arthur R; Sitskoorn, Margriet; Vroomen, Jean

    2013-07-01

    In many natural audiovisual events (e.g., the sight of a face articulating the syllable /ba/), the visual signal precedes the sound and thus allows observers to predict the onset and the content of the sound. In healthy adults, the N1 component of the event-related brain potential (ERP), reflecting neural activity associated with basic sound processing, is suppressed if a sound is accompanied by a video that reliably predicts sound onset. If the sound does not match the content of the video (e.g., hearing /ba/ while lipreading /fu/), the later occurring P2 component is affected. Here, we examined whether these visual information sources affect auditory processing in patients with schizophrenia. The electroencephalography (EEG) was recorded in 18 patients with schizophrenia and compared with that of 18 healthy volunteers. As stimuli we used video recordings of natural actions in which visual information preceded and predicted the onset of the sound that was either congruent or incongruent with the video. For the healthy control group, visual information reduced the auditory-evoked N1 if compared to a sound-only condition, and stimulus-congruency affected the P2. This reduction in N1 was absent in patients with schizophrenia, and the congruency effect on the P2 was diminished. Distributed source estimations revealed deficits in the network subserving audiovisual integration in patients with schizophrenia. The results show a deficit in multisensory processing in patients with schizophrenia and suggest that multisensory integration dysfunction may be an important and, to date, under-researched aspect of schizophrenia. Copyright © 2013. Published by Elsevier B.V.

  7. How culture gets embrained: Cultural differences in event-related potentials of social norm violations.

    Science.gov (United States)

    Mu, Yan; Kitayama, Shinobu; Han, Shihui; Gelfand, Michele J

    2015-12-15

    Humans are unique among all species in their ability to develop and enforce social norms, but there is wide variation in the strength of social norms across human societies. Despite this fundamental aspect of human nature, there has been surprisingly little research on how social norm violations are detected at the neurobiological level. Building on the emerging field of cultural neuroscience, we combine noninvasive electroencephalography (EEG) with a new social norm violation paradigm to examine the neural mechanisms underlying the detection of norm violations and how they vary across cultures. EEG recordings from Chinese and US participants (n = 50) showed consistent negative deflection of event-related potential around 400 ms (N400) over the central and parietal regions that served as a culture-general neural marker of detecting norm violations. The N400 at the frontal and temporal regions, however, was only observed among Chinese but not US participants, illustrating culture-specific neural substrates of the detection of norm violations. Further, the frontal N400 predicted a variety of behavioral and attitudinal measurements related to the strength of social norms that have been found at the national and state levels, including higher culture superiority and self-control but lower creativity. There were no cultural differences in the N400 induced by semantic violation, suggesting a unique cultural influence on social norm violation detection. In all, these findings provided the first evidence, to our knowledge, for the neurobiological foundations of social norm violation detection and its variation across cultures.

  8. Bristle-sensors—low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications

    Science.gov (United States)

    Grozea, Cristian; Voinescu, Catalin D.; Fazli, Siamac

    2011-04-01

    In this paper, we present a new, low-cost dry electrode for EEG that is made of flexible metal-coated polymer bristles. We examine various standard EEG paradigms, such as capturing occipital alpha rhythms, testing for event-related potentials in an auditory oddball paradigm and performing a sensory motor rhythm-based event-related (de-) synchronization paradigm to validate the performance of the novel electrodes in terms of signal quality. Our findings suggest that the dry electrodes that we developed result in high-quality EEG recordings and are thus suitable for a wide range of EEG studies and BCI applications. Furthermore, due to the flexibility of the novel electrodes, greater comfort is achieved in some subjects, this being essential for long-term use.

  9. Event-related brain potentials in memory: correlates of episodic, semantic and implicit memory.

    Science.gov (United States)

    Wieser, Stephan; Wieser, Heinz Gregor

    2003-06-01

    To study cognitive evoked potentials, recorded from scalp EEG and foramen ovale electrodes, during activation of explicit and implicit memory. The subgroups of explicit memory, episodic and semantic memory, are looked at separately. A word-learning task was used, which has been shown to activate hippocampus in H(2)(15)O positron emission tomography studies. Subjects had to study and remember word pairs using different learning strategies: (i) associative word learning (AWL), which activates the episodic memory, (ii) deep single word encoding (DSWE), which activates the semantic memory, and (iii) shallow single word encoding (SSWE), which activates the implicit memory and serves as a baseline. The test included the 'remember/know' paradigm as a behavioural learning control. During the task condition, a 10-20 scalp EEG with additional electrodes in both temporal lobes regions was recorded from 11 healthy volunteers. In one patient with mesiotemporal lobe epilepsy, the EEG was recorded from bilateral foramen ovale electrodes directly from mesial temporal lobe structures. Event-related potentials (ERPs) were calculated off-line and visual and statistical analyses were made. Associative learning strategy produced the best memory performance and the best noetic awareness experience, whereas shallow single word encoding produced the worst performance and the smallest noetic awareness. Deep single word encoding performance was in between. ERPs differed according to the test condition, during both encoding and retrieval, from both the scalp EEG and the foramen ovale electrode recordings. Encoding showed significant differences between the shallow single word encoding (SSWE), which is mainly a function of graphical characteristics, and the other two strategies, deep single word (DSWE) and associative learning (AWL), in which there is a semantic processing of the meaning. ERPs generated by these two categories, which are both functions of explicit memory, differed as well

  10. A Brain–Computer Interface for Potential Nonverbal Facial Communication Based on EEG Signals Related to Specific Emotions

    Directory of Open Access Journals (Sweden)

    Koji eKashihara

    2014-08-01

    Full Text Available Unlike assistive technology for verbal communication, the brain–machine or brain–computer interface (BMI/BCI has not been established as a nonverbal communication tool for amyotrophic lateral sclerosis (ALS patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG signals can be used to detect patients’ emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based nonverbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600–700 ms after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus. This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals.

  11. EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation

    DEFF Research Database (Denmark)

    Bergmann, Til O; Mölle, Matthias; Schmidt, Marlit A

    2012-01-01

    Evoked cortical responses do not follow a rigid input–output function but are dynamically shaped by intrinsic neural properties at the time of stimulation. Recent research has emphasized the role of oscillatory activity in determining cortical excitability. Here we employed EEG-guided transcranial......, closely resembling a spontaneous SO. However, both MEPs and TEPs were consistently larger when evoked during SO up-states than during down-states, and ampliudes within each SO state depended on the actual EEG potential at the time and site of stimulation. These results provide first-time evidence...... magnetic stimulation (TMS) during non-rapid eye movement sleep to examine whether the spontaneous

  12. Event-related potentials elicited by social commerce and electronic-commerce reviews

    OpenAIRE

    Bai, Yan; Yao, Zhong; Cong, Fengyu; Zhang, Linlin

    2015-01-01

    There is an increasing interest regarding the use of electroencephalography (EEG) in social commerce and electronic commerce (e-commerce) research. There are several reviews in the field of social commerce or e-commerce; these have great potential value and mining them is fundamental and significant. To our knowledge, EEG is rarely applied to study these. In this study, we examined the neural correlates of social commerce reviews (SCRs) and e-commerce reviews (ECRs) by using them as stimuli t...

  13. Measurement of event-related potentials and placebo

    Directory of Open Access Journals (Sweden)

    Sovilj Platon

    2014-01-01

    Full Text Available ERP is common abbreviation for event-related brain potentials, which are measured and used in clinical practice as well as in research practice. Contemporary studies of placebo effect are often based on functional neuromagnetic resonance (fMRI, positron emission tomography (PET, and event related potentials (ERP. This paper considers an ERP instrumentation system used in experimental researches of placebo effect. This instrumentation system can be divided into four modules: electrodes and cables, conditioning module, digital measurement module, and PC module for stimulations, presentations, acquisition and data processing. The experimental oddball paradigm is supported by the software of the instrumentation. [Projekat Ministarstva nauke Republike Srbije, br. TR32019 and Provincial Secretariat for Science and Technological Development of Autonomous Province of Vojvodina (Republic of Serbia under research grant No. 114-451-2723

  14. Event-related potential correlates of suspicious thoughts in individuals with schizotypal personality features.

    Science.gov (United States)

    Li, Xue-bing; Huang, Jia; Cheung, Eric F C; Gong, Qi-yong; Chan, Raymond C K

    2011-01-01

    Suspiciousness is a common feature of schizophrenia. However, suspicious thoughts are also commonly experienced by the general population. This study aimed to examine the underlying neural mechanism of suspicious thoughts in individuals with and without schizotypal personality disorder (SPD)-proneness, using an event-related potential (ERP) paradigm. Electroencephalography (EEG) was recorded when the "feeling of being seen through" was evoked in the participants. The findings showed a prominent positive deflection of the difference wave within the time window 250-400 ms after stimuli presentation in both SPD-prone and non-SPD-prone groups. Furthermore, the P3 amplitude was significantly reduced in the SPD-prone group compared to the non-SPD-prone group. The current density analysis also indicated hypoactivity in both frontal and temporal regions in the SPD-prone group, suggesting that the frontotemporal cortical network may play a role in the onset of suspicious thoughts. The P3 of difference wave was inversely correlated with the cognitive-perception factor and the suspiciousness/paranoid ideation trait, which provided preliminary electrophysiological evidence for the association of suspiciousness with SPD features.

  15. Emotional processing and psychopathic traits in male college students: An event-related potential study.

    Science.gov (United States)

    Medina, Amy L; Kirilko, Elvira; Grose-Fifer, Jillian

    2016-08-01

    Emotional processing deficits are often considered a hallmark of psychopathy. However, there are relatively few studies that have investigated how the late positive potential (LPP) elicited by both positive and negative emotional stimuli is modulated by psychopathic traits, especially in undergraduates. Attentional deficits have also been posited to be associated with emotional blunting in psychopathy, consequently, results from previous studies may have been influenced by task demands. Therefore, we investigated the relationship between the neural correlates of emotional processing and psychopathic traits by measuring event-related potentials (ERPs) during a task with a relatively low cognitive load. A group of male undergraduates were classified as having either high or low levels of psychopathic traits according to their total scores on the Psychopathic Personality Inventory - Revised (PPI-R). A subgroup of these participants then passively viewed complex emotional and neutral images from the International Affective Picture System (IAPS) while their EEGs were recorded. As hypothesized, in general the late LPP elicited by emotional pictures was found to be significantly reduced for participants with high Total PPI-R scores relative to those with low scores, especially for pictures that were rated as less emotionally arousing. Our data suggest that male undergraduates with high, but subclinical levels of psychopathic traits did not maintain continued higher-order processing of affective information, especially when it was perceived to be less arousing in nature. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A comparison of recording modalities of P300 event-related potentials (ERP) for brain-computer interface (BCI) paradigm.

    Science.gov (United States)

    Mayaud, L; Congedo, M; Van Laghenhove, A; Orlikowski, D; Figère, M; Azabou, E; Cheliout-Heraut, F

    2013-10-01

    A brain-computer interface aims at restoring communication and control in severely disabled people by identification and classification of EEG features such as event-related potentials (ERPs). The aim of this study is to compare different modalities of EEG recording for extraction of ERPs. The first comparison evaluates the performance of six disc electrodes with that of the EMOTIV headset, while the second evaluates three different electrode types (disc, needle, and large squared electrode). Ten healthy volunteers gave informed consent and were randomized to try the traditional EEG system (six disc electrodes with gel and skin preparation) or the EMOTIV Headset first. Together with the six disc electrodes, a needle and a square electrode of larger surface were simultaneously recording near lead Cz. Each modality was evaluated over three sessions of auditory P300 separated by one hour. No statically significant effect was found for the electrode type, nor was the interaction between electrode type and session number. There was no statistically significant difference of performance between the EMOTIV and the six traditional EEG disc electrodes, although there was a trend showing worse performance of the EMOTIV headset. However, the modality-session interaction was highly significant (P<0.001) showing that, while the performance of the six disc electrodes stay constant over sessions, the performance of the EMOTIV headset drops dramatically between 2 and 3h of use. Finally, the evaluation of comfort by participants revealed an increasing discomfort with the EMOTIV headset starting with the second hour of use. Our study does not recommend the use of one modality over another based on performance but suggests the choice should be made on more practical considerations such as the expected length of use, the availability of skilled labor for system setup and above all, the patient comfort. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Posterior α EEG Dynamics Dissociate Current from Future Goals in Working Memory-Guided Visual Search.

    Science.gov (United States)

    de Vries, Ingmar E J; van Driel, Joram; Olivers, Christian N L

    2017-02-08

    Current models of visual search assume that search is guided by an active visual working memory representation of what we are currently looking for. This attentional template for currently relevant stimuli can be dissociated from accessory memory representations that are only needed prospectively, for a future task, and that should be prevented from guiding current attention. However, it remains unclear what electrophysiological mechanisms dissociate currently relevant (serving upcoming selection) from prospectively relevant memories (serving future selection). We measured EEG of 20 human subjects while they performed two consecutive visual search tasks. Before the search tasks, a cue instructed observers which item to look for first (current template) and which second (prospective template). During the delay leading up to the first search display, we found clear suppression of α band (8-14 Hz) activity in regions contralateral to remembered items, comprising both local power and interregional phase synchronization within a posterior parietal network. Importantly, these lateralization effects were stronger when the memory item was currently relevant (i.e., for the first search) compared with when it was prospectively relevant (i.e., for the second search), consistent with current templates being prioritized over future templates. In contrast, event-related potential analysis revealed that the contralateral delay activity was similar for all conditions, suggesting no difference in storage. Together, these findings support the idea that posterior α oscillations represent a state of increased processing or excitability in task-relevant cortical regions, and reflect enhanced cortical prioritization of memory representations that serve as a current selection filter. SIGNIFICANCE STATEMENT Our days are filled with looking for relevant objects while ignoring irrelevant visual information. Such visual search activity is thought to be driven by current goals activated in

  18. Response inhibition in borderline personality disorder: event-related potentials in a Go/Nogo task.

    Science.gov (United States)

    Ruchsow, M; Groen, G; Kiefer, M; Buchheim, A; Walter, H; Martius, P; Reiter, M; Hermle, L; Spitzer, M; Ebert, D; Falkenstein, M

    2008-01-01

    Borderline personality disorder (BPD) has been related to a dysfunction of anterior cingulate cortex, amygdala, and prefrontal cortex and has been associated clinically with impulsivity, affective instability, and significant interpersonal distress. We examined 17 patients with BPD and 17 age-, sex-, and education matched control participants with no history of Axis I or II psychopathology using event-related potentials (ERPs). Participants performed a hybrid flanker-Go/Nogo task while multichannel EEG was recorded. Our study focused on two ERP components: the Nogo-N2 and the Nogo-P3, which have been discussed in the context of response inhibition and response conflict. ERPs were computed on correct Go trials (button press) and correct Nogo trials (no button press), separately. Groups did not differ with regard to the Nogo-N2. However, BPD patients showed reduced Nogo-P3 amplitudes. For the entire group (n = 34) we found a negative correlation with the Barratt Impulsiveness Scale (BIS-10) and Becks's depression inventory (BDI). The present study is the first to examine Nogo-N2 and Nogo-P3 in BPD and provides further evidence for impaired response inhibition in BPD patients.

  19. Processing of emotional faces in congenital amusia: An emotional music priming event-related potential study.

    Science.gov (United States)

    Zhishuai, Jin; Hong, Liu; Daxing, Wu; Pin, Zhang; Xuejing, Lu

    2017-01-01

    Congenital amusia is characterized by lifelong impairments in music perception and processing. It is unclear whether pitch detection deficits impact amusic individuals' perception of musical emotion. In the current work, 19 amusics and 21 healthy controls were subjected to electroencephalography (EEG) while being exposed to music excerpts and emotional faces. We assessed each individual's ability to discriminate positive- and negative-valenced emotional faces and analyzed electrophysiological indices, in the form of event-related potentials (ERPs) recorded at 32 sites, following exposure to emotionally positive or negative music excerpts. We observed smaller N2 amplitudes in response to facial expressions in the amusia group than in the control group, suggesting that amusics were less affected by the musical stimuli. The late-positive component (LPC) in amusics was similar to that in controls. Our results suggest that the neurocognitive deficit characteristic of congenital amusia is fundamentally an impairment in musical information processing rather than an impairment in emotional processing.

  20. Processing of emotional faces in congenital amusia: An emotional music priming event-related potential study

    Directory of Open Access Journals (Sweden)

    Jin Zhishuai

    2017-01-01

    Full Text Available Congenital amusia is characterized by lifelong impairments in music perception and processing. It is unclear whether pitch detection deficits impact amusic individuals' perception of musical emotion. In the current work, 19 amusics and 21 healthy controls were subjected to electroencephalography (EEG while being exposed to music excerpts and emotional faces. We assessed each individual's ability to discriminate positive- and negative-valenced emotional faces and analyzed electrophysiological indices, in the form of event-related potentials (ERPs recorded at 32 sites, following exposure to emotionally positive or negative music excerpts. We observed smaller N2 amplitudes in response to facial expressions in the amusia group than in the control group, suggesting that amusics were less affected by the musical stimuli. The late-positive component (LPC in amusics was similar to that in controls. Our results suggest that the neurocognitive deficit characteristic of congenital amusia is fundamentally an impairment in musical information processing rather than an impairment in emotional processing.

  1. Event-Related-Potential (ERP) Correlates of Performance Monitoring in Adults With Attention-Deficit Hyperactivity Disorder (ADHD)

    Science.gov (United States)

    Marquardt, Lynn; Eichele, Heike; Lundervold, Astri J.; Haavik, Jan; Eichele, Tom

    2018-01-01

    Introduction: Attention-deficit hyperactivity disorder (ADHD) is one of the most frequent neurodevelopmental disorders in children and tends to persist into adulthood. Evidence from neuropsychological, neuroimaging, and electrophysiological studies indicates that alterations of error processing are core symptoms in children and adolescents with ADHD. To test whether adults with ADHD show persisting deficits and compensatory processes, we investigated performance monitoring during stimulus-evaluation and response-selection, with a focus on errors, as well as within-group correlations with symptom scores. Methods: Fifty-five participants (27 ADHD and 28 controls) aged 19–55 years performed a modified flanker task during EEG recording with 64 electrodes, and the ADHD and control groups were compared on measures of behavioral task performance, event-related potentials of performance monitoring (N2, P3), and error processing (ERN, Pe). Adult ADHD Self-Report Scale (ASRS) was used to assess ADHD symptom load. Results: Adults with ADHD showed higher error rates in incompatible trials, and these error rates correlated positively with the ASRS scores. Also, we observed lower P3 amplitudes in incompatible trials, which were inversely correlated with symptom load in the ADHD group. Adults with ADHD also displayed reduced error-related ERN and Pe amplitudes. There were no significant differences in reaction time (RT) and RT variability between the two groups. Conclusion: Our findings show deviations of electrophysiological measures, suggesting reduced effortful engagement of attentional and error-monitoring processes in adults with ADHD. Associations between ADHD symptom scores, event-related potential amplitudes, and poorer task performance in the ADHD group further support this notion. PMID:29706908

  2. Event-Related-Potential (ERP Correlates of Performance Monitoring in Adults With Attention-Deficit Hyperactivity Disorder (ADHD

    Directory of Open Access Journals (Sweden)

    Lynn Marquardt

    2018-04-01

    Full Text Available Introduction: Attention-deficit hyperactivity disorder (ADHD is one of the most frequent neurodevelopmental disorders in children and tends to persist into adulthood. Evidence from neuropsychological, neuroimaging, and electrophysiological studies indicates that alterations of error processing are core symptoms in children and adolescents with ADHD. To test whether adults with ADHD show persisting deficits and compensatory processes, we investigated performance monitoring during stimulus-evaluation and response-selection, with a focus on errors, as well as within-group correlations with symptom scores.Methods: Fifty-five participants (27 ADHD and 28 controls aged 19–55 years performed a modified flanker task during EEG recording with 64 electrodes, and the ADHD and control groups were compared on measures of behavioral task performance, event-related potentials of performance monitoring (N2, P3, and error processing (ERN, Pe. Adult ADHD Self-Report Scale (ASRS was used to assess ADHD symptom load.Results: Adults with ADHD showed higher error rates in incompatible trials, and these error rates correlated positively with the ASRS scores. Also, we observed lower P3 amplitudes in incompatible trials, which were inversely correlated with symptom load in the ADHD group. Adults with ADHD also displayed reduced error-related ERN and Pe amplitudes. There were no significant differences in reaction time (RT and RT variability between the two groups.Conclusion: Our findings show deviations of electrophysiological measures, suggesting reduced effortful engagement of attentional and error-monitoring processes in adults with ADHD. Associations between ADHD symptom scores, event-related potential amplitudes, and poorer task performance in the ADHD group further support this notion.

  3. Automated approach to detecting behavioral states using EEG-DABS

    Directory of Open Access Journals (Sweden)

    Zachary B. Loris

    2017-07-01

    Full Text Available Electrocorticographic (ECoG signals represent cortical electrical dipoles generated by synchronous local field potentials that result from simultaneous firing of neurons at distinct frequencies (brain waves. Since different brain waves correlate to different behavioral states, ECoG signals presents a novel strategy to detect complex behaviors. We developed a program, EEG Detection Analysis for Behavioral States (EEG-DABS that advances Fast Fourier Transforms through ECoG signals time series, separating it into (user defined frequency bands and normalizes them to reduce variability. EEG-DABS determines events if segments of an experimental ECoG record have significantly different power bands than a selected control pattern of EEG. Events are identified at every epoch and frequency band and then are displayed as output graphs by the program. Certain patterns of events correspond to specific behaviors. Once a predetermined pattern was selected for a behavioral state, EEG-DABS correctly identified the desired behavioral event. The selection of frequency band combinations for detection of the behavior affects accuracy of the method. All instances of certain behaviors, such as freezing, were correctly identified from the event patterns generated with EEG-DABS. Detecting behaviors is typically achieved by visually discerning unique animal phenotypes, a process that is time consuming, unreliable, and subjective. EEG-DABS removes variability by using defined parameters of EEG/ECoG for a desired behavior over chronic recordings. EEG-DABS presents a simple and automated approach to quantify different behavioral states from ECoG signals.

  4. Classification of Single-Trial Auditory Events Using Dry-Wireless EEG During Real and Motion Simulated Flight

    Directory of Open Access Journals (Sweden)

    Daniel eCallan

    2015-02-01

    Full Text Available Application of neuro-augmentation technology based on dry-wireless EEG may be considerably beneficial for aviation and space operations because of the inherent dangers involved. In this study we evaluate classification performance of perceptual events using a dry-wireless EEG system during motion platform based flight simulation and actual flight in an open cockpit biplane to determine if the system can be used in the presence of considerable environmental and physiological artifacts. A passive task involving 200 random auditory presentations of a chirp sound was used for evaluation. The advantage of this auditory task is that it does not interfere with the perceptual motor processes involved with piloting the plane. Classification was based on identifying the presentation of a chirp sound versus silent periods. Evaluation of Independent component analysis and Kalman filtering to enhance classification performance by extracting brain activity related to the auditory event from other non-task related brain activity and artifacts was assessed. The results of permutation testing revealed that single trial classification of presence or absence of an auditory event was significantly above chance for all conditions on a novel test set. The best performance could be achieved with both ICA and Kalman filtering relative to no processing: Platform Off (83.4% vs 78.3%, Platform On (73.1% vs 71.6%, Biplane Engine Off (81.1% vs 77.4%, and Biplane Engine On (79.2% vs 66.1%. This experiment demonstrates that dry-wireless EEG can be used in environments with considerable vibration, wind, acoustic noise, and physiological artifacts and achieve good single trial classification performance that is necessary for future successful application of neuro-augmentation technology based on brain-machine interfaces.

  5. Proprioceptive event related potentials: gating and task effects

    DEFF Research Database (Denmark)

    Arnfred, Sidse M

    2005-01-01

    The integration of proprioception with vision, touch or audition is considered basic to the developmental formation of perceptions, conceptual objects and the creation of cognitive schemes. Thus, mapping of proprioceptive information processing is important in cognitive research. A stimulus...... of a brisk change of weight on a hand held load elicit a proprioceptive evoked potential (PEP). Here this is used to examine early and late information processing related to weight discrimination by event related potentials (ERP)....

  6. Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm.

    Science.gov (United States)

    Mondini, Valeria; Mangia, Anna Lisa; Cappello, Angelo

    2018-01-01

    Transcranial direct current stimulation (tDCS) and neurofeedback-guided motor imagery (MI) have attracted considerable interest in neurorehabilitation, given their ability to influence neuroplasticity. As tDCS has been shown to modulate event-related desynchronization (ERD), the neural signature of motor imagery detected for neurofeedback, a combination of the techniques was recently proposed. One limitation of this approach is that the area targeted for stimulation is the same from which the signal for neurofeedback is acquired. As tDCS may interfere with proximal electroencephalographic (EEG) electrodes, in this study our aim was to test whether contralateral tDCS could have interhemispheric effects on the spectral power of the unstimulated hemisphere, possibly mediated by transcallosal connection, and whether such effects could be used to enhance ERD magnitudes. A contralateral stimulation approach would indeed facilitate co-registration, as the stimulation electrode would be far from the recording sites. Twenty right-handed healthy volunteers (aged 21 to 32) participated in the study: ten assigned to cathodal, ten to anodal versus sham stimulation. We applied stimulation over the dominant (left) hemisphere, and assessed ERD and spectral power over the non-dominant (right) hemisphere. The effect of tDCS was evaluated over time. Spectral power was assessed in theta, alpha and beta bands, under both rest and MI conditions, while ERD was evaluated in alpha and beta bands. Two main findings emerged: (1) contralateral alpha-ERD was reduced after anodal (p = 0.0147), but not enhanced after cathodal tDCS; (2) both stimulations had remote effects on the spectral power of the contralateral hemisphere, particularly in theta and alpha (significant differences in the topographical t-value maps). The absence of contralateral cathodal ERD enhancement suggests that the protocol is not applicable in the context of MI training. Nevertheless, ERD results of anodal and spectral

  7. Neurodevelopment of Conflict Adaptation: Evidence From Event-Related Potentials

    DEFF Research Database (Denmark)

    Liu, Xiuying; Liu, Tongran; Shangguan, Fangfang

    2018-01-01

    Conflict adaptation is key in how children self-regulate and assert cognitive control in a given situation compared with a previous experience. In the current study, we analyzed event-related potentials (ERPs) to identify age-related differences in conflict adaptation. Participants of different a...... to better assimilate and accommodate potential environmental conflicts. The results may also indicate that the development of conflict adaption is affected by the specific characteristic of the different types of conflict.......Conflict adaptation is key in how children self-regulate and assert cognitive control in a given situation compared with a previous experience. In the current study, we analyzed event-related potentials (ERPs) to identify age-related differences in conflict adaptation. Participants of different...... ages (5-year-old children, 10-year-old children, and adults) were subjected to a stimulus-stimulus (S-S) conflict control task (the flanker task) and a stimulus-response (S-R) conflict control task (the Simon task). The behavioral results revealed that all age groups had reliable conflict adaptation...

  8. An event-related potential study on memory search for color

    OpenAIRE

    Miyatani, Makoto; Nakao, Takasi; Ohkawa, Kaori; Sanderson, Nicholas S. R.; Takumi, Ken

    2002-01-01

    The present study focused on memory search processes in nonverbal working memory. Event-related potentials (ERPs) were recorded while subjects engaged in two memory search tasks. Effects of memory set size on event-related potentials were compared between when memory sets consisted of one or four alphabets and when one to three unvocable color patches composed memory sets. In a letter search task, increase of memory set size caused the enlargement of negativities of ERPs between 250 and 450 m...

  9. Event-related potentials dissociate perceptual from response-related age effects in visual search

    DEFF Research Database (Denmark)

    Wiegand, Iris; Müller, Hermann J.; Finke, Kathrin

    2013-01-01

    measures with lateralized event-related potentials of younger and older adults performing a compound-search task, in which the target-defining dimension of a pop-out target (color/shape) and the response-critical target feature (vertical/horizontal stripes) varied independently across trials. Slower...... responses in older participants were associated with age differences in all analyzed event-related potentials from perception to response, indicating that behavioral slowing originates from multiple stages within the information-processing stream. Furthermore, analyses of carry-over effects from one trial...

  10. Applying an Archetype-Based Approach to Electroencephalography/Event-Related Potential Experiments in the EEGBase Resource.

    Science.gov (United States)

    Papež, Václav; Mouček, Roman

    2017-01-01

    The purpose of this study is to investigate the feasibility of applying openEHR (an archetype-based approach for electronic health records representation) to modeling data stored in EEGBase, a portal for experimental electroencephalography/event-related potential (EEG/ERP) data management. The study evaluates re-usage of existing openEHR archetypes and proposes a set of new archetypes together with the openEHR templates covering the domain. The main goals of the study are to (i) link existing EEGBase data/metadata and openEHR archetype structures and (ii) propose a new openEHR archetype set describing the EEG/ERP domain since this set of archetypes currently does not exist in public repositories. The main methodology is based on the determination of the concepts obtained from EEGBase experimental data and metadata that are expressible structurally by the openEHR reference model and semantically by openEHR archetypes. In addition, templates as the third openEHR resource allow us to define constraints over archetypes. Clinical Knowledge Manager (CKM), a public openEHR archetype repository, was searched for the archetypes matching the determined concepts. According to the search results, the archetypes already existing in CKM were applied and the archetypes not existing in the CKM were newly developed. openEHR archetypes support linkage to external terminologies. To increase semantic interoperability of the new archetypes, binding with the existing odML electrophysiological terminology was assured. Further, to increase structural interoperability, also other current solutions besides EEGBase were considered during the development phase. Finally, a set of templates using the selected archetypes was created to meet EEGBase requirements. A set of eleven archetypes that encompassed the domain of experimental EEG/ERP measurements were identified. Of these, six were reused without changes, one was extended, and four were newly created. All archetypes were arranged in the

  11. A study of verbal and spatial information processing using event-related potentials and positron emission tomography

    International Nuclear Information System (INIS)

    Ninomiya, Hideaki; Ichimiya, Atsushi; Chen, Chung-Ho; Onitsuka, Toshiaki; Kuwabara, Yasuo; Otsuka, Makoto; Ichiya, Yuichi

    1997-01-01

    The activated cerebral regions and the timing of information processing in the hemispheres was investigated using event-related potentials (ERP) and regional cerebral blood flow (rCBF) as the neurophysiological indicators. Seven men and one woman (age 19-27 years) were asked to categorize two-syllable Japanese nouns (verbal condition) and to judge the difference between pairs of rectangles (spatial condition), both tests presented on a monochrome display. In the electroencephalogram (EEG) session, EEG were recorded from 16 electrode sites, with linked earlobe electrodes as reference. In the positron emission tomography (PET) session, rCBF were measured by the 15 O-labeled H 2 O bolus injection method. Regions of interest were the frontal, temporal, parietal, occipital and central lobes, and the entire cerebral hemispheres. When the subtracted voltages of the ERP in homologous scalp sites were compared for the verbal and spatial conditions, the significant differences were at F7·F8 and T5·T6 (the 10-20 system). The latencies of the differences at T5·T6 were around 200, 250 and 320 ms. A significant difference in rCBF between the verbal and spatial conditions was found only in the temporal region. It was concluded that early processing of information, that is, registration and simple recognition, may be performed mainly in the left temporal lobe for verbal information and in the right for spatial information. (author)

  12. Distinct modulation of event-related potentials during motor preparation in patients with motor conversion disorder.

    Directory of Open Access Journals (Sweden)

    Rebekah L Blakemore

    Full Text Available OBJECTIVE: Conversion paresis patients and healthy people feigning weakness both exhibit weak voluntary movement without detectable neuropathology. Uniquely, conversion patients lack a sense of conscious awareness of the origin of their impairment. We investigated whether conversion paresis patients show distinct electroencephalographic (EEG markers associated with their unconscious movement deficits. METHODS: Six unilateral upper limb conversion paresis patients, 12 feigning participants asked to mimic weakness and 12 control participants performed a precued reaction time task, requiring movements of either hand, depending on precue information. Performance measures (force, reaction and movement time, and event-related EEG potentials (ERP were compared, between groups and across hands or hemisphere, using linear mixed models. RESULTS: Feigners generated the same inter-hand difference in reaction and movement time as expressed by patients, even though no specific targets were set nor feedback given on these measures. We found novel ERP signatures specific to patients. When the symptomatic hand was precued, the P3 ERP component accompanying the precue was dramatically larger in patients than in feigning participants. Additionally, in patients the earlier N1 ERP component was diminished when the precue signalled either the symptomatic or asymptomatic hand. CONCLUSIONS: These results are consistent with previous suggestions that lack of awareness of the origin of their symptoms in conversion disorder patients may result from suppression of brain activity normally related to self-agency. In patients the diminished N1 to all precues is consistent with a generalised reduction in cognitive processing of movement-related precues. The P3 enhancement in patients is unlikely to simply reflect changes required for generation of impaired movements, because it was not seen in feigners showing the same behavioural deficits. Rather, this P3 enhancement in

  13. Unsupervised EEG analysis for automated epileptic seizure detection

    Science.gov (United States)

    Birjandtalab, Javad; Pouyan, Maziyar Baran; Nourani, Mehrdad

    2016-07-01

    Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected death. It is extremely crucial to have accurate automatic pattern recognition and data mining techniques to detect the onset of seizures and inform care-givers to help the patients. EEG signals are the preferred biosignals for diagnosis of epileptic patients. Most of the existing pattern recognition techniques used in EEG analysis leverage the notion of supervised machine learning algorithms. Since seizure data are heavily under-represented, such techniques are not always practical particularly when the labeled data is not sufficiently available or when disease progression is rapid and the corresponding EEG footprint pattern will not be robust. Furthermore, EEG pattern change is highly individual dependent and requires experienced specialists to annotate the seizure and non-seizure events. In this work, we present an unsupervised technique to discriminate seizures and non-seizures events. We employ power spectral density of EEG signals in different frequency bands that are informative features to accurately cluster seizure and non-seizure events. The experimental results tried so far indicate achieving more than 90% accuracy in clustering seizure and non-seizure events without having any prior knowledge on patient's history.

  14. REHABILITATION OF PATIENTS WITH ENCEPHALOPATHY CAUSED BY ACUTE CHEMICAL AGENTS POISONING. P300 OF AUDITORY EVENT RELATED POTENTIALS AND ELECTROENCEPHALOGRAPHY

    Directory of Open Access Journals (Sweden)

    I. U. Berezina

    2014-01-01

    Full Text Available RELEVANCE. Patients with encephalopathy due to acute chemical agents poisoning have some brain functioning changes and a cognitive impairment during the rehabilitation program. These changes require correction of appropriate diagnostic protocol and treatment.AIM. The aim of this study was to estimate changes of electroencephalography (EEG and the P3 component of the event related potential (P300 ERP that are observed in patients with encephalopathy due to acute chemical agents poisoning during stage of rehabilitation.MATERIAL AND METHODS. The study was included 25 patients (age 37 (32; 51 poisoned different kind of neurotoxic substances (drugs, ethanol and complicated by toxic and hypoxic encephalopathy. They have got the treatment of encephalopathy by mexidol intravenously, mesodiencephalic modulation (MDM and hyperbaric oxygen therapy (HBOT. All patients were recoded EEG (electroencephalograph of “MBN” company, Russia and P300 ERP (“Neuron-Spectrum-5/EP” of “Neurosoft”, Russia according to the international recommendations of clinical neurophysiologists. Neuropsychological testing was used for the assessment of cognitive functions.RESULTS. There were some disturbances in primary electroencephalograms of all subjects. The follow-up EEG recording showed the main group of patients who had got the treatment (mexidol, MDM, HBOT had more often (11 patients the EEG improvements compared to the controls (1 patient. The main group had more rarely the EEG impairments compared to the control group. 6 patients of main group and 3 patients of controls did not have EEG changes during the follow-up EEG recordings. All controls and 17 patients of the main group patients had different cognitive disturbances. After the treatment 15 patients of the main group had improved on neuropsychological tests (MMSE, Munsterberg test, Schulte table, Number Connecting Test. They also had a decrease in the N200, P300 peak latency and an increase in the N200, P300

  15. Unsupervised Event Characterization and Detection in Multichannel Signals: An EEG application

    Directory of Open Access Journals (Sweden)

    Angel Mur

    2016-04-01

    Full Text Available In this paper, we propose a new unsupervised method to automatically characterize and detect events in multichannel signals. This method is used to identify artifacts in electroencephalogram (EEG recordings of brain activity. The proposed algorithm has been evaluated and compared with a supervised method. To this end an example of the performance of the algorithm to detect artifacts is shown. The results show that although both methods obtain similar classification, the proposed method allows detecting events without training data and can also be applied in signals whose events are unknown a priori. Furthermore, the proposed method provides an optimal window whereby an optimal detection and characterization of events is found. The detection of events can be applied in real-time.

  16. Tic related local field potentials in the thalamus and the effect of deep brain stimulation in Tourette syndrome : Report of three cases

    NARCIS (Netherlands)

    Bour, L. J.; Ackermans, L.; Foncke, E. M. J.; Cath, D.; van der Linden, C.; Vandewalle, V. Visser; Tijssen, M. A.

    Objective: Three patients with intractable Tourette syndrome (TS) underwent thalamic deep brain stimulation (DBS). To investigate the role of thalamic electrical activity in tic generation, local field potentials (LFP), EEG and EMG simultaneously were recorded. Methods: Event related potentials and

  17. High-accuracy user identification using EEG biometrics.

    Science.gov (United States)

    Koike-Akino, Toshiaki; Mahajan, Ruhi; Marks, Tim K; Ye Wang; Watanabe, Shinji; Tuzel, Oncel; Orlik, Philip

    2016-08-01

    We analyze brain waves acquired through a consumer-grade EEG device to investigate its capabilities for user identification and authentication. First, we show the statistical significance of the P300 component in event-related potential (ERP) data from 14-channel EEGs across 25 subjects. We then apply a variety of machine learning techniques, comparing the user identification performance of various different combinations of a dimensionality reduction technique followed by a classification algorithm. Experimental results show that an identification accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition, we demonstrate that the user identification accuracy can be significantly improved to more than 96.7% by joint classification of multiple epochs.

  18. Intracerebral Event-related Potentials to Subthreshold Target Stimuli

    Czech Academy of Sciences Publication Activity Database

    Brázdil, M.; Rektor, I.; Daniel, P.; Dufek, M.; Jurák, Pavel

    2001-01-01

    Roč. 112, č. 4 (2001), s. 650-661 ISSN 1388-2457 R&D Projects: GA ČR GA309/98/0490 Institutional research plan: CEZ:AV0Z2065902 Keywords : event-related potentials * intracerebral recordings * oddball paradigm Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.922, year: 2001

  19. Sensitivity to structure in action sequences: An infant event-related potential study.

    Science.gov (United States)

    Monroy, Claire D; Gerson, Sarah A; Domínguez-Martínez, Estefanía; Kaduk, Katharina; Hunnius, Sabine; Reid, Vincent

    2017-05-06

    Infants are sensitive to structure and patterns within continuous streams of sensory input. This sensitivity relies on statistical learning, the ability to detect predictable regularities in spatial and temporal sequences. Recent evidence has shown that infants can detect statistical regularities in action sequences they observe, but little is known about the neural process that give rise to this ability. In the current experiment, we combined electroencephalography (EEG) with eye-tracking to identify electrophysiological markers that indicate whether 8-11-month-old infants detect violations to learned regularities in action sequences, and to relate these markers to behavioral measures of anticipation during learning. In a learning phase, infants observed an actor performing a sequence featuring two deterministic pairs embedded within an otherwise random sequence. Thus, the first action of each pair was predictive of what would occur next. One of the pairs caused an action-effect, whereas the second did not. In a subsequent test phase, infants observed another sequence that included deviant pairs, violating the previously observed action pairs. Event-related potential (ERP) responses were analyzed and compared between the deviant and the original action pairs. Findings reveal that infants demonstrated a greater Negative central (Nc) ERP response to the deviant actions for the pair that caused the action-effect, which was consistent with their visual anticipations during the learning phase. Findings are discussed in terms of the neural and behavioral processes underlying perception and learning of structured action sequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression.

    Science.gov (United States)

    Keren, Alon S; Yuval-Greenberg, Shlomit; Deouell, Leon Y

    2010-02-01

    Analysis of high-frequency (gamma-band) neural activity by means of non-invasive EEG is gaining increasing interest. However, we have recently shown that a saccade-related spike potential (SP) seriously confounds the analysis of EEG induced gamma-band responses (iGBR), as the SP eludes traditional EEG artifact rejection methods. Here we provide a comprehensive profile of the SP and evaluate methods for its detection and suppression, aiming to unveil true cerebral gamma-band activity. The SP appears consistently as a sharp biphasic deflection of about 22 ms starting at the saccade onset, with a frequency band of approximately 20-90 Hz. On the average, larger saccades elicit higher SP amplitudes. The SP amplitude gradually changes from the extra-ocular channels towards posterior sites with the steepest gradients around the eyes, indicating its ocular source. Although the amplitude and the sign of the SP depend on the choice of reference channel, the potential gradients remain the same and non-zero for all references. The scalp topography is modulated almost exclusively by the direction of saccades, with steeper gradients ipsilateral to the saccade target. We discuss how the above characteristics impede attempts to remove these SPs from the EEG by common temporal filtering, choice of different references, or rejection of contaminated trials. We examine the extent to which SPs can be reliably detected without an eye tracker, assess the degree to which scalp current density derivation attenuates the effect of the SP, and propose a tailored ICA procedure for minimizing the effect of the SP. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  1. State of consciousness and ERP (event-related potential measures. Diagnostic and prognostic value of electrophysiology for disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Michela Balconi

    2011-11-01

    Full Text Available Disorders of consciousness were amply studied in the recent years. At this regards new methodologies and technologies were applied to explore the diagnostic and prognostic criteria that may be applied to the patients. Specifically electrophysiological measures were used to verify the degree of awareness and responsiveness in coma, vegetative states (VS, minimal consciousness state (MC, and locked-in syndrome (LI. Recently, ERPs (event-related potentials were adopted to integrate the classical neuroimaging measures. Between the others, MMN (mismatch negativity and P300 deflections were found to represent a consistent index of the present state of consciousness and to be predictive of successive modifications of this state. Also frequency-based EEG measures, such as brain oscillations, were revealed to be relevant marker of consciousness and awareness, able to predict the future evolution of pathology.

  2. On the neural mechanisms underlying the protective function of retroactive cuing against perceptual interference: Evidence by event-related potentials of the EEG.

    Science.gov (United States)

    Schneider, Daniel; Barth, Anna; Getzmann, Stephan; Wascher, Edmund

    2017-03-01

    This EEG study investigated the protective effect of retroactive attentional focusing on working memory. To this effect, we used a visuo-spatial working memory task and presented block-wise distractor displays after working memory contents had been updated by means of a retroactive cue (retro-cue). Retroactive attention attenuated the interfering effect of distractors on memory precision. The reduction of working memory load by means of a selective retro-cue was reflected by a decline of a negative slow wave over parietal sites. Posterior N1 to the distractor was reduced following a selective retro-cue compared to a neutral retro-cue condition, most notably at left hemispheric sites. P3b referred to the distractor was suppressed completely only following a selective retro-cue. This suggests that focusing on only a subset of visuo-spatial information represented in working memory releases cognitive resources for preventing the in-depth processing of subsequently irrelevant visual events, thereby inhibiting their transfer into working memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Correlates of a single cortical action potential in the epidural EEG

    Science.gov (United States)

    Teleńczuk, Bartosz; Baker, Stuart N; Kempter, Richard; Curio, Gabriel

    2015-01-01

    To identify the correlates of a single cortical action potential in surface EEG, we recorded simultaneously epidural EEG and single-unit activity in the primary somatosensory cortex of awake macaque monkeys. By averaging over EEG segments coincident with more than hundred thousand single spikes, we found short-lived (≈ 0.5 ms) triphasic EEG deflections dominated by high-frequency components > 800 Hz. The peak-to-peak amplitude of the grand-averaged spike correlate was 80 nV, which matched theoretical predictions, while single-neuron amplitudes ranged from 12 to 966 nV. Combining these estimates with post-stimulus-time histograms of single-unit responses to median-nerve stimulation allowed us to predict the shape of the evoked epidural EEG response and to estimate the number of contributing neurons. These findings establish spiking activity of cortical neurons as a primary building block of high-frequency epidural EEG, which thus can serve as a quantitative macroscopic marker of neuronal spikes. PMID:25554430

  4. C-fiber-related EEG-oscillations induced by laser radiant heat stimulation of capsaicin-treated skin

    Science.gov (United States)

    Domnick, Claudia; Hauck, Michael; Casey, Kenneth L; Engel, Andreas K; Lorenz, Jürgen

    2009-01-01

    Nociceptive input reaches the brain via two different types of nerve fibers, moderately fast A-delta and slowly conducting C-fibers, respectively. To explore their distinct roles in normal and inflammatory pain we used laser stimulation of normal and capsaicin treated skin at proximal and distal arm sites in combination with time frequency transformation of electroencephalography (EEG) data. Comparison of phase-locked (evoked) and non-phase-locked (total) EEG to laser stimuli revealed three significant pain-related oscillatory responses. First, an evoked response in the delta-theta band, mediated by A-fibers, was reduced by topical capsaicin treatment. Second, a decrease of total power in the alpha-to-gamma band reflected both an A- and C-nociceptor-mediated response with only the latter being reduced by capsaicin treatment. Finally, an enhancement of total power in the upper beta band was mediated exclusively by C-nociceptors and appeared strongly augmented by capsaicin treatment. These findings suggest that phase-locking of brain activity to stimulus onset is a critical feature of A-delta nociceptive input, allowing rapid orientation to salient and potentially threatening events. In contrast, the subsequent C-nociceptive input exhibits clearly less phase coupling to the stimulus. It may primarily signal the tissue status allowing more long-term behavioral adaptations during ongoing inflammatory events that accompany tissue damage. PMID:21197293

  5. Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Wang, Yao; Sokhadze, Estate M.; El-Baz, Ayman S.; Li, Xiaoli; Sears, Lonnie; Casanova, Manuel F.; Tasman, Allan

    2016-01-01

    Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism. PMID:26834615

  6. Changing relations between intelligence and brain activity in late childhood: A longitudinal event-related potential study.

    NARCIS (Netherlands)

    Stauder, J.E.A.; van der Molen, M.W.; Molenaar, P.C.M.

    1998-01-01

    In studying the relationship between Raven intelligence and event-related brain potentials to a visual oddball task in the same children, at respectively 9, 10 and 11 years of age, dramatic changes were observed with age. The event-related amplitude data suggest a shift in relation between

  7. Spatio-temporal patterns of event-related potentials related to audiovisual synchrony judgments in older adults.

    Science.gov (United States)

    Chan, Yu Man; Pianta, Michael Julian; Bode, Stefan; McKendrick, Allison Maree

    2017-07-01

    Older adults have altered perception of the relative timing between auditory and visual stimuli, even when stimuli are scaled to equate detectability. To help understand why, this study investigated the neural correlates of audiovisual synchrony judgments in older adults using electroencephalography (EEG). Fourteen younger (18-32 year old) and 16 older (61-74 year old) adults performed an audiovisual synchrony judgment task on flash-pip stimuli while EEG was recorded. All participants were assessed to have healthy vision and hearing for their age. Observers responded to whether audiovisual pairs were perceived as synchronous or asynchronous via a button press. The results showed that the onset of predictive sensory information for synchrony judgments was not different between groups. Channels over auditory areas contributed more to this predictive sensory information than visual areas. The spatial-temporal profile of the EEG activity also indicates that older adults used different resources to maintain a similar level of performance in audiovisual synchrony judgments compared with younger adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Yao eWang

    2016-01-01

    Full Text Available Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism.Key word: Electroencephalography, Neurofeedback, Autism Spectrum Disorder, Gamma activity, EEG bands’ ratios

  9. EEG signatures of arm isometric exertions in preparation, planning and execution.

    Science.gov (United States)

    Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A

    2014-04-15

    The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction

  10. Behavioral and EEG evidence for auditory memory suppression

    Directory of Open Access Journals (Sweden)

    Maya Elizabeth Cano

    2016-03-01

    Full Text Available The neural basis of motivated forgetting using the Think/No-Think (TNT paradigm is receiving increased attention with a particular focus on the mechanisms that enable memory suppression. However, most TNT studies have been limited to the visual domain. To assess whether and to what extent direct memory suppression extends across sensory modalities, we examined behavioral and electroencephalographic (EEG effects of auditory Think/No-Think in healthy young adults by adapting the TNT paradigm to the auditory modality. Behaviorally, suppression of memory strength was indexed by prolonged response times during the retrieval of subsequently remembered No-Think words. We examined task-related EEG activity of both attempted memory retrieval and inhibition of a previously learned target word during the presentation of its paired associate. Event-related EEG responses revealed two main findings: 1 a centralized Think > No-Think positivity during auditory word presentation (from approximately 0-500ms, and 2 a sustained Think positivity over parietal electrodes beginning at approximately 600ms reflecting the memory retrieval effect which was significantly reduced for No-Think words. In addition, word-locked theta (4-8 Hz power was initially greater for No-Think compared to Think during auditory word presentation over fronto-central electrodes. This was followed by a posterior theta increase indexing successful memory retrieval in the Think condition.The observed event-related potential pattern and theta power analysis are similar to that reported in visual Think/No-Think studies and support a modality non-specific mechanism for memory inhibition. The EEG data also provide evidence supporting differing roles and time courses of frontal and parietal regions in the flexible control of auditory memory.

  11. Behavioral and EEG Evidence for Auditory Memory Suppression.

    Science.gov (United States)

    Cano, Maya E; Knight, Robert T

    2016-01-01

    The neural basis of motivated forgetting using the Think/No-Think (TNT) paradigm is receiving increased attention with a particular focus on the mechanisms that enable memory suppression. However, most TNT studies have been limited to the visual domain. To assess whether and to what extent direct memory suppression extends across sensory modalities, we examined behavioral and electroencephalographic (EEG) effects of auditory TNT in healthy young adults by adapting the TNT paradigm to the auditory modality. Behaviorally, suppression of memory strength was indexed by prolonged response time (RTs) during the retrieval of subsequently remembered No-Think words. We examined task-related EEG activity of both attempted memory retrieval and inhibition of a previously learned target word during the presentation of its paired associate. Event-related EEG responses revealed two main findings: (1) a centralized Think > No-Think positivity during auditory word presentation (from approximately 0-500 ms); and (2) a sustained Think positivity over parietal electrodes beginning at approximately 600 ms reflecting the memory retrieval effect which was significantly reduced for No-Think words. In addition, word-locked theta (4-8 Hz) power was initially greater for No-Think compared to Think during auditory word presentation over fronto-central electrodes. This was followed by a posterior theta increase indexing successful memory retrieval in the Think condition. The observed event-related potential pattern and theta power analysis are similar to that reported in visual TNT studies and support a modality non-specific mechanism for memory inhibition. The EEG data also provide evidence supporting differing roles and time courses of frontal and parietal regions in the flexible control of auditory memory.

  12. A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions.

    Science.gov (United States)

    Kashihara, Koji

    2014-01-01

    Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600-700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In

  13. Different slopes for different folks: alpha and delta EEG power predict subsequent video game learning rate and improvements in cognitive control tasks.

    Science.gov (United States)

    Mathewson, Kyle E; Basak, Chandramallika; Maclin, Edward L; Low, Kathy A; Boot, Walter R; Kramer, Arthur F; Fabiani, Monica; Gratton, Gabriele

    2012-12-01

    We hypothesized that control processes, as measured using electrophysiological (EEG) variables, influence the rate of learning of complex tasks. Specifically, we measured alpha power, event-related spectral perturbations (ERSPs), and event-related brain potentials during early training of the Space Fortress task, and correlated these measures with subsequent learning rate and performance in transfer tasks. Once initial score was partialled out, the best predictors were frontal alpha power and alpha and delta ERSPs, but not P300. By combining these predictors, we could explain about 50% of the learning rate variance and 10%-20% of the variance in transfer to other tasks using only pretraining EEG measures. Thus, control processes, as indexed by alpha and delta EEG oscillations, can predict learning and skill improvements. The results are of potential use to optimize training regimes. Copyright © 2012 Society for Psychophysiological Research.

  14. C-fiber-related EEG-oscillations induced by laser radiant heat stimulation of capsaicin-treated skin

    Directory of Open Access Journals (Sweden)

    Claudia Domnick

    2009-03-01

    Full Text Available Claudia Domnick1, Michael Hauck1,2,3, Kenneth L Casey3, Andreas K Engel1, Jürgen Lorenz1,3,41Department of Neurophysiology and Pathophysiology; 2Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 3Department of Neurology, University of Michigan, Ann Arbor, MI, USA; 4Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, GermanyAbstract: Nociceptive input reaches the brain via two different types of nerve fibers, moderately fast A-delta and slowly conducting C-fibers, respectively. To explore their distinct roles in normal and inflammatory pain we used laser stimulation of normal and capsaicin treated skin at proximal and distal arm sites in combination with time frequency transformation of electroencephalography (EEG data. Comparison of phase-locked (evoked and non-phase-locked (total EEG to laser stimuli revealed three significant pain-related oscillatory responses. First, an evoked response in the delta-theta band, mediated by A-fibers, was reduced by topical capsaicin treatment. Second, a decrease of total power in the alpha-to-gamma band reflected both an A- and C-nociceptor-mediated response with only the latter being reduced by capsaicin treatment. Finally, an enhancement of total power in the upper beta band was mediated exclusively by C-nociceptors and appeared strongly augmented by capsaicin treatment. These findings suggest that phase-locking of brain activity to stimulus onset is a critical feature of A-delta nociceptive input, allowing rapid orientation to salient and potentially threatening events. In contrast, the subsequent C-nociceptive input exhibits clearly less phase coupling to the stimulus. It may primarily signal the tissue status allowing more long-term behavioral adaptations during ongoing inflammatory events that accompany tissue damage.Keywords: C-fibers, oscillations, EEG, laser, capsaicin, inflammatory pain

  15. Neural correlates of economic value and valuation context: an event-related potential study.

    Science.gov (United States)

    Tyson-Carr, John; Kokmotou, Katerina; Soto, Vicente; Cook, Stephanie; Fallon, Nicholas; Giesbrecht, Timo; Stancak, Andrej

    2018-05-01

    The value of environmental cues and internal states is continuously evaluated by the human brain, and it is this subjective value that largely guides decision making. The present study aimed to investigate the initial value attribution process, specifically the spatiotemporal activation patterns associated with values and valuation context, using electroencephalographic event-related potentials (ERPs). Participants completed a stimulus rating task in which everyday household items marketed up to a price of £4 were evaluated with respect to their desirability or material properties. The subjective values of items were evaluated as willingness to pay (WTP) in a Becker-DeGroot-Marschak auction. On the basis of the individual's subjective WTP values, the stimuli were divided into high- and low-value items. Source dipole modeling was applied to estimate the cortical sources underlying ERP components modulated by subjective values (high vs. low WTP) and the evaluation condition (value-relevant vs. value-irrelevant judgments). Low-WTP items and value-relevant judgments both led to a more pronounced N2 visual evoked potential at right frontal scalp electrodes. Source activity in right anterior insula and left orbitofrontal cortex was larger for low vs. high WTP at ∼200 ms. At a similar latency, source activity in right anterior insula and right parahippocampal gyrus was larger for value-relevant vs. value-irrelevant judgments. A stronger response for low- than high-value items in anterior insula and orbitofrontal cortex appears to reflect aversion to low-valued item acquisition, which in an auction experiment would be perceived as a relative loss. This initial low-value bias occurs automatically irrespective of the valuation context. NEW & NOTEWORTHY We demonstrate the spatiotemporal characteristics of the brain valuation process using event-related potentials and willingness to pay as a measure of subjective value. The N2 component resolves values of objects with a

  16. Safety of Simultaneous Scalp or Intracranial EEG during MRI: A Review

    Directory of Open Access Journals (Sweden)

    Hassan B. Hawsawi

    2017-10-01

    Full Text Available Understanding the brain and its activity is one of the great challenges of modern science. Normal brain activity (cognitive processes, etc. has been extensively studied using electroencephalography (EEG since the 1930's, in the form of spontaneous fluctuations in rhythms, and patterns, and in a more experimentally-driven approach in the form of event-related potentials (ERPs allowing us to relate scalp voltage waveforms to brain states and behavior. The use of EEG recorded during functional magnetic resonance imaging (EEG-fMRI is a more recent development that has become an important tool in clinical neuroscience, for example for the study of epileptic activity. The purpose of this review is to explore the magnetic resonance imaging safety aspects specifically associated with the use of scalp EEG and other brain-implanted electrodes such as intracranial EEG electrodes when they are subjected to the MRI environment. We provide a theoretical overview of the mechanisms at play specifically associated with the presence of EEG equipment connected to the subject in the MR environment, and of the resulting health hazards. This is followed by a survey of the literature on the safety of scalp or invasive EEG-fMRI data acquisitions across field strengths, with emphasis on the practical implications for the safe application of the techniques; in particular, we attempt to summarize the findings in terms of acquisition protocols when possible.

