WorldWideScience

Sample records for even-mass sd-shell nuclei

  1. Understanding nuclei in the upper sd - shell

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, Ritesh [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India and Sidho-Kanho-Birsha University, Purulia - 723101 (India); Sarkar, S. [Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103 (India)

    2014-08-14

    Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.

  2. Nuclear structure of s-d shell nuclei: what is new?

    International Nuclear Information System (INIS)

    Shanmugam, G.

    1995-01-01

    In this paper the shape evolution of the even-even s-d shell nuclei with temperature and spin is studied using Landau theory of phase transitions. The most important thermal fluctuations are incorporated in this study. The ground state pairing is also included in the calculations. Both the summation and Strutinsky methods are used for extracting the Landau constants. Both yield qualitatively similar results. To conclude, Landau theory of phase transitions can be effectively and economically used to study the structure of excited s-d shell nuclei. 10 refs., 2 tabs., 8 figs

  3. Understanding Nuclei in the upper sd - shell

    OpenAIRE

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta; Kshetri, Ritesh; Sarkar, S.

    2013-01-01

    Nuclei in the upper-$sd$ shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A$\\simeq$ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array...

  4. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2001-01-01

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of 20,22 Ne, 24 Mg and 28 Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed

  5. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, C.E. E-mail: cvargas@fis.cinvestav.mx; Hirsch, J.G. E-mail: hirsch@nuclecu.unam.mx; Draayer, J.P. E-mail: draayer@lsu.edu

    2001-07-30

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of {sup 20,22}Ne, {sup 24}Mg and {sup 28}Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed.

  6. Isospin symmetry breaking in sd shell nuclei

    International Nuclear Information System (INIS)

    Lam, Y.W.

    2011-12-01

    In the thesis, we develop a microscopic approach to describe the isospin-symmetry breaking effects in sd-shell nuclei. The work is performed within the nuclear shell model. A realistic isospin-conserving Hamiltonian is perfected by a charge-dependent part consisting of the Coulomb interaction and Yukawa-type meson exchange potentials to model charge-dependent forces of nuclear origin. The extended database of the experimental isobaric mass multiplet equation coefficients was compiled during the thesis work and has been used in a fit of the Hamiltonian parameters. The constructed Hamiltonian provides an accurate theoretical description of the isospin mixing nuclear states. A specific behaviour of the IMME (Isobaric Multiplet Mass Equation) coefficients have been revealed. We present two important applications: (i) calculations of isospin-forbidden proton emission amplitudes, which is often of interest for nuclear astrophysics, and (ii) calculation on corrections to nuclear Fermi beta decay, which is crucial for the tests of fundamental symmetries of the weak interaction. (author)

  7. Quasi-molecular states in sd-shell nuclei

    International Nuclear Information System (INIS)

    Kubono, S.; Ikeda, N.; Nomura, T.

    1988-08-01

    Quasi-molecular states near and below the threshold of the molecular configuration in sd-shell nuclei are discussed using recent experimental data with particle-gamma coincidence method and particle-particle coincidence method. Possible quasi-molecular states have been identified in 24 Mg as well as in 28 Si and 32 S. The important role of quasi-molecular states are discussed, specifically for the shape evolution of nuclei as a function of excitation energy and angular momentum. (author)

  8. Fragmentation of stretched spin strength in N=Z sd-shell nuclei

    International Nuclear Information System (INIS)

    Carr, J.A.; Bloom, S.D.; Petrovich, F.; Philpott, R.J.

    1992-01-01

    Calculations have been performed to explore the effect of configuration mixing in a large basis on the fragmentation of ''stretched'' M6 strength in the sd-shell nuclei 20 Ne, 24 Mg, 28 Si, 32 S, and 36 Ar. This work elaborates on results for 28 Si given previously, extends those calculations to neighboring N=Z nuclei with the same basis restriction (one particle in the 1f 7/2 orbit and up to four particles in the 1d 3/2 orbit) used in that earlier paper, and examines all self-conjugate sd-shell nuclei in a basis with one particle in the 1f 7/2 orbit and unrestricted occupancy of the sd-shell orbits. It is found that configuration mixing in a large basis reproduces interesting features of the spectrum for 28 Si and 32 S and gives an improved description of other properties of the observed 6 - states, but fails to describe the observed spectrum in 24 Mg. Emphasis is placed on the location of additional observable fragments of the M6 response

  9. Quartetting in even-even and odd-odd N=Z nuclei

    Science.gov (United States)

    Sambataro, M.; Sandulescu, N.

    2018-02-01

    We report on a microscopic description of even-even N = Z nuclei in a formalism of quartets. Quartets are four-body correlated structures characterized by isospin T and angular momentum J. We show that the ground state correlations induced by a realistic shell model interaction can be well accounted for in terms of a restricted set of T = 0 low-J quartets, the J = 0 one playing by far a leading role among them. A conceptually similar description of odd-odd self-conjugate nuclei is given in terms of two distinct families of building blocks, one formed by the same T = 0 quartets employed for the even-even systems and the other by collective pairs with either T = 0 or T = 1. Some applications of this formalism are discussed for nuclei in the sd shell.

  10. Resonances in collisions between S-D shell nuclei

    International Nuclear Information System (INIS)

    Betts, R.R.

    1984-01-01

    Experimental evidence relating to the existence of resonances in collisions between s-d shell nuclei will be reviewed. The determination of the spins and spectroscopic properties of some of these resonances will be discussed. The behaviour of both the resonance and background cross-sections will be compared with model expectations. Some future directions in this area of study will be indicated and the relationship of this work to other results briefly discussed. (author)

  11. Clustering aspects of sd shell nuclei studied by AMD

    International Nuclear Information System (INIS)

    Kimura, Masaaki; Taniguchi, Yasutaka; En'yo, Yoshiko; Horiuchi, Hisashi

    2006-01-01

    The new clustering aspects of sd-shell nuclei found by the recent application of the antisymmetrized molecular dynamics are reported. In this paper we present two topics, 'superdeformed band of 32 S and 16 O + 16 O clustering' and 'molecular-orbital and di-nuclei states in 22 Ne'. In the first topic, it will be shown that the superdeformed band of 32S has a considerable amount of 16 O + 16 O cluster component, and can be regarded as to belong to a family of the 16 O + 16 O molecular bands. In the second topic, the presence of the molecularorbital band which has an α + 16 O cluster core surrounded by two covalently neutrons is suggested together with an α + 18 O di-nuclei band

  12. Parity dependence in the optical potential of sd-shell nuclei

    International Nuclear Information System (INIS)

    Ferrero, J.L.; Ruiz, J.A.; Bilwes, B.; Bilwes, R.

    1989-01-01

    Elastic scattering between sd-shell nuclei differing by one, two, three and four nucleons has been measured. The oscillating pattern of the angular distributions, when it is observed, is attributed to the interference between direct elastic scattering and elastic transfer. Explicit DWBA treatment of the elastic transfer or parity dependent real potential analysis allow both a good reproduction of the data. The sign and the importance of the parity potential deduced by fitting the data are in good agreement with the predictions of microscopic calculations in the two centre shell-model

  13. Clustering aspects of sd shell nuclei studied by AMD

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Masaaki [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Taniguchi, Yasutaka [Department of Physics, Kyoto University, Kitashirakawa, Kyoto 606-8502 (Japan); En' yo, Yoshiko [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Horiuchi, Hisashi [Department of Physics, Kyoto University, Kitashirakawa, Kyoto 606-8502 (Japan)

    2006-10-10

    The new clustering aspects of sd-shell nuclei found by the recent application of the antisymmetrized molecular dynamics are reported. In this paper we present two topics, 'superdeformed band of {sup 32}S and {sup 16}O + {sup 16}O clustering' and 'molecular-orbital and di-nuclei states in {sup 22}Ne'. In the first topic, it will be shown that the superdeformed band of 32S has a considerable amount of {sup 16}O + {sup 16}O cluster component, and can be regarded as to belong to a family of the {sup 16}O + {sup 16}O molecular bands. In the second topic, the presence of the molecularorbital band which has an {alpha} + {sup 16}O cluster core surrounded by two covalently neutrons is suggested together with an {alpha} + {sup 18}O di-nuclei band.

  14. Alpha-cluster transfer process in colliding S-D shell nuclei using the energy density formalism

    International Nuclear Information System (INIS)

    Puri, R.K.; Gupta, R.K.

    1992-01-01

    The energy density formalism is used for the first time to study the resonance-like behaviour of the α-cluster transfer process, observed for collisions between the s-d shell nuclei. Within the dynamical fragmentation theory, this formalism is shown to give better the observed alpha resonance-like mass spectrum of colliding α-particle nuclei and its suppression on adding neutrons to either of the α-particle reaction partners, compared with the earlier calculations of one of us and collaborators using the proximity pocket formula. For composite systems with N>>Z, these calculations predict an explicit preference for transfer of those clusters that are observed in recent cluster radioactivity. (Author)

  15. The threshold anomaly in the interaction of s-d shell nuclei

    International Nuclear Information System (INIS)

    Bilwes, B.

    1990-01-01

    The energy dependence of the potential near the Coulomb barrier is studied by precise measurements of elastic scattering and quasi elastic reactions between s-d shell nuclei. The analyses with semi-microscopic (M3Y-folding model) and microscopic (closure approximation model) potentials allow us to demonstrate the generality of the threshold anomaly and the ability of these models to well reproduce the experimental data

  16. Nuclear ground state properties and self-consistent calculations with the Skyrme interaction. II. S-D shell nuclei

    International Nuclear Information System (INIS)

    Flocard, H.

    1975-04-01

    Hartree-Fock results concerning the ground state properties of some S-D shell nuclei are discussed. Two different Skyrme interactions have been used. They both lead to good agreement with the experimental total binding energies, charge radii and multipole moments. In particular the observed prolate-oblate transitions occuring in the S-D shell are reproduced. The calculated spectroscopic factors are also shown to be consistent with experimental data [fr

  17. Two quasi-particle excitations with particle-hole core polarization in even-even single closed shell nuclei

    International Nuclear Information System (INIS)

    Gillet, V.; Giraud, B.; Rho, M.

    1976-01-01

    The energy levels and transition properties of the even-even N=28, 50 isotones and Z=28, 50, 82 isotopes are calculated in the framework of the Tamm-Dancoff and Random Phase Approximation, with an effective central interaction in an extended space consisting of two quasi-particle configurations for the open shell and particle-hole configurations for the closed core. Using the results of the Inverse Gap Equation Method, practically all the necessary input data (single quasi-particle energies, force strength) are extracted from the odd-mass nuclei. The ratios of the force components are kept at fixed values for all studied nuclei and no effective charge is used. An overall excellent agreement is obtained for the energies of the vibrational states. On the other hand, while the transition properties of the 3 - states are always well reproduced, those of the 2 + and 4 + states are often too small by about one order of magnitude [fr

  18. Ab initio results for intermediate-mass, open-shell nuclei

    Science.gov (United States)

    Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.

    2017-01-01

    A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.

  19. Alphaspectroscopic amplitudes for nuclei in the lower half of the sd-shell

    International Nuclear Information System (INIS)

    Conze, M.

    1976-01-01

    Alpha-spectroscopic amplitudes and factors were calculated with the aid of the shell model for nuclei with mass numbers between A = 16 and A = 24. For transitions to levels belonging to the ground state band of the residual nucleus, the findings confirm the predictions based on the SU(3) model. (orig.) [de

  20. Role of antisymmetric spin-orbit component in effective interactions in the sd-shell

    International Nuclear Information System (INIS)

    Yoshinada, K.

    1981-10-01

    The antisymmetric spin-orbit interaction (ALS) proposed for sd-shell nuclei is investigated. It is shown that the centroid energy of the d sub(5/2) - d sub(3/2) interactions plays a crucial role in reproducing the excited band spectra of A = 18 - 24 nuclei. An empirical effective interaction without ALS component is proposed to reproduce the observed spectra of light sd-shell nuclei. (author)

  1. Shell model calculations for exotic nuclei

    International Nuclear Information System (INIS)

    Brown, B.A.; Wildenthal, B.H.

    1991-01-01

    A review of the shell-model approach to understanding the properties of light exotic nuclei is given. Binding energies including p and p-sd model spaces and sd and sd-pf model spaces; cross-shell excitations around 32 Mg, including weak-coupling aspects and mechanisms for lowering the ntw excitations; beta decay properties of neutron-rich sd model, of p-sd and sd-pf model spaces, of proton-rich sd model space; coulomb break-up cross sections are discussed. (G.P.) 76 refs.; 12 figs

  2. Atomic mass prediction from the mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Uno, Masahiro; Yamada, Masami

    1982-08-01

    The mass-excess prediction of about 8000 nuclides was calculated from two types of the atomic mass formulas with empirical shell terms of Uno and Yamada. The theoretical errors to accompany the calculated mass excess are also presented. These errors have been obtained by a new statistical method. The mass-excess prediction includes the term of the gross feature of a nuclear mass surface, the shell terms and a small correction term for odd-odd nuclei. Two functional forms for the shell terms were used. The first is the constant form, and the sencond is the linear form. In determining the values of shell parameters, only the data of even-even and odd-A nuclei were used. A new statistical method was applied, in which the error inherent to the mass formula was taken account. The obtained shell parameters and the values of mass excess are shown in tables. (Kato, T.)

  3. Electric and magnetic dipole transitions from broad s-wave neutron resonance in even-even sd-shell nuclei

    International Nuclear Information System (INIS)

    Kitazawa, H.; Igashira, M.; Shimizu, M.; Muto, K.; Oda, T.; Achiha, Y.; Lee, Y.; Mukai, N.

    1992-01-01

    Observations have been performed for electromagnetic transitions from the broad s-wave neutron resonances at 658 keV in 24 Mg, at 180 keV in 28 Si, and at 103 keV in 32 S. Capture gamma rays were measured with an anti-Compton NaI(Tl) detector, using a neutron time-of-flight technique. E1 and M1 transitions from those resonances to low-lying states with a strong single-particle character were found. The deduced partial radiative widths for E1 transition are in excellent agreement with the Lane-Mughabghab valence-capture model calculations taking the neutron effective charge, -Ze/A. Moreover, it is shown that essential features of the observed E1 and M1 transitions can be well explained by assuming a configuration-mixing wave function, Ψ i (1/2 + )=a(0 + direct-product 1/2 + )+b(1 + direct-product 1/2 + )+c(1 + direct-product 3/2 + ), for each resonance. The M1 transition strengths are compared also with more detailed shell model calculations in the model space of full (sd) n configurations, using the Wildenthal effective interaction

  4. Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26

    CERN Document Server

    Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...

  5. Binding energies of sd-shell nuclei with a realistic effective Hamiltonian

    International Nuclear Information System (INIS)

    Dalton, B.J.; Vary, J.P.; Baldridge, W.J.

    1977-01-01

    The nuclear shell model with a second-order effective Hamiltonian derived within Brueckner theory from the free nucleon-nucleon interaction is shown to yield accurate binding energies of nuclei with 16 < A < 40. This agreement is obtained by choosing the spectrum of low-lying unoccupied orbitals in a justified manner and, when necessary, by employing a statistical method to approximate the lowest eigenvalue of very large shell-model diagonalizations

  6. Test of the fermion dynamical symmetry model microscopy in the sd shell

    International Nuclear Information System (INIS)

    Halse, P.

    1987-01-01

    The recently formulated fermion dynamical symmetry model treats low-lying collective levels as states classified in a pseudo-orbit pseudo-spin (k-i) basis having either k = 1 and zero i seniority, or i = (3/2) and zero k seniority. The validity of this suggestion, which has not previously been subjected to a microscopic examination, is determined for even-even nuclei in the sd shell, for which the model is phenomenologically successful, by comparing these states with the eigenfunctions of a realistic Hamiltonian. Most low-lying levels are almost orthogonal to the fermion dynamical symmetry model zero seniority subspaces

  7. Alpha particle cluster states in (fp)-shell nuclei

    International Nuclear Information System (INIS)

    Merchant, A.C.

    1987-07-01

    Alpha particle cluster structure is known experimentally to persist throughout the mass range 16 ≤ A ≤ 20, and has been very successfully described in this region in terms of the Buck-Dover-Vary local potential cluster model. It is argued that an analogous cluster structure should be present in nuclei at the beginning of the (fp) - shell, and the available experimental data are examined to determine likely alpha particle cluster state candidates in the mass range 40 ≤ A ≤ 44. Calculations of the cluster state spectra and mean square cluster-core separation distances (which may be readily used to evaluate E2 electromagnetic transition rates) for sup(40)Ca, sup(42)Ca, sup(42)Sc, sup(43)Sc, sup(43)Ti and sup(44)Ti using the above mentioned model are presented, and compared with experimental measurements where possible. The agreement between theory and experiment is generally good (although inferior to that obtained in the (sd)-shell) and points to the desirability of an extension and improvement of the measurements of the properties of the excited states in these nuclei. (author)

  8. Pairing correlations. II. Microscopic analysis of odd-even mass staggering in nuclei

    International Nuclear Information System (INIS)

    Duguet, T.; Bonche, P.; Heenen, P.-H.; Meyer, J.

    2002-01-01

    The odd-even mass staggering in nuclei is analyzed in the context of self-consistent mean-field calculations, for spherical as well as for deformed nuclei. For these nuclei, the respective merits of the energy differences Δ (3) and Δ (5) to extract both the pairing gap and the time-reversal symmetry breaking effect at the same time are extensively discussed. The usual mass formula Δ (3) is shown to contain additional mean-field contributions when realistic pairing is used in the calculation. A simple tool is proposed in order to remove the time-reversal symmetry breaking effects from Δ (5) . Extended comparisons with the odd-even mass staggering obtained in the zero-pairing limit (schematic model and self-consistent calculations) show the nonperturbative contribution of pairing correlations on this observable

  9. Symplectic no-core shell-model approach to intermediate-mass nuclei

    Science.gov (United States)

    Tobin, G. K.; Ferriss, M. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Dreyfuss, A. C.; Bahri, C.

    2014-03-01

    We present a microscopic description of nuclei in the intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through 15 major shells to accommodate particle excitations, which appear critical to highly deformed spatial structures and the convergence of associated observables.

  10. Multiphonon states in even-even spherical nuclei. Pt.1. Calculation of the overlap matrix

    International Nuclear Information System (INIS)

    Piepenbring, R.; Protasov, K.V.; Silvestre-Brac, B.

    1995-01-01

    The multiphonon method, previously developed for deformed nuclei is extended to the case of even-even spherical nuclei. Recursion formulae, well suited for numerical calculations are given for the overlap matrix elements. The method is illustrated for a single j-shell, where S-, D-, G-, .. phonons are introduced. In such an approach, the Pauli principle is fully and properly taken into account. ((orig.))

  11. High-spin states in sd-shell nuclei

    International Nuclear Information System (INIS)

    Poel, C.J. van der.

    1982-01-01

    A systematic picture of the structure of high-spin states in the mass range A = 29 - 41 is developed on the basis of experimental results for the nuclei 34 Cl, 38 K and 39 K. It is shown that for 34 Cl the difficulties induced by the relatively low cross section can be overcome. Combination of the data obtained from a γ-γ coincidence experiment with the 24 Mg + 12 C reaction, using the LACSS, and from threshold measurements in the 31 P + α reaction, establishes an unambiguous level scheme. By means of accurate angular-distribution measurements unambiguous spin and parity assignments are made to the high-spin levels. From the results a rather simple shell-model picture for the structure of the high-spin states evolves. Several authors have published experimental work on high-spin states in 39 K, with seriously conflicting conclusions, however, for the spin-parity assignments. The powerful coincidence set-up with the LACSS enables a discrimination between the conflicting results from the previous studies. In this way, unambiguous, model-independent, spin-parity assignments to the high-spin levels are established. Highly selective experimental methods are used to identify the high-spin states of 38 K. It is shown that with a pulsed beam in the reaction 24 Mg + 16 O advantage can be taken of the presence of a long-lived high-spin isomeric level in this nucleus. The gamma-decay of the isomer is extensively studied. With the pulsed beam, also some states above the isomer could be located. The subsequent use of two Compton-suppression spectrometers in a γ-γ coincidence experiment reveals a number of high-spin levels at higher excitation energies. (Auth.)

  12. Statistical fluctuations of electromagnetic transition intensities in pf-shell nuclei

    International Nuclear Information System (INIS)

    Hamoudi, A.; Nazmitdinov, R.G.; Shakhaliev, E.; Alhassid, Y.

    2000-01-01

    We study the fluctuation properties of ΔT = 0 electromagnetic transition intensities in A ∼ 60 nuclei within the framework of the interacting shell model, using a realistic effective interaction for pf-shell nuclei with a 56 Ni core. It is found that the B(E2) and the ΔJ ≠ 0 distributions are well described by the Gaussian orthogonal ensemble of random matrices (Porter-Thomas distribution) independently of the isobaric quantum number T Z . However, the statistics of the B(M1) transitions with Δ = 0 are sensitive to T Z : T Z = 1 nuclei exhibit a Porter-Thomas distribution, while a significant deviation from the GOE statistics is observed for self-conjugate nuclei (T Z = 0). Similar results are found for A = 22 sd-shell nuclei

  13. The Hartree-Fock approximation for s-d shell even-even nuclei with N different of Z

    International Nuclear Information System (INIS)

    Oliveira, P.C. de.