  17. Changes in event-related potential functional networks predict traumatic brain injury in piglets.

    Science.gov (United States)

    Atlan, Lorre S; Lan, Ingrid S; Smith, Colin; Margulies, Susan S

    2018-06-01

    Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. None of the current diagnostic tools, such as quantitative cognitive and balance tests, have been validated to identify mild traumatic brain injury in infants, adults and animals. In this preliminary study, we report a novel, quantitative tool that has the potential to quickly and reliably diagnose traumatic brain injury and which can track the state of the brain during recovery across multiple ages and species. Using 32 scalp electrodes, we recorded involuntary auditory event-related potentials from 22 awake four-week-old piglets one day before and one, four, and seven days after two different injury types (diffuse and focal) or sham. From these recordings, we generated event-related potential functional networks and assessed whether the patterns of the observed changes in these networks could distinguish brain-injured piglets from non-injured. Piglet brains exhibited significant changes after injury, as evaluated by five network metrics. The injury prediction algorithm developed from our analysis of the changes in the event-related potentials functional networks ultimately produced a tool with 82% predictive accuracy. This novel approach is the first application of auditory event-related potential functional networks to the prediction of traumatic brain injury. The resulting tool is a robust, objective and predictive method that offers promise for detecting mild traumatic brain injury, in particular because collecting event-related potentials data is noninvasive and inexpensive. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. EEG biofeedback

    OpenAIRE

    Dvořáček, Michael

    2010-01-01

    Vznik EEG aktivity v mozku, rozdělení EEG vln podle frekvence, způsob měření EEG, přístroje pro měření EEG. Dále popis biofeedback metody, její možnosti a návrh biofeedback her. Popis zpracování naměřených EEG signálů. EEG generation, brain rhythms, methods of recording EEG, EEG recorder. Description of biofeedback, potentialities of biofeedback, proposal of biofeedback games. Description of processing measured EEG signals. B

  19. Slowing and Loss of Complexity in Alzheimer's EEG: Two Sides of the Same Coin?

    Directory of Open Access Journals (Sweden)

    Justin Dauwels

    2011-01-01

    Full Text Available Medical studies have shown that EEG of Alzheimer's disease (AD patients is “slower” (i.e., contains more low-frequency power and is less complex compared to age-matched healthy subjects. The relation between those two phenomena has not yet been studied, and they are often silently assumed to be independent. In this paper, it is shown that both phenomena are strongly related. Strong correlation between slowing and loss of complexity is observed in two independent EEG datasets: (1 EEG of predementia patients (a.k.a. Mild Cognitive Impairment; MCI and control subjects; (2 EEG of mild AD patients and control subjects. The two data sets are from different patients, different hospitals and obtained through different recording systems. The paper also investigates the potential of EEG slowing and loss of EEG complexity as indicators of AD onset. In particular, relative power and complexity measures are used as features to classify the MCI and MiAD patients versus age-matched control subjects. When combined with two synchrony measures (Granger causality and stochastic event synchrony, classification rates of 83% (MCI and 98% (MiAD are obtained. By including the compression ratios as features, slightly better classification rates are obtained than with relative power and synchrony measures alone.

  20. Age, intelligence, and event-related brain potentials during late childhood: A longitudinal study.

    NARCIS (Netherlands)

    Molenaar, P.C.M.; Molen, M.W.; Stauder, J.E.A.

    2003-01-01

    he relation between event-related brain activity, age, and intelligence was studied using a visual oddball task presented longitudinally to girls at 9, 10, and 11 years of age. The event-related brain potential (ERP) components showed typical gradual decrements in latency and amplitude with

  1. Recording EEG In Young Children Without Sedation | Curuneaux ...

    African Journals Online (AJOL)

    Background Although it has been considered that sedation in children undergoing EEG tests is effective and safe and complications are infrequent, occasionally adverse sedation-related events are presented. Objective The aim of this work was to determine if it is possible to carry out EEG in children up to 4 years old ...

  2. MATLAB Toolboxes for Reference Electrode Standardization Technique (REST) of Scalp EEG.

    Science.gov (United States)

    Dong, Li; Li, Fali; Liu, Qiang; Wen, Xin; Lai, Yongxiu; Xu, Peng; Yao, Dezhong

    2017-01-01

    Reference electrode standardization technique (REST) has been increasingly acknowledged and applied as a re-reference technique to transform an actual multi-channels recordings to approximately zero reference ones in electroencephalography/event-related potentials (EEG/ERPs) community around the world in recent years. However, a more easy-to-use toolbox for re-referencing scalp EEG data to zero reference is still lacking. Here, we have therefore developed two open-source MATLAB toolboxes for REST of scalp EEG. One version of REST is closely integrated into EEGLAB, which is a popular MATLAB toolbox for processing the EEG data; and another is a batch version to make it more convenient and efficient for experienced users. Both of them are designed to provide an easy-to-use for novice researchers and flexibility for experienced researchers. All versions of the REST toolboxes can be freely downloaded at http://www.neuro.uestc.edu.cn/rest/Down.html, and the detailed information including publications, comments and documents on REST can also be found from this website. An example of usage is given with comparative results of REST and average reference. We hope these user-friendly REST toolboxes could make the relatively novel technique of REST easier to study, especially for applications in various EEG studies.

  3. Attentional Mechanisms in Sports via Brain-Electrical Event-Related Potentials

    Science.gov (United States)

    Hack, Johannes; Memmert, Daniel; Rup, Andre

    2009-01-01

    In this study, we examined attention processes in complex, sport-specific decision-making tasks without interdependencies from anticipation. Psychophysiological and performance data recorded from advanced and intermediate level basketball referees were compared. Event-related potentials obtained while judging game situations in foul recognition…

  4. Illumination influences working memory: an EEG study.

    Science.gov (United States)

    Park, Jin Young; Min, Byoung-Kyong; Jung, Young-Chul; Pak, Hyensou; Jeong, Yeon-Hong; Kim, Eosu

    2013-09-05

    Illumination conditions appear to influence working efficacy in everyday life. In the present study, we obtained electroencephalogram (EEG) correlates of working-memory load, and investigated how these waveforms are modulated by illumination conditions. We hypothesized that illumination conditions may affect cognitive performance. We designed an EEG study to monitor and record participants' EEG during the Sternberg working memory task under four different illumination conditions. Illumination conditions were generated with a factorial design of two color-temperatures (3000 and 7100 K) by two illuminance levels (150 and 700 lx). During a working memory task, we observed that high illuminance led to significantly lower frontal EEG theta activity than did low illuminance. These differences persisted despite no significant difference in task performance between illumination conditions. We found that the latency of an early event-related potential component, such as N1, was significantly modulated by the illumination condition. The fact that the illumination condition affects brain activity but not behavioral performance suggests that the lighting conditions used in the present study did not influence the performance stage of behavioral processing. Nevertheless, our findings provide objective evidence that illumination conditions modulate brain activity. Further studies are necessary to refine the optimal lighting parameters for facilitating working memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Childhood trauma affects processing of social interactions in borderline personality disorder: An event-related potential study investigating empathy for pain.

    Science.gov (United States)

    Flasbeck, Vera; Enzi, Björn; Brüne, Martin

    2017-06-15

    Patients with borderline personality disorder (BPD) have difficulties in empathising with others and show disturbances in social interactions. Using a 'Social Interaction Empathy Task', we found that BPD patients judged neutral and psychologically painful conditions as more painful than healthy subjects. Here, we present the neural correlates underlying these differences in empathy for pain. Female BPD patients and healthy controls completed the 'Social Interaction Empathy Task' during EEG recording. Event-related potentials (ERP) were analysed for an early anterior component and a late latency positivity. Empathic abilities were assessed using the Interpersonal Reactivity Index and early aversive experiences were measured by the Childhood Trauma Questionnaire (CTQ). ERPs in the patient group matched the behaviour results and correlated with the level of personal distress and CTQ. In addition, ERPs of patients were predicted by childhood maltreatment and stress. Taken together, our findings indicate that the observed behavioural differences between patients with BPD and controls might be due to modulatory effects of empathic abilities on the evaluation of pain-related social stimuli, which are supposed to be based on childhood maltreatment.

  6. A portable, differential amplifier for recording high frequency EEG signals and evoked potentials

    International Nuclear Information System (INIS)

    Donos, Cristian; Giurgiu, Liviu; Popescu, Aurel; Mocanu, Marian

    2010-01-01

    In a clinical context, EEG refers to recording the brain's spontaneous electric activity, using small electrodes placed on the scalp. The signals collected are electric 'potentials' measured between two electrodes. Usually, for a healthy adult, these signals have small voltage (10 μV to 100 μV) and frequencies in the 0-40 Hz range. In the scientific literature, there are mentioned EEG signals and evoked potentials that have higher frequencies (up to 600 Hz) and amplitudes lower than 500 ηV. For this reason, building an amplifier capable of recording EEG signals in the ηV range and with frequencies up to couple of kHz is necessary to continue research beyond 600 Hz. We designed a very low noise amplifier that is able to measure/record EEG signals in the ηV range over a very large frequency bandwidth (0.09 Hz -385 kHz).(Author)

  7. Newly-formed emotional memories guide selective attention processes: Evidence from event-related potentials.

    Science.gov (United States)

    Schupp, Harald T; Kirmse, Ursula; Schmälzle, Ralf; Flaisch, Tobias; Renner, Britta

    2016-06-20

    Emotional cues can guide selective attention processes. However, emotional stimuli can both activate long-term memory representations reflecting general world knowledge and engage newly formed memory representations representing specific knowledge from the immediate past. Here, the self-completion feature of associative memory was utilized to assess the regulation of attention processes by newly-formed emotional memory. First, new memory representations were formed by presenting pictures depicting a person either in an erotic pose or as a portrait. Afterwards, to activate newly-built memory traces, edited pictures were presented showing only the head region of the person. ERP recordings revealed the emotional regulation of attention by newly-formed memories. Specifically, edited pictures from the erotic compared to the portrait category elicited an early posterior negativity and late positive potential, similar to the findings observed for the original pictures. A control condition showed that the effect was dependent on newly-formed memory traces. Given the large number of new memories formed each day, they presumably make an important contribution to the regulation of attention in everyday life.

  8. Newly-formed emotional memories guide selective attention processes: Evidence from event-related potentials

    Science.gov (United States)

    Schupp, Harald T.; Kirmse, Ursula; Schmälzle, Ralf; Flaisch, Tobias; Renner, Britta

    2016-01-01

    Emotional cues can guide selective attention processes. However, emotional stimuli can both activate long-term memory representations reflecting general world knowledge and engage newly formed memory representations representing specific knowledge from the immediate past. Here, the self-completion feature of associative memory was utilized to assess the regulation of attention processes by newly-formed emotional memory. First, new memory representations were formed by presenting pictures depicting a person either in an erotic pose or as a portrait. Afterwards, to activate newly-built memory traces, edited pictures were presented showing only the head region of the person. ERP recordings revealed the emotional regulation of attention by newly-formed memories. Specifically, edited pictures from the erotic compared to the portrait category elicited an early posterior negativity and late positive potential, similar to the findings observed for the original pictures. A control condition showed that the effect was dependent on newly-formed memory traces. Given the large number of new memories formed each day, they presumably make an important contribution to the regulation of attention in everyday life. PMID:27321471

  9. Acute low-level alcohol consumption reduces phase locking of event-related oscillations in rodents.

    Science.gov (United States)

    Amodeo, Leslie R; Wills, Derek N; Ehlers, Cindy L

    2017-07-14

    Event-related oscillations (EROs) are rhythmic changes that are evoked by a sensory and/or cognitive stimulus that can influence the dynamics of the EEG. EROs are defined by the decomposition of the EEG signal into magnitude (energy) and phase information and can be elicited in both humans and animals. EROs have been linked to several relevant genes associated with ethanol dependence phenotypes in humans and are altered in selectively bred alcohol-preferring rats. However, pharmacological studies are only beginning to emerge investigating the impact low intoxicating doses of ethanol can have on event-related neural oscillations. The main goal of this study was to investigate the effects of low levels of voluntary consumption of ethanol, in rats, on phase locking of EROs in order to give further insight into the acute intoxicating effects of ethanol on the brain. To this end, we allow rats to self-administer unsweetened 20% ethanol over 15 intermittent sessions. This method results in a stable low-dose consumption of ethanol. Using an auditory event-related potential "oddball" paradigm, we investigated the effects of alcohol on the phase variability of EROs from electrodes implanted into the frontal cortex, dorsal hippocampus, and amygdala. We found that intermittent ethanol self-administration was sufficient to produce a significant reduction in overall intraregional synchrony across all targeted regions. These data suggest that phase locking of EROs within brain regions known to be impacted by alcohol may represent a sensitive biomarker of low levels of alcohol intoxication. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Event-related Potentials Reflecting the Processing of Phonological Constraint Violations

    NARCIS (Netherlands)

    Domahs, Ulrike; Kehrein, Wolfgang; Knaus, Johannes; Wiese, Richard; Schlesewsky, Matthias

    2009-01-01

    Flow are violations of phonological constraints processed in word comprehension? The present article reports the results of ail event-related potentials (ERP) Study oil a phonological constraint of German that disallows identical segments within it syllable or word (CC(i)VC(i)). We examined three

  11. Simultaneous recording of EEG and electromyographic polygraphy increases the diagnostic yield of video-EEG monitoring.

    Science.gov (United States)

    Hill, Aron T; Briggs, Belinda A; Seneviratne, Udaya

    2014-06-01

    To investigate the usefulness of adjunctive electromyographic (EMG) polygraphy in the diagnosis of clinical events captured during long-term video-EEG monitoring. A total of 40 patients (21 women, 19 men) aged between 19 and 72 years (mean 43) investigated using video-EEG monitoring were studied. Electromyographic activity was simultaneously recorded with EEG in four patients selected on clinical grounds. In these patients, surface EMG electrodes were placed over muscles suspected to be activated during a typical clinical event. Of the 40 patients investigated, 24 (60%) were given a diagnosis, whereas 16 (40%) remained undiagnosed. All four patients receiving adjunctive EMG polygraphy obtained a diagnosis, with three of these diagnoses being exclusively reliant on the EMG recordings. Specifically, one patient was diagnosed with propriospinal myoclonus, another patient was diagnosed with facio-mandibular myoclonus, and a third patient was found to have bruxism and periodic leg movements of sleep. The information obtained from surface EMG recordings aided the diagnosis of clinical events captured during video-EEG monitoring in 7.5% of the total cohort. This study suggests that EEG-EMG polygraphy may be used as a technique of improving the diagnostic yield of video-EEG monitoring in selected cases.

  12. "Did you call me?" 5-month-old infants own name guides their attention.

    Directory of Open Access Journals (Sweden)

    Eugenio Parise

    2010-12-01

    Full Text Available An infant's own name is a unique social cue. Infants are sensitive to their own name by 4 months of age, but whether they use their names as a social cue is unknown. Electroencephalogram (EEG was measured as infants heard their own name or stranger's names and while looking at novel objects. Event related brain potentials (ERPs in response to names revealed that infants differentiate their own name from stranger names from the first phoneme. The amplitude of the ERPs to objects indicated that infants attended more to objects after hearing their own names compared to another name. Thus, by 5 months of age infants not only detect their name, but also use it as a social cue to guide their attention to events and objects in the world.

  13. "Did you call me?" 5-month-old infants own name guides their attention.

    Science.gov (United States)

    Parise, Eugenio; Friederici, Angela D; Striano, Tricia

    2010-12-03

    An infant's own name is a unique social cue. Infants are sensitive to their own name by 4 months of age, but whether they use their names as a social cue is unknown. Electroencephalogram (EEG) was measured as infants heard their own name or stranger's names and while looking at novel objects. Event related brain potentials (ERPs) in response to names revealed that infants differentiate their own name from stranger names from the first phoneme. The amplitude of the ERPs to objects indicated that infants attended more to objects after hearing their own names compared to another name. Thus, by 5 months of age infants not only detect their name, but also use it as a social cue to guide their attention to events and objects in the world.

  14. Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics.

    Science.gov (United States)

    Koenig, Thomas; Kottlow, Mara; Stein, Maria; Melie-García, Lester

    2011-01-01

    We present a program (Ragu; Randomization Graphical User interface) for statistical analyses of multichannel event-related EEG and MEG experiments. Based on measures of scalp field differences including all sensors, and using powerful, assumption-free randomization statistics, the program yields robust, physiologically meaningful conclusions based on the entire, untransformed, and unbiased set of measurements. Ragu accommodates up to two within-subject factors and one between-subject factor with multiple levels each. Significance is computed as function of time and can be controlled for type II errors with overall analyses. Results are displayed in an intuitive visual interface that allows further exploration of the findings. A sample analysis of an ERP experiment illustrates the different possibilities offered by Ragu. The aim of Ragu is to maximize statistical power while minimizing the need for a-priori choices of models and parameters (like inverse models or sensors of interest) that interact with and bias statistics.

  15. [Event-related brain potentials when Russian verbs being conjugated: to the problem of language processing modularity].

    Science.gov (United States)

    Dan'ko, S G; Boĭtsova, Iu A; Solov'eva, M L; Chernigovskaia, T V; Medvedev, S V

    2014-01-01

    In the light of alternative conceptions of "two-system" and "single-system" models of language processing the efforts have been undertaken to study brain mechanisnis for generation of regular and irregular forms of Russian verbs. The 19 EEG channels of evoked activity were registered along with casual alternations of speech morphology operations to be compared. Verbs of imperfective aspect in the form of an infinitive, belonging either to a group of productive verbs (default, conventionally regular class), or toan unproductive group of verbs (conventionally irregular class) were presented to healthy subjects. The subjects were requested to produce first person present time forms of these verbs. Results of analysis of event related potentials (ERP) for a group of 22 persons are presented. Statistically reliable ERP amplitude distinctions between the verb groups are found onlyin the latencies 600-850 ms in central and parietal zones of the cortex. In these latencies ERP values associated with a presentation of irregular verbs are negative in relation to ERP values associated with the presentation of regular verbs. The received results are interpreted as a consequence of various complexity of mental work with verbs of these different groups and presumably don't support a hypothesis of universality of the "two-system" brain mechanism for processing of the regular and irregular language forms.

  16. Attention and Working Memory-Related EEG Markers of Subtle Cognitive Deterioration in Healthy Elderly Individuals.

    Science.gov (United States)

    Deiber, Marie-Pierre; Meziane, Hadj Boumediene; Hasler, Roland; Rodriguez, Cristelle; Toma, Simona; Ackermann, Marine; Herrmann, François; Giannakopoulos, Panteleimon

    2015-01-01

    Future treatments of Alzheimer's disease need the identification of cases at high risk at the preclinical stage of the disease before the development of irreversible structural damage. We investigated here whether subtle cognitive deterioration in a population of healthy elderly individuals could be predicted by EEG signals at baseline under cognitive activation. Continuous EEG was recorded in 97 elderly control subjects and 45 age-matched mild cognitive impairment (MCI) cases during a simple attentional and a 2-back working memory task. Upon 18-month neuropsychological follow-up, the final sample included 55 stable (sCON) and 42 deteriorated (dCON) controls. We examined the P1, N1, P3, and PNwm event-related components as well as the oscillatory activities in the theta (4-7 Hz), alpha (8-13 Hz), and beta (14-25 Hz) frequency ranges (ERD/ERS: event-related desynchronization/synchronization, and ITC: inter-trial coherence). Behavioral performance, P1, and N1 components were comparable in all groups. The P3, PNwm, and all oscillatory activity indices were altered in MCI cases compared to controls. Only three EEG indices distinguished the two control groups: alpha and beta ERD (dCON >  sCON) and beta ITC (dCON memory processes but mostly affects attention, resulting in an enhanced recruitment of attentional resources. In addition, cognitive decline alters neural firing synchronization at high frequencies (14-25 Hz) at early stages, and possibly affects lower frequencies (4-13 Hz) only at more severe stages.

  17. Event-related potentials reflecting the processing of phonological constraint violations

    NARCIS (Netherlands)

    Domahs, U.; Kehrein, W.; Knaus, J.; Wiese, R.; Schlesewsky, M.

    2009-01-01

    How are violations of phonological constraints processed in word comprehension? The present article reports the results of an event-related potentials (ERP) study on a phonological constraint of German that disallows identical segments within a syllable or word (CC iVCi). We examined three types of

  18. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation.

    Science.gov (United States)

    Duann, Jeng-Ren; Chiou, Jin-Chern

    2016-01-01

    Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.

  19. Neurofeedback Effects on Evoked and Induced EEG Gamma Band Reactivity to Drug-related Cues in Cocaine Addiction

    Science.gov (United States)

    Horrell, Timothy; El-Baz, Ayman; Baruth, Joshua; Tasman, Allan; Sokhadze, Guela; Stewart, Christopher; Sokhadze, Estate

    2010-01-01

    Introduction Preoccupation with drug and drug-related items is a typical characteristic of cocaine addicted individuals. It has been shown in multiple accounts that prolonged drug use has a profound effect on the EEG recordings of drug addicts when compared to controls during cue reactivity tests. Cue reactivity refers to a phenomenon in which individuals with a history of drug abuse exhibit excessive psychophysiological responses to cues associated with their drug of choice. One of the aims of this pilot study was to determine the presence of an attentional bias to preferentially process drug-related cues using evoked and induced gamma reactivity measures in cocaine addicts before and after biobehavioral treatment based on neurofeedback. Another aim was to show that central SMR amplitude increase and frontal theta control is possible in an experimental outpatient drug users group over 12 neurofeedback sessions. Method Ten current cocaine abusers participated in this pilot research study using neurofeedback combined with Motivational Interviewing sessions. Eight of them completed all planned pre- and post –neurofeedback cue reactivity tests with event-related EEG recording and clinical evaluations. Cue reactivity test represented a visual oddball task with images from the International Affective Picture System and drug-related pictures. Evoked and induced gamma responses to target and non-target drug cues were analyzed using wavelet analysis. Results Outpatient subjects with cocaine addiction completed the biobehavioral intervention and successfully increased SMR while keeping theta practically unchanged in 12 sessions of neurofeedback training. The addition of Motivational Interviewing helped retain patients in the study. Clinical evaluations immediately after completion of the treatment showed decreased self-reports on depression and stress scores, and urine tests collaborated reports of decreased use of cocaine and marijuana. Effects of neurofeedback resulted

  20. Guide for the use of the regulations on medical surveillance to exposed workers in case of abnormal events (radiological accidents)

    International Nuclear Information System (INIS)

    1987-01-01

    According to medical surveillance, abnormal events are those extraordinary situations that may imply real or potential damage for a human being or a determined population. This guide refers to abnormal events that may imply, solely, to occupationally-exposed workers and small groups of population eventually related

  1. Exploring resting-state EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis.

    Science.gov (United States)

    Keune, Philipp M; Hansen, Sascha; Weber, Emily; Zapf, Franziska; Habich, Juliane; Muenssinger, Jana; Wolf, Sebastian; Schönenberg, Michael; Oschmann, Patrick

    2017-09-01

    Neurophysiologic monitoring parameters related to cognition in Multiple Sclerosis (MS) are sparse. Previous work reported an association between magnetoencephalographic (MEG) alpha-1 activity and information processing speed. While this remains to be replicated by more available electroencephalographic (EEG) methods, also other established EEG markers, e.g. the slow-wave/fast-wave ratio (theta/beta ratio), remain to be explored in this context. Performance on standard tests addressing information processing speed and attention (Symbol-Digit Modalities Test, SDMT; Test of Attention Performance, TAP) was examined in relation to resting-state EEG alpha-1 and alpha-2 activity and the theta/beta ratio in 25MS patients. Increased global alpha-1 and alpha-2 activity and an increased frontal theta/beta ratio (pronounced slow-wave relative to fast-wave activity) were associated with lower SDMT processing speed. In an exploratory analysis, clinically impaired attention was associated with a significantly increased frontal theta/beta ratio whereas alpha power did not show sensitivity to clinical impairment. EEG global alpha power and the frontal theta/beta ratio were both associated with attention. The theta/beta ratio involved potential clinical sensitivity. Resting-state EEG recordings can be obtained during the routine clinical process. The examined resting-state measures may represent feasible monitoring parameters in MS. This notion should be explored in future intervention studies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  2. Dissociable Decoding of Spatial Attention and Working Memory from EEG Oscillations and Sustained Potentials.

    Science.gov (United States)

    Bae, Gi-Yeul; Luck, Steven J

    2018-01-10

    In human scalp EEG recordings, both sustained potentials and alpha-band oscillations are present during the delay period of working memory tasks and may therefore reflect the representation of information in working memory. However, these signals may instead reflect support mechanisms rather than the actual contents of memory. In particular, alpha-band oscillations have been tightly tied to spatial attention and may not reflect location-independent memory representations per se. To determine how sustained and oscillating EEG signals are related to attention and working memory, we attempted to decode which of 16 orientations was being held in working memory by human observers (both women and men). We found that sustained EEG activity could be used to decode the remembered orientation of a stimulus, even when the orientation of the stimulus varied independently of its location. Alpha-band oscillations also carried clear information about the location of the stimulus, but they provided little or no information about orientation independently of location. Thus, sustained potentials contain information about the object properties being maintained in working memory, consistent with previous evidence of a tight link between these potentials and working memory capacity. In contrast, alpha-band oscillations primarily carry location information, consistent with their link to spatial attention. SIGNIFICANCE STATEMENT Working memory plays a key role in cognition, and working memory is impaired in several neurological and psychiatric disorders. Previous research has suggested that human scalp EEG recordings contain signals that reflect the neural representation of information in working memory. However, to conclude that a neural signal actually represents the object being remembered, it is necessary to show that the signal contains fine-grained information about that object. Here, we show that sustained voltages in human EEG recordings contain fine-grained information about the

  3. Predicting EEG complexity from sleep macro and microstructure

    International Nuclear Information System (INIS)

    Chouvarda, I; Maglaveras, N; Mendez, M O; Rosso, V; Parrino, L; Grassi, A; Terzano, M; Bianchi, A M; Cerutti, S

    2011-01-01

    This work investigates the relation between the complexity of electroencephalography (EEG) signal, as measured by fractal dimension (FD), and normal sleep structure in terms of its macrostructure and microstructure. Sleep features are defined, encoding sleep stage and cyclic alternating pattern (CAP) related information, both in short and long term. The relevance of each sleep feature to the EEG FD is investigated, and the most informative ones are depicted. In order to quantitatively assess the relation between sleep characteristics and EEG dynamics, a modeling approach is proposed which employs subsets of the sleep macrostructure and microstructure features as input variables and predicts EEG FD based on these features of sleep micro/macrostructure. Different sleep feature sets are investigated along with linear and nonlinear models. Findings suggest that the EEG FD time series is best predicted by a nonlinear support vector machine (SVM) model, employing both sleep stage/transitions and CAP features at different time scales depending on the EEG activation subtype. This combination of features suggests that short-term and long-term history of macro and micro sleep events interact in a complex manner toward generating the dynamics of sleep

  4. Altered Neural Activity during Semantic Object Memory Retrieval in Amnestic Mild Cognitive Impairment as Measured by Event-Related Potentials.

    Science.gov (United States)

    Chiang, Hsueh-Sheng; Mudar, Raksha A; Pudhiyidath, Athula; Spence, Jeffrey S; Womack, Kyle B; Cullum, C Munro; Tanner, Jeremy A; Eroh, Justin; Kraut, Michael A; Hart, John

    2015-01-01

    Deficits in semantic memory in individuals with amnestic mild cognitive impairment (aMCI) have been previously reported, but the underlying neurobiological mechanisms remain to be clarified. We examined event-related potentials (ERPs) associated with semantic memory retrieval in 16 individuals with aMCI as compared to 17 normal controls using the Semantic Object Retrieval Task (EEG SORT). In this task, subjects judged whether pairs of words (object features) elicited retrieval of an object (retrieval trials) or not (non-retrieval trials). Behavioral findings revealed that aMCI subjects had lower accuracy scores and marginally longer reaction time compared to controls. We used a multivariate analytical technique (STAT-PCA) to investigate similarities and differences in ERPs between aMCI and control groups. STAT-PCA revealed a left fronto-temporal component starting at around 750 ms post-stimulus in both groups. However, unlike controls, aMCI subjects showed an increase in the frontal-parietal scalp potential that distinguished retrieval from non-retrieval trials between 950 and 1050 ms post-stimulus negatively correlated with the performance on the logical memory subtest of the Wechsler Memory Scale-III. Thus, individuals with aMCI were not only impaired in their behavioral performance on SORT relative to controls, but also displayed alteration in the corresponding ERPs. The altered neural activity in aMCI compared to controls suggests a more sustained and effortful search during object memory retrieval, which may be a potential marker indicating disease processes at the pre-dementia stage.

  5. Independent component analysis of gait-related movement artifact recorded using EEG electrodes during treadmill walking.

    Directory of Open Access Journals (Sweden)

    Kristine Lynne Snyder

    2015-12-01

    Full Text Available There has been a recent surge in the use of electroencephalography (EEG as a tool for mobile brain imaging due to its portability and fine time resolution. When EEG is combined with independent component analysis (ICA and source localization techniques, it can model electrocortical activity as arising from temporally independent signals located in spatially distinct cortical areas. However, for mobile tasks, it is not clear how movement artifacts influence ICA and source localization. We devised a novel method to collect pure movement artifact data (devoid of any electrophysiological signals with a 256-channel EEG system. We first blocked true electrocortical activity using a silicone swim cap. Over the silicone layer, we placed a simulated scalp with electrical properties similar to real human scalp. We collected EEG movement artifact signals from ten healthy, young subjects wearing this setup as they walked on a treadmill at speeds from 0.4-1.6 m/s. We performed ICA and dipole fitting on the EEG movement artifact data to quantify how accurately these methods would identify the artifact signals as non-neural. ICA and dipole fitting accurately localized 99% of the independent components in non-neural locations or lacked dipolar characteristics. The remaining 1% of sources had locations within the brain volume and low residual variances, but had topographical maps, power spectra, time courses, and event related spectral perturbations typical of non-neural sources. Caution should be exercised when interpreting ICA for data that includes semi-periodic artifacts including artifact arising from human walking. Alternative methods are needed for the identification and separation of movement artifact in mobile EEG signals, especially methods that can be performed in real time. Separating true brain signals from motion artifact could clear the way for EEG brain computer interfaces for assistance during mobile activities, such as walking.

  6. A dry EEG-system for scientific research and brain-computer interfaces

    Directory of Open Access Journals (Sweden)

    Thorsten Oliver Zander

    2011-05-01

    Full Text Available Although it ranks among the oldest tools in neuroscientific research, electroencephalography (EEG still forms the method of choice in a wide variety of clinical and research applications. In the context of Brain-Computer Interfacing (BCI, EEG recently has become a tool to enhance Human-Machine Interaction (HMI. EEG could be employed in a wider range of environments, especially for the use of BCI systems in a clinical context or at the homes of patients. However, the application of EEG in these contexts is impeded by the cumbersome preparation of the electrodes with conductive gel that is necessary to lower the impedance between electrodes and scalp. Dry electrodes could provide a solution to this barrier and allow for EEG applications outside the laboratory. In addition, dry electrodes may reduce the time needed for neurological exams in clinical practice. This study evaluates a prototype of a three-channel dry electrode EEG system, comparing it to state-of-the-art conventional EEG electrodes. Two experimental paradigms were used: first, Event-Related Potentials (ERP were investigated with a variant of the oddball paradigm. Second, features of the frequency domain were compared by a paradigm inducing occipital alpha. Furthermore, both paradigms were used to evaluate BCI classification accuracies of both EEG systems. Amplitude and temporal structure of ERPs as well as features in the frequency domain did not differ significantly between the EEG systems. BCI classification accuracies were equally high in both systems when the frequency domain was considered. With respect to the oddball classification accuracy, there were slight differences between the wet and dry electrode systems. We conclude that the tested dry electrodes were capable to detect EEG signals with good quality and that these signals can be used for research or BCI applications. Easy to handle electrodes may help to foster the use of EEG among a wider range of potential users.

  7. Expected reward modulates encoding-related theta activity before an event.

    Science.gov (United States)

    Gruber, Matthias J; Watrous, Andrew J; Ekstrom, Arne D; Ranganath, Charan; Otten, Leun J

    2013-01-01

    Oscillatory brain activity in the theta frequency range (4-8 Hz) before the onset of an event has been shown to affect the likelihood of successfully encoding the event into memory. Recent work has also indicated that frontal theta activity might be modulated by reward, but it is not clear how reward expectancy, anticipatory theta activity, and memory formation might be related. Here, we used scalp electroencephalography (EEG) to assess the relationship between these factors. EEG was recorded from healthy adults while they memorized a series of words. Each word was preceded by a cue that indicated whether a high or low monetary reward would be earned if the word was successfully remembered in a later recognition test. Frontal theta power between the presentation of the reward cue and the onset of a word was predictive of later memory for the word, but only in the high reward condition. No theta differences were observed before word onset following low reward cues. The magnitude of prestimulus encoding-related theta activity in the high reward condition was correlated with the number of high reward words that were later confidently recognized. These findings provide strong evidence for a link between reward expectancy, theta activity, and memory encoding. Theta activity before event onset seems to be especially important for the encoding of motivationally significant stimuli. One possibility is that dopaminergic activity during reward anticipation mediates frontal theta activity related to memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. “Did You Call Me?” 5-Month-Old Infants Own Name Guides Their Attention

    Science.gov (United States)

    Parise, Eugenio; Friederici, Angela D.; Striano, Tricia

    2010-01-01

    An infant's own name is a unique social cue. Infants are sensitive to their own name by 4 months of age, but whether they use their names as a social cue is unknown. Electroencephalogram (EEG) was measured as infants heard their own name or stranger's names and while looking at novel objects. Event related brain potentials (ERPs) in response to names revealed that infants differentiate their own name from stranger names from the first phoneme. The amplitude of the ERPs to objects indicated that infants attended more to objects after hearing their own names compared to another name. Thus, by 5 months of age infants not only detect their name, but also use it as a social cue to guide their attention to events and objects in the world. PMID:21151971

  9. Structure constrained semi-nonnegative matrix factorization for EEG-based motor imagery classification.

    Science.gov (United States)

    Lu, Na; Li, Tengfei; Pan, Jinjin; Ren, Xiaodong; Feng, Zuren; Miao, Hongyu

    2015-05-01

    Electroencephalogram (EEG) provides a non-invasive approach to measure the electrical activities of brain neurons and has long been employed for the development of brain-computer interface (BCI). For this purpose, various patterns/features of EEG data need to be extracted and associated with specific events like cue-paced motor imagery. However, this is a challenging task since EEG data are usually non-stationary time series with a low signal-to-noise ratio. In this study, we propose a novel method, called structure constrained semi-nonnegative matrix factorization (SCS-NMF), to extract the key patterns of EEG data in time domain by imposing the mean envelopes of event-related potentials (ERPs) as constraints on the semi-NMF procedure. The proposed method is applicable to general EEG time series, and the extracted temporal features by SCS-NMF can also be combined with other features in frequency domain to improve the performance of motor imagery classification. Real data experiments have been performed using the SCS-NMF approach for motor imagery classification, and the results clearly suggest the superiority of the proposed method. Comparison experiments have also been conducted. The compared methods include ICA, PCA, Semi-NMF, Wavelets, EMD and CSP, which further verified the effectivity of SCS-NMF. The SCS-NMF method could obtain better or competitive performance over the state of the art methods, which provides a novel solution for brain pattern analysis from the perspective of structure constraint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hostile attribution biases for relationally provocative situations and event-related potentials.

    Science.gov (United States)

    Godleski, Stephanie A; Ostrov, Jamie M; Houston, Rebecca J; Schlienz, Nicolas J

    2010-04-01

    This exploratory study investigates how hostile attribution biases for relationally provocative situations may be related to neurocognitive processing using the P300 event-related potential. Participants were 112 (45 women) emerging adults enrolled in a large, public university in upstate New York. Participants completed self-report measures on relational aggression and hostile attribution biases and performed an auditory perseveration task to elicit the P300. It was found that hostile attribution biases for relational provocation situations was associated with a larger P300 amplitude above and beyond the role of hostile attribution biases for instrumental situations, relational aggression, and gender. Larger P300 amplitude is interpreted to reflect greater allocation of cognitive resources or enhanced "attending" to salient stimuli. Implications for methodological approaches to studying aggression and hostile attribution biases and for theory are discussed, as well as implications for the fields of developmental psychology and psychopathology. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance.

    Science.gov (United States)

    Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard

    2016-01-01

    Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.

  12. Brain oscillations in sport: toward EEG biomakers of performance

    Directory of Open Access Journals (Sweden)

    Guy eCheron

    2016-02-01

    Full Text Available Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The noninvasive nature of high-density electroencephalography (EEG recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.

  13. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance

    Science.gov (United States)

    Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard

    2016-01-01

    Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators. PMID:26955362

  14. Combining features from ERP components in single-trial EEG for discriminating four-category visual objects

    Science.gov (United States)

    Wang, Changming; Xiong, Shi; Hu, Xiaoping; Yao, Li; Zhang, Jiacai

    2012-10-01

    Categorization of images containing visual objects can be successfully recognized using single-trial electroencephalograph (EEG) measured when subjects view images. Previous studies have shown that task-related information contained in event-related potential (ERP) components could discriminate two or three categories of object images. In this study, we investigated whether four categories of objects (human faces, buildings, cats and cars) could be mutually discriminated using single-trial EEG data. Here, the EEG waveforms acquired while subjects were viewing four categories of object images were segmented into several ERP components (P1, N1, P2a and P2b), and then Fisher linear discriminant analysis (Fisher-LDA) was used to classify EEG features extracted from ERP components. Firstly, we compared the classification results using features from single ERP components, and identified that the N1 component achieved the highest classification accuracies. Secondly, we discriminated four categories of objects using combining features from multiple ERP components, and showed that combination of ERP components improved four-category classification accuracies by utilizing the complementarity of discriminative information in ERP components. These findings confirmed that four categories of object images could be discriminated with single-trial EEG and could direct us to select effective EEG features for classifying visual objects.

  15. Improving the Specificity of EEG for Diagnosing Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    François-B. Vialatte

    2011-01-01

    Full Text Available Objective. EEG has great potential as a cost-effective screening tool for Alzheimer's disease (AD. However, the specificity of EEG is not yet sufficient to be used in clinical practice. In an earlier study, we presented preliminary results suggesting improved specificity of EEG to early stages of Alzheimer's disease. The key to this improvement is a new method for extracting sparse oscillatory events from EEG signals in the time-frequency domain. Here we provide a more detailed analysis, demonstrating improved EEG specificity for clinical screening of MCI (mild cognitive impairment patients. Methods. EEG data was recorded of MCI patients and age-matched control subjects, in rest condition with eyes closed. EEG frequency bands of interest were θ (3.5–7.5 Hz, α1 (7.5–9.5 Hz, α2 (9.5–12.5 Hz, and β (12.5–25 Hz. The EEG signals were transformed in the time-frequency domain using complex Morlet wavelets; the resulting time-frequency maps are represented by sparse bump models. Results. Enhanced EEG power in the θ range is more easily detected through sparse bump modeling; this phenomenon explains the improved EEG specificity obtained in our previous studies. Conclusions. Sparse bump modeling yields informative features in EEG signal. These features increase the specificity of EEG for diagnosing AD.

  16. Scalp topography of event-related brain potentials and cognitive transitions during childhood.

    NARCIS (Netherlands)

    Molenaar, P.C.M.; van der Molen, M.W.; Stauder, J.E.A.

    1993-01-01

    Examined the relation between cognitive development (CGD) and the ontogenesis of event-related brain potentials (ERPs) during childhood among 48 girls (aged 5-7 yrs). The level of CGD was assessed with a standard Piagetian conservation kit. Ss performed a visual selective attention (oddball) task

  17. Guide on a national system for collecting, assessing and disseminating information on safety-related events in nuclear power plants

    International Nuclear Information System (INIS)

    1983-02-01

    There is a wide spectrum of safety significance in the events that can occur during nuclear power plant operations. It is important that lessons be learned from safety-related events (hereinafter referred to as unusual events) so as to improve the safety of nuclear power plants. Hence formal procedures should be established for this purpose. The purpose of this document is to provide guidance to Member States for establishing a system (hereinafter referred to as a national system) for collecting, storing, retrieving, assessing and disseminating information on unusual events in nuclear power plants. The guidance given is based on experience gained in the use of existing national and international systems. This guide covers a national system that is part of a programme to improve nuclear power plant safety using experience gained from operating plants both within and outside the country. Implementing the recommendations in this guide would render any national system compatible with other national systems and facilitate the participation in the IAEA System for Reporting Unusual Events with Safety Significance (hereinafter referred to as the IAEA Incident Reporting System, IAEA-IRS) for more widespread dissemination of lessons learned from nuclear power plant operation

  18. Introducing the event related fixed interval area (ERFIA) multilevel technique: a method to analyze the complete epoch of event-related potentials at single trial level

    NARCIS (Netherlands)

    Vossen, C.J.; Vossen, H.G.M.; Marcus, M.A.E.; van Os, J.; Lousberg, R.

    2013-01-01

    In analyzing time-locked event-related potentials (ERPs), many studies have focused on specific peaks and their differences between experimental conditions. In theory, each latency point after a stimulus contains potentially meaningful information, regardless of whether it is peak-related. Based on

  19. Effects of nicotine on visuo-spatial selective attention as indexed by event-related potentials.

    Science.gov (United States)

    Meinke, A; Thiel, C M; Fink, G R

    2006-08-11

    Nicotine has been shown to specifically reduce reaction times to invalidly cued targets in spatial cueing paradigms. In two experiments, we used event-related potentials to test whether the facilitative effect of nicotine upon the detection of invalidly cued targets is due to a modulation of perceptual processing, as indexed by early attention-related event-related potential components. Furthermore, we assessed whether the effect of nicotine on such unattended stimuli depends upon the use of exogenous or endogenous cues. In both experiments, the electroencephalogram was recorded while non-smokers completed discrimination tasks in Posner-type paradigms after chewing a nicotine polacrilex gum (Nicorette 2 mg) in one session and a placebo gum in another session. Nicotine reduced reaction times to invalidly cued targets when cueing was endogenous. In contrast, no differential effect of nicotine on reaction times was observed when exogenous cues were used. Electrophysiologically, we found a similar attentional modulation of the P1 and N1 components under placebo and nicotine but a differential modulation of later event-related potential components at a frontocentral site. The lack of a drug-dependent modulation of P1 and N1 in the presence of a behavioral effect suggests that the effect of nicotine in endogenous visuo-spatial cueing tasks is not due to an alteration of perceptual processes. Rather, the differential modulation of frontocentral event-related potentials suggests that nicotine acts at later stages of target processing.

  20. An event-related potential study of maternal love in mothers.

    Science.gov (United States)

    Lu, Jiamei; Li, Da; Xu, Jingwei

    2012-10-01

    Feeling is stable and implicit and can be explicated in concrete situations in the form of emotion. To map the time course of feeling processing, the present study explored electrophysiological responses relevant to inner feeling by creating situations to evoke the explicit response of feeling. Fourteen mothers were asked to listen to TS and NS. Although the early event-related potential components (P1, N1 and P2) elicited by story pictures were not affected by the emotional valence of stories, the pictures relevant to TS elicited larger P3 and late positive potential (LPP) components than did neutral story pictures, indicating that feeling processing occurred at the post-perceptual stage. Feeling-related positive potential was separated using the difference wave analysis technique, which consisted of two sub-components: FRBB1 and FRBB2 based on P3 and LPP modulations, respectively. These data provide new electrophysiological evidence for the time course of feeling processing related to maternal love.

  1. An event-related brain potential correlate of visual short-term memory

    NARCIS (Netherlands)

    Klaver, Peter; Talsma, D.; Wijers, Albertus; Heinze, Hans-Jochen; Mulder, Gijsbertus

    1999-01-01

    EVENT-RELATED potentials (ERPs) were recorded as 12 subjects performed a delayed matching to sample task. We presented two bilateral abstract shapes and cued spatially which had to be memorized for a subsequent matching task: left, right or both. During memorization a posterior slow negative ERP

  2. Right Fronto-Temporal EEG can Differentiate the Affective Responses to Award-Winning Advertisements.

    Science.gov (United States)

    Wang, Regina W Y; Huarng, Shy-Peih; Chuang, Shang-Wen

    2018-04-01

    Affective engineering aims to improve service/product design by translating the customer's psychological feelings. Award-winning advertisements (AAs) were selected on the basis of the professional standards that consider creativity as a prerequisite. However, it is unknown if AA is related to satisfactory advertising performance among customers or only to the experts' viewpoints towards the advertisements. This issue in the field of affective engineering and design merits in-depth evaluation. We recruited 30 subjects and performed an electroencephalography (EEG) experiment while watching AAs and non-AAs (NAAs). The event-related potential (ERP) data showed that AAs evoked larger positive potentials 250-1400 [Formula: see text]ms after stimulus onset, particularly in the right fronto-temporal regions. The behavioral results were consistent with the professional recognition given to AAs by experts. The perceived levels of creativity and "product-like" quality were higher for the AAs than for the NAAs. Event-related spectral perturbation (ERSP) analysis further revealed statistically significant differences in the theta, alpha, beta, and gamma band activity in the right fronto-temporal regions between the AAs and NAAs. Our results confirm that EEG features from the time/frequency domains can differentiate affective responses to AAs at a neural circuit level, and provide scientific evidence to support the identification of AAs.

  3. Changes in cognitive control in pre-manifest Huntington's disease examined using pre-saccadic EEG potentials - a longitudinal study.

    Science.gov (United States)

    Ness, Vanessa; Bestgen, Anne-Kathrin; Saft, Carsten; Beste, Christian

    2014-01-01

    It is well-known that Huntington's disease (HD) affects saccadic processing. However, saccadic dysfunctions in HD may be seen as a result of dysfunctional processes occurring at the oculomotor level prior to the execution of saccades, i.e., at a pre-saccadic level. Virtually nothing is known about possible changes in pre-saccadic processes in HD. This study examines pre-saccadic processing in pre-manifest HD gene mutation carriers (pre-HDs) by using clinically available EEG measures. Error rates, pre-saccadic EEG potentials and saccade onset EEG potentials were measured in 14 pre-HDs and case-matched controls performing prosaccades and antisaccades in a longitudinal study over a 15-month period. The results show that pre-saccadic potentials were changed in pre-HDs, relative to controls and also revealed changes across the 15-month longitudinal period. In particular, pre-saccadic ERP in pre-HDs were characterized by lower amplitudes and longer latencies, which revealed longitudinal changes. These changes were observed for anti-saccades, but not for pro-saccades. Overt saccadic trajectories (potentials) were not different to those in controls, showing that pre-saccadic processes are sensitive to subtle changes in fronto-striatal networks in pre-HDs. Deficits in pre-saccadic processes prior the execution of an erroneous anti-saccade can be seen as an effect of dysfunctional cognitive control in HD. This may underlie saccadic abnormalities and hence a major phenotype of HD. Pre-saccadic EEG potentials preceding erroneous anti-saccades are sensitive to pre-manifest disease progression in HD.

  4. Cognitive event-related potentials in comatose and post-comatose states.

    Science.gov (United States)

    Vanhaudenhuyse, Audrey; Laureys, Steven; Perrin, Fabien

    2008-01-01

    We review the interest of cognitive event-related potentials (ERPs) in comatose, vegetative, or minimally conscious patients. Auditory cognitive ERPs are useful to investigate residual cognitive functions, such as echoic memory (MMN), acoustical and semantic discrimination (P300), and incongruent language detection (N400). While early ERPs (such as the absence of cortical responses on somatosensory-evoked potentials) predict bad outcome, cognitive ERPs (MMN and P300) are indicative of recovery of consciousness. In coma-survivors, cognitive potentials are more frequently obtained when using stimuli that are more ecologic or have an emotional content (such as the patient's own name) than when using classical sine tones.

  5. Lateralization of event-related potential effects during mental rotation of polygons.

    Science.gov (United States)

    Pellkofer, Julia; Jansen, Petra; Heil, Martin

    2012-07-11

    Numerous studies have shown that there is an amplitude modulation of the late positivity depending on the angular disparity during mental rotation performance. However, almost all of these studies used characters as stimulus material, whereas studies with different stimuli are rare. In the present experiment, 35 participants were instructed to rotate polygons mentally. Most importantly, with this stimulus material, the well-known event-related potential effects were also present at posterior electrode leads. Interestingly, the amplitude modulation were found to be larger and more reliable over left than over right posterior electrode leads, a finding reported previously for characters as stimuli, although not consistently. Thus, the present data suggest that the left lateralization of event-related potential effects during mental rotation of characters might not be because of their 'verbal nature', but might suggest a stronger involvement of the left parietal cortex during mental rotation per se, a suggestion that needs to be addressed with methods providing a higher spatial resolution.

  6. The Recording and Quantification of Event-Related Potentials: II. Signal Processing and Analysis

    Directory of Open Access Journals (Sweden)

    Paniz Tavakoli

    2015-06-01

    Full Text Available Event-related potentials are an informative method for measuring the extent of information processing in the brain. The voltage deflections in an ERP waveform reflect the processing of sensory information as well as higher-level processing that involves selective attention, memory, semantic comprehension, and other types of cognitive activity. ERPs provide a non-invasive method of studying, with exceptional temporal resolution, cognitive processes in the human brain. ERPs are extracted from scalp-recorded electroencephalography by a series of signal processing steps. The present tutorial will highlight several of the analysis techniques required to obtain event-related potentials. Some methodological issues that may be encountered will also be discussed.

  7. Adapting to Changing Memory Retrieval Demands: Evidence from Event-Related Potentials

    Science.gov (United States)

    Benoit, Roland G.; Werkle-Bergner, Markus; Mecklinger, Axel; Kray, Jutta

    2009-01-01

    This study investigated preparatory processes involved in adapting to changing episodic memory retrieval demands. Event-related potentials (ERPs) were recorded while participants performed a general old/new recognition task and a specific task that also required retrieval of perceptual details. The relevant task remained either constant or changed…

  8. Psychogenic seizures and frontal disconnection: EEG synchronisation study.

    Science.gov (United States)

    Knyazeva, Maria G; Jalili, Mahdi; Frackowiak, Richard S; Rossetti, Andrea O

    2011-05-01

    Psychogenic non-epileptic seizures (PNES) are paroxysmal events that, in contrast to epileptic seizures, are related to psychological causes without the presence of epileptiform EEG changes. Recent models suggest a multifactorial basis for PNES. A potentially paramount, but currently poorly understood factor is the interplay between psychiatric features and a specific vulnerability of the brain leading to a clinical picture that resembles epilepsy. Hypothesising that functional cerebral network abnormalities may predispose to the clinical phenotype, the authors undertook a characterisation of the functional connectivity in PNES patients. The authors analysed the whole-head surface topography of multivariate phase synchronisation (MPS) in interictal high-density EEG of 13 PNES patients as compared with 13 age- and sex-matched controls. MPS mapping reduces the wealth of dynamic data obtained from high-density EEG to easily readable synchronisation maps, which provide an unbiased overview of any changes in functional connectivity associated with distributed cortical abnormalities. The authors computed MPS maps for both Laplacian and common-average-reference EEGs. In a between-group comparison, only patchy, non-uniform changes in MPS survived conservative statistical testing. However, against the background of these unimpressive group results, the authors found widespread inverse correlations between individual PNES frequency and MPS within the prefrontal and parietal cortices. PNES appears to be associated with decreased prefrontal and parietal synchronisation, possibly reflecting dysfunction of networks within these regions.

  9. EEG datasets for motor imagery brain-computer interface.

    Science.gov (United States)

    Cho, Hohyun; Ahn, Minkyu; Ahn, Sangtae; Kwon, Moonyoung; Jun, Sung Chan

    2017-07-01

    Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states. © The Authors 2017. Published by Oxford University Press.

  10. On how the motor cortices resolve an inter-hemispheric response conflict: an event-related EEG potential-guided TMS study of the flankers task

    DEFF Research Database (Denmark)

    Verleger, Rolf; Kuniecki, Michal; Möller, Friderike

    2009-01-01

    in the contralateral first dorsal interosseus muscle was taken as an index of corticospinal excitability. Guided by the previous LRP measurement, magnetic stimuli were applied 0-90 ms after the individual LRP peak, to cover the epoch of conflict resolution. When flankers were incompatible with the target, excitability......An important aspect of human motor control is the ability to resolve conflicting response tendencies. Here we used single-pulse transcranial magnetic stimulation (TMS) to track the time course of excitability changes in the primary motor hand areas (M1(HAND)) while the motor system resolved...... response conflicts. Healthy volunteers had to respond fast with their right and left index fingers to right- and left-pointing arrows. These central target stimuli were preceded by flanking arrows, inducing premature response tendencies which competed with correct response activation. The time point...

  11. Emotional Incongruence of Facial Expression and Voice Tone Investigated with Event-Related Brain Potentials of Infants

    Directory of Open Access Journals (Sweden)

    Kota Arai

    2011-10-01

    Full Text Available Human emotions are perceived from multi-modal information including facial expression and voice tone. We aimed to investigate development of neural mechanism for cross-modal perception of emotions. We presented congruent and incongruent combinations of facial expression (happy and voice tone (happy or angry, and measured EEG to analyze event-related brain potentials for 8-10 month-old infants and adults. Ten repetitions of 10 trials were presented in random order for each participant. Half of them performed 20% congruent (happy face with happy voice and 80% incongruent (happy face with angry voice trials, and the others performed 80% congruent and 20% incongruent trials. We employed the oddball paradigm, but did not instruct participants to count a target. The odd-ball (infrequent stimulus increased the amplitude of P2 and delayed its latency for infants in comparison with the frequent stimulus. When the odd-ball stimulus was also emotionally incongruent, P2 amplitude was more increased and its latency was more delayed than for the odd-ball and emotionally congruent stimulus. However, we did not find difference of P2 amplitude or latency for adults between conditions. These results suggested that the 8–10 month-old infants already have a neural basis for detecting emotional incongruence of facial expression and voice tone.

  12. Event-related potentials during visual selective attention in children of alcoholics.

    NARCIS (Netherlands)

    van der Stelt, O.; Gunning, W.B.; Snel, J.; Kok, A.

    1998-01-01

    Event-related potentials (ERPs) were recorded from 50 7-18 yr old children of alcoholics (COAs) and 50 age- and sex-matched control children while they performed a visual selective attention task. The task was to attend selectively to stimuli with a specified color (red or blue) in an attempt to

  13. How Social Ties Influence Consumer: Evidence from Event-Related Potentials.

    Directory of Open Access Journals (Sweden)

    Jing Luan

    Full Text Available A considerable amount of marketing research has reported that consumers are more saliently influenced by friends (strong social ties than by acquaintances and strangers (weak social ties. To shed light on the neural and psychological processes underlying such phenomenon, in this study we designed an amended S1-S2 paradigm (product-[reviewer-review] that is based on realistic consumer purchase experiences. After incoming all given information (product, reviewer, review, participants were required to state their purchase intentions. The neurocognitive and emotional processes related to friend and stranger stimuli were delineated to suggest how social ties influence consumers during their shopping processes. Larger P2 (fronto-central scalp areas and P3 (central and posterior-parietal scalp areas components under stranger condition were elicited successfully. These findings demonstrate that the cognitive and emotional processing of friend and stranger stimuli occurs at stages of neural activity, and can be indicated by the P2 and P3 components. Electrophysiological data also support the hypothesis that different neural and emotional processing magnitude and strength underlie friend and stranger effect in the context of consumer purchase. During this process, the perception of stimuli evoked P2, subsequently emotional processing and attention modulation were activated and indicated by P2 and P3. The friend dominated phenomenon can be interpreted as the result of distinctive neurocognitive and emotional processing magnitude, which suggests that psychological and emotional factors can guide consumer decision making. This study consolidates that event related potential (ERP methodology is likely to be a more sensitive method for investigating consumer behaviors. From the perspectives of management and marketing, our findings show that the P2 and P3 components can be employed as an indicator to probe the influential factors of consumer purchase

  14. How Social Ties Influence Consumer: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Luan, Jing; Yao, Zhong; Bai, Yan

    2017-01-01

    A considerable amount of marketing research has reported that consumers are more saliently influenced by friends (strong social ties) than by acquaintances and strangers (weak social ties). To shed light on the neural and psychological processes underlying such phenomenon, in this study we designed an amended S1-S2 paradigm (product-[reviewer-review]) that is based on realistic consumer purchase experiences. After incoming all given information (product, reviewer, review), participants were required to state their purchase intentions. The neurocognitive and emotional processes related to friend and stranger stimuli were delineated to suggest how social ties influence consumers during their shopping processes. Larger P2 (fronto-central scalp areas) and P3 (central and posterior-parietal scalp areas) components under stranger condition were elicited successfully. These findings demonstrate that the cognitive and emotional processing of friend and stranger stimuli occurs at stages of neural activity, and can be indicated by the P2 and P3 components. Electrophysiological data also support the hypothesis that different neural and emotional processing magnitude and strength underlie friend and stranger effect in the context of consumer purchase. During this process, the perception of stimuli evoked P2, subsequently emotional processing and attention modulation were activated and indicated by P2 and P3. The friend dominated phenomenon can be interpreted as the result of distinctive neurocognitive and emotional processing magnitude, which suggests that psychological and emotional factors can guide consumer decision making. This study consolidates that event related potential (ERP) methodology is likely to be a more sensitive method for investigating consumer behaviors. From the perspectives of management and marketing, our findings show that the P2 and P3 components can be employed as an indicator to probe the influential factors of consumer purchase intentions.

  15. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone.

    Science.gov (United States)

    Blum, Sarah; Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G

    2017-01-01

    Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms.

  16. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone

    Directory of Open Access Journals (Sweden)

    Sarah Blum

    2017-01-01

    Full Text Available Objective. Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android supports a standardized communication interface to exchange information with external software and hardware. Approach. In order to implement a closed-loop brain-computer interface (BCI on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. Main Results. We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. Significance. We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms.

  17. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone

    Science.gov (United States)

    Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G.

    2017-01-01

    Objective Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. Approach In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. Main Results We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. Significance We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms. PMID:29349070

  18. Effects of low-frequency repetitive transcranial magnetic stimulation on event-related potential P300

    Science.gov (United States)

    Torii, Tetsuya; Sato, Aya; Iwahashi, Masakuni; Iramina, Keiji

    2012-04-01

    The present study analyzed the effects of repetitive transcranial magnetic stimulation (rTMS) on brain activity. P300 latency of event-related potential (ERP) was used to evaluate the effects of low-frequency and short-term rTMS by stimulating the supramarginal gyrus (SMG), which is considered to be the related area of P300 origin. In addition, the prolonged stimulation effects on P300 latency were analyzed after applying rTMS. A figure-eight coil was used to stimulate left-right SMG, and intensity of magnetic stimulation was 80% of motor threshold. A total of 100 magnetic pulses were applied for rTMS. The effects of stimulus frequency at 0.5 or 1 Hz were determined. Following rTMS, an odd-ball task was performed and P300 latency of ERP was measured. The odd-ball task was performed at 5, 10, and 15 min post-rTMS. ERP was measured prior to magnetic stimulation as a control. Electroencephalograph (EEG) was measured at Fz, Cz, and Pz that were indicated by the international 10-20 electrode system. Results demonstrated that different effects on P300 latency occurred between 0.5-1 Hz rTMS. With 1 Hz low-frequency magnetic stimulation to the left SMG, P300 latency decreased. Compared to the control, the latency time difference was approximately 15 ms at Cz. This decrease continued for approximately 10 min post-rTMS. In contrast, 0.5 Hz rTMS resulted in delayed P300 latency. Compared to the control, the latency time difference was approximately 20 ms at Fz, and this delayed effect continued for approximately 15 min post-rTMS. Results demonstrated that P300 latency varied according to rTMS frequency. Furthermore, the duration of the effect was not similar for stimulus frequency of low-frequency rTMS.

  19. A guide to collect data from abnormal events in industrial radiography

    International Nuclear Information System (INIS)

    Martins, M.M.; Silva, F.C.; Tahuata, L.

    1996-01-01

    The review of abnormal radiological events provides important information to evaluate the reasons of their cause. The IAEA and other institutions have dedicated special attention to this subject, studying mainly radiological accidents that affected individuals from the public and workers exposed. According to UNSCEAR, industrial radiography and other radiographic techniques are responsible for the great number of overexposure events. This paper can be used by health physicists and other professionals as a guide to extract the most important information related to abnormal events that happen in industrial radiography. This guide was used in 1992 in the information registration data base (1976-1992) of the Brazilian Nuclear Energy Commission (CNEN), where 175 events were identified with a minimal number of information for the analysis. The collected data is presented too. (authors). 6 refs., 1 ill

  20. Specific Reaction Patterns to Distinct Positive Emotional Cues Related to Incentive Motivation in Dependence of the Taq1A-Polymorphism: Molecular Genetic Associations of Early and Late Event-Related Potentials.

    Science.gov (United States)

    Munk, Aisha J L; Wielpuetz, Catrin; Osinsky, Roman; Müller, Erik M; Grant, Phillip; Hennig, Jürgen

    2016-01-01

    Early and late event-related potential (ERP) responses, representing early subconscious and late motivational processes, were recorded for positive emotional words related to 'wanting' and 'liking', in dependence of the dopamine-related Taq1A genotype (ANKK1/DRD2). Research suggests that 'wanting' as opposed to 'liking' is related to dopaminergic processes. Therefore, it was hypothesized that risk allele carriers of the Taq1A polymorphism exhibit late ERP changes in reaction to words representing incentive motivation, i.e. 'wanting' (word categories 'lust' and 'anticipation'), but not to words representing 'liking' ('closeness'). Seventy-two male participants performed an emotional-word Stroop task during EEG recording and were genotyped according to the Taq1A polymorphism of ANKK1/DRD2. Positive emotional words related to anticipation and lust revealed blunted responses in the late positive potential (LPP) in carriers of the A1 allele, an effect absent in response to 'liking'-related words. These differences were not evident in the earlier posterior negativity (EPN). As no differences in dependence of the Taq1A genotype were observed in reaction to 'wanting'- and 'liking'-related words in the EPN, but merely in the LPP, it can be assumed that incentive-motivational stimuli only modify motivation-related ERP responses in carriers of the A1 allele of the Taq1A polymorphism, indicating the role of dopamine in late ERP components. © 2016 S. Karger AG, Basel.

  1. Declarative memory formation in hippocampal sclerosis: an intracranial event-related potentials study.

    NARCIS (Netherlands)

    Mormann, F.; Fernandez, G.S.E.; Klaver, P.; Weber, B.; Elger, C.E.; Fell, J.

    2007-01-01

    The functional deficits associated with hippocampal sclerosis during declarative memory formation are largely unknown. In this study, we analyzed intracranial event-related potentials recorded from the medial temporal lobes of nine epilepsy patients performing a word memorization task. We used

  2. Cognitive Association Formation in Episodic Memory: Evidence from Event-Related Potentials

    Science.gov (United States)

    Kim, Alice S. N.; Vallesi, Antonino; Picton, Terence W.; Tulving, Endel

    2009-01-01

    The present study focused on the processes underlying cognitive association formation by investigating subsequent memory effects. Event-related potentials were recorded as participants studied pairs of words, presented one word at a time, for later recall. The findings showed that a frontal-positive late wave (LW), which occurred 1-1.6 s after the…

  3. Immediate relativity: EEG reveals early engagement of comparison in social information processing.

    Science.gov (United States)

    Ohmann, Katharina; Stahl, Jutta; Mussweiler, Thomas; Kedia, Gayannée

    2016-11-01

    A wide array of social decisions relies on social comparisons. As such, these decisions require fast access to relative information. Therefore, we expect that signatures of the comparative process should be observable in electrophysiological components at an early stage of information processing. However, to date, little is known about the neural time course of social target comparisons. Therefore, we tested this hypothesis in 2 electroencephalography (EEG) studies using a social distance effect paradigm. The distance effect capitalizes on the fact that stimuli close on a certain dimension take longer to compare than stimuli clearly differing on this dimension. Here, we manipulated the distance of face characteristics regarding their levels of attractiveness (Study 1) and trustworthiness (Study 2), 2 essential social dimensions. In both studies, size comparisons served as a nonsocial control condition. In Study 1, distance related effects were apparent 170 ms (vertex positive potential, VPP) and 200 ms (N2) after stimulus onset for attractiveness comparisons. In Study 2, trustworthiness comparisons took effect already after 100 ms (N1) and likewise carried over to an event-related N2. Remarkably, we observed a similar temporal pattern for social (attractiveness, trustworthiness) and nonsocial (size) dimensions. These results speak in favor of an early encoding of comparative information and emphasize the primary role of comparison in social information processing. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies.

    Science.gov (United States)

    Puce, Aina; Hämäläinen, Matti S

    2017-05-31

    Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive electrophysiological methods, which record electric potentials and magnetic fields due to electric currents in synchronously-active neurons. With MEG being more sensitive to neural activity from tangential currents and EEG being able to detect both radial and tangential sources, the two methods are complementary. Over the years, neurophysiological studies have changed considerably: high-density recordings are becoming de rigueur; there is interest in both spontaneous and evoked activity; and sophisticated artifact detection and removal methods are available. Improved head models for source estimation have also increased the precision of the current estimates, particularly for EEG and combined EEG/MEG. Because of their complementarity, more investigators are beginning to perform simultaneous EEG/MEG studies to gain more complete information about neural activity. Given the increase in methodological complexity in EEG/MEG, it is important to gather data that are of high quality and that are as artifact free as possible. Here, we discuss some issues in data acquisition and analysis of EEG and MEG data. Practical considerations for different types of EEG and MEG studies are also discussed.

  5. A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies

    Directory of Open Access Journals (Sweden)

    Aina Puce

    2017-05-01

    Full Text Available Electroencephalography (EEG and magnetoencephalography (MEG are non-invasive electrophysiological methods, which record electric potentials and magnetic fields due to electric currents in synchronously-active neurons. With MEG being more sensitive to neural activity from tangential currents and EEG being able to detect both radial and tangential sources, the two methods are complementary. Over the years, neurophysiological studies have changed considerably: high-density recordings are becoming de rigueur; there is interest in both spontaneous and evoked activity; and sophisticated artifact detection and removal methods are available. Improved head models for source estimation have also increased the precision of the current estimates, particularly for EEG and combined EEG/MEG. Because of their complementarity, more investigators are beginning to perform simultaneous EEG/MEG studies to gain more complete information about neural activity. Given the increase in methodological complexity in EEG/MEG, it is important to gather data that are of high quality and that are as artifact free as possible. Here, we discuss some issues in data acquisition and analysis of EEG and MEG data. Practical considerations for different types of EEG and MEG studies are also discussed.

  6. Objective selection of EEG late potentials through residual dependence estimation of independent components

    International Nuclear Information System (INIS)

    Milanesi, M; James, C J; Martini, N; Menicucci, D; Gemignani, A; Ghelarducci, B; Landini, L

    2009-01-01

    This paper presents a novel method to objectively select electroencephalographic (EEG) cortical sources estimated by independent component analysis (ICA) in event-related potential (ERP) studies. A proximity measure based on mutual information is employed to estimate residual dependences of the components that are then hierarchically clustered based on these residual dependences. Next, the properties of each group of components are evaluated at each level of the hierarchical tree by two indices that aim to assess both cluster tightness and physiological reliability through a template matching process. These two indices are combined in three different approaches to bring to light the hierarchical structure of the cluster organizations. Our method is tested on a set of experiments with the purpose of enhancing late positive ERPs elicited by emotional picture stimuli. Results suggest that the best way to look for physiologically plausible late positive potential (LPP) sources is to explore in depth the tightness of those clusters that, taken together, best resemble the template. According to our results, after brain sources clustering, LPPs are always identified more accurately than from ensemble-averaged raw data. Since the late components of an ERP involve the same associative areas, regardless of the modality of stimulation or specific tasks administered, the proposed method can be simply adapted to other ERP studies, and extended from psychophysiological studies to pathological or sport training evaluation support

  7. Characterization of the cerebral activity by time–frequency representation of evoked EEG potentials

    International Nuclear Information System (INIS)

    Clariá, Francesc; Vallverdú, Montserrat; Romero, Sergio; Caminal, Pere; Riba, Jordi; Barbanoj, Manuel J

    2011-01-01

    Event-related brain potentials (ERPs) are the electrical response of the brain while performing a particular task. Methods traditionally used to study ERPs measure the amplitude and duration of the waveform in order to quantify the changes, being signal morphology dependent. However, the frequency characteristics of those events remain uncovered. The aim of this work was the study of new measures to characterize, by means of time–frequency representation (TFR) techniques, the ERPs recorded while subjects conducted a choice reaction time task (Ericksen flanker task) following the administration of different alprazolam doses. Several measures defined from energy, instantaneous frequency and group delay functions were obtained by means of TFR techniques applied to the Choi–Williams distribution (CWD) of EEG signals. These measures, which are signal morphology independent, were studied in four frequency bands, δ (0–4 Hz), θ (4–8 Hz), α (8–15 Hz), β (15–30 Hz), and for certain time periods. Based on these measures, differences between ERPs were analyzed by comparing the different response types (successes or successfully corrected failures) of the subject performing the task, and comparing the applied drug doses. For each subject, the CWD of EEG signals was applied in two different ways: (a) all ERPs were averaged per channel, and then the CWD was applied; (b) the CWD was applied to each one of the ERPs. When the CWD was applied to each ERP, the energy measures in the δ, θ and β bands, the instantaneous frequency measures in the α and β bands, and the group delay measures in the δ, θ and α bands showed a statistically significant level p < 0.0005 in the analysis of the response type. Also, the energy measures in the θ and β bands and the instantaneous frequency measures in the α band showed statistically significant differences (p < 0.0005) between placebo and low and high drug doses. In contrast, poor results were obtained when all epochs of

  8. Intracranial EEG correlates of implicit relational inference within the hippocampus.

    Science.gov (United States)

    Reber, T P; Do Lam, A T A; Axmacher, N; Elger, C E; Helmstaedter, C; Henke, K; Fell, J

    2016-01-01

    Drawing inferences from past experiences enables adaptive behavior in future situations. Inference has been shown to depend on hippocampal processes. Usually, inference is considered a deliberate and effortful mental act which happens during retrieval, and requires the focus of our awareness. Recent fMRI studies hint at the possibility that some forms of hippocampus-dependent inference can also occur during encoding and possibly also outside of awareness. Here, we sought to further explore the feasibility of hippocampal implicit inference, and specifically address the temporal evolution of implicit inference using intracranial EEG. Presurgical epilepsy patients with hippocampal depth electrodes viewed a sequence of word pairs, and judged the semantic fit between two words in each pair. Some of the word pairs entailed a common word (e.g., "winter-red," "red-cat") such that an indirect relation was established in following word pairs (e.g., "winter-cat"). The behavioral results suggested that drawing inference implicitly from past experience is feasible because indirect relations seemed to foster "fit" judgments while the absence of indirect relations fostered "do not fit" judgments, even though the participants were unaware of the indirect relations. A event-related potential (ERP) difference emerging 400 ms post-stimulus was evident in the hippocampus during encoding, suggesting that indirect relations were already established automatically during encoding of the overlapping word pairs. Further ERP differences emerged later post-stimulus (1,500 ms), were modulated by the participants' responses and were evident during encoding and test. Furthermore, response-locked ERP effects were evident at test. These ERP effects could hence be a correlate of the interaction of implicit memory with decision-making. Together, the data map out a time-course in which the hippocampus automatically integrates memories from discrete but related episodes to implicitly influence future

  9. Applying Improved Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG

    Directory of Open Access Journals (Sweden)

    Ming-ai Li

    2017-01-01

    Full Text Available Electroencephalography (EEG is considered the output of a brain and it is a bioelectrical signal with multiscale and nonlinear properties. Motor Imagery EEG (MI-EEG not only has a close correlation with the human imagination and movement intention but also contains a large amount of physiological or disease information. As a result, it has been fully studied in the field of rehabilitation. To correctly interpret and accurately extract the features of MI-EEG signals, many nonlinear dynamic methods based on entropy, such as Approximate Entropy (ApEn, Sample Entropy (SampEn, Fuzzy Entropy (FE, and Permutation Entropy (PE, have been proposed and exploited continuously in recent years. However, these entropy-based methods can only measure the complexity of MI-EEG based on a single scale and therefore fail to account for the multiscale property inherent in MI-EEG. To solve this problem, Multiscale Sample Entropy (MSE, Multiscale Permutation Entropy (MPE, and Multiscale Fuzzy Entropy (MFE are developed by introducing scale factor. However, MFE has not been widely used in analysis of MI-EEG, and the same parameter values are employed when the MFE method is used to calculate the fuzzy entropy values on multiple scales. Actually, each coarse-grained MI-EEG carries the characteristic information of the original signal on different scale factors. It is necessary to optimize MFE parameters to discover more feature information. In this paper, the parameters of MFE are optimized independently for each scale factor, and the improved MFE (IMFE is applied to the feature extraction of MI-EEG. Based on the event-related desynchronization (ERD/event-related synchronization (ERS phenomenon, IMFE features from multi channels are fused organically to construct the feature vector. Experiments are conducted on a public dataset by using Support Vector Machine (SVM as a classifier. The experiment results of 10-fold cross-validation show that the proposed method yields

  10. Newly-formed emotional memories guide selective attention processes: Evidence from event-related potentials

    OpenAIRE

    Harald T. Schupp; Ursula Kirmse; Ralf Schmälzle; Tobias Flaisch; Britta Renner

    2016-01-01

    Emotional cues can guide selective attention processes. However, emotional stimuli can both activate long-term memory representations reflecting general world knowledge and engage newly formed memory representations representing specific knowledge from the immediate past. Here, the self-completion feature of associative memory was utilized to assess the regulation of attention processes by newly-formed emotional memory. First, new memory representations were formed by presenting pictures depi...

  11. Stimulus-dependent spiking relationships with the EEG

    Science.gov (United States)

    Snyder, Adam C.

    2015-01-01

    The development and refinement of noninvasive techniques for imaging neural activity is of paramount importance for human neuroscience. Currently, the most accessible and popular technique is electroencephalography (EEG). However, nearly all of what we know about the neural events that underlie EEG signals is based on inference, because of the dearth of studies that have simultaneously paired EEG recordings with direct recordings of single neurons. From the perspective of electrophysiologists there is growing interest in understanding how spiking activity coordinates with large-scale cortical networks. Evidence from recordings at both scales highlights that sensory neurons operate in very distinct states during spontaneous and visually evoked activity, which appear to form extremes in a continuum of coordination in neural networks. We hypothesized that individual neurons have idiosyncratic relationships to large-scale network activity indexed by EEG signals, owing to the neurons' distinct computational roles within the local circuitry. We tested this by recording neuronal populations in visual area V4 of rhesus macaques while we simultaneously recorded EEG. We found substantial heterogeneity in the timing and strength of spike-EEG relationships and that these relationships became more diverse during visual stimulation compared with the spontaneous state. The visual stimulus apparently shifts V4 neurons from a state in which they are relatively uniformly embedded in large-scale network activity to a state in which their distinct roles within the local population are more prominent, suggesting that the specific way in which individual neurons relate to EEG signals may hold clues regarding their computational roles. PMID:26108954

  12. Event-related potentials during visual selective attention in children of alcoholics.

    Science.gov (United States)

    van der Stelt, O; Gunning, W B; Snel, J; Kok, A

    1998-12-01

    Event-related potentials were recorded from 7- to 18-year-old children of alcoholics (COAs, n = 50) and age- and sex-matched control children (n = 50) while they performed a visual selective attention task. The task was to attend selectively to stimuli with a specified color (red or blue) in an attempt to detect the occurrence of target stimuli. COAs manifested a smaller P3b amplitude to attended-target stimuli over the parietal and occipital scalp than did the controls. A more specific analysis indicated that both the attentional relevance and the target properties of the eliciting stimulus determined the observed P3b amplitude differences between COAs and controls. In contrast, no significant group differences were observed in attention-related earlier occurring event-related potential components, referred to as frontal selection positivity, selection negativity, and N2b. These results represent neurophysiological evidence that COAs suffer from deficits at a late (semantic) level of visual selective information processing that are unlikely a consequence of deficits at earlier (sensory) levels of selective processing. The findings support the notion that a reduced visual P3b amplitude in COAs represents a high-level processing dysfunction indicating their increased vulnerability to alcoholism.

  13. Simultaneous odour-face presentation strengthens hedonic evaluations and event-related potential responses influenced by unpleasant odour.

    Science.gov (United States)

    Cook, Stephanie; Kokmotou, Katerina; Soto, Vicente; Wright, Hazel; Fallon, Nicholas; Thomas, Anna; Giesbrecht, Timo; Field, Matt; Stancak, Andrej

    2018-04-13

    Odours alter evaluations of concurrently presented visual stimuli, such as faces. Stimulus onset asynchrony (SOA) is known to affect evaluative priming in various sensory modalities. However, effects of SOA on odour priming of visual stimuli are not known. The present study aimed to analyse whether subjective and cortical activation changes during odour priming would vary as a function of SOA between odours and faces. Twenty-eight participants rated faces under pleasant, unpleasant, and no-odour conditions using visual analogue scales. In half of trials, faces appeared one-second after odour offset (SOA 1). In the other half of trials, faces appeared during the odour pulse (SOA 2). EEG was recorded continuously using a 128-channel system, and event-related potentials (ERPs) to face stimuli were evaluated using statistical parametric mapping (SPM). Faces presented during unpleasant-odour stimulation were rated significantly less pleasant than the same faces presented one-second after offset of the unpleasant odour. Scalp-time clusters in the late-positive-potential (LPP) time-range showed an interaction between odour and SOA effects, whereby activation was stronger for faces presented simultaneously with the unpleasant odour, compared to the same faces presented after odour offset. Our results highlight stronger unpleasant odour priming with simultaneous, compared to delayed, odour-face presentation. Such effects were represented in both behavioural and neural data. A greater cortical and subjective response during simultaneous presentation of faces and unpleasant odour may have an adaptive role, allowing for a prompt and focused behavioural reaction to a concurrent stimulus if an aversive odour would signal danger, or unwanted social interaction. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. EEG Oscillations Are Modulated in Different Behavior-Related Networks during Rhythmic Finger Movements.

    Science.gov (United States)

    Seeber, Martin; Scherer, Reinhold; Müller-Putz, Gernot R

    2016-11-16

    Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for α (10-12 Hz) and β (18-24 Hz), but increase for high γ (60-80 Hz) frequencies during the entire movement period. Additionally, we found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster movement cadences, movement phase-related amplitudes included high β (24-30 Hz) frequencies in prefrontal areas. Interestingly, the spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work, improves the interpretation of EEG sources in relation to human motor behavior. EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG sources during rhythmic finger movements, we distinguish sustained from

  15. Children's Depressive Symptoms in Relation to EEG Frontal Asymmetry and Maternal Depression

    Science.gov (United States)

    Feng, Xin; Forbes, Erika E.; Kovacs, Maria; George, Charles J.; Lopez-Duran, Nestor L.; Fox, Nathan A.; Cohn, Jeffrey F.

    2012-01-01

    This study examined the relations of school-age children's depressive symptoms, frontal EEG asymmetry, and maternal history of childhood-onset depression (COD). Participants were 73 children, 43 of whom had mothers with COD. Children's EEG was recorded at baseline and while watching happy and sad film clips. Depressive symptoms were measured using…

  16. Event planning the ultimate guide to successful meetings, corporate events, fundraising galas, conferences, conventions, incentives and other special events

    CERN Document Server

    Allen, Judy

    2009-01-01

    This bestselling all–in–one guide to the event planning business is back and better than ever, fully updated and revised to reflect the very latest trends and best practices in the industry. This handy, comprehensive guide includes forms, checklists, and tips for managing events, as well as examples and case studies of both successful and unsuccessful events. Judy Allen (Toronto, ON, Canada) is founder and President of Judy Allen Productions, a full–service event planning production company.

  17. PyEEG: an open source Python module for EEG/MEG feature extraction.

    Science.gov (United States)

    Bao, Forrest Sheng; Liu, Xin; Zhang, Christina

    2011-01-01

    Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.

  18. EEG and Coma.

    Science.gov (United States)

    Ardeshna, Nikesh I

    2016-03-01

    Coma is defined as a state of extreme unresponsiveness, in which a person exhibits no voluntary movement or behavior even to painful stimuli. The utilization of EEG for patients in coma has increased dramatically over the last few years. In fact, many institutions have set protocols for continuous EEG (cEEG) monitoring for patients in coma due to potential causes such as subarachnoid hemorrhage or cardiac arrest. Consequently, EEG plays an important role in diagnosis, managenent, and in some cases even prognosis of coma patients.

  19. Functional Connectivity Changes in Resting-State EEG as Potential Biomarker for Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Iyer, Parameswaran Mahadeva; Egan, Catriona; Pinto-Grau, Marta; Burke, Tom; Elamin, Marwa; Nasseroleslami, Bahman; Pender, Niall; Lalor, Edmund C; Hardiman, Orla

    2015-01-01

    Amyotrophic Lateral Sclerosis (ALS) is heterogeneous and overlaps with frontotemporal dementia. Spectral EEG can predict damage in structural and functional networks in frontotemporal dementia but has never been applied to ALS. 18 incident ALS patients with normal cognition and 17 age matched controls underwent 128 channel EEG and neuropsychology assessment. The EEG data was analyzed using FieldTrip software in MATLAB to calculate simple connectivity measures and scalp network measures. sLORETA was used in nodal analysis for source localization and same methods were applied as above to calculate nodal network measures. Graph theory measures were used to assess network integrity. Cross spectral density in alpha band was higher in patients. In ALS patients, increased degree values of the network nodes was noted in the central and frontal regions in the theta band across seven of the different connectivity maps (pEEG has potential utility as a biomarker in ALS.

  20. [Training cortical signals by means of a BMI-EEG system, its evolution and intervention. A case report].

    Science.gov (United States)

    Monge-Pereira, E; Casatorres Perez-Higueras, I; Fernandez-Gonzalez, P; Ibanez-Pereda, J; Serrano, J I; Molina-Rueda, F

    2017-04-16

    In the last years, new technologies such as the brain-machine interfaces (BMI) have been incorporated in the rehabilitation process of subjects with stroke. These systems are able to detect motion intention, analyzing the cortical signals using different techniques such as the electroencephalography (EEG). This information could guide different interfaces such as robotic devices, electrical stimulation or virtual reality. A 40 years-old man with stroke with two months from the injury participated in this study. We used a BMI based on EEG. The subject's motion intention was analyzed calculating the event-related desynchronization. The upper limb motor function was evaluated with the Fugl-Meyer Assessment and the participant's satisfaction was evaluated using the QUEST 2.0. The intervention using a physical therapist as an interface was carried out without difficulty. The BMI systems detect cortical changes in a subacute stroke subject. These changes are coherent with the evolution observed using the Fugl-Meyer Assessment.

  1. Removing an intersubject variance component in a general linear model improves multiway factoring of event-related spectral perturbations in group EEG studies.

    Science.gov (United States)

    Spence, Jeffrey S; Brier, Matthew R; Hart, John; Ferree, Thomas C

    2013-03-01

    Linear statistical models are used very effectively to assess task-related differences in EEG power spectral analyses. Mixed models, in particular, accommodate more than one variance component in a multisubject study, where many trials of each condition of interest are measured on each subject. Generally, intra- and intersubject variances are both important to determine correct standard errors for inference on functions of model parameters, but it is often assumed that intersubject variance is the most important consideration in a group study. In this article, we show that, under common assumptions, estimates of some functions of model parameters, including estimates of task-related differences, are properly tested relative to the intrasubject variance component only. A substantial gain in statistical power can arise from the proper separation of variance components when there is more than one source of variability. We first develop this result analytically, then show how it benefits a multiway factoring of spectral, spatial, and temporal components from EEG data acquired in a group of healthy subjects performing a well-studied response inhibition task. Copyright © 2011 Wiley Periodicals, Inc.

  2. STOP-EVENT-RELATED POTENTIALS FROM INTRACRANIAL ELECTRODES REVEAL A KEY ROLE OF PREMOTOR AND MOTOR CORTICES IN STOPPING ONGOING MOVEMENTS

    Directory of Open Access Journals (Sweden)

    Maurizio eMattia

    2012-06-01

    Full Text Available In humans, the ability to withhold manual motor responses seems to rely on a right-lateralized frontal–basal ganglia–thalamic network, including the pre-supplementary motor area and the inferior frontal gyrus. These areas should drive subthalamic nuclei to implement movement inhibition via the hyperdirect pathway. The output of this network is expected to influence those cortical areas underlying limb movement preparation and initiation, i.e. premotor (PMA and primary motor (M1 cortices. Electroencephalographic (EEG studies have shown an enhancement of the N200/P300 complex in the event-related potentials (ERPs when a planned reaching movement is successfully stopped after the presentation of an infrequent stop-signal. PMA and M1 have been suggested as possible neural sources of this ERP complex but, due to the limited spatial resolution of scalp EEG, it is not yet clear which cortical areas contribute to its generation. To elucidate the role of motor cortices, we recorded epicortical ERPs from the lateral surface of the fronto-temporal lobes of five pharmacoresistant epileptic patients performing a reaching version of the countermanding task while undergoing presurgical monitoring. We consistently found a stereotyped ERP complex on a single-trial level when a movement was successfully cancelled. These ERPs were selectively expressed in M1, PMA and Brodmann's area (BA 9 and their onsets preceded the end of the stop process, suggesting a causal involvement in this executive function. Such ERPs also occurred in unsuccessful-stop trials, that is, when subjects moved despite the occurrence of a stop-signal, mostly when they had long reaction times. These findings support the hypothesis that motor cortices are the final target of the inhibitory command elaborated by the frontal–basal ganglia–thalamic network.

  3. Standardized Computer-based Organized Reporting of EEG: SCORE

    Science.gov (United States)

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C; Fuglsang-Frederiksen, Anders; Martins-da-Silva, António; Trinka, Eugen; Visser, Gerhard; Rubboli, Guido; Hjalgrim, Helle; Stefan, Hermann; Rosén, Ingmar; Zarubova, Jana; Dobesberger, Judith; Alving, Jørgen; Andersen, Kjeld V; Fabricius, Martin; Atkins, Mary D; Neufeld, Miri; Plouin, Perrine; Marusic, Petr; Pressler, Ronit; Mameniskiene, Ruta; Hopfengärtner, Rüdiger; Emde Boas, Walter; Wolf, Peter

    2013-01-01

    The electroencephalography (EEG) signal has a high complexity, and the process of extracting clinically relevant features is achieved by visual analysis of the recordings. The interobserver agreement in EEG interpretation is only moderate. This is partly due to the method of reporting the findings in free-text format. The purpose of our endeavor was to create a computer-based system for EEG assessment and reporting, where the physicians would construct the reports by choosing from predefined elements for each relevant EEG feature, as well as the clinical phenomena (for video-EEG recordings). A working group of EEG experts took part in consensus workshops in Dianalund, Denmark, in 2010 and 2011. The faculty was approved by the Commission on European Affairs of the International League Against Epilepsy (ILAE). The working group produced a consensus proposal that went through a pan-European review process, organized by the European Chapter of the International Federation of Clinical Neurophysiology. The Standardised Computer-based Organised Reporting of EEG (SCORE) software was constructed based on the terms and features of the consensus statement and it was tested in the clinical practice. The main elements of SCORE are the following: personal data of the patient, referral data, recording conditions, modulators, background activity, drowsiness and sleep, interictal findings, “episodes” (clinical or subclinical events), physiologic patterns, patterns of uncertain significance, artifacts, polygraphic channels, and diagnostic significance. The following specific aspects of the neonatal EEGs are scored: alertness, temporal organization, and spatial organization. For each EEG finding, relevant features are scored using predefined terms. Definitions are provided for all EEG terms and features. SCORE can potentially improve the quality of EEG assessment and reporting; it will help incorporate the results of computer-assisted analysis into the report, it will make

  4. Abnormal occipital event-related potentials in Parkinson's disease with concomitant REM sleep behavior disorder.

    Science.gov (United States)

    Gaudreault, Pierre-Olivier; Gagnon, Jean-François; Montplaisir, Jacques; Vendette, Mélanie; Postuma, Ronald B; Gagnon, Katia; Gosselin, Nadia

    2013-02-01

    Rapid eye movement sleep behavior disorder is found in 33-46% of patients with Parkinson's disease and was shown to be associated with cognitive deficits. Our goal was to improve our understanding of the role of this sleep disorder in cerebral dysfunction occurring in Parkinson's disease using a visual cognitive task and event-related potentials. Sixteen patients with Parkinson's disease and rapid eye movement sleep behavior disorder, 15 patients with Parkinson's disease without rapid eye movement sleep behavior disorder and 16 healthy control subjects were included. The amplitude and latency of event-related potentials were compared between groups. No group differences were found for reaction times or accuracy. A Group effect was found for P2 wave amplitude; patients with rapid eye movement sleep behavior disorder had increased P2 in comparison with the control group (p disorder were associated with abnormal visual P2 component of event-related potentials. Although patients with Parkinson's disease alone were not significantly different from patients with combined Parkinson's disease and rapid eye movement sleep behavior disorder, their P2 amplitudes were not sufficiently abnormal to differ from that of control subjects. This study confirms that rapid eye movement sleep behavior disorder accentuates cerebral dysfunctions in Parkinson's disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. EEG oscillatory power dissociates between distress- and depression-related psychopathology in subjective tinnitus.

    Science.gov (United States)

    Meyer, Martin; Neff, Patrick; Grest, Angelina; Hemsley, Colette; Weidt, Steffi; Kleinjung, Tobias

    2017-05-15

    Recent research has used source estimation approaches to identify spatially distinct neural configurations in individuals with chronic, subjective tinnitus (TI). The results of these studies are often heterogeneous, a fact which may be partly explained by an inherent heterogeneity in the TI population and partly by the applied EEG data analysis procedure and EEG hardware. Hence this study was performed to re-enact a formerly published study (Joos et al., 2012) to better understand the reason for differences and overlap between studies from different labs. We re-investigated the relationship between neural oscillations and behavioral measurements of affective states in TI, namely depression and tinnitus-related distress by recruiting 45 TI who underwent resting-state EEG. Comprehensive psychopathological (depression and tinnitus-related distress scores) and psychometric data (including other tinnitus characteristics) were gathered. A principal component analysis (PCA) was performed to unveil independent factors that predict distinct aspects of tinnitus-related pathology. Furthermore, we correlated EEG power changes in the standard frequency bands with the behavioral scores for both the whole-brain level and, as a post hoc approach, for selected regions of interest (ROI) based on sLORETA. Behavioral data revealed significant relationships between measurements of depression and tinnitus-related distress. Notably, no significant results were observed for the depressive scores and modulations of the EEG signal. However, akin to the former study we evidenced a significant relationship between a power increase in the β-bands and tinnitus-related distress. In conclusion, it has emerged that depression and tinnitus-related distress, even though they are assumed not to be completely independent, manifest in distinct neural configurations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Age-related reduction of hemispheric lateralisation for spatial attention: An EEG study.

    Science.gov (United States)

    Learmonth, Gemma; Benwell, Christopher S Y; Thut, Gregor; Harvey, Monika

    2017-06-01

    A group-level visuospatial attention bias towards the left side of space (pseudoneglect) is consistently observed in young adults, which is likely to be a consequence of right parieto-occipital dominance for spatial attention. Conversely, healthy older adults demonstrate a rightward shift of this behavioural bias, hinting that an age-related reduction of lateralised neural activity may occur within visuospatial attention networks. We compared young (aged 18-25) and older (aged 60-80) adults on a computerised line bisection (landmark) task whilst recording event-related potentials (ERPs). Full-scalp cluster mass permutation tests identified a larger right parieto-occipital response for long lines compared to short in young adults (confirming Benwell et al., 2014a) which was not present in the older group. To specifically investigate age-related differences in hemispheric lateralisation, cluster mass permutation tests were then performed on a lateralised EEG dataset (RH-LH electrodes). A period of right lateralisation was identified in response to long lines in young adults, which was not present for short lines. No lateralised clusters were present for either long or short lines in older adults. Additionally, a reduced P300 component amplitude was observed for older adults relative to young. We therefore report here, for the first time, an age-related and stimulus-driven reduction of right hemispheric control of spatial attention in older adults. Future studies will need to determine whether this is representative of the normal aging process or an early indicator of neurodegeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Brain activity and cognitive transition during childhood: A longitudinal event-related brain potential study.

    NARCIS (Netherlands)

    Stauder, J.E.A.; Molenaar, P.C.M.; van der Molen, M.W.

    1998-01-01

    Examined the relation between brain activation and cognitive development using event-related brain potentials (ERPs) and a longitudinal design. 5 yr old females performed a visual recognition ('oddball') task and an experimental analogue of the Piagetian conservation of liquid quantity task At three

  8. Detection of Lateralized Readiness Potential using Emotiv EPOC

    OpenAIRE

    Bártík, Radovan

    2013-01-01

    Emotiv EPOC is a low-cost consumer headset capable of acquiring a raw EEG signal. The thesis evaluates its usage for an acquisition of research event-related potentials. A controlled laboratory experiment was performed with an objective of isolating the Bereitschaftspotential (Readiness Potential) and other movement-related potentials and comparing the results with the results of the previous research. The possibility of measuring the potential with Emotiv EPOC was not confirmed, most probabl...

  9. Representations in human visual short-term memory : an event-related brain potential study

    NARCIS (Netherlands)

    Klaver, P; Smid, HGOM; Heinze, HJ

    1999-01-01

    Behavioral measures and event-related potentials (ERPs) were recorded from 12 subjects while performing three delayed matching-to-sample tasks. The task instructions indicated whether stimulus locations, shapes or conjunctions of locations and shapes had to be memorized and matched against a probe.

  10. Working memory processes show different degrees of lateralization : Evidence from event-related potentials

    NARCIS (Netherlands)

    Talsma, D; Wijers, A.A.; Klaver, P; Mulder, G.

    This study aimed to identify different processes in working memory, using event-related potentials (ERPs) and response times. Abstract polygons were presented for memorization and subsequent recall in a delayed matching-to-sample paradigm. Two polygons were presented bilaterally for memorization and

  11. Modulation of Neural Activity during Guided Viewing of Visual Art.

    Science.gov (United States)

    Herrera-Arcos, Guillermo; Tamez-Duque, Jesús; Acosta-De-Anda, Elsa Y; Kwan-Loo, Kevin; de-Alba, Mayra; Tamez-Duque, Ulises; Contreras-Vidal, Jose L; Soto, Rogelio

    2017-01-01

    Mobile Brain-Body Imaging (MoBI) technology was deployed to record multi-modal data from 209 participants to examine the brain's response to artistic stimuli at the Museo de Arte Contemporáneo (MARCO) in Monterrey, México. EEG signals were recorded as the subjects walked through the exhibit in guided groups of 6-8 people. Moreover, guided groups were either provided with an explanation of each art piece (Guided-E), or given no explanation (Guided-NE). The study was performed using portable Muse (InteraXon, Inc, Toronto, ON, Canada) headbands with four dry electrodes located at AF7, AF8, TP9, and TP10. Each participant performed a baseline (BL) control condition devoid of artistic stimuli and selected his/her favorite piece of art (FP) during the guided tour. In this study, we report data related to participants' demographic information and aesthetic preference as well as effects of art viewing on neural activity (EEG) in a select subgroup of 18-30 year-old subjects (Nc = 25) that generated high-quality EEG signals, on both BL and FP conditions. Dependencies on gender, sensor placement, and presence or absence of art explanation were also analyzed. After denoising, clustering of spectral EEG models was used to identify neural patterns associated with BL and FP conditions. Results indicate statistically significant suppression of beta band frequencies (15-25 Hz) in the prefrontal electrodes (AF7 and AF8) during appreciation of subjects' favorite painting, compared to the BL condition, which was significantly different from EEG responses to non-favorite paintings (NFP). No significant differences in brain activity in relation to the presence or absence of explanation during exhibit tours were found. Moreover, a frontal to posterior asymmetry in neural activity was observed, for both BL and FP conditions. These findings provide new information about frequency-related effects of preferred art viewing in brain activity, and support the view that art appreciation is

  12. Causality within the Epileptic Network: An EEG-fMRI Study Validated by Intracranial EEG.

    Science.gov (United States)

    Vaudano, Anna Elisabetta; Avanzini, Pietro; Tassi, Laura; Ruggieri, Andrea; Cantalupo, Gaetano; Benuzzi, Francesca; Nichelli, Paolo; Lemieux, Louis; Meletti, Stefano

    2013-01-01

    Accurate localization of the Seizure Onset Zone (SOZ) is crucial in patients with drug-resistance focal epilepsy. EEG with fMRI recording (EEG-fMRI) has been proposed as a complementary non-invasive tool, which can give useful additional information in the pre-surgical work-up. However, fMRI maps related to interictal epileptiform activities (IED) often show multiple regions of signal change, or "networks," rather than highly focal ones. Effective connectivity approaches like Dynamic Causal Modeling (DCM) applied to fMRI data potentially offers a framework to address which brain regions drives the generation of seizures and IED within an epileptic network. Here, we present a first attempt to validate DCM on EEG-fMRI data in one patient affected by frontal lobe epilepsy. Pre-surgical EEG-fMRI demonstrated two distinct clusters of blood oxygenation level dependent (BOLD) signal increases linked to IED, one located in the left frontal pole and the other in the ipsilateral dorso-lateral frontal cortex. DCM of the IED-related BOLD signal favored a model corresponding to the left dorso-lateral frontal cortex as driver of changes in the fronto-polar region. The validity of DCM was supported by: (a) the results of two different non-invasive analysis obtained on the same dataset: EEG source imaging (ESI), and "psycho-physiological interaction" analysis; (b) the failure of a first surgical intervention limited to the fronto-polar region; (c) the results of the intracranial EEG monitoring performed after the first surgical intervention confirming a SOZ located over the dorso-lateral frontal cortex. These results add evidence that EEG-fMRI together with advanced methods of BOLD signal analysis is a promising tool that can give relevant information within the epilepsy surgery diagnostic work-up.

  13. Causality within the epileptic network: an EEG-fMRI study validated by intracranial EEG.

    Directory of Open Access Journals (Sweden)

    Anna Elisabetta eVaudano

    2013-11-01

    Full Text Available Accurate localization of the Seizure Onset Zone (SOZ is crucial in patients with drug-resistance focal epilepsy. EEG with fMRI recording (EEG-fMRI has been proposed as a complementary non-invasive tool, which can give useful additional information in the pre-surgical workup. However, fMRI maps related to interictal epileptiform activities (IED often show multiple regions of signal change, or networks, rather than highly focal ones. Effective connectivity approaches like Dynamic Causal Modelling (DCM applied to fMRI data potentially offers a framework to address which brain regions drives the generation of seizures and IED within an epileptic network. Here we present a first attempt to validate DCM on EEG-fMRI data in one patient affected by frontal lobe epilepsy. Pre-surgical EEG-fMRI demonstrated two distinct clusters of BOLD signal increases linked to IED, one located in the left frontal pole and the other in the ipsilateral dorso-lateral frontal cortex. DCM of the IED-related BOLD signal favoured a model corresponding to the left dorsolateral frontal cortex as driver of changes in the fronto-polar region. The validity of DCM was supported by: (a the results of two different non-invasive analysis obtained on the same dataset: EEG source imaging (ESI, and psychophysiological interaction analysis (PPI; (b the failure of a first surgical intervention limited to the fronto-polar region; (c the results of the intracranial EEG monitoring performed after the first surgical intervention confirming a SOZ located over the dorso-lateral frontal cortex. These results add evidence that EEG-fMRI together with advanced methods of BOLD signal analysis is a promising tool that can give relevant information within the epilepsy surgery diagnostic work-up.

  14. Pain Processing in a Social Context and the Link with Psychopathic Personality Traits—An Event-Related Potential Study

    Directory of Open Access Journals (Sweden)

    Casper H. van Heck

    2017-09-01

    Full Text Available Empathy describes the ability to understand another person’s feelings. Psychopathy is a disorder that is characterized by a lack of empathy. Therefore, empathy and psychopathy are interesting traits to investigate with respect to experiencing and observing pain. The present study aimed to investigate pain empathy and pain sensitivity by measuring event-related potentials (ERPs extracted from the ongoing EEG in an interactive setup. Each participant fulfilled subsequently the role of “villain” and “victim”. In addition, mode of control was modulated resulting in four different conditions; passive villain, active villain, active victim and passive victim. Response-, visual- and pain ERPs were compared between the four conditions. Furthermore, the role of psychopathic traits in these outcomes was investigated. Our findings suggested that people experience more conflict when hurting someone else than hurting themselves. Furthermore, our results indicated that self-controlled pain was experienced as more painful than uncontrolled pain. People that scored high on psychopathic traits seemed to process and experience pain differently. According to the results of the current study, social context, attention and personality traits seem to modulate pain processing and the empathic response to pain in self and others. The within-subject experimental design described here provides an excellent approach to further unravel the influence of social context and personality traits on social cognition.

  15. Functionally Independent Components of the Late Positive Event-Related Potential During Visual Spatial Attention

    National Research Council Canada - National Science Library

    Makeig, Scott; Westeifleld, Marissa; Jung, Tzyy-Ping; Covington, James; Townsend, Jeanne; Sejnowski, Terrence J; Courchesne, Eric

    1999-01-01

    Human event-related potentials (ERPs) were recorded from 10 subjects presented with visual target and nontarget stimuli at five screen locations and responding to targets presented at one of the locations...

  16. Complement Set Reference after Implicitly Small Quantities: An Event-Related Potentials Study

    Science.gov (United States)

    Ingram, Joanne; Ferguson, Heather J.

    2018-01-01

    An anaphoric reference to the complement-set is a reference to the set that does not fulfil the predicate of the preceding sentence. Preferred reference to the complement-set has been found in eye movements when a character's implicit desire for a high amount has been denied using a negative emotion. We recorded event-related potentials to examine…

  17. An EEG-Based Person Authentication System with Open-Set Capability Combining Eye Blinking Signals.

    Science.gov (United States)

    Wu, Qunjian; Zeng, Ying; Zhang, Chi; Tong, Li; Yan, Bin

    2018-01-24

    The electroencephalogram (EEG) signal represents a subject's specific brain activity patterns and is considered as an ideal biometric given its superior forgery prevention. However, the accuracy and stability of the current EEG-based person authentication systems are still unsatisfactory in practical application. In this paper, a multi-task EEG-based person authentication system combining eye blinking is proposed, which can achieve high precision and robustness. Firstly, we design a novel EEG-based biometric evoked paradigm using self- or non-self-face rapid serial visual presentation (RSVP). The designed paradigm could obtain a distinct and stable biometric trait from EEG with a lower time cost. Secondly, the event-related potential (ERP) features and morphological features are extracted from EEG signals and eye blinking signals, respectively. Thirdly, convolutional neural network and back propagation neural network are severally designed to gain the score estimation of EEG features and eye blinking features. Finally, a score fusion technology based on least square method is proposed to get the final estimation score. The performance of multi-task authentication system is improved significantly compared to the system using EEG only, with an increasing average accuracy from 92.4% to 97.6%. Moreover, open-set authentication tests for additional imposters and permanence tests for users are conducted to simulate the practical scenarios, which have never been employed in previous EEG-based person authentication systems. A mean false accepted rate (FAR) of 3.90% and a mean false rejected rate (FRR) of 3.87% are accomplished in open-set authentication tests and permanence tests, respectively, which illustrate the open-set authentication and permanence capability of our systems.

  18. Effects of hypnagogic imagery on the event-related potential to external tone stimuli.

    Science.gov (United States)

    Michida, Nanae; Hayashi, Mitsuo; Hori, Tadao

    2005-07-01

    The purpose of this study was to examine the influence of hypnagogic imagery on the information processes of external tone stimuli during the sleep onset period with the use of event-related potentials. Event-related potentials to tone stimuli were compared between conditions with and without the experience of hypnagogic imagery. To control the arousal level when the tone was presented, a certain criterion named the electroencephalogram stage was used. Stimuli were presented at electroencephalogram stage 4, which was characterized by the appearance of a vertex sharp wave. Data were collected in the sleep laboratory at Hiroshima University. Eleven healthy university and graduate school students participated in the study. N/A. Experiments were performed at night. Reaction times to tone stimuli were measured, and only trials with shorter reaction times than 5000 milliseconds were analyzed. Electroencephalograms were recorded from Fz, Cz, Pz, Oz, T5 and T6. There were no differences in reaction times and electroencephalogram spectra between the conditions of with and without hypnagogic imagery. These results indicated that the arousal levels were not different between the 2 conditions. On the other hand, the N550 amplitude of the event-related potentials in the imagery condition was lower than in the no-imagery condition. The decrease in the N550 amplitude in the imagery condition showed that experiences of hypnagogic imagery exert some influence on the information processes of external tone stimuli. It is possible that the processing of hypnagogic imagery interferes with the processing of external stimuli, lowering the sensitivity to external stimuli.

  19. EEG phase reset due to auditory attention: an inverse time-scale approach

    International Nuclear Information System (INIS)

    Low, Yin Fen; Strauss, Daniel J

    2009-01-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6–10 Hz, termed as theta–alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta–alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis

  20. EEG phase reset due to auditory attention: an inverse time-scale approach.

    Science.gov (United States)

    Low, Yin Fen; Strauss, Daniel J

    2009-08-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6-10 Hz, termed as theta-alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta-alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis.

  1. The influence of vertical disparity gradient and cue conflict on EEG omega complexity in Panum's limiting case.

    Science.gov (United States)

    Li, Huayun; Jia, Huibin; Yu, Dongchuan

    2018-03-01

    Using behavioral measures and ERP technique, researchers discovered at least two factors could influence the final perception of depth in Panum's limiting case, which are the vertical disparity gradient and the degree of cue conflict between two- and three-dimensional shapes. Although certain event-related potential components have been proved to be sensitive to the different levels of these two factors, some methodological limitations existed in this technique. In this study, we proposed that the omega complexity of EEG signal may serve as an important supplement of the traditional event-related potential technique. We found that the trials with lower vertical gradient disparity have lower omega complexity (i.e., higher global functional connectivity) of the occipital region, especially that of the right-occipital hemisphere. Moreover, for occipital omega complexity, the trials with low-cue conflict have significantly larger omega complexity than those with medium- and high-cue conflict. It is also found that the electrodes located in the middle line of the occipital region (i.e., POz and Oz) are more crucial to the impact of different levels of cue conflict on omega complexity than the other electrodes located in the left- and right-occipital hemispheres. These evidences demonstrated that the EEG omega complexity could reflect distinct neural activities evoked by Panum's limiting case configurations, with different levels of vertical disparity gradient and cue conflict. Besides, the influence of vertical disparity gradient and cue conflict on omega complexity may be regional dependent. NEW & NOTEWORTHY The EEG omega complexity could reflect distinct neural activities evoked by Panum's limiting case configurations with different levels of vertical disparity gradient and cue conflict. The influence of vertical disparity gradient and cue conflict on omega complexity is regional dependent. The omega complexity of EEG signal can serve as an important supplement of the

  2. Early referential context effects in sentence processing: Evidence from event-related brain potentials

    NARCIS (Netherlands)

    Berkum, J.J.A. van; Brown, C.M.; Hagoort, P.

    1999-01-01

    An event-related brain potentials experiment was carried out to examine the interplay of referential and structural factors during sentence processing in discourse. Subjects read (Dutch) sentences beginning like “David told the girl that … ” in short story contexts that had introduced either one or

  3. Sad facial cues inhibit temporal attention: evidence from an event-related potential study.

    Science.gov (United States)

    Kong, Xianxian; Chen, Xiaoqiang; Tan, Bo; Zhao, Dandan; Jin, Zhenlan; Li, Ling

    2013-06-19

    We examined the influence of different emotional cues (happy or sad) on temporal attention (short or long interval) using behavioral as well as event-related potential recordings during a Stroop task. Emotional stimuli cued short and long time intervals, inducing 'sad-short', 'sad-long', 'happy-short', and 'happy-long' conditions. Following the intervals, participants performed a numeric Stroop task. Behavioral results showed the temporal attention effects in the sad-long, happy-long, and happy-short conditions, in which valid cues quickened the reaction times, but not in the sad-short condition. N2 event-related potential components showed sad cues to have decreased activity for short intervals compared with long intervals, whereas happy cues did not. Taken together, these findings provide evidence for different modulation of sad and happy facial cues on temporal attention. Furthermore, sad cues inhibit temporal attention, resulting in longer reaction time and decreased neural activity in the short interval by diverting more attentional resources.

  4. Event-related potentials reveal increased distraction by salient global objects in older adults

    DEFF Research Database (Denmark)

    Wiegand, Iris; Finke, Kathrin; Töllner, Thomas

    Age-related changes in visual functions influence how older individuals perceive and react upon objects in their environment. In particular, older individuals might be more distracted by highly salient, irrelevant information. Kanizsa figures induce a ‘global precedence’ effect, which reflects...... a processing advantage for salient whole-object representations relative to configurations of local elements not inducing a global form. We investigated event-related potential (ERP) correlates of age-related decline in visual abilities, and specifically, distractibility by salient global objects in visual...

  5. EEG Classification for Hybrid Brain-Computer Interface Using a Tensor Based Multiclass Multimodal Analysis Scheme.

    Science.gov (United States)

    Ji, Hongfei; Li, Jie; Lu, Rongrong; Gu, Rong; Cao, Lei; Gong, Xiaoliang

    2016-01-01

    Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.

  6. Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces

    Science.gov (United States)

    Wang, Deng; Miao, Duoqian; Blohm, Gunnar

    2012-01-01

    Recent studies show that scalp electroencephalography (EEG) as a non-invasive interface has great potential for brain-computer interfaces (BCIs). However, one factor that has limited practical applications for EEG-based BCI so far is the difficulty to decode brain signals in a reliable and efficient way. This paper proposes a new robust processing framework for decoding of multi-class motor imagery (MI) that is based on five main processing steps. (i) Raw EEG segmentation without the need of visual artifact inspection. (ii) Considering that EEG recordings are often contaminated not just by electrooculography (EOG) but also other types of artifacts, we propose to first implement an automatic artifact correction method that combines regression analysis with independent component analysis for recovering the original source signals. (iii) The significant difference between frequency components based on event-related (de-) synchronization and sample entropy is then used to find non-contiguous discriminating rhythms. After spectral filtering using the discriminating rhythms, a channel selection algorithm is used to select only relevant channels. (iv) Feature vectors are extracted based on the inter-class diversity and time-varying dynamic characteristics of the signals. (v) Finally, a support vector machine is employed for four-class classification. We tested our proposed algorithm on experimental data that was obtained from dataset 2a of BCI competition IV (2008). The overall four-class kappa values (between 0.41 and 0.80) were comparable to other models but without requiring any artifact-contaminated trial removal. The performance showed that multi-class MI tasks can be reliably discriminated using artifact-contaminated EEG recordings from a few channels. This may be a promising avenue for online robust EEG-based BCI applications. PMID:23087607

  7. Frontal EEG asymmetry in borderline personality disorder is associated with alexithymia.

    Science.gov (United States)

    Flasbeck, Vera; Popkirov, Stoyan; Brüne, Martin

    2017-01-01

    Frontal EEG asymmetry is a widely studied correlate of emotion processing and psychopathology. Recent research suggests that frontal EEG asymmetry during resting state is related to approach/withdrawal motivation and is also found in affective disorders such as major depressive disorder. Patients with borderline personality disorder (BPD) show aberrant behavior in relation to both approach and withdrawal motivation, which may arguably be associated with their difficulties in emotion processing. The occurrence and significance of frontal EEG asymmetry in BPD, however, has received little attention. Thirty-seven BPD patients and 39 controls underwent resting EEG and completed several psychometric questionnaires. While there were no between-group differences in frontal EEG asymmetry, in BPD frontal EEG asymmetry scores correlated significantly with alexithymia. That is, higher alexithymia scores were associated with relatively lower right-frontal activity. A subsequent analysis corroborated the significant interaction between frontal EEG asymmetry and alexithymia, which was moderated by group. Our findings reveal that lower right frontal EEG asymmetry is associated with alexithymia in patients with BPD. This finding is in accordance with neurophysiological models of alexithymia that implicate a right hemisphere impairment in emotion processing, and could suggest frontal EEG asymmetry as a potential biomarker of relevant psychopathology in these patients.

  8. Event-related potentials, cognition, and behavior: a biological approach.

    Science.gov (United States)

    Kotchoubey, Boris

    2006-01-01

    The prevailing cognitive-psychological accounts of event-related brain potentials (ERPs) assume that ERP components manifest information processing operations leading from stimulus to response. Since this view encounters numerous difficulties already analyzed in previous studies, an alternative view is presented here that regards cortical control of behavior as a repetitive sensorimotor cycle consisting of two phases: (i) feedforward anticipation and (ii) feedback cortical performance. This view allows us to interpret in an integrative manner numerous data obtained from very different domains of ERP studies: from biophysics of ERP waves to their relationship to the processing of language, in which verbal behavior is viewed as likewise controlled by the same two basic control processes: feedforward (hypothesis building) and feedback (hypothesis checking). The proposed approach is intentionally simplified, explaining numerous effects on the basis of few assumptions and relating several levels of analysis: neurophysiology, macroelectrical processes (i.e. ERPs), cognition and behavior. It can, therefore, be regarded as a first approximation to a general theory of ERPs.

  9. Conceptual Integration of Arithmetic Operations with Real-World Knowledge: Evidence from Event-Related Potentials

    Science.gov (United States)

    Guthormsen, Amy M.; Fisher, Kristie J.; Bassok, Miriam; Osterhout, Lee; DeWolf, Melissa; Holyoak, Keith J.

    2016-01-01

    Research on language processing has shown that the disruption of conceptual integration gives rise to specific patterns of event-related brain potentials (ERPs)--N400 and P600 effects. Here, we report similar ERP effects when adults performed cross-domain conceptual integration of analogous semantic and mathematical relations. In a problem-solving…

  10. The winner takes it all: Event-related brain potentials reveal enhanced motivated attention toward athletes' nonverbal signals of leading.

    Science.gov (United States)

    Furley, Philip; Schnuerch, Robert; Gibbons, Henning

    2017-08-01

    Observers of sports can reliably estimate who is leading or trailing based on nonverbal cues. Most likely, this is due to an adaptive mechanism of detecting motivationally relevant signals such as high status, superiority, and dominance. We reasoned that the relevance of leading athletes should lead to a sustained attentional prioritization. To test this idea, we recorded electroencephalography while 45 participants saw brief stills of athletes and estimated whether they were leading or trailing. Based on these recordings, we assessed event-related potentials and focused on the late positive complex (LPC), a well-established signature of controlled attention to motivationally relevant visual stimuli. Confirming our expectation, we found that LPC amplitude was significantly enhanced for leading as compared to trailing athletes. Moreover, this modulation was significantly related to behavioral performance on the score-estimation task. The present data suggest that subtle cues related to athletic supremacy are reliably differentiated in the human brain, involving a strong attentional orienting toward leading athletes. This mechanism might be part of an adaptive cognitive strategy that guides human social behavior.

  11. Development of event related negativity together with an internal model of audio-motor associations

    Directory of Open Access Journals (Sweden)

    Kai eLutz

    2013-09-01

    Full Text Available The brain’s reactions to error are manifested in several event related potentials (ERP components, derived from electroencephalographic (EEG signals. Although these components have been known for decades, their interpretation is still controversial. A current hypothesis (first indicator hypothesis claims that the first indication of an action being erroneous leads to a negative deflection of the EEG signal over frontal midline areas. In some cases this requires sensory feedback in the form of knowledge of results (KR. If KR is given, then the first negative deflection can be found around 250 ms after feedback presentation (feedback related negativity, FRN. When KR is not required, a negative deflection is found already around 100 ms after action onset (ERN. This deflection may be evoked when a mismatch between required and actually executed actions is detected. To detect such a mismatch, however, necessitates knowledge about which action is required. To test this assumption, the current study monitored EEG error components during acquisition of an internal model, i.e., acquisition of the knowledge of which actions are needed to reach certain goals. Actions consisted of finger presses on a piano keyboard and goals were tones of a certain pitch to be generated, thus the internal model represented audio-motor mapping. Results show that with increasing proficiency in mapping goals to appropriate actions, the amplitude of the ERN increased, whereas the amplitude of the FRN remained unchanged. Thus, when knowledge is present about which action is required, this supports generation of an ERN around 100ms, likely by detecting a mismatch between required and performed actions. This is in accordance with the first indicator hypothesis. The present study furthermore lends support to the notion that FRN mainly relies on comparison of sensory targets with sensory feedback.