    1981-02-01

    Using the Hartree-Fock approximation method for 22 Ne, 26 Mg and 30 Si nuclei with different kinds of two-body interactions, the electric quadrupole moments and projected energy levels, of angular momentum J=0,2,4,6..., are determined. The Peierls-Yoccoz projection m ethod is used to determine the wave function with well-defined angular momentum. A comparison is made, with the experimental results and the ones obtained by other authors. (Author) [pt

  14. Isospin invariant boson models for fp-shell nuclei

    International Nuclear Information System (INIS)

    Van Isacker, P.

    1994-01-01

    Isospin invariant boson models, IBM-3 and IBM-4, applicable in nuclei with neutrons and protons in the same valence shell, are reviewed. Some basic results related to these models are discussed: the mapping onto the shell model, the relation to Wigner's supermultiplet scheme, the boson-number and isospin dependence of parameters, etc. These results are examined for simple single-j shell situations (e.g. f 7/2 ) and their extension to the f p shell is investigated. Other extensions discussed here concern the treatment of odd-mass nuclei and the classification of particle-hole excitations in light nuclei. The possibility of a pseudo-SU(4) supermultiplet scheme in f p -shell nuclei is discussed. (author) 4 figs., 3 tabs., 23 refs

  15. Study of the deexcitation by monopole pair emission from the first J=0+ states in some even-even nuclei of the 2s-1d shell

    International Nuclear Information System (INIS)

    Souw, Kenghok.

    1975-01-01

    A new high efficiency plastic scintillation pair spectrometer was used to measure the E0 branching ratio GAMMAsub(π)/GAMMA(tot) (GAMMAsub(π)=pair emission partial width, GAMMA(tot)=total width) of the transition from the first excited Jsup(π)=0 + state to the Jsup(π)=0 + ground state in some even-even nuclei of the 2s-1d shell. Experiments were performed on 18 O, 26 Mg, 30 Si, 32 S, 34 S and 38 Ar nuclei. The method consisted in detecting the electron and positron of the pair in coincidence in two telescopes. A surface barrier counter placed downstream the target, working in coincidence with the spectrometer, allowed the relevant pair-decays to be selected and the feeding yield to be determined from direct spectra. The branching ratios were such directly determined. These ratios combined with the values available for the lifetimes of these states give the monopole matrix elements Msub(π). The single particle strength of these decays passes through a minimum in the middle of the shell ( 30 Si) and reaches a maximum around the closed shells ( 18 O, and 48 Ca) [fr

  16. Shell-model Monte Carlo studies of nuclei

    International Nuclear Information System (INIS)

    Dean, D.J.

    1997-01-01

    The pair content and structure of nuclei near N = Z are described in the frwnework of shell-model Monte Carlo (SMMC) calculations. Results include the enhancement of J=0 T=1 proton-neutron pairing at N=Z nuclei, and the maxked difference of thermal properties between even-even and odd-odd N=Z nuclei. Additionally, a study of the rotational properties of the T=1 (ground state), and T=0 band mixing seen in 74 Rb is presented

  17. Recent shell-model results for exotic nuclei

    Directory of Open Access Journals (Sweden)

    Utsuno Yusuke

    2014-03-01

    Full Text Available We report on our recent advancement in the shell model and its applications to exotic nuclei, focusing on the shell evolution and large-scale calculations with the Monte Carlo shell model (MCSM. First, we test the validity of the monopole-based universal interaction (VMU as a shell-model interaction by performing large-scale shell-model calculations in two different mass regions using effective interactions which partly comprise VMU. Those calculations are successful and provide a deeper insight into the shell evolution beyond the single-particle model, in particular showing that the evolution of the spin-orbit splitting due to the tensor force plays a decisive role in the structure of the neutron-rich N ∼ 28 region and antimony isotopes. Next, we give a brief overview of recent developments in MCSM, and show that it is applicable to exotic nuclei that involve many valence orbits. As an example of its applications to exotic nuclei, shape coexistence in 32Mg is examined.

  18. Fermionic symmetries: Extension of the two to one relationship between the spectra of even-even and neighboring odd mass nuclei

    International Nuclear Information System (INIS)

    Zamick, L.; Devi, Y.D.

    1999-01-01

    In the single j shell there is a two to one relationship between the spectra of certain even-even and neighboring odd mass nuclei; e.g., the calculated energy levels of J=0 + states in 44 Ti are at twice the energies of corresponding levels in 43 Ti( 43 Sc) with J=j=7/2. Here an approximate extension of the relationship is made by adopting a truncated seniority scheme; i.e., for 46 Ti and 45 Sc we get the relationship if we do not allow the seniority v=4 states to mix with the v=0 and v=2 states. Better than that, we get very close to the two to one relationship if seniority v=4 states are admixed perturbatively. In addition, it is shown that for the J=0 T=3 state in 46 Ti and for the J=j T=5/2 state in 45 Sc (i.e., the states of higher isospin) there are no admixtures in which the neutrons have seniority 4. copyright 1999 The American Physical Society

  19. Pairing correlations in N ∝Z pf-shell nuclei

    International Nuclear Information System (INIS)

    Langanke, K.; Dean, D.J.; Koonin, S.E.; Radha, P.B.

    1997-01-01

    We perform shell model Monte Carlo calculations to study pair correlations in the ground states of N=Z nuclei with masses A=48-60. We find that T=1, J π =0 + proton-neutron correlations play an important, and even dominant role, in the ground states of odd-odd N=Z nuclei, in agreement with experiment. By studying pairing in the ground states of 52-58 Fe, we observe that the isovector proton-neutron correlations decrease rapidly with increasing neutron excess. In contrast, both the proton, and trivially the neutron correlations increase as neutrons are added. We also study the thermal properties and the temperature dependence of pair correlations for 50 Mn and 52 Fe as exemplars of odd-odd and even-even N=Z nuclei. While for 52 Fe results are similar to those obtained for other even-even nuclei in this mass range, the properties of 50 Mn at low temperatures are strongly influenced by isovector neutron-proton pairing. In coexistence with these isovector pair correlations, our calculations also indicate an excess of isoscalar proton-neutron pairing over the mean-field values. The isovector neutron-proton correlations rapidly decrease with temperatures and vanish for temperatures above T=700 keV, while the isovector correlations among like-nucleons persist to higher temperatures. Related to the quenching of the isovector proton-neutron correlations, the average isospin decreases from 1, appropriate for the ground state, to 0 as the temperature increases. (orig.)

  20. Microscopic boson approach to the description of sd-shell nuclei

    International Nuclear Information System (INIS)

    Kuchta, R.

    1987-01-01

    A microscopic method is proposed for analyzing the properties of light nuclei with an equal number of protons and neutrons in terms of many interacting bosons. An exact boson image of the underlying shell-model Hamiltonian is derived and the dynamical behaviour of the original fermion system is studied directly in the boson picture using the mean field approximation. The resulting boson states are shown to be free from spurios components, so that the cubersome procedure of constructing the physical boson states can be avoided. The method is applied to calculating the energy spectra of 20 Ne, 24 Mg and a satisfactory agreement with experimental data is found

  1. New excited states in sd-shell nucleus {sup 33}P

    Energy Technology Data Exchange (ETDEWEB)

    Fu, B.; Reiter, P.; Arnswald, K.; Hess, H.; Hirsch, R.; Lewandowski, L.; Schneiders, D.; Seidlitz, M.; Siebeck, B.; Steinbach, T.; Vogt, A.; Wendt, A.; Wolf, K. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany)

    2015-07-01

    Isospin-symmetry breaking in nuclear physics is mainly described by Mirror-Energy Differences (MED) for mirror nuclei or Triplet-Energy Differences (TED) for isobaric triplets. Modified USD-calculations successfully reproduce MED for T=1,3/2,2 sd-shell nuclei. Refined tests of theory are given by lifetime measurements in order to deduce transition-strength values. In order to study the mirror pair {sup 33}Ar and {sup 33}P, the fusion-evaporation reaction {sup 13}C+{sup 26}Mg at 46 MeV was measured at the Cologne tandem accelerator and the HORUS spectrometer employing the Doppler-Shift-Attenuation-Method (DSAM). First results yielded new γ-ray transitions in {sup 33}P and {sup 33}S. The level scheme of {sup 33}P was extended up to excitation energies of 10 MeV. Spins and parities of the new levels were determined exploiting γγ-angular correlations. Together with values from the proton-rich T{sub z} = - 3/2 partner, the levels are compared to shell model calculations, describing excitation energies of sd -shell mirror pairs. The understanding of isospin symmetry and isospin-symmetry breaking is a fundamental question in nuclear physics. Isospin-symmetry breaking is mainly described by Mirror-Energy Differences (MED) for mirror nuclei or Triplet-Energy Differences (TED) for isobaric triplets. Modified USD{sup m}{sub 1,2,3}-calculations successfully reproduced MED for the mirror nuclei {sup 33}Ar and {sup 33}P. Both {sup 33}P and {sup 33}S were produced at the Cologne FN tandem accelerator employing the fusion-evaporation reaction {sup 13}C+{sup 26}Mg at 46 MeV and spectroscopically investigated using 14 HPGe detectors. Several new energy states (in {sup 33}P) and γ-ray transitions (in {sup 33}P and {sup 33}S) were detected. Spins and parities of the new levels in {sup 33}P were determined exploiting γγ-angular correlations. The level scheme of {sup 33}P was extended up to excitation energies of 10 MeV.

  2. Projected shell model description of N = 114 superdeformed isotone nuclei

    International Nuclear Information System (INIS)

    Guo, R S; Chen, L M; Chou, C H

    2006-01-01

    A systematic description of the yrast superdeformed (SD) bands in N 114, Z = 80-84 isotone nuclei using the projected shell model is presented. The calculated γ-ray energies, moment of inertia and M1 transitions are compared with the data for which spin is assigned. Excellent agreement with the available data for all isotones is obtained. The calculated electromagnetic properties provide a microscopic understanding of those measured nuclei. Some predictions in superdeformed nuclei are also discussed

  3. Masses of T/sub z/ = +5/2 nuclei in the s--d shell from β--decay measurements

    International Nuclear Information System (INIS)

    Alburger, D.E.; Goosman, D.R.; Davids, C.N.; Hardy, J.C.

    1975-01-01

    In this work the existence of five new T/sub z/ = + 5 / 2 nuclides, 23 F, 29 Mg, 31 Al, 33 Si, and 35 P, was established; their properties, including mass values, were determined, along with those of 25 Ne and 27 Na. Two experimental techniques were used, the ''rabbit'' transfer of a solid target and the gas transfer system; some novel features of these are described. A β spectrum of 33 Si observed in coincidence with 1848-keV γ rays is shown; a mass excess of -20569 +- 50 keV was derived for 33 Si. Attempts to produce 21 O were unsuccessful. Comparisons of the measured masses of the T/sub z/ = + 5 / 2 nuclides in the 2s--1d shell with predictions of the Garvey--Kelson mass formulation and with shell-model calculations are shown. The latter produce considerably better agreement with experiment. (3 figures, 1 table) (U.S.)

  4. Systematics of the properties of excited states of odd-even nuclei in the mass range A approximately 100

    International Nuclear Information System (INIS)

    Kleymann, G.

    1976-01-01

    This paper is a compilation of results of experimental and theoretical studies on the term diagrams of odd-even nuclei from the isotope series of Nb, Tc, Rh and Ag, published until October 1975. As a relatively simple interpretation of the excitements of these nuclei, De Shalit proposed the coupling of a particle, whose quantum numbers may be derived from a shell model, to excited states of the core of the nucleus. (orig./BJ) [de

  5. Transitional nuclei near shell closures

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  6. Determination of the bandheads spin and investigation of identical bands for Even - A nuclei of the superdeformed mass region 190

    International Nuclear Information System (INIS)

    Shalaby, A.S.

    2005-01-01

    Using the three-parameter expression of harris expansion of the rotational energy, the dynamical moment of inertia is represented by a power-series expansion in even powers of the rotational frequency. The three expansion coefficients were determined by using Marquardt method of nonlinear least-squares routines, to fit the proposed dynamical moment of inertia with its recent experimental data for the superdeformed (SD) nuclei in the A 190 mass region. The calculated dynamical moment of inertia with the best parameters is then integrated to obtain the spin, which in turn was used to determine the static moment of inertia. The comparison of the dynamic moment of inertia and spin with their available experimental data shows good agreements between them. These procedures were succeedingly done for nine superdeformed bands in the A 190 nuclei: 1 90Hg(B1, B3), 1 94PB(B1, B2, B3), 1 96PB(B1, B2, B3), 1 94PB(B1, B22, B3), 1 96BP((B1, B2, B3) and 1 98PO. We have also investigated the identity exist among these SD bands. It was shown that some of these SD bands are identical to each other

  7. Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei

    International Nuclear Information System (INIS)

    Ibanez-Sandoval, A.; Ortiz, M. E.; Velazquez, V.; Galindo-Uribarri, A.; Hess, P. O.; Sun, Y.

    2011-01-01

    A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A=130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the 125,127,129,131,133 Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J (2) , kinetic moment of inertia J (1) , the crossing of rotational bands, and backbending effects.

  8. One particle-hole excitations in p- and fp-shell nuclei

    International Nuclear Information System (INIS)

    Hees, A.G.M. van.

    1982-01-01

    Results are presented of shell model calculations of medium and light atomic nuclei. The influence of the allowance of one particle-hole excitations is investigated. This enables improved descriptions of intermediate mass nuclei in the fp-shell. For light p-shell nuclei one particle-hole excitations create exclusively situations with abnormal parity. The description of situations with normal parity is not changed by enlarging the model space. In the first chapter shell-model calculations are performed on the light Ni-isotopes (A = 57-59). One nucleon is allowed to be excited from the fsub(7/2) orbit to one of the other fp-shell orbits. The general observation in the enlarged model space is that one can use operators that require a much weaker 'renormalization' and the calculation requires only a selected set of matrix elements of the Hamiltonian. An additional advantage of the inclusion of one particle-hole excitations is that it allows a description of several intruder states, i.e. states that cannot be produced with the assumption of a closed 56 Ni core. In the second chapter the nuclei with mass number A = 52-55, i.e. a small number of holes in the 56 Ni core, are investigated similarly. In the third chapter much lighter nuclei (A = 4-16) are discussed. For a theoretical description of nonnormal-parity states one has to admit the excitation of at least one nucleon to a higher harmonic-oscillator major-shell. (Auth.)

  9. Validity of the broken-pair approximation for N = 50, even-A nuclei

    International Nuclear Information System (INIS)

    Haq, S.; Gambhir, Y.K.

    1977-01-01

    The validity of the broken-pair approximation as an approximation to the seniority shell model is investigated. The results of the broken-pair approximation and the seniority shell model, obtained by employing identical input information (single-particle levels and their energies, effective two-body matrix elements, 88 Sr inert core) for N = 50, even-A nuclei are compared. A close agreement obtained between the calculated broken-pair approximation and the seniority shell model energies for 90 Zr, 92 Mo, 94 Ru, and 96 Pd nuclei and large (95--100 %) overlaps between the broken-pair approximation and the senority shell model wave functions for 92 Mo, demonstrates the validity of the broken-pair approximation in this region and in general its usefulness as a good approximation to the seniority shell model

  10. The Structure of the Heavy Calcium Isotopes and the Effective Interaction in the sd-fp Shell

    CERN Multimedia

    Dorvaux, O; Nowacki, F; Courtin, S; Marechal, F; Siiskonen, T M; Perrot, F; Pietri, S B

    2002-01-01

    Nuclei with 40 $<$ A $<$ 56, near the stability line, are very well described in the frame of the shell model. However, when the number of neutrons increases, the situation becomes more complex which explains why the interaction can be found very dissimilar within different calculations. Heavy Ca isotopes, because of the simplicity of their wave-functions, correspond to the optimal choice to fix unambiguously the interaction in this mass region.\\\\ It is proposed to measure the $\\beta$-decay of $^{51, 52, 53}$K with the help of an utmost performing neutron (TONNERRE array) and $\\gamma$- (Miniball clusters) detection, allowing efficient coincidence measurements. This will allow the lowest lying Gamow-Teller states to be located in $^{51, 52, 53}$Ca, and the still unknown properties of natural parity states to be investigated. The awaited results should allow to settle the n-n interaction in the fp shell and the Gnp matrix accross the sd and fp shells, one step farther from stability, by comparison with fu...

  11. Shell model Monte Carlo investigation of rare earth nuclei

    International Nuclear Information System (INIS)

    White, J. A.; Koonin, S. E.; Dean, D. J.

    2000-01-01

    We utilize the shell model Monte Carlo method to study the structure of rare earth nuclei. This work demonstrates the first systematic full oscillator shell with intruder calculations in such heavy nuclei. Exact solutions of a pairing plus quadrupole Hamiltonian are compared with the static path approximation in several dysprosium isotopes from A=152 to 162, including the odd mass A=153. Some comparisons are also made with Hartree-Fock-Bogoliubov results from Baranger and Kumar. Basic properties of these nuclei at various temperatures and spin are explored. These include energy, deformation, moments of inertia, pairing channel strengths, band crossing, and evolution of shell model occupation numbers. Exact level densities are also calculated and, in the case of 162 Dy, compared with experimental data. (c) 2000 The American Physical Society

  12. Deformation and shape coexistence in medium mass nuclei

    International Nuclear Information System (INIS)

    Meyer, R.A.

    1985-01-01

    Emerging evidence for deformed structures in medium mass nuclei is reviewed. Included in this review are both nuclei that are ground state symmetric rotors and vibrational nuclei where there are deformed structures at excited energies (shape coexistence). For the first time, Nilsson configurations in odd-odd nuclei within the region of deformation are identified. Shape coexistence in nuclei that abut the medium mass region of deformation is also examined. Recent establishment of a four-particle, four-hole intruder band in the double subshell closure nucleus 96 Zr 56 is presented and its relation to the nuclear vibron model is discussed. Special attention is given to the N=59 nuclei where new data have led to the reanalysis of 97 Sr and 99 Zr and the presence of the [404 9/2] hole intruder state as isomers in these nuclei. The low energy levels of the N=59 nuclei from Z=38 to 50 are compared with recent quadrupole-phonon model calculations that can describe their transition from near-rotational to single closed shell nuclei. The odd-odd N=59 nuclei are discussed in the context of coexisting shape isomers based on the (p[303 5/2]n[404 9/2])2 - configuration. Ongoing in-beam (t,p conversion-electron) multiparameter measurements that have led to the determination of monopole matrix elements for even-even 42 Mo nuclei are presented, and these are compared with initial estimates using IBA-2 calculations that allow mixing of normal and cross subshell excitations. Lastly, evidence for the neutron-proton 3 S 1 force's influence on the level structure of these nuclei is discussed within the context of recent quadrupole-phonon model calculations. (Auth.)

  13. Systematics of B(E2;01+→21+) values for even-even nuclei

    International Nuclear Information System (INIS)

    Raman, S.; Nestor, C.W. Jr.; Bhatt, K.H.

    1988-01-01

    We have completed a compilation of experimental results for the electric quadrupole transition probability B(E2)up-arrow between the 0 + ground state and the first 2 + state in even-even nuclei. The adopted B(E2)up-arrow values have been employed to test the various systematic, empirical, and theoretical relationships proposed by several authors (Grodzins, Bohr and Mottelson, Wang et al., Ross and Bhaduri, Patnaik et al., Hamamoto, Casten, Moeller and Nix, and Kumar) on a global, local, or regional basis. These systematics offer methods for making reasonable predictions of unmeasured B(E2) values. For nuclei away from closed shells, the SU(3) limit of the intermediate boson approximation implies that the B(E2)up-arrow values are proportional to (e/sub p/N/sub p/+e/sub n/N/sub n/) 2 , where e/sub p /(e/sub n/) is the proton (neutron) effective charge and N/sub p/ (N/sub n/) refers to the number of valence protons (neutrons). This proportionality is consistent with the observed behavior of B(E2)up-arrow vs N/sub p/N/sub n/. For deformed nuclei and the actinides, the B(E2)up-arrow values calculated in a schematic single-particle ''SU(3)'' simulation or large single-j simulation of major shells successfully reproduce not only the empirical variation of the B(E2)up-arrow values but also the observed saturation of these values when plotted against N/sub p/N/sub n/. .AE

  14. Systematics of light nuclei in a relativistic model

    International Nuclear Information System (INIS)

    Price, C.E.

    1988-01-01

    The results of relativistic mean field calculations for non-spherical nuclei are presented and discussed. The need for non-linear scalar meson self-couplings in order to describe the properties of s-d shell nuclei is emphasized along with the importance of self-consistency in calculations of magnetic moments of odd-mass nuclei. 16 refs., 3 figs., 2 tabs

  15. Intruder states in sd-shell nuclei: from 1p-1t to np-nt in Si isotopes

    International Nuclear Information System (INIS)

    Goasduff, A.