  12. Objective Audiometry using Ear-EEG

    DEFF Research Database (Denmark)

    Christensen, Christian Bech; Kidmose, Preben

    Recently, a novel electroencephalographic (EEG) method called ear-EEG [1], that enable recording of auditory evoked potentials (AEPs) from a personalized earpiece was introduced. Initial investigations show that well established AEPs, such as ASSR and P1-N1-P2 complex can be observed from ear-EEG...

  13. Identification enhancement of auditory evoked potentials in EEG by epoch concatenation and temporal decorrelation.

    Science.gov (United States)

    Zavala-Fernandez, H; Orglmeister, R; Trahms, L; Sander, T H

    2012-12-01

    Event-related potentials (ERP) recorded by electroencephalography (EEG) are brain responses following an external stimulus, e.g., a sound or an image. They are used in fundamental cognitive research and neurological and psychiatric clinical research. ERPs are weaker than spontaneous brain activity and therefore it is difficult or even impossible to identify an ERP in the brain activity following an individual stimulus. For this reason, a blind source separation method relying on statistical information is proposed for the isolation of ERP after auditory stimulation. In this paper it is suggested to integrate epoch concatenation into the popular temporal decorrelation algorithm SOBI/TDSEP relying on time shifted correlations. With the proposed epoch concatenation temporal decorrelation (ecTD) algorithm a component representing the auditory evoked potential (AEP) is found in electroencephalographic data from an auditory stimulation experiment lasting 3min. The ecTD result is compared with the averaged AEP and it is superior to the result from the SOBI/TDSEP algorithm. Furthermore the ecTD processing leads to significant increases in the signal-to-noise ratio (shape SNR) of the AEP and reduces the computation time by 50% if compared to the SOBI/TDSEP calculation. It can be concluded that data concatenation in combination with temporal decorrelation is useful for isolating and improving the properties of an AEP especially in a short duration stimulation experiment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Alpha-contingent EEG feedback reduces SPECT rCBF variability

    DEFF Research Database (Denmark)

    McLaughlin, Thomas; Steinberg, Bruce; Mulholland, Thomas

    2005-01-01

    EEG feedback methods, which link the occurrence of alpha to the presentation of repeated visual stimuli, reduce the relative variability of subsequent, alpha-blocking event durations. The temporal association between electro-cortical field activation and regional cerebral blood flow (rCBF) led us...... to investigate whether the reduced variability of alpha-blocking durations with feedback is associated with a reduction in rCBF variability. Reduced variability in the rCBF response domain under EEG feedback control might have methodological implications for future brain-imaging studies. Visual stimuli were...... to quantify the variance-reducing effects of ACS across multiple, distributed areas of the brain. Both EEG and rCBF measures demonstrated decreased variability under ACS. This improved control was seen for localized as well as anatomically distributed rCBF measures....

  15. Relationship between somatosensory event-related potential N140 aberrations and hemispatial agnosia in patients with stroke: a preliminary study.

    Science.gov (United States)

    Ueno, Tomoyuki; Hada, Yasushi; Shimizu, Yukiyo; Yamada, Thoru

    2018-06-01

    The somatosensory event-related potential N140 is thought to be related to selective attention. This study aimed to compare the somatosensory event-related potential N140 in healthy subjects to that in patients with stroke to determine whether N140 and attentiveness are associated in patients with stroke with or without hemispatial agnosia. Normal somatosensory event-related potential N140 values were determined using data from ten healthy subjects. Fifteen patients with stroke were divided into two groups based on the presence of hemispatial neglect. Somatosensory event-related potential N140 components were compared between the two groups. Stimulation of the affected limb in the hemispatial agnosia group resulted in significantly longer N140 latency at the contralateral vs. the ipsilateral electrode. This was the inverse of the relationship observed in normal subjects, with stimulation of the intact side in patients with hemispatial agnosia, and with stimulation of both the intact and affected sides in patients without agnosia. In the hemispatial agnosia group, the peak latency of N140 following stimulation of the affected side was significantly longer than it was following stimulation of the intact side and when compared to that in patients without agnosia. In addition, abnormal N140 peak latencies were observed at the Cz and ipsilateral electrodes in patients with hemispatial agnosia following stimulation of the intact side. These findings suggest that somatosensory event-related potential N140 is independently generated in each hemisphere and may reflect cognitive attention.

  16. DETECT: a MATLAB toolbox for event detection and identification in time series, with applications to artifact detection in EEG signals.

    Science.gov (United States)

    Lawhern, Vernon; Hairston, W David; Robbins, Kay

    2013-01-01

    Recent advances in sensor and recording technology have allowed scientists to acquire very large time-series datasets. Researchers often analyze these datasets in the context of events, which are intervals of time where the properties of the signal change relative to a baseline signal. We have developed DETECT, a MATLAB toolbox for detecting event time intervals in long, multi-channel time series. Our primary goal is to produce a toolbox that is simple for researchers to use, allowing them to quickly train a model on multiple classes of events, assess the accuracy of the model, and determine how closely the results agree with their own manual identification of events without requiring extensive programming knowledge or machine learning experience. As an illustration, we discuss application of the DETECT toolbox for detecting signal artifacts found in continuous multi-channel EEG recordings and show the functionality of the tools found in the toolbox. We also discuss the application of DETECT for identifying irregular heartbeat waveforms found in electrocardiogram (ECG) data as an additional illustration.

  17. DETECT: a MATLAB toolbox for event detection and identification in time series, with applications to artifact detection in EEG signals.

    Directory of Open Access Journals (Sweden)

    Vernon Lawhern

    Full Text Available Recent advances in sensor and recording technology have allowed scientists to acquire very large time-series datasets. Researchers often analyze these datasets in the context of events, which are intervals of time where the properties of the signal change relative to a baseline signal. We have developed DETECT, a MATLAB toolbox for detecting event time intervals in long, multi-channel time series. Our primary goal is to produce a toolbox that is simple for researchers to use, allowing them to quickly train a model on multiple classes of events, assess the accuracy of the model, and determine how closely the results agree with their own manual identification of events without requiring extensive programming knowledge or machine learning experience. As an illustration, we discuss application of the DETECT toolbox for detecting signal artifacts found in continuous multi-channel EEG recordings and show the functionality of the tools found in the toolbox. We also discuss the application of DETECT for identifying irregular heartbeat waveforms found in electrocardiogram (ECG data as an additional illustration.

  18. Developing an EEG based On-line Closed-loop Lapse Detection and Mitigation System

    Directory of Open Access Journals (Sweden)

    Yu-Te eWang

    2014-10-01

    Full Text Available In America, sixty percent of adults reported that they have driven a motor vehicle while feeling drowsy, and at least 15-20% of fatal car accidents are fatigue-related. This study translates previous laboratory-oriented neurophysiological research to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation (OCLDM System featuring a mobile wireless dry-sensor EEG headgear and a cell-phone based real-time EEG processing platform. Eleven subjects participated in an event-related lane-keeping task, in which they were instructed to manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway. This was simulated in a 1st person view with an 8-screen and 8-projector immersive virtual-realty environment. When the subjects experienced lapses or failed to respond to events during the experiment, auditory feedback was delivered to rectify the performance decrements. However, the arousing auditory signals were not always effective. The EEG spectra exhibited statistically significant differences between effective and ineffective arousing signals, suggesting that EEG spectra could be used as a countermeasure of the efficacy of arousing signals. In this on-line pilot study, the proposed OCLDM System was able to continuously detect EEG signatures of fatigue, deliver arousing feedback to subjects suffering momentary cognitive lapses, and assess the efficacy of the feedback in near real-time to rectify cognitive lapses. The on-line testing results of the OCLDM System validated the efficacy of the arousing signals in improving subjects' response times to the subsequent lane-departure events. This study may lead to a practical on-line lapse detection and mitigation system in real-world environments.

  19. Developing an EEG-based on-line closed-loop lapse detection and mitigation system.

    Science.gov (United States)

    Wang, Yu-Te; Huang, Kuan-Chih; Wei, Chun-Shu; Huang, Teng-Yi; Ko, Li-Wei; Lin, Chin-Teng; Cheng, Chung-Kuan; Jung, Tzyy-Ping

    2014-01-01

    In America, 60% of adults reported that they have driven a motor vehicle while feeling drowsy, and at least 15-20% of fatal car accidents are fatigue-related. This study translates previous laboratory-oriented neurophysiological research to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation (OCLDM) System featuring a mobile wireless dry-sensor EEG headgear and a cell-phone based real-time EEG processing platform. Eleven subjects participated in an event-related lane-keeping task, in which they were instructed to manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway. This was simulated in a 1st person view with an 8-screen and 8-projector immersive virtual-reality environment. When the subjects experienced lapses or failed to respond to events during the experiment, auditory warning was delivered to rectify the performance decrements. However, the arousing auditory signals were not always effective. The EEG spectra exhibited statistically significant differences between effective and ineffective arousing signals, suggesting that EEG spectra could be used as a countermeasure of the efficacy of arousing signals. In this on-line pilot study, the proposed OCLDM System was able to continuously detect EEG signatures of fatigue, deliver arousing warning to subjects suffering momentary cognitive lapses, and assess the efficacy of the warning in near real-time to rectify cognitive lapses. The on-line testing results of the OCLDM System validated the efficacy of the arousing signals in improving subjects' response times to the subsequent lane-departure events. This study may lead to a practical on-line lapse detection and mitigation system in real-world environments.

  20. Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: A tutorial review

    Science.gov (United States)

    Kayser, Jürgen; Tenke, Craig E.

    2015-01-01

    Despite the recognition that the surface Laplacian may counteract adverse effects of volume conduction and recording reference for surface potential data, electrophysiology as a discipline has been reluctant to embrace this approach for data analysis. The reasons for such hesitation are manifold but often involve unfamiliarity with the nature of the underlying transformation, as well as intimidation by a perceived mathematical complexity, and concerns of signal loss, dense electrode array requirements, or susceptibility to noise. We revisit the pitfalls arising from volume conduction and the mandated arbitrary choice of EEG reference, describe the basic principle of the surface Laplacian transform in an intuitive fashion, and exemplify the differences between common reference schemes (nose, linked mastoids, average) and the surface Laplacian for frequently-measured EEG spectra (theta, alpha) and standard event-related potential (ERP) components, such as N1 or P3. We specifically review common reservations against the universal use of the surface Laplacian, which can be effectively addressed by employing spherical spline interpolations with an appropriate selection of the spline flexibility parameter and regularization constant. We argue from a pragmatic perspective that not only are these reservations unfounded but that the continued predominant use of surface potentials poses a considerable impediment on the progress of EEG and ERP research. PMID:25920962

  1. Signal Quality Evaluation of Emerging EEG Devices

    Directory of Open Access Journals (Sweden)

    Thea Radüntz

    2018-02-01

    Full Text Available Electroencephalogram (EEG registration as a direct measure of brain activity has unique potentials. It is one of the most reliable and predicative indicators when studying human cognition, evaluating a subject's health condition, or monitoring their mental state. Unfortunately, standard signal acquisition procedures limit the usability of EEG devices and narrow their application outside the lab. Emerging sensor technology allows gel-free EEG registration and wireless signal transmission. Thus, it enables quick and easy application of EEG devices by users themselves. Although a main requirement for the interpretation of an EEG is good signal quality, there is a lack of research on this topic in relation to new devices. In our work, we compared the signal quality of six very different EEG devices. On six consecutive days, 24 subjects wore each device for 60 min and completed tasks and games on the computer. The registered signals were evaluated in the time and frequency domains. In the time domain, we examined the percentage of artifact-contaminated EEG segments and the signal-to-noise ratios. In the frequency domain, we focused on the band power variation in relation to task demands. The results indicated that the signal quality of a mobile, gel-based EEG system could not be surpassed by that of a gel-free system. However, some of the mobile dry-electrode devices offered signals that were almost comparable and were very promising. This study provided a differentiated view of the signal quality of emerging mobile and gel-free EEG recording technology and allowed an assessment of the functionality of the new devices. Hence, it provided a crucial prerequisite for their general application, while simultaneously supporting their further development.

  2. Test-retest reliability of cognitive EEG

    Science.gov (United States)

    McEvoy, L. K.; Smith, M. E.; Gevins, A.

    2000-01-01

    OBJECTIVE: Task-related EEG is sensitive to changes in cognitive state produced by increased task difficulty and by transient impairment. If task-related EEG has high test-retest reliability, it could be used as part of a clinical test to assess changes in cognitive function. The aim of this study was to determine the reliability of the EEG recorded during the performance of a working memory (WM) task and a psychomotor vigilance task (PVT). METHODS: EEG was recorded while subjects rested quietly and while they performed the tasks. Within session (test-retest interval of approximately 1 h) and between session (test-retest interval of approximately 7 days) reliability was calculated for four EEG components: frontal midline theta at Fz, posterior theta at Pz, and slow and fast alpha at Pz. RESULTS: Task-related EEG was highly reliable within and between sessions (r0.9 for all components in WM task, and r0.8 for all components in the PVT). Resting EEG also showed high reliability, although the magnitude of the correlation was somewhat smaller than that of the task-related EEG (r0.7 for all 4 components). CONCLUSIONS: These results suggest that under appropriate conditions, task-related EEG has sufficient retest reliability for use in assessing clinical changes in cognitive status.

  3. EEG Alpha Synchronization Is Related to Top-Down Processing in Convergent and Divergent Thinking

    Science.gov (United States)

    Benedek, Mathias; Bergner, Sabine; Konen, Tanja; Fink, Andreas; Neubauer, Aljoscha C.

    2011-01-01

    Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing…

  4. The effects of cortisol administration on approach-avoidance behavior: An event-related potential study

    NARCIS (Netherlands)

    Peer, J.M. van; Roelofs, K.; Rotteveel, M.; Dijk, J.G. van; Spinhoven, P.; Ridderinkhof, K.R.

    2007-01-01

    We investigated the effects of cortisol administration (50 mg) on approach and avoidance tendencies in low and high trait avoidant healthy young men. Event-related brain potentials (ERPs) were measured during a reaction time task, in which participants evaluated the emotional expression of

  5. External human induced events in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    the probabilistic distributions to be applied in deterministic design procedures is left to the design stage. The procedures for probabilistic safety assessment (PSA) of external events, as part of the design assessment process, are discussed in another IAEA Safety Guide. Section 2 covers the general approach to site evaluation in relation to external human induced events. Section 3 addresses in detail the information to be collected as well as the investigations to be performed in order to compile a database for identifying potential sources at the beginning of the process of site evaluation. Section 4 deals with the use of the compiled database to conduct the site characterization by means of a screening process and detailed evaluation procedures. Sections 5 to 8 examine the application of this general method to specific induced events such as aircraft crashes, explosions and the release of hazardous fluids, while Section 9 covers general administrative considerations

  6. P300 amplitude variation is related to ventral striatum BOLD response during gain and loss anticipation: an EEG and fMRI experiment.

    Science.gov (United States)

    Pfabigan, Daniela M; Seidel, Eva-Maria; Sladky, Ronald; Hahn, Andreas; Paul, Katharina; Grahl, Arvina; Küblböck, Martin; Kraus, Christoph; Hummer, Allan; Kranz, Georg S; Windischberger, Christian; Lanzenberger, Rupert; Lamm, Claus

    2014-08-01

    The anticipation of favourable or unfavourable events is a key component in our daily life. However, the temporal dynamics of anticipation processes in relation to brain activation are still not fully understood. A modified version of the monetary incentive delay task was administered during separate functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) sessions in the same 25 participants to assess anticipatory processes with a multi-modal neuroimaging set-up. During fMRI, gain and loss anticipation were both associated with heightened activation in ventral striatum and reward-related areas. EEG revealed most pronounced P300 amplitudes for gain anticipation, whereas CNV amplitudes distinguished neutral from gain and loss anticipation. Importantly, P300, but not CNV amplitudes, were correlated to neural activation in the ventral striatum for both gain and loss anticipation. Larger P300 amplitudes indicated higher ventral striatum blood oxygen level dependent (BOLD) response. Early stimulus evaluation processes indexed by EEG seem to be positively related to higher activation levels in the ventral striatum, indexed by fMRI, which are usually associated with reward processing. The current results, however, point towards a more general motivational mechanism processing salient stimuli during anticipation. Copyright © 2014. Published by Elsevier Inc.

  7. A frontal cortex event-related potential driven by the basal forebrain

    Science.gov (United States)

    Nguyen, David P; Lin, Shih-Chieh

    2014-01-01

    Event-related potentials (ERPs) are widely used in both healthy and neuropsychiatric conditions as physiological indices of cognitive functions. Contrary to the common belief that cognitive ERPs are generated by local activity within the cerebral cortex, here we show that an attention-related ERP in the frontal cortex is correlated with, and likely generated by, subcortical inputs from the basal forebrain (BF). In rats performing an auditory oddball task, both the amplitude and timing of the frontal ERP were coupled with BF neuronal activity in single trials. The local field potentials (LFPs) associated with the frontal ERP, concentrated in deep cortical layers corresponding to the zone of BF input, were similarly coupled with BF activity and consistently triggered by BF electrical stimulation within 5–10 msec. These results highlight the important and previously unrecognized role of long-range subcortical inputs from the BF in the generation of cognitive ERPs. DOI: http://dx.doi.org/10.7554/eLife.02148.001 PMID:24714497

  8. Physiological artifacts in scalp EEG and ear-EEG.

    Science.gov (United States)

    Kappel, Simon L; Looney, David; Mandic, Danilo P; Kidmose, Preben

    2017-08-11

    A problem inherent to recording EEG is the interference arising from noise and artifacts. While in a laboratory environment, artifacts and interference can, to a large extent, be avoided or controlled, in real-life scenarios this is a challenge. Ear-EEG is a concept where EEG is acquired from electrodes in the ear. We present a characterization of physiological artifacts generated in a controlled environment for nine subjects. The influence of the artifacts was quantified in terms of the signal-to-noise ratio (SNR) deterioration of the auditory steady-state response. Alpha band modulation was also studied in an open/closed eyes paradigm. Artifacts related to jaw muscle contractions were present all over the scalp and in the ear, with the highest SNR deteriorations in the gamma band. The SNR deterioration for jaw artifacts were in general higher in the ear compared to the scalp. Whereas eye-blinking did not influence the SNR in the ear, it was significant for all groups of scalps electrodes in the delta and theta bands. Eye movements resulted in statistical significant SNR deterioration in both frontal, temporal and ear electrodes. Recordings of alpha band modulation showed increased power and coherence of the EEG for ear and scalp electrodes in the closed-eyes periods. Ear-EEG is a method developed for unobtrusive and discreet recording over long periods of time and in real-life environments. This study investigated the influence of the most important types of physiological artifacts, and demonstrated that spontaneous activity, in terms of alpha band oscillations, could be recorded from the ear-EEG platform. In its present form ear-EEG was more prone to jaw related artifacts and less prone to eye-blinking artifacts compared to state-of-the-art scalp based systems.

  9. Transfer function between EEG and BOLD signals of epileptic activity

    Directory of Open Access Journals (Sweden)

    Marco eLeite

    2013-01-01

    Full Text Available Simultaneous EEG-fMRI recordings have seen growing application in the evaluation of epilepsy, namely in the characterization of brain networks related to epileptic activity. In EEG-correlated fMRI studies, epileptic events are usually described as boxcar signals based on the timing information retrieved from the EEG, and subsequently convolved with a heamodynamic response function to model the associated BOLD changes. Although more flexible approaches may allow a higher degree of complexity for the haemodynamics, the issue of how to model these dynamics based on the EEG remains an open question. In this work, a new methodology for the integration of simultaneous EEG-fMRI data in epilepsy is proposed, which incorporates a transfer function from the EEG to the BOLD signal. Independent component analysis (ICA of the EEG is performed, and a number of metrics expressing different models of the EEG-BOLD transfer function are extracted from the resulting time courses. These metrics are then used to predict the fMRI data and to identify brain areas associated with the EEG epileptic activity. The methodology was tested on both ictal and interictal EEG-fMRI recordings from one patient with a hypothalamic hamartoma. When compared to the conventional analysis approach, plausible, consistent and more significant activations were obtained. Importantly, frequency-weighted EEG metrics yielded superior results than those weighted solely on the EEG power, which comes in agreement with previous literature. Reproducibility, specificity and sensitivity should be addressed in an extended group of patients in order to further validate the proposed methodology and generalize the presented proof of concept.

  10. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.

    Science.gov (United States)

    Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir

    2012-01-01

    Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart.

  11. Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes

    Directory of Open Access Journals (Sweden)

    Zhijie eBian

    2014-02-01

    Full Text Available Objective: Diabetes is a risk factor for dementia and mild cognitive impairment. The aim of this study was to investigate whether some features of resting-state EEG (rsEEG could be applied as a biomarker to distinguish the subjects with amnestic mild cognitive impairment (aMCI from normal cognitive function in type 2 diabetes. Materials and Methods: In this study, 28 patients with type 2 diabetes (16 aMCI patients and 12 controls were investigated. Recording of the rsEEG series and neuropsychological assessments were performed. The rsEEG signal was first decomposed into delta, theta, alpha, beta, gamma frequency bands. The relative power of each given band/sum of power and the coherence of waves from different brain areas were calculated. The extracted features from rsEEG and neuropsychological assessments were analyzed as well. Results: The main findings of this study were that: 1 compared with the control group, the ratios of power in theta band (P(theta versus power in alpha band (P(alpha (P(theta/P(alpha in the frontal region and left temporal region were significantly higher for aMCI, and 2 for aMCI, the alpha coherences in posterior, fronto-right temporal, fronto-posterior, right temporo-posterior were decreased; the theta coherences in left central-right central (LC-RC and left posterior-right posterior (LP-RP regions were also decreased; but the delta coherences in left temporal-right temporal (LT-RT region were increased. Conclusion: The proposed indexes from rsEEG recordings could be employed to track cognitive function of diabetic patients and also to help in the diagnosis of those who develop aMCI.

  12. Emotional Granularity Effects on Event-Related Brain Potentials during Affective Picture Processing.

    Science.gov (United States)

    Lee, Ja Y; Lindquist, Kristen A; Nam, Chang S

    2017-01-01

    There is debate about whether emotional granularity , the tendency to label emotions in a nuanced and specific manner, is merely a product of labeling abilities, or a systematic difference in the experience of emotion during emotionally evocative events. According to the Conceptual Act Theory of Emotion (CAT) (Barrett, 2006), emotional granularity is due to the latter and is a product of on-going temporal differences in how individuals categorize and thus make meaning of their affective states. To address this question, the present study investigated the effects of individual differences in emotional granularity on electroencephalography-based brain activity during the experience of emotion in response to affective images. Event-related potentials (ERP) and event-related desynchronization and synchronization (ERD/ERS) analysis techniques were used. We found that ERP responses during the very early (60-90 ms), middle (270-300 ms), and later (540-570 ms) moments of stimulus presentation were associated with individuals' level of granularity. We also observed that highly granular individuals, compared to lowly granular individuals, exhibited relatively stable desynchronization of alpha power (8-12 Hz) and synchronization of gamma power (30-50 Hz) during the 3 s of stimulus presentation. Overall, our results suggest that emotional granularity is related to differences in neural processing throughout emotional experiences and that high granularity could be associated with access to executive control resources and a more habitual processing of affective stimuli, or a kind of "emotional complexity." Implications for models of emotion are also discussed.

  13. Temporal Dynamics of Late Second Language Acquisition: Evidence from Event-Related Brain Potentials

    Science.gov (United States)

    Steinhauer, Karsten; White, Erin J.; Drury, John E.

    2009-01-01

    The ways in which age of acquisition (AoA) may affect (morpho)syntax in second language acquisition (SLA) are discussed. We suggest that event-related brain potentials (ERPs) provide an appropriate online measure to test some such effects. ERP findings of the past decade are reviewed with a focus on recent and ongoing research. It is concluded…

  14. Information-Theoretical Analysis of EEG Microstate Sequences in Python

    Directory of Open Access Journals (Sweden)

    Frederic von Wegner

    2018-06-01

    Full Text Available We present an open-source Python package to compute information-theoretical quantities for electroencephalographic data. Electroencephalography (EEG measures the electrical potential generated by the cerebral cortex and the set of spatial patterns projected by the brain's electrical potential on the scalp surface can be clustered into a set of representative maps called EEG microstates. Microstate time series are obtained by competitively fitting the microstate maps back into the EEG data set, i.e., by substituting the EEG data at a given time with the label of the microstate that has the highest similarity with the actual EEG topography. As microstate sequences consist of non-metric random variables, e.g., the letters A–D, we recently introduced information-theoretical measures to quantify these time series. In wakeful resting state EEG recordings, we found new characteristics of microstate sequences such as periodicities related to EEG frequency bands. The algorithms used are here provided as an open-source package and their use is explained in a tutorial style. The package is self-contained and the programming style is procedural, focusing on code intelligibility and easy portability. Using a sample EEG file, we demonstrate how to perform EEG microstate segmentation using the modified K-means approach, and how to compute and visualize the recently introduced information-theoretical tests and quantities. The time-lagged mutual information function is derived as a discrete symbolic alternative to the autocorrelation function for metric time series and confidence intervals are computed from Markov chain surrogate data. The software package provides an open-source extension to the existing implementations of the microstate transform and is specifically designed to analyze resting state EEG recordings.

  15. Tracking cognitive phases in analogical reasoning with event-related potentials.

    Science.gov (United States)

    Maguire, Mandy J; McClelland, M Michelle; Donovan, Colin M; Tillman, Gail D; Krawczyk, Daniel C

    2012-03-01

    Analogical reasoning consists of multiple phases. Four-term analogies (A:B::C:D) have an encoding period in which the A:B pair is evaluated prior to a mapping phase. The electrophysiological timing associated with analogical reasoning has remained unclear. We used event-related potentials to identify neural timing related to analogical reasoning relative to perceptual and semantic control conditions. Spatiotemporal principal-components analyses revealed differences primarily in left frontal electrodes during encoding and mapping phases of analogies relative to the other conditions. The timing of the activity differed depending upon the phase of the problem. During the encoding of A:B terms, analogies elicited a positive deflection compared to the control conditions between 400 and 1,200 ms, but for the mapping phase analogical processing elicited a negative deflection that occurred earlier and for a shorter time period, between 350 and 625 ms. These results provide neural and behavioral evidence that 4-term analogy problems involve a highly active evaluation phase of the A:B pair. 2012 APA, all rights reserved

  16. Relating derived relations as a model of analogical reasoning: reaction times and event-related potentials.

    Science.gov (United States)

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M; Whelan, Robert; Dymond, Simon

    2005-11-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as chalk is to cheese") derived relational responding, in both speed-contingent and speed-noncontingent conditions. Experiment 2 examined the event-related potentials (ERPs) associated with these two response patterns. Both experiments showed similar-similar responding to be significantly faster than different-different responding. Experiment 2 revealed significant differences between the waveforms of the two response patterns in the left-hemispheric prefrontal regions; different-different waveforms were significantly more negative than similar-similar waveforms. The behavioral and neurophysiological data support the RFT prediction that, all things being equal, similar-similar responding is relationally "simpler" than, and functionally distinct from, different-different analogical responding. The ERP data were fully consistent with findings in the neurocognitive literature on analogy. These findings strengthen the validity of the RFT model of analogical reasoning and supplement the behavior-analytic approach to analogy based on the relating of derived relations.

  17. Studentized Continuous Wavelet Transform (t-CWT in the Analysis of Individual ERPs: Real and Simulated EEG Data

    Directory of Open Access Journals (Sweden)

    Ruben Gustav Leonhardt Real

    2014-09-01

    Full Text Available This study aimed at evaluating the performance of the Studentized Continuous Wavelet Transform (t-CWT as a method for the extraction and assessment of event-related brain potentials (ERP in data from a single subject. Sensitivity, specificity, positive (PPV and negative predictive values (NPV of the t-CWT were assessed and compared to a variety of competing procedures using simulated EEG data at six low signal-to-noise ratios. Results show that the t-CWT combines high sensitivity and specificity with favorable PPV and NPV. Applying the t-CWT to authentic EEG data obtained from 14 healthy participants confirmed its high sensitivity. The t-CWT may thus be well suited for the assessment of weak ERPs in single-subject settings.

  18. MODULATION OF EVENT-RELATED POTENTIALS BY WORD REPETITION - THE ROLE OF VISUAL SELECTIVE ATTENTION

    NARCIS (Netherlands)

    OTTEN, LJ; RUGG, MD; DOYLE, MC

    1993-01-01

    Event-related potentials (ERPs) were recorded while subjects viewed visually presented words, some of which occurred twice. Each trial consisted of two colored letter strings, the requirement being to attend to and make a word/nonword discrimination for one of the strings. Attention was manipulated

  19. Hilbert-Huang Spectrum as a new field for the identification of EEG event related de-/synchronization for BCI applications.

    Science.gov (United States)

    Panoulas, Konstantinos I; Hadjileontiadis, Leontios J; Panas, Stavros M

    2008-01-01

    Brain Computer Interfaces (BCI) usually utilize the suppression of mu-rhythm during actual or imagined motor activity. In order to create a BCI system, a signal processing method is required to extract features upon which the discrimination is based. In this article, the Empirical Mode Decomposition along with the Hilbert-Huang Spectrum (HHS) is found to contain the necessary information to be considered as an input to a discriminator. Also, since the HHS defines amplitude and instantaneous frequency for each sample, it can be used for an online BCI system. Experimental results when the HHS applied to EEG signals from an on-line database (BCI Competition III) show the potentiality of the proposed analysis to capture the imagined motor activity, contributing to a more enhanced BCI performance.

  20. Effects of valence and origin of emotions in word processing evidenced by event related potential correlates in a lexical decision task

    Directory of Open Access Journals (Sweden)

    Kamil Konrad Imbir

    2016-03-01

    Full Text Available This paper presents behavioral and event-related potential (ERP correlates of emotional word processing during a lexical decision task (LDT. We showed that valence and origin (two distinct affective properties of stimuli help to account for the ERP correlates of LDT. The origin of emotion is a factor derived from the emotion duality model. This model distinguishes between the automatic and controlled elicitation of emotional states. The subjects’ task was to discriminate words from pseudo-words. The stimulus words were carefully selected to differ with respect to valence and origin whilst being matched with respect to arousal, concreteness, length and frequency in natural language. Pseudo-words were matched to words with respect to length. The subjects were 32 individuals aged from 19 to 26 years who were invited to participate in an EEG study of lexical decision making. They evaluated a list of words and pseudo-words. We found that valence modulated the amplitude of the FN400 component (290-375ms at centro-frontal (Fz, Cz region, whereas origin modulated the amplitude of the component in the LPC latency range (375-670ms. The results indicate that the origin of stimuli should be taken into consideration while deliberating on the processing of emotional words.

  1. Glucose enhancement of event-related potentials associated with episodic memory and attention

    OpenAIRE

    Brown, Louise; Riby, Leigh

    2013-01-01

    Previous studies have reported that increasing glycaemia by a glucose-containing drink enhances memory functioning. The aim of the present study was to extend this literature by examining the effects of glucose on episodic memory as well as attention processes, and to investigate associated event-related potential (ERP) markers. Fifteen minutes after treatment (25 g glucose or placebo drink), 35 participants performed an old/new recognition memory task and a Stroop colour naming task. Consist...

  2. Comparison of the Event-Related Desynchronization during Self-Paced Movement and when playing a Nintendo Wii Game

    Directory of Open Access Journals (Sweden)

    Nikola Šobajić

    2011-06-01

    Full Text Available We compared pre-movement event-related desynchronization (ERD of μ rhythm over the primary motor cortex using surface electrodes in a group of five healthy subjects during self-paced wrist movement and the wrist movement when playing a Nintendo Wii. We present a method that uses ERD to detect the onset of movement in single-trial electroencephalographic (EEG data. This algorithm produced a mean detection accuracy of 83% for the self-paced movement and 75% for the Wii-included sessions, without requiring subject training. This technique can be employed in an EEG-based brain–computer interface due to its high recognition rate and simplicity in computation.

  3. Measurement and modification of the EEG and related behavior

    Science.gov (United States)

    Sterman, M. B.

    1991-01-01

    Electrophysiological changes in the sensorimotor pathways were found to accompany the effect of rhythmic EEG patterns in the sensorimotor cortex. Additionally, several striking behavioral changes were seen, including in particular an enhancement of sleep and an elevation of seizure threshold to epileptogenic agents. This raised the possibility that human seizure disorders might be influenced therapeutically by similar training. Our objective in human EEG feedback training became not only the facilitation of normal rhythmic patterns, but also the suppression of abnormal activity, thus requiring complex contingencies directed to the normalization of the sensorimotor EEG. To achieve this, a multicomponent frequency analysis was developed to extract and separate normal and abnormal elements of the EEG signal. Each of these elements was transduced to a specific component of a visual display system, and these were combined through logic circuits to present the subject with a symbolic display. Variable criteria provided for the gradual shaping of EEG elements towards the desired normal pattern. Some 50-70% of patients with poorly controlled seizure disorders experienced therapeutic benefits from this approach in our laboratory, and subsequently in many others. A more recent application of this approach to the modification of human brain function in our lab has been directed to the dichotomous problems of task overload and underload in the contemporary aviation environment. At least 70% of all aviation accidents have been attributed to the impact of these kinds of problems on crew performance. The use of EEG in this context has required many technical innovations and the application of the latest advances in EEG signal analysis. Our first goal has been the identification of relevant EEG characteristics. Additionally, we have developed a portable recording and analysis system for application in this context. Findings from laboratory and in-flight studies suggest that we

  4. Meditation and the EEG

    OpenAIRE

    West, Michael

    1980-01-01

    Previous research on meditation and the EEG is described, and findings relating to EEG patterns during meditation are discussed. Comparisons of meditation with other altered states are reviewed and it is concluded that, on the basis of existing EEG evidence, there is some reason for differentiating between meditation and drowsing. Research on alpha-blocking and habituation of the blocking response during meditation is reviewed, and the effects of meditation on EEG patterns outside of meditati...

  5. Report order and identification of multidimensional stimuli: a study of event-related brain potentials.

    Science.gov (United States)

    Shieh, Kong-King; Shen, I-Hsuan

    2004-06-01

    An experiment was conducted to investigate the effect of order of report on multidimensional stimulus identification. Subjects were required to identify each two-dimensional symbol by pushing corresponding buttons on the keypad on which there were two columns representing the two dimensions. Order of report was manipulated for the dimension represented by the left or right column. Both behavioral data and event-related potentials were recorded from 14 college students. Behavioral data analysis showed that order of report had a significant effect on response times. Such results were consistent with those of previous studies. Analysis of event-related brain potentials showed significant differences in peak amplitude and mean amplitude at time windows of 120-250 msec. at Fz, F3, and F4 and of 350-750 msec. at Fz, F3, F4, Cz, and Pz. Data provided neurophysiological evidence that reporting dimensional values according to natural language habits was appropriate and less cognitively demanding.

  6. Influence of Concussion History and Genetics on Event-Related Potentials in Athletes: Potential Use in Concussion Management

    Directory of Open Access Journals (Sweden)

    Taylor Guth

    2018-01-01

    Full Text Available Sports-related concussions are an increasing public health issue with much concern about the possible long-term decrements in cognitive function and quality of life that may occur in athletes. The measurement of cognitive function is a common component of concussion management protocols due to cognitive impairments that occur after sustaining a concussion; however, the tools that are often used may not be sensitive enough to expose long term problems with cognitive function. The current paper is a brief review, which suggests that measuring cognitive processing through the use of event related potentials (ERPs may provide a more sensitive assessment of cognitive function, as shown through recent research showing concussion history to influence ERPs components. The potential influence of genetics on cognitive function and ERPs components will also be discussed in relation to future concussion management.

  7. Automatic temporal expectancy: a high-density event-related potential study.

    Directory of Open Access Journals (Sweden)

    Giovanni Mento

    Full Text Available How we compute time is not fully understood. Questions include whether an automatic brain mechanism is engaged in temporally regular environmental structure in order to anticipate events, and whether this can be dissociated from task-related processes, including response preparation, selection and execution. To investigate these issues, a passive temporal oddball task requiring neither time-based motor response nor explicit decision was specifically designed and delivered to participants during high-density, event-related potentials recording. Participants were presented with pairs of audiovisual stimuli (S1 and S2 interspersed with an Inter-Stimulus Interval (ISI that was manipulated according to an oddball probabilistic distribution. In the standard condition (70% of trials, the ISI lasted 1,500 ms, while in the two alternative, deviant conditions (15% each, it lasted 2,500 and 3,000 ms. The passive over-exposition to the standard ISI drove participants to automatically and progressively create an implicit temporal expectation of S2 onset, reflected by the time course of the Contingent Negative Variation response, which always peaked in correspondence to the point of S2 maximum expectation and afterwards inverted in polarity towards the baseline. Brain source analysis of S1- and ISI-related ERP activity revealed activation of sensorial cortical areas and the supplementary motor area (SMA, respectively. In particular, since the SMA time course synchronised with standard ISI, we suggest that this area is the major cortical generator of the temporal CNV reflecting an automatic, action-independent mechanism underlying temporal expectancy.

  8. Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction.

    Science.gov (United States)

    Kim, Su Kyoung; Kirchner, Elsa Andrea; Stefes, Arne; Kirchner, Frank

    2017-12-14

    Reinforcement learning (RL) enables robots to learn its optimal behavioral strategy in dynamic environments based on feedback. Explicit human feedback during robot RL is advantageous, since an explicit reward function can be easily adapted. However, it is very demanding and tiresome for a human to continuously and explicitly generate feedback. Therefore, the development of implicit approaches is of high relevance. In this paper, we used an error-related potential (ErrP), an event-related activity in the human electroencephalogram (EEG), as an intrinsically generated implicit feedback (rewards) for RL. Initially we validated our approach with seven subjects in a simulated robot learning scenario. ErrPs were detected online in single trial with a balanced accuracy (bACC) of 91%, which was sufficient to learn to recognize gestures and the correct mapping between human gestures and robot actions in parallel. Finally, we validated our approach in a real robot scenario, in which seven subjects freely chose gestures and the real robot correctly learned the mapping between gestures and actions (ErrP detection (90% bACC)). In this paper, we demonstrated that intrinsically generated EEG-based human feedback in RL can successfully be used to implicitly improve gesture-based robot control during human-robot interaction. We call our approach intrinsic interactive RL.

  9. An event-related brain potential study of visual selective attention to conjunctions of color and shape

    NARCIS (Netherlands)

    Smid, HGOM; Jakob, A; Heinze, HJ

    What cognitive processes underlie event-related brain potential (ERP) effects related to visual multidimensional selective attention and how are these processes organized? We recorded ERPs when participants attended to one conjunction of color, global shape and local shape and ignored other

  10. Connectivity Measures in EEG Microstructural Sleep Elements.

    Science.gov (United States)

    Sakellariou, Dimitris; Koupparis, Andreas M; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an "EEG-element connectivity" methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence

  11. Automatic detection of lexical change: an auditory event-related potential study.

    Science.gov (United States)

    Muller-Gass, Alexandra; Roye, Anja; Kirmse, Ursula; Saupe, Katja; Jacobsen, Thomas; Schröger, Erich

    2007-10-29

    We investigated the detection of rare task-irrelevant changes in the lexical status of speech stimuli. Participants performed a nonlinguistic task on word and pseudoword stimuli that occurred, in separate conditions, rarely or frequently. Task performance for pseudowords was deteriorated relative to words, suggesting unintentional lexical analysis. Furthermore, rare word and pseudoword changes had a similar effect on the event-related potentials, starting as early as 165 ms. This is the first demonstration of the automatic detection of change in lexical status that is not based on a co-occurring acoustic change. We propose that, following lexical analysis of the incoming stimuli, a mental representation of the lexical regularity is formed and used as a template against which lexical change can be detected.

  12. Spoken sentence comprehension in aphasia: Event-related potential evidence for a lexical integration deficit

    NARCIS (Netherlands)

    Swaab, T.Y.; Brown, C.; Hagoort, P.

    1997-01-01

    In this study the N400 component of the event-related potential was used to investigate spoken sentence understanding in Broca's and Wernicke's aphasics. The aim of the study was to determine whether spoken sentence comprehension problems in these patients might result from a deficit in the on-line

  13. Event-related brain potentials that distinguish false memory for events that occurred only seconds in the past.

    Science.gov (United States)

    Chen, Hong; Voss, Joel L; Guo, Chunyan

    2012-07-30

    False memory often involves retrieving events from the distant past that did not actually happen. However, recent evidence obtained using the Deese/Roediger-McDermott (DRM) paradigm for eliciting false memory experiences suggests that individuals can falsely believe that events occurred mere seconds in the past when they in fact did not. Subjects in these experiments endorsed unstudied critical lure words as having been studied, despite the fact that word lists were studied just moments before. We identified event-related brain potential (ERP) correlates of this experience, and included a repetition priming manipulation to better assess the functional significance of these ERPs. Behavioral and ERP data were collected from 21 Capital Normal University students using a short-term DRM task. Two categories of effects were identified that distinguished true from false short-term memory: (1) early semantic priming effects from 300 to 500 ms and (2) later retrieval and retrieval-monitoring effects after 500 ms. The repetition priming manipulation had distinct influences on these effects, consistent with their differential associations with semantic priming versus episodic retrieval. Characterization of ERPs related to semantic priming and episodic retrieval provides important information regarding the mechanisms of short-term false memory. In contrast, most studies examining false memory in standard long-delay DRM paradigms identify ERP effects related only to retrieval monitoring. These findings highlight the neural processing involved in illusions of memory after very brief delays and highlight the role of semantic processing in short-term false memory.

  14. The impact of perceived quality on online buying decisions: an event-related potentials perspective.

    Science.gov (United States)

    Wang, Jing; Han, Weiwei

    2014-10-01

    Consumer neuroscience can provide useful insights into the neural foundations of consumer decisions, such as perceived quality. One of the applications is to guide attribute configuration of products to fit consumers' expectations on the basis of individual preferences. In this study, we required 20 participants to decide whether to buy the product provided in the stimuli and to respond as soon as possible. According to their reports of expectations after the experiment, we subdivided the stimuli into two conditions. Condition 1 contained the stimuli that fit individual preferences, whereas Condition 2 contained the other stimuli. An essential component of event-related potentials (ERPs), the P300, was elicited in the two conditions and distributed over almost all parietal and occipital regions. Products in Condition 1 induced a higher P300 amplitude than those in Condition 2. The results show that evaluating product attributes is a cognitive process that modulates attention in the aforementioned regions. When participants evaluate the alternatives, categorical processing occurred on the basis of similarity judgment. The situation in Condition 1 produced a similarity overlap between the product and the expectation and resulted in a higher P300. Otherwise, there was no overlap, leading to a smaller P300. Hence, the P300 may be a useful neural endogenous indicator for measuring consumers' evaluations of products in marketing research.

  15. Neural Temporal Dynamics of Social Exclusion Elicited by Averted Gaze: An Event-Related Potentials Study

    Directory of Open Access Journals (Sweden)

    Yue Leng

    2018-02-01

    Full Text Available Eye gaze plays a fundamental role in social communication. The averted eye gaze during social interaction, as the most common form of silent treatment, conveys a signal of social exclusion. In the present study, we examined the time course of brain response to social exclusion by using a modified version of Eye-gaze paradigm. The event-related potentials (ERPs data and the subjective rating data showed that the frontocentral P200 was positively correlated with negative mood of excluded events, whereas, the centroparietal late positive potential (LPP was positively correlated with the perceived ostracism intensity. Both the P200 and LPP were more positive-going for excluded events than for included events. These findings suggest that brain responses sensitive to social exclusion can be divided into the early affective processing stage, linking to the early pre-cognitive warning system; and the late higher-order processes stage, demanding attentional resources for elaborate stimuli evaluation and categorization generally not under specific situation.

  16. Moving Beyond ERP Components: A Selective Review of Approaches to Integrate EEG and Behavior

    Science.gov (United States)

    Bridwell, David A.; Cavanagh, James F.; Collins, Anne G. E.; Nunez, Michael D.; Srinivasan, Ramesh; Stober, Sebastian; Calhoun, Vince D.

    2018-01-01

    Relationships between neuroimaging measures and behavior provide important clues about brain function and cognition in healthy and clinical populations. While electroencephalography (EEG) provides a portable, low cost measure of brain dynamics, it has been somewhat underrepresented in the emerging field of model-based inference. We seek to address this gap in this article by highlighting the utility of linking EEG and behavior, with an emphasis on approaches for EEG analysis that move beyond focusing on peaks or “components” derived from averaging EEG responses across trials and subjects (generating the event-related potential, ERP). First, we review methods for deriving features from EEG in order to enhance the signal within single-trials. These methods include filtering based on user-defined features (i.e., frequency decomposition, time-frequency decomposition), filtering based on data-driven properties (i.e., blind source separation, BSS), and generating more abstract representations of data (e.g., using deep learning). We then review cognitive models which extract latent variables from experimental tasks, including the drift diffusion model (DDM) and reinforcement learning (RL) approaches. Next, we discuss ways to access associations among these measures, including statistical models, data-driven joint models and cognitive joint modeling using hierarchical Bayesian models (HBMs). We think that these methodological tools are likely to contribute to theoretical advancements, and will help inform our understandings of brain dynamics that contribute to moment-to-moment cognitive function. PMID:29632480

  17. Influence of negative emotion on the framing effect: evidence from event-related potentials.

    Science.gov (United States)

    Ma, Qingguo; Pei, Guanxiong; Wang, Kai

    2015-04-15

    The framing effect is the phenomenon in which different descriptions of an identical problem can result in different choices. The influence of negative emotions on the framing effect and its neurocognitive basis are important issues, especially in the domain of saving lives, which is essential and highly risky. In each trial of our experiment, the emotion stimulus is presented to the participants, followed by the decision-making stimulus, which comprises certain and risky options with the same expected value. Each pair of options is positively or negatively framed. The behavioral results indicate a significant interactive effect between negative emotion and frame; thus, the risk preference under the positive frame can be enhanced by negative emotions, whereas this finding is not true under the negative frame. The event-related potential analysis indicates that choosing certain options under the positive frame with negative emotion priming generates smaller P2 and P3 amplitudes and a larger N2 amplitude than with neutral emotion priming. The event-related potential findings indicate that individuals can detect risk faster and experience more conflict and increased decision difficulty if they choose certain options under the positive frame with negative priming compared with neutral priming.

  18. Temporal dynamics of attention during encoding vs. maintenance of working memory: complementary views from event-related potentials and alpha-band oscillations

    Science.gov (United States)

    Myers, Nicholas E.; Walther, Lena; Wallis, George; Stokes, Mark G.; Nobre, Anna C.

    2015-01-01

    Working memory (WM) is strongly influenced by attention. In visual working-memory tasks, recall performance can be improved by an attention-guiding cue presented before encoding (precue) or during maintenance (retrocue). Although precues and retrocues recruit a similar fronto-parietal control network, the two are likely to exhibit some processing differences, since precues invite anticipation of upcoming information, while retrocues may guide prioritisation, protection, and selection of information already in mind. Here we explored the behavioral and electrophysiological differences between precueing and retrocueing in a new visual working-memory task designed to permit a direct comparison between cueing conditions. We found marked differences in event-related potential (ERP) profiles between the precue and retrocue conditions. In line with precues primarily generating an anticipatory shift of attention toward the location of an upcoming item, we found a robust lateralization in late cue-evoked potentials associated with target anticipation. Retrocues elicited a different pattern of ERPs that was compatible with an early selection mechanism, but not with stimulus anticipation. In contrast to the distinct ERP patterns, alpha band (8-14 Hz) lateralization was indistinguishable between cue types (reflecting, in both conditions, the location of the cued item). We speculate that whereas alpha-band lateralization after a precue is likely to enable anticipatory attention, lateralization after a retrocue may instead enable the controlled spatiotopic access to recently encoded visual information. PMID:25244118

  19. Coherence explored between emotion components: evidence from event-related potentials and facial electromyography.

    Science.gov (United States)

    Gentsch, Kornelia; Grandjean, Didier; Scherer, Klaus R

    2014-04-01

    Componential theories assume that emotion episodes consist of emergent and dynamic response changes to relevant events in different components, such as appraisal, physiology, motivation, expression, and subjective feeling. In particular, Scherer's Component Process Model hypothesizes that subjective feeling emerges when the synchronization (or coherence) of appraisal-driven changes between emotion components has reached a critical threshold. We examined the prerequisite of this synchronization hypothesis for appraisal-driven response changes in facial expression. The appraisal process was manipulated by using feedback stimuli, presented in a gambling task. Participants' responses to the feedback were investigated in concurrently recorded brain activity related to appraisal (event-related potentials, ERP) and facial muscle activity (electromyography, EMG). Using principal component analysis, the prediction of appraisal-driven response changes in facial EMG was examined. Results support this prediction: early cognitive processes (related to the feedback-related negativity) seem to primarily affect the upper face, whereas processes that modulate P300 amplitudes tend to predominantly drive cheek region responses. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Event-Related Potentials and Emotion Processing in Child Psychopathology

    Directory of Open Access Journals (Sweden)

    Georgia eChronaki

    2016-04-01

    Full Text Available In recent years there has been increasing interest in the neural mechanisms underlying altered emotional processes in children and adolescents with psychopathology. This review provides a brief overview of the most up-to-date findings in the field of Event-Related Potentials (ERPs to facial and vocal emotional expressions in the most common child psychopathological conditions. In regards to externalising behaviour (i.e. ADHD, CD, ERP studies show enhanced early components to anger, reflecting enhanced sensory processing, followed by reductions in later components to anger, reflecting reduced cognitive-evaluative processing. In regards to internalising behaviour, research supports models of increased processing of threat stimuli especially at later more elaborate and effortful stages. Finally, in autism spectrum disorders abnormalities have been observed at early visual-perceptual stages of processing. An affective neuroscience framework for understanding child psychopathology can be valuable in elucidating underlying mechanisms and inform preventive intervention.

  1. The impacts of racial group membership on people's distributive justice: an event-related potential study.

    Science.gov (United States)

    Wang, Yan; Tang, Yi-Yuan; Deng, Yuqin

    2014-04-16

    How individuals and societies distribute benefits has long been studied by psychologists and sociologists. Previous work has highlighted the importance of social identity on people's justice concerns. However, it is not entirely clear how racial in-group/out-group relationship affects the brain activity in distributive justice. In this study, event-related potentials were recorded while participants made their decisions about donation allocation. Behavioral results showed that racial in-group factor affected participants' decisions on justice consideration. Participants were more likely to make relatively equity decisions when racial in-group factor was congruent with equity compared with the corresponding incongruent condition. Moreover, this incongruent condition took longer response times than congruent condition. Meanwhile, less equity decisions were made when efficiency was larger in the opposite side to equity than it was equal between the two options. Scalp event-related potential analyses revealed that greater P300 and late positive potential amplitudes were elicited by the incongruent condition compared with the congruent condition. These findings suggest that the decision-making of distributive justice could be modulated by racial group membership, and greater attentional resources or cognitive efforts are required when racial in-group factor and equity conflict with each other.

  2. The light-makeup advantage in facial processing: Evidence from event-related potentials

    OpenAIRE

    Tagai, Keiko; Shimakura, Hitomi; Isobe, Hiroko; Nittono, Hiroshi

    2017-01-01

    The effects of makeup on attractiveness have been evaluated using mainly subjective measures. In this study, event-related brain potentials (ERPs) were recorded from a total of 45 Japanese women (n = 23 and n = 22 for Experiment 1 and 2, respectively) to examine the neural processing of faces with no makeup, light makeup, and heavy makeup. To have the participants look at each face carefully, an identity judgement task was used: they were asked to judge whether the two faces presented in succ...

  3. Detection of braking intention in diverse situations during simulated driving based on EEG feature combination.

    Science.gov (United States)

    Kim, Il-Hwa; Kim, Jeong-Woo; Haufe, Stefan; Lee, Seong-Whan

    2015-02-01

    We developed a simulated driving environment for studying neural correlates of emergency braking in diversified driving situations. We further investigated to what extent these neural correlates can be used to detect a participant's braking intention prior to the behavioral response. We measured electroencephalographic (EEG) and electromyographic signals during simulated driving. Fifteen participants drove a virtual vehicle and were exposed to several kinds of traffic situations in a simulator system, while EEG signals were measured. After that, we extracted characteristic features to categorize whether the driver intended to brake or not. Our system shows excellent detection performance in a broad range of possible emergency situations. In particular, we were able to distinguish three different kinds of emergency situations (sudden stop of a preceding vehicle, sudden cutting-in of a vehicle from the side and unexpected appearance of a pedestrian) from non-emergency (soft) braking situations, as well as from situations in which no braking was required, but the sensory stimulation was similar to stimulations inducing an emergency situation (e.g., the sudden stop of a vehicle on a neighboring lane). We proposed a novel feature combination comprising movement-related potentials such as the readiness potential, event-related desynchronization features besides the event-related potentials (ERP) features used in a previous study. The performance of predicting braking intention based on our proposed feature combination was superior compared to using only ERP features. Our study suggests that emergency situations are characterized by specific neural patterns of sensory perception and processing, as well as motor preparation and execution, which can be utilized by neurotechnology based braking assistance systems.

  4. Detection of braking intention in diverse situations during simulated driving based on EEG feature combination

    Science.gov (United States)

    Kim, Il-Hwa; Kim, Jeong-Woo; Haufe, Stefan; Lee, Seong-Whan

    2015-02-01

    Objective. We developed a simulated driving environment for studying neural correlates of emergency braking in diversified driving situations. We further investigated to what extent these neural correlates can be used to detect a participant's braking intention prior to the behavioral response. Approach. We measured electroencephalographic (EEG) and electromyographic signals during simulated driving. Fifteen participants drove a virtual vehicle and were exposed to several kinds of traffic situations in a simulator system, while EEG signals were measured. After that, we extracted characteristic features to categorize whether the driver intended to brake or not. Main results. Our system shows excellent detection performance in a broad range of possible emergency situations. In particular, we were able to distinguish three different kinds of emergency situations (sudden stop of a preceding vehicle, sudden cutting-in of a vehicle from the side and unexpected appearance of a pedestrian) from non-emergency (soft) braking situations, as well as from situations in which no braking was required, but the sensory stimulation was similar to stimulations inducing an emergency situation (e.g., the sudden stop of a vehicle on a neighboring lane). Significance. We proposed a novel feature combination comprising movement-related potentials such as the readiness potential, event-related desynchronization features besides the event-related potentials (ERP) features used in a previous study. The performance of predicting braking intention based on our proposed feature combination was superior compared to using only ERP features. Our study suggests that emergency situations are characterized by specific neural patterns of sensory perception and processing, as well as motor preparation and execution, which can be utilized by neurotechnology based braking assistance systems.

  5. Snake scales, partial exposure, and the Snake Detection Theory: A human event-related potentials study

    NARCIS (Netherlands)

    J.W. van Strien (Jan); L.A. Isbell (Lynne A.)

    2017-01-01

    textabstractStudies of event-related potentials in humans have established larger early posterior negativity (EPN) in response to pictures depicting snakes than to pictures depicting other creatures. Ethological research has recently shown that macaques and wild vervet monkeys respond strongly to

  6. Do U Txt? Event-Related Potentials to Semantic Anomalies in Standard and Texted English

    Science.gov (United States)

    Berger, Natalie I.; Coch, Donna

    2010-01-01

    Texted English is a hybrid, technology-based language derived from standard English modified to facilitate ease of communication via instant and text messaging. We compared semantic processing of texted and standard English sentences by recording event-related potentials in a classic semantic incongruity paradigm designed to elicit an N400 effect.…

  7. Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: A tutorial review.

    Science.gov (United States)

    Kayser, Jürgen; Tenke, Craig E

    2015-09-01

    Despite the recognition that the surface Laplacian may counteract adverse effects of volume conduction and recording reference for surface potential data, electrophysiology as a discipline has been reluctant to embrace this approach for data analysis. The reasons for such hesitation are manifold but often involve unfamiliarity with the nature of the underlying transformation, as well as intimidation by a perceived mathematical complexity, and concerns of signal loss, dense electrode array requirements, or susceptibility to noise. We revisit the pitfalls arising from volume conduction and the mandated arbitrary choice of EEG reference, describe the basic principle of the surface Laplacian transform in an intuitive fashion, and exemplify the differences between common reference schemes (nose, linked mastoids, average) and the surface Laplacian for frequently-measured EEG spectra (theta, alpha) and standard event-related potential (ERP) components, such as N1 or P3. We specifically review common reservations against the universal use of the surface Laplacian, which can be effectively addressed by employing spherical spline interpolations with an appropriate selection of the spline flexibility parameter and regularization constant. We argue from a pragmatic perspective that not only are these reservations unfounded but that the continued predominant use of surface potentials poses a considerable impediment on the progress of EEG and ERP research. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effects of twenty-minute 3G mobile phone irradiation on event related potential components and early gamma synchronization in auditory oddball paradigm.

    Science.gov (United States)

    Stefanics, G; Thuróczy, G; Kellényi, L; Hernádi, I

    2008-11-19

    We investigated the potential effects of 20 min irradiation from a new generation Universal Mobile Telecommunication System (UMTS) 3G mobile phone on human event related potentials (ERPs) in an auditory oddball paradigm. In a double-blind task design, subjects were exposed to either genuine or sham irradiation in two separate sessions. Before and after irradiation subjects were presented with a random series of 50 ms tone burst (frequent standards: 1 kHz, P=0.8, rare deviants: 1.5 kHz, P=0.2) at a mean repetition rate of 1500 ms while electroencephalogram (EEG) was recorded. The subjects' task was to silently count the appearance of targets. The amplitude and latency of the N100, N200, P200 and P300 components for targets and standards were analyzed in 29 subjects. We found no significant effects of electromagnetic field (EMF) irradiation on the amplitude and latency of the above ERP components. In order to study possible effects of EMF on attentional processes, we applied a wavelet-based time-frequency method to analyze the early gamma component of brain responses to auditory stimuli. We found that the early evoked gamma activity was insensitive to UMTS RF exposition. Our results support the notion, that a single 20 min irradiation from new generation 3G mobile phones does not induce measurable changes in latency or amplitude of ERP components or in oscillatory gamma-band activity in an auditory oddball paradigm.

  9. Self-relevant beauty evaluation: Evidence from an event-related potentials study.

    Science.gov (United States)

    Kong, Fanchang; Zhang, Yan; Tian, Yuan; Fan, Cuiying; Zhou, Zongkui

    2015-03-01

    This study examines the electrophysiological correlates of beauty evaluation when participants performed the self-reference task. About 13 (7 men, 6 women) undergraduates participated in the experiment using event-related potentials. Results showed that the response to self-relevant information was faster compared to other-relevant information and no significant differences for self-relevant relative to mother-relevant information were observed. Both physical and interior beauty words for self-relevant information showed an enhanced late positive component as compared to other-relevant information. Physical beauty for self-relevant information yielded a larger late positive component in contrast to mother-relevant information but not for interior beauty. This study indicates that beauty is specific to the person who judges it though an individual and one's mother may hold similar views of interior beauty.

  10. Lateralized EEG components with direction information for the preparation of saccades versus finger movements

    NARCIS (Netherlands)

    van der Lubbe, Robert Henricus Johannes; Wauschkuhn, Bernd; Wascher, Edmund; Niehoff, Torsten; Kömpf, Detlef; Verleger, Rolf

    2000-01-01

    During preparation of horizontal saccades in humans, several lateralized (relative to saccade direction), event-related EEG components occur that have been interpreted as reflecting activity of frontal and parietal eye fields. We investigated to what degree these components are specific to saccade

  11. Synaptic damage underlies EEG abnormalities in postanoxic encephalopathy: A computational study.

    Science.gov (United States)

    Ruijter, B J; Hofmeijer, J; Meijer, H G E; van Putten, M J A M

    2017-09-01

    In postanoxic coma, EEG patterns indicate the severity of encephalopathy and typically evolve in time. We aim to improve the understanding of pathophysiological mechanisms underlying these EEG abnormalities. We used a mean field model comprising excitatory and inhibitory neurons, local synaptic connections, and input from thalamic afferents. Anoxic damage is modeled as aggravated short-term synaptic depression, with gradual recovery over many hours. Additionally, excitatory neurotransmission is potentiated, scaling with the severity of anoxic encephalopathy. Simulations were compared with continuous EEG recordings of 155 comatose patients after cardiac arrest. The simulations agree well with six common categories of EEG rhythms in postanoxic encephalopathy, including typical transitions in time. Plausible results were only obtained if excitatory synapses were more severely affected by short-term synaptic depression than inhibitory synapses. In postanoxic encephalopathy, the evolution of EEG patterns presumably results from gradual improvement of complete synaptic failure, where excitatory synapses are more severely affected than inhibitory synapses. The range of EEG patterns depends on the excitation-inhibition imbalance, probably resulting from long-term potentiation of excitatory neurotransmission. Our study is the first to relate microscopic synaptic dynamics in anoxic brain injury to both typical EEG observations and their evolution in time. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  12. Different frontal involvement in ALS and PLS revealed by Stroop event-related potentials and reaction times

    Directory of Open Access Journals (Sweden)

    Ninfa eAmato

    2013-12-01

    Full Text Available BACKGROUND: A growing body of evidence suggests a link between cognitive and pathological changes in amyotrophic lateral sclerosis (ALS and in frontotemporal lobar dementia (FTLD. Cognitive deficits have been investigated much less extensively in primary lateral sclerosis (PLS than in ALS. OBJECTIVE: to investigate bioelectrical activity to Stroop test, assessing frontal function, in ALS, PLS and control groups. METHODS: 32 non-demented ALS patients, 10 non-demented PLS patients and 27 healthy subjects were included. Twenty-nine electroencephalography (EEG channels with binaural reference were recorded during covert Stroop task performance, involving mental discrimination of the stimuli and not vocal or motor response. Group effects on event related potentials (ERPs latency were analyzed using statistical multivariate analysis. Topographic analysis was performed using low resolution brain electromagnetic tomography (LORETA. RESULTS: ALS patients committed more errors in the execution of the task but they were not slower, whereas PLS patients did not show reduced accuracy, despite a slowing of reaction times (RTs. The main ERP components were delayed in ALS, but not in PLS, compared with controls. Moreover, RTs speed but not ERP latency correlated with clinical scores. ALS had decreased frontotemporal activity in the P2, P3 and N4 time windows compared to controls. CONCLUSION: These findings suggest a different pattern of psychophysiological involvement in ALS compared with PLS. The former is increasingly recognized to be a multisystems disorder, with a spectrum of executive and behavioural impairments reflecting frontotemporal dysfunction. The latter seems to mainly involve the motor system, with largely spared cognitive functions. Moreover, our results suggest that the covert version of the Stroop task used in the present study, may be useful to assess cognitive state in the very advanced stage of the disease, when other cognitive tasks are not

  13. Self-Referential Processing in Adolescents: Stability of Behavioral and Event-Related Potential Markers

    Science.gov (United States)

    Auerbach, Randy P.; Bondy, Erin; Stanton, Colin H.; Webb, Christian A.; Shankman, Stewart A.; Pizzagalli, Diego A.

    2016-01-01

    The self-referential encoding task (SRET)—an implicit measure of self-schema—has been used widely to probe cognitive biases associated with depression, including among adolescents. However, research testing the stability of behavioral and electrocortical effects is sparse. Therefore, the current study sought to evaluate the stability of behavioral markers and event-related potentials (ERP) elicited from the SRET over time in healthy, female adolescents (n = 31). At baseline, participants were administered a diagnostic interview and a self-report measure of depression severity. In addition, they completed the SRET while 128-channel event-related potential (ERP) data were recorded to examine early (P1) and late (late positive potential [LPP]) ERPs. Three months later, participants were re-administered the depression self-report measure and the SRET in conjunction with ERPs. Results revealed that healthy adolescents endorsed, recalled, and recognized more positive and fewer negative words at each assessment, and these effects were stable over time (rs = 0.44–0.83). Similarly, they reported a faster reaction time when endorsing self-relevant positive words, as opposed to negative words, at both the initial and follow-up assessment (r = 0.82). Second, ERP responses, specifically potentiated P1 and late LPP positivity to positive versus negative words, were consistent over time (rs = 0.56–0.83), and the internal reliability of ERPs were robust at each time point (rs = 0.52–0.80). As a whole, these medium-to-large effects suggest that the SRET is a reliable behavioral and neural probe of self-referential processing. PMID:27302282

  14. No effects of a single 3G UMTS mobile phone exposure on spontaneous EEG activity, ERP correlates, and automatic deviance detection.

    Science.gov (United States)

    Trunk, Attila; Stefanics, Gábor; Zentai, Norbert; Kovács-Bálint, Zsófia; Thuróczy, György; Hernádi, István

    2013-01-01

    Potential effects of a 30 min exposure to third generation (3G) Universal Mobile Telecommunications System (UMTS) mobile phone-like electromagnetic fields (EMFs) were investigated on human brain electrical activity in two experiments. In the first experiment, spontaneous electroencephalography (sEEG) was analyzed (n = 17); in the second experiment, auditory event-related potentials (ERPs) and automatic deviance detection processes reflected by mismatch negativity (MMN) were investigated in a passive oddball paradigm (n = 26). Both sEEG and ERP experiments followed a double-blind protocol where subjects were exposed to either genuine or sham irradiation in two separate sessions. In both experiments, electroencephalograms (EEG) were recorded at midline electrode sites before and after exposure while subjects were watching a silent documentary. Spectral power of sEEG data was analyzed in the delta, theta, alpha, and beta frequency bands. In the ERP experiment, subjects were presented with a random series of standard (90%) and frequency-deviant (10%) tones in a passive binaural oddball paradigm. The amplitude and latency of the P50, N100, P200, MMN, and P3a components were analyzed. We found no measurable effects of a 30 min 3G mobile phone irradiation on the EEG spectral power in any frequency band studied. Also, we found no significant effects of EMF irradiation on the amplitude and latency of any of the ERP components. In summary, the present results do not support the notion that a 30 min unilateral 3G EMF exposure interferes with human sEEG activity, auditory evoked potentials or automatic deviance detection indexed by MMN. Copyright © 2012 Wiley Periodicals, Inc.

  15. Do Event-Related Evoked Potentials Reflect Apathy Tendency and Motivation?

    Science.gov (United States)

    Takayoshi, Hiroyuki; Onoda, Keiichi; Yamaguchi, Shuhei

    2018-01-01

    Apathy is a mental state of diminished motivation. Although the reward system as the foundation of the motivation in the human brain has been studied extensively with neuroimaging techniques, the electrophysiological correlates of motivation and apathy have not been fully explored. Thus, in 14 healthy volunteers, we examined whether event-related evoked potentials (ERP) obtained during a simple number discrimination task with/without rewards reflected apathy tendency and a reward-dependent tendency, which were assessed separately using the apathy scale and the temperament and character inventory (TCI). Participants were asked to judge the size of a number, and received feedback based on their performance in each trial. The P3 amplitudes related to the feedback stimuli increased only in the reward condition. Furthermore, the P2 amplitudes related to the negative feedback stimuli in the reward condition had a positive correlation with the reward-dependent tendency in TCI, whereas the P3 amplitudes related to the positive feedback stimuli had a negative correlation with the apathy score. Our result suggests that the P2 and P3 ERPs to reward-related feedback stimuli are modulated in a distinctive manner by the motivational reward dependence and apathy tendency, and thus the current paradigm may be useful for investigating the brain activity associated with motivation. PMID:29445331

  16. Differential modulation of the N2 and P3 event-related potentials by response conflict and inhibition.

    Science.gov (United States)

    Groom, Madeleine J; Cragg, Lucy

    2015-07-01

    Developing reliable and specific neural markers of cognitive processes is essential to improve understanding of healthy and atypical brain function. Despite extensive research there remains uncertainty as to whether two electrophysiological markers of cognitive control, the N2 and P3, are better conceptualised as markers of response inhibition or response conflict. The present study aimed to directly compare the effects of response inhibition and response conflict on the N2 and P3 event-related potentials, within-subjects. A novel hybrid go/no-go flanker task was performed by 19 healthy adults aged 18-25 years while EEG data were collected. The response congruence of a central target stimulus and 4 flanking stimuli was manipulated between trials to vary the degree of response conflict. Response inhibition was required on a proportion of trials. N2 amplitude was measured at two frontal electrode sites; P3 amplitude was measured at 4 midline electrode sites. N2 amplitude was greater on incongruent than congruent trials but was not enhanced by response inhibition when the stimulus array was congruent. P3 amplitude was greater on trials requiring response inhibition; this effect was more pronounced at frontal electrodes. P3 amplitude was also enhanced on incongruent compared with congruent trials. The findings support a role for N2 amplitude as a marker of response conflict and for the frontal shift of the P3 as a marker of response inhibition. This paradigm could be applied to clinical groups to help clarify the precise nature of impaired action control in disorders such as attention deficit/hyperactivity disorders (ADHD). Copyright © 2015 Elsevier Inc. All rights reserved.

  17. EEG

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... However, very few studies have examined the use of EEG in developing countries, including Ni- ... of evoked potentials from brain neurons, referred to as .... Percentage. Gender. Male. 89. 62.7. Female. 53. 37.3. Age. 0-10. 59.

  18. The Relative Importance of Spatial Versus Temporal Structure in the Perception of Biological Motion: An Event-Related Potential Study

    Science.gov (United States)

    Hirai, Masahiro; Hiraki, Kazuo

    2006-01-01

    We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and…

  19. Contingent Attentional Capture by Top-Down Control Settings: Converging Evidence from Event-Related Potentials

    Science.gov (United States)

    Lien, Mei-Ching; Ruthruff, Eric; Goodin, Zachary; Remington, Roger W.

    2008-01-01

    Theories of attentional control are divided over whether the capture of spatial attention depends primarily on stimulus salience or is contingent on attentional control settings induced by task demands. The authors addressed this issue using the N2-posterior-contralateral (N2pc) effect, a component of the event-related brain potential thought to…

  20. Event-related brain potentials that distinguish false memory for events that occurred only seconds in the past

    Directory of Open Access Journals (Sweden)

    Chen Hong

    2012-07-01

    Full Text Available Abstract Background False memory often involves retrieving events from the distant past that did not actually happen. However, recent evidence obtained using the Deese/Roediger-McDermott (DRM paradigm for eliciting false memory experiences suggests that individuals can falsely believe that events occurred mere seconds in the past when they in fact did not. Subjects in these experiments endorsed unstudied critical lure words as having been studied, despite the fact that word lists were studied just moments before. We identified event-related brain potential (ERP correlates of this experience, and included a repetition priming manipulation to better assess the functional significance of these ERPs. Methods Behavioral and ERP data were collected from 21 Capital Normal University students using a short-term DRM task. Results Two categories of effects were identified that distinguished true from false short-term memory: (1 early semantic priming effects from 300 to 500 ms and (2 later retrieval and retrieval-monitoring effects after 500 ms. The repetition priming manipulation had distinct influences on these effects, consistent with their differential associations with semantic priming versus episodic retrieval. Conclusion Characterization of ERPs related to semantic priming and episodic retrieval provides important information regarding the mechanisms of short-term false memory. In contrast, most studies examining false memory in standard long-delay DRM paradigms identify ERP effects related only to retrieval monitoring. These findings highlight the neural processing involved in illusions of memory after very brief delays and highlight the role of semantic processing in short-term false memory.

  1. Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings.

    Science.gov (United States)

    Singh, Nilkamal; Telles, Shirley

    2015-01-01

    Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control.

  2. Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings

    Science.gov (United States)

    Singh, Nilkamal; Telles, Shirley

    2015-01-01

    Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control. PMID:26137479

  3. Agency attribution: event-related potentials and outcome monitoring.

    Science.gov (United States)

    Bednark, Jeffery G; Franz, Elizabeth A

    2014-04-01

    Knowledge about the effects of our actions is an underlying feature of voluntary behavior. Given the importance of identifying the outcomes of our actions, it has been proposed that the sensory outcomes of self-made actions are inherently different from those of externally caused outcomes. Thus, the outcomes of self-made actions are likely to be more motivationally significant for an agent. We used event-related potentials to investigate the relationship between the perceived motivational significance of an outcome and the attribution of agency in the presence of others. In our experiment, we assessed agency attribution in the presence of another agent by varying the degree of contiguity between participants' self-made actions and the sensory outcome. Specifically, we assessed the feedback correct-related positivity (fCRP) and the novelty P3 measures of an outcome's motivational significance and unexpectedness, respectively. Results revealed that both the fCRP and participants' agency attributions were significantly influenced by action-outcome contiguity. However, when action-outcome contiguity was ambiguous, novelty P3 amplitude was a reliable indicator of agency attribution. Prior agency attributions were also found to influence attribution in trials with ambiguous and low action-outcome contiguity. Participants' use of multiple cues to determine agency is consistent with the cue integration theory of agency. In addition to these novel findings, this study supports growing evidence suggesting that reinforcement processes play a significant role in the sense of agency.

  4. "Just like EKGs!" Should EEGs undergo a confirmatory interpretation by a clinical neurophysiologist?

    Science.gov (United States)

    Benbadis, Selim R

    2013-01-01

    The misdiagnosis of epilepsy is common and has serious consequences. A major contributor to the misdiagnosis of epilepsy is the tendency to overread normal EEGs as abnormal. In fact, the wrong diagnosis of seizures is sometimes based solely on the "abnormal" EEG. Reasons for the common overinterpretation of normal EEGs are mostly related to the lack of standards or mandatory training in EEG, and the erroneous assumption that all neurologists are trained to read EEGs. The most common overread pattern consists of benign, nonspecific, sharply contoured temporal transients. In particular, there is a common misconception that "phase reversals" are indicative of abnormality. Potential solutions include defining and ensuring EEG competency of neurologists who read EEGs, and perhaps providing a confirmatory reading by an electroencephalographer, as is done for EKGs.

  5. Effects of Grammatical Categories on Children's Visual Language Processing: Evidence from Event-Related Brain Potentials

    Science.gov (United States)

    Weber-Fox, Christine; Hart, Laura J.; Spruill, John E., III

    2006-01-01

    This study examined how school-aged children process different grammatical categories. Event-related brain potentials elicited by words in visually presented sentences were analyzed according to seven grammatical categories with naturally varying characteristics of linguistic functions, semantic features, and quantitative attributes of length and…

  6. EVENT-RELATED POTENTIAL STUDY OF ATTENTION REGULATION DURING ILLUSORY FIGURE CATEGORIZATION TASK IN ADHD, AUTISM SPECTRUM DISORDER, AND TYPICAL CHILDREN

    Science.gov (United States)

    Sokhadze, Estate M.; Baruth, Joshua M.; Sears, Lonnie; Sokhadze, Guela E.; El-Baz, Ayman S.; Williams, Emily; Klapheke, Robert; Casanova, Manuel F.

    2012-01-01

    Autism spectrum disorders (ASD) and attention deficit/hyperactivity disorder (ADHD) are very common developmental disorders which share some similar symptoms of social, emotional, and attentional deficits. This study is aimed to help understand the differences and similarities of these deficits using analysis of dense-array event-related potentials (ERP) during an illusory figure recognition task. Although ADHD and ASD seem very distinct, they have been shown to share some similarities in their symptoms. Our hypothesis was that children with ASD will show less pronounced differences in ERP responses to target and non-target stimuli as compared to typical children, and to a lesser extent, ADHD. Participants were children with ASD (N=16), ADHD (N=16), and controls (N=16). EEG was collected using a 128 channel EEG system. The task involved the recognition of a specific illusory shape, in this case a square or triangle, created by three or four inducer disks. There were no between group differences in reaction time (RT) to target stimuli, but both ASD and ADHD committed more errors, specifically the ASD group had statistically higher commission error rate than controls. Post-error RT in ASD group was exhibited in a post-error speeding rather than corrective RT slowing typical for the controls. The ASD group also demonstrated an attenuated error-related negativity (ERN) as compared to ADHD and controls. The fronto-central P200, N200, and P300 were enhanced and less differentiated in response to target and non-target figures in the ASD group. The same ERP components were marked by more prolonged latencies in the ADHD group as compared to both ASD and typical controls. The findings are interpreted according to the “minicolumnar” hypothesis proposing existence of neuropathological differences in ASD and ADHD, specifically minicolumnar number/width morphometry spectrum differences. In autism, a model of local hyperconnectivity and long-range hypoconnectivity explains

  7. EEG Spectral Analysis in Serious Gaming: An Ad Hoc Experimental Application

    Directory of Open Access Journals (Sweden)

    Minchev Z.

    2009-12-01

    Full Text Available The application of serious gaming technology in different areas of human knowledge for learning is raising the question of quantitative measurement of the training process quality. In the present paper a pilot study of 10 healthy volunteers' EEG spectra is performed for ad hoc selected game events ('win' and 'lose' via continuous wavelet transform (real and complex on the basis of the Morlet mother wavelet function and S-transformation. The results have shown a general decrease of the alpha rhythms power spectra frequencies for the 'lose' events and increase for the 'win' events. This fact corresponds to an opposite behaviour of the theta rhythm of the players for the same 'win' and 'lose' events. Additionally, the frequency changes in the alpha1 (8-10.5 Hz, alpha2 (10.5-13 Hz and theta2 rhythms (6-8 Hz were supposed to be a phenomena related to positive and negative emotions appearance in the EEG activity of the players regarding the selected 'win' and 'lose' states.

  8. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features.

    Science.gov (United States)

    Mognon, Andrea; Jovicich, Jorge; Bruzzone, Lorenzo; Buiatti, Marco

    2011-02-01

    A successful method for removing artifacts from electroencephalogram (EEG) recordings is Independent Component Analysis (ICA), but its implementation remains largely user-dependent. Here, we propose a completely automatic algorithm (ADJUST) that identifies artifacted independent components by combining stereotyped artifact-specific spatial and temporal features. Features were optimized to capture blinks, eye movements, and generic discontinuities on a feature selection dataset. Validation on a totally different EEG dataset shows that (1) ADJUST's classification of independent components largely matches a manual one by experts (agreement on 95.2% of the data variance), and (2) Removal of the artifacted components detected by ADJUST leads to neat reconstruction of visual and auditory event-related potentials from heavily artifacted data. These results demonstrate that ADJUST provides a fast, efficient, and automatic way to use ICA for artifact removal. Copyright © 2010 Society for Psychophysiological Research.

  9. Human event-related brain potentials to auditory periodic noise stimuli.

    Science.gov (United States)

    Kaernbach, C; Schröger, E; Gunter, T C

    1998-02-06

    Periodic noise is perceived as different from ordinary non-repeating noise due to the involvement of echoic memory. Since this stimulus does not contain simple physical cues (such as onsets or spectral shape) that might obscure sensory memory interpretations, it is a valuable tool to study sensory memory functions. We demonstrated for the first time that the processing of periodic noise can be tapped by event-related brain potentials (ERPs). Human subjects received repeating segments of noise embedded in non-repeating noise. They were instructed to detect the periodicity inherent to the stimulation. We observed a central negativity time-locked on the periodic segment that correlated to the subjects behavioral performance in periodicity detection. It is argued that the ERP result indicates an enhancement of sensory-specific processing.

  10. Neural network approach in multichannel auditory event-related potential analysis.

    Science.gov (United States)

    Wu, F Y; Slater, J D; Ramsay, R E

    1994-04-01

    Even though there are presently no clearly defined criteria for the assessment of P300 event-related potential (ERP) abnormality, it is strongly indicated through statistical analysis that such criteria exist for classifying control subjects and patients with diseases resulting in neuropsychological impairment such as multiple sclerosis (MS). We have demonstrated the feasibility of artificial neural network (ANN) methods in classifying ERP waveforms measured at a single channel (Cz) from control subjects and MS patients. In this paper, we report the results of multichannel ERP analysis and a modified network analysis methodology to enhance automation of the classification rule extraction process. The proposed methodology significantly reduces the work of statistical analysis. It also helps to standardize the criteria of P300 ERP assessment and facilitate the computer-aided analysis on neuropsychological functions.

  11. Preterm EEG: a multimodal neurophysiological protocol.

    Science.gov (United States)

    Stjerna, Susanna; Voipio, Juha; Metsäranta, Marjo; Kaila, Kai; Vanhatalo, Sampsa

    2012-02-18

    Since its introduction in early 1950s, electroencephalography (EEG) has been widely used in the neonatal intensive care units (NICU) for assessment and monitoring of brain function in preterm and term babies. Most common indications are the diagnosis of epileptic seizures, assessment of brain maturity, and recovery from hypoxic-ischemic events. EEG recording techniques and the understanding of neonatal EEG signals have dramatically improved, but these advances have been slow to penetrate through the clinical traditions. The aim of this presentation is to bring theory and practice of advanced EEG recording available for neonatal units. In the theoretical part, we will present animations to illustrate how a preterm brain gives rise to spontaneous and evoked EEG activities, both of which are unique to this developmental phase, as well as crucial for a proper brain maturation. Recent animal work has shown that the structural brain development is clearly reflected in early EEG activity. Most important structures in this regard are the growing long range connections and the transient cortical structure, subplate. Sensory stimuli in a preterm baby will generate responses that are seen at a single trial level, and they have underpinnings in the subplate-cortex interaction. This brings neonatal EEG readily into a multimodal study, where EEG is not only recording cortical function, but it also tests subplate function via different sensory modalities. Finally, introduction of clinically suitable dense array EEG caps, as well as amplifiers capable of recording low frequencies, have disclosed multitude of brain activities that have as yet been overlooked. In the practical part of this video, we show how a multimodal, dense array EEG study is performed in neonatal intensive care unit from a preterm baby in the incubator. The video demonstrates preparation of the baby and incubator, application of the EEG cap, and performance of the sensory stimulations.

  12. Event-related potentials and secondary task performance during simulated driving.

    Science.gov (United States)

    Wester, A E; Böcker, K B E; Volkerts, E R; Verster, J C; Kenemans, J L

    2008-01-01

    Inattention and distraction account for a substantial number of traffic accidents. Therefore, we examined the impact of secondary task performance (an auditory oddball task) on a primary driving task (lane keeping). Twenty healthy participants performed two 20-min tests in the Divided Attention Steering Simulator (DASS). The visual secondary task of the DASS was replaced by an auditory oddball task to allow recording of brain activity. The driving task and the secondary (distracting) oddball task were presented in isolation and simultaneously, to assess their mutual interference. In addition to performance measures (lane keeping in the primary driving task and reaction speed in the secondary oddball task), brain activity, i.e. event-related potentials (ERPs), was recorded. Performance parameters on the driving test and the secondary oddball task did not differ between performance in isolation and simultaneous performance. However, when both tasks were performed simultaneously, reaction time variability increased in the secondary oddball task. Analysis of brain activity indicated that ERP amplitude (P3a amplitude) related to the secondary task, was significantly reduced when the task was performed simultaneously with the driving test. This study shows that when performing a simple secondary task during driving, performance of the driving task and this secondary task are both unaffected. However, analysis of brain activity shows reduced cortical processing of irrelevant, potentially distracting stimuli from the secondary task during driving.

  13. EEG correlates of virtual reality hypnosis.

    Science.gov (United States)

    White, David; Ciorciari, Joseph; Carbis, Colin; Liley, David

    2009-01-01

    The study investigated hypnosis-related electroencephalographic (EEG) coherence and power spectra changes in high and low hypnotizables (Stanford Hypnotic Clinical Scale) induced by a virtual reality hypnosis (VRH) induction system. In this study, the EEG from 17 participants (Mean age = 21.35, SD = 1.58) were compared based on their hypnotizability score. The EEG recording associated with a 2-minute, eyes-closed baseline state was compared to the EEG during a hypnosis-related state. This novel induction system was able to produce EEG findings consistent with previous hypnosis literature. Interactions of significance were found with EEG beta coherence. The high susceptibility group (n = 7) showed decreased coherence, while the low susceptibility group (n = 10) demonstrated an increase in coherence between medial frontal and lateral left prefrontal sites. Methodological and efficacy issues are discussed.

  14. Auto-adaptive averaging: Detecting artifacts in event-related potential data using a fully automated procedure

    NARCIS (Netherlands)

    Talsma, D.

    2008-01-01

    The auto-adaptive averaging procedure proposed here classifies artifacts in event-related potential data by optimizing the signal-to-noise ratio. This method rank orders single trials according to the impact of each trial on the ERP average. Then, the minimum residual background noise level in the

  15. Auto-adaptive averaging: Detecting artifacts in event-related potential data using a fully automated procedure.

    NARCIS (Netherlands)

    Talsma, D.

    2008-01-01

    The auto-adaptive averaging procedure proposed here classifies artifacts in event-related potential data by optimizing the signal-to-noise ratio. This method rank orders single trials according to the impact of each trial on the ERP average. Then, the minimum residual background noise level in the

  16. Increased reaction time variability in attention-deficit hyperactivity disorder as a response-related phenomenon: evidence from single-trial event-related potentials.

    Science.gov (United States)

    Saville, Christopher W N; Feige, Bernd; Kluckert, Christian; Bender, Stephan; Biscaldi, Monica; Berger, Andrea; Fleischhaker, Christian; Henighausen, Klaus; Klein, Christoph

    2015-07-01

    Increased intra-subject variability (ISV) in reaction times (RTs) is a promising endophenotype for attention-deficit hyperactivity disorder (ADHD) and among the most robust hallmarks of the disorder. ISV has been assumed to represent an attentional deficit, either reflecting lapses in attention or increased neural noise. Here, we use an innovative single-trial event-related potential approach to assess whether the increased ISV associated with ADHD is indeed attributable to attention, or whether it is related to response-related processing. We measured electroencephalographic responses to working memory oddball tasks in patients with ADHD (N = 20, aged 11.3 ± 1.1) and healthy controls (N = 25, aged 11.7 ± 1.1), and analysed these data with a recently developed method of single-trial event-related potential analysis. Estimates of component latency variability were computed for the stimulus-locked and response-locked forms of the P3b and the lateralised readiness potential (LRP). ADHD patients showed significantly increased ISV in behavioural ISV. This increased ISV was paralleled by an increase in variability in response-locked event-related potential latencies, while variability in stimulus-locked latencies was equivalent between groups. This result held across the P3b and LRP. Latency of all components predicted RTs on a single-trial basis, confirming that all were relevant for speed of processing. These data suggest that the increased ISV found in ADHD could be associated with response-end, rather than stimulus-end processes, in contrast to prevailing conceptions about the endophenotype. This mental chronometric approach may also be useful for exploring whether the existing lack of specificity of ISV to particular psychiatric conditions can be improved upon. © 2014 Association for Child and Adolescent Mental Health.

  17. Structural encoding processes contribute to individual differences in face and object cognition: Inferences from psychometric test performance and event-related brain potentials.

    Science.gov (United States)

    Nowparast Rostami, Hadiseh; Sommer, Werner; Zhou, Changsong; Wilhelm, Oliver; Hildebrandt, Andrea

    2017-10-01

    The enhanced N1 component in event-related potentials (ERP) to face stimuli, termed N170, is considered to indicate the structural encoding of faces. Previously, individual differences in the latency of the N170 have been related to face and object cognition abilities. By orthogonally manipulating content domain (faces vs objects) and task demands (easy/speed vs difficult/accuracy) in both psychometric and EEG tasks, we investigated the uniqueness of the processes underlying face cognition as compared with object cognition and the extent to which the N1/N170 component can explain individual differences in face and object cognition abilities. Data were recorded from N = 198 healthy young adults. Structural equation modeling (SEM) confirmed that the accuracies of face perception (FP) and memory are specific abilities above general object cognition; in contrast, the speed of face processing was not differentiable from the speed of object cognition. Although there was considerable domain-general variance in the N170 shared with the N1, there was significant face-specific variance in the N170. The brain-behavior relationship showed that faster face-specific processes for structural encoding of faces are associated with higher accuracy in both perceiving and memorizing faces. Moreover, in difficult task conditions, qualitatively different processes are additionally needed for recognizing face and object stimuli as compared with easy tasks. The difficulty-dependent variance components in the N170 amplitude were related with both face and object memory (OM) performance. We discuss implications for understanding individual differences in face cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The effect of learning on feedback-related potentials in adolescents with dyslexia: an EEG-ERP study.

    Directory of Open Access Journals (Sweden)

    Dror Kraus

    Full Text Available INTRODUCTION: Individuals with dyslexia exhibit associated learning deficits and impaired executive functions. The Wisconsin Card Sorting Test (WCST is a learning-based task that relies heavily on executive functioning, in particular, attention shift and working memory. Performance during early and late phases of a series within the task represents learning and implementation of a newly learned rule. Here, we aimed to examine two event-related potentials associated with learning, feedback-related negativity (FRN-P300 complex, in individuals with dyslexia performing the WCST. METHODS: Adolescents with dyslexia and age-matched typical readers performed the Madrid card sorting test (MCST, a computerized version of the WCST. Task performance, reading measures, and cognitive measures were collected. FRN and the P300 complex were acquired using the event-related potentials methodology and were compared in early vs late errors within a series. RESULTS: While performing the MCST, both groups showed a significant reduction in average reaction times and a trend toward decreased error rates. Typical readers performed consistently better than individuals with dyslexia. FRN amplitudes in early phases were significantly smaller in dyslexic readers, but were essentially equivalent to typical readers in the late phase. P300 amplitudes were initially smaller among readers with dyslexia and tended to decrease further in late phases. Differences in FRN amplitudes for early vs late phases were positively correlated with those of P300 amplitudes in the entire sample. CONCLUSION: Individuals with dyslexia demonstrate a behavioral and electrophysiological change within single series of the MCST. However, learning patterns seem to differ between individuals with dyslexia and typical readers. We attribute these differences to the lower baseline performance of individuals with dyslexia. We suggest that these changes represent a fast compensatory mechanism, demonstrating

  19. EEG patterns in theta and gamma frequency range and their probable relation to human voluntary movement organization.

    Science.gov (United States)

    Popivanov, D; Mineva, A; Krekule, I

    1999-05-21

    In experiments with EEG accompanying continuous slow goal-directed voluntary movements we found abrupt short-term transients (STs) of the coefficients of EEG time-varying autoregressive (TVAR) model. The onset of STs indicated (i) a positive EEG wave related to an increase of 3-7 Hz oscillations in time period before the movement start, (ii) synchronization of 35-40 Hz prior to movement start and during the movement when the target is nearly reached. Both these phenomena are expressed predominantly over supplementary motor area, premotor and parietal cortices. These patterns were detected after averaging of EEG segments synchronized to the abrupt changes of the TVAR coefficients computed in the time course of EEG single records. The results are discussed regarding the cognitive aspect of organization of goal-directed movements.

  20. Short-interval and long-interval intracortical inhibition of TMS-evoked EEG potentials.

    Science.gov (United States)

    Premoli, Isabella; Király, Julia; Müller-Dahlhaus, Florian; Zipser, Carl M; Rossini, Pierre; Zrenner, Christoph; Ziemann, Ulf; Belardinelli, Paolo

    2018-03-15

    Inhibition in the human motor cortex can be probed by means of paired-pulse transcranial magnetic stimulation (ppTMS) at interstimulus intervals of 2-3 ms (short-interval intracortical inhibition, SICI) or ∼100 ms (long-interval intracortical inhibition, LICI). Conventionally, SICI and LICI are recorded as motor evoked potential (MEP) inhibition in the hand muscle. Pharmacological experiments indicate that they are mediated by GABAA and GABAB receptors, respectively. SICI and LICI of TMS-evoked EEG potentials (TEPs) and their pharmacological properties have not been systematically studied. Here, we sought to examine SICI by ppTMS-evoked compared to single-pulse TMS-evoked TEPs, to investigate its pharmacological manipulation and to compare SICI with our previous results on LICI. PpTMS-EEG was applied to the left motor cortex in 16 healthy subjects in a randomized, double-blind placebo-controlled crossover design, testing the effects of a single oral dose 20 mg of diazepam, a positive modulator at the GABAA receptor, vs. 50 mg of the GABAB receptor agonist baclofen on SICI of TEPs. We found significant SICI of the N100 and P180 TEPs prior to drug intake. Diazepam reduced SICI of the N100 TEP, while baclofen enhanced it. Compared to our previous ppTMS-EEG results on LICI, the SICI effects on TEPs, including their drug modulation, were largely analogous. Findings suggest a similar interaction of paired-pulse effects on TEPs irrespective of the interstimulus interval. Therefore, SICI and LICI as measured with TEPs cannot be directly derived from SICI and LICI measured with MEPs, but may offer novel insight into paired-pulse responses recorded directly from the brain rather than muscle. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Event-related potentials to visual, auditory, and bimodal (combined auditory-visual) stimuli.

    Science.gov (United States)

    Isoğlu-Alkaç, Ummühan; Kedzior, Karina; Keskindemirci, Gonca; Ermutlu, Numan; Karamursel, Sacit

    2007-02-01

    The purpose of this study was to investigate the response properties of event related potentials to unimodal and bimodal stimulations. The amplitudes of N1 and P2 were larger during bimodal evoked potentials (BEPs) than auditory evoked potentials (AEPs) in the anterior sites and the amplitudes of P1 were larger during BEPs than VEPs especially at the parieto-occipital locations. Responses to bimodal stimulation had longer latencies than responses to unimodal stimulation. The N1 and P2 components were larger in amplitude and longer in latency during the bimodal paradigm and predominantly occurred at the anterior sites. Therefore, the current bimodal paradigm can be used to investigate the involvement and location of specific neural generators that contribute to higher processing of sensory information. Moreover, this paradigm may be a useful tool to investigate the level of sensory dysfunctions in clinical samples.

  2. Multimodal imaging: Simultaneous EEG in a 3T Hybrid MR–PET system

    Energy Technology Data Exchange (ETDEWEB)

    Neuner, I., E-mail: i.neuner@fz-juelich.de [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany); Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University (Germany); JARA BRAIN—Translational Medicine (Germany); Warbrick, T.; Tellmann, L.; Rota Kops, E.; Arrubla, J.; Boers, F.; Herzog, H. [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany); Shah, N.J. [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany); Department of Neurology, RWTH Aachen University (Germany); JARA BRAIN—Translational Medicine (Germany)

    2013-02-21

    The new generation of integrated MR–PET systems allows the simultaneous acquisition of MR and PET data. While MR delivers structural data with an excellent spatial resolution, the advantage of PET is its information on a molecular level. However, both modalities have a low temporal resolution. Thus, for pharmacological studies or patients who suffer from treatment resistant epilepsy the combination of yet another modality such as EEG could be desirable. We tested the feasibility of evoked visual potentials in a 3T Hybrid MR–PET system (Siemens Germany) in comparison to a standalone 3T Trio System (Siemens Germany). A T2⁎-weighted EPI sequence was used: TR: 2.2 s, TE: 30 ms, FOV: 200 mm, slice thickness 3, 36 slices in a healthy volunteer (male, 27 years old) using an MR-compatible 32-channel EEG system (Brainproducts, Munich, Germany). We applied 200 trials of visual stimulation from a white and black checkerboard. Visual evoked potentials were analyzed using Brain Vision Analyzer (Brainproducts, Munich, Germany). Gradient correction and cardioballistic artefact correction were performed as implemented in Vision Analyzer. Visual event related potentials were successfully recorded at the 3T Hybrid MR–PET system. Both curves differ slightly in shape and latency due to the following factors: the distance from the screen varies slightly and the size of the field of view of the subjects is smaller in the 3T MR–PET system in comparison to the 3T stand alone system. Extending the 3T MR–PET Hybrid system to 3T Hybrid MR–PET–EEG is feasible and adds another tool to clinical neuroimaging and research.

  3. Do Event-Related Evoked Potentials Reflect Apathy Tendency and Motivation?

    Directory of Open Access Journals (Sweden)

    Hiroyuki Takayoshi

    2018-01-01

    Full Text Available Apathy is a mental state of diminished motivation. Although the reward system as the foundation of the motivation in the human brain has been studied extensively with neuroimaging techniques, the electrophysiological correlates of motivation and apathy have not been fully explored. Thus, in 14 healthy volunteers, we examined whether event-related evoked potentials (ERP obtained during a simple number discrimination task with/without rewards reflected apathy tendency and a reward-dependent tendency, which were assessed separately using the apathy scale and the temperament and character inventory (TCI. Participants were asked to judge the size of a number, and received feedback based on their performance in each trial. The P3 amplitudes related to the feedback stimuli increased only in the reward condition. Furthermore, the P2 amplitudes related to the negative feedback stimuli in the reward condition had a positive correlation with the reward-dependent tendency in TCI, whereas the P3 amplitudes related to the positive feedback stimuli had a negative correlation with the apathy score. Our result suggests that the P2 and P3 ERPs to reward-related feedback stimuli are modulated in a distinctive manner by the motivational reward dependence and apathy tendency, and thus the current paradigm may be useful for investigating the brain activity associated with motivation.

  4. Identifying the null subject: evidence from event-related brain potentials.

    Science.gov (United States)

    Demestre, J; Meltzer, S; García-Albea, J E; Vigil, A

    1999-05-01

    Event-related brain potentials (ERPs) were recorded during spoken language comprehension to study the on-line effects of gender agreement violations in controlled infinitival complements. Spanish sentences were constructed in which the complement clause contained a predicate adjective marked for syntactic gender. By manipulating the gender of the antecedent (i.e., the controller) of the implicit subject while holding constant the gender of the adjective, pairs of grammatical and ungrammatical sentences were created. The detection of such a gender agreement violation would indicate that the parser had established the coreference relation between the null subject and its antecedent. The results showed a complex biphasic ERP (i.e., an early negativity with prominence at anterior and central sites, followed by a centroparietal positivity) in the violating condition as compared to the non-violating conditions. The brain reacts to NP-adjective gender agreement violations within a few hundred milliseconds of their occurrence. The data imply that the parser has properly coindexed the null subject of an infinitive clause with its antecedent.

  5. One-Class FMRI-Inspired EEG Model for Self-Regulation Training.

    Directory of Open Access Journals (Sweden)

    Yehudit Meir-Hasson

    Full Text Available Recent evidence suggests that learned self-regulation of localized brain activity in deep limbic areas such as the amygdala, may alleviate symptoms of affective disturbances. Thus far self-regulation of amygdala activity could be obtained only via fMRI guided neurofeedback, an expensive and immobile procedure. EEG on the other hand is relatively inexpensive and can be easily implemented in any location. However the clinical utility of EEG neurofeedback for affective disturbances remains limited due to low spatial resolution, which hampers the targeting of deep limbic areas such as the amygdala. We introduce an EEG prediction model of amygdala activity from a single electrode. The gold standard used for training is the fMRI-BOLD signal in the amygdala during simultaneous EEG/fMRI recording. The suggested model is based on a time/frequency representation of the EEG data with varying time-delay. Previous work has shown a strong inhomogeneity among subjects as is reflected by the models created to predict the amygdala BOLD response from EEG data. In that work, different models were constructed for different subjects. In this work, we carefully analyzed the inhomogeneity among subjects and were able to construct a single model for the majority of the subjects. We introduce a method for inhomogeneity assessment. This enables us to demonstrate a choice of subjects for which a single model could be derived. We further demonstrate the ability to modulate brain-activity in a neurofeedback setting using feedback generated by the model. We tested the effect of the neurofeedback training by showing that new subjects can learn to down-regulate the signal amplitude compared to a sham group, which received a feedback obtained by a different participant. This EEG based model can overcome substantial limitations of fMRI-NF. It can enable investigation of NF training using multiple sessions and large samples in various locations.

  6. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.

    Science.gov (United States)

    Whittingstall, Kevin; Bartels, Andreas; Singh, Vanessa; Kwon, Soyoung; Logothetis, Nikos K

    2010-10-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an

  7. Event-related potentials reflect impaired temporal interval learning following haloperidol administration.

    Science.gov (United States)

    Forster, Sarah E; Zirnheld, Patrick; Shekhar, Anantha; Steinhauer, Stuart R; O'Donnell, Brian F; Hetrick, William P

    2017-09-01

    Signals carried by the mesencephalic dopamine system and conveyed to anterior cingulate cortex are critically implicated in probabilistic reward learning and performance monitoring. A common evaluative mechanism purportedly subserves both functions, giving rise to homologous medial frontal negativities in feedback- and response-locked event-related brain potentials (the feedback-related negativity (FRN) and the error-related negativity (ERN), respectively), reflecting dopamine-dependent prediction error signals to unexpectedly negative events. Consistent with this model, the dopamine receptor antagonist, haloperidol, attenuates the ERN, but effects on FRN have not yet been evaluated. ERN and FRN were recorded during a temporal interval learning task (TILT) following randomized, double-blind administration of haloperidol (3 mg; n = 18), diphenhydramine (an active control for haloperidol; 25 mg; n = 20), or placebo (n = 21) to healthy controls. Centroparietal positivities, the Pe and feedback-locked P300, were also measured and correlations between ERP measures and behavioral indices of learning, overall accuracy, and post-error compensatory behavior were evaluated. We hypothesized that haloperidol would reduce ERN and FRN, but that ERN would uniquely track automatic, error-related performance adjustments, while FRN would be associated with learning and overall accuracy. As predicted, ERN was reduced by haloperidol and in those exhibiting less adaptive post-error performance; however, these effects were limited to ERNs following fast timing errors. In contrast, the FRN was not affected by drug condition, although increased FRN amplitude was associated with improved accuracy. Significant drug effects on centroparietal positivities were also absent. Our results support a functional and neurobiological dissociation between the ERN and FRN.

  8. External main-induced events in relation to nuclear power plant siting

    International Nuclear Information System (INIS)

    1981-01-01

    This safety Guide recomments procedures and provides information for use in implementing that part of the code of safety in Nuclear Power Plant Siting (IAEA Safety Series No. 50-C-S) which concerns man-induced events external to the plant, up to the evaluation of corresponding design basis parameters. Like the code, the Guide forms part of the IAEA's programme, referred to as the NUSS programme, for establishing codes of practice and safety Guides relating to land-based stationary thermal neutron power plants

  9. Effects of Marijuana on Ictal and Interictal EEG Activities in Idiopathic Generalized Epilepsy.

    Science.gov (United States)

    Sivakumar, Sanjeev; Zutshi, Deepti; Seraji-Bozorgzad, Navid; Shah, Aashit K

    2017-01-01

    Marijuana-based treatment for refractory epilepsy shows promise in surveys, case series, and clinical trials. However, literature on their EEG effects is sparse. Our objective is to analyze the effect of marijuana on EEG in a 24-year-old patient with idiopathic generalized epilepsy treated with cannabis. We blindly reviewed 3 long-term EEGs-a 24-hour study while only on antiepileptic drugs, a 72-hour EEG with Cannabis indica smoked on days 1 and 3 in addition to antiepileptic drugs, and a 48-hour EEG with combination C indica/sativa smoked on day 1 plus antiepileptic drugs. Generalized spike-wave discharges and diffuse paroxysmal fast activity were categorized as interictal and ictal, based on duration of less than 10 seconds or greater, respectively. Data from three studies concatenated into contiguous time series, with usage of marijuana modeled as time-dependent discrete variable while interictal and ictal events constituted dependent variables. Analysis of variance as initial test for significance followed by time series analysis using Generalized Autoregressive Conditional Heteroscedasticity model was performed. Statistical significance for lower interictal events (analysis of variance P = 0.001) was seen during C indica use, but not for C indica/sativa mixture (P = 0.629) or ictal events (P = 0.087). However, time series analysis revealed a significant inverse correlation between marijuana use, with interictal (P EEG data, we demonstrate a decrease in interictal and ictal electrographic events during marijuana use. Larger samples of patients and EEG, with standardized cannabinoid formulation and dosing, are needed to validate our findings.

  10. Event-related brain potentials reflect traces of echoic memory in humans.

    Science.gov (United States)

    Winkler, I; Reinikainen, K; Näätänen, R

    1993-04-01

    In sequences of identical auditory stimuli, infrequent deviant stimuli elicit an event-related brain potential component called mismatch negativity (MMN). MMN is presumed to reflect the existence of a memory trace of the frequent stimulus at the moment of presentation of the infrequent stimulus. This hypothesis was tested by applying the recognition-masking paradigm of cognitive psychology. In this paradigm, a masking sound presented shortly before or after a test stimulus diminishes the recognition memory of this stimulus, the more so the shorter the interval between the test and masking stimuli. This interval was varied in the present study. It was found that the MMN amplitude strongly correlated with the subject's ability to discriminate between frequent and infrequent stimuli. This result strongly suggests that MMN provides a measure for a trace of sensory memory, and further, that with MMN, this memory can be studied without performance-related distortions.

  11. Correlation between event-related potentials and MR measurements in chronic alcoholic patients

    International Nuclear Information System (INIS)

    Kaseda, Yumiko; Miyazato, Yoshikazu; Ogura, Chikara; Nakamoto, Haruo; Uema, Takeshi; Yamamoto, Kazuyoshi; Ohta, Ikuya

    1994-01-01

    Event-related potentials were recorded in 25 abstinent alcoholics, and 25 gender- and age-matched controls during a two-tone discrimination (odd ball) task. All the subjects were free from medication and dextral. MR images were examined in the alcoholics. The amplitudes of N100, N200 and P300 in the alcoholics were reduced compared with those of the controls. In order to identify morphological changes responsible for ERP abnormalities, linear regression analyses were performed between ERP measures and MRI parameters. The amplitude of N100 was inversely correlated with ventricular size. The amplitudes of P300 were inversely correlated with both ventricular size and width of cortical sulci. It was suggested that the N100 abnormality was related to subcortical structure, and P300 alteration was related to both subcortical and cortical structures in the alcoholics. (author)

  12. Applicability of the "Emotiv EEG Neuroheadset" as a user-friendly input interface.

    Science.gov (United States)

    Boutani, Hidenori; Ohsuga, Mieko

    2013-01-01

    We aimed to develop an input interface by using the P3 component of visual event-related potentials (ERPs). When using electroencephalography (EEG) in daily applications, coping with ocular-motor artifacts and ensuring that the equipment is user-friendly are both important. To address the first issue, we applied a previously proposed method that applies an unmixing matrix to acquire independent components (ICs) obtained from another dataset. For the second issue, we introduced a 14-channel EEG commercial headset called the "Emotiv EEG Neuroheadset". An advantage of the Emotiv headset is that users can put it on by themselves within 1 min without any specific skills. However, only a few studies have investigated whether EEG and ERP signals are accurately measured by Emotiv. Additionally, no electrodes of the Emotiv headset are located over the centroparietal area of the head where P3 components are reported to show large amplitudes. Therefore, we first demonstrated that the P3 components obtained by the headset and by commercial plate electrodes and a multipurpose bioelectric amplifier during an oddball task were comparable. Next, we confirmed that eye-blink and ocular movement components could be decomposed by independent component analysis (ICA) using the 14-channel signals measured by the headset. We also demonstrated that artifacts could be removed with an unmixing matrix, as long as the matrix was obtained from the same person, even if they were measured on different days. Finally, we confirmed that the fluctuation of the sampling frequency of the Emotiv headset was not a major problem.

  13. Feature selection using angle modulated simulated Kalman filter for peak classification of EEG signals.

    Science.gov (United States)

    Adam, Asrul; Ibrahim, Zuwairie; Mokhtar, Norrima; Shapiai, Mohd Ibrahim; Mubin, Marizan; Saad, Ismail

    2016-01-01

    In the existing electroencephalogram (EEG) signals peak classification research, the existing models, such as Dumpala, Acir, Liu, and Dingle peak models, employ different set of features. However, all these models may not be able to offer good performance for various applications and it is found to be problem dependent. Therefore, the objective of this study is to combine all the associated features from the existing models before selecting the best combination of features. A new optimization algorithm, namely as angle modulated simulated Kalman filter (AMSKF) will be employed as feature selector. Also, the neural network random weight method is utilized in the proposed AMSKF technique as a classifier. In the conducted experiment, 11,781 samples of peak candidate are employed in this study for the validation purpose. The samples are collected from three different peak event-related EEG signals of 30 healthy subjects; (1) single eye blink, (2) double eye blink, and (3) eye movement signals. The experimental results have shown that the proposed AMSKF feature selector is able to find the best combination of features and performs at par with the existing related studies of epileptic EEG events classification.

  14. [Differential effects of attention deficit/hyperactivity disorder subtypes in event-related potentials].

    Science.gov (United States)

    Tamayo-Orrego, Lukas; Osorio Forero, Alejandro; Quintero Giraldo, Lina Paola; Parra Sánchez, José Hernán; Varela, Vilma; Restrepo, Francia

    2015-01-01

    To better understand the neurophysiological substrates in attention deficit/hyperactivity disorder (ADHD), a study was performed on of event-related potentials (ERPs) in Colombian patients with inattentive and combined ADHD. A case-control, cross-sectional study was designed. The sample was composed of 180 subjects between 5 and 15 years of age (mean, 9.25±2.6), from local schools in Manizales. The sample was divided equally in ADHD or control groups and the subjects were paired by age and gender. The diagnosis was made using the DSM-IV-TR criteria, the Conners and WISC-III test, a psychiatric interview (MINIKID), and a medical evaluation. ERPs were recorded in a visual and auditory passive oddball paradigm. Latency and amplitude of N100, N200 and P300 components for common and rare stimuli were used for statistical comparisons. ADHD subjects show differences in the N200 amplitude and P300 latency in the auditory task. The N200 amplitude was reduced in response to visual stimuli. ADHD subjects with combined symptoms show a delayed P300 in response to auditory stimuli, whereas inattentive subjects exhibited differences in the amplitude of N100 and N200. Combined ADHD patients showed longer N100 latency and smaller N200-P300 amplitude compared to inattentive ADHD subjects. The results show differences in the event-related potentials between combined and inattentive ADHD subjects. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  15. Donepezil impairs memory in healthy older subjects: behavioural, EEG and simultaneous EEG/fMRI biomarkers.

    Directory of Open Access Journals (Sweden)

    Joshua H Balsters

    Full Text Available Rising life expectancies coupled with an increasing awareness of age-related cognitive decline have led to the unwarranted use of psychopharmaceuticals, including acetylcholinesterase inhibitors (AChEIs, by significant numbers of healthy older individuals. This trend has developed despite very limited data regarding the effectiveness of such drugs on non-clinical groups and recent work indicates that AChEIs can have negative cognitive effects in healthy populations. For the first time, we use a combination of EEG and simultaneous EEG/fMRI to examine the effects of a commonly prescribed AChEI (donepezil on cognition in healthy older participants. The short- and long-term impact of donepezil was assessed using two double-blind, placebo-controlled trials. In both cases, we utilised cognitive (paired associates learning (CPAL and electrophysiological measures (resting EEG power that have demonstrated high-sensitivity to age-related cognitive decline. Experiment 1 tested the effects of 5 mg/per day dosage on cognitive and EEG markers at 6-hour, 2-week and 4-week follow-ups. In experiment 2, the same markers were further scrutinised using simultaneous EEG/fMRI after a single 5 mg dose. Experiment 1 found significant negative effects of donepezil on CPAL and resting Alpha and Beta band power. Experiment 2 replicated these results and found additional drug-related increases in the Delta band. EEG/fMRI analyses revealed that these oscillatory differences were associated with activity differences in the left hippocampus (Delta, right frontal-parietal network (Alpha, and default-mode network (Beta. We demonstrate the utility of simple cognitive and EEG measures in evaluating drug responses after acute and chronic donepezil administration. The presentation of previously established markers of age-related cognitive decline indicates that AChEIs can impair cognitive function in healthy older individuals. To our knowledge this is the first study to identify

  16. EEG Clearing Office strengthened by EEG 2012. Alternative dispute resolution in the renewable energies industry; Aufwertung der Clearingstelle EEG durch das EEG 2012. Alternative Dispute Resolution im Bereich der Erneuerbaren Energien

    Energy Technology Data Exchange (ETDEWEB)

    Chatzinerantzis, Alexandros; Fach, Martin [Linklaters LLP, Frankfurt am Main (Germany). Praxisgruppe Litigation and Arbitration

    2012-11-14

    The EEG Clearing Office is a special arbitration forum for the purpose of facilitating quick and inexpensive out-of-court dispute resolutions and resolving cases of legal uncertainty in connection with the regulations of the EEG (Renewable Energy Law). The Clearing Office has developed dynamically over the past years, as the numbers of newly registered potential and ongoing procedures impressively show. In the 2012 amendment to the EEG the legislature has fundamentally revised and substantially widened the legal basis for the work of the Clearing Office. This provides the motivation for presenting the Clearing Office and its procedural rules in the following article.

  17. Attention in essential tremor: evidence from event-related potentials.

    Science.gov (United States)

    Pauletti, C; Mannarelli, D; Locuratolo, N; Vanacore, N; De Lucia, M C; Mina, C; Fattapposta, F

    2013-07-01

    Clinically subtle executive dysfunctions have recently been described in essential tremor (ET), though the presence of attentional deficits is still unclear. We investigated the psychophysiological aspects of attention in ET, using event-related potentials (ERPs). Twenty-one non-demented patients with ET and 21 age- and sex-matched healthy controls underwent a psychophysiological evaluation. P300 components and the Contingent Negative Variation (CNV) were recorded. The latencies and amplitudes of the P3a and P3b subcomponents and CNV areas were evaluated. Possible correlations between clinical parameters and ERP data were investigated. P3a latency was significantly longer in the ET group (p attentive circuits, while the memory context-updating process appears to be spared. This selective cognitive dysfunction does not appear to interfere with the attentional set linked to the expectancy evaluated during a complex choice-reaction time task, which is preserved in ET. This multitask psychophysiological approach reveals the presence of a peculiar attentional deficit in patients with ET, thus expanding the clinical features of this disease.

  18. Reduced Prefrontal Short—Latency Afferent Inhibition in Older Adults and Its Relation to Executive Function: A TMS-EEG Study

    Directory of Open Access Journals (Sweden)

    Daniel M. Blumberger

    2017-05-01

    Full Text Available Combining transcranial magnetic stimulation (TMS with electroencephalography (EEG allows for the assessment of various neurophysiological processes in the human cortex. One of these paradigms, short-latency afferent inhibition (SAI, is thought to be a sensitive measure of cholinergic activity. In a previous study, we demonstrated the temporal pattern of this paradigm from both the motor (M1 and dorsolateral prefrontal cortex (DLPFC using simultaneous TMS–EEG recording. The SAI paradigm led to marked modulations at N100. In this study, we aimed to investigate the age-related effects on TMS-evoked potentials (TEPs with the SAI from M1 and the DLPFC in younger (18–59 years old and older (≥60 years old participants. Older participants showed significantly lower N100 modulation in M1–SAI as well as DLPFC–SAI compared to the younger participants. Furthermore, the modulation of N100 by DLPFC–SAI in the older participants correlated with executive function as measured with the Trail making test. This paradigm has the potential to non-invasively identify cholinergic changes in cortical regions related to cognition in older participants.

  19. Recovery Sleep Reverses Impaired Response Inhibition due to Sleep Restriction: Evidence from a Visual Event Related Potentials Study.