    2012-01-01

    New large-scale shell-model calculations with full 1ℎω valence space for the sd-nuclei has been used for the first time to predict lifetimes of positive and negative parity states in neutron rich Si isotopes. The predicted lifetimes (1 - 100 ps) fall in the range of the differential Doppler shift method. Using the demonstrator of the European next generation γ-ray array, AGATA, in coincidence with the large acceptance PRISMA magnetic spectrometer from LNL (Legnaro) and the differential plunger of the University of Cologne, lifetimes of excited states in 32;33 Si and 35;36 S nuclei were measured. In a second step, the nℎω structure in the stable 28 Si nucleus was also studied. 28 Si is an important nucleus in order to understand the competition between mean-field and cluster structures. It displays a wealth of structures in terms of deformation and clustering. Light heavy-ion resonant radiative capture 12 C+ 16 O has been performed at energies below the Coulomb barrier. The measure γ-spectra indicate for the first time at these energies that the strongest part of the resonance decay proceeds though intermediate states around 10 MeV. Comparisons with previous radiative capture studies above the Coulomb barrier have been performed and the results have been interpreted in terms of a favoured feeding of T=1 states in the 28 Si self-conjugate nucleus. (author)

  16. Shell gap reduction in neutron-rich N=17 nuclei

    International Nuclear Information System (INIS)

    Obertelli, A.; Gillibert, A.; Alamanos, N.; Alvarez, M.; Auger, F.; Dayras, R.; Drouart, A.; France, G. de; Jurado, B.; Keeley, N.; Lapoux, V.; Mittig, W.; Mougeot, X.; Nalpas, L.; Pakou, A.; Patronis, N.; Pollacco, E.C.; Rejmund, F.; Rejmund, M.; Roussel-Chomaz, P.; Savajols, H.; Skaza, F.; Theisen, Ch.

    2006-01-01

    The spectroscopy of 27 Ne has been investigated through the one-neutron transfer reaction 26 Ne(d,p) 27 Ne in inverse kinematics at 9.7 MeV/nucleon. The results strongly support the existence of a low-lying negative parity state in 27 Ne, which is a signature of a reduced sd-fp shell gap in the N=16 neutron-rich region, at variance with stable nuclei

  17. Densities, form factors, transitions and multipole moments in the s-d shell, with the Skyrme force

    International Nuclear Information System (INIS)

    Oliveira, D.R. de; Mizrahi, S.S.

    1977-09-01

    The nuclear densities, radii, multipole moments, form-factors and transition probabilities obtained for the A = 4n type of nuclei in the s-d shell are reported, using the Hartree-Fock wave functions calculated with the Skyrme force. Experimental data and theoretical values derived by others are shown for comparison [pt

  18. Deformation and shell effects in nuclear mass formulas

    International Nuclear Information System (INIS)

    Barbero, César; Hirsch, Jorge G.; Mariano, Alejandro E.

    2012-01-01

    We analyze the ability of three different Liquid Drop Mass (LDM) formulas to describe nuclear masses for nuclei in various deformation regions. Separating the 2149 measured nuclear species into eight sets with similar quadrupole deformations, we show that the masses of prolate deformed nuclei are better described than those of spherical ones. In fact, the prolate deformed nuclei are fitted with an RMS smaller than 750 keV, while for spherical and semi-magic species the RMS is always larger than 2000 keV. These results are found to be independent of pairing. It is also shown that the macroscopic sector of the Duflo–Zuker (DZ) mass model reproduces shell effects, while most of the deformation dependence is lost and the RMS is larger than in any LDM. Adding to the LDM the microscopically motivated DZ master terms introduces the shell effects, allowing for a significant reduction in the RMS of the fit but still exhibiting a better description of prolate deformed nuclei. The inclusion of shell effects following the Interacting Boson Model's ideas produces similar results.

  19. Deformation and shell effects in nuclear mass formulas

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, Cesar [Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Instituto de Fisica La Plata, CONICET, 1900 La Plata (Argentina); Hirsch, Jorge G., E-mail: hirsch@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico); Mariano, Alejandro E. [Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Instituto de Fisica La Plata, CONICET, 1900 La Plata (Argentina)

    2012-01-15

    We analyze the ability of three different Liquid Drop Mass (LDM) formulas to describe nuclear masses for nuclei in various deformation regions. Separating the 2149 measured nuclear species into eight sets with similar quadrupole deformations, we show that the masses of prolate deformed nuclei are better described than those of spherical ones. In fact, the prolate deformed nuclei are fitted with an RMS smaller than 750 keV, while for spherical and semi-magic species the RMS is always larger than 2000 keV. These results are found to be independent of pairing. It is also shown that the macroscopic sector of the Duflo-Zuker (DZ) mass model reproduces shell effects, while most of the deformation dependence is lost and the RMS is larger than in any LDM. Adding to the LDM the microscopically motivated DZ master terms introduces the shell effects, allowing for a significant reduction in the RMS of the fit but still exhibiting a better description of prolate deformed nuclei. The inclusion of shell effects following the Interacting Boson Model's ideas produces similar results.

  20. Phonon-particle coupling effects in odd-even mass differences of semi-magic nuclei

    Science.gov (United States)

    Saperstein, E. E.; Baldo, M.; Pankratov, S. S.; Tolokonnikov, S. V.

    2017-11-01

    A method to evaluate the particle-phonon coupling (PC) corrections to the single-particle energies in semi-magic nuclei, based on a direct solving the Dyson equation with PC corrected mass operator, is used for finding the odd-even mass difference between 18 even Pb isotopes and their odd-proton neighbors. The Fayans energy density functional (EDF) DF3-a is used which gives rather high accuracy of the predictions for these mass differences already on the mean-field level, with the average deviation from the existing experimental data equal to 0.389 MeV. It is only a bit worse than the corresponding value of 0.333 MeV for the Skyrme EDF HFB-17, which belongs to a family of Skyrme EDFs with the highest overall accuracy in describing the nuclear masses. Account for the PC corrections induced by the low-laying phonons 2 1 + and 3 1 - significantly diminishes the deviation of the theory from the data till 0.218 MeV.

  1. Nuclear masses, deformations and shell effects

    International Nuclear Information System (INIS)

    Hirsch, Jorge G; Barbero, César A; Mariano, Alejandro E

    2011-01-01

    We show that the Liquid Drop Model is best suited to describe the masses of prolate deformed nuclei than of spherical nuclei. To this end three Liquid Drop Mass formulas are employed to describe nuclear masses of eight sets of nuclei with similar quadrupole deformations. It is shown that they are able to fit the measured masses of prolate deformed nuclei with an RMS smaller than 750 keV, while for the spherical nuclei the RMS is, in the three cases, larger than 2000 keV. The RMS of the best fit of the masses of semi-magic nuclei is also larger than 2000 keV. The parameters of the three models are studied, showing that the surface symmetry term is the one which varies the most from one group of nuclei to another. In one model, isospin dependent terms are also found to exhibit strong changes. The inclusion of shell effects allows for better fits, which continue to be better in the prolate deformed nuclei region.

  2. Vibrational collective model for spheric even-even nuclei

    International Nuclear Information System (INIS)

    Cruz, M.T.F. da.

    1985-01-01

    A review is made on the evidences of collective motions in spherical even-even nuclei. The several multipole transitions occuring in such a nuclei are discussed. Some hypothesis which are necessary in order to build-up the model are presented. (L.C.) [pt

  3. Prediction of energies of yrast band in some even-even nuclei

    International Nuclear Information System (INIS)

    Varshney, A.K.; Singh, Yuvraj; Gupta, D.K.; Singh, M.; Gupta, K.K.; Bihari, Chhail; Dhiman, S.K.

    2012-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. The researchers found that the values of γ obtained from energies (= γ e ) are nearly equal to the value of γ derived from transition rate (= γ b ) in even Xe, Ba and Ce nuclei (A∼120-140) and Hf, W, Os, Pt and Hg nuclei (A∼160-200) using rigid triaxial rotor model of Davydov-Filippov. In the present study, the relatively light mass nuclei (Mo, Ru and Pd) have been taken. As far as γ is concerned, it is known that the Ru chains of nuclei is intermediate between the two having opposite trends for parameter γ, decreasing for Mo and increasing for Pd, and has an irregular behaviour in itself with the increase of neutron number

  4. Alpha Decay of Even-Even Superheavy Nuclei

    International Nuclear Information System (INIS)

    Oudih, M.R.; Hamza, Y.; Fellah, M.; Allal, N.H.; Fellah, M.; Allal, N.H.

    2011-01-01

    Alpha decay properties of even-even superheavy nuclei with 112.Z.120 have been investigated using the Hartree-Fock-Bogoliubov approach. The method is based on the SkP Skyrme interaction and the Lipkin-Nogami prescription for treating the pairing correlations. The alpha decay energies are extracted from the binding energies and then used for the calculation of the decay half-lives using a formula similar to that of Viola-Seaborg. The parameters of the formula were obtained through a least square fit to even-even heavy nuclei taken from the tables of Audi- Wapstra and some more recent references. The results are compared with other theoretical evaluations.

  5. Potentials for calculating both parity states in p-shell nuclei

    International Nuclear Information System (INIS)

    Resler, D.A.

    1989-01-01

    A Hamiltonian employing a ''physical'' central two-body potential has been used for simultaneous calculation of both normal and non-normal parity states of p-shell nuclei. Normal parity states have been calculated in a full 0/h bar/ω space and non-normal parity states in a full 1/h bar/ω space with the effects of spurious center-of-mass states completely removed. No explicit core is used in any of the shell model calculations. Results are compared with experimental data and previous shell model calculations for the following nuclei: 4 He, /sup 5,6,7,8/Li, 8 Be, /sup 13,14/C, and 13 N. 34 refs., 9 figs., 3 tabs

  6. Mean field theory of nuclei and shell model. Present status and future outlook

    International Nuclear Information System (INIS)

    Nakada, Hitoshi

    2003-01-01

    Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave

  7. Microscopic structure of high-spin vibrational states in superdeformed A=190 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsukasa, Takashi [Chalk River Labs., Ontario (Canada); Matsuyanagi, Kenichi [Kyoto Univ. (Japan); Mizutori, Shoujirou [Oak Ridge National Lab., TN (United States)] [and others

    1996-12-31

    Microscopic RPA calculations based on the cranked shell model are performed to investigate the quadrupole and octupole correlations for excited superdeformed (SD) bands in even-even A=190 nuclei. The K = 2 octupole vibrations are predicted to be the lowest excitation modes at zero rotational frequency. The Coriolis coupling at finite frequency produces different effects depending on the neutron and proton number of nucleus. The calculations also indicate that some collective excitations may produce moments of inertia almost identical to those of the yrast SD band. An interpretation of the observed excited bands invoking the octupole vibrations is proposed, which suggests those octupole vibrations may be prevalent in even-even SD A=190 nuclei.

  8. Systematics of triaxial moment of inertia and deformation parameters (β, γ) in even-even nuclei of mass region A = 90-120

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, D.K.; Singh, M.; Gupta, K.K.; Bihari, Chhail; Varshney, A.K.; Dhiman, S.K.

    2012-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. In recent past the sets of deformation parameters ((β, γ) have been extracted from both level energies and E2 transition rates in even Xe, Ba and Ce nuclei (A∼120-140) and Hf, W, Os, Pt and Hg nuclei (A∼160-200) using rigid triaxial rotor model of Davydov-Filippov (DF). Researcher have found that the values of β obtained separately from energy and transition rate (β e and β b respectively), though, are found almost equal in heavy mass region (A ∼160-200) but, not so in medium mass (A∼120-140) nuclei. This observation puts a question mark whether the ββ dependence of moment of inertia in hydrodynamic model is reliable. The purpose of the present work is to study a relatively lighter mass region (A∼90-120) where the gap between values of two sets of β may further increase. To improve the calculations for extracting β e , the use of Grodzins rule will be made along with uncertainties, since only through this rule the E2 1 + is related with β G (value of β for symmetric nucleus and evaluated using Grodzins rule)

  9. ELECTRON-CAPTURE AND β-DECAY RATES FOR sd-SHELL NUCLEI IN STELLAR ENVIRONMENTS RELEVANT TO HIGH-DENSITY O–NE–MG CORES

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Toshio [Department of Physics and Graduate School of Integrated Basic Sciences, College of Humanities and Sciences, Nihon University Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan); Toki, Hiroshi [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047 (Japan); Nomoto, Ken’ichi, E-mail: suzuki@phys.chs.nihon-u.ac.jp [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan)

    2016-02-01

    Electron-capture and β-decay rates for nuclear pairs in the sd-shell are evaluated at high densities and high temperatures relevant to the final evolution of electron-degenerate O–Ne–Mg cores of stars with initial masses of 8–10 M{sub ⊙}. Electron capture induces a rapid contraction of the electron-degenerate O–Ne–Mg core. The outcome of rapid contraction depends on the evolutionary changes in the central density and temperature, which are determined by the competing processes of contraction, cooling, and heating. The fate of the stars is determined by these competitions, whether they end up with electron-capture supernovae or Fe core-collapse supernovae. Since the competing processes are induced by electron capture and β-decay, the accurate weak rates are crucially important. The rates are obtained for pairs with A = 20, 23, 24, 25, and 27 by shell-model calculations in the sd-shell with the USDB Hamiltonian. Effects of Coulomb corrections on the rates are evaluated. The rates for pairs with A = 23 and 25 are important for nuclear Urca processes that determine the cooling rate of the O–Ne–Mg core, while those for pairs with A = 20 and 24 are important for the core contraction and heat generation rates in the core. We provide these nuclear rates at stellar environments in tables with fine enough meshes at various densities and temperatures for studies of astrophysical processes sensitive to the rates. In particular, the accurate rate tables are crucially important for the final fates of not only O–Ne–Mg cores but also a wider range of stars, such as C–O cores of lower-mass stars.

  10. ELECTRON-CAPTURE AND β-DECAY RATES FOR sd-SHELL NUCLEI IN STELLAR ENVIRONMENTS RELEVANT TO HIGH-DENSITY O–NE–MG CORES

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Toki, Hiroshi; Nomoto, Ken’ichi

    2016-01-01

    Electron-capture and β-decay rates for nuclear pairs in the sd-shell are evaluated at high densities and high temperatures relevant to the final evolution of electron-degenerate O–Ne–Mg cores of stars with initial masses of 8–10 M ⊙ . Electron capture induces a rapid contraction of the electron-degenerate O–Ne–Mg core. The outcome of rapid contraction depends on the evolutionary changes in the central density and temperature, which are determined by the competing processes of contraction, cooling, and heating. The fate of the stars is determined by these competitions, whether they end up with electron-capture supernovae or Fe core-collapse supernovae. Since the competing processes are induced by electron capture and β-decay, the accurate weak rates are crucially important. The rates are obtained for pairs with A = 20, 23, 24, 25, and 27 by shell-model calculations in the sd-shell with the USDB Hamiltonian. Effects of Coulomb corrections on the rates are evaluated. The rates for pairs with A = 23 and 25 are important for nuclear Urca processes that determine the cooling rate of the O–Ne–Mg core, while those for pairs with A = 20 and 24 are important for the core contraction and heat generation rates in the core. We provide these nuclear rates at stellar environments in tables with fine enough meshes at various densities and temperatures for studies of astrophysical processes sensitive to the rates. In particular, the accurate rate tables are crucially important for the final fates of not only O–Ne–Mg cores but also a wider range of stars, such as C–O cores of lower-mass stars

  11. Regional regularities for the even-even nuclei in intermediate mass region

    International Nuclear Information System (INIS)

    Varshney, Mani; Singh, M.; Gupta, D.K.; Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Sharma, Aparna; Varshney, A.K.

    2011-01-01

    With the development of experimental techniques more and more nuclear data are accumulated and compiled for over five decades. The proton neutron interaction has been considered the key ingredient in the development of collectivity and ultimately the deformation in atomic nuclei. The purpose of the present study is to analyze the growth of R4/2 in different mass regions. The rate of growth regions in regions having proton number Z = 38, 54, 60 and 76 with changing neutron number where the interaction between particle - particle, particle - hole and hole - hole

  12. Low-lying collective quadrupole and octupole strengths in even-even nuclei

    International Nuclear Information System (INIS)

    Raman, S.; Nestor, C.W. Jr.; Kahane, S.; Bhatt, K.H.

    1991-01-01

    The B(E2)↑ values for the first 2 + state of even-even nuclei in the Z≥50 region are compared with the predictions of several theoretical models. Comparative estimates of the overall agreement with the data are provided. Gaps and discrepancies in the data and examples that show interesting features such as shape changes are discussed. The B(E2)↑ values are examined critically to search for the dynamical Pauli effects predicted by the fermion dynamic symmetry model. The empirical B(E2)↑ and B(E3)↑ systematics are employed to obtain a measure of the harmonicity of the quadrupole and octupole vibrations. The fraction of the energy-weighted sum-rule strength exhausted by the sum of all known low-lying 2 + states below 2.3 MeV is found to be surprisingly constant in the 60< A<250 region except near closed shells

  13. The collective bands of positive parity states in odd-A (fp) shell nuclei

    International Nuclear Information System (INIS)

    Ahalpara, D.P.

    1979-01-01

    The low-lying collective bands of positive parity states in (fp) shell nuclei are described in the deformed Hartree-Fock method by projecting states of definite angular momenta from 'the lowest energy intrinsic states in (sd)sup(-1)(fp)sup(n+1) configurations. The modified Kuo-Brown effective interaction for (fp) shell and modified surface delta interaction (MSDI) for a hole in (sd) shell with a particle in (fp) shell have been used. The collective bands of states are in general well reproduced by the effective interactions. The excitation energies of the band head states are however off by about one MeV. The calculated magnetic moments of the band head j = 3/2 + states are in reasonable agreement with experiment. Using effective charges esub(p) = 1.33 e and esub(n) = 0.64 e fairly good agreement is obtained for E(2) transitions. The hindered M(1) transition strengths are reproduced to the correct order, however they are slightly higher compared to the experiment. (author)

  14. Improvements to the on-line mass separator, RAMA, and the beta-delayed charged-particle emission of proton-rich sd shell nuclei

    International Nuclear Information System (INIS)

    Ognibene, T.J.

    1996-03-01

    To overcome the extreme difficulties encountered in the experimental decay studies of proton drip line nuclei, several techniques have been utilized, including a helium-jet transport system, particle identification detectors and mass separation. Improvements to the ion source/extraction region of the He-jet coupled on-line Recoil Atom Mass Analyzer (RAMA) and its target/ion source coupling resulted in significant increases in RAMA efficiencies and its mass resolution, as well as reductions in the overall transit time. At the 88-Inch Cyclotron at LBNL, the decays of 31 Cl, 27 P and 28 P, with half-lives of 150 msec, 260 msec and 270.3 msec, respectively, were examined using a he-jet and low-energy gas ΔE-gas ΔE-silicon E detector telescopes. Total beta-delayed proton branches of 0.3% and 0.07% in 31 Cl and 27 P, respectively, were estimated. Several proton peaks that had been previously assigned to the decay of 31 Cl were shown to be from the decay of 25 Si. In 27 P, two proton groups at 459 ± 14 keV and 610 ± 11 keV, with intensities of 7 ± 3% and 92 ± 4% relative to the main (100%) group were discovered. The Gamow-Teller component of the preceding beta-decay of each observed proton transition was compared to results from shell model calculations. Finally, a new proton transition was identified, following the β-decay of 28 P, at 1,444 ± 12 keV with a 1.7 ± 0.5% relative intensity to the 100% group. Using similar low-energy detector telescopes and the mass separator TISOL at TRIUMF, the 109 msec and 173 msec activities, 17 Ne and 33 Ar, were studied. A new proton group with energy 729 ± 15 keV was observed following the beta-decay of 17 Ne. Several discrepancies between earlier works as to the energies, intensities and assignments of several proton transitions from 17 Ne and 33 Ar were resolved

  15. Collectivity in heavy nuclei in the shell model Monte Carlo approach

    International Nuclear Information System (INIS)

    Özen, C.; Alhassid, Y.; Nakada, H.

    2014-01-01

    The microscopic description of collectivity in heavy nuclei in the framework of the configuration-interaction shell model has been a major challenge. The size of the model space required for the description of heavy nuclei prohibits the use of conventional diagonalization methods. We have overcome this difficulty by using the shell model Monte Carlo (SMMC) method, which can treat model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We identify a thermal observable that can distinguish between vibrational and rotational collectivity and use it to describe the crossover from vibrational to rotational collectivity in families of even-even rare-earth isotopes. We calculate the state densities in these nuclei and find them to be in close agreement with experimental data. We also calculate the collective enhancement factors of the corresponding level densities and find that their decay with excitation energy is correlated with the pairing and shape phase transitions. (author)

  16. The Role of Broken Cooper Pairs in Warm Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Larsen, A.C.; Rekstad, J.; Siem, S.; Syed, N.U.H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2007-01-01

    In order to understand warm nuclei and describe the underlying microscopic structure, entropy is measured for several even-even and odd-mass nuclei. Mid-shell nuclei show significant odd-even entropy differences interpreted as the single-particle entropy introduced by the valence nucleon. A method to extract critical temperatures for the pair breaking process is demonstrated. (author)

  17. Shell and pairing effects in spherical nuclei close to the nucleon drip lines

    International Nuclear Information System (INIS)

    Beiner, M.; Lombard, R.J.

    1975-01-01

    The unstability against nucleon emission of light and medium exotic spherical nuclei is investigated systematically using an extended version of the energy density formalism which reproduces correctly shell and pairing effects in stable nuclei. The reliability of the predictions of this microscopic, self-consistent and weakly parametrized model should not decrease significantly with the distance of the nuclei from the β-stability line, what is not the case for conventional mass formulae or mass tables [fr

  18. Symmetry-dictated trucation: Solutions of the spherical shell model for heavy nuclei

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1992-01-01

    Principles of dynamical symmetry are used to simplify the spherical shell model. The resulting symmetry-dictated truncation leads to dynamical symmetry solutions that are often in quantitative agreement with a variety of observables. Numerical calculations, including terms that break the dynamical symmetries, are shown that correspond to shell model calculations for heavy deformed nuclei. The effective residual interaction is simple, well-behaved, and can be determined from basic observables. With this approach, we intend to apply the shell model in systematic fashion to all nuclei. The implications for nuclear structure far from stability and for nuclear masses and other quantities of interest in astrophysics are discussed

  19. Stability of bubble nuclei through Shell-Effects

    OpenAIRE

    Dietrich, Klaus; Pomorski, Krzysztof

    1997-01-01

    We investigate the shell structure of bubble nuclei in simple phenomenological shell models and study their binding energy as a function of the radii and of the number of neutron and protons using Strutinsky's method. Shell effects come about, on the one hand, by the high degeneracy of levels with large angular momentum and, on the other, by the big energy gaps between states with a different number of radial nodes. Shell energies down to -40 MeV are shown to occur for certain magic nuclei. E...

  20. Single proton transfer reactions on odd-even nuclei

    International Nuclear Information System (INIS)

    Blasi, N.

    1984-01-01

    This thesis is devoted to the study of one proton transfer reactions, performed with the use of the magnetic spectrograph QMG/2 of the KVI, in two regions of the mass table. Stripping and pickup reactions on the odd-A target nuclei 193 Ir and 197 Au are described in the first part. The experimental spectroscopic factors obtained are used to test several collective models that are based on coupling between bosons (phonons) and fermions. In the second part, the proton stripping reactions on 113 In and 115 In are studied. Shell model calculations are performed and applied to the experimental results. (Auth.)

  1. A systematic study of even-even nuclei in the nuclear chart by the relativistic mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, K.; Hirata, D.; Tanihata, I.; Sugahara, Y.; Toki, H. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    We study systematically the properties of nuclei in the whole mass range up to the drip lines by the relativistic mean field (RMF) theory with deformations as a microscopic framework to provide the data of nuclear structure in the nuclear chart. The RMF theory is a phenomenological many-body framework, in which the self-consistent equations for nucleons and mesons are solved with arbitrary deformation, and has a potential ability to provide all the essential information of nuclear structure such as masses, radii and deformations together with single particle states and wave functions from the effective lagrangian containing nuclear interaction. As a first step toward the whole project, we study the ground state properties of even-even nuclei ranging from Z=8 to Z=120 up to the proton and neutron drip lines in the RMF theory. We adopt the parameter set TMA, which has been determined by the experimental masses and charge radii in a wide mass range, for the effective lagrangian of the RMF theory. We take into account the axially symmetric deformation using the constrained method on the quadrupole moment. We provide the properties of all even-even nuclei with all the possible ground state deformations extracted from the deformation energy curves by the constrained calculations. By studying the calculated ground state properties systematically, we aim to explore the general trend of masses, radii and deformations in the whole region of the nuclear chart. We discuss the agreement with experimental data and the predictions such as magicness and triaxial deformations beyond the experimental frontier. (author)

  2. Rotational-vibrational states of nonaxial deformable even-even nuclei

    International Nuclear Information System (INIS)

    Porodzinskii, Yu.V.; Sukhovitskii, E.Sh.

    1991-01-01

    The rotational-vibrational excitations of nonaxial even-even nuclei are studied on the basis of a Hamiltonian operator with five dynamical variables. Explicit forms of the wave functions and energies of the rotational-vibrational excitations of such nuclei are obtained. The experimental energies of excited positive-parity states of the 238 U nucleus and those calculated in terms of the model discussed in the article are compared

  3. Band crossing and signature splitting in odd mass fp shell nuclei

    International Nuclear Information System (INIS)

    Velazquez, Victor; Hirsch, Jorge G.; Sun, Yang

    2001-01-01

    Structure of two sets of mirror nuclei: 47 V- 47 Cr and 49 Cr- 49 Mn, as well as 49 V and 51 Mn, is studied using the projected shell model. Their yrast spectra are described as an interplay between the angular momentum projected states around the Fermi level which carry different intrinsic K-quantum numbers. The deviations from a regular rotational sequence are attributed to band crossing and signature splitting, which are usually discussed in heavy nuclear systems. Our results agree reasonably with experimental data, and are comparable with those from the full pf shell model calculations

  4. Study of the (p,α)-reaction on sd-shell nuclei and their microscopic analysis

    International Nuclear Information System (INIS)

    Hoyler, F.

    1982-01-01

    In the present thesis the (p,α) reaction on the 2s-1d-shell nuclei 23 Na, 24 Mg, 26 Mg, 27 Al, 35 Cl, 37 Cl, and 39 K was measured. The experiments were performed at the isochronous cyclotron JULIC of the Institute for Nuclear Physics of the Nuclear Research Facility Juelich and at the Emperor Van-de-Graaff accelerator of the Max Planck Institute for Nuclear Physics Heidelberg. Angular distributions for transitions to several residual nucleus states were evaluated in the energy range between 18 and 45 MeV incident proton energy. By the application of magnetic spectrometers as detection device an energy resolution between 25 and 45 keV could be reached. (orig./HSI) [de

  5. Nuclear structure of the N = Z odd - odd nuclei around N=28 closed shell interpreted with IBFFM

    International Nuclear Information System (INIS)

    Dragulescu, E.; Serbanut, G. C.; Serbanut, I.

    2001-01-01

    In the very recent years the knowledge of the level structure at lower and higher energies in the fpg shell N=Z nuclei has renewed a growing interest due to major improvements in the theoretical techniques. Going away from closed shell, the shell model calculations rapidly exhaust computer capabilities and we must resort to the model observed on collective phenomena. The fpg odd-odd N = Z nuclei close to the doubly magic 56 Ni nucleus are good candidates to investigate the competition between collective and single-particle excitations. Here part of the results obtained from an exhaustive systematic study of the self conjugate doubly-odd nuclei with A > 62: 62 Ga and 66 As nuclei using the interacting - boson - fermion - fermion - model (IBFFM) is presented. The odd-odd nuclei are described in the framework of the IBFFM by coupling valence shell proton and neutron quasiparticles to even-even core described in the interacting - boson model. In the first step of the calculations the core parameters for 60 Zn and 64 Ge cores were fitted to the energies of their excited states. In the second step of calculations, we have adjusted the IBFM proton Hamiltonian to the low - lying levels of 63 Ga and 67 As nuclei and IBFM neutron Hamiltonian of low - lying levels of 61 Zn and 65 Ge nuclei involved in the cases of the structure of odd-odd 62 Ga and 66 As nuclei. We have finally calculated the level spectra and electromagnetic properties of above mentioned nuclei. The IBFFM positive - parity energy spectra are compared with experimental ones. The calculations show a reasonable agreement with experimental data and existing shell - model calculations. (authors)

  6. Shell and isotopic effects in neutron interaction with nuclei. [Optical model and nucleus asymmetry correlations

    Energy Technology Data Exchange (ETDEWEB)

    Pasechnik, M V

    1978-01-01

    Major results of investigations into the shell structure of deformed nuclei with the number of neutrons of approximately 100, as well as new isotopic effects in the inelastic scattering of fast neutrons with nuclei are reported. The experiments conducted at the WWR-M research reactor have shown a substantial dependence of the nuclear excited energy-level density on the mass number and the number of neutrons. The fact resulted in a conclusion that the deformed nuclei possess filled shells, that was an incentive to revise the whole nuclear shell concept. In particular it was established that the property of magicity rests not only on the sphericity of nuclei but it may be also observed in strongly deformed nuclei. The isotope-spin dependence of the nuclear potential was studied at the AG-5 pulse electrostatic generator. The parameters of the potential were determined by comparing the experimental data on inelastic scattering and polarization of fast neutrons by nuclei from /sup 48/Ti to /sup 209/Bi with the calculations in terms of the optical model. Simple correlations were established between the optical potential and the nucleus asymmetry parameter ..cap alpha..=N-Z/A in wide ranges of mass numbers and neutron energy.

  7. Microscopic description of average level spacing in even-even nuclei

    International Nuclear Information System (INIS)

    Huong, Le Thi Quynh; Hung, Nguyen Quang; Phuc, Le Tan

    2017-01-01

    A microscopic theoretical approach to the average level spacing at the neutron binding energy in even-even nuclei is proposed. The approach is derived based on the Bardeen-Cooper-Schrieffer (BCS) theory at finite temperature and projection M of the total angular momentum J , which is often used to describe the superfluid properties of hot rotating nuclei. The exact relation of the J -dependent total level density to the M -dependent state densities, based on which the average level spacing is calculated, was employed. The numerical calculations carried out for several even-even nuclei have shown that in order to reproduce the experimental average level spacing, the M -dependent pairing gaps as well as the exact relation of the J -dependent total level density formula should be simultaneously used. (paper)

  8. Collective states of nonspherical deformable even--even nuclei

    International Nuclear Information System (INIS)

    Tartakovskii, V.K.

    1989-01-01

    A more correct method, as compared with some earlier studies, of finding the wave functions and corresponding energies of longitudinal quadrupole vibrations of nonspherical even--even nuclei is proposed. The wave functions and energies of collective motions in nuclei have been obtained in explicit form for a number of dependences of the potential energy of longitudinal vibrations V(β), including the dependence V(β), not previously used, of the most general form. Explicit dependences of the potential energy of transverse vibrations and the corresponding wave functions and eigenvalues for nuclear states with zero spins are proposed

  9. Anisotropy of favoured alpha transitions producing even-even deformed nuclei

    International Nuclear Information System (INIS)

    Tavares, O.A.P.

    1997-05-01

    The anisotropy in favoured alpha transitions which produce even-even deformed nuclei is discussed. A simple, Gamow's-like model which takes into account the quadrupole deformation of the product nucleus has been formulated to calculate the alpha decay half-life. It is assumed that before tunneling into a purely Coulomb potential barrier the two-body system oscillated isotropically, thus giving rise to an equivalent, average preferential polar direction θ 0 (referred to the symmetry axis of the ellipsoidal shape of the product nucleus) for alpha emission in favoured alpha transitions of even-even nuclei. (author)

  10. Seniority four admixures in the low-lying 0+ states of even-mass tin and lead nuclei

    International Nuclear Information System (INIS)

    Quesne, C.; Salmon, Y.; Spitz, S.

    1977-01-01

    New statistical measures of symmetry breaking are used to evaluate the total seniority four admixtures in the low-lying 0 + states of even-mass tin and lead nuclei. This approach is based on the centroid energies and partial widths of fixed total seniority and parity spectral distributions. Some seniority four states are found to be surprisingly low. However, the ground state is always a very pure seniority zero state

  11. Random interactions, isospin, and the ground states of odd-A and odd-odd nuclei

    International Nuclear Information System (INIS)

    Horoi, Mihai; Volya, Alexander; Zelevinsky, Vladimir

    2002-01-01

    It was recently shown that the ground state quantum numbers of even-even nuclei have a high probability to be reproduced by an ensemble of random but rotationally invariant two-body interactions. In the present work we extend these investigations to odd-A and odd-odd nuclei, considering in particular the isospin effects. Studying the realistic shell model as well as the single-j model, we show that random interactions have a tendency to assign the lowest possible total angular momentum and isospin to the ground state. In the sd shell model this reproduces correctly the isospin but not the spin quantum numbers of actual odd-odd nuclei. An odd-even staggering effect in probability of various ground state quantum numbers is present for even-even and odd-odd nuclei, while it is smeared out for odd-A nuclei. The observed regularities suggest the underlying mechanism of bosonlike pairing of fermionic pairs in T=0 and T=1 states generated by the off-diagonal matrix elements of random interactions. The relation to the models of random spin interactions is briefly discussed

  12. Study of the first collective levels of the even-even nuclei between masses 182 and 206; Etude des premiers niveaux collectifs des noyaux pairs-pairs entre les masses 182 et 206

    Energy Technology Data Exchange (ETDEWEB)

    Barloutaud, R; Leveque, A; Lehmann, P; Quidort, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The reduced probabilities of deexcitation of the first two 2 + levels of {sup 184}W, {sup 186}W, {sup 188}Os, {sup 190}Os, {sup 192}Os and {sup 194}Pt have been deduced from coulombic excitation experiments on these nuclei.The results are included in a chart of the properties of the first two 2 + levels of even-even nuclei situated between masses 182 and 206. The variation of these properties as a function of nuclear distortion is compared with the various theoretical predictions concerning vibration levels. (author) [French] Les probabilites reduites de desexcitation des deux premiers niveaux 2 + de {sup 184}W, {sup 186}W, {sup 188}Os, {sup 190}Os, {sup 192}Os and {sup 194}Pt ont ete deduites des experiences d'excitation coulombienne de ces noyaux. Les resultats sont inseres dans une systematique des proprietes des deux premiers niveaux 2 + des noyaux pairs-pairs situes entre les masses 182 et 206. La variation de ces proprietes en fonction de la deformation nucleaire est comparee aux diverses predictions theoriques concernant les niveaux de vibration. (auteur)

  13. Corrections to the free-nucleon values of the single-particle matrix elements of the M1 and Gamow-Teller operators, from a comparison of shell-model predictions with sd-shell data

    International Nuclear Information System (INIS)

    Brown, B.A.; Wildenthal, B.H.

    1983-01-01

    The magnetic dipole moments of states in mirror pairs of the sd-shell nuclei and the strengths of the Gamow-Teller beta decays which connect them are compared with predictions based on mixed-configuration shell-model wave functions. From this analysis we extract the average effective values of the single-particle matrix elements of the l, s, and [Y/sup( 2 )xs]/sup( 1 ) components of the M1 and Gamow-Teller operators acting on nucleons in the 0d/sub 5/2/, 1s/sub 1/2/, and 0d/sub 3/2/ orbits. These results are compared with the recent calculations by Towner and Khanna of the corrections to the free-nucleon values of these matrix elements which arise from the effects of isobar currents, mesonic-exchange currents, and mixing with configurations outside the sd shell

  14. Collective description of magnetic properties of even-even nuclei

    International Nuclear Information System (INIS)

    Maruhn, V.

    1975-01-01

    The generalized collective model is modified by introducing a number of quadrupole deformations for protons and neutrons. The coupling potential is described by physical approaches, and the overall model is applied to even-even nuclei. (WL) [de

  15. Systematic study of even-even nuclei with Hartree-Fock+BCS method using Skyrme SIII force

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Naoki; Takahara, Satoshi; Onishi, Naoki [Tokyo Univ. (Japan). Coll. of Arts and Sciences

    1997-03-01

    We have applied the Hartree-Fock+BCS method with Skyrme SIII force formulated in a three-dimensional Cartesian-mesh representation to even-even nuclei with 2 {<=} Z {<=} 114. We discuss the results concerning the atomic masses, the quadrupole (m=0, 2) and hexadecapole (m=0, 2, 4) deformations, the skin thicknesses, and the halo radii. We also discuss the energy difference between oblate and prolate solutions and the shape difference between protons and neutrons. (author)

  16. Underlying physics of identical odd- and even-mass bands in normally deformed rare-earth nuclei

    International Nuclear Information System (INIS)

    Yu Lei; Liu Shuxin; Lei Yian; Zeng Jinyan

    2001-01-01

    The microscopic mechanism of the identical odd- and even-mass number nuclear bands in normally deformed rare-earth nuclei was investigated using the particle-number conserving (PNC) method for treating nuclear pairing correlation. It was found that the odd particle of an odd-A identical band always occupied a cranked low j and high Ω Nilsson orbital (e.g. proton [404]7/2, [402]5/2. On the contrary, if the odd particle occupies an intruder high j orbital (e.g. neutron [633]7/2, proton[514]9/2), the moment of inertia of the odd-A band was much larger than that of neighboring even-even ground state band. The observed variation of moment of inertia (below band crossing) was reproduced quite well by the PNC calculation, in which no free parameter was involved. The strengths of monopole and Y 20 quadrupole interactions were determined by the experimental odd-even differences in binding energy and band head moment of inertia

  17. Coulomb energy differences in mirror nuclei

    International Nuclear Information System (INIS)

    Lenzi, Silvia M

    2006-01-01

    By comparing the excitation energies of analogue states in mirror nuclei, several nuclear structure properties can be studied as a function of the angular momentum up to high spin states. They can be described in the shell model framework by including electromagnetic and nuclear isospin-non-conserving interactions. Calculations for the mirror energy differences in nuclei of the f 7/2 shell are described and compared with recent experimental data. These studies are extended to mirror nuclei in the upper sd and fp shells

  18. Resonant heavy-ion elastic scattering from s-d shell nuclei

    International Nuclear Information System (INIS)

    DeVries, R.M.

    1978-01-01

    Angular distributions at angles 130 less than theta/sub cm/ less than 180 0 were measured for 12 C + 28 Si, 32 S, 40 Ca as well as 9 Be, 13 C + 28 Si in the energy range 20 MeV less than or equal to E/sub cm/ less than or equal to 35 MeV. Cross sections rising towards 180 0 are observed for all reactions. Excitation functions for the back-angle enhancement show distinct structures, most pronounced for 12 C + 28 Si. Angular distributions for 12 C, especially those corresponding to peaks in the excitation function show oscillations of the type vertical bar P/sub J/(cos theta) vertical bar 2 . The 12 C back-angle enhancement decreases with target mass. Backscattering of the nonalpha nuclei 9 Be and 13 C is reduced by about two orders of magnitude in comparison with 12 C. Similar measurements for the 28 Si( 12 C, 16 O) 24 Mg reaction and 16 O + 24 Mg elastic scattering allow comparison of reaction data with the corresponding entrance and exit channel data. Standard theoretical approaches fail to explain all the observed effects

  19. A novel approach to the systematization of α-decaying nuclei, based on shell structures

    International Nuclear Information System (INIS)

    Yarman, Tolga; Azmi Altintas, Ali; Zaim, Nimet; Amon Susam, Lidya; Kholmetskii, Alexander; Arik, Metin; Ozaydin, Fatih

    2016-01-01

    We provide a novel systematization of α-decaying nuclei, starting with the classically adopted mechanism. The decay half-life of an α-disintegrating nucleus is framed, supposing that i) the α-particle is born inside the parent, then ii) it keeps on hitting the barrier, while it runs back and forth inside the parent, and hitting each time the barrier, and iii) it finally tunnels through the barrier. One can, knowing the decay half-life, consider the probability that the α-particle is born within the parent, before it is emitted, as a parameter. Under all circumstances, the decay appears to be governed by the shell structure of the given nucleus. Our approach well allows to incorporate (not only even-even nuclei, but) all nuclei, decaying via throwing an alpha particle. Though herein, we limit ourselves with just even-even nuclei, in the aim of comparing our results with the existing Geiger-Nuttal results. (orig.)

  20. Individual and collective excitations in the superdeformed nuclei of the 190 mass region; Excitations individuelles et collectives dans les noyaux superdeformes de la region de masse 190

    Energy Technology Data Exchange (ETDEWEB)

    Bouneau, Sandra [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1997-04-11

    This work aims at the study of different excitation modes, individual and collective, in superdeformed (SD) nuclei in the mass 190 region. The study of {sup 193}Tl and {sup 195,196,197}Bi SD nuclei brought information concerning individual excitation around the proton and neutron SD gaps Z = 80 - 82 and N = 112. Also, the study of the nucleus {sup 196}Pb revealed excited SD states built on collective vibrations. Concerning the isotope {sup 193}Tl, magnetic property analysis has been performed and allowed us to identify the proton intruder orbital {pi}i{sub 13/2} on which the two known SD the bands of the nucleus are build. It was possible to separate experimentally the relative contribution of proton and neutron pairing to the dynamic moment of inertia. Several {gamma} transition of high energy (about 3 MeV) linking SD states to normal deformed states (ND) and three new SD bands have been found in this nucleus. These SD bands have been interpreted in terms of individual excitations of the single proton on different orbitals identified above the proton SD gap Z = 80. An interaction between the states of two excited SD band have been observed and its strength measured. All these results (gyromagnetic factor, the role of nuclear pairing, excitation energy of the SD well, the interaction between two orbitals) represent information of theoretical interest. In each isotope {sup 195-197}Bi, one SD band has been discovered. They have been also interpreted in terms of individual excitation implying the same proton state. The study of this nuclei brought the first experimental proof that the superdeformation phenomenon persists above the shell closure Z = 82. In {sup 196}Pb nucleus a new excited SD band has been discovered. Observations are mentioned suggesting that we have to consider excitations different from those based on individual ones. An interpretation based on vibrational modes can explain both the low energy measured of the excited states in respect with the SD

  1. Shell model for warm rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  2. Excited bands in even-even rare-earth nuclei

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Hirsch, Jorge G.

    2004-01-01

    The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands

  3. Studies of short-lived nuclei in the proximity of closed shells

    International Nuclear Information System (INIS)

    Omtvedt, J.P.