    Directory of Open Access Journals (Sweden)

    Xiao Jin

    Full Text Available To investigate response inhibition after total sleep deprivation (TSD and the restorative effects of one night of recovery sleep (RS.Fourteen healthy male participants performed a visual Go/NoGo task, and electroencephalogram recordings were conducted at five time points: (1 baseline, (2 after 12 h of TSD, (3 after 24 h of TSD, (4 after 36 h of TSD, and (5 following 8 h of RS. The dynamic changes in response inhibition during TSD and after 8 h of RS were investigated by examining the NoGo-N2 and NoGo-P3 event-related potential components.Compared with baseline, NoGo-P3 amplitudes were decreased, while the NoGo-N2 latency increased along with the awake time prolonged. NoGo anteriorization, which was minimized after 24 h of TSD, progressively decreased with increasing TSD. After 8 h of RS, recoveries of both the NoGo-P3 amplitude and NoGo-N2 latency in the prefrontal cortex were observed compared with the values after 36 h of TSD.TSD induced a dose-dependent functional decline in the response inhibition of NoGo-N2 and NoGo-P3 on prefrontal cortex activation, and 8 h of RS resulted in recovery or maintenance of the response inhibition. However, it was not restored to baseline levels.Participants were chosen male college students only, thus the findings cannot be generalized to older people and women. Additionally, the sample size was small, and, thus, speculations on the meaning of the results of this study should be cautious. The EEG continuous recording should be employed to monitor the decline of alertness following TSD.

  20. [Progress on neuropsychology and event-related potentials in patients with brain trauma].

    Science.gov (United States)

    Dong, Ri-xia; Cai, Wei-xiong; Tang, Tao; Huang, Fu-yin

    2010-02-01

    With the development of information technology, as one of the research frontiers in neurophysiology, event-related potentials (ERP) is concerned increasingly by international scholars, which provides a feasible and objective method for exploring cognitive function. There are many advances in neuropsychology due to new assessment tool for the last years. The basic theories in the field of ERP and neuropsychology were reviewed in this article. The research and development in evaluating cognitive function of patients with syndrome after brain trauma were focused in this review, and the perspectives for the future research of ERP was also explored.

  1. Children's Performance on Pseudoword Repetition Depends on Auditory Trace Quality: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Ceponiene, Rita; Service, Elisabet; Kurjenluoma, Sanna; Cheour, Marie; Naatanen, Risto

    1999-01-01

    Compared the mismatch-negativity (MMN) component of auditory event-related brain potentials to explore the relationship between phonological short-term memory and auditory-sensory processing in 7- to 9-year olds scoring the highest and lowest on a pseudoword repetition test. Found that high and low repeaters differed in MMN amplitude to speech…

  2. Implicit Phonological and Semantic Processing in Children with Developmental Dyslexia: Evidence from Event-Related Potentials

    Science.gov (United States)

    Jednorog, K.; Marchewka, A.; Tacikowski, P.; Grabowska, A.

    2010-01-01

    Dyslexia is characterized by a core phonological deficit, although recent studies indicate that semantic impairment also contributes to this condition. In this study, event-related potentials (ERP) were used to examine whether the N400 wave in dyslexic children is modulated by phonological or semantic priming, similarly to age-matched controls.…

  3. Individual Differences in EEG Spectral Power Reflect Genetic Variance in Gray and White Matter Volumes

    NARCIS (Netherlands)

    Smit, D.J.A.; Boomsma, D.I.; Schnack, H.G.; Hulshoff Pol, H.E.; de Geus, E.J.C.

    2012-01-01

    The human electroencephalogram (EEG) consists of oscillations that reflect the summation of postsynaptic potentials at the dendritic tree of cortical neurons. The strength of the oscillations (EEG power) is a highly genetic trait that has been related to individual differences in many phenotypes,

  4. Modification of EEG power spectra and EEG connectivity in autobiographical memory: a sLORETA study.

    Science.gov (United States)

    Imperatori, Claudio; Brunetti, Riccardo; Farina, Benedetto; Speranza, Anna Maria; Losurdo, Anna; Testani, Elisa; Contardi, Anna; Della Marca, Giacomo

    2014-08-01

    The aim of the present study was to explore the modifications of scalp EEG power spectra and EEG connectivity during the autobiographical memory test (AM-T) and during the retrieval of an autobiographical event (the high school final examination, Task 2). Seventeen healthy volunteers were enrolled (9 women and 8 men, mean age 23.4 ± 2.8 years, range 19-30). EEG was recorded at baseline and while performing the autobiographical memory (AM) tasks, by means of 19 surface electrodes and a nasopharyngeal electrode. EEG analysis was conducted by means of the standardized LOw Resolution Electric Tomography (sLORETA) software. Power spectra and lagged EEG coherence were compared between EEG acquired during the memory tasks and baseline recording. The frequency bands considered were as follows: delta (0.5-4 Hz); theta (4.5-7.5 Hz); alpha (8-12.5 Hz); beta1 (13-17.5 Hz); beta2 (18-30 Hz); gamma (30.5-60 Hz). During AM-T, we observed a significant delta power increase in left frontal and midline cortices (T = 3.554; p < 0.05) and increased EEG connectivity in delta band in prefrontal, temporal, parietal, and occipital areas, and for gamma bands in the left temporo-parietal regions (T = 4.154; p < 0.05). In Task 2, we measured an increased power in the gamma band located in the left posterior midline areas (T = 3.960; p < 0.05) and a significant increase in delta band connectivity in the prefrontal, temporal, parietal, and occipital areas, and in the gamma band involving right temporo-parietal areas (T = 4.579; p < 0.05). These results indicate that AM retrieval engages in a complex network which is mediated by both low- (delta) and high-frequency (gamma) EEG bands.

  5. The "Mozart effect": an electroencephalographic analysis employing the methods of induced event-related desynchronization/synchronization and event-related coherence.

    Science.gov (United States)

    Jausovec, Norbert; Habe, Katarina

    2003-01-01

    The event-related responses of 18 individuals were recorded while they were listening to 3 music clips of 6 s duration which were repeated 30 times each. The music clips differed in the level of their complex structure, induced mood, musical tempo and prominent frequency. They were taken from Mozart's sonata (K. 448), and Brahms' Hungarian dance (no. 5). The third clip was a simplified version of the theme taken from Haydn's symphony (no. 94) played by a computer synthesizer. Significant differences in induced event-related desynchronization between the 3 music clips were only observed in the lower-1 alpha band which is related to attentional processes. A similar pattern was observed for the coherence measures. While respondents listened to the Mozart clip, coherence in the lower alpha bands increased more, whereas in the gamma band a less pronounced increase was observed as compared with the Brahms and Haydn clips. The clustering of the three clips based on EEG measures distinguished between the Mozart clip on the one hand, and the Haydn and Brahms clips on the other, even though the Haydn and Brahms clips were at the opposite extremes with regard to the mood they induced in listeners, musical tempo, and complexity of structure. This would suggest that Mozart's music--with no regard to the level of induced mood, musical tempo and complexity--influences the level of arousal. It seems that modulations in the frequency domain of Mozart's sonata have the greatest influence on the reported neurophysiological activity.

  6. [Event-related potentials P₃₀₀ with memory function and psychopathology in first-episode paranoid schizophrenia].

    Science.gov (United States)

    Liu, Wei-bo; Chen, Qiao-zhen; Yin, Hou-min; Zheng, Lei-lei; Yu, Shao-hua; Chen, Yi-ping; Li, Hui-chun

    2011-11-01

    To investigate the variability of event-related potentials P(300) and the relationship with memory function/psychopathology in patients with first-episode paranoid schizophrenia. Thirty patients with first-episode paranoid schizophrenia (patient group) and twenty health subjects (control group) were enrolled in the study. The auditory event-related potentials P₃₀₀ at the scalp electrodes Cz, Pz and Wechsler Memory Scale (WMS) were examined in both groups, Positive And Negative Syndrome Scale (PANSS) was evaluated in patient group. In comparison with control group, patients had longer latency of P₃₀₀ [(390.6 ± 47.6)ms at Cz and (393.3 ± 50.1)ms at Pz] (Pparanoid schizophrenia has memory deficit, which can be evaluated comprehensively by P₃₀₀ and WMS. The longer latency of P₃₀₀ might be associated with the increased severity of first-episode paranoid schizophrenia.

  7. Bilateral theta-burst magnetic stimulation influence on event-related brain potentials.

    Science.gov (United States)

    Pinto, Nuno; Duarte, Marta; Gonçalves, Helena; Silva, Ricardo; Gama, Jorge; Pato, Maria Vaz

    2018-01-01

    Theta-burst stimulation (TBS) can be a non-invasive technique to modulate cognitive functions, with promising therapeutic potential, but with some contradictory results. Event related potentials are used as a marker of brain deterioration and can be used to evaluate TBS-related cognitive performance, but its use remains scant. This study aimed to study bilateral inhibitory and excitatory TBS effects upon neurocognitive performance of young healthy volunteers, using the auditory P300' results. Using a double-blind sham-controlled study, 51 healthy volunteers were randomly assigned to five different groups, two submitted to either excitatory (iTBS) or inhibitory (cTBS) stimulation over the left dorsolateral pre-frontal cortex (DLPFC), two other actively stimulated the right DLPFC and finally a sham stimulation group. An oddball based auditory P300 was performed just before a single session of iTBS, cTBS or sham stimulation and repeated immediately after. P300 mean latency comparison between the pre- and post-TBS stimulation stages revealed significantly faster post stimulation latencies only when iTBS was performed on the left hemisphere (p = 0.003). Right and left hemisphere cTBS significantly delayed P300 latency (right p = 0.026; left p = 0.000). Multiple comparisons for N200 showed slower latencies after iTBS over the right hemisphere. No significant difference was found in amplitude variation. TBS appears to effectively influence neural networking involved in P300 formation, but effects seem distinct for iTBS vs cTBS and for the right or the left hemisphere. P300 evoked potentials can be an effective and practical tool to evaluate transcranial magnetic stimulation related outcomes.

  8. Early post-traumatic epilepsy following serious craniocerebral trauma, with emphasis on EEG and CT findings

    International Nuclear Information System (INIS)

    Goeller, T.

    1981-01-01

    In the study on hand, eighty patients with craniocerebral trauma were regularly examined by EEG. Twenty-two of the patients had clinically observable fits. In five other patients, only the EEG revealed paroxysmal events in the first week following trauma. In six patients who were observed to have fits, no corresponding EEG equivalent could be recorded for technical reasons. In case of early epileptical fits, CT always revealed an intercranial hemorrhage, except for two cases, the findings being in agreement with the lateral location of the focus as determined by EEG. The seriousness of cranial injury was directly related to the number of fits observed in the first post-traumatic week. Patients over thirty showed an increase of eraly post-traumatic fits. The lethality of patients with early fits was significantly increased as compared with patients without early fits. EEG examination as early as possible after the craniocerebral trauma is necessary and useful, both for detection of lesions and for appropriate drug therapy. (orig./MG) [de

  9. A New Approach to Eliminate High Amplitude Artifacts in EEG Signals

    Directory of Open Access Journals (Sweden)

    Ana Rita Teixeira

    2016-09-01

    Full Text Available High amplitude artifacts represent a problem during EEG recordings in neuroscience research. Taking this into account, this paper proposes a method to identify high amplitude artifacts with no requirement for visual inspection, electrooscillogram (EOG reference channel or user assigned parameters. A potential solution to the high amplitude artifacts (HAA elimination is presented based on blind source separation methods. The assumption underlying the selection of components is that HAA are independent of the EEG signal and different HAA can be generated during the EEG recordings. Therefore, the number of components related to HAA is variable and depends on the processed signal, which means that the method is adaptable to the input signal. The results show, when removing the HAA artifacts, the delta band is distorted but all the other frequency bands are preserved. A case study with EEG signals recorded while participants performed on the Halstead Category Test (HCT is presented. After HAA removal, data analysis revealed, as expected, an error-related frontal ERP wave: the feedback-related negativity (FRN in response to feedback stimuli.

  10. Schizophrenia and the efficacy of qEEG-guided neurofeedback treatment: a clinical case series.

    Science.gov (United States)

    Surmeli, Tanju; Ertem, Ayben; Eralp, Emin; Kos, Ismet H

    2012-04-01

    Schizophrenia is sometimes considered one of the most devastating of mental illnesses because its onset is early in a patient's life and its symptoms can be destructive to the patient, the family, and friends. Schizophrenia affects 1 in 100 people at some point during their lives, and while there is no cure, it is treatable with antipsychotic medications. According to the Clinical Antipsychotic Trials for Interventions Effectiveness (CATIE), about 74% of the patients who have discontinued the first medication prescribed within a year will have a relapse afterward. This shows an enormous need for developing better treatment methods and better ways to manage the disease, since current therapies do not have sufficient impact on negative symptoms, cognitive dysfunction, and compliance to treatment. In this clinical case series, we investigate the efficacy of quantitative electroencephalography (qEEG)-guided neurofeedback (NF) treatment in this population, and whether this method has an effect on concurrent medical treatment and on the patients. Fifty-one participants (25 males and 26 females) ranging from 17 to 54 years of age (mean: 28.82 years and SD: 7.94 years) were included. Signed consent was received from all patients. Most of the participants were previously diagnosed with chronic schizophrenia, and their symptoms did not improve with medication. All 51 patients were evaluated using qEEG, which was recorded at baseline and following treatment. Before recording the qEEG, participants were washed out for up to 7 half-lives of the medication. After Food and Drug Administration (FDA)-approved Nx-Link Neurometric analysis, qEEGs suggested a diagnosis of chronic schizophrenia for all participants. This was consistent with the clinical judgment of the authors. The participants' symptoms were assessed by means of the Positive and Negative Syndrome Scale (PANSS). Besides the PANSS, 33 out of 51 participants were also evaluated by the Minnesota Multiphasic Personality

  11. Combining EEG, MIDI, and motion capture techniques for investigating musical performance.

    Science.gov (United States)

    Maidhof, Clemens; Kästner, Torsten; Makkonen, Tommi

    2014-03-01

    This article describes a setup for the simultaneous recording of electrophysiological data (EEG), musical data (MIDI), and three-dimensional movement data. Previously, each of these three different kinds of measurements, conducted sequentially, has been proven to provide important information about different aspects of music performance as an example of a demanding multisensory motor skill. With the method described here, it is possible to record brain-related activity and movement data simultaneously, with accurate timing resolution and at relatively low costs. EEG and MIDI data were synchronized with a modified version of the FTAP software, sending synchronization signals to the EEG recording device simultaneously with keypress events. Similarly, a motion capture system sent synchronization signals simultaneously with each recorded frame. The setup can be used for studies investigating cognitive and motor processes during music performance and music-like tasks--for example, in the domains of motor control, learning, music therapy, or musical emotions. Thus, this setup offers a promising possibility of a more behaviorally driven analysis of brain activity.

  12. Differences between human auditory event-related potentials (AERPs) measured at 2 and 4 months after birth

    NARCIS (Netherlands)

    van den Heuvel, Marion I.; Otte, Renee A.; Braeken, Marijke A. K. A.; Winkler, Istvan; Kushnerenko, Elena; Van den Bergh, Bea R. H.

    2015-01-01

    Infant auditory event-related potentials (AERPs) show a series of marked changes during the first year of life. These AERP changes indicate important advances in early development. The current study examined AERP differences between 2- and 4-month-old infants. An auditory oddball paradigm was

  13. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs

    Science.gov (United States)

    Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve

    2013-01-01

    Background. Auditory event-related potentials (ERPs) have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI), attention deficit hyperactivity disorder (ADHD), schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants – particularly children. Recently, a commercial gaming electroencephalography (EEG) system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC®, www.emotiv.com) were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan). Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz) and 100 deviant (1200 Hz) tones under passive (non-attended) and active (attended) conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan) or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC®). These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks) and the mismatch negativity (MMN) in active and passive listening conditions for each participant. Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs) indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21). Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks. Conclusions

  14. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs

    Directory of Open Access Journals (Sweden)

    Nicholas A. Badcock

    2013-02-01

    Full Text Available Background. Auditory event-related potentials (ERPs have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI, attention deficit hyperactivity disorder (ADHD, schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants – particularly children. Recently, a commercial gaming electroencephalography (EEG system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC®, www.emotiv.com were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan.Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz and 100 deviant (1200 Hz tones under passive (non-attended and active (attended conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC®. These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks and the mismatch negativity (MMN in active and passive listening conditions for each participant.Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21. Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks

  15. EEG analyses with SOBI.

    Energy Technology Data Exchange (ETDEWEB)

    Glickman, Matthew R.; Tang, Akaysha (University of New Mexico, Albuquerque, NM)

    2009-02-01

    The motivating vision behind Sandia's MENTOR/PAL LDRD project has been that of systems which use real-time psychophysiological data to support and enhance human performance, both individually and of groups. Relevant and significant psychophysiological data being a necessary prerequisite to such systems, this LDRD has focused on identifying and refining such signals. The project has focused in particular on EEG (electroencephalogram) data as a promising candidate signal because it (potentially) provides a broad window on brain activity with relatively low cost and logistical constraints. We report here on two analyses performed on EEG data collected in this project using the SOBI (Second Order Blind Identification) algorithm to identify two independent sources of brain activity: one in the frontal lobe and one in the occipital. The first study looks at directional influences between the two components, while the second study looks at inferring gender based upon the frontal component.

  16. Age-related differences in event-related potentials for early visual processing of emotional faces.

    Science.gov (United States)

    Hilimire, Matthew R; Mienaltowski, Andrew; Blanchard-Fields, Fredda; Corballis, Paul M

    2014-07-01

    With advancing age, processing resources are shifted away from negative emotional stimuli and toward positive ones. Here, we explored this 'positivity effect' using event-related potentials (ERPs). Participants identified the presence or absence of a visual probe that appeared over photographs of emotional faces. The ERPs elicited by the onsets of angry, sad, happy and neutral faces were recorded. We examined the frontocentral emotional positivity (FcEP), which is defined as a positive deflection in the waveforms elicited by emotional expressions relative to neutral faces early on in the time course of the ERP. The FcEP is thought to reflect enhanced early processing of emotional expressions. The results show that within the first 130 ms young adults show an FcEP to negative emotional expressions, whereas older adults show an FcEP to positive emotional expressions. These findings provide additional evidence that the age-related positivity effect in emotion processing can be traced to automatic processes that are evident very early in the processing of emotional facial expressions. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. EEG activity during estral cycle in the rat.

    Science.gov (United States)

    Corsi-Cabrera, M; Juárez, J; Ponce-de-León, M; Ramos, J; Velázquez, P N

    1992-10-01

    EEG activity was recorded from right and left parietal cortex in adult female rats daily during 6 days. Immediately after EEG recording vaginal smears were taken and were microscopically analyzed to determine the estral stage. Absolute and relative powers and interhemispheric correlation of EEG activity were calculated and compared between estral stages. Interhemispheric correlation was significantly lower during diestrous as compared to proestrous and estrous. Absolute and relative powers did not show significant differences between estral stages. Absolute powers of alpha1, alpha2, beta1 and beta2 bands were significantly higher at the right parietal cortex. Comparisons of the same EEG records with estral stages randomly grouped showed no significant differences for any of the EEG parameters. EEG activity is a sensitive tool to study functional changes related to the estral cycle.

  18. Selective attention and error processing in an illusory conjunction task - An event-related brain potential study

    NARCIS (Netherlands)

    Wijers, AA; Boksem, MAS

    2005-01-01

    We recorded event-related potentials in an illusory conjunction task, in which subjects were cued on each trial to search for a particular colored letter in a subsequently presented test array, consisting of three different letters in three different colors. In a proportion of trials the target

  19. SVM detection of epileptiform activity in routine EEG.

    LENUS (Irish Health Repository)

    Kelleher, Daniel

    2010-01-01

    Routine electroencephalogram (EEG) is an important test in aiding the diagnosis of patients with suspected epilepsy. These recordings typically last 20-40 minutes, during which signs of abnormal activity (spikes, sharp waves) are looked for in the EEG trace. It is essential that events of short duration are detected during the routine EEG test. The work presented in this paper examines the effect of changing a range of input values to the detection system on its ability to distinguish between normal and abnormal EEG activity. It is shown that the length of analysis window in the range of 0.5s to 1s are well suited to the task. Additionally, it is reported that patient specific systems should be used where possible due to their better performance.

  20. Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation.

    Science.gov (United States)

    Dmochowski, Jacek P; Koessler, Laurent; Norcia, Anthony M; Bikson, Marom; Parra, Lucas C

    2017-08-15

    To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4-7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. EEG, MRI, and SPECT in epilepsy. Relative contributions to preoperative evaluation

    International Nuclear Information System (INIS)

    Seki, Gaku; Hoshida, Tohru; Goda, Kazuo; Hashimoto, Hiroshi; Nakase, Hiroyuki; Hirabayashi, Hidehiro; Kawaguchi, Shoichiro; Morimoto, Tetsuya; Sakaki, Toshisuke

    1998-01-01

    We comparatively assessed detection of epileptogenic areas on preoperative evaluation in 33 patients with intractable partial epilepsy using scalp interictal and ictal electroencephalography (EEG), magnetic resonance imaging (MRI), and interictal single photon emission computed tomography (SPECT). There are 22 temporal and 11 extratemporal lobe epilepsies. All or almost of their seizures have stopped after resective surgery for more than 12 months follow-up period, averaged 43 months. MRI studies demonstrated 21 organic lesions, 11 mesial temporal sclerosis and one patient showed normal brain tissue. Scalp EEG could correctly identify the focus in 14 of 33 cases (42%), interictal SPECT in 18 of 26 (69%), MRI in 29 of 33 (88%), interictal scalp EEG-video monitoring in 17 of 24 (71%), and ictal scalp EEG-video monitoring in 15 of 22 (68%). Although neuroimaging studies, especially MRI, are useful to detect not only localization of epileptic lesions but also epileptogenic focus, for example, mesial temporal sclerosis, the exact localization of epileptogenic areas could be done by comprehensive evaluation including ictal scalp EEG-video monitoring. (author)

  2. EEG, MRI, and SPECT in epilepsy. Relative contributions to preoperative evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Gaku [Luoyang Medical Coll. Associated Hospital (China); Hoshida, Tohru; Goda, Kazuo; Hashimoto, Hiroshi; Nakase, Hiroyuki; Hirabayashi, Hidehiro; Kawaguchi, Shoichiro; Morimoto, Tetsuya; Sakaki, Toshisuke

    1998-07-01

    We comparatively assessed detection of epileptogenic areas on preoperative evaluation in 33 patients with intractable partial epilepsy using scalp interictal and ictal electroencephalography (EEG), magnetic resonance imaging (MRI), and interictal single photon emission computed tomography (SPECT). There are 22 temporal and 11 extratemporal lobe epilepsies. All or almost of their seizures have stopped after resective surgery for more than 12 months follow-up period, averaged 43 months. MRI studies demonstrated 21 organic lesions, 11 mesial temporal sclerosis and one patient showed normal brain tissue. Scalp EEG could correctly identify the focus in 14 of 33 cases (42%), interictal SPECT in 18 of 26 (69%), MRI in 29 of 33 (88%), interictal scalp EEG-video monitoring in 17 of 24 (71%), and ictal scalp EEG-video monitoring in 15 of 22 (68%). Although neuroimaging studies, especially MRI, are useful to detect not only localization of epileptic lesions but also epileptogenic focus, for example, mesial temporal sclerosis, the exact localization of epileptogenic areas could be done by comprehensive evaluation including ictal scalp EEG-video monitoring. (author)

  3. Mutual information measures applied to EEG signals for sleepiness characterization.

    Science.gov (United States)

    Melia, Umberto; Guaita, Marc; Vallverdú, Montserrat; Embid, Cristina; Vilaseca, Isabel; Salamero, Manel; Santamaria, Joan

    2015-03-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep latency (MSLT) tests alternated throughout the day from patients suffering from sleep disordered breathing. A group of 20 patients with excessive daytime sleepiness (EDS) was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60-s EEG windows in waking state. Measures obtained from cross-mutual information function (CMIF) and auto-mutual-information function (AMIF) were calculated in the EEG. These functions permitted a quantification of the complexity properties of the EEG signal and the non-linear couplings between different zones of the scalp. Statistical differences between EDS and WDS groups were found in β band during MSLT events (p-value CMIF measures yielded sensitivity and specificity above 80% and AUC of ROC above 0.85 in classifying EDS and WDS patients. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Cortical sources of resting state EEG rhythms are related to brain hypometabolism in subjects with Alzheimer's disease: an EEG-PET study.

    Science.gov (United States)

    Babiloni, Claudio; Del Percio, Claudio; Caroli, Anna; Salvatore, Elena; Nicolai, Emanuele; Marzano, Nicola; Lizio, Roberta; Cavedo, Enrica; Landau, Susan; Chen, Kewei; Jagust, William; Reiman, Eric; Tedeschi, Gioacchino; Montella, Patrizia; De Stefano, Manuela; Gesualdo, Loreto; Frisoni, Giovanni B; Soricelli, Andrea

    2016-12-01

    Cortical sources of resting state electroencephalographic (EEG) delta (2-4 Hz) and low-frequency alpha (8-10.5 Hz) rhythms show abnormal activity (i.e., current density) in patients with dementia due to Alzheimer's disease (AD). Here, we hypothesized that abnormality of this activity is related to relevant disease processes as revealed by cortical hypometabolism typically observed in AD patients by fluorodeoxyglucose positron emission tomography. Resting state eyes-closed EEG data were recorded in 19 AD patients with dementia and 40 healthy elderly (Nold) subjects. EEG frequency bands of interest were delta and low-frequency alpha. EEG sources were estimated in these bands by low-resolution brain electromagnetic tomography (LORETA). Fluorodeoxyglucose positron emission tomography images were recorded only in the AD patients, and cortical hypometabolism was indexed by the so-called Alzheimer's discrimination analysis tool (PALZ) in the frontal association, ventromedial frontal, temporoparietal association, posterior cingulate, and precuneus areas. Results showed that compared with the Nold group, the AD group pointed to higher activity of delta sources and lower activity of low-frequency alpha sources in a cortical region of interest formed by all cortical areas of the PALZ score. In the AD patients, there was a positive correlation between the PALZ score and the activity of delta sources in the cortical region of interest (p < 0.05). These results suggest a relationship between resting state cortical hypometabolism and synchronization of cortical neurons at delta rhythms in AD patients with dementia. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Subclinical alexithymia modulates early audio-visual perceptive and attentional event-related potentials

    Directory of Open Access Journals (Sweden)

    Dyna eDelle-Vigne

    2014-03-01

    Full Text Available Introduction:Previous studies have highlighted the advantage of audio–visual oddball tasks (instead of unimodal ones in order to electrophysiologically index subclinical behavioral differences. Since alexithymia is highly prevalent in the general population, we investigated whether the use of various bimodal tasks could elicit emotional effects in low- versus high-alexithymic scorers. Methods:Fifty students (33 females were split into groups based on low and high scores on the Toronto Alexithymia Scale. During event-related potential recordings, they were exposed to three kinds of audio–visual oddball tasks: neutral (geometrical forms and bips, animal (dog and cock with their respective shouts, or emotional (faces and voices stimuli. In each condition, participants were asked to quickly detect deviant events occurring amongst a train of frequent matching stimuli (e.g., push a button when a sad face–voice pair appeared amongst a train of neutral face–voice pairs. P100, N100, and P300 components were analyzed: P100 refers to visual perceptive processing, N100 to auditory ones, and the P300 relates to response-related stages. Results:High-alexithymic scorers presented a particular pattern of results when processing the emotional stimulations, reflected in early ERP components by increased P100 and N100 amplitudes in the emotional oddball tasks (P100: pConclusions:Our findings suggest that high-alexithymic scorers require heightened early attentional resources when confronted with emotional stimuli.

  6. Diagnostic Accuracy of microEEG: A Miniature, Wireless EEG Device

    OpenAIRE

    Grant, Arthur C.; Abdel-Baki, Samah G.; Omurtag, Ahmet; Sinert, Richard; Chari, Geetha; Malhotra, Schweta; Weedon, Jeremy; Fenton, Andre A.; Zehtabchi, Shahriar

    2014-01-01

    Measuring the diagnostic accuracy (DA) of an EEG device is unconventional and complicated by imperfect interrater reliability. We sought to compare the DA of a miniature, wireless, battery-powered EEG device (“microEEG”) to a reference EEG machine in emergency department (ED) patients with altered mental status (AMS). 225 ED patients with AMS underwent 3 EEGs. EEG1 (Nicolet Monitor, “reference”) and EEG2 (microEEG) were recorded simultaneously with EEG cup electrodes using a signal splitter. ...

  7. EEG Based Inference of Spatio-Temporal Brain Dynamics

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese

    Electroencephalography (EEG) provides a measure of brain activity and has improved our understanding of the brain immensely. However, there is still much to be learned and the full potential of EEG is yet to be realized. In this thesis we suggest to improve the information gain of EEG using three...... different approaches; 1) by recovery of the EEG sources, 2) by representing and inferring the propagation path of EEG sources, and 3) by combining EEG with functional magnetic resonance imaging (fMRI). The common goal of the methods, and thus of this thesis, is to improve the spatial dimension of EEG...... recovery ability. The forward problem describes the propagation of neuronal activity in the brain to the EEG electrodes on the scalp. The geometry and conductivity of the head layers are normally required to model this path. We propose a framework for inferring forward models which is based on the EEG...

  8. Event horizon and scalar potential

    International Nuclear Information System (INIS)

    Duruisseau, J.P.; Tonnelat, M.A.

    1977-01-01

    The introduction of a scalar potential with a more general scheme than General Relativity eliminates the event horizon. Among possible solutions, the Schwarzschild one represents a singular case. A study of the geodesic properties of the matching with an approximated interior solution are given. A new definition of the gravitational mass and chi function is deduced. (author)

  9. Long-term EEG in children.

    Science.gov (United States)

    Montavont, A; Kaminska, A; Soufflet, C; Taussig, D

    2015-03-01

    Long-term video-EEG corresponds to a recording ranging from 1 to 24 h or even longer. It is indicated in the following situations: diagnosis of epileptic syndromes or unclassified epilepsy, pre-surgical evaluation for drug-resistant epilepsy, follow-up of epilepsy or in cases of paroxysmal symptoms whose etiology remains uncertain. There are some specificities related to paediatric care: a dedicated pediatric unit; continuous monitoring covering at least a full 24-hour period, especially in the context of pre-surgical evaluation; the requirement of presence by the parents, technician or nurse; and stronger attachment of electrodes (cup electrodes), the number of which is adapted to the age of the child. The chosen duration of the monitoring also depends on the frequency of seizures or paroxysmal events. The polygraphy must be adapted to the type and topography of movements. It is essential to have at least an electrocardiography (ECG) channel, respiratory sensor and electromyography (EMG) on both deltoids. There is no age limit for performing long-term video-EEG even in newborns and infants; nevertheless because of scalp fragility, strict surveillance of the baby's skin condition is required. In the specific context of pre-surgical evaluation, long-term video-EEG must record all types of seizures observed in the child. This monitoring is essential in order to develop hypotheses regarding the seizure onset zone, based on electroclinical correlations, which should be adapted to the child's age and the psychomotor development. Copyright © 2015. Published by Elsevier SAS.

  10. Calibrating EEG-based motor imagery brain-computer interface from passive movement.

    Science.gov (United States)

    Ang, Kai Keng; Guan, Cuntai; Wang, Chuanchu; Phua, Kok Soon; Tan, Adrian Hock Guan; Chin, Zheng Yang

    2011-01-01

    EEG data from performing motor imagery are usually collected to calibrate a subject-specific model for classifying the EEG data during the evaluation phase of motor imagery Brain-Computer Interface (BCI). However, there is no direct objective measure to determine if a subject is performing motor imagery correctly for proper calibration. Studies have shown that passive movement, which is directly observable, induces Event-Related Synchronization patterns that are similar to those induced from motor imagery. Hence, this paper investigates the feasibility of calibrating EEG-based motor imagery BCI from passive movement. EEG data of 12 healthy subjects were collected during motor imagery and passive movement of the hand by a haptic knob robot. The calibration models using the Filter Bank Common Spatial Pattern algorithm on the EEG data from motor imagery were compared against using the EEG data from passive movement. The performances were compared based on the 10×10-fold cross-validation accuracies of the calibration data, and off-line session-to-session transfer kappa values to other sessions of motor imagery performed on another day. The results showed that the calibration performed using passive movement yielded higher model accuracy and off-line session-to-session transfer (73.6% and 0.354) than the calibration performed using motor imagery (71.3% and 0.311), and no significant differences were observed between the two groups (p=0.20, 0.23). Hence, this study shows that it is feasible to calibrate EEG-based motor imagery BCI from passive movement.

  11. Arousal and attention re-orienting in autism spectrum disorders: evidence from auditory event-related potentials

    Directory of Open Access Journals (Sweden)

    Elena V Orekhova

    2014-02-01

    Full Text Available The extended phenotype of autism spectrum disorders (ASD includes a combination of arousal regulation problems, sensory modulation difficulties, and attention re-orienting deficit. A slow and inefficient re-orienting to stimuli that appear outside of the attended sensory stream is thought to be especially detrimental for social functioning. Event-related potentials (ERPs and magnetic fields (ERFs may help to reveal which processing stages underlying brain response to unattended but salient sensory event are affected in individuals with ASD. Previous research focusing on two sequential stages of the brain response - automatic detection of physical changes in auditory stream, indexed by mismatch negativity (MMN, and evaluation of stimulus novelty, indexed by P3a component, - found in individuals with ASD either increased, decreased or normal processing of deviance and novelty. The review examines these apparently conflicting results, notes gaps in previous findings, and suggests a potentially unifying hypothesis relating the dampened responses to unattended sensory events to the deficit in rapid arousal process. Specifically, ‘sensory gating’ studies focused on pre-attentive arousal consistently demonstrated that brain response to unattended and temporally novel sound in ASD is already affected at around 100 ms after stimulus onset. We hypothesize that abnormalities in nicotinic cholinergic arousal pathways, previously reported in individuals with ASD, may contribute to these ERP/ERF aberrations and result in attention re-orienting deficit. Such cholinergic dysfunction may be present in individuals with ASD early in life and can influence both sensory processing and attention re-orienting behavior. Identification of early neurophysiological biomarkers for cholinergic deficit would help to detect infants at risk who can potentially benefit from particular types of therapies or interventions.

  12. Bilingualism and increased attention to speech: Evidence from event-related potentials.

    Science.gov (United States)

    Kuipers, Jan Rouke; Thierry, Guillaume

    2015-10-01

    A number of studies have shown that from an early age, bilinguals outperform their monolingual peers on executive control tasks. We previously found that bilingual children and adults also display greater attention to unexpected language switches within speech. Here, we investigated the effect of a bilingual upbringing on speech perception in one language. We recorded monolingual and bilingual toddlers' event-related potentials (ERPs) to spoken words preceded by pictures. Words matching the picture prime elicited an early frontal positivity in bilingual participants only, whereas later ERP amplitudes associated with semantic processing did not differ between groups. These results add to the growing body of evidence that bilingualism increases overall attention during speech perception whilst semantic integration is unaffected. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Joint time-frequency analysis of EEG signals based on a phase-space interpretation of the recording process

    Science.gov (United States)

    Testorf, M. E.; Jobst, B. C.; Kleen, J. K.; Titiz, A.; Guillory, S.; Scott, R.; Bujarski, K. A.; Roberts, D. W.; Holmes, G. L.; Lenck-Santini, P.-P.

    2012-10-01

    Time-frequency transforms are used to identify events in clinical EEG data. Data are recorded as part of a study for correlating the performance of human subjects during a memory task with pathological events in the EEG, called spikes. The spectrogram and the scalogram are reviewed as tools for evaluating spike activity. A statistical evaluation of the continuous wavelet transform across trials is used to quantify phase-locking events. For simultaneously improving the time and frequency resolution, and for representing the EEG of several channels or trials in a single time-frequency plane, a multichannel matching pursuit algorithm is used. Fundamental properties of the algorithm are discussed as well as preliminary results, which were obtained with clinical EEG data.

  14. EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis

    Science.gov (United States)

    Mak, Joseph N.; McFarland, Dennis J.; Vaughan, Theresa M.; McCane, Lynn M.; Tsui, Phillippa Z.; Zeitlin, Debra J.; Sellers, Eric W.; Wolpaw, Jonathan R.

    2012-04-01

    The purpose of this study was to identify electroencephalography (EEG) features that correlate with P300-based brain-computer interface (P300 BCI) performance in people with amyotrophic lateral sclerosis (ALS). Twenty people with ALS used a P300 BCI spelling application in copy-spelling mode. Three types of EEG features were found to be good predictors of P300 BCI performance: (1) the root-mean-square amplitude and (2) the negative peak amplitude of the event-related potential to target stimuli (target ERP) at Fz, Cz, P3, Pz, and P4; and (3) EEG theta frequency (4.5-8 Hz) power at Fz, Cz, P3, Pz, P4, PO7, PO8 and Oz. A statistical prediction model that used a subset of these features accounted for >60% of the variance in copy-spelling performance (p < 0.001, mean R2 = 0.6175). The correlations reflected between-subject, rather than within-subject, effects. The results enhance understanding of performance differences among P300 BCI users. The predictors found in this study might help in: (1) identifying suitable candidates for long-term P300 BCI operation; (2) assessing performance online. Further work on within-subject effects needs to be done to establish whether P300 BCI user performance could be improved by optimizing one or more of these EEG features.

  15. Spatio-temporal reconstruction of brain dynamics from EEG with a Markov prior

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hansen, Lars Kai

    2016-01-01

    the functional dynamics of the brain. Solving the inverse problem of EEG is however highly ill-posed as there are many more potential locations of the EEG generators than EEG measurement points. Several well-known properties of brain dynamics can be exploited to alleviate this problem. More short ranging......Electroencephalography (EEG) can capture brain dynamics in high temporal resolution. By projecting the scalp EEG signal back to its origin in the brain also high spatial resolution can be achieved. Source localized EEG therefore has potential to be a very powerful tool for understanding...

  16. Brain Signals of Face Processing as Revealed by Event-Related Potentials

    Directory of Open Access Journals (Sweden)

    Ela I. Olivares

    2015-01-01

    Full Text Available We analyze the functional significance of different event-related potentials (ERPs as electrophysiological indices of face perception and face recognition, according to cognitive and neurofunctional models of face processing. Initially, the processing of faces seems to be supported by early extrastriate occipital cortices and revealed by modulations of the occipital P1. This early response is thought to reflect the detection of certain primary structural aspects indicating the presence grosso modo of a face within the visual field. The posterior-temporal N170 is more sensitive to the detection of faces as complex-structured stimuli and, therefore, to the presence of its distinctive organizational characteristics prior to within-category identification. In turn, the relatively late and probably more rostrally generated N250r and N400-like responses might respectively indicate processes of access and retrieval of face-related information, which is stored in long-term memory (LTM. New methods of analysis of electrophysiological and neuroanatomical data, namely, dynamic causal modeling, single-trial and time-frequency analyses, are highly recommended to advance in the knowledge of those brain mechanisms concerning face processing.

  17. The changes in relation of auditory and visual input activity between hemispheres analized in cartographic EEG in a child with hyperactivity syndrome

    Directory of Open Access Journals (Sweden)

    Radičević Zoran

    2015-01-01

    Full Text Available The paper discusses the changes in relations of visual and auditory inputs between the hemispheres in a child with hyperactive syndrome and its effects which may lead to better attention engagement in auditory and visual information analysis. The method included the use of cartographic EEG and clinical procedure in a 10-year-old boy with hyperactive syndrome and attention deficit disorder, who has theta dysfunction manifested in standard EEG. Cartographic EEG patterns was performed on NihonKohden Corporation, EEG - 1200K Neurofax apparatus in longitudinal bipolar electrode assembly schedule by utilizing10/20 International electrode positioning. Impedance was maintained below 5 kΩ, with not more than 1 kΩ differences between the electrodes. Lower filter was set at 0.53 Hz and higher filter at 35 Hz. Recording was performed in a quiet period and during stimulation procedures that include speech and language basis. Standard EEG and Neurofeedback (NFB treatment indicated higher theta load, alpha 2 and beta 1 activity measured in the cartographic EEG which was done after the relative failure of NFB treatment. After this, the NFB treatment was applied which lasted for six months, in a way that when the boy was reading, the visual input was enhanced to the left hemisphere and auditory input was reduced to the right hemisphere. Repeated EEG mapping analysis showed that there was a significant improvement, both in EEG findings as well as in attention, behavioural and learning disorders. The paper discusses some aspects of learning, attention and behaviour in relation to changes in the standard EEG, especially in cartographic EEG and NFB findings.

  18. The neuromechanism underlying verbal analogical reasoning of metaphorical relations: an event-related potentials study.

    Science.gov (United States)

    Zhao, Ming; Meng, Huishan; Xu, Zhiyuan; Du, Fenglei; Liu, Tao; Li, Yongxin; Chen, Feiyan

    2011-11-24

    Using event-related potentials (ERPs), this study investigated the neuromechanism underlying verbal analogical reasoning of two different metaphorical relations: attributive metaphor and relational metaphor. The analogical reasoning of attributive metaphor (AM-AR) involves a superficial similarity between analogues, while the analogical reasoning of relational metaphor (RM-AR) requires a structural similarity. Subjects were asked to judge whether one word pair was semantically analogous to another word pair. Results showed that the schema induction stage elicited a greater N400 component at the right anterior scalp for the AM-AR and RM-AR tasks, possibly attributable to semantic processing of metaphorical word pairs. The N400 was then followed by a widely distributed P300 and a late negative component (LNC1) at the left anterior scalp. The P300 was possibly related to the formation of a relational category, while the LNC1 was possibly related to the maintenance of a reasoning cue in working memory. The analogy mapping stage elicited broadly distributed N400 and LNC2, which might indicate the presence of semantic retrieval and analogical transfer. In the answer production stage, all conditions elicited the P2 component due to early stimulus encoding. The largest P2 amplitude was in the RM-AR task. The RM-AR elicited a larger LPC than did the AM-AR, even though the baseline correction was taken as a control for the differential P2 effect. The LPC effect might suggest that relational metaphors involved more integration processing than attributive metaphors. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Validation of the Emotiv EPOC(®) EEG gaming system for measuring research quality auditory ERPs.

    Science.gov (United States)

    Badcock, Nicholas A; Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve

    2013-01-01

    Background. Auditory event-related potentials (ERPs) have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI), attention deficit hyperactivity disorder (ADHD), schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants - particularly children. Recently, a commercial gaming electroencephalography (EEG) system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC(®), www.emotiv.com) were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan). Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz) and 100 deviant (1200 Hz) tones under passive (non-attended) and active (attended) conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan) or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC(®)). These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks) and the mismatch negativity (MMN) in active and passive listening conditions for each participant. Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs) indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21). Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks

  20. Rational manipulation of digital EEG: pearls and pitfalls.

    Science.gov (United States)

    Seneviratne, Udaya

    2014-12-01

    The advent of digital EEG has provided greater flexibility and more opportunities in data analysis to optimize the diagnostic yield. Changing the filter settings, sensitivity, montages, and time-base are possible rational manipulations to achieve this goal. The options to use polygraphy, video, and quantification are additional useful features. Aliasing and loss of data are potential pitfalls in the use of digital EEG. This review illustrates some common clinical scenarios where rational manipulations can enhance the diagnostic EEG yield and potential pitfalls in the process.

  1. Mapping (and modeling) physiological movements during EEG-fMRI recordings: the added value of the video acquired simultaneously.

    Science.gov (United States)

    Ruggieri, Andrea; Vaudano, Anna Elisabetta; Benuzzi, Francesca; Serafini, Marco; Gessaroli, Giuliana; Farinelli, Valentina; Nichelli, Paolo Frigio; Meletti, Stefano

    2015-01-15

    During resting-state EEG-fMRI studies in epilepsy, patients' spontaneous head-face movements occur frequently. We tested the usefulness of synchronous video recording to identify and model the fMRI changes associated with non-epileptic movements to improve sensitivity and specificity of fMRI maps related to interictal epileptiform discharges (IED). Categorization of different facial/cranial movements during EEG-fMRI was obtained for 38 patients [with benign epilepsy with centro-temporal spikes (BECTS, n=16); with idiopathic generalized epilepsy (IGE, n=17); focal symptomatic/cryptogenic epilepsy (n=5)]. We compared at single subject- and at group-level the IED-related fMRI maps obtained with and without additional regressors related to spontaneous movements. As secondary aim, we considered facial movements as events of interest to test the usefulness of video information to obtain fMRI maps of the following face movements: swallowing, mouth-tongue movements, and blinking. Video information substantially improved the identification and classification of the artifacts with respect to the EEG observation alone (mean gain of 28 events per exam). Inclusion of physiological activities as additional regressors in the GLM model demonstrated an increased Z-score and number of voxels of the global maxima and/or new BOLD clusters in around three quarters of the patients. Video-related fMRI maps for swallowing, mouth-tongue movements, and blinking were comparable to the ones obtained in previous task-based fMRI studies. Video acquisition during EEG-fMRI is a useful source of information. Modeling physiological movements in EEG-fMRI studies for epilepsy will lead to more informative IED-related fMRI maps in different epileptic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Guide to the declaration procedure and coding system for criteria concerning significant events related to safety, radiation protection or the environment, applicable to basic nuclear installations and the transport of radioactive materials

    International Nuclear Information System (INIS)

    Lacoste, Andre-Claude

    2005-01-01

    This guide notably contains various forms associated with the declaration of significant events, and explanations to fill them in: significant event declaration form for a basic nuclear installation, significant event declaration form for radioactive material transport, significant event report for a basic nuclear installation, significant event report for radioactive material transport, declaration criteria for significant events related to the safety of non-PWR basic nuclear installations, declaration criteria for significant events related to PWR safety, significant events declared further to events resulting in group 1 unavailability and non-compliance with technical operating specifications, declaration criteria for significant events concerning radiation protection for basic nuclear installations, declaration criteria for significant events concerning environmental protection, applicable to basic nuclear installations, and declaration criteria for significant events concerning radioactive material transport

  3. Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System.

    Science.gov (United States)

    Leite, Jorge; Morales-Quezada, Leon; Carvalho, Sandra; Thibaut, Aurore; Doruk, Deniz; Chen, Chiun-Fan; Schachter, Steven C; Rotenberg, Alexander; Fregni, Felipe

    2017-09-01

    Conventional transcranial direct current stimulation (tDCS) protocols rely on applying electrical current at a fixed intensity and duration without using surrogate markers to direct the interventions. This has led to some mixed results; especially because tDCS induced effects may vary depending on the ongoing level of brain activity. Therefore, the objective of this preliminary study was to assess the feasibility of an EEG-triggered tDCS system based on EEG online analysis of its frequency bands. Six healthy volunteers were randomized to participate in a double-blind sham-controlled crossover design to receive a single session of 10[Formula: see text]min 2[Formula: see text]mA cathodal and sham tDCS. tDCS trigger controller was based upon an algorithm designed to detect an increase in the relative beta power of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power, based on baseline EEG recordings. EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and successfully triggered the stimulation in all participants. This preliminary study represents a proof-of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and review here different methods of closed loop system that can be considered and potential clinical applications of such system.

  4. Nicotine enhances an auditory Event-Related Potential component which is inversely related to habituation.

    Science.gov (United States)

    Veltri, Theresa; Taroyan, Naira; Overton, Paul G

    2017-07-01

    Nicotine is a psychoactive substance that is commonly consumed in the context of music. However, the reason why music and nicotine are co-consumed is uncertain. One possibility is that nicotine affects cognitive processes relevant to aspects of music appreciation in a beneficial way. Here we investigated this possibility using Event-Related Potentials. Participants underwent a simple decision-making task (to maintain attentional focus), responses to which were signalled by auditory stimuli. Unlike previous research looking at the effects of nicotine on auditory processing, we used complex tones that varied in pitch, a fundamental element of music. In addition, unlike most other studies, we tested non-smoking subjects to avoid withdrawal-related complications. We found that nicotine (4.0 mg, administered as gum) increased P2 amplitude in the frontal region. Since a decrease in P2 amplitude and latency is related to habituation processes, and an enhanced ability to disengage from irrelevant stimuli, our findings suggest that nicotine may cause a reduction in habituation, resulting in non-smokers being less able to adapt to repeated stimuli. A corollary of that decrease in adaptation may be that nicotine extends the temporal window during which a listener is able and willing to engage with a piece of music.

  5. Analysis and correction of ballistocardiogram contamination of EEG recordings in MR

    International Nuclear Information System (INIS)

    Jaeger, L.; Hoffmann, A.; Reiser, M.F.; Werhahn, K.J.

    2005-01-01

    Purpose: to examine the influence of cardiac activity-related head movements and varying blood pulse frequencies on the shape of electroencephalography (EEG) recordings in a high magnetic field, and to implement a post-processing technique to eliminate cardiac activity-related artifacts. Material and methods: respiratory thoracic movements, changes of blood pulse frequency and passive head movements to 20 healthy subjects were examined outside and inside an MR magnet at rest in a simultaneously recorded 21-channel surface EEG. An electrocardiogram (ECG) was recorded simultaneously. On the basis of the correlation of the left ventricular ejection time (LVET) with the heart-rate, a post-processing heart-rate dependent subtraction of the cardiac activity-related artifacts of the EEG was developed. The quality of the post-processed EEG was tested by detecting alpha-activity in the pre- and post-processed EEGs. Results: inside the magnet, passive head motion but not respiratory thoracic movements resulted in EEG artifacts that correlated strongly with cardiac activity-related artifacts of the EEG. The blood pulse frequency influenced the appearance of the cardiac activity-related artifacts of the EEG. The removal of the cardiac activity-related artifacts of the EEG by the implemented post-processing algorithm resulted in an EEG of diagnostic quality with detected alpha-activity. Conclusion: when recording an EEG in MR environment, heart rate-dependent subtraction of EEG artifacts caused by ballistocardiogram contamination is essential to obtain EEG recordings of diagnostic quality and reliability. (orig.)

  6. Sex differences in humor processing: An event-related potential study.

    Science.gov (United States)

    Chang, Yi-Tzu; Ku, Li-Chuan; Chen, Hsueh-Chih

    2018-02-01

    Numerous behavioral studies and a handful of functional neuroimaging studies have reported sex differences in humor. However, no study to date has examined differences in the time-course of brain activity during multistage humor processing between the sexes. The purpose of this study was to compare real-time dynamics related to humor processing between women and men, with reference to a proposed three-stage model (involving incongruity detection, incongruity resolution, and elaboration stages). Forty undergraduate students (20 women) underwent event-related potential recording while subjectively rating 30 question-answer-type jokes and 30 question-answer-type statements in a random order. Sex differences were revealed by analyses of the mean amplitudes of difference waves during a specific time window between 1000 and 1300 ms poststimulus onset (P1000-1300). This indicates that women recruited more mental resources to integrate cognitive and emotional components at this late stage. In contrast, men recruited more automated processes during the transition from the cognitive operations of the incongruity resolution stage to the emotional response of the humor elaboration stage. Our results suggest that sex differences in humor processing lie in differences in the integration of cognitive and emotional components, which are closely linked and interact reciprocally, particularly in women. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Tele-transmission of EEG recordings.

    Science.gov (United States)

    Lemesle, M; Kubis, N; Sauleau, P; N'Guyen The Tich, S; Touzery-de Villepin, A

    2015-03-01

    EEG recordings can be sent for remote interpretation. This article aims to define the tele-EEG procedures and technical guidelines. Tele-EEG is a complete medical act that needs to be carried out with the same quality requirements as a local one in terms of indications, formulation of the medical request and medical interpretation. It adheres to the same quality requirements for its human resources and materials. It must be part of a medical organization (technical and medical network) and follow all rules and guidelines of good medical practices. The financial model of this organization must include costs related to performing the EEG recording, operating and maintenance of the tele-EEG network and medical fees of the physician interpreting the EEG recording. Implementing this organization must be detailed in a convention between all parties involved: physicians, management of the healthcare structure, and the company providing the tele-EEG service. This convention will set rules for network operation and finance, and also the continuous training of all staff members. The tele-EEG system must respect all rules for safety and confidentiality, and ensure the traceability and storing of all requests and reports. Under these conditions, tele-EEG can optimize the use of human resources and competencies in its zone of utilization and enhance the organization of care management. Copyright © 2015. Published by Elsevier SAS.

  8. Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF).

    Science.gov (United States)

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R

    2018-01-01

    Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.

  9. Combining and comparing EEG, peripheral physiology and eye-related measures for the assessment of mental workload

    Directory of Open Access Journals (Sweden)

    Maarten Andreas Hogervorst

    2014-10-01

    Full Text Available While studies exist that compare different physiological variables with respect to their association with mental workload, it is still largely unclear which variables supply the best information about momentary workload of an individual and what is the benefit of combining them. We investigated workload using the n-back task, controlling for body movements and visual input. We recorded EEG, skin conductance, respiration, ECG, pupil size and eye blinks of 14 subjects. Various variables were extracted from these recordings and used as features in individually tuned classification models. Online classification was simulated by using the first part of the data as training set and the last part of the data for testing the models. The results indicate that EEG performs best, followed by eye related measures and peripheral physiology. Combining variables from different sensors did not significantly improve workload assessment over the best performing sensor alone. Best classification accuracy, a little over 90% (SD 4%, was reached for distinguishing between high and low workload on the basis of 2 minute segments of EEG and eye related variables. A similar and not significantly different performance of 86% (SD 5% was reached using only EEG from single electrode location Pz.

  10. Effects of white noise on event-related potentials in somatosensory Go/No-go paradigms.

    Science.gov (United States)

    Ohbayashi, Wakana; Kakigi, Ryusuke; Nakata, Hiroki

    2017-09-06

    Exposure to auditory white noise has been shown to facilitate human cognitive function. This phenomenon is termed stochastic resonance, and a moderate amount of auditory noise has been suggested to benefit individuals in hypodopaminergic states. The present study investigated the effects of white noise on the N140 and P300 components of event-related potentials in somatosensory Go/No-go paradigms. A Go or No-go stimulus was presented to the second or fifth digit of the left hand, respectively, at the same probability. Participants performed somatosensory Go/No-go paradigms while hearing three different white noise levels (45, 55, and 65 dB conditions). The peak amplitudes of Go-P300 and No-go-P300 in ERP waveforms were significantly larger under 55 dB than 45 and 65 dB conditions. White noise did not affect the peak latency of N140 or P300, or the peak amplitude of N140. Behavioral data for the reaction time, SD of reaction time, and error rates showed the absence of an effect by white noise. This is the first event-related potential study to show that exposure to auditory white noise at 55 dB enhanced the amplitude of P300 during Go/No-go paradigms, reflecting changes in the neural activation of response execution and inhibition processing.

  11. Tactile event-related potentials in amyotrophic lateral sclerosis (ALS): Implications for brain-computer interface.

    Science.gov (United States)

    Silvoni, S; Konicar, L; Prats-Sedano, M A; Garcia-Cossio, E; Genna, C; Volpato, C; Cavinato, M; Paggiaro, A; Veser, S; De Massari, D; Birbaumer, N

    2016-01-01

    We investigated neurophysiological brain responses elicited by a tactile event-related potential paradigm in a sample of ALS patients. Underlying cognitive processes and neurophysiological signatures for brain-computer interface (BCI) are addressed. We stimulated the palm of the hand in a group of fourteen ALS patients and a control group of ten healthy participants and recorded electroencephalographic signals in eyes-closed condition. Target and non-target brain responses were analyzed and classified offline. Classification errors served as the basis for neurophysiological brain response sub-grouping. A combined behavioral and quantitative neurophysiological analysis of sub-grouped data showed neither significant between-group differences, nor significant correlations between classification performance and the ALS patients' clinical state. Taking sequential effects of stimuli presentation into account, analyses revealed mean classification errors of 19.4% and 24.3% in healthy participants and ALS patients respectively. Neurophysiological correlates of tactile stimuli presentation are not altered by ALS. Tactile event-related potentials can be used to monitor attention level and task performance in ALS and may constitute a viable basis for future BCIs. Implications for brain-computer interface implementation of the proposed method for patients in critical conditions, such as the late stage of ALS and the (completely) locked-in state, are discussed. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Self-esteem modulates automatic attentional responses to self-relevant stimuli: evidence from event-related brain potentials

    OpenAIRE

    Chen, Jie; Shui, Qing; Zhong, Yiping

    2015-01-01

    Previous studies have widely shown that self-esteem modulates the attention bias towards social rejection or emotion-related information. However, little is known about the influences of self-esteem on attention bias towards self-relevant stimuli. We aimed to investigate neural correlates that underlie the modulation effect of self-esteem on self-relevant processing. Event-related potentials (ERP) were recorded for subjects’ own names and close others’ names (the names of their friends) while...