    1995-01-01

    In this work the structure of 84,85 Se at the closed N=50 neutron shell, and the 132 Sb, 132 Sn, and 134 Te nuclei, at the doubly closed N=82,Z=50 shells, was studied. The experiments were performed at the OSIRIS fission product mass separator at Studsvik, Sweden. The excited levels of the studied nuclei were populated in β decay. The sources were produced in fission of 235 U in the OSIRIS combined target and ion source. The nuclei were studied by standard nuclear spectroscopy measuring techniques: Singles γ spectra and γγ-coincidence data were obtained. In addition γγ(θ) angular correlation and βγγ(t) triple coincidence ''fast-timing'' ,measurements were performed on the nuclei in the 132 Sn (N=82,Z=50) region. Detailed level schemes for the 84,85 Se, 132 Sb, 132 Sn, 132 Te nuclei were built, greatly improvi our knowledge of the structure of these nuclei. The experimentally deduced transition rates and multipole mixing ratios of the studied 132 Sn region nuclei were compared to theoretical calculations within the random phase approximation framework and related models. Particular attention was paid to the collective properties of nuclei in the 132 Sn region, parametrized by the electrical octupole effective charge. A range of general software spectroscopic tools were developed for the purpose of analysing the experimental data. This included a program, Yggdrasil, which for the first time allowed a complete two-dimensional γγ-coincidence matrix to be analysed on ordinary ''small'' personal computers (PCs). 49 refs., 10 figs., 2 tabs

  4. Symmetries of Quadrupole-Collective Vibrational Motion in Transitional Even-Even 124−134Xenon Nuclei

    CERN Document Server

    Pietralla, N; Rainovski, G; Ahn, T; Bauer, C; Leske, J; Möller, O; Möller, T

    2010-01-01

    Projectile-Coulomb excitation of Xe isotopes has been performed at ANL using the Gammasphere array for the detection of γ-rays. The one-quadrupole phonon 2+ 1,ms mixed-symmetry state (MSS) has been traced in the stable N=80 isotones down to 134Xe. First, the data on absolute E2 andM1 transition rates quantify the amount of F-spin symmetry in these nuclei and provide a new local measure for the pn-QQ interaction. Second, the evolution of the 2+ 1,ms state has been studied along the sequence of stable even-even 124−134Xe isotopes that are considered to form a shape transition path from vibrational nuclei with vibrational U(5) symmetry near N=82 to γ-softly deformed shapes with almost O(6) symmetry. Third, our data on more than 50 absolute E2 transition rates between off-yrast low-spin states of 124,126Xe enable us to quantitatively test O(6) symmetry in these nuclei. As a result we find that O(6) symmetry is more strongly broken in the A=130 mass region than previously thought. The data will be discussed.

  5. Electron-capture Rates for pf-shell Nuclei in Stellar Environments and Nucleosynthesis

    Science.gov (United States)

    Suzuki, Toshio; Honma, Michio; Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka; Hidakai, Jun; Otsuka, Takaharu

    Gamow-Teller strengths in pf-shell nuclei obtained by a new shell-model Hamltonian, GXPF1J, are used to evaluate electron-capture rates in pf-shell nuclei at stellar environments. The nuclear weak rates with GXPF1J, which are generally smaller than previous evaluations for proton-rich nuclei, are applied to nucleosynthesis in type Ia supernova explosions. The updated rates are found to lead to less production of neutron-rich nuclei such as 58Ni and 54Cr, thus toward a solution of the problem of over-production of neutron-rich isotopes of iron-group nuclei compared to the solar abundance.

  6. Studies of short-lived nuclei in the proximity of closed shells

    Energy Technology Data Exchange (ETDEWEB)

    Omtvedt, J.P.

    1995-12-31

    In this work the structure of {sup 84,85}Se at the closed N=50 neutron shell, and the {sup 132}Sb, {sup 132}Sn, and {sup 134}Te nuclei, at the doubly closed N=82,Z=50 shells, was studied. The experiments were performed at the OSIRIS fission product mass separator at Studsvik, Sweden. The excited levels of the studied nuclei were populated in {beta} decay. The sources were produced in fission of {sup 235}U in the OSIRIS combined target and ion source. The nuclei were studied by standard nuclear spectroscopy measuring techniques: Singles {gamma} spectra and {gamma}{gamma}-coincidence data were obtained. In addition {gamma}{gamma}({theta}) angular correlation and {beta}{gamma}{gamma}(t) triple coincidence ``fast-timing`` ,measurements were performed on the nuclei in the {sup 132}Sn (N=82,Z=50) region. Detailed level schemes for the {sup 84,85}Se, {sup 132}Sb,{sup 132}Sn, {sup 132}Te nuclei were built, greatly improvi our knowledge of the structure of these nuclei. The experimentally deduced transition rates and multipole mixing ratios of the studied {sup 132}Sn region nuclei were compared to theoretical calculations within the random phase approximation framework and related models. Particular attention was paid to the collective properties of nuclei in the {sup 132}Sn region, parametrized by the electrical octupole effective charge. A range of general software spectroscopic tools were developed for the purpose of analysing the experimental data. This included a program, Yggdrasil, which for the first time allowed a complete two-dimensional {gamma}{gamma}-coincidence matrix to be analysed on ordinary ``small`` personal computers (PCs). 49 refs., 10 figs., 2 tabs.

  7. Structure of exotic nuclei by large-scale shell model calculations

    International Nuclear Information System (INIS)

    Utsuno, Yutaka; Otsuka, Takaharu; Mizusaki, Takahiro; Honma, Michio

    2006-01-01

    An extensive large-scale shell-model study is conducted for unstable nuclei around N = 20 and N = 28, aiming to investigate how the shell structure evolves from stable to unstable nuclei and affects the nuclear structure. The structure around N = 20 including the disappearance of the magic number is reproduced systematically, exemplified in the systematics of the electromagnetic moments in the Na isotope chain. As a key ingredient dominating the structure/shell evolution in the exotic nuclei from a general viewpoint, we pay attention to the tensor force. Including a proper strength of the tensor force in the effective interaction, we successfully reproduce the proton shell evolution ranging from N = 20 to 28 without any arbitrary modifications in the interaction and predict the ground state of 42Si to contain a large deformed component

  8. Validity of the M-3Y force equivalent G-matrix element for the calculations of nuclear structure in the s-d shell

    International Nuclear Information System (INIS)

    Song Hong-qiu; Wang Zixing; Cai Yanhuang; Huang Weizhi

    1987-01-01

    The matrix elements of the M-3Y force are adopted as the equivalent G-matrix elements and the folded diagram method is used to calculate the spectra of 18 O and 18 F. The results show that the matrix elements of the M-3Y force as the equivalent G-matrix elements are suitable for microscopic calculations of the nuclei in the s-d shell

  9. Fission mass yields of excited medium heavy nuclei

    International Nuclear Information System (INIS)

    Sandulescu, A.; Depta, K.; Herrmann, R.; Greiner, W.; Scheid, W.

    1985-01-01

    The mass distributions resulting from the fission of excited medium mass nuclei are discussed on the basis of the fragmentation theory. It is shown that very asymmetric fission events can be expected with rates which are only a few orders of magnitude smaller than the rates for symmetric fission. As an example a calculation of the fission mass distribution of the excited 172 Yb compound nucleus is presented. This mass distribution reveals observable structures over the entire range of the mass asymmetry due to valleys in the potential energy surface for fission fragments with closed proton and neutron shells

  10. Shell stabilization of super- and hyperheavy nuclei without magic gaps

    International Nuclear Information System (INIS)

    Bender, M.; Nazarewicz, W.; Oak Ridge National Lab., TN; Warsaw Univ.; Reinhard, P.G.; Oak Ridge National Lab., TN

    2001-05-01

    Quantum stabilization of superheavy elements is quantified in terms of the shell-correction energy. We compute the shell correction using self-consistent nuclear models: the non-relativistic Skyrme-Hartree-Fock approach and the relativistic mean-field model, for a number of parametrizations. All the forces applied predict a broad valley of shell stabilization around Z = 120 and N = 172-184. We also predict two broad regions of shell stabilization in hyperheavy elements with N ∼ 258 and N ∼ 308. Due to the large single-particle level density, shell corrections in the superheavy elements differ markedly from those in lighter nuclei. With increasing proton and neutron numbers, the regions of nuclei stabilized by shell effects become poorly localized in particle number, and the familiar pattern of shells separated by magic gaps is basically gone. (orig.)

  11. Nuclear mass formula with the shell energies obtained by a new method

    International Nuclear Information System (INIS)

    Koura, H.; Tachibana, T.; Yamada, M.; Uno, M.

    1998-01-01

    Nuclear shapes and masses are estimated by a new method. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies by mixing them with appropriate weights. The spherical shell energies are calculated from single-particle potentials, and, till now, two mass formulas have been constructed from two different sets of potential parameters. The standard deviation of the calculated masses from all the experimental masses of the 1995 Mass Evaluation is about 760 keV. Contrary to the mass formula by Tachibana, Uno, Yamada and Yamada in the 1987-1988 Atomic Mass Predictions, the present formulas can give nuclear shapes and predict on super-heavy elements

  12. Spontaneous-fission half-lives for even nuclei with Z> or =92

    International Nuclear Information System (INIS)

    Randrup, J.; Larsson, S.E.; Moller, P.; Nilsson, S.G.; Pomorski, K.; Sobiczewski, A.

    1976-01-01

    The spontaneous-fission process for doubly even nuclei with Z> or =92 is studied in a semiempirical WKB framework. One-dimensional fission barrier potentials are established from theoretical deformation-energy surfaces based on the droplet model and the modified-oscillator model. The effects of axial asymmetry as well as reflection asymmetry have been taken into account. Macroscopic (irrotational flow) inertial-mass functions and, alternatively, microscopic (cranking model) inertial mass parameters have been employed for the calculation of the fission half-lives. With one over-all normalization parameter it is possible to fit the experimental half-lives to within a factor of 20 on the average. The resulting effective inertial-mass functions are used to estimate the stability of the transactinide elements. Only minor differences with previous estimates for the r process and superheavy nuclei are encountered

  13. Study of Triaxial deformation variable γ in even - even nuclei

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Sharma, Aparna; Varshney, A.K.; Singh, M.; Gupta, D.K.; Varshney, Mani; Dhiman, S.K.

    2011-01-01

    The deformation parameters β and γ of the collective model are basic description of the nuclear equilibrium shape and structure, while values for these variables have been discussed for many nuclei. A systematic study in mass region A = 120-140 and A = 150 -180 can never be less revealing, such study has been presented, in A = 90 -120 for Mo, Ru and Pd nuclei where β and γ both vary strongly

  14. E2,M1 multipole mixing ratios in even-even nuclei, 58< or =A< or =150

    International Nuclear Information System (INIS)

    Krane, K.S.

    1977-01-01

    A survey is presented of E2,M1 multipole mixing ratios of gamma-ray transitions in even-even nuclei in the mass range 58< or =A< or =150. Angular distribution and correlation data from the literature are analyzed in terms of a consistent choice of the phase relationship between the E2 and M1 matrix elements. A set of recommended values of the mixing ratios is included based on averages of results from various studies. The survey includes data available in the literature up to December 1976

  15. Where is the Scissors Mode Strength in Odd-Mass Nuclei?

    International Nuclear Information System (INIS)

    Enders, J.; Huxel, N.; von Neumann-Cosel, P.; Richter, A.

    1997-01-01

    It is demonstrated by a fluctuation analysis based on the assumption of a Wigner distribution for the nuclear level spacings and of a Porter-Thomas distribution for the transition strengths that significant parts of the dipole strength excited in photon scattering experiments in heavy, deformed odd-mass nuclei are hidden in the background of the experimental spectra. With this additional strength, the heretofore claimed severe reduction of the B(M1) scissors mode strength in odd-mass nuclei compared to the one in neighboring even-even nuclei disappears. copyright 1997 The American Physical Society

  16. Present state and prospect of systematics for the properties of even-even nuclei

    International Nuclear Information System (INIS)

    Zhao Yumin; Gu Jinnan

    1993-01-01

    The study of systematics for the properties of even-even nuclei, which is a new research field in nuclei structure, is reviewed. The primary results, including systematic analysis of energy spectra and electromagnetic transition, and the empirical law extracted from experimental data, are presented. It is expected that there will be new developments in the next few years in this fields

  17. Unified description of pf-shell nuclei by the Monte Carlo shell model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio

    1998-03-01

    The attempts to solve shell model by new methods are briefed. The shell model calculation by quantum Monte Carlo diagonalization which was proposed by the authors is a more practical method, and it became to be known that it can solve the problem with sufficiently good accuracy. As to the treatment of angular momentum, in the method of the authors, deformed Slater determinant is used as the basis, therefore, for making angular momentum into the peculiar state, projected operator is used. The space determined dynamically is treated mainly stochastically, and the energy of the multibody by the basis formed as the result is evaluated and selectively adopted. The symmetry is discussed, and the method of decomposing shell model space into dynamically determined space and the product of spin and isospin spaces was devised. The calculation processes are shown with the example of {sup 50}Mn nuclei. The calculation of the level structure of {sup 48}Cr with known exact energy can be done with the accuracy of peculiar absolute energy value within 200 keV. {sup 56}Ni nuclei are the self-conjugate nuclei of Z=N=28. The results of the shell model calculation of {sup 56}Ni nucleus structure by using the interactions of nuclear models are reported. (K.I.)

  18. Super-hypernuclei in the quark-shell model, 2

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1989-07-01

    By following the previous paper, where the quark-shell model of nuclei in quantum chromodynamics is briefly reviewed, a short review of the MIT bag model of nuclei is presented for comparison and a simple estimate of the Hλ ('hexalambda') mass is also made for illustration. Furthermore, an even shorter review of the 'nucleon cluster model' of nuclei is presented for further comparison. (J.P.N.)

  19. Three-body forces in p-shell nuclei

    International Nuclear Information System (INIS)

    Hees, A.G.M. van; Booten, J.G.L.; Glaudemans, P.W.M.

    1990-01-01

    Within the (0 + 1)ℎω shell-model space for p-shell nuclei we found that a schematic three-body interaction in addition to a translationally invariant two-body interaction leads to a strongly improved description of energy levels. The present three-body interaction is related to the Δ-isobar intermediate-state model of the two-pion exchange three-nucleon interaction. (orig.)

  20. Low-spin identical bands in neighboring odd-A and even-even nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare-earth nuclei indicates that a large number of seniority-one configurations (21% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority

  1. Nuclei in a neutron star

    International Nuclear Information System (INIS)

    Oyamatsu, K.; Yamada, M.

    1994-01-01

    We report on the recent progress in understanding the matter in the crust of a neutron star. For nuclides in the outer crust, recently measured masses of neutron-rich nuclei enable us to determine more accurately the stable nuclide as a function of the matter density. In the inner crust, the compressible liquid-drop model predicts successive change of the nuclear shape, from sphere to cylinder, slab, cylindrical hole and spherical hole at densities just before the transition to uniform matter. In order to go beyond the liquiddrop model, we performed the Thomas-Fermi calculation paying special attention to the surface diffuseness, and have recently calculated the shell energies of the non-spherical nuclei. We have found from these studies that all these non-spherical nuclei exist stably in the above order even if we include the surface diffuseness and shell energies. (author)

  2. Superdeformation in the A = 190 region. The lead nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Henry, E A; Becker, J A; Brinkman, M J; Kuhnert, A; Stoyer, M A; Wang, T F; Yates, S W [Lawrence Livermore National Lab., CA (United States); Azaiez, F A; Beausang, C W; Burde, J; Deleplanque, M A; Diamond, R M; Draper, J E; Kelly, W H; Korton, W; Macchiavelli, A O; Oliveira, J; Rubel, E; Stephens, F S [Lawrence Berkeley Lab., CA (United States); Cizewski, J A [Rutgers--the State Univ., New Brunswick, NJ (United States)

    1992-08-01

    Superdeformed (SD) bands have been identified in the four even-even lead nuclei {sup 192}Pb, {sup 194}Pb, {sup 196}Pb, and {sup 198}Pb. The discovery of SD bands in these nuclei extended the region of superdeformation in the A = 190 region to Z = 82, and to neutron numbers up to N = 116. All of the SD bands in these nuclei are observed with transition energies ranging from about 250 keV to about 600 keV, with the lowest energy SD band transition for the entire region of 169 keV in {sup 194}Pb. The spins deduced for the lowest levels in the SD bands are 6, 8, and 12 for {sup 192,194,196,198}Pb, respectively. The dynamic moments of inertia of {sup 192}Pb and {sup 194}Pb are similar to each other, and to those of many other SD bands in this mass region. The dynamic moments of inertia of {sup 1}`9{sup 6}Pb and {sup 198}Pb are somewhat lower than those of {sup 192,194}Pb at a given frequency. The experimental lifetimes in {sup 194}Pb and the deduced transition quadrupole moments (Qt {approx} 20 eb) are equal to those of other nuclei in the region within errors. While SD bands have been observed in the odd-neutron Hg and Tl nuclei, SD bands have not been reported for the odd-neutron Pb nuclei. In this contribution we discuss briefly three topics on superdeformation in the lead nuclei. First, we have recent experimental data on {sup 196}Pb that extends our knowledge of the SD band in that nucleus. Next we review briefly the population of low-lying yrast levels from the decay of the SD bands in {sup 192,194,196}Pb. Finally, we summarize our efforts to identify superdeformation in the odd-A Pb nuclei. All of the experiments described here were performed using the HERA spectrometer at the 88-Inch Cyclotron facility located at Lawrence Berkeley Laboratory. (author) 9 refs., 4 figs.

  3. Constrained-path quantum Monte Carlo approach for non-yrast states within the shell model

    Energy Technology Data Exchange (ETDEWEB)

    Bonnard, J. [INFN, Sezione di Padova, Padova (Italy); LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Juillet, O. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France)

    2016-04-15

    The present paper intends to present an extension of the constrained-path quantum Monte Carlo approach allowing to reconstruct non-yrast states in order to reach the complete spectroscopy of nuclei within the interacting shell model. As in the yrast case studied in a previous work, the formalism involves a variational symmetry-restored wave function assuming two central roles. First, it guides the underlying Brownian motion to improve the efficiency of the sampling. Second, it constrains the stochastic paths according to the phaseless approximation to control sign or phase problems that usually plague fermionic QMC simulations. Proof-of-principle results in the sd valence space are reported. They prove the ability of the scheme to offer remarkably accurate binding energies for both even- and odd-mass nuclei irrespective of the considered interaction. (orig.)

  4. Low-spin identical bands in neighboring odd-A and even-even nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1993-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare-earth nuclei indicates that a large number of seniority-one configurations (21 % for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority. (orig.)

  5. Resonances in s-d shell nuclei

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1981-01-01

    It appears that the system we have studied here, 24 Mg( 16 O, 12 C) 28 Si representing 40 Ca as the composite nucleus, is perhaps the heaviest one that exhibits strong enough resonances that quantitative measurements may be contemplated. But we have uncovered only a small corner of what is there and even within this system a huge amount of work remains. The nature of these resonances is not yet clear. The sequence may perhaps have an explanation that is schematically outlined, namely that there are several families of quasistationary states in 40 Ca, but that the slopes of these families do not necessarily coincide with the slope of the grazing partial waves that provide us with a narrow transparent strip of a window on the underlying structure of the nucleus. We must concentrate a lot of effort and ingenuity in order to maximize the information we gather through this window and only then may we hope to sensibly attempt forming hypotheses about the underlying simple pattern

  6. A systematic study of even-even nuclei up to the drip lines within the relativistic mean field framework

    International Nuclear Information System (INIS)

    Hirata, D.; Sumiyoshi, K.; Tanihata, I.; Sugahara, Y.; Tachibana, T.; Toki, H.

    1997-01-01

    We apply the relativistic mean field theory to study the ground state properties of about 2000 even-even nuclei from Z=8 to Z=120 up to the proton and neutron drip lines. The calculations have been done under the axial symmetry assumption and a quadratic constraint method in order to obtain all possible ground state configurations. We do not take into account the pairing correlation in the present study. The calculations are performed with the TMA parameter set. We explore the generaI trend of masses, radii and deformations in the whole region of the nuclear chart. Using the masses obtained from RMF theory, we calculate the r-process abundances and the r-process path. (orig.)

  7. Quantum phase transitions and collective enhancement of level density in odd–A and odd–odd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karampagia, S., E-mail: karampag@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Renzaglia, A. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); Zelevinsky, V. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2017-06-15

    The nuclear shell model assumes an effective mean-field plus interaction Hamiltonian in a specific configuration space. We want to understand how various interaction matrix elements affect the observables, the collectivity in nuclei and the nuclear level density for odd–A and odd–odd nuclei. Using the sd and pf shells, we vary specific groups of matrix elements and study the evolution of energy levels, transition rates and the level density. In all cases studied, a transition between a “normal” and a collective phase is induced, accompanied by an enhancement of the level density in the collective phase. In distinction to neighboring even–even nuclei, the enhancement of the level density is observed already at the transition point. The collective phase is reached when the single-particle transfer matrix elements are dominant in the shell model Hamiltonian, providing a sign of their fundamental role.

  8. The neutron-proton pairing and the moments of inertia of the rare earth even-even nuclei

    International Nuclear Information System (INIS)

    Calik, A. E.; Deniz, C.; Gerceklioglu, M.

    2009-01-01

    In this study, the possible effect of the neutron-proton pairing interaction in the heavy nuclei has been investigated in the framework of the BCS model by making a simple approximation. This effect has been searched realistically by calculating the moments of inertia of deformed even-even nuclei. Calculations show that the moments of inertia of rare earth nuclei changed dramatically and approached the experimental values.

  9. Perturbation theory instead of large scale shell model calculations

    International Nuclear Information System (INIS)

    Feldmeier, H.; Mankos, P.

    1977-01-01

    Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de

  10. E2,M1 multipole mixing ratios in even--even nuclei, A greater than or equal to 152

    International Nuclear Information System (INIS)

    Krane, K.S.

    1975-01-01

    A survey is presented of E2,M1 mixing ratios of gamma-ray transitions in even-even nuclei with mass numbers A greater than or equal to 152. Angular distribution and correlation data from the literature are analyzed in terms of a consistent choice of the phase relationship between the E2 and M1 matrix elements. The cutoff date for the literature was June 1975. Based on an average of the experimental results from the literature, a recommended value of the E2,M1 mixing ratio for each transition is included

  11. Study of the anharmonic effects on low-lying states of odd-mass nuclei in 1g sub(9/2)+ shell region

    International Nuclear Information System (INIS)

    Nakano, Masahiro

    1980-01-01

    Anharmonic effects on the low-lying states of the odd-mass nuclei in 1g sub(9/2)sup(+) shell region are investigated by introduction of 1, 3, 5 and 7 quasiparticle modes. Special attention is paid to the energy-lowering of anomalous coupling states in N = 41 nuclei and to the spin sequence of so-called ''one-quasiparticle-two-phonon multiplet''. It is shown that one cannot attribute the special-lowering of the energies of the anomalous coupling (j - 2) states to the dynamical effects due to the coupling between the 3-quasiparticle mode and the 5-quasiparticle mode, and is also shown that not only the kinematical effect but also the dynamical effect plays an important role in the energy-lowering of the anomalous coupling (j - 1) states in N = 41 nuclei. The second (j - 2) state is predicted to be the lowest member of one-quasiparticle-two-phonon multiplet by taking account of the kinematical effect for the 5-quasiparticle mode, which corresponds to the experimental fact. (author)

  12. Perturbative many-body approaches to finite nuclei

    International Nuclear Information System (INIS)

    Hjort-Jensen, M.; Engeland, T.; Holt, A.; Osnes, E.

    1992-06-01

    In this work the authors discuss various approaches to the effective interaction appropriate for finite nuclei. The methods reviewed are the folded-diagram method of Kuo and co-workers and the summation of the folded diagrams as advocated by Lee and Suzuki. Examples of applications to sd-shell nuclei from previous works are discussed together with hitherto unpublished results for nuclei in pf-shell. Since the method of Lee and Suzuki is found to yield the best converged results, this method is applied to calculate the effective interaction for nuclei in the pf-shell. For the calculation of the effective interaction, three recent versions of the Bonn meson-exchange potential model have been used. These versions are fitted to the same set of data and differ only in the strength of the tensor force. The importance of the latter for finite nuclei is discussed. 67 refs., 17 figs., 7 tabs

  13. Projected shell model study of odd-odd f-p-g shell proton-rich nuclei

    International Nuclear Information System (INIS)

    Palit, R.; Sheikh, J.A.; Sun, Y.; Jain, H.C.

    2003-01-01

    A systematic study of two-quasiparticle bands of the proton-rich odd-odd nuclei in the mass A∼70-80 region is performed using the projected shell model approach. The study includes Br, Rb, and Y isotopes with N=Z+2 and Z+4. We describe the energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states. Signature splitting and signature inversion in the rotational bands are discussed and are shown to be well described. A preliminary study of the odd-odd N=Z nucleus 74 Rb, using the concept of spontaneous symmetry breaking is also presented

  14. Intruder level and deformation in SD-pair shell model

    International Nuclear Information System (INIS)

    Luo Yan'an; Ning Pingzhi; Pan Feng

    2004-01-01

    The influence of intruder level on nuclear deformation is studied within the framework of the nucleon-pair shell model truncated to an SD-pair subspace. The results suggest that the intruder level has a tendency to reduce the deformation and plays an important role in determining the onset of rotational behavior. (authors)

  15. Global set of quadrupole deformation parameters for even-even nuclei

    International Nuclear Information System (INIS)

    Raman, S.; Nestor, C.W. Jr.

    1986-01-01

    A compilation of experimental results has been completed for the reduced electric quadrupole transition probability [B(E2)up arrow] between the 0 + ground state and the first 2 + state in even-even nuclei. This compilation together with certain simple relationships noted by other authors can be used to make reasonable predictions of unmeasured B(E2)up arrow values. The quadrupole deformation parameter β 2 immediately follows, because β 2 is proportional to [B(E2)up arrow]/sup 1/2/. 8 refs., 7 figs

  16. Two-body and three-body correlations in Os-shell nuclei

    International Nuclear Information System (INIS)

    Halderson, D.W.

    1974-01-01

    It is well known that conventional Brueckner calculations with modern nucleon-nucleon potentials have failed to reproduce experimental saturation properties of finite nuclei. The intent was to determine whether the discrepancies are due to the methods of calculation or the nucleon-nucleon potentials. Brueckner procedures which include only two-body correlations were applied to Os-shell nuclei. Calculations were performed with and without the Hartree-Fock condition, with and without partial occupation probabilities, and with various propagators and Pauli correction techniques. Then the entire class of three-body correlations was calculated by matrix solution of the Bethe-Faddeev equations. The convergence necessary to validate this technique was achieved by constructing a set of basic functions which contain no center of mass excitations and yet are still properly antisymmetrized. The two-body calculations yielded typical Brueckner results. The nuclei were underbound or the radii were too small. However, the three-body calculations yielded reasonable radii and moderate overbinding for the Reid soft core and Hamada-Johnston potentials. Therefore, the Bethe-Faddeev formalism has been shown to be a reasonable approach to calculation of the three-body correlations in finite nuclei; and the results of []these calculations demonstrate that the underbinding and collapsed radii of two-body calculations were largely due to the uncalculated correlations. (auth)

  17. Self-consistent study of nuclei far from stability with the energy density method

    CERN Document Server

    Tondeur, F

    1981-01-01

    The self-consistent energy density method has been shown to give good results with a small number of parameters for the calculation of nuclear masses, radii, deformations, neutron skins, shell and sub- shell effects. It is here used to study the properties of nuclei far from stability, like densities, shell structure, even-odd mass differences, single-particle potentials and nuclear deformations. A few possible consequences of the results for astrophysical problems are briefly considered. The predictions of the model in the super- heavy region are summarised. (34 refs).

  18. Deriving the nuclear shell model from first principles

    Science.gov (United States)

    Barrett, Bruce R.; Dikmen, Erdal; Vary, James P.; Maris, Pieter; Shirokov, Andrey M.; Lisetskiy, Alexander F.

    2014-09-01

    The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. Supported by the US NSF under Grant No. 0854912, the US DOE under

  19. Validity of single term energy expression for ground state rotational band of even-even nuclei

    International Nuclear Information System (INIS)

    Sharma, S.; Kumar, R.; Gupta, J.B.

    2005-01-01

    Full text: There are large numbers of empirical studies of gs band of even-even nuclei in various mass regions. The Bohr-Mottelson's energy expression is E(I) = AX + BX 2 +CX 3 +... where X = I(I+1). The anharmonic vibrator energy expression is: E(I) = al + bl 2 + cl 3 SF model with energy expression: E(I)= pX + qI + rXI... where the terms represents the rotational, vibrational and R-V interaction energy, respectively. The validity f the various energy expressions with two terms had been tested by Sharma for light, medium and heavy mass regions using R I s. R 4 plots (where, spin I=6, 8, 10, 12), which are parameter independent. It was also noted, that of the goodness of energy expression can be judged with the minimum input of energies (i.e. only 2 parameters) and predictability's of the model p to high spins. Recently, Gupta et. al proposed a single term energy expression (SSTE) which was applied for rare earth region. This proposed power law reflected the unity of rotation - vibration in a different way and was successful in explaining the structure of gs-band. It will be useful for test the single term energy expression for light and heavy mass region. The single term expression for energy of ground state band can be written as: E I =axI b , where the index b and the coefficient a are the constant for the band. The values of b+1 and a 1 are as follows: b 1 =log(R 1 )/log(I/2) and a 1 =E I /I b ... The following results were gained: 1) The sharp variation in the value of index b at given spin will be an indication of the change in the shape of the nucleus; 2) The value of E I /I b is fairly constant with spin below back-bending, which reflects the stability of shape with spin; 3) This proposed power law is successful in explaining the structure of gs-band of nuclei

  20. High spin structure of 35Cl and the sd-fp shell gap

    International Nuclear Information System (INIS)

    Kshetri, Ritesh; Saha Sarkar, M.; Ray, Indrani; Banerjee, P.; Sarkar, S.; Raut, Rajarshi; Goswami, A.; Chatterjee, J.M.; Chattopadhyay, S.; Datta Pramanik, U.; Mukherjee, A.; Dey, C.C.; Bhattacharya, S.; Dasmahapatra, B.; Bhowal, Samit; Gangopadhyay, G.; Datta, P.; Jain, H.C.; Bhowmik, R.K.; Muralithar, S.; Singh, R.P.; Kumar, R.

    2007-01-01

    The high spin states of 35 Cl have been studied by in-beam γ-spectroscopy following the fusion-evaporation reaction 12 C( 28 Si,αp) 35 Cl at E lab =70 and 88 MeV, using the Indian National Gamma (Clover) Array (INGA). Lifetimes of six new excited states have been estimated for the first time. To understand the underlying structure of the levels and transition mechanisms, experimental results have been compared with those from the large basis cross-shell shell model calculations. Involvement of orbitals from fp shell and squeezing of the sd-fp shell gap seem to be essential for reliable reproduction of high spin states

  1. A united phenomenological description of quadrupole excitations in even-even nuclei

    International Nuclear Information System (INIS)

    Lipas, P.O.; Haapakoski, P.; Honkaranta, T.

    1975-05-01

    A phenomenological model is developed for the collective quadrupole properties of all even-even nuclei. Rotational, vibrational, and transitional nuclei are included in the model on an equal footing. A Bohr-type intrinsic Hamiltonian for harmonic quadrupole vibrations about an axially deformed shape is solved exactly. States of good angular momentum are projected out of the intrinsic states, and they are made orthogonal by a Schmidt scheme. The angular-momentum and phonon-number composition of the states is analyzed at various stages; states with K=1 are found spurious. Excitation energies for the ground, β and γ bands are calculated as expectation values of a radically simplified nuclear Hamiltonian in our projected and orthogonalized states. With increasing deformation the calculated energies evolve smoothly from the evenly spaced phonon spectrum to the Bohr-Mottelson rotational-vibrational spectrum according to the scheme of Sheline and Sakai. The basic model contains only two parameters (deformation d and energy scale) to fix the entire quadrupole spectrum of a nucleus. The results are given in the form of graphs suitable for immediate application; numerical results are readily produced by our computer code. The ground bands are fitted comparably to the VMI model, while the β and γ bands are reproduced qualitatively. The nuclei 152 Sm, 152 Gd, and 114 Cd are used as test cases. Quadrupole moments and E2 transition rates are also calculated. Intra-ground-band transition ratios and branching ratios from the β and γ bands are given in terms of the single parameter d. The results are applied to 152 Sm, with fair success. Finally the model to include two more parameters (anisotropy) is extended. The improvement over the basic model is modest in view of added parameters and computational effort. (author)

  2. Evolutionary calculations for planetary nebula nuclei with continuing mass loss and realistic starting conditions

    International Nuclear Information System (INIS)

    Faulkner, D.J.; Wood, P.R.

    1984-01-01

    Evolutionary calculations for nuclei of planetary nebulae are described. They were made using assumptions regarding mass of the NPN, phase in the He shell flash cycle at which the NPN leaves the AGB, and time variation of the mass loss rate. Comparison of the evolutionary tracks with the observational Harman-Seaton sequence indicates that some recently published NPN luminosities may be too low by a factor of three. Comparison of the calculated timescales with the observed properties of NPN and of white dwarfs provides marginal evidence for the PN ejection being initiated by the helium shell flash itself

  3. Collective motions and band structures in A = 60 to 80, even--even nuclei

    International Nuclear Information System (INIS)

    Hamilton, J.H.; Robinson, R.L.; Ramayya, A.V.

    1978-01-01

    Evidence for and the theoretical understanding of the richness of the collective band structures as illustrated by at least seven bands seen in levels of 68 Ge, 74 Se are reviewed. The experimental data on even-even nuclei in the A = 60 to 80 region have now revealed a wide variety of collective bands with different structures. The even parity yrast cascades alone are seen to involve multiple collective structures. In addition to the ground-state bands, strong evidence is presented for both neutron and proton rotation-aligned bands built on the same orbital, (g 9 / 2 ) 2 , in one nucleus. Several other nuclei also show the crossing of RAL bands around the 8 + level in this region. Evidence continues to be strong experimentally and supported theoretically that there is some type of shape transition and shape coexistence occurring now both in the Ge and Se isotopes around N = 40. Negative parity bands with odd and even spins with very collective nature are seen in several nuclei to high spin. These bands seem best understood in the RAL model. Very collective bands with ΔI = 1, extending from 2 + to 9 + are seen with no rotation-alignment. The purity of these bands and their persistence to such high spin establish them as an independent collective mode which is best described as a gamma-type vibration band in a deformed nucleus. In addition to all of the above bands, new bands are seen in 76 Kr and 74 Se. The nature of these bands is not presently known. 56 references

  4. Coexistence in even-even nuclei with emphasis on the germanium isotopes

    International Nuclear Information System (INIS)

    Carchidi, M.A.V.

    1985-01-01

    No simple model to date can explain in a self-consistent way the results of direct transfer data and BE2 electromagnetic rates in the germanium isotopes. The simplest models use a two-state interaction for describing the ground state and first excited O + state. In all cases, these models can account for some of the data, but they are in drastic conflict with other experimental measurements. In this thesis, it is shown that a two-state model can consistently account for two-neutron and alpha transfer O + 2 /g.s. cross-section ratio data in the germanium region (ie. zinc, germanium, and selenium), proton occupation number data in the ground states of the even stable zinc, germanium, and selenium isotopes, and BE2 transition rates in isotopes of germanium and zinc. In addition the author can account for most of the one-neutron and two-neutron transfer O + 2 /g.s. and (9/2 + 2 )/(9/2 + 1 ) cross-section ratio data in the odd-mass germanium isotopes. In this generalized two-state model (called Rerg1), the author makes as few assumptions as possible about the nature of the basis states; rather the author allows the experimental data to dictate the properties of the basis-state overlaps. In this sense, the author has learned much about the basis states and has a useful tool for constructing them. The author also shows that the Rerg1 model can quantitatively account for all two-neutron O + 2 /g.s. cross-section ratio data in all even-even nuclei from calcium to uranium

  5. Shell structure in superdeformed nuclei at high rotational frequencies

    International Nuclear Information System (INIS)

    Ploszajczak, M.

    1980-01-01

    Properties of the shell structure in superdeformed nuclei at high rotational frequencies are discussed. Moreover, stability of the high spin compound nucleus with respect to the fission and the emission of light particles is investigated. (author)

  6. Deformation properties of even-even Os, Pt, Hg nuclei and spectroscopic properties of odd Re, Os, Ir, Pt, Au, Hg nuclei from self-consistent calculations

    CERN Document Server

    Desthuilliers-Porquet, M G; Quentin, P; Sauvage-Letessier, J

    1981-01-01

    Static properties of even-even Os, Pt, Hg nuclei have been obtained from HF+BCS calculations. Single-particle wave functions which come from these self-consistent calculations have been used to calculate some spectroscopic properties of odd Re, Os, Ir, Pt, Au, and Hg nuclei, within the rotor-quasiparticle coupling model. The authors' calculations are able to give a good description of most of available experimental data. (12 refs).

  7. Shell closures, loosely bound structures, and halos in exotic nuclei

    International Nuclear Information System (INIS)

    Saxena, G.; Singh, D.

    2013-01-01

    Inspired by the recent experiments indicating doubly magic nuclei that lie near the drip-line and encouraged by the success of our relativistic mean-field (RMF) plus state-dependent BCS approach to the description of the ground-state properties of drip-line nuclei, we develop this approach further, across the entire periodic table, to explore magic nuclei, loosely bound structures, and halo formation in exotic nuclei. In our RMF+BCS approach, the single-particle continuum corresponding to the RMF is replaced by a set of discrete positive-energy states for the calculations of pairing energy. Detailed analysis of the single-particle spectrum, pairing energies, and densities of the nuclei predict the unusual proton shell closures at proton numbers Z = 6, 14, 16, 34, and unusual neutron shell closures at neutron numbers N = 6, 14, 16, 34, 40, 70, 112. Further, in several nuclei like the neutron-rich isotopes of Ca, Zr, Mo, etc., the gradual filling of lowlying single-particle resonant state together with weakly bound single-particle states lying close to the continuum threshold helps accommodate more neutrons but with an extremely small increase in the binding energy. This gives rise to the occurrence of loosely bound systems of neutron-rich nuclei with a large neutron-to-proton ratio. In general, the halo-like formation, irrespective of the existence of any resonant state, is seen to be due to the large spatial extension of the wave functions for the weakly bound single-particle states with low orbital angular momentum having very small or no centrifugal barriers.

  8. Shell closures, loosely bound structures, and halos in exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, G., E-mail: gauravphy@gmail.com [Govt. Women Engineering College, Department of Physics (India); Singh, D. [University of Rajasthan, Department of Physics (India)

    2013-04-15

    Inspired by the recent experiments indicating doubly magic nuclei that lie near the drip-line and encouraged by the success of our relativistic mean-field (RMF) plus state-dependent BCS approach to the description of the ground-state properties of drip-line nuclei, we develop this approach further, across the entire periodic table, to explore magic nuclei, loosely bound structures, and halo formation in exotic nuclei. In our RMF+BCS approach, the single-particle continuum corresponding to the RMF is replaced by a set of discrete positive-energy states for the calculations of pairing energy. Detailed analysis of the single-particle spectrum, pairing energies, and densities of the nuclei predict the unusual proton shell closures at proton numbers Z = 6, 14, 16, 34, and unusual neutron shell closures at neutron numbers N = 6, 14, 16, 34, 40, 70, 112. Further, in several nuclei like the neutron-rich isotopes of Ca, Zr, Mo, etc., the gradual filling of lowlying single-particle resonant state together with weakly bound single-particle states lying close to the continuum threshold helps accommodate more neutrons but with an extremely small increase in the binding energy. This gives rise to the occurrence of loosely bound systems of neutron-rich nuclei with a large neutron-to-proton ratio. In general, the halo-like formation, irrespective of the existence of any resonant state, is seen to be due to the large spatial extension of the wave functions for the weakly bound single-particle states with low orbital angular momentum having very small or no centrifugal barriers.

  9. Structure of light mass (exotic) nuclei as evidenced by scattering from hydrogen

    International Nuclear Information System (INIS)

    Amos, K.; Dortmans, P.J.

    1998-01-01

    Microscopic optical model potentials generated by full folding of realistic two-nucleon (n/N) interactions with nuclear structure specified by large basis shell model calculations have been constructed. With those (nonlocal) optical potentials, predictions of light mass nuclei-hydrogen scattering were obtained at intermediate energies (65 to 800 MeV) that agree well with observations of cross sections and analyzing powers

  10. Shell model truncation schemes for rotational nuclei

    International Nuclear Information System (INIS)

    Halse, P.; Jaqua, L.; Barrett, B.R.

    1990-01-01

    The suitability of the pair condensate approach for rotational states is studied in a single j = 17/2 shell of identical nucleons interacting through a quadrupole-quadrupole hamiltonian. The ground band and a K = 2 excited band are both studied in detail. A direct comparison of the exact states with those constituting the SD and SDG subspaces is used to identify the important degrees of freedom for these levels. The range of pairs necessary for a good description is found to be highly state dependent; S and D pairs are the major constituents of the low-spin ground band levels, while G pairs are needed for those in the γ-band. Energy spectra are obtained for each truncated subspace. SDG pairs allow accurate reproduction of the binding energy and K = 2 excitation energy, but still give a moment of inertia which is about 30% too small even for the lowest levels

  11. Spectral distribution study of nuclei in 2p-1f shell

    International Nuclear Information System (INIS)

    Haq, R.; Parikh, J.C.

    1975-01-01

    Systematics of nuclei in the beginning of fp-shell are investigated using the spectral distribution method of French. The centroid energies and widths for various distributions are evaluated using the interaction of Kuo with the modification suggested by McGrory et al. The two moment distributions are used to determine ground state energies, fractional occupancy of the single particle orbits for ground states and low lying spectra of various nuclei in this shell. The results are compared with the deformed configuration mixing calculations of Dhar et al. The goodness of Wigner SU(4) symmetry in these nuclei has been investigated. The mixing of various SU(4) representations near the ground state provides a measure of symmetry mixing and the substantial admixture in most of the cases shows that it is badly broken, largely due to the single particle spin orbit coupling. (author)

  12. Gamow-Teller beta decay of proton-rich nuclei

    International Nuclear Information System (INIS)

    Klepper, O.; Rykaczewski, K.

    1990-11-01

    The beta decays of 48 Mn and of even-even nuclei near the double shell-closures at 100 Sn and 146 Gd are currently investigated at the GSI on-line mass separator. Their Gamow-Teller strength are surveyed in their present experimental status, together with related results from the ISOLDE (CERN) and ISOCELE (Orsay) separators, and are compared with predictions from different nuclear models. The strength of the 0 + → 1 + Gamow-Teller transitions is compiled in tables and graphs. (orig.)

  13. Study of neutron shell structure of even-even 40-56Ca isotopes by the dispersive optical model

    International Nuclear Information System (INIS)

    Bespalova, O.V.; Boboshin, I.N.; Varlamov, V.V.; Ermakova, T.A.; Ishkhanov, B.S.; Romanovskij, E.A.; Spasskaya, T.I.; Timokhina, T.P.

    2005-01-01

    The single-particle energies and occupation probabilities of the bound neutron states in 40,42,44,46,48 Ca isotopes were obtained by the joint evaluation of the stripping and pick-up reaction data. The results were analyzed by the dispersive optical model and a good agreement was achieved. The dispersive optical potential was extrapolated to unstable 50,52,54,56 Ca nuclei. The calculated single-particle energies of the bound neutron states in unstable Ca isotopes were compared with the nuclear shell-model calculations, which predicted new magic number N = 34 for nuclei with Z = 20 [ru

  14. Porting oxbash to linux and its application in SD-shell calculations

    International Nuclear Information System (INIS)

    Suman, H.; Suleiman, S.