  13. Magnetic resonance imaging in relation to EEG epileptic foci in tuberous sclerosis

    International Nuclear Information System (INIS)

    Tamaki, Kyoko; Okuno, Takehiko; Ito, Masatoshi; Asato, Reinin; Konishi, Junji; Mikawa, Haruki

    1990-01-01

    In 20 patients with tuberous sclerosis (TS), who were sequentially treated for epilepsy at our clinic, the high signal lesions in the cerebral cortex and subcortex detected on T2 weighted magnetic resonance imaging (MRI) were compared with the interictal EEG findings. In four cases who showed a unilateral distribution of the MRI lesions, there was a good correlation between the laterality of the affected lobes and the localization of the EEG epileptic foci. Thirteen cases with more than four affected lobes in both hemispheres also showed bilateral epileptic foci on EEG. The MRI lesions in the occipital lobes showed the best correlation with the EEG epileptic foci, while the worst correlation was seen in the frontal lobes. In addition, the cases with four or more affected lobes without laterality on MRI are more likely to show bilateral synchronization on EEG. The prognosis of epilepsy in these cases was found to be rather poor. (author)

  14. Resting State EEG in Children With Learning Disabilities: An Independent Component Analysis Approach.

    Science.gov (United States)

    Jäncke, Lutz; Alahmadi, Nsreen

    2016-01-01

    In this study, the neurophysiological underpinnings of learning disabilities (LD) in children are examined using resting state EEG. We were particularly interested in the neurophysiological differences between children with learning disabilities not otherwise specified (LD-NOS), learning disabilities with verbal disabilities (LD-Verbal), and healthy control (HC) children. We applied 2 different approaches to examine the differences between the different groups. First, we calculated theta/beta and theta/alpha ratios in order to quantify the relationship between slow and fast EEG oscillations. Second, we used a recently developed method for analyzing spectral EEG, namely the group independent component analysis (gICA) model. Using these measures, we identified substantial differences between LD and HC children and between LD-NOS and LD-Verbal children in terms of their spectral EEG profiles. We obtained the following findings: (a) theta/beta and theta/alpha ratios were substantially larger in LD than in HC children, with no difference between LD-NOS and LD-Verbal children; (b) there was substantial slowing of EEG oscillations, especially for gICs located in frontal scalp positions, with LD-NOS children demonstrating the strongest slowing; (c) the estimated intracortical sources of these gICs were mostly located in brain areas involved in the control of executive functions, attention, planning, and language; and (d) the LD-Verbal children demonstrated substantial differences in EEG oscillations compared with LD-NOS children, and these differences were localized in language-related brain areas. The general pattern of atypical neurophysiological activation found in LD children suggests that they suffer from neurophysiological dysfunction in brain areas involved with the control of attention, executive functions, planning, and language functions. LD-Verbal children also demonstrate atypical activation, especially in language-related brain areas. These atypical

  15. Sex differences and emotion regulation: an event-related potential study.

    Directory of Open Access Journals (Sweden)

    Elyse K T Gardener

    Full Text Available Difficulties in emotion regulation have been implicated as a potential mechanism underlying anxiety and mood disorders. It is possible that sex differences in emotion regulation may contribute towards the heightened female prevalence for these disorders. Previous fMRI studies of sex differences in emotion regulation have shown mixed results, possibly due to difficulties in discriminating the component processes of early emotional reactivity and emotion regulation. The present study used event-related potentials (ERPs to examine sex differences in N1 and N2 components (reflecting early emotional reactivity and P3 and LPP components (reflecting emotion regulation. N1, N2, P3, and LPP were recorded from 20 men and 23 women who were instructed to "increase," "decrease," and "maintain" their emotional response during passive viewing of negative images. Results indicated that women had significantly greater N1 and N2 amplitudes (reflecting early emotional reactivity to negative stimuli than men, supporting a female negativity bias. LPP amplitudes increased to the "increase" instruction, and women displayed greater LPP amplitudes than men to the "increase" instruction. There were no differences to the "decrease" instruction in women or men. These findings confirm predictions of the female negativity bias hypothesis and suggest that women have greater up-regulation of emotional responses to negative stimuli. This finding is highly significant in light of the female vulnerability for developing anxiety disorders.

  16. Sex differences and emotion regulation: an event-related potential study.

    Science.gov (United States)

    Gardener, Elyse K T; Carr, Andrea R; Macgregor, Amy; Felmingham, Kim L

    2013-01-01

    Difficulties in emotion regulation have been implicated as a potential mechanism underlying anxiety and mood disorders. It is possible that sex differences in emotion regulation may contribute towards the heightened female prevalence for these disorders. Previous fMRI studies of sex differences in emotion regulation have shown mixed results, possibly due to difficulties in discriminating the component processes of early emotional reactivity and emotion regulation. The present study used event-related potentials (ERPs) to examine sex differences in N1 and N2 components (reflecting early emotional reactivity) and P3 and LPP components (reflecting emotion regulation). N1, N2, P3, and LPP were recorded from 20 men and 23 women who were instructed to "increase," "decrease," and "maintain" their emotional response during passive viewing of negative images. Results indicated that women had significantly greater N1 and N2 amplitudes (reflecting early emotional reactivity) to negative stimuli than men, supporting a female negativity bias. LPP amplitudes increased to the "increase" instruction, and women displayed greater LPP amplitudes than men to the "increase" instruction. There were no differences to the "decrease" instruction in women or men. These findings confirm predictions of the female negativity bias hypothesis and suggest that women have greater up-regulation of emotional responses to negative stimuli. This finding is highly significant in light of the female vulnerability for developing anxiety disorders.

  17. The Role of Episodic Memory in Controlled Evaluative Judgments about Attitudes: An Event-Related Potential Study

    Science.gov (United States)

    Johnson, Ray, Jr.; Simon, Elizabeth J.; Henkell, Heather; Zhu, John

    2011-01-01

    Event-related potentials (ERPs) are unique in their ability to provide information about the timing of activity in the neural networks that perform complex cognitive processes. Given the dearth of extant data from normal controls on the question of whether attitude representations are stored in episodic or semantic memory, the goal here was to…

  18. Detection of movement intention from single-trial movement-related cortical potentials

    Science.gov (United States)

    Niazi, Imran Khan; Jiang, Ning; Tiberghien, Olivier; Feldbæk Nielsen, Jørgen; Dremstrup, Kim; Farina, Dario

    2011-10-01

    Detection of movement intention from neural signals combined with assistive technologies may be used for effective neurofeedback in rehabilitation. In order to promote plasticity, a causal relation between intended actions (detected for example from the EEG) and the corresponding feedback should be established. This requires reliable detection of motor intentions. In this study, we propose a method to detect movements from EEG with limited latency. In a self-paced asynchronous BCI paradigm, the initial negative phase of the movement-related cortical potentials (MRCPs), extracted from multi-channel scalp EEG was used to detect motor execution/imagination in healthy subjects and stroke patients. For MRCP detection, it was demonstrated that a new optimized spatial filtering technique led to better accuracy than a large Laplacian spatial filter and common spatial pattern. With the optimized spatial filter, the true positive rate (TPR) for detection of movement execution in healthy subjects (n = 15) was 82.5 ± 7.8%, with latency of -66.6 ± 121 ms. Although TPR decreased with motor imagination in healthy subject (n = 10, 64.5 ± 5.33%) and with attempted movements in stroke patients (n = 5, 55.01 ± 12.01%), the results are promising for the application of this approach to provide patient-driven real-time neurofeedback.

  19. Task-related modulation of anterior theta and posterior alpha EEG reflects top-down preparation

    Directory of Open Access Journals (Sweden)

    Park Hae-Jeong

    2010-06-01

    Full Text Available Abstract Background Prestimulus EEG alpha activity in humans has been considered to reflect ongoing top-down preparation for the performance of subsequent tasks. Since theta oscillations may be related to poststimulus top-down processing, we investigated whether prestimulus EEG theta activity also reflects top-down cognitive preparation for a stimulus. Results We recorded EEG data from 15 healthy controls performing a color and shape discrimination task, and used the wavelet transformation to investigate the time course and power of oscillatory activity in the signals. We observed a relationship between both anterior theta and posterior alpha power in the prestimulus period and the type of subsequent task. Conclusions Since task-differences were reflected in both theta and alpha activities prior to stimulus onset, both prestimulus theta (particularly around the anterior region and prestimulus alpha (particularly around the posterior region activities may reflect prestimulus top-down preparation for the performance of subsequent tasks.

  20. Application of the P300 Event-Related Potential in the Diagnosis of Epilepsy Disorder: A Review

    Directory of Open Access Journals (Sweden)

    Kandhasamy Sowndhararajan

    2018-03-01

    Full Text Available Epilepsy is one of the most serious chronical neurological disorders, affecting more than 50 million people worldwide. It can be defined as a spectrum disorder, and patients with epilepsy possess abnormalities in cognitive functions. A number of factors can cause cognitive dysfunctions in epileptic syndromes, including etiology, the age of onset, type of seizure and severity, duration, and antiepileptic drugs. Event-related potentials (ERPs are very useful clinical and research instruments to evaluate cognitive function in patients with neuropsychiatry disorders. Event-related potentials directly reflect cortical neuronal activity and provide a particular level of temporal resolution. Among various ERP components, the P300 is the most important component for assessing cognitive processes such as attention, working memory, and concentration. Numerous studies have reported the abnormalities in amplitude or latency of P300 component of ERP in epileptic patients, and these abnormalities are indicative of cognitive dysfunction. Therefore, the purpose of this review is to consolidate the existing literature in connection with the use of P300 in epileptic patients.

  1. Transdiagnostic Psychiatric Symptoms and Event-Related Potentials following Rewarding and Aversive Outcomes.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Bedwell

    Full Text Available There is a need for a better understanding of transdiagnostic psychiatric symptoms that relate to neurophysiological abnormalities following rewarding and aversive feedback in order to inform development of novel targeted treatments. To address this need, we examined a transdiagnostic sample of 44 adults (mean age: 35.52; 57% female, which consisted of individuals with broadly-defined schizophrenia-spectrum disorders (n = 16, bipolar disorders (n = 10, other mood and anxiety disorders (n = 5, and no history of a psychiatric disorder (n = 13. Participants completed a Pavlovian monetary reward prediction task during 32-channel electroencephalogram recording. We assessed the event-related potentials (ERPs of feedback-related negativity (FRN, feedback-related positivity (FRP, and the late positive potential (LPP, following better and worse than expected outcomes. Examination of symptom relationships using stepwise regressions across the entire sample revealed that an increase in the clinician-rated Negative Symptoms factor score from the Positive and Negative Syndrome Scale, was related to a decreased LPP amplitude during better than expected (i.e., rewarding outcomes. We also found that increased self-reported scores on the Schizotypal Personality Questionnaire (Brief-Revised Disorganized factor related to an increased FRN amplitude during worse than expected (i.e., aversive outcomes. Across the entire sample, the FRP component amplitudes did not show significant relationships to any of the symptoms examined. Analyses of the three diagnostic groups of schizophrenia-spectrum disorders, bipolar disorders, and nonpsychiatric controls did not reveal any statistically significant differences across the ERP amplitudes and conditions. These findings suggest relationships between specific neurophysiological abnormalities following rewarding and aversive outcomes and particular transdiagnostic psychiatric symptoms.

  2. Event-Related Potentials in Parkinson’s Disease: A Review

    Directory of Open Access Journals (Sweden)

    E. Růžička

    1993-01-01

    Full Text Available This article reviews the findings of event-related potentials (ERP in Parkinson's disease (PD published during the last 10 years. Basic principles and methods of ERP are briefly presented with particular regard to the auditory “odd-ball” paradigm almost uniquely employed for the ERP assessment in PD to date. The results of respective studies are overviewed and discussed with respect to three main axes: (1 The slowing down of cognitive processing in PD is reflected by the delays of N2 and P3 components of ERP which are more important in demented than in non-demented patients. The Nl component is delayed in demented patients with PD as well as in other dementias of presumed subcortical origin. (2 Various neuropsychological deficits observed in PD correlate with the delays of ERP evoking the implication of common subcortico-cortical cerebral mechanisms. (3 The variations of ERP under dopaminergic manipulation suggest conflicting effects of levodopa treatment on cognition, at least in certain categories of PD patients. These findings are discussed in the light of current knowledge on neurotransmitter brain systems and some hypothetic explanations are proposed. Finally, an attempt is made to outline further perspectives of clinical and research utilization of ERP in Parkinson's disease.

  3. P300 event-related potential as an indicator of inattentional deafness?

    Directory of Open Access Journals (Sweden)

    Louise Giraudet

    Full Text Available An analysis of airplane accidents reveals that pilots sometimes purely fail to react to critical auditory alerts. This inability of an auditory stimulus to reach consciousness has been coined under the term of inattentional deafness. Recent data from literature tends to show that tasks involving high cognitive load consume most of the attentional capacities, leaving little or none remaining for processing any unexpected information. In addition, there is a growing body of evidence for a shared attentional capacity between vision and hearing. In this context, the abundant information in modern cockpits is likely to produce inattentional deafness. We investigated this hypothesis by combining electroencephalographic (EEG measurements with an ecological aviation task performed under contextual variation of the cognitive load (high or low, including an alarm detection task. Two different audio tones were played: standard tones and deviant tones. Participants were instructed to ignore standard tones and to report deviant tones using a response pad. More than 31% of the deviant tones were not detected in the high load condition. Analysis of the EEG measurements showed a drastic diminution of the auditory P300 amplitude concomitant with this behavioral effect, whereas the N100 component was not affected. We suggest that these behavioral and electrophysiological results provide new insights on explaining the trend of pilots' failure to react to critical auditory information. Relevant applications concern prevention of alarms omission, mental workload measurements and enhanced warning designs.

  4. Attention bias in earthquake-exposed survivors: an event-related potential study.

    Science.gov (United States)

    Zhang, Yan; Kong, Fanchang; Han, Li; Najam Ul Hasan, Abbasi; Chen, Hong

    2014-12-01

    The Chinese Wenchuan earthquake, which happened on the 28th of May in 2008, may leave deep invisible scars in individuals. China has a large number of children and adolescents, who tend to be most vulnerable because they are in an early stage of human development and possible post-traumatic psychological distress may have a life-long consequence. Trauma survivors without post-traumatic stress disorder (PTSD) have received little attention in previous studies, especially in event-related potential (ERP) studies. We compared the attention bias to threat stimuli between the earthquake-exposed group and the control group in a masked version of the dot probe task. The target probe presented at the same space location consistent with earthquake-related words was the congruent trial, while in the space location of neutral words was the incongruent trial. Thirteen earthquake-exposed middle school students without PTSD and 13 matched controls were included in this investigation. The earthquake-exposed group showed significantly faster RTs to congruent trials than to incongruent trials. The earthquake-exposed group produced significantly shorter C1 and P1 latencies and larger C1, P1 and P2 amplitudes than the control group. In particular, enhanced P1 amplitude to threat stimuli was observed in the earthquake-exposed group. These findings are in agreement with the prediction that earthquake-exposed survivors have an attention bias to threat stimuli. The traumatic event had a much greater effect on earthquake-exposed survivors even if they showed no PTSD symptoms than individuals in the controls. These results will provide neurobiological evidences for effective intervention and prevention to post-traumatic mental problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The association between high levels of cumulative life stress and aberrant resting state EEG dynamics in old age.

    Science.gov (United States)

    Marshall, Amanda C; Cooper, Nicholas R

    2017-07-01

    Cumulative experienced stress produces shortcomings in old adults' cognitive performance. These are reflected in electrophysiological changes tied to task execution. This study explored whether stress-related aberrations in older adults' electroencephalographic (EEG) activity were also apparent in the system at rest. To this effect, the amount of stressful life events experienced by 60 young and 60 elderly participants were assessed in conjunction with resting state power changes in the delta, theta, alpha, and beta frequencies during a resting EEG recording. Findings revealed elevated levels of delta power among elderly individuals reporting high levels of cumulative life stress. These differed significantly from young high and low stress individuals and old adults with low levels of stress. Increases of delta activity have been linked to the emergence of conditions such as Alzheimer's Disease and Mild Cognitive Impairment. Thus, a potential interpretation of our findings associates large amounts of cumulative stress with an increased risk of developing age-related cognitive pathologies in later life. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Screening EEG in Aircrew Selection: Clinical Aerospace Neurology Perspective

    Science.gov (United States)

    Clark, Jonathan B.; Riley, Terrence

    2001-01-01

    As clinical aerospace neurologists we do not favor using screening EEG in pilot selection on unselected and otherwise asymptomatic individuals. The role of EEG in aviation screening should be as an adjunct to diagnosis, and the decision to disqualify a pilot should never be based solely on the EEG. Although a policy of using a screening EEG in an unselected population might detect an individual with a potentially increased relative risk, it would needlessly exclude many applicants who would probably never have a seizure. A diagnostic test performed on an asymptomatic individual without clinical indications, in a population with a low prevalence of disease (seizure) may be of limited or possibly detrimental value. We feel that rather than do EEGs on all candidates, a better approach would be to perform an EEG for a specific indication, such as family history of seizure, single convulsion (seizure) , history of unexplained loss of consciousness or head injury. Routine screening EEGs in unselected aviation applications are not done without clinical indication in the U.S. Air Force, Navy, or NASA. The USAF discontinued routine screening EEGs for selection in 1978, the U.S. Navy discontinued it in 1981 , and NASA discontinued it in 1995. EEG as an aeromedical screening tool in the US Navy dates back to 1939. The US Navy routinely used EEGs to screen all aeromedical personnel from 1961 to 1981. The incidence of epileptiform activity on EEG in asymptomatic flight candidates ranges from 0.11 to 2.5%. In 3 studies of asymptomatic flight candidates with epileptiform activity on EEG followed for 2 to 15 years, 1 of 31 (3.2%), 1 of 30 (3.3%), and 0 of 14 (0%) developed a seizure, for a cumulative risk of an individual with an epileptiform EEG developing a seizure of 2.67% (2 in 75). Of 28,658 student naval aviation personnel screened 31 had spikes and/or slow waves on EEG, and only 1 later developed a seizure. Of the 28,627 who had a normal EEG, 4 later developed seizures, or

  7. Dissociation between morality and disgust: an event-related potential study.

    Science.gov (United States)

    Yang, Qun; Li, An; Xiao, Xiao; Zhang, Ye; Tian, Xuehong

    2014-10-01

    This study explored the neural correlates of morality and disgust, particularly, how the mechanisms that mediate our avoidance of physically disgusting and morally abhorrent behaviors are neurologically dissociated during the time-course of processing. Twelve participants were asked to judge the acceptability of different types of behaviors, which varied in their level of moral wrongness and physical disgust, while event-related potentials (ERPs) were recorded. The main results showed that the two morally wrong conditions elicited greater amplitudes of P300-400 at frontal sites than the neutral condition and the physically disgusting, but not morally wrong, condition. The physically disgusting conditions (with and without moral content) elicited significantly more positive deflections in the 500-600 ms timeframe than the neutral condition at central-posterior sites. These findings indicate that our aversion to harmful substances in the physical environment and offensive behaviors in the social environment may be neurologically dissociable in the temporal dimension. Furthermore, the detection of moral violations may be processed earlier in time than that of physical disgust. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Topic structure affects semantic integration: evidence from event-related potentials.

    Science.gov (United States)

    Yang, Xiaohong; Chen, Xuhai; Chen, Shuang; Xu, Xiaoying; Yang, Yufang

    2013-01-01

    This study investigated whether semantic integration in discourse context could be influenced by topic structure using event-related brain potentials. Participants read discourses in which the last sentence contained a critical word that was either congruent or incongruent with the topic established in the first sentence. The intervening sentences between the first and the last sentence of the discourse either maintained or shifted the original topic. Results showed that incongruent words in topic-maintained discourses elicited an N400 effect that was broadly distributed over the scalp while those in topic-shifted discourses elicited an N400 effect that was lateralized to the right hemisphere and localized over central and posterior areas. Moreover, a late positivity effect was only elicited by incongruent words in topic-shifted discourses, but not in topic-maintained discourses. This suggests an important role for discourse structure in semantic integration, such that compared with topic-maintained discourses, the complexity of discourse structure in topic-shifted condition reduces the initial stage of semantic integration and enhances the later stage in which a mental representation is updated.

  9. Effects of inter- and intramodal selective attention to non-spatial visual stimuli: An event-related potential analysis.

    NARCIS (Netherlands)

    de Ruiter, M.B.; Kok, A.; van der Schoot, M.

    1998-01-01

    Event-related potentials (ERPs) were recorded to trains of rapidly presented auditory and visual stimuli. ERPs in conditions in which Ss attended to different features of visual stimuli were compared with ERPs to the same type of stimuli when Ss attended to different features of auditory stimuli,

  10. Sex differences in face gender recognition: an event-related potential study.

    Science.gov (United States)

    Sun, Yueting; Gao, Xiaochao; Han, Shihui

    2010-04-23

    Multiple level neurocognitive processes are involved in face processing in humans. The present study examined whether the early face processing such as structural encoding is modulated by task demands that manipulate attention to perceptual or social features of faces and such an effect, if any, is different between men and women. Event-related brain potentials were recorded from male and female adults while they identified a low-level perceptual feature of faces (i.e., face orientation) and a high-level social feature of faces (i.e., gender). We found that task demands that required the processing of face orientations or face gender resulted in modulations of both the early occipital/temporal negativity (N170) and the late central/parietal positivity (P3). The N170 amplitude was smaller in the gender relative to the orientation identification task whereas the P3 amplitude was larger in the gender identification task relative to the orientation identification task. In addition, these effects were much stronger in women than in men. Our findings suggest that attention to social information in faces such as gender modulates both the early encoding of facial structures and late evaluative process of faces to a greater degree in women than in men.

  11. Changes of amplitude and topographical characteristics of event-related potentials during the hypnagogic period.

    Science.gov (United States)

    Michida, N; Ebata, A; Tanaka, H; Hayashi, M; Hori, T

    1999-04-01

    In the previous study, during the vertex sharp wave period (hypnagogic EEG stage 4), negative components (N300, N550) were dominant at Fz and Cz in contrast to the positive component (P400) being prominent at the other areas, Pz, Oz, T5 and T6. There is no agreement regarding P400 properties during the hypnagogic period. In this study, using topographic mapping, we found that two negative components (N300, N550) and P400 independently increased their amplitude at the different areas of the scalp as arousal level lowered. The anterior negative components may reflect the information processing related to the K-complex. The P400 may reflect other activities different from the K-complex mechanism or P300 attention mechanisms.

  12. Attenuation of deep semantic processing during mind wandering: an event-related potential study.

    Science.gov (United States)

    Xu, Judy; Friedman, David; Metcalfe, Janet

    2018-03-21

    Although much research shows that early sensory and attentional processing is affected by mind wandering, the effect of mind wandering on deep (i.e. semantic) processing is relatively unexplored. To investigate this relation, we recorded event-related potentials as participants studied English-Spanish word pairs, one at a time, while being intermittently probed for whether they were 'on task' or 'mind wandering'. Both perceptual processing, indexed by the P2 component, and deep processing, indexed by a late, sustained slow wave maximal at parietal electrodes, was attenuated during periods preceding participants' mind wandering reports. The pattern when participants were on task, rather than mind wandering, is similar to the subsequent memory or difference in memory effect. These results support previous findings of sensory attenuation during mind wandering, and extend them to a long-duration slow wave by suggesting that the deeper and more sustained levels of processing are also disrupted.

  13. The delay effect on outcome evaluation: results from an Event-related Potential study

    Directory of Open Access Journals (Sweden)

    Chen eQu

    2013-11-01

    Full Text Available Behavioral studies demonstrate that the timing of receiving gains or losses affects decision-making, a phenomenon known as temporal discounting, as participants are inclined to prefer immediate rewards over delayed ones and vice versa for losses. The present study used the event-related potential (ERP technique with a simple gambling task to investigate how delayed rewards and losses affected the brain activity in outcome evaluations made by 20 young adults. Statistical analysis revealed a larger feedback related negativity (FRN effect between loss and gain following immediate outcomes than following future outcomes. In addition, delay impacted FRN only in gain conditions, with delayed winning eliciting a more negative FRN than immediatewinning. These results suggest that temporal discounting and sign effect could be encoded in the FRN in the early stage of outcome evaluation.

  14. Comparing the temporal dynamics of thematic and taxonomic processing using event-related potentials.

    Directory of Open Access Journals (Sweden)

    Olivera Savic

    Full Text Available We report the results of a study comparing the temporal dynamics of thematic and taxonomic knowledge activation in a picture-word priming paradigm using event-related potentials. Although we found no behavioral differences between thematic and taxonomic processing, ERP data revealed distinct patterns of N400 and P600 amplitude modulation for thematic and taxonomic priming. Thematically related target stimuli elicited less negativity than taxonomic targets between 280-460 ms after stimulus onset, suggesting easier semantic processing of thematic than taxonomic relationships. Moreover, P600 mean amplitude was significantly increased for taxonomic targets between 520-600 ms, consistent with a greater need for stimulus reevaluation in that condition. These results offer novel evidence in favor of a dissociation between thematic and taxonomic thinking in the early phases of conceptual evaluation.

  15. Comparing the temporal dynamics of thematic and taxonomic processing using event-related potentials.

    Science.gov (United States)

    Savic, Olivera; Savic, Andrej M; Kovic, Vanja

    2017-01-01

    We report the results of a study comparing the temporal dynamics of thematic and taxonomic knowledge activation in a picture-word priming paradigm using event-related potentials. Although we found no behavioral differences between thematic and taxonomic processing, ERP data revealed distinct patterns of N400 and P600 amplitude modulation for thematic and taxonomic priming. Thematically related target stimuli elicited less negativity than taxonomic targets between 280-460 ms after stimulus onset, suggesting easier semantic processing of thematic than taxonomic relationships. Moreover, P600 mean amplitude was significantly increased for taxonomic targets between 520-600 ms, consistent with a greater need for stimulus reevaluation in that condition. These results offer novel evidence in favor of a dissociation between thematic and taxonomic thinking in the early phases of conceptual evaluation.

  16. Spectral analysis of the EEG during halothane anaesthesia: Input-output relations

    NARCIS (Netherlands)

    Silva, F.H. Lopes da; Smith, N. Ty; Zwart, Aart; Nichols, W.W.

    1. 1. The “Halothane-brain compartment” system was investigated in dogs. The input was the inspired concentration of Halothane. The output was the intensity of EEG spectral components. The EEG was analysed by a hybrid system (analogue filters and digital integration in a small computer). For the

  17. EEG and Eye Tracking Signatures of Target Encoding during Structured Visual Search

    Directory of Open Access Journals (Sweden)

    Anne-Marie Brouwer

    2017-05-01

    Full Text Available EEG and eye tracking variables are potential sources of information about the underlying processes of target detection and storage during visual search. Fixation duration, pupil size and event related potentials (ERPs locked to the onset of fixation or saccade (saccade-related potentials, SRPs have been reported to differ dependent on whether a target or a non-target is currently fixated. Here we focus on the question of whether these variables also differ between targets that are subsequently reported (hits and targets that are not (misses. Observers were asked to scan 15 locations that were consecutively highlighted for 1 s in pseudo-random order. Highlighted locations displayed either a target or a non-target stimulus with two, three or four targets per trial. After scanning, participants indicated which locations had displayed a target. To induce memory encoding failures, participants concurrently performed an aurally presented math task (high load condition. In a low load condition, participants ignored the math task. As expected, more targets were missed in the high compared with the low load condition. For both conditions, eye tracking features distinguished better between hits and misses than between targets and non-targets (with larger pupil size and shorter fixations for missed compared with correctly encoded targets. In contrast, SRP features distinguished better between targets and non-targets than between hits and misses (with average SRPs showing larger P300 waveforms for targets than for non-targets. Single trial classification results were consistent with these averages. This work suggests complementary contributions of eye and EEG measures in potential applications to support search and detect tasks. SRPs may be useful to monitor what objects are relevant to an observer, and eye variables may indicate whether the observer should be reminded of them later.

  18. Accident sequence precursor events with age-related contributors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, G.A.; Kohn, W.E.

    1995-12-31

    The Accident Sequence Precursor (ASP) Program at ORNL analyzed about 14.000 Licensee Event Reports (LERs) filed by US nuclear power plants 1987--1993. There were 193 events identified as precursors to potential severe core accident sequences. These are reported in G/CR-4674. Volumes 7 through 20. Under the NRC Nuclear Plant Aging Research program, the authors evaluated these events to determine the extent to which component aging played a role. Events were selected that involved age-related equipment degradation that initiated an event or contributed to an event sequence. For the 7-year period, ORNL identified 36 events that involved aging degradation as a contributor to an ASP event. Except for 1992, the percentage of age-related events within the total number of ASP events over the 7-year period ({approximately}19%) appears fairly consistent up to 1991. No correlation between plant ape and number of precursor events was found. A summary list of the age-related events is presented in the report.

  19. Glucose enhancement of event-related potentials associated with episodic memory and attention.

    Science.gov (United States)

    Brown, Louise A; Riby, Leigh M

    2013-04-30

    Previous studies have reported that increasing glycaemia by a glucose-containing drink enhances memory functioning. The aim of the present study was to extend this literature by examining the effects of glucose on episodic memory as well as attention processes, and to investigate associated event-related potential (ERP) markers. Fifteen minutes after treatment (25 g glucose or placebo drink), 35 participants performed an old/new recognition memory task and a Stroop colour naming task. Consistent with previous research, when controlling for glucose regulation, cognitive facilitation was observed behaviourally for verbal memory, but there was also a trend towards attentional facilitation. Furthermore, across both domains, it was the most demanding task conditions that exhibited glucose sensitivity. In support of the behavioural results, the analysis of ERPs across treatment groups revealed an enhanced left-parietal old/new effect related to recollection, and also suggested modulation of attentional processes. The results suggest that glucose may facilitate attention as well as memory.

  20. Lateralization patterns of covert but not overt movements change with age: An EEG neurofeedback study.

    Science.gov (United States)

    Zich, Catharina; Debener, Stefan; De Vos, Maarten; Frerichs, Stella; Maurer, Stefanie; Kranczioch, Cornelia

    2015-08-01

    The mental practice of movements has been suggested as a promising add-on therapy to facilitate motor recovery after stroke. In the case of mentally practised movements, electroencephalogram (EEG) can be utilized to provide feedback about an otherwise covert act. The main target group for such an intervention are elderly patients, though research so far is largely focused on young populations (study therefore aimed to examine the influence of age on the neural correlates of covert movements (CMs) in a real-time EEG neurofeedback framework. CM-induced event-related desynchronization (ERD) was studied in young (mean age: 23.6 years) and elderly (mean age: 62.7 years) healthy adults. Participants performed covert and overt hand movements. CMs were based on kinesthetic motor imagery (MI) or quasi-movements (QM). Based on previous studies investigating QM in the mu frequency range (8-13Hz) QM were expected to result in more lateralized ERD% patterns and accordingly higher classification accuracies. Independent of CM strategy the elderly were characterized by a significantly reduced lateralization of ERD%, due to stronger ipsilateral ERD%, and in consequence, reduced classification accuracies. QM were generally perceived as more vivid, but no differences were evident between MI and QM in ERD% or classification accuracies. EEG feedback enhanced task-related activity independently of strategy and age. ERD% measures of overt and covert movements were strongly related in young adults, whereas in the elderly ERD% lateralization is dissociated. In summary, we did not find evidence in support of more pronounced ERD% lateralization patterns in QM. Our finding of a less lateralized activation pattern in the elderly is in accordance to previous research and with the idea that compensatory processes help to overcome neurodegenerative changes related to normal ageing. Importantly, it indicates that EEG neurofeedback studies should place more emphasis on the age of the potential end

  1. Digital memory encoding in Chinese dyscalculia: An event-related potential study.

    Science.gov (United States)

    Wang, Enguo; Qin, Shutao; Chang, MengYan; Zhu, Xiangru

    2014-10-22

    This study reports the neurophysiological and behavioral correlates of digital memory encoding features in Chinese individuals with and without dyscalculia. Eighteen children with dyscalculia (ages 11.5-13.5) and 18 matched controls were tested, and their event-related potentials (ERPs) were digitally recorded simultaneously with behavioral measures. The results showed that both groups had a significant Dm effect, and this effect was greater in the control group. In the 300-400-ms, 400-500-ms, and 600-700-ms processing stages, both groups showed significant differences of digital memory encoding in the frontal, central, and parietal regions. In the 500-600-ms period, the Dm effect in the control group was significantly greater than that in the dyscalculia group only in the parietal region. These results suggest that individuals with dyscalculia exhibit impaired digital memory encoding and deficits in psychological resource allocation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Preferential processing of task-irrelevant beloved-related information and task performance: Two event-related potential studies.

    Science.gov (United States)

    Langeslag, Sandra J E; van Strien, Jan W

    2017-09-18

    People who are in love have better attention for beloved-related information, but report having trouble focusing on other tasks, such as (home)work. So, romantic love can both improve and hurt cognition. Emotional information is preferentially processed, which improves task performance when the information is task-relevant, but hurts task performance when it is task-irrelevant. Because beloved-related information is highly emotional, the effects of romantic love on cognition may resemble these effects of emotion on cognition. We examined whether beloved-related information is preferentially processed even when it is task-irrelevant and whether this hurts task performance. In two event-related potential studies, participants who had recently fallen in love performed a visuospatial short-term memory task. Task-irrelevant beloved, friend, and stranger faces were presented during maintenance (Study 1), or encoding (Study 2). The Early Posterior Negativity (EPN) reflecting early automatic attentional capturing and the Late Positive Potential (LPP) reflecting sustained motivated attention were largest for beloved pictures. Thus, beloved pictures are preferentially processed even when they are task-irrelevant. Task performance and reaction times did not differ between beloved, friend, and stranger conditions. Nevertheless, self-reported obsessive thinking about the beloved tended to correlate negatively with task performance, and positively with reaction times, across conditions. So, although task-irrelevant beloved-related information does not impact task performance, more obsessive thinking about the beloved might relate to poorer and slower overall task performance. More research is needed to clarify why people experience trouble focusing on beloved-unrelated tasks and how this negative effect of love on cognition could be reduced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Event-related potentials reveal the relations between feature representations at different levels of abstraction.

    Science.gov (United States)

    Hannah, Samuel D; Shedden, Judith M; Brooks, Lee R; Grundy, John G

    2016-11-01

    In this paper, we use behavioural methods and event-related potentials (ERPs) to explore the relations between informational and instantiated features, as well as the relation between feature abstraction and rule type. Participants are trained to categorize two species of fictitious animals and then identify perceptually novel exemplars. Critically, two groups are given a perfectly predictive counting rule that, according to Hannah and Brooks (2009. Featuring familiarity: How a familiar feature instantiation influences categorization. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 63, 263-275. Retrieved from http://doi.org/10.1037/a0017919), should orient them to using abstract informational features when categorizing the novel transfer items. A third group is taught a feature list rule, which should orient them to using detailed instantiated features. One counting-rule group were taught their rule before any exposure to the actual stimuli, and the other immediately after training, having learned the instantiations first. The feature-list group were also taught their rule after training. The ERP results suggest that at test, the two counting-rule groups processed items differently, despite their identical rule. This not only supports the distinction that informational and instantiated features are qualitatively different feature representations, but also implies that rules can readily operate over concrete inputs, in contradiction to traditional approaches that assume that rules necessarily act on abstract inputs.

  4. Sex Differences and Emotion Regulation: An Event-Related Potential Study

    OpenAIRE

    Gardener, Elyse K. T.; Carr, Andrea R.; MacGregor, Amy; Felmingham, Kim L.

    2013-01-01

    Difficulties in emotion regulation have been implicated as a potential mechanism underlying anxiety and mood disorders. It is possible that sex differences in emotion regulation may contribute towards the heightened female prevalence for these disorders. Previous fMRI studies of sex differences in emotion regulation have shown mixed results, possibly due to difficulties in discriminating the component processes of early emotional reactivity and emotion regulation. The present study used event...

  5. Robot-Aided Upper-Limb Rehabilitation Based on Motor Imagery EEG

    Directory of Open Access Journals (Sweden)

    Baoguo Xu

    2011-09-01

    Full Text Available Stroke is a leading cause of disability worldwide. In this paper, a novel robot-assisted rehabilitation system based on motor imagery electroencephalography (EEG is developed for regular training of neurological rehabilitation for upper limb stroke patients. Firstly, three-dimensional animation was used to guide the patient image the upper limb movement and EEG signals were acquired by EEG amplifier. Secondly, eigenvectors were extracted by harmonic wavelet transform (HWT and linear discriminant analysis (LDA classifier was utilized to classify the pattern of the left and right upper limb motor imagery EEG signals. Finally, PC triggered the upper limb rehabilitation robot to perform motor therapy and gave the virtual feedback. Using this robot-assisted upper limb rehabilitation system, the patient's EEG of upper limb movement imagination is translated to control rehabilitation robot directly. Consequently, the proposed rehabilitation system can fully explore the patient's motivation and attention and directly facilitate upper limb post-stroke rehabilitation therapy. Experimental results on unimpaired participants were presented to demonstrate the feasibility of the rehabilitation system. Combining robot-assisted training with motor imagery-based BCI will make future rehabilitation therapy more effective. Clinical testing is still required for further proving this assumption.

  6. The p300 event-related potential technique for libido assessment in women with hypoactive sexual desire disorder.

    Science.gov (United States)

    Vardi, Yoram; Sprecher, Elliot; Gruenwald, Ilan; Yarnitsky, David; Gartman, Irena; Granovsky, Yelena

    2009-06-01

    There is a need for an objective technique to assess the degree of hypoactive sexual desire disorder (HSDD). Recently, we described such a methodology (event-related potential technique [ERP]) based on recording of p300 electroencephalography (EEG) waves elicited by auditory stimuli during synchronous exposure to erotic films. To compare sexual interest of sexually healthy women to females with sexual dysfunction (FSD) using ERP, and to explore whether FSD women with and without HSDD would respond differently to two different types of erotic stimuli-films containing (I) or not containing (NI) sexual intercourse scenes. Twenty-two women with FSD, of which nine had HSDD only, and 30 sexually healthy women were assessed by the Female Sexual Functioning Index. ERP methodology was performed applying erotic NI or I films. Significant differences in percent of auditory p300 amplitude reduction (PR) in response to erotic stimuli within and between all three groups for each film type. PRs to each film type were similar in sexually healthy women (60.6% +/- 40.3 (NI) and 51.7% +/- 32.3 [I]), while in women with FSD, reduction was greater when viewing the NI vs. I erotic films (71.4% +/- 41.0 vs. 37.7% +/- 45.7; P = 0.0099). This difference was mainly due to the greater PR of the subgroup with HSDD in response to NI vs. I films (77.7% +/- 46.7 vs. 17.0% +/- 50.3) than in the FSD women without HSDD group or the sexually healthy women (67.5% +/- 38.7 vs. 50.4% +/- 39.4 respectively), P = 0.0084. For comparisons, we used the mixed-model one-way analysis of variance. Differences in neurophysiological response patterns between sexually healthy vs. sexually dysfunctional females may point to a specific inverse discrimination ability for sexually relevant information in the subgroup of women with HSDD. These findings suggest that the p300 ERP technique could be used as an objective quantitative tool for libido assessment in sexually dysfunctional women.

  7. Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal

    Directory of Open Access Journals (Sweden)

    Fran López-Caballero

    2017-11-01

    Full Text Available When two pure tones of slightly different frequencies are delivered simultaneously to the two ears, is generated a beat whose frequency corresponds to the frequency difference between them. That beat is known as acoustic beat. If these two tones are presented one to each ear, they still produce the sensation of the same beat, although no physical combination of the tones occurs outside the auditory system. This phenomenon is called binaural beat. In the present study, we explored the potential contribution of binaural beats to the enhancement of specific electroencephalographic (EEG bands, as previous studies suggest the potential usefulness of binaural beats as a brainwave entrainment tool. Additionally, we analyzed the effects of binaural-beat stimulation on two psychophysiological measures related to emotional arousal: heart rate and skin conductance. Beats of five different frequencies (4.53 Hz -theta-, 8.97 Hz -alpha-, 17.93 Hz -beta-, 34.49 Hz -gamma- or 57.3 Hz -upper-gamma were presented binaurally and acoustically for epochs of 3 min (Beat epochs, preceded and followed by pink noise epochs of 90 s (Baseline and Post epochs, respectively. In each of these epochs, we analyzed the EEG spectral power, as well as calculated the heart rate and skin conductance response (SCR. For all the beat frequencies used for stimulation, no significant changes between Baseline and Beat epochs were observed within the corresponding EEG bands, neither with binaural or with acoustic beats. Additional analysis of spectral EEG topographies yielded negative results for the effect of binaural beats in the scalp distribution of EEG spectral power. In the psychophysiological measures, no changes in heart rate and skin conductance were observed for any of the beat frequencies presented. Our results do not support binaural-beat stimulation as a potential tool for the enhancement of EEG oscillatory activity, nor to induce changes in emotional arousal.

  8. Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal.

    Science.gov (United States)

    López-Caballero, Fran; Escera, Carles

    2017-01-01

    When two pure tones of slightly different frequencies are delivered simultaneously to the two ears, is generated a beat whose frequency corresponds to the frequency difference between them. That beat is known as acoustic beat. If these two tones are presented one to each ear, they still produce the sensation of the same beat, although no physical combination of the tones occurs outside the auditory system. This phenomenon is called binaural beat. In the present study, we explored the potential contribution of binaural beats to the enhancement of specific electroencephalographic (EEG) bands, as previous studies suggest the potential usefulness of binaural beats as a brainwave entrainment tool. Additionally, we analyzed the effects of binaural-beat stimulation on two psychophysiological measures related to emotional arousal: heart rate and skin conductance. Beats of five different frequencies (4.53 Hz -theta-, 8.97 Hz -alpha-, 17.93 Hz -beta-, 34.49 Hz -gamma- or 57.3 Hz -upper-gamma) were presented binaurally and acoustically for epochs of 3 min (Beat epochs), preceded and followed by pink noise epochs of 90 s (Baseline and Post epochs, respectively). In each of these epochs, we analyzed the EEG spectral power, as well as calculated the heart rate and skin conductance response (SCR). For all the beat frequencies used for stimulation, no significant changes between Baseline and Beat epochs were observed within the corresponding EEG bands, neither with binaural or with acoustic beats. Additional analysis of spectral EEG topographies yielded negative results for the effect of binaural beats in the scalp distribution of EEG spectral power. In the psychophysiological measures, no changes in heart rate and skin conductance were observed for any of the beat frequencies presented. Our results do not support binaural-beat stimulation as a potential tool for the enhancement of EEG oscillatory activity, nor to induce changes in emotional arousal.

  9. The origin and nature of categorical perception of colour: Evidence from event-related brain potentials.

    OpenAIRE

    Clifford, Alexandra.

    2009-01-01

    Categorical perception (CP) of colour is demonstrated by faster or more accurate discrimination of colours that cross a category boundary, compared to equivalently spaced colours from the same colour category. Despite a plethora of behavioural research exploring the origin and nature of colour CP, the processes involved in the effect are still unresolved. This thesis investigates the time course and underlying mechanisms of colour CP by using the Event-Related Potential (ERP) technique. This ...

  10. An Event-related Brain Potential Study of English Morphosyntactic Processing in Japanese Learners of English

    OpenAIRE

    Tatsuta, Natsuko

    2014-01-01

    This dissertation investigated the neural mechanisms underlying English morphosyntactic processing in Case, subject-verb agreement, and past tense inflection in Japanese learners of English (JLEs) using event-related brain potentials (ERPs) in terms of the effects of the age of second language (L2) acquisition (the age of learning English), L2 proficiency level (the English proficiency level), and native/first language (L1) transfer. Researchers have debated for a number of years the question...

  11. EEG correlates of visual short-term memory in older age vary with adult lifespan cognitive development.

    Science.gov (United States)

    Wiegand, Iris; Lauritzen, Martin J; Osler, Merete; Mortensen, Erik Lykke; Rostrup, Egill; Rask, Lene; Richard, Nelly; Horwitz, Anna; Benedek, Krisztina; Vangkilde, Signe; Petersen, Anders

    2018-02-01

    Visual short-term memory (vSTM) is a cognitive resource that declines with age. This study investigated whether electroencephalography (EEG) correlates of vSTM vary with cognitive development over individuals' lifespan. We measured vSTM performance and EEG in a lateralized whole-report task in a healthy birth cohort, whose cognitive function (intelligence quotient) was assessed in youth and late-middle age. Higher vSTM capacity (K; measured by Bundesen's theory of visual attention) was associated with higher amplitudes of the contralateral delay activity (CDA) and the central positivity (CP). In addition, rightward hemifield asymmetry of vSTM (K λ ) was associated with lower CDA amplitudes. Furthermore, more severe cognitive decline from young adulthood to late-middle age predicted higher CDA amplitudes, and the relationship between K and the CDA was less reliable in individuals who show higher levels of cognitive decline compared to individuals with preserved abilities. By contrast, there was no significant effect of lifespan cognitive changes on the CP or the relationship between behavioral measures of vSTM and the CP. Neither the CDA, nor the CP, nor the relationships between K or K λ and the event-related potentials were predicted by individuals' current cognitive status. Together, our findings indicate complex age-related changes in processes underlying behavioral and EEG measures of vSTM and suggest that the K-CDA relationship might be a marker of cognitive lifespan trajectories. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. [EEG and brain-stem evoked potentials in 125 recent concussions].

    Science.gov (United States)

    Geets, W; Louette, N

    1983-12-01

    EEG and ipsi/contralateral BEPs have been recorded in 125 cases of concussion at most 48 h after the cerebral trauma. In 100 cases of minor concussion the temporary loss of consciousness lasted not more than 2 min. In 25 cases of mild concussion, the loss of consciousness lasted until their arrival at the hospital. In minor concussions an abnormal EEG was found in 17% of the cases and in mild concussions, in 56%. The abnormalities of the BEP, more often seen in mild concussions (60%) than in minor concussions (8%), are an increase of interpeak latencies or distorted responses with average to bad reproducibility. The results are discussed.

  13. Pharmacodynamic Modelling of Placebo and Buprenorphine Effects on Event-Related Potentials in Experimental Pain

    DEFF Research Database (Denmark)

    Juul, Rasmus V; Foster, David J R; Upton, Richard N

    2014-01-01

    The purpose of the study was to investigate placebo and buprenorphine effects on event-related potentials (ERPs) in experimental pain and the potential benefit of population pharmacodynamic modelling in data analysis. Nineteen healthy volunteers received transdermal placebo and buprenorphine...... in a cross-over study. Drug plasma concentrations and ERPs after electrical stimulation at the median nerve with intensity adjusted to pain detection threshold were recorded until 144 hrs after administration. Placebo and concentration-effect models were fitted to data using non-linear mixed......, pharmacodynamic modelling was successfully implemented to allow for placebo and variability correction in ERP of experimental pain. Improved outcome of ERP studies can be expected if variation between subjects and study occasions can be identified and described....

  14. Dissociations between motor-related EEG measures in a cued movement sequence task

    NARCIS (Netherlands)

    Gladwin, Thomas E.; t' Hart, Bernhard M.; de Jong, Ritske

    Different aspects of preparation, especially processes related to knowing what to prepare versus applying that foreknowledge effectively, may be reflected in different types of brain activity, e.g., the lateralized readiness potential (LRP), beta-band event-related desynchronization and phase

  15. Corrected Four-Sphere Head Model for EEG Signals.

    Science.gov (United States)

    Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V; Dale, Anders M; Einevoll, Gaute T; Wójcik, Daniel K

    2017-01-01

    The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.

  16. Corrected Four-Sphere Head Model for EEG Signals

    Directory of Open Access Journals (Sweden)

    Solveig Næss

    2017-10-01

    Full Text Available The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF, skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM. We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.

  17. EEG-informed fMRI analysis during a hand grip task: estimating the relationship between EEG rhythms and the BOLD signal

    Directory of Open Access Journals (Sweden)

    Roberta eSclocco

    2014-04-01

    Full Text Available In the last decade, an increasing interest has arisen in investigating the relationship between the electrophysiological and hemodynamic measurements of brain activity, such as EEG and (BOLD fMRI. In particular, changes in BOLD have been shown to be associated with changes in the spectral profile of neural activity, rather than with absolute power. Concurrently, recent findings showed that different EEG rhythms are independently related to changes in the BOLD signal: therefore, it would be important to distinguish between the contributions of the different EEG rhythms to BOLD fluctuations when modeling the relationship between the two signals. Here we propose a method to perform EEG-informed fMRI analysis, in which the EEG regressors take into account both the changes in the spectral profile and the rhythms distinction. We applied it to EEG-fMRI data during a hand grip task in healthy subjects, and compared the results with those obtained by two existing models found in literature. Our results showed that the proposed method better captures the correlations between BOLD signal and EEG rhythms modulations, identifying task-related, well localized activated volumes. Furthermore, we showed that including among the regressors also EEG rhythms not primarily involved in the task enhances the performance of the analysis, even when only correlations with BOLD signal and specific EEG rhythms are explored.

  18. An Event-Related Potential Study of Adolescents' and Young Adults' Judgments of Moral and Social Conventional Violations

    Science.gov (United States)

    Lahat, Ayelet; Helwig, Charles C.; Zelazo, Philip David

    2013-01-01

    The neurocognitive development of moral and conventional judgments was examined. Event-related potentials were recorded while 24 adolescents (13 years) and 30 young adults (20 years) read scenarios with 1 of 3 endings: moral violations, conventional violations, or neutral acts. Participants judged whether the act was acceptable or unacceptable…

  19. A Context-Aware EEG Headset System for Early Detection of Driver Drowsiness

    Directory of Open Access Journals (Sweden)

    Gang Li

    2015-08-01

    Full Text Available Driver drowsiness is a major cause of mortality in traffic accidents worldwide. Electroencephalographic (EEG signal, which reflects the brain activities, is more directly related to drowsiness. Thus, many Brain-Machine-Interface (BMI systems have been proposed to detect driver drowsiness. However, detecting driver drowsiness at its early stage poses a major practical hurdle when using existing BMI systems. This study proposes a context-aware BMI system aimed to detect driver drowsiness at its early stage by enriching the EEG data with the intensity of head-movements. The proposed system is carefully designed for low-power consumption with on-chip feature extraction and low energy Bluetooth connection. Also, the proposed system is implemented using JAVA programming language as a mobile application for on-line analysis. In total, 266 datasets obtained from six subjects who participated in a one-hour monotonous driving simulation experiment were used to evaluate this system. According to a video-based reference, the proposed system obtained an overall detection accuracy of 82.71% for classifying alert and slightly drowsy events by using EEG data alone and 96.24% by using the hybrid data of head-movement and EEG. These results indicate that the combination of EEG data and head-movement contextual information constitutes a robust solution for the early detection of driver drowsiness.

  20. Psychometric intelligence and P3 of the event-related potentials studied with a 3-stimulus auditory oddball task

    NARCIS (Netherlands)

    Wronka, E.A.; Kaiser, J.; Coenen, A.M.L.

    2013-01-01

    Relationship between psychometric intelligence measured with Raven's Advanced Progressive Matrices (RAPM) and event-related potentials (ERP) was examined using 3-stimulus oddball task. Subjects who had scored higher on RAPM exhibited larger amplitude of P3a component. Additional analysis using the

  1. Perceiving temporal regularity in music: The role of auditory event-related potentials (ERPs) in probing beat perception

    NARCIS (Netherlands)

    Honing, H.; Bouwer, F.L.; Háden, G.P.; Merchant, H.; de Lafuente, V.

    2014-01-01

    The aim of this chapter is to give an overview of how the perception of a regular beat in music can be studied in humans adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). Next to a review of the recent literature on the perception of temporal regularity in

  2. Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study

    OpenAIRE

    Szűcs, Denes; Soltész, F

    2012-01-01

    BACKGROUND: Several conflict processing studies aimed to dissociate neuroimaging phenomena related to stimulus and response conflict processing. However, previous studies typically did not include a paradigm-independent measure of either stimulus or response conflict. Here we have combined electro-myography (EMG) with event-related brain potentials (ERPs) in order to determine whether a particularly robust marker of conflict processing, the N450 ERP effect usually related to the activity of t...

  3. Early prefrontal brain responses to the Hedonic quality of emotional words--a simultaneous EEG and MEG study.

    Science.gov (United States)

    Keuper, Kati; Zwitserlood, Pienie; Rehbein, Maimu A; Eden, Annuschka S; Laeger, Inga; Junghöfer, Markus; Zwanzger, Peter; Dobel, Christian

    2013-01-01

    The hedonic meaning of words affects word recognition, as shown by behavioral, functional imaging, and event-related potential (ERP) studies. However, the spatiotemporal dynamics and cognitive functions behind are elusive, partly due to methodological limitations of previous studies. Here, we account for these difficulties by computing combined electro-magnetoencephalographic (EEG/MEG) source localization techniques. Participants covertly read emotionally high-arousing positive and negative nouns, while EEG and MEG were recorded simultaneously. Combined EEG/MEG current-density reconstructions for the P1 (80-120 ms), P2 (150-190 ms) and EPN component (200-300 ms) were computed using realistic individual head models, with a cortical constraint. Relative to negative words, the P1 to positive words predominantly involved language-related structures (left middle temporal and inferior frontal regions), and posterior structures related to directed attention (occipital and parietal regions). Effects shifted to the right hemisphere in the P2 component. By contrast, negative words received more activation in the P1 time-range only, recruiting prefrontal regions, including the anterior cingulate cortex (ACC). Effects in the EPN were not statistically significant. These findings show that different neuronal networks are active when positive versus negative words are processed. We account for these effects in terms of an "emotional tagging" of word forms during language acquisition. These tags then give rise to different processing strategies, including enhanced lexical processing of positive words and a very fast language-independent alert response to negative words. The valence-specific recruitment of different networks might underlie fast adaptive responses to both approach- and withdrawal-related stimuli, be they acquired or biological.

  4. The Performance of EEG-P300 Classification using Backpropagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Arjon Turnip

    2013-12-01

    Full Text Available Electroencephalogram (EEG recordings signal provide an important function of brain-computer communication, but the accuracy of their classification is very limited in unforeseeable signal variations relating to artifacts. In this paper, we propose a classification method entailing time-series EEG-P300 signals using backpropagation neural networks to predict the qualitative properties of a subject’s mental tasks by extracting useful information from the highly multivariate non-invasive recordings of brain activity. To test the improvement in the EEG-P300 classification performance (i.e., classification accuracy and transfer rate with the proposed method, comparative experiments were conducted using Bayesian Linear Discriminant Analysis (BLDA. Finally, the result of the experiment showed that the average of the classification accuracy was 97% and the maximum improvement of the average transfer rate is 42.4%, indicating the considerable potential of the using of EEG-P300 for the continuous classification of mental tasks.

  5. Predictable Internal Brain Dynamics in EEG and Its Relation to Conscious States

    Directory of Open Access Journals (Sweden)

    Jaewook eYoo

    2014-06-01

    Full Text Available Consciousness is a complex and multi-faceted phenomenon defying scientific explanation. Part of the reason why this is the case is due to its subjective nature. In our previous computational experiments, to avoid such a subjective trap, we took a strategy to investigate objective necessary conditions of consciousness. Our basic hypothesis was that predictive internal dynamics serves as such a condition. This is in line with theories of consciousness that treat retention (memory, protention (anticipation, and primary impression as the tripartite temporal structure of consciousness. To test our hypothesis, we analyzed publicly available sleep and awake electroencephalogram (EEG data. Our results show that EEG signals from awake or rapid eye movement (REM sleep states have more predictable dynamics compared to those from slow-wave sleep (SWS. Since awakeness and REM sleep are associated with conscious states and SWS with unconscious or less consciousness states, these results support our hypothesis. The results suggest an intricate relationship among prediction, consciousness, and time, with potential applications to time perception and neurorobotics.

  6. I act, therefore I err: EEG correlates of success and failure in a virtual throwing game.

    Science.gov (United States)

    Yazmir, Boris; Reiner, Miriam

    2017-12-01

    What are the neural responses to success and failure in a throwing task? To answer this question, we compared Event Related Potentials (ERPs) correlated with success and failure during a highly-ecological-virtual game. Participants played a tennis-like game in an immersive 3D virtual world, against a computer player, by controlling a virtual tennis racket with a force feedback robotic arm. Results showed that success, i.e. hitting the target, and failure, by missing the target, evoked ERP's that differ by peak, latencies, scalp signal distributions, sLORETA source estimation, and time-frequency patterns. The success related grand averaged ERP at the Cz electrode, had two peaks - a negative peak at 244ms and a positive peak at 12ms, prior to the actual successful hit, suggesting a possible process of prediction of success. The grand averaged ERP correlated with failure at Cz, had two peaks, a negative peak at about 107ms and a positive peak at about 311ms post failure. These results suggest different top-down and bottom-up loops for success and failure, which seem to be rooted in the spatial arrangement of the virtual game. Although the latency of the latter is consistent with the error related potentials reported in the literature, the characteristic is unique to this specific error, and differ significantly from other error related potentials in the same environment. These results further provide a basis for EEG based assessment and prediction of user's successful or erroneous movements, and design of the feedback loop in EEG based Brain-Computer Interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Plastic modulation of PTSD resting-state networks by EEG neurofeedback

    Science.gov (United States)

    Kluetsch, Rosemarie C.; Ros, Tomas; Théberge, Jean; Frewen, Paul A.; Calhoun, Vince D.; Schmahl, Christian; Jetly, Rakesh; Lanius, Ruth A.

    2015-01-01

    Objective Electroencephalographic (EEG) neurofeedback training has been shown to produce plastic modulations in salience network and default mode network functional connectivity in healthy individuals. In this study, we investigated whether a single session of neurofeedback training aimed at the voluntary reduction of alpha rhythm (8–12 Hz) amplitude would be related to differences in EEG network oscillations, functional MRI (fMRI) connectivity, and subjective measures of state anxiety and arousal in a group of individuals with PTSD. Method 21 individuals with PTSD related to childhood abuse underwent 30 minutes of EEG neurofeedback training preceded and followed by a resting-state fMRI scan. Results Alpha desynchronizing neurofeedback was associated with decreased alpha amplitude during training, followed by a significant increase (‘rebound’) in resting-state alpha synchronization. This rebound was linked to increased calmness, greater salience network connectivity with the right insula, and enhanced default mode network connectivity with bilateral posterior cingulate, right middle frontal gyrus, and left medial prefrontal cortex. Conclusion Our study represents a first step in elucidating the potential neurobehavioral mechanisms mediating the effects of neurofeedback treatment on regulatory systems in PTSD. Moreover, it documents for the first time a spontaneous EEG ‘rebound’ after neurofeedback, pointing to homeostatic/compensatory mechanisms operating in the brain. PMID:24266644

  8. Event-related potential effects of superior action anticipation in professional badminton players.

    Science.gov (United States)

    Jin, Hua; Xu, Guiping; Zhang, John X; Gao, Hongwei; Ye, Zuoer; Wang, Pin; Lin, Huiyan; Mo, Lei; Lin, Chong-De

    2011-04-04

    The ability to predict the trajectory of a ball based on the opponent's body kinematics has been shown to be critical to high-performing athletes in many sports. However, little is known about the neural correlates underlying such superior ability in action anticipation. The present event-related potential study compared brain responses from professional badminton players and non-player controls when they watched video clips of badminton games and predicted a ball's landing position. Replicating literature findings, the players made significantly more accurate judgments than the controls and showed better action anticipation. Correspondingly, they showed enlarged amplitudes of two ERP components, a P300 peaking around 350ms post-stimulus with a parietal scalp distribution and a P2 peaking around 250ms with a posterior-occipital distribution. The P300 effect was interpreted to reflect primed access and/or directing of attention to game-related memory representations in the players facilitating their online judgment of related actions. The P2 effect was suggested to reflect some generic learning effects. The results identify clear neural responses that differentiate between different levels of action anticipation associated with sports expertise. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. EEG-based characterization of flicker perception

    OpenAIRE

    Lazo, M.; Tsoneva, T.; Garcia Molina, G.