    1998-01-01

    Oxbash, a code for nuclear structure calculations within the shell model approach, was ported to Linux that is a UNIX clone for PC's. Due to many faults in the code version we had, deep corrective actions in the code had to be undertaken. This was done through intensive use of UNIX utilities like sed, nm, make in addition to proper shell script programming. Our version contained calls for missing subroutines. Some of these were included from C- and f90 libraries. Others had to be written separately. All these actions were organized and automated through a robust system of M akefiles . Finally the code was tested and applied for nuclei with 18 and 20 nucleons. (author)

  15. Shape transition in Pt-nuclei with mass A ∼190

    International Nuclear Information System (INIS)

    Chamoli, S.K.

    2017-01-01

    The nuclei in mass region A ∼190 are well known for the prolate-oblate shape co-existence/transition phenomena. The shape coexistence phenomena has been observed in nuclei like Hg and Tl of this mass region. The calculations done for Pt nuclei in indicate a smooth shape change from prolate deformed "1"8"6Pt to nearly spherical "2"0"2"-"2"0"4 Pt through the region of triaxially deformed "1"8"8"-"1"9"8Pt and slightly oblate "2"0"0Pt. In these calculations, a change of shape from prolate to oblate is expected at A = 188. In recent high spin spectroscopic investigations, significant amount of reduced prolate collectivity has been observed in "1"8"8Pt. The level lifetimes provide valuable information about the nuclear shape and also the shape change with increase in spin along a band. So, to get clear signature of prolate to oblate shape inversion in Pt nuclei near A = 190, it is required to perform lifetime measurements. With this objective, the RDM lifetime measurements of high spin states have been done for various even-even Pt isotopes with masss A ≤ 186 over the years. The results obtained in these measurements are very encouraging and do indicate changing nuclear structure for Pt-isotopes with increasing mass at low spins. A gradual increase in B(E2) values upto 4"+ state and near constant nature there after in "1"8"8Pt, contrary to the other light neighboring Pt nuclei tends to indicate the volatile nature of deformation in Pt nuclei near A ∼ 190 which needs further theoretical investigations. (author)

  16. Statistical properties of the nuclear shell-model Hamiltonian

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Oliveira, N.A. de

    1986-01-01

    The statistical properties of realistic nuclear shell-model Hamiltonian are investigated in sd-shell nuclei. The probability distribution of the basic-vector amplitude is calculated and compared with the Porter-Thomas distribution. Relevance of the results to the calculation of the giant resonance mixing parameter is pointed out. (Author) [pt

  17. Single particle Schroedinger fluid and moments of inertia of deformed nuclei

    International Nuclear Information System (INIS)

    Doma, S.B.

    2002-01-01

    The authors have applied the theory of the single-particle Schroedinger fluid to the nuclear collective motion of axially deformed nuclei. A counter example of an arbitrary number of independent nucleons in the anisotropic harmonic oscillator potential at the equilibrium deformation has been also given. Moreover, the ground states of the doubly even nuclei in the s-d shell 20 Ne, 24 Mg, 28 Si, 32 S and 36 Ar are constructed by filling the single-particle states corresponding to the possible values of the number of quanta of excitations n x , n y and n z . Accordingly, the cranking-model, the rigid-body model and the equilibrium-model moments of inertia of these nuclei are calculated as functions of the oscillator parameters ℎω x , ℎω y and ℎω z which are given in terms of the non deformed value ℎω 0 0 , depending on the mass number A, the number of neutrons N, the number of protons Z, and the deformation parameter β. The calculated values of the cranking-model moments of inertia of these nuclei are in good agreement with the corresponding experiential values and show that the considered axially deformed nuclei may have oblate as well as prolate shapes and that the nucleus 24 Mg is the only one which is highly deformed. The rigid-body model and the equilibrium-model moments of inertia of the two nuclei 20 Ne and 24 Mg are also in good agreement with the corresponding experimental values

  18. Mirror energy difference and the structure of loosely bound proton-rich nuclei around A =20

    Science.gov (United States)

    Yuan, Cenxi; Qi, Chong; Xu, Furong; Suzuki, Toshio; Otsuka, Takaharu

    2014-04-01

    The properties of loosely bound proton-rich nuclei around A =20 are investigated within the framework of the nuclear shell model. In these nuclei, the strength of the effective interactions involving the loosely bound proton s1/2 orbit is significantly reduced in comparison with that of those in their mirror nuclei. We evaluate the reduction of the effective interaction by calculating the monopole-based-universal interaction (VMU) in the Woods-Saxon basis. The shell-model Hamiltonian in the sd shell, such as USD, can thus be modified to reproduce the binding energies and energy levels of the weakly bound proton-rich nuclei around A =20. The effect of the reduction of the effective interaction on the structure and decay properties of these nuclei is also discussed.

  19. Production of n-rich Nuclei along the Closed Shell N=126 in the collision 136Xe + 208Pb @E lab =870 MeV

    Science.gov (United States)

    Quero, D.; Vardaci, E.; Kozulin, E. M.; Zagrebaev, V. A.; Corradi, L.; Pulcini, A.; La Rana, G.; Itkis, I. M.; Knyazheva, G. N.; Novikov, K.; Harca, I.; Fioretto, E.; Stefanini, A. M.; Montanari, D.; Montagnoli, G.; Scarlassara, F.; Szilner, S.; Mijatović, T.; Trzaska, W. H.

    2018-05-01

    Multi-nucleon transfer reactions are nowadays the only known mean to produce neutron-rich nuclei in the Terra Incognita. The closed-shell region N=126 is crucial for both studying shell-quenching in exotic nuclei and the r-process, being its last “waiting-point”. The choice of suitable reactions is challenging and a favorable case is 136Xe+208Pb, near the Coulomb barrier, because their neutron shell-closures play a stabilizing role, favoring the proton-transfer from lead to xenon. TOF-TOF data were analyzed to reconstruct the mass-energy distribution of the primary fragments. Preliminary results of an experiment held at Laboratori Nazionali di Legnaro with PRISMA, aimed at A and Z identification of the products, will be shown.

  20. Elementary isovector spin and orbital magnetic dipole modes revisited in the shell model

    International Nuclear Information System (INIS)

    Richter, A.

    1988-08-01

    A review is given on the status of mainly spin magnetic dipole modes in some sd- and fp-shell nuclei studied with inelastic electron and proton scattering, and by β + -decay. Particular emphasis is also placed on a fairly new, mainly orbital magnetic dipole mode investigated by high-resolution (e,e') and (p,p') scattering experiments on a series of fp-shell nuclei. Both modes are discussed in terms of the shell model with various effective interactions. (orig.)

  1. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... Nuclei in the actinide chain and beyond are prone to fission owing to ... mass nuclei are typically more difficult, because the intensity is .... j15/2 neutron alignments in a region where shell stablization effects are crucial.

  2. RMF+BCS description of N = 32 and N = 34 shell closure

    International Nuclear Information System (INIS)

    Saxena, G.; Kumawat, M.; Singh, U.K.; Jain, S.K.; Aggarwal, Mamta; Kaushik, M.; Singh, S. Somorendro

    2017-01-01

    We have employed RMF+BCS (relativistic mean-field plus BCS) approach to study N = 32 and N = 34 shell closure with the help of ground state properties of even-even nuclei. Our present investigations include single particle energies, deformations, separation energies as well as neutron and proton densities etc. Encouraged by the recent experiments showing neutron magicity at N = 32 for Ca isotopes, we have applied RMF theory with delta function pairing along with mass dependency (1/A) for full chain of N = 32 and N = 34 isotones upto drip lines. This study predicts new doubly magic nuclei specially 48 Si which is in the same mass region in 52 Ca as the recent experiments observed

  3. High spin structure of {sup 35}Cl and the sd-fp shell gap

    Energy Technology Data Exchange (ETDEWEB)

    Kshetri, Ritesh [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Saha Sarkar, M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India)]. E-mail: maitrayee.sahasarkar@saha.ac.in; Ray, Indrani [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Banerjee, P. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Sarkar, S. [Department of Physics, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Raut, Rajarshi [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Goswami, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chatterjee, J.M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chattopadhyay, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Datta Pramanik, U. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Mukherjee, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Dey, C.C. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Dasmahapatra, B. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Bhowal, Samit [Department of Physics, Surendranath Evening College, Kolkata 700009 (India); Gangopadhyay, G. [University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009 (India); Datta, P. [Anandamohan College, 102/1, Raja Rammohan Sarani, Kolkata 700009 (India); Jain, H.C. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bhowmik, R.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Muralithar, S.; Singh, R.P.; Kumar, R. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2007-01-15

    The high spin states of {sup 35}Cl have been studied by in-beam {gamma}-spectroscopy following the fusion-evaporation reaction {sup 12}C({sup 28}Si,{alpha}p){sup 35}Cl at E{sub lab}=70 and 88 MeV, using the Indian National Gamma (Clover) Array (INGA). Lifetimes of six new excited states have been estimated for the first time. To understand the underlying structure of the levels and transition mechanisms, experimental results have been compared with those from the large basis cross-shell shell model calculations. Involvement of orbitals from fp shell and squeezing of the sd-fp shell gap seem to be essential for reliable reproduction of high spin states.

  4. E2 and M1 transition strengths in heavy deformed nuclei revisited

    International Nuclear Information System (INIS)

    Draayer, J.P.; Popa, G.; Hirsch, J.G.; Vargas, C.E.

    2003-01-01

    An update on the status of pseudo-SU(3) shell-model calculations in strongly deformed nuclei in the rare earth region is presented. Representative results for energy levels as well as E2 (quadrupole) and M1 (scissors) transitions strengths in 162 Dy (even-even) and 163 Dy (odd-mass) are given. The calculations use realistic single-particle energies and quadrupole-quadrupole and pairing interaction strengths fixed from systematics. The strengths of rotor-like terms included in the Hamiltonian- all small relative to the other terms in the interaction were adjusted to give an overall best fit to the energy spectra. The results present a paradox: for even-even nuclei (integer angular momentum) non-zero pseudo-spin configurations seems to be unimportant while for the odd-mass systems (half-integer angular momentum) pseudo-spin mixing is essential as spin-flip couplings appear to dominate the M1 transition strengths. (Author)

  5. Pion production in nuclei

    International Nuclear Information System (INIS)

    Afnan, I.R.; Thomas, A.W.

    1976-01-01

    A method has been suggested for relating μ-capture in nuclei to pion absorption through partially conserved axial vector current hypothesis. The success of the method relies heavily on the knowledge of the pion absorption amplitude at a momentum transfer equal to the μ-meson mass. That is we need to know the pion absorption amplitude off the mass-shell. The simplest nucleus for which this suggestion can be examined is μ-capture in deuterium. The Koltum-Reitan model is used to determine the pion absorption amplitude off the mass shell. In particular the senstivity of this off-mass-shell extrapolution to details of the N-N interaction is studied. (author)

  6. Calculation of ground state deformation of even-even rare-earth nuclei in sdg interacting boson model

    International Nuclear Information System (INIS)

    Wang Baolin

    1995-01-01

    The analytical calculation of the nuclear ground state deformation of the even-even isotopes in the rare-earth region is given by utilizing the intrinsic states of the sdg interacting boson model. It is compared systematically with the reported theoretical and experimental results. It is shown that the sdg interacting boson model is a reasonable scheme for the description of even-even nuclei deformation

  7. IBM parameters derived from realistic shell-model Hamiltonian via Hn-cooling method

    International Nuclear Information System (INIS)

    Nakada, Hitoshi

    1997-01-01

    There is a certain influence of non-collective degrees-of-freedom even in lowest-lying states of medium-heavy nuclei. This influence seems to be significant for some of the IBM parameters. In order to take it into account, several renormalization approaches have been applied. It has been shown in the previous studies that the influence of the G-pairs is important, but does not fully account for the fitted values. The influence of the non-collective components may be more serious when we take a realistic effective nucleonic interaction. To incorporate this influence into the IBM parameters, we employ the recently developed H n -cooling method. This method is applied to renormalize the wave functions of the states consisting of the SD-pairs, for the Cr-Fe nuclei. On this ground, the IBM Hamiltonian and transition operators are derived from corresponding realistic shell-model operators, for the Cr-Fe nuclei. Together with some features of the realistic interaction, the effects of the non-SD degrees-of-freedom are presented. (author)

  8. On the core-mass-shell-luminosity relation for shell-burning stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  9. Spectra theory for nuclei with closed shells (1962)

    International Nuclear Information System (INIS)

    Gillet, V.

    1962-01-01

    A unified theory for the spectra of nuclei with closed shells, based on the elementary particle-hole excitation of these systems, is applied to a study of carbon-12, oxygen-16 and calcium-40. Two approximations are made. The first consists in diagonalizing the residual two-body interaction in a limited sub-space having one particle and one hole configurations. Its validity depends on the high energy necessary for exciting a particle-hole pair. The second approximation consists in re-summing the infinite sub-series of the particle-hole diagrams. It is equivalent to the Hartree-Fock method depending on the time, or to Quasi-Boson method. Its domain of validity in the nuclear case is not thoroughly Understood. The summed diagrams are preponderant at the high density limit, when the nuclear density is about unity. The violation of the Pauli principle in this approximation is only justified if the number of excited pairs is small with respect to the number of particle states available; in the case of light nuclei the degeneracies of the shells are small. Nevertheless this approximation, which postulates the existence of an average nuclear field, varying slowly with time with respect to the nucleons periods has the merit of being self-consistent, of giving orthogonal proper states in the non-physical state of the mass centre, and of improving the calculation of the summation rules. In order to determine and to limit the role of phenomenology in the results obtained using these approximations, a maximum amount of experimental data is calculated. By applying method of least squares to fourteen energy levels of oxygen and carbon, the region of optimum agreement in the effective interaction parameters is determined. This region is in part a function of the numerical approximations made. We hope that it will keep its significance when the theory is improved. It is compatible with certain characteristics of free nucleon-nucleon scattering. The present research favours the

  10. Shell effects on the E1 moments of Ra-Th nuclei

    International Nuclear Information System (INIS)

    Leander, G.A.

    1984-01-01

    Large systematic shell effects on intrinsic E1 moments are found, which should modulate any E1 moment induced by β 3 deformation. The calculated shell effects can explain an emerging trend for E1 data in Ra-Th nuclei, if and only if the gross β 3 -induced polarization of finite nuclear matter goes in the same direction as the lightning rod effect. 16 references

  11. Doubly magic nuclei from lattice QCD forces at MPS=469 MeV /c2

    Science.gov (United States)

    McIlroy, C.; Barbieri, C.; Inoue, T.; Doi, T.; Hatsuda, T.

    2018-02-01

    We perform ab initio self-consistent Green's function calculations of the closed shell nuclei 4He, 16O, and 40Ca, based on two-nucleon potentials derived from lattice QCD simulations, in the flavor SU(3) limit and at the pseudoscalar meson mass of 469 MeV/c2. The nucleon-nucleon interaction is obtained using the hadrons-to-atomic-nuclei-from-lattice (HAL) QCD method, and its short-distance repulsion is treated by means of ladder resummations outside the model space. Our results show that this approach diagonalizes ultraviolet degrees of freedom correctly. Therefore, ground-state energies can be obtained from infrared extrapolations even for the relatively hard potentials of HAL QCD. Comparing to previous Brueckner Hartree-Fock calculations, the total binding energies are sensibly improved by the full account of many-body correlations. The results suggest an interesting possible behavior in which nuclei are unbound at very large pion masses and islands of stability appear at first around the traditional doubly magic numbers when the pion mass is lowered toward its physical value. The calculated one-nucleon spectral distributions are qualitatively close to those of real nuclei even for the pseudoscalar meson mass considered here.

  12. Calculation of multidimensional potential energy surfaces for even-even transuranium nuclei: systematic investigation of the triaxiality effect on the fission barrier

    Science.gov (United States)

    Chai, Qing-Zhen; Zhao, Wei-Juan; Liu, Min-Liang; Wang, Hua-Lei

    2018-05-01

    Static fission barriers for 95 even-even transuranium nuclei with charge number Z = 94–118 have been systematically investigated by means of pairing self-consistent Woods-Saxon-Strutinsky calculations using the potential energy surface approach in multidimensional (β 2, γ, β 4) deformation space. Taking the heavier 252Cf nucleus (with the available fission barrier from experiment) as an example, the formation of the fission barrier and the influence of macroscopic, shell and pairing correction energies on it are analyzed. The results of the present calculated β 2 values and barrier heights are compared with previous calculations and available experiments. The role of triaxiality in the region of the first saddle is discussed. It is found that the second fission barrier is also considerably affected by the triaxial deformation degree of freedom in some nuclei (e.g., the Z=112–118 isotopes). Based on the potential energy curves, general trends of the evolution of the fission barrier heights and widths as a function of the nucleon numbers are investigated. In addition, the effects of Woods-Saxon potential parameter modifications (e.g., the strength of the spin-orbit coupling and the nuclear surface diffuseness) on the fission barrier are briefly discussed. Supported by National Natural Science Foundation of China (11675148, 11505157), the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province (2017GGJS008), the Foundation and Advanced Technology Research Program of Henan Province (162300410222), the Outstanding Young Talent Research Fund of Zhengzhou University (1521317002) and the Physics Research and Development Program of Zhengzhou University (32410017)

  13. Formation of fission-fragment mass distribution for nuclei lighter than thorium

    International Nuclear Information System (INIS)

    Itkis, M.G.; Mul'gin, S.I.; Rusanov, A.Y.; Okolovich, A.N.; Smirenkin, G.N.

    1986-01-01

    A phenomenological approach to description of fission-fragment mass distribution Y(M) for nuclei in the vicinity of Pb is developed and used to extract from the experimental Y(M) data the nuclear deformation potential energy V(M) and its components: the macroscopic (liquid-drop) part and the shell correction in the transition state. The results of the analysis are compared with the theoretically obtained V(M) and Y(M). The three-hump fragment-mass distributions observed in Ra fission are satisfactorily described within the framework of the approach developed. The properties of the symmetric and asymmetric fission valleys and the related Y(M) components are discussed

  14. Low energy E0 transitions in odd-mass nuclei of the neutron deficient 180 < A < 200 region

    International Nuclear Information System (INIS)

    Zganjar, E.F.; Kortelahti, M.O.; Wood, J.L.; Papanicolopulos, C.D.

    1987-01-01

    The region of neutron-deficient nuclei near Z = 82 and N = 104 provides the most extensive example of low-energy shape coexistence anywhere on the mass surface. It is shown that E0 and E0 admixed transitions may be used as a fingerprint to identify shape coexistence in odd-mass nuclei. It is also shown that all the known cases of low energy E0 and E0 admixed transitions in odd-mass nuclei occur where equally low-lying O + states occur in neighboring even-even nuclei. A discussion of these and other relevant data as well as suggestions for new studies which may help to clarify and, more importantly, quantify the connection between E0 transitions and shape coexistence are presented. 60 refs., 7 figs., 4 tabs

  15. Distinction of neurochemistry between the cores and their shells of auditory nuclei in tetrapod species.

    Science.gov (United States)

    Zeng, ShaoJu; Li, Jia; Zhang, XinWen; Zuo, MingXue

    2007-01-01

    The distribution of Met-enkephalin (ENK), substance P (SP) and serotonin (5-HT) differs between the core and shell regions of the mesencephalic and diencephalic auditory nuclei of the turtle [Belekhova et al., 2002]. These neurochemical distinctions are also found in other tetrapods (mammals, birds and amphibians). The distribution of ENK, SP and 5-HT was examined in the core and shell regions of both mesencephalic and diencephalic auditory nuclei, and in the telencephalic auditory areas of Bengalese finches (Lonchura striata) and mice (Mus musculus), as well as in corresponding auditory areas in toads (Bufo bufo). ENK, SP and 5-HT immunoreactive fibers and perikarya were largely absent from the core regions of both mesencephalic and diencephalic auditory nuclei, in comparison with the shell regions of mice and Bengalese finches. In the toad, however, this pattern was observed in the mesencephalic auditory nucleus, but not in the diencephalic auditory areas. ENK and SP immunoreactive perikarya were detected in the telencephalic auditory area of mice, whereas no ENK, SP or 5-HT immunolabeling was observed in the telencephalic auditory area (Field L) of Bengalese finches. These findings are discussed in terms of the evolution of the core-and-shell organization of auditory nuclei of tetrapods. Copyright 2007 S. Karger AG, Basel.

  16. Systematic study of α half-lives of superheavy nuclei

    Science.gov (United States)

    Budaca, A. I.; Silisteanu, I.

    2014-03-01

    Two different descriptions of the α-decay process, namely, the shell model rate theory and phenomenological description are emphasized to investigate the α-decay properties of SHN. These descriptions are shortly presented and illustrated by their results. Special attention is given to the shell structure and resonance scattering effects due to which they exist and decay. A first systematics of α-decay properties of SHN was performed by studying the half-life vs. energy correlations in terms of atomic number and mass number. Such a systematics shows that the transitions between even-even nuclei are favored, while all other transitions with odd nucleons are prohibited. The accuracy of experimental and calculated α-half-lives is illustrated by the systematics of these results.