    2013-01-01

    Steady-State Visual Evoked Potential (SSVEP) is an oscillatory electrical response appearing in the electroencephalogram (EEG) in response to flicker stimulation. The SSVEP manifests more prominently in electrodes located near the visual cortex and has oscillatory components at the stimulation frequency and/or harmonics. The phase and amplitude of the SSVEP are sensitive to stimulus parameters such as frequency, modu-lation depth, and spatial frequency. Research related to SSVEP and the human...

  10. Déjà vu phenomenon-related EEG pattern. Case report

    OpenAIRE

    Vlasov, P.N.; Chervyakov, A.V.; Gnezditskii, V.V.

    2013-01-01

    Background D?j? vu (DV, from French d?j? vu ? ?already seen?) is an aberration of psychic activity associated with transitory erroneous perception of novel circumstances, objects, or people as already known. Objective This study aimed to record the EEG pattern of d?j? vu. Methods The subjects participated in a survey concerning d?j? vu characteristics and underwent ambulatory EEG monitoring (12?16?h). Results In patients with epilepsy, DV episodes began with polyspike activity in the right te...

  11. Neural Basis of Intrinsic Motivation: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Jin, Jia; Yu, Liping; Ma, Qingguo

    2015-01-01

    Human intrinsic motivation is of great importance in human behavior. However, although researchers have focused on this topic for decades, its neural basis was still unclear. The current study employed event-related potentials to investigate the neural disparity between an interesting stop-watch (SW) task and a boring watch-stop task (WS) to understand the neural mechanisms of intrinsic motivation. Our data showed that, in the cue priming stage, the cue of the SW task elicited smaller N2 amplitude than that of the WS task. Furthermore, in the outcome feedback stage, the outcome of the SW task induced smaller FRN amplitude and larger P300 amplitude than that of the WS task. These results suggested that human intrinsic motivation did exist and that it can be detected at the neural level. Furthermore, intrinsic motivation could be quantitatively indexed by the amplitude of ERP components, such as N2, FRN, and P300, in the cue priming stage or feedback stage. Quantitative measurements would also be convenient for intrinsic motivation to be added as a candidate social factor in the construction of a machine learning model.

  12. Separating acoustic deviance from novelty during the first year of life: a review of event-related potential evidence

    Science.gov (United States)

    Kushnerenko, Elena V.; Van den Bergh, Bea R. H.; Winkler, István

    2013-01-01

    Orienting to salient events in the environment is a first step in the development of attention in young infants. Electrophysiological studies have indicated that in newborns and young infants, sounds with widely distributed spectral energy, such as noise and various environmental sounds, as well as sounds widely deviating from their context elicit an event-related potential (ERP) similar to the adult P3a response. We discuss how the maturation of event-related potentials parallels the process of the development of passive auditory attention during the first year of life. Behavioral studies have indicated that the neonatal orientation to high-energy stimuli gradually changes to attending to genuine novelty and other significant events by approximately 9 months of age. In accordance with these changes, in newborns, the ERP response to large acoustic deviance is dramatically larger than that to small and moderate deviations. This ERP difference, however, rapidly decreases within first months of life and the differentiation of the ERP response to genuine novelty from that to spectrally rich but repeatedly presented sounds commences during the same period. The relative decrease of the response amplitudes elicited by high-energy stimuli may reflect development of an inhibitory brain network suppressing the processing of uninformative stimuli. Based on data obtained from healthy full-term and pre-term infants as well as from infants at risk for various developmental problems, we suggest that the electrophysiological indices of the processing of acoustic and contextual deviance may be indicative of the functioning of auditory attention, a crucial prerequisite of learning and language development. PMID:24046757

  13. Multimodal EEG Recordings, Psychometrics and Behavioural Analysis.

    Science.gov (United States)

    Boeijinga, Peter H

    2015-01-01

    High spatial and temporal resolution measurements of neuronal activity are preferably combined. In an overview on how this approach can take shape, multimodal electroencephalography (EEG) is treated in 2 main parts: by experiments without a task and in the experimentally cued working brain. It concentrates first on the alpha rhythm properties and next on data-driven search for patterns such as the default mode network. The high-resolution volumic distributions of neuronal metabolic indices result in distributed cortical regions and possibly relate to numerous nuclei, observable in a non-invasive manner in the central nervous system of humans. The second part deals with paradigms in which nowadays assessment of target-related networks can align level-dependent blood oxygenation, electrical responses and behaviour, taking the temporal resolution advantages of event-related potentials. Evidence-based electrical propagation in serial tasks during performance is now to a large extent attributed to interconnected pathways, particularly chronometry-dependent ones, throughout a chain including a dorsal stream, next ventral cortical areas taking the flow of information towards inferior temporal domains. The influence of aging is documented, and results of the first multimodal studies in neuropharmacology are consistent. Finally a scope on implementation of advanced clinical applications and personalized marker strategies in neuropsychiatry is indicated. © 2016 S. Karger AG, Basel.

  14. EEG-based decoding of error-related brain activity in a real-world driving task

    Science.gov (United States)

    Zhang, H.; Chavarriaga, R.; Khaliliardali, Z.; Gheorghe, L.; Iturrate, I.; Millán, J. d. R.

    2015-12-01

    Objectives. Recent studies have started to explore the implementation of brain-computer interfaces (BCI) as part of driving assistant systems. The current study presents an EEG-based BCI that decodes error-related brain activity. Such information can be used, e.g., to predict driver’s intended turning direction before reaching road intersections. Approach. We executed experiments in a car simulator (N = 22) and a real car (N = 8). While subject was driving, a directional cue was shown before reaching an intersection, and we classified the presence or not of an error-related potentials from EEG to infer whether the cued direction coincided with the subject’s intention. In this protocol, the directional cue can correspond to an estimation of the driving direction provided by a driving assistance system. We analyzed ERPs elicited during normal driving and evaluated the classification performance in both offline and online tests. Results. An average classification accuracy of 0.698 ± 0.065 was obtained in offline experiments in the car simulator, while tests in the real car yielded a performance of 0.682 ± 0.059. The results were significantly higher than chance level for all cases. Online experiments led to equivalent performances in both simulated and real car driving experiments. These results support the feasibility of decoding these signals to help estimating whether the driver’s intention coincides with the advice provided by the driving assistant in a real car. Significance. The study demonstrates a BCI system in real-world driving, extending the work from previous simulated studies. As far as we know, this is the first online study in real car decoding driver’s error-related brain activity. Given the encouraging results, the paradigm could be further improved by using more sophisticated machine learning approaches and possibly be combined with applications in intelligent vehicles.

  15. Neural correlates of attentional and mnemonic processing in event-based prospective memory.

    Science.gov (United States)

    Knight, Justin B; Ethridge, Lauren E; Marsh, Richard L; Clementz, Brett A

    2010-01-01

    Prospective memory (PM), or memory for realizing delayed intentions, was examined with an event-based paradigm while simultaneously measuring neural activity with high-density EEG recordings. Specifically, the neural substrates of monitoring for an event-based cue were examined, as well as those perhaps associated with the cognitive processes supporting detection of cues and fulfillment of intentions. Participants engaged in a baseline lexical decision task (LDT), followed by a LDT with an embedded PM component. Event-based cues were constituted by color and lexicality (red words). Behavioral data provided evidence that monitoring, or preparatory attentional processes, were used to detect cues. Analysis of the event-related potentials (ERP) revealed visual attentional modulations at 140 and 220 ms post-stimulus associated with preparatory attentional processes. In addition, ERP components at 220, 350, and 400 ms post-stimulus were enhanced for intention-related items. Our results suggest preparatory attention may operate by selectively modulating processing of features related to a previously formed event-based intention, as well as provide further evidence for the proposal that dissociable component processes support the fulfillment of delayed intentions.

  16. Assessment of preconscious sucrose perception using EEG

    DEFF Research Database (Denmark)

    Rotvel, Camilla; Møller, Stine; Nielsen, Rene R

    The objective of the current study is to develop a methodology for food ingredient screening based on Electro-Encephalo-Graphy (EEG). EEG measures electrical activity in the central nervous system, allowing assessment of activity in the ascending gustatory pathway from the taste buds on the tongue...... stimulus. The EEG was recorded using a 64 electrode setup, and gustatory evoked potentials (GEP) were estimated by coherent averaging across all 60 stimulations for each concentration. Cortical source localization based on the GEP was performed using a low resolution electromagnetic tomography (LORETA...

  17. Analyzing Electroencephalogram Signal Using EEG Lab

    Directory of Open Access Journals (Sweden)

    Mukesh BHARDWAJ

    2009-01-01

    Full Text Available The EEG is composed of electrical potentials arising from several sources. Each source (including separate neural clusters, blink artifact or pulse artifact forms a unique topography onto the scalp – ‘scalp map‘. Scalp map may be 2-D or 3-D.These maps are mixed according to the principle of linear superposition. Independent component analysis (ICA attempts to reverse the superposition by separating the EEG into mutually independent scalp maps, or components. MATLAB toolbox and graphic user interface, EEGLAB is used for processing EEG data of any number of channels. Wavelet toolbox has been used for 2-D signal analysis.

  18. EEG review comments on the geotechnical reports provided by DOE to EEG under the stipulated agreement through March 1, 1983

    International Nuclear Information System (INIS)

    1983-04-01

    The purpose of the Environmental Evaluation Group (EEG) is to conduct an independent technical evaluation of the potential radiation exposure to people from the proposed federal radioactive Waste Isolation Pilot Plant (WIPP) near Carlsbad, in order to protect the public health and safety and ensure that there is minimal environmental degradation. Analyses are conducted of available data concerning the proposed site, the design of the repository, its planned operation, and its long-term stability. These analyses include assessments of reports issued by the US Department of Energy (DOE) and its contractors, other federal agencies and organizations, as they relate to the potential health, safety and environmental impacts from WIPP. This publication is a compilation of EEG's written comments on each of the following reports: Deep Dissolution; Breccia Pipes; DMG Hydrology; Natural Resources; Plans for Site and Preliminary Design Validation; Plans for Simulated Waste; Brine Reservoir Report; Disturbed Zone Exploration; and Fracture Flow in the Rustler Aquifers

  19. Sustained attention in skilled and novice martial arts athletes: a study of event-related potentials and current sources.

    Science.gov (United States)

    Sanchez-Lopez, Javier; Silva-Pereyra, Juan; Fernandez, Thalia

    2016-01-01

    Background. Research on sports has revealed that behavioral responses and event-related brain potentials (ERP) are better in expert than in novice athletes for sport-related tasks. Focused attention is essential for optimal athletic performance across different sports but mainly in combat disciplines. During combat, long periods of focused attention (i.e., sustained attention) are required for a good performance. Few investigations have reported effects of expertise on brain electrical activity and its neural generators during sport-unrelated attention tasks. The aim of the present study was to assess the effect of expertise (i.e., skilled and novice martial arts athletes) analyzing the ERP during a sustained attention task (Continuous Performance Task; CPT) and the cortical three-dimensional distribution of current density, using the sLORETA technique. Methods. CPT consisted in an oddball-type paradigm presentation of five stimuli (different pointing arrows) where only one of them (an arrow pointing up right) required a motor response (i.e., target). CPT was administered to skilled and novice martial arts athletes while EEG were recorded. Amplitude ERP data from target and non-target stimuli were compared between groups. Subsequently, current source analysis for each ERP component was performed on each subject. sLORETA images were compared by condition and group using Statistical Non-Parametric Mapping analysis. Results. Skilled athletes showed significant amplitude differences between target and non-target conditions in early ERP components (P100 and P200) as opposed to the novice group; however, skilled athletes showed no significant effect of condition in N200 but novices did show a significant effect. Current source analysis showed greater differences in activations in skilled compared with novice athletes between conditions in the frontal (mainly in the Superior Frontal Gyrus and Medial Frontal Gyrus) and limbic (mainly in the Anterior Cingulate Gyrus) lobes

  20. Evaluation of an automated analysis for pain-related evoked potentials

    Directory of Open Access Journals (Sweden)

    Wulf Michael

    2017-09-01

    Full Text Available This paper presents initial steps towards an auto-mated analysis for pain-related evoked potentials (PREP to achieve a higher objectivity and non-biased examination as well as a reduction in the time expended during clinical daily routines. While manually examining, each epoch of an en-semble of stimulus-locked EEG signals, elicited by electrical stimulation of predominantly intra-epidermal small nerve fibers and recorded over the central electrode (Cz, is in-spected for artifacts before calculating the PREP by averag-ing the artifact-free epochs. Afterwards, specific peak-latencies (like the P0-, N1 and P1-latency are identified as certain extrema in the PREP’s waveform. The proposed automated analysis uses Pearson’s correlation and low-pass differentiation to perform these tasks. To evaluate the auto-mated analysis’ accuracy its results of 232 datasets were compared to the results of the manually performed examina-tion. Results of the automated artifact rejection were compa-rable to the manual examination. Detection of peak-latencies was more heterogeneous, indicating some sensitivity of the detected events upon the criteria used during data examina-tion.

  1. Localizing Brain Activity from Multiple Distinct Sources via EEG

    Directory of Open Access Journals (Sweden)

    George Dassios

    2014-01-01

    Full Text Available An important question arousing in the framework of electroencephalography (EEG is the possibility to recognize, by means of a recorded surface potential, the number of activated areas in the brain. In the present paper, employing a homogeneous spherical conductor serving as an approximation of the brain, we provide a criterion which determines whether the measured surface potential is evoked by a single or multiple localized neuronal excitations. We show that the uniqueness of the inverse problem for a single dipole is closely connected with attaining certain relations connecting the measured data. Further, we present the necessary and sufficient conditions which decide whether the collected data originates from a single dipole or from numerous dipoles. In the case where the EEG data arouses from multiple parallel dipoles, an isolation of the source is, in general, not possible.

  2. Intelligence and P3 Components of the Event-Related Potential Elicited during an Auditory Discrimination Task with Masking

    Science.gov (United States)

    De Pascalis, V.; Varriale, V.; Matteoli, A.

    2008-01-01

    The relationship between fluid intelligence (indexed by scores on Raven Progressive Matrices) and auditory discrimination ability was examined by recording event-related potentials from 48 women during the performance of an auditory oddball task with backward masking. High ability (HA) subjects exhibited shorter response times, greater response…

  3. Probabilistic M/EEG source imaging from sparse spatio-temporal event structure

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Attias, Hagai T.; Wipf, David

    While MEG and EEG source imaging methods have to tackle a severely ill-posed problem their success can be stated as their ability to constrain the solutions using appropriate priors. In this paper we propose a hierarchical Bayesian model facilitating spatio-temporal patterns through the use of bo...

  4. Robot-Aided Upper-Limb Rehabilitation Based on Motor Imagery EEG

    Directory of Open Access Journals (Sweden)

    Baoguo Xu

    2011-09-01

    Full Text Available Stroke is a leading cause of disability worldwide. In this paper, a novel robot‐assisted rehabilitation system based on motor imagery electroencephalography (EEG is developed for regular training of neurological rehabilitation for upper limb stroke patients. Firstly, three‐dimensional animation was used to guide the patient image the upper limb movement and EEG signals were acquired by EEG amplifier. Secondly, eigenvectors were extracted by harmonic wavelet transform (HWT and linear discriminant analysis (LDA classifier was utilized to classify the pattern of the left and right upper limb motor imagery EEG signals. Finally, PC triggered the upper limb rehabilitation robot to perform motor therapy and gave the virtual feedback. Using this robot‐assisted upper limb rehabilitation system, the patientʹs EEG of upper limb movement imagination is translated to control rehabilitation robot directly. Consequently, the proposed rehabilitation system can fully explore the patientʹs motivation and attention and directly facilitate upper limb post‐stroke rehabilitation therapy. Experimental results on unimpaired participants were presented to demonstrate the feasibility of the rehabilitation system. Combining robot‐assisted training with motor imagery‐ based BCI will make future rehabilitation therapy more effective. Clinical testing is still required for further proving this assumption.

  5. Relation of EEG alpha background to cognitive fuction, brain atrophy, and cerebral metabolism in Down's syndrome. Age-specific changes

    International Nuclear Information System (INIS)

    Devinsky, O.; Sato, S.; Conwit, R.A.; Schapiro, M.B.

    1990-01-01

    We studied 19 young adults (19 to 37 years old) and 9 older patients (42 to 66 years old) with Down's syndrome (DS) and a control group of 13 healthy adults (22 to 38 years old) to investigate the relation of electroencephalographic (EEG) alpha background to cognitive function and cerebral metabolism. Four of the older patients with DS had a history of mental deterioration, disorientation, and memory loss and were demented. Patients and control subjects had EEGs, psychometric testing, quantitative computed tomography, and positron emission tomography with fludeoxyglucose F 18. A blinded reader classified the EEGs into two groups--those with normal alpha background or those with abnormal background. All the control subjects, the 13 young adult patients with DS, and the 5 older patients with DS had normal EEG backgrounds. In comparison with the age-matched patients with DS with normal alpha background, older patients with DS with decreased alpha background had dementia, fewer visuospatial skills, decreased attention span, larger third ventricles, and a global decrease in cerebral glucose utilization with parietal hypometabolism. In the young patients with DS, the EEG background did not correlate with psychometric or positron emission tomographic findings, but the third ventricles were significantly larger in those with abnormal EEG background. The young patients with DS, with or without normal EEG background, had positron emission tomographic findings similar to those of the control subjects. The mechanism underlying the abnormal EEG background may be the neuropathologic changes of Alzheimer's disease in older patients with DS and may be cerebral immaturity in younger patients with DS

  6. Mindfulness based cognitive therapy improves frontal control in bipolar disorder: a pilot EEG study

    Directory of Open Access Journals (Sweden)

    Howells Fleur M

    2012-02-01

    Full Text Available Abstract Background Cognitive processing in Bipolar Disorder is characterized by a number of attentional abnormalities. Mindfulness Based Cognitive Therapy combines mindfulness meditation, a form of attentional training, along with aspects of cognitive therapy, and may improve attentional dysfunction in bipolar disorder patients. Methods 12 euthymic BD patients and 9 control participants underwent record of electroencephalography (EEG, band frequency analysis during resting states (eyes open, eyes closed and during the completion of a continuous performance task (A-X version, EEG event-related potential (ERP wave component analysis. The individuals with BD completed an 8-week MBCT intervention and record of EEG was repeated. Results (1 Brain activity, individuals with BD showed significantly decreased theta band power, increased beta band power, and decreased theta/beta ratios during the resting state, eyes closed, for frontal and cingulate cortices. Post MBCT intervention improvement over the right frontal cortex was seen in the individuals with BD, as beta band power decreased. (2 Brain activation, individuals with BD showed a significant P300-like wave form over the frontal cortex during the cue. Post MBCT intervention the P300-like waveform was significantly attenuated over the frontal cortex. Conclusions Individuals with BD show decreased attentional readiness and activation of non-relevant information processing during attentional processes. These data are the first that show, MBCT in BD improved attentional readiness, and attenuated activation of non-relevant information processing during attentional processes.

  7. Pharmaco-EEG: A Study of Individualized Medicine in Clinical Practice.

    Science.gov (United States)

    Swatzyna, Ronald J; Kozlowski, Gerald P; Tarnow, Jay D

    2015-07-01

    Pharmaco-electroencephalography (Pharmaco-EEG) studies using clinical EEG and quantitative EEG (qEEG) technologies have existed for more than 4 decades. This is a promising area that could improve psychotropic intervention using neurological data. One of the objectives in our clinical practice has been to collect EEG and quantitative EEG (qEEG) data. In the past 5 years, we have identified a subset of refractory cases (n = 386) found to contain commonalities of a small number of electrophysiological features in the following diagnostic categories: mood, anxiety, autistic spectrum, and attention deficit disorders, Four abnormalities were noted in the majority of medication failure cases and these abnormalities did not appear to significantly align with their diagnoses. Those were the following: encephalopathy, focal slowing, beta spindles, and transient discharges. To analyze the relationship noted, they were tested for association with the assigned diagnoses. Fisher's exact test and binary logistics regression found very little (6%) association between particular EEG/qEEG abnormalities and diagnoses. Findings from studies of this type suggest that EEG/qEEG provides individualized understanding of pharmacotherapy failures and has the potential to improve medication selection. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  8. Standardized computer-based organized reporting of EEG:SCORE

    DEFF Research Database (Denmark)

    Beniczky, Sandor; H, Aurlien,; JC, Brøgger,

    2013-01-01

    process, organized by the European Chapter of the International Federation of Clinical Neurophysiology. The Standardised Computer-based Organised Reporting of EEG (SCORE) software was constructed based on the terms and features of the consensus statement and it was tested in the clinical practice...... in free-text format. The purpose of our endeavor was to create a computer-based system for EEG assessment and reporting, where the physicians would construct the reports by choosing from predefined elements for each relevant EEG feature, as well as the clinical phenomena (for video-EEG recordings....... SCORE can potentially improve the quality of EEG assessment and reporting; it will help incorporate the results of computer-assisted analysis into the report, it will make possible the build-up of a multinational database, and it will help in training young neurophysiologists....

  9. Early Prefrontal Brain Responses to the Hedonic Quality of Emotional Words – A Simultaneous EEG and MEG Study

    Science.gov (United States)

    Keuper, Kati; Zwitserlood, Pienie; Rehbein, Maimu A.; Eden, Annuschka S.; Laeger, Inga; Junghöfer, Markus; Zwanzger, Peter; Dobel, Christian

    2013-01-01

    The hedonic meaning of words affects word recognition, as shown by behavioral, functional imaging, and event-related potential (ERP) studies. However, the spatiotemporal dynamics and cognitive functions behind are elusive, partly due to methodological limitations of previous studies. Here, we account for these difficulties by computing combined electro-magnetoencephalographic (EEG/MEG) source localization techniques. Participants covertly read emotionally high-arousing positive and negative nouns, while EEG and MEG were recorded simultaneously. Combined EEG/MEG current-density reconstructions for the P1 (80–120 ms), P2 (150–190 ms) and EPN component (200–300 ms) were computed using realistic individual head models, with a cortical constraint. Relative to negative words, the P1 to positive words predominantly involved language-related structures (left middle temporal and inferior frontal regions), and posterior structures related to directed attention (occipital and parietal regions). Effects shifted to the right hemisphere in the P2 component. By contrast, negative words received more activation in the P1 time-range only, recruiting prefrontal regions, including the anterior cingulate cortex (ACC). Effects in the EPN were not statistically significant. These findings show that different neuronal networks are active when positive versus negative words are processed. We account for these effects in terms of an “emotional tagging” of word forms during language acquisition. These tags then give rise to different processing strategies, including enhanced lexical processing of positive words and a very fast language-independent alert response to negative words. The valence-specific recruitment of different networks might underlie fast adaptive responses to both approach- and withdrawal-related stimuli, be they acquired or biological. PMID:23940642

  10. Comparison of Amplitude-Integrated EEG and Conventional EEG in a Cohort of Premature Infants.

    Science.gov (United States)

    Meledin, Irina; Abu Tailakh, Muhammad; Gilat, Shlomo; Yogev, Hagai; Golan, Agneta; Novack, Victor; Shany, Eilon

    2017-03-01

    To compare amplitude-integrated EEG (aEEG) and conventional EEG (EEG) activity in premature neonates. Biweekly aEEG and EEG were simultaneously recorded in a cohort of infants born less than 34 weeks gestation. aEEG recordings were visually assessed for lower and upper border amplitude and bandwidth. EEG recordings were compressed for visual evaluation of continuity and assessed using a signal processing software for interburst intervals (IBI) and frequencies' amplitude. Ten-minute segments of aEEG and EEG indices were compared using regression analysis. A total of 189 recordings from 67 infants were made, from which 1697 aEEG/EEG pairs of 10-minute segments were assessed. Good concordance was found for visual assessment of continuity between the 2 methods. EEG IBI, alpha and theta frequencies' amplitudes were negatively correlated to the aEEG lower border while conceptional age (CA) was positively correlated to aEEG lower border ( P continuity and amplitude.

  11. Iconic gestures prime related concepts: an ERP study.

    Science.gov (United States)

    Wu, Ying Croon; Coulson, Seana

    2007-02-01

    To assess priming by iconic gestures, we recorded EEG (at 29 scalp sites) in two experiments while adults watched short, soundless videos of spontaneously produced, cospeech iconic gestures followed by related or unrelated probe words. In Experiment 1, participants classified the relatedness between gestures and words. In Experiment 2, they attended to stimuli, and performed an incidental recognition memory test on words presented during the EEG recording session. Event-related potentials (ERPs) time-locked to the onset of probe words were measured, along with response latencies and word recognition rates. Although word relatedness did not affect reaction times or recognition rates, contextually related probe words elicited less-negative ERPs than did unrelated ones between 300 and 500 msec after stimulus onset (N400) in both experiments. These findings demonstrate sensitivity to semantic relations between iconic gestures and words in brain activity engendered during word comprehension.

  12. The light-makeup advantage in facial processing: Evidence from event-related potentials.

    Science.gov (United States)

    Tagai, Keiko; Shimakura, Hitomi; Isobe, Hiroko; Nittono, Hiroshi

    2017-01-01

    The effects of makeup on attractiveness have been evaluated using mainly subjective measures. In this study, event-related brain potentials (ERPs) were recorded from a total of 45 Japanese women (n = 23 and n = 22 for Experiment 1 and 2, respectively) to examine the neural processing of faces with no makeup, light makeup, and heavy makeup. To have the participants look at each face carefully, an identity judgement task was used: they were asked to judge whether the two faces presented in succession were of the same person or not. The ERP waveforms in response to the first faces were analyzed. In two experiments with different stimulus probabilities, the amplitudes of N170 and vertex positive potential (VPP) were smaller for faces with light makeup than for faces with heavy makeup or no makeup. The P1 amplitude did not differ between facial types. In a subsequent rating phase, faces with light makeup were rated as more attractive than faces with heavy makeup and no makeup. The results suggest that the processing fluency of faces with light makeup is one of the reasons why light makeup is preferred to heavy makeup and no makeup in daily life.

  13. EEG frequency PCA in EEG-ERP dynamics.

    Science.gov (United States)

    Barry, Robert J; De Blasio, Frances M

    2018-05-01

    Principal components analysis (PCA) has long been used to decompose the ERP into components, and these mathematical entities are increasingly accepted as meaningful and useful representatives of the electrophysiological components constituting the ERP. A similar expansion appears to be beginning in regard to decomposition of the EEG amplitude spectrum into frequency components via frequency PCA. However, to date, there has been no exploration of the brain's dynamic EEG-ERP linkages using PCA decomposition to assess components in each measure. Here, we recorded intrinsic EEG in both eyes-closed and eyes-open resting conditions, followed by an equiprobable go/no-go task. Frequency PCA of the EEG, including the nontask resting and within-task prestimulus periods, found seven frequency components within the delta to beta range. These differentially predicted PCA-derived go and no-go N1 and P3 ERP components. This demonstration suggests that it may be beneficial in future brain dynamics studies to implement PCA for the derivation of data-driven components from both the ERP and EEG. © 2017 Society for Psychophysiological Research.

  14. Automatic seizure detection: going from sEEG to iEEG

    DEFF Research Database (Denmark)

    Henriksen, Jonas; Remvig, Line Sofie; Madsen, Rasmus Elsborg

    2010-01-01

    Several different algorithms have been proposed for automatic detection of epileptic seizures based on both scalp and intracranial electroencephalography (sEEG and iEEG). Which modality that renders the best result is hard to assess though. From 16 patients with focal epilepsy, at least 24 hours...... of ictal and non-ictal iEEG were obtained. Characteristics of the seizures are represented by use of wavelet transformation (WT) features and classified by a support vector machine. When implementing a method used for sEEG on iEEG data, a great improvement in performance was obtained when the high...... frequency containing lower levels in the WT were included in the analysis. We were able to obtain a sensitivity of 96.4% and a false detection rate (FDR) of 0.20/h. In general, when implementing an automatic seizure detection algorithm made for sEEG on iEEG, great improvement can be obtained if a frequency...

  15. P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls.

    Science.gov (United States)

    McCane, Lynn M; Heckman, Susan M; McFarland, Dennis J; Townsend, George; Mak, Joseph N; Sellers, Eric W; Zeitlin, Debra; Tenteromano, Laura M; Wolpaw, Jonathan R; Vaughan, Theresa M

    2015-11-01

    Brain-computer interfaces (BCIs) aimed at restoring communication to people with severe neuromuscular disabilities often use event-related potentials (ERPs) in scalp-recorded EEG activity. Up to the present, most research and development in this area has been done in the laboratory with young healthy control subjects. In order to facilitate the development of BCI most useful to people with disabilities, the present study set out to: (1) determine whether people with amyotrophic lateral sclerosis (ALS) and healthy, age-matched volunteers (HVs) differ in the speed and accuracy of their ERP-based BCI use; (2) compare the ERP characteristics of these two groups; and (3) identify ERP-related factors that might enable improvement in BCI performance for people with disabilities. Sixteen EEG channels were recorded while people with ALS or healthy age-matched volunteers (HVs) used a P300-based BCI. The subjects with ALS had little or no remaining useful motor control (mean ALS Functional Rating Scale-Revised 9.4 (±9.5SD) (range 0-25)). Each subject attended to a target item as the items in a 6×6 visual matrix flashed. The BCI used a stepwise linear discriminant function (SWLDA) to determine the item the user wished to select (i.e., the target item). Offline analyses assessed the latencies, amplitudes, and locations of ERPs to the target and non-target items for people with ALS and age-matched control subjects. BCI accuracy and communication rate did not differ significantly between ALS users and HVs. Although ERP morphology was similar for the two groups, their target ERPs differed significantly in the location and amplitude of the late positivity (P300), the amplitude of the early negativity (N200), and the latency of the late negativity (LN). The differences in target ERP components between people with ALS and age-matched HVs are consistent with the growing recognition that ALS may affect cortical function. The development of BCIs for use by this population may begin

  16. Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm

    Directory of Open Access Journals (Sweden)

    Maren Stropahl

    2018-05-01

    Full Text Available Electroencephalography (EEG source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA. ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat. Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM. We then apply the method of dynamical statistical parametric mapping (dSPM to obtain

  17. Assessment of Event-Related EEG Power After Single-Pulse TMS in Unresponsive Wakefulness Syndrome and Minimally Conscious State Patients.

    Science.gov (United States)

    Formaggio, Emanuela; Cavinato, Marianna; Storti, Silvia Francesca; Tonin, Paolo; Piccione, Francesco; Manganotti, Paolo

    2016-03-01

    In patients without a behavioral response, non-invasive techniques and new methods of data analysis can complement existing diagnostic tools by providing a method for detecting covert signs of residual cognitive function and awareness. The aim of this study was to investigate the brain oscillatory activities synchronized by single-pulse transcranial magnetic stimulation (TMS) delivered over the primary motor area in the time-frequency domain in patients with the unresponsive wakefulness syndrome or in a minimally conscious state as compared to healthy controls. A time-frequency analysis based on the wavelet transform was used to characterize rapid modifications of oscillatory EEG rhythms induced by TMS in patients as compared to healthy controls. The pattern of EEG changes in the patients differed from that of healthy controls. In the controls there was an early synchronization of slow waves immediately followed by a desynchronization of alpha and beta frequency bands over the frontal and centro-parietal electrodes, whereas an opposite early synchronization, particularly over motor areas for alpha and beta and over the frontal and parietal electrodes for beta power, was seen in the patients. In addition, no relevant modification in slow rhythms (delta and theta) after TMS was noted in patients. The clinical impact of these findings could be relevant in neurorehabilitation settings for increasing the awareness of these patients and defining new treatment procedures.

  18. Using Event-Related Potentials to Study Perinatal Nutrition and Brain Development in Infants of Diabetic Mothers

    OpenAIRE

    deRegnier, Raye-Ann; Long, Jeffrey D.; Georgieff, Michael K.; Nelson, Charles A.

    2007-01-01

    Proper prenatal and postnatal nutrition is essential for optimal brain development and function. The early use of event-related potentials enables neuroscientists to study the development of cognitive function from birth and to evaluate the role of specific nutrients in development. Perinatal iron deficiency occurs in severely affected infants of diabetic mothers. In animal models, severe perinatal iron deficiency targets the explicit memory system of the brain. Cross-sectional ERP studies ha...

  19. Movement-related cortical potentials in paraplegic patients: abnormal patterns and considerations for BCI-rehabilitation

    Directory of Open Access Journals (Sweden)

    Ren eXu

    2014-08-01

    Full Text Available Non-invasive EEG-based Brain-Computer Interfaces (BCI can be promising for the motor neuro-rehabilitation of paraplegic patients. However, this shall require detailed knowledge of the abnormalities in the EEG signatures of paraplegic patients. The association of abnormalities in different subgroups of patients and their relation to the sensorimotor integration are relevant for the design, implementation and use of BCI systems in patient populations. This study explores the patterns of abnormalities of movement related cortical potentials (MRCP during motor imagery tasks of feet and right hand in patients with paraplegia (including the subgroups with/without central neuropathic pain and complete/incomplete injury patients and the level of distinctiveness of abnormalities in these groups using pattern classification. The most notable observed abnormalities were the amplified execution negativity and its slower rebound in the patient group. The potential underlying mechanisms behind these changes and other minor dissimilarities in patients’ subgroups, as well as the relevance to BCI applications, are discussed. The findings are of interest from a neurological perspective as well as for BCI-assisted neuro-rehabilitation and therapy.

  20. Visualization of Spatio-Temporal Relations in Movement Event Using Multi-View

    Science.gov (United States)

    Zheng, K.; Gu, D.; Fang, F.; Wang, Y.; Liu, H.; Zhao, W.; Zhang, M.; Li, Q.

    2017-09-01

    Spatio-temporal relations among movement events extracted from temporally varying trajectory data can provide useful information about the evolution of individual or collective movers, as well as their interactions with their spatial and temporal contexts. However, the pure statistical tools commonly used by analysts pose many difficulties, due to the large number of attributes embedded in multi-scale and multi-semantic trajectory data. The need for models that operate at multiple scales to search for relations at different locations within time and space, as well as intuitively interpret what these relations mean, also presents challenges. Since analysts do not know where or when these relevant spatio-temporal relations might emerge, these models must compute statistical summaries of multiple attributes at different granularities. In this paper, we propose a multi-view approach to visualize the spatio-temporal relations among movement events. We describe a method for visualizing movement events and spatio-temporal relations that uses multiple displays. A visual interface is presented, and the user can interactively select or filter spatial and temporal extents to guide the knowledge discovery process. We also demonstrate how this approach can help analysts to derive and explain the spatio-temporal relations of movement events from taxi trajectory data.

  1. VISUALIZATION OF SPATIO-TEMPORAL RELATIONS IN MOVEMENT EVENT USING MULTI-VIEW

    Directory of Open Access Journals (Sweden)

    K. Zheng

    2017-09-01

    Full Text Available Spatio-temporal relations among movement events extracted from temporally varying trajectory data can provide useful information about the evolution of individual or collective movers, as well as their interactions with their spatial and temporal contexts. However, the pure statistical tools commonly used by analysts pose many difficulties, due to the large number of attributes embedded in multi-scale and multi-semantic trajectory data. The need for models that operate at multiple scales to search for relations at different locations within time and space, as well as intuitively interpret what these relations mean, also presents challenges. Since analysts do not know where or when these relevant spatio-temporal relations might emerge, these models must compute statistical summaries of multiple attributes at different granularities. In this paper, we propose a multi-view approach to visualize the spatio-temporal relations among movement events. We describe a method for visualizing movement events and spatio-temporal relations that uses multiple displays. A visual interface is presented, and the user can interactively select or filter spatial and temporal extents to guide the knowledge discovery process. We also demonstrate how this approach can help analysts to derive and explain the spatio-temporal relations of movement events from taxi trajectory data.

  2. A review of electroencephalographic changes in diabetes mellitus in relation to major depressive disorder

    Directory of Open Access Journals (Sweden)

    Baskaran A

    2013-01-01

    Full Text Available Anusha Baskaran,1,2 Roumen Milev,3 Roger S McIntyre21Centre for Neuroscience Studies, Queen's University, Kingston; 2Mood Disorders Psychopharmacology Unit, University Health Network, Toronto; 3Department of Psychiatry, Queen's University, Kingston, CanadaAbstract: A bidirectional relationship exists between diabetes mellitus (DM and major depressive disorder (MDD, with depression commonly reported in both type 1 DM (T1DM and type 2 DM (T2DM, and depressive symptoms associated with a higher incidence of diabetes. However, how the two conditions are pathologically connected is not completely understood. Similar neurophysiological abnormalities have been reported in both DM and MDD, including elevated electroencephalographic (EEG activity in low-frequency slow waves and increased latency and/or reduced amplitude of event-related potentials. It is possible that this association reflects some common underlying pathology, and it has been proposed that diabetes may place patients at risk for depression through a biological mechanism linking the metabolic changes of DM to changes in the central nervous system. In this review we will discuss EEG abnormalities in DM, as well as the biological mechanisms underlying various EEG parameters, in order to evaluate whether or not a common EEG biosignature exists between DM and MDD. Identifying such commonalities could significantly inform the current understanding of the mechanisms that subserve the development of the two conditions. Moreover, this new insight may provide the basis for informing new drug discovery capable of mitigating and possibly even preventing both conditions.Keywords: electroencephalography, event-related potential, diabetes mellitus, major depressive disorder

  3. An event-related potential study of working memory in children

    Institute of Scientific and Technical Information of China (English)

    LIU Rong; GUO Chunyan; JIANG Yang

    2006-01-01

    To examine the neural mechanisms of working memory in children, event-related potentials (ERPs) were recorded from the 12―13 year-old while they performed a delayed match-to-sample task. The ERP results revealed that new and studied objects both evoked a late positive ERP component peaking around 350 ms during the working memory process. New objects evoke a more positive ERP waveform than the studied objects. The scalp distribution showed that the frontal-central electrode sites were associated with object working memory processes. When tracking new or studied targets among visual distracters, ERPs of targets and distracters revealed differential responses as early as 150 ms. The visual targets evoked larger and more positive ERP responses than the distracters. The typical old-new effect was observed between ERPs of studied and new distracters. However, ERPs of new and studied targets differed at about 250 ms, in which new targets evoked more positive-going and slightly earlier ERP responses. In addition, a P3a component was found for new targets only, and was absent in ERPs of studied targets at frontal and central sites. The present study results reveal the spatial and temporal characteristics of neural mechanisms underlying working memory in children, some of which are distinct from those in adults.

  4. Single-Trial Event-Related Potential Based Rapid Image Triage System

    Directory of Open Access Journals (Sweden)

    Ke Yu

    2011-06-01

    Full Text Available Searching for points of interest (POI in large-volume imagery is a challenging problem with few good solutions. In this work, a neural engineering approach called rapid image triage (RIT which could offer about a ten-fold speed up in POI searching is developed. It is essentially a cortically-coupled computer vision technique, whereby the user is presented bursts of images at a speed of 6–15 images per second and then neural signals called event-related potential (ERP is used as the ‘cue’ for user seeing images of high relevance likelihood. Compared to past efforts, the implemented system has several unique features: (1 it applies overlapping frames in image chip preparation, to ensure rapid image triage performance; (2 a novel common spatial-temporal pattern (CSTP algorithm that makes use of both spatial and temporal patterns of ERP topography is proposed for high-accuracy single-trial ERP detection; (3 a weighted version of probabilistic support-vector-machine (SVM is used to address the inherent unbalanced nature of single-trial ERP detection for RIT. High accuracy, fast learning, and real-time capability of the developed system shown on 20 subjects demonstrate the feasibility of a brainmachine integrated rapid image triage system for fast detection of POI from large-volume imagery.

  5. Processing of visual semantic information to concrete words : temporal dynamics and neural mechanisms indicated by event-related brain potentials

    NARCIS (Netherlands)

    van Schie, Hein T.; Wijers, Albertus A.; Mars, Rogier B.; Benjamins, Jeroen S.; Stowe, Laurie A.

    2005-01-01

    Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that

  6. Processing of visual semantic information to concrete words: temporal dynamics and neural mechanisms indicated by event-related brain potentials

    NARCIS (Netherlands)

    Schie, H.T. van; Wijers, A.A.; Mars, R.B.; Benjamins, J.S.; Stowe, L.A.

    2005-01-01

    Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that

  7. A STUDY ON EEG ABNORMALITIES IN CHILDREN WITH MIGRAINE

    Directory of Open Access Journals (Sweden)

    Subinay Mandal

    2017-04-01

    Full Text Available BACKGROUND Migraine is one of the common causes of headache in children. Migraine and epilepsy are both common episodic neurological disorders. The comorbidity of these two conditions is well known. Many researcher have pointed out that neuronal hyperexcitability is the initiating event for occurrence of migraine attack. The aim of the paper was to evaluate the EEG in children with migraine. MATERIALS AND METHODS We retrospectively analysed records of children who attended our paediatric outpatient department with diagnoses as suffering from migraine based on International Headache Society (IHS diagnostic criteria. Apart from detailed clinical history, EEG of every patient was collected and analysed. EEG was performed interictally at least 24 hours after the last episode of headache attack in all the cases. RESULTS 56 children (age range, 4-14 years constituted our study group. 64.3% children had migraine without aura (common type and in 23.2% cases had migraine with aura (classic type other were with migraine variants. Abnormal EEG was reported in 30.3% children. 17% of children with migraine without history of seizure had abnormal EEG. Sixty one percent of patients with aura had abnormal EEG. History of either febrile fits or afebrile fits was present in total 17.1% of cases. The type of paroxysmal discharges we came across was- a Sharp waves, b Spikes and c Spike and slow wave complexes. Abnormal paroxysmal sharp and spike-wave complexes (also called spike-and-slow-wave complexes were the most common EEG abnormality. CONCLUSION EEG abnormality was found in significant number of children with migraine both with and without history of seizure in our study. This indicates neuronal hyperexcitability during episodes of migraine. So, EEG should be considered in patients with clinical diagnoses of migraine to exclude association of any seizure activity.

  8. Meteorological events in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide provides recommendations and guidance on conducting hazard assessments of extreme and rare meteorological phenomena. It is of interest to safety assessors and regulators involved in the licensing process as well as to designers of nuclear power plants. This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It supplements the IAEA Safety Requirements publication on Site Evaluation for Nuclear Facilities which is to supersede the Code on the Safety of Nuclear Power Plants: Siting, Safety Series No. 50-C-S (Rev. 1), IAEA, Vienna (1988). The present Safety Guide supersedes two earlier Safety Guides: Safety Series No. 50-SG-S11A (1981) on Extreme Meteorological Events in Nuclear Power Plant Siting, Excluding Tropical Cyclones and Safety Series No. 50-SG-S11B (1984) on Design Basis Tropical Cyclone for Nuclear Power Plants. The purpose of this Safety Guide is to provide recommendations and guidance on conducting hazard assessments of extreme and rare meteorological phenomena. This Safety Guide provides interpretation of the Safety Requirements publication on Site Evaluation for Nuclear Facilities and guidance on how to fulfil these requirements. It is aimed at safety assessors or regulators involved in the licensing process as well as designers of nuclear power plants, and provides them with guidance on the methods and procedures for analyses that support the assessment of the hazards associated with extreme and rare meteorological events. This Safety Guide discusses the extreme values of meteorological variables and rare meteorological phenomena, as well as their rates of occurrence, according to the following definitions: (a) Extreme values of meteorological variables such as air temperature and wind speed characterize the meteorological or climatological environment. And (b) Rare meteorological phenomena

  9. External man-induced events in relation to nuclear power plant design

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide deals with the basic design requirements for nuclear power plants, and presents a general design approach for protection against the effects of man-induced events. Section 2 discusses the general design approach. Section 3 outlines the development of the basic information necessary for an evaluation of the adequacy of a design against the effects of aircraft crashes, fires, explosions, and the release of toxic gases or corrosive substances. Section 4 outlines the design logic for protection against external man-induced events. It indicates possible methods of ensuring overall plant safety, including protection against possible secondary effects. Included for each event are: a methodology for calculating the design input parameters from the data generated in the siting study, system protection considerations from the effects of this man-induced event, and criteria for judging the adequacy of the protection provided. Specific design guidance related to acts of sabotage is not provided in this Guide. It should be recognized, however, that for certain situations such acts can be important to safety and could constitute the controlling postulated initiating event for design. The list of events covered is not necessarily complete. However, important events on which enough work has already been done in various Member States to enable their effects to be converted into generally accepted design parameters are included. In addition, other man-induced events such as dam ruptures, ship collisions, construction accidents and the like are identified but no general guidelines for design can be specified for these at present. These events need to be considered on an ad hoc basis, in order to arrive at design input parameters for them

  10. Rett syndrome: EEG presentation.

    Science.gov (United States)

    Robertson, R; Langill, L; Wong, P K; Ho, H H

    1988-11-01

    Rett syndrome, a degenerative neurological disorder of girls, has a classical presentation and typical EEG findings. The electroencephalograms (EEGs) of 7 girls whose records have been followed from the onset of symptoms to the age of 5 or more are presented. These findings are tabulated with the Clinical Staging System of Hagberg and Witt-Engerström (1986). The records show a progressive deterioration in background rhythms in waking and sleep. The abnormalities of the background activity may only become evident at 4-5 years of age or during stage 2--the Rapid Destructive Stage. The marked contrast between waking and sleep background may not occur until stage 3--the Pseudostationary Stage. In essence EEG changes appear to lag behind clinical symptomatology by 1-3 years. An unexpected, but frequent, abnormality was central spikes seen in 5 of 7 girls. They appeared to be age related and could be evoked by tactile stimulation in 2 patients. We hypothesize that the prominent 'hand washing' mannerism may be self-stimulating and related to the appearance of central spike discharges.

  11. High Definition Transcranial Direct Current Stimulation Induces Both Acute and Persistent Changes in Broadband Cortical Synchronization: a Simultaneous tDCS-EEG Study

    Science.gov (United States)

    Roy, Abhrajeet; Baxter, Bryan

    2014-01-01

    The goal of this study was to develop methods for simultaneously acquiring electrophysiological data during high definition transcranial direct current stimulation (tDCS) using high resolution electroencephalography (EEG). Previous studies have pointed to the after effects of tDCS on both motor and cognitive performance, and there appears to be potential for using tDCS in a variety of clinical applications. However, little is known about the real-time effects of tDCS on rhythmic cortical activity in humans due to the technical challenges of simultaneously obtaining electrophysiological data during ongoing stimulation. Furthermore, the mechanisms of action of tDCS in humans are not well understood. We have conducted a simultaneous tDCS-EEG study in a group of healthy human subjects. Significant acute and persistent changes in spontaneous neural activity and event related synchronization (ERS) were observed during and after the application of high definition tDCS over the left sensorimotor cortex. Both anodal and cathodal stimulation resulted in acute global changes in broadband cortical activity which were significantly different than the changes observed in response to sham stimulation. For the group of 8 subjects studied, broadband individual changes in spontaneous activity during stimulation were apparent both locally and globally. In addition, we found that high definition tDCS of the left sensorimotor cortex can induce significant ipsilateral and contralateral changes in event related desynchronization (ERD) and ERS during motor imagination following the end of the stimulation period. Overall, our results demonstrate the feasibility of acquiring high resolution EEG during high definition tDCS and provide evidence that tDCS in humans directly modulates rhythmic cortical synchronization during and after its administration. PMID:24956615

  12. The neural basis of analogical reasoning: an event-related potential study.

    Science.gov (United States)

    Qiu, Jiang; Li, Hong; Chen, Antao; Zhang, Qinglin

    2008-10-01

    The spatiotemporal analysis of brain activation during the execution of easy analogy (EA) and difficult analogy (DA) tasks was investigated using high-density event-related brain potentials (ERPs). Results showed that reasoning tasks (schema induction) elicited a more negative ERP deflection (N500-1000) than did the baseline task (BS) between 500 and 1000 ms. Dipole source analysis of difference waves (EA-BS and DA-BS) indicated that the negative components were both localized near the left thalamus, possibly associated with the retrieval of alphabetical information. Furthermore, DA elicited a more positive ERP component (P600-1000) than did EA in the same time window. Two generators of P600-1000 were located in the medial prefrontal cortex (BA10) and the left frontal cortex (BA6) which was possibly involved in integrating information in schema abstraction. In the stage of analogy mapping, a greater negativity (N400-600) in the reasoning tasks as compared to BS was found over fronto-central scalp regions. A generator of this effect was located in the left fusiform gyrus and was possibly related to associative memory and activation of schema. Then, a greater negativity in the reasoning tasks, in comparison to BS task, developed between 900-1200 ms (LNC1) and 2000-2500 ms (LNC2). Dipole source analysis (EA-BS) localized the generator of LNC1 in the left prefrontal cortex (BA 10) which was possibly related to mapping the schema to the target problem, and the generator of LNC2 in the left prefrontal cortex (BA 9) which was possibly related to deciding whether a conclusion correctly follows from the schema.

  13. Age-Related Changes in Resting-State EEG Activity in Attention Deficit/Hyperactivity Disorder: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Katarzyna Giertuga

    2017-05-01

    Full Text Available Numerous studies indicate that attention deficit/hyperactivity disorder (ADHD is related to some developmental trends, as its symptoms change widely over time. Nevertheless, the etiology of this phenomenon remains ambiguous. There is a disagreement whether ADHD is related to deviations in brain development or to a delay in brain maturation. The model of deviated brain development suggests that the ADHD brain matures in a fundamentally different way, and does not reach normal maturity at any developmental stage. On the contrary, the delayed brain maturation model assumes that the ADHD brain indeed matures in a different, delayed way in comparison to healthy age-matched controls, yet eventually reaches proper maturation. We investigated age-related changes in resting-state EEG activity to find evidence to support one of the alternative models. A total of 141 children and teenagers participated in the study; 67 diagnosed with ADHD and 74 healthy controls. The absolute power of delta, theta, alpha, and beta frequency bands was analyzed. We observed a significant developmental pattern of decreasing absolute EEG power in both groups. Nonetheless, ADHD was characterized by consistently lower absolute EGG power, mostly in the theta frequency band, in comparison to healthy controls. Our results are in line with the deviant brain maturation theory of ADHD, as the observed effects of age-related changes in EEG power are parallel but different in the two groups.

  14. Event-related theta synchronization predicts deficit in facial affect recognition in schizophrenia.

    Science.gov (United States)

    Csukly, Gábor; Stefanics, Gábor; Komlósi, Sarolta; Czigler, István; Czobor, Pál

    2014-02-01

    Growing evidence suggests that abnormalities in the synchronized oscillatory activity of neurons in schizophrenia may lead to impaired neural activation and temporal coding and thus lead to neurocognitive dysfunctions, such as deficits in facial affect recognition. To gain an insight into the neurobiological processes linked to facial affect recognition, we investigated both induced and evoked oscillatory activity by calculating the Event Related Spectral Perturbation (ERSP) and the Inter Trial Coherence (ITC) during facial affect recognition. Fearful and neutral faces as well as nonface patches were presented to 24 patients with schizophrenia and 24 matched healthy controls while EEG was recorded. The participants' task was to recognize facial expressions. Because previous findings with healthy controls showed that facial feature decoding was associated primarily with oscillatory activity in the theta band, we analyzed ERSP and ITC in this frequency band in the time interval of 140-200 ms, which corresponds to the N170 component. Event-related theta activity and phase-locking to facial expressions, but not to nonface patches, predicted emotion recognition performance in both controls and patients. Event-related changes in theta amplitude and phase-locking were found to be significantly weaker in patients compared with healthy controls, which is in line with previous investigations showing decreased neural synchronization in the low frequency bands in patients with schizophrenia. Neural synchrony is thought to underlie distributed information processing. Our results indicate a less effective functioning in the recognition process of facial features, which may contribute to a less effective social cognition in schizophrenia. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Neurophysiological traces of interpersonal pain: How emotional autobiographical memories affect event-related potentials.

    Science.gov (United States)

    Rohde, Kristina B; Caspar, Franz; Koenig, Thomas; Pascual-Leone, Antonio; Stein, Maria

    2018-03-01

    The automatic, involuntary reactivation of disturbing emotional memories, for example, of interpersonal pain, causes psychological discomfort and is central to many psychopathologies. This study aimed at elucidating the automatic brain processes underlying emotional autobiographical memories by investigating the neurophysiological dynamics within the first second after memory reactivation. Pictures of different individualized familiar faces served as cues for different specific emotional autobiographical memories, for example, for memories of interpersonal pain and grievances or for memories of appreciation in interpersonal relationships. Nineteen subjects participated in a passive face-viewing task while multichannel electroencephalogram was recorded. Analyses of event-related potentials demonstrated that emotional memories elicited an early posterior negativity and a stronger late positive potential, which tended to be particularly enhanced for painful memories. Source estimations attributed this stronger activation to networks including the posterior cingulate and ventrolateral prefrontal cortices. The findings suggest that the reactivation of emotional autobiographical memories involves privileged automatic attention at perceptual processing stages, and an enhanced recruitment of neural network activity at a postperceptual stage sensitive to emotional-motivational processing. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage

    Directory of Open Access Journals (Sweden)

    Simon-Shlomo ePoil

    2013-10-01

    Full Text Available Alzheimer's disease (AD is a devastating disorder of increasing prevalence in modern society. Mild cognitive impairment (MCI is considered a transitional stage between normal aging and AD; however, not all subjects with MCI progress to AD. Prediction of conversion to AD at an early stage would enable an earlier, and potentially more effective, treatment of AD. Electroencephalography (EEG biomarkers would provide a non-invasive and relatively cheap screening tool to predict conversion to AD; however, traditional EEG biomarkers have not been considered accurate enough to be useful in clinical practice. Here, we aim to combine the information from multiple EEG biomarkers into a diagnostic classification index in order to improve the accuracy of predicting conversion from MCI to AD within a two-year period. We followed 86 patients initially diagnosed with MCI for two years during which 25 patients converted to AD. We show that multiple EEG biomarkers mainly related to activity in the beta-frequency range (13–30 Hz can predict conversion from MCI to AD. Importantly, by integrating six EEG biomarkers into a diagnostic index using logistic regression the prediction improved compared with the classification using the individual biomarkers, with a sensitivity of 88% and specificity of 82%, compared with a sensitivity of 64% and specificity of 62% of the best individual biomarker in this index. In order to identify this diagnostic index we developed a data mining approach implemented in the Neurophysiological Biomarker Toolbox (http://www.nbtwiki.net/. We suggest that this approach can be used to identify optimal combinations of biomarkers (integrative biomarkers also in other modalities. Potentially, these integrative biomarkers could be more sensitive to disease progression and response to therapeutic intervention.

  17. Frontal EEG asymmetry as a moderator and mediator of emotion.

    Science.gov (United States)

    Coan, James A; Allen, John J B

    2004-10-01

    Frontal EEG asymmetry appears to serve as (1) an individual difference variable related to emotional responding and emotional disorders, and (2) a state-dependent concomitant of emotional responding. Such findings, highlighted in this review, suggest that frontal EEG asymmetry may serve as both a moderator and a mediator of emotion- and motivation-related constructs. Unequivocal evidence supporting frontal EEG asymmetry as a moderator and/or mediator of emotion is lacking, as insufficient attention has been given to analyzing the frontal EEG asymmetries in terms of moderators and mediators. The present report reviews the frontal EEG asymmetry literature from the framework of moderators and mediators, and overviews data analytic strategies that would support claims of moderation and mediation.

  18. Consensus on the use of neurophysiological tests in the intensive care unit (ICU): electroencephalogram (EEG), evoked potentials (EP), and electroneuromyography (ENMG)

    DEFF Research Database (Denmark)

    Guørit, J.M.; Amantini, A.; Amodio, P.

    2009-01-01

    STUDY AIM: To provide a consensus of European leading authorities about the optimal use of clinical neurophysiological (CN) tests (electroencephalogram [EEG]; evoked potentials [EP]; electroneuromyography [ENMG]) in the intensive care unit (ICU) and, particularly, about the way to make these tests...... contribution to all other experts. A complete consensus has been reached when submitting the manuscript. RESULTS: What the group considered as the best classification systems for EEG and EP abnormalities in the ICU is first presented. CN tests are useful for diagnosis (epilepsy, brain death, and neuromuscular...

  19. On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.

    Science.gov (United States)

    Winkler, Irene; Debener, Stefan; Müller, Klaus-Robert; Tangermann, Michael

    2015-01-01

    Standard artifact removal methods for electroencephalographic (EEG) signals are either based on Independent Component Analysis (ICA) or they regress out ocular activity measured at electrooculogram (EOG) channels. Successful ICA-based artifact reduction relies on suitable pre-processing. Here we systematically evaluate the effects of high-pass filtering at different frequencies. Offline analyses were based on event-related potential data from 21 participants performing a standard auditory oddball task and an automatic artifactual component classifier method (MARA). As a pre-processing step for ICA, high-pass filtering between 1-2 Hz consistently produced good results in terms of signal-to-noise ratio (SNR), single-trial classification accuracy and the percentage of `near-dipolar' ICA components. Relative to no artifact reduction, ICA-based artifact removal significantly improved SNR and classification accuracy. This was not the case for a regression-based approach to remove EOG artifacts.

  20. Identifying deliberate attempts to fake memory impairment through the combined use of reaction time and event-related potential measures

    NARCIS (Netherlands)

    van Hooff, Johanna C.; Sargeant, Elizabeth; Foster, Jonathan K.; Schmand, Ben A.

    2009-01-01

    The central aim of this study was to evaluate the value of reaction time (RT) measures and event-related potentials (ERPs) for the assessment of simulated memory impairment. In two identical experiments (N = 24), healthy volunteers carried out an adapted version of the Amsterdam Short-Term Memory