  17. A systematic study of superheavy nuclei for Z = 114 and beyond using the relativistic mean field approach

    International Nuclear Information System (INIS)

    Patra, S.K.; Wu, Cheng-Li; Praharaj, C.R.; Gupta, Raj K.

    1999-01-01

    We have studied the structural properties of even-even, neutron deficient, Z=114-126, superheavy nuclei in the mass region A ∼ 270-320, using an axially deformed relativistic mean field model. The calculations are performed with three parameter sets (NL1, TM1 and NL-SH), in order to see the dependence of the structural properties on the force used. The calculated ground state shapes are found to be parameter dependent. For some parameter sets, many of the nuclei are degenerate in their ground state configuration. Special attention is given to the investigation of the magic structures (spherical shell closures) in the superheavy region. We find that some known magic numbers are absent and new closed shells are predicted. Large shell gaps appear at Z=80, 92, (114), 120 and 138, N=138, (164), (172), 184, (198), (228) and 258, irrespective of the parameter sets used. The numbers in parenthesis are those which correspond to relatively smaller gaps. The existence of new magic numbers in the valley of superheavy elements is discussed. It is suggested that nuclei around Z=114 and N = 164 ∼ 172 could be considered as candidates for the next search of superheavy nuclei. The existence of superheavy islands around Z=120 and N=172 or N 184 double shell closure is also discussed

  18. Comparison of the Porter-Thomas distribution with neutron resonance data of even-even nuclei

    International Nuclear Information System (INIS)

    Camarda, H.S.

    1994-01-01

    The low-energy neutron resonance data of the even-even nuclei 152 Sm, 158 Gd, 162 Dy, 166,168 Er, 182 W, 232 Th, and 236,238 U have been examined in order to test the validity of the Porter-Thomas distribution of the reduced neutron widths---a chi-squared distribution with one degree of freedom (v=1). In an attempt to circumvent the ever-present problems of missed or spurious s wave levels as well as extra p wave levels, a maximum likelihood statistic was employed which used only measured widths greater than some minimum value. A Bayes-theory test applied to the data helped to ensure that p wave contamination of the s wave level population was not significant. The error-weighted value of the number of degrees of freedom for the nine nuclei studied, left-angle v right-angle=0.98±0.10, is consistent with the theoretical expectation of v=1

  19. Systematic description of superdeformed bands in the mass-190 region

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yang; Guidry, M. [Oak Ridge National Lab., TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States); Zhang, Jing-ye [Univ. of Tennessee, Knoxville, TN (United States)

    1996-12-31

    Superdeformed bands for the mass-190 region are described by the Projected Shell Model. Even-even, odd mass and odd-odd nuclei are equally well described. Good agreement with available data for all isotopes studied is obtained. The authors calculation of electromagnetic properties and pairing correlations provides an understanding of the observed gradual increase of dynamical moments of inertia with angular momentum observed in many bands in this mass region.

  20. Reflection asymmetric shapes in nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.; Carpenter, M.P.; Emling, H.

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N∼134, Z∼88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin ∼8ℎ. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin ∼7ℎ. The nuclei which exhibit octupole deformation in this mass region are 144 Ba, 146 Ba and 146 Ce; 142 Ba, 148 Ce, 150 Ce and 142 Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab

  1. Clustering of 1p-shell nuclei in the framework of the shell model

    International Nuclear Information System (INIS)

    Kwasniewicz, E.

    1991-01-01

    The two- and three-fragment clustering of the 1p-shell nuclei has been studied in the framework of the shell model. The absolute probabilities of the required types of clustering in a given nucleus have been obtained by projecting its realistic shell-model wavefunction onto the suitable subspace of the orthonormal, completely antisymmetric two- or three-cluster states. With the aid of these data the selectivity in population of final states produced in multinucleon transfer reactions has been discussed. This problem has also been considered in the approach where the exchange of nucleons between clusters has been neglected. This has enabled to demonstrate the role of the complete antisymmetrization in predicting the intensities of states populated in multinucleon transfer reactions. The compact theory of the multinucleon one- and two-cluster spectroscopic amplitudes has been formulated. The examples of studying the nuclear structure and reactions with the aid of these spectroscopic amplitudes have been presented. (author)

  2. Linking partial and quasi dynamical symmetries in rotational nuclei and shell evolution in {sup 96}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Christoph

    2016-01-27

    The first part of this thesis revolves around symmetries in the sd-IBA-1. A region of approximate O(6) symmetry for the ground-state band, a partial dynamical symmetry (PDS) of type III, in the parameter space of the extended consistent-Q formalism is identified through quantum number fluctuations. The simultaneous occurrence of a SU(3) quasi dynamical symmetry for nuclei in the region of O(6) PDS is explained via the β=1, γ=0 intrinsic state underlying the ground-state band. The previously unrelated concepts of PDS and QDS are connected for the first time and many nuclei in the rare earth region that approximately satisfy both symmetry requirements are identified. Ground-state to ground-state (p, t) transfer reactions are presented as an experimental signature to identify pairs of nuclei that both exhibit O(6) PDS. In the second part of this thesis inelastic electron scattering off {sup 96}Zr is studied. The experiment was performed at the high resolution Lintott spectrometer at the S-DALINAC and covered a momentum-transfer range of 0.28 - 0.59 fm{sup -1}. Through a relative analysis using Plane Wave Born Approximation (PWBA) the B(E2;2{sup +}{sub 2}→0{sup +}{sub 1}) value is extracted without incurring the additional model dependence of a Distorted Wave Born Approximation (DWBA). By combining this result with known multipole mixing ratios and branching ratios all decay strengths of the 2{sup +}{sub 2} state are determined. A mixing calculation establishes very weak mixing (V{sub mix}=76 keV) between states of the ground-state band and those of the band build on top of the 0{sup +}{sub 2} state which includes the 2{sup +}{sub 2} state. The occurrence of these two isolated bands is interpreted within the shell model in terms of type II shell evolution.

  3. Description of odd-mass nuclei by multi-reference energy density functional methods

    International Nuclear Information System (INIS)

    Bally, B.

    2014-01-01

    In this work, we are interested in the treatment of odd-mass atomic nuclei in energy density functional (EDF) models. More precisely, the goal of this thesis is to develop and to apply to odd-mass nuclei, the theoretical extensions of the EDF method that are: first, the projection technique, and secondly the configuration mixing by the generator coordinate method (GCM). These two extensions are part of the so-called multi-reference energy density functional (MR-EDF) formalism and allow one to take into account, within an EDF context, the 'beyond-mean-field' correlations between the nucleons forming the nucleus. Until now, the MR-EDF formalism has been applied, in its fully-fledged version, only to the calculation of even-even nuclei. In this thesis, we want to demonstrate the applicability of such a model also for the description of odd-mass nuclei. In the first part of this thesis, we describe the theoretical formalism of the EDF models, giving particular attention to the treatment of symmetries within our approach. In the second part of the manuscript, we apply our model to the nucleus 25 Mg and investigate different aspects of the method (e.g. numerical accuracy, convergence of the configuration mixing, comparison to known experimental data). The results obtained in this work are encouraging and demonstrate the potential of our approach for theoretical nuclear structure calculations. (author)

  4. Signature effects in 2qp bands of doubly even rare-earth nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Kawalpreet [Amity University, AUUP, Department of Physics, Amity Institute of Applied Sciences (AIAS), Noida (India); Goel, Alpana [Amity University, AUUP, Amity Institute of Nuclear Science and Technology (AINST), Noida (India); Jain, A.K. [Indian Institute of Technology (IIT), Department of Physics, Roorkee (India)

    2016-12-15

    The two-quasiparticle rotational bands in deformed doubly even nuclei in the rare-earth region have been studied in detail. A number of interesting features like odd-even staggering and signature inversion have been observed. The phenomenon of signature inversion/reversal is observed experimentally in {sup 162}{sub 66}Dy, {sup 170}{sub 70}Yb and {sup 170}{sub 74}W in even-even nuclei. Two quasiparticle plus rotor model (TQPRM) calculations are carried out to explain the reverse pattern of signature in {sup 170}{sub 74}W for the rotational band having configuration {(h_1_1_/_2)_p x (d_5_/_2)_p}. (orig.)

  5. Electric monopole transitions from low energy excitations in nuclei

    CERN Document Server

    Wood, J L; De Coster, C; Heyde, Kris L G

    1999-01-01

    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, $\\rho^2$(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between $\\rho^2$(E0) and isotopic shifts.

  6. The structure of nuclei far from stability

    International Nuclear Information System (INIS)

    Zganjar, E.F.

    1993-01-01

    Studies on nuclei near Z=82 contributed to the establishment of a new region of nuclear deformation and a new class of nuclear structure at closed shells. A important aspect of this work is the establishment of the connection between low-lying 0 + states in even endash even nuclei and the occurrence of shape coexistence in the odd-mass neighbors (E0 transitions in 185 Pt, shape coexistence in 184 Pt and 187 Au). A new type of picosecond lifetime measurement system capable of measuring the lifetime of states that decay only by internal conversion was developed and applied to the 186,188 Tl decay to determine the lifetime of the 0 2 + and 2 2 + deformed states in 186,188 Hg. A search for the population of superdeformed states in 192 Hg by the radioactive decay of 192 Tl was accomplished by using a prototype internal pair formation spectrometer

  7. Damping of isovector giant dipole resonances in hot even-even spherical nuclei

    International Nuclear Information System (INIS)

    Dang, N.D.

    1989-01-01

    An approach based on the finite temperature quasiparticle phonon nuclear model (FT-QPNM) with the couplings to (2p2h) states at finite temperature taken into account is suggested for calculations of the damping of giant multipole resonances in hot even-even spherical nuclei. The strength functions for the isovector giant dipole resonance (IV-GDR) are calculated in 58 Ni and 90 Zr for a range of temperatures up to 3 MeV. The results show that the contribution of the interactions with (2p2h) configurations to the IV-GDR spreading width changes weakly with varying temperature. The IV-GDR centroid energy decreases slightly with increasing temperature. The nonvanishing superfluid pairing gap due to thermal fluctuations is included. (orig.)

  8. Collective excitation spectra of transitional even nuclei

    International Nuclear Information System (INIS)

    Quentin, P.; Paris-11 Univ., 91 - Orsay; Deloncle, I.; Libert, J.; Sauvage, J.

    1990-01-01

    This talk is dealing with the nuclear low energy collective motion as described in the context of microscopic versions of the Bohr Hamiltonian. Two different ways of building microscopically Bohr collective Hamiltonians will be sketched; one within the framework of the Generator Coordinate Method, the other using the Adiabatic Time-Dependent Hartree-Fock-Boholyubov approximation. A sample of recent results will be presented which pertains to the description of transitional even nuclei and to the newly revisited phenomenon of superdeformation at low spin

  9. Precision measurement of the mass difference between light nuclei and anti-nuclei

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2015-08-17

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ($\\bar{d}$), and $^{3}{\\rm He}$ and $^3\\overline{\\rm He}$ nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirm CPT invariance to an unprecedented precision in the sector of light nuclei. This funda...

  10. Spectroscopy of 96-98Ru and neighboring nuclei: shell model calculations and lifetime measurements

    International Nuclear Information System (INIS)

    Kharraja, B.; Garg, U.; Ghugre, S.S.

    1997-01-01

    High Spin states in 94,95 Mo, 94-96 Tc, 96-98 Ru and 97,98 Rh were populated via the 65 Cu( 36 S,xpyn) reactions at 142 MeV. Level schemes of these nuclei have been extended up to a spin of J ∼ 20ℎ and an excitation energy of E x ∼12 -14 MeV. Information on the high spin structure for 96 Tc and 98 Rh has been obtained for the first time. Spherical shell model calculations have been performed and compared with the experimental excitation energies. The level structures of the N=51, 52 isotones exhibit single-particle nature even at the highest spins and excitation energies. A fragmentation of intensity into several branches after breaking of the N = 50 core has been observed. There are indications for the onset of collectivity around neutron number N = 53 in this mass region. A sequence of E2 transitions, reminiscent of vibrational degree of freedom, were observed in 98 Ru at spins just above the observed N = 50 core breaking. RDM lifetime measurements have been performed to ascertain the intrinsic structures of these level sequences. (author)

  11. Triaxiality and alternating M1 strengths in f-p-g shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tabor, S L; Johnson, T D; Holcombe, J W; Womble, P C; Doring, J; Nazarewicz, W [Florida State Univ., Tallahassee, FL (United States). Dept. of Physics

    1992-08-01

    The appearance of alternating patterns in B(M1) strengths in f-p-g shell nuclei is surveyed. The M1 alternations in a sequence of N= 41 isotones, in conjunction with particle-rotor model calculations, is shown to provide information about changing {gamma} deformation. In addition to other odd-A nuclei, several odd-odd nuclei are shown to exhibit alternating B(M1) values and signature inversion. alternations have also been reported in a 4 quasiparticle band in {sup 86}Zr, where they have been interpreted in terms of the interacting boson model. (author). 15 refs., 1 tab., 6 figs.

  12. Determination of shell energies. Nuclear deformations and fission barriers

    International Nuclear Information System (INIS)

    Koura, Hiroyuki; Tachibana, Takahiro; Uno, Masahiro; Yamada, Masami.

    1996-01-01

    We have been studying a method of determining nuclear shell energies and incorporating them into a mass formula. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies. We adopt three assumptions, from which the shell energy of a deformed nucleus is deduced to be a weighted sum of spherical shell energies of its neighboring nuclei. This shell energy should be called intrinsic shell energy since the average deformation energy also acts as an effective shell energy. The ground-state shell energy of a deformed nucleus and its equilibrium shape can be obtained by minimizing the sum of these two energies with respect to variation of deformation parameters. In addition, we investigate the existence of fission isomers for heavy nuclei with use of the obtained shell energies. (author)

  13. Statistical fluctuations of electromagnetic transition intensities and electromagnetic moments in pf-shell nuclei

    International Nuclear Information System (INIS)

    Hamoudi, A.; Shahaliev, E.; Nazmitdinov, R. G.; Alhassid, Y.

    2002-01-01

    We study the fluctuation properties of ΔT=0 electromagnetic transition intensities and electromagnetic moments in A∼60 nuclei within the framework of the interacting shell model, using a realistic effective interaction for pf-shell nuclei with a 56 Ni core. The distributions of the transition intensities and of the electromagnetic moments are well described by the Gaussian orthogonal ensemble of random matrices. In particular, the transition intensity distributions follow a Porter-Thomas distribution. When diagonal matrix elements (i.e., moments) are included in the analysis of transition intensities, the distributions remain Porter-Thomas except for the isoscalar M1. This deviation is explained in terms of the structure of the isoscalar M1 operator

  14. Fission fragment mass distribution in the 13C+182W and 176Yb reactions

    International Nuclear Information System (INIS)

    Ramachandran, K.; Hinde, D.J.; Dasgupta, M.; Williams, E.; Wakhle, A.; Luong, D.H.; Evers, M.; Carter, I.P.; Das, S.

    2014-01-01

    Fission fragment mass distributions have been measured for many systems and found to be asymmetric in the fission of nuclei with nucleon number A in the range 228-258 and proton number Z in the range 90-100. For lighter systems, it has been observed that fission fragment mass distributions are usually symmetric. At high excitation energies the shell effects are expected to vanish and the nuclei are expected to behave like a charged liquid drop; hence, only symmetric fission is expected for all the nuclei. Even after much experimental and theoretical work in this field, the rate of damping of shell effects with excitation energy is not well known. This abstract reports our measurements with 13 C beams on 182 W and 176 Yb targets

  15. Infinite nuclear matter based for mass of atomic nuclei

    International Nuclear Information System (INIS)

    Satpathy, L.

    1987-01-01

    The ground-state energy of an atomic nucleus with asymmetry β is considered to be equivalent to the energy of a perfect sphere made up of infinite nuclear matter of the same asymmetry plus a residual energy eta, called the local energy. Eta represents the energy due to shell, deformation, diffuseness and exchange Coulomb effects, etc. Using this picture and the generalised Hugenholtz-Van Hove theorem of many-body theory, the previously proposed mass relation is derived in a transport way in which eta drops away in a very natural manner. The validity of this mass relation is studied globally using the latest mass table. The model is suitable for the extraction of the saturation properties of nuclear matter. The binding energy per nucleon and the saturation Fermi momentum of nuclear matter obtained through this model are 18.33 MeV and 1.48 fm -1 respectively. It is shown in several representative cases in the Periodic Table that the masses of nuclei in the far unknown region can be reliably predicted. (author)

  16. Spin-dependent γ softness or triaxiality in even-even 132-138Nd nuclei

    Science.gov (United States)

    Chai, Qing-Zhen; Wang, Hua-Lei; Yang, Qiong; Liu, Min-Liang

    2015-02-01

    The properties of γ instability in rapidly rotating even-even 132-138Nd isotopes have been investigated using the pairing-deformation self-consistent total-Routhian-surface calculations in a deformation space of (β2, γ, β4). It is found that even-even 134-138Nd nuclei exhibit triaxiality in both ground and excited states, even up to high-spin states. The lightest isotope possesses a well-deformed prolate shape without a γ deformation component. The current numerical results are compared with previous calculations and available observables such as quadrupole deformation β2 and the feature of γ-band levels, showing basically a general agreement with the observed trend of γ correlations (e.g. the pattern of the odd-even energy staggering of the γ band). The existing differences between theory and experiment are analyzed and discussed briefly. Supported by National Natural Science Foundation of China (10805040,11175217), Foundation and Advanced Technology Research Program of Henan Province(132300410125) and S & T Research Key Program of Henan Province Education Department (13A140667)

  17. Decay of giant resonances states in radiative pion capture by 1p shell nuclei

    International Nuclear Information System (INIS)

    Dogotar, G.E.

    1978-01-01

    The decay of the giant resonance states excited in tthe radiative pion capture on the 9 Be, 11 B, 13 C and 14 N nuclei is considered in the shell model with intermediate coupling. It is shown that the excited states in the daughter nuclei (A-1, Z-1) are mainly populated by intermediate states with spin by two units larger than the spin of the target nuclei. Selected coincidence experiments are proposed

  18. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta [Nuclear Science Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India)

    2006-07-15

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line.

  19. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2006-01-01

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line

  20. How far are we on the way to the superheavy nuclei?

    International Nuclear Information System (INIS)

    Muenzenberg, G.

    1989-10-01

    The discovery of the elements 107, 108, and 109 in a region of dominating shell stabilization is the most important step on the way to the superheavy nuclei in recent years. These experiments leading to the presently upper end of the periodic table were possible with the velocity filter SHIP to separate the heavy nuclei produced in complete fusion reactions of heavy ions. The identification of the unknown nuclei was established by α-α mother-daughter correlation of the nuclei decaying after the implantation into position sensitive surface-barrier detectors. With this method it is possible to identify even single nuclei of unknown isotopes unambiguously. The limits of sensitivity are production cross-sections of a few picobarns and about 2 μs of nuclear lifetime. With this method the elements 107, 108, and 109 were observed for the first time by their α-decay and identified unambiguously. For element 107 the isotopes with masses 261 and 262, for the element 108 the isotopes with masses 264 and 265, and for element 109 the isotope with mass 266 were found. The halflives range from 0.1 ms to 0.1 s. The highly fissile transactinide nuclei were produced in cold fusion of heavy ions using 207,208 Pb and 209 Bi targets, respectively, and 50 Ti, 54 Cr, or 58 Fe beams. The evaluation of the excitation functions for the production of very heavy evaporation residues shows a strong decrease above 25 MeV excitation energy caused by a destruction of the groundstate shell effects at high excitation energies. The strong competition of barrier transmission and survival probability results in rather narrow excitation functions and small production cross sections. The maximum cross section is observed close to the Coulomb barrier and corresponding to projectile energies near 5 MeV/u. (orig.) [de

  1. Spectroscopic information on light halo - nuclei within the framework of multiparticle shell model

    International Nuclear Information System (INIS)

    Khaydarov, R.R.

    2004-09-01

    Aim of the inquiry: to develop the potential approach within the framework of multiparticle shell model; to obtain analytical expressions for a wave function and equations for widths off sub-barrier resonance states; to apply the theoretical approach for obtaining properties of 5 He, 5 Li, 8 B and 11 N nuclei; to estimate values of root-mean-square radiuses, radial density of nucleons, magnetic dipole and electrical quadrupole moments and spectroscopic information for 8 B and 8 Li with use of a method of expansion on functions of Storm - Liouville; to estimate the contribution of 2p - shell of 13 C and process of exchange replacement to the astrophysical S-factor of 13 C (α, n) 16 O reaction. Method of the research: theoretical approaches within the framework of multiparticle shell model. Achieved results and their novelty: new theoretical approach allowing to describe correctly the experimental static characteristics of sub-barrier one-particle resonance states in of 5 He, 5 Li, 8 B and 11 N light nuclei has been developed. Structure of 8 B and 8 Li light mirror nuclei with use of the approach for the description of one-particle resonance states based on the method of expansion on functions of Storm - Liouville has been investigated; The spectroscopic information for proton halo in 8 B and values of the magnetic dipole and electric quadrupole moments of 8 B and 8 Li with use of technique of genealogical coefficients have been obtained. The contribution of 2p - shell of 13 C (α, n) 16 O reaction has been estimated. (author)

  2. Two-body density matrix for closed s-d shell nuclei

    International Nuclear Information System (INIS)

    Dimitrova, S.S.; Kadrev, D.N.; Antonov, A.N.; Stoitsov, M.V.

    2000-01-01

    The two-body density matrix for 4 He, 16 O and 40 Ca within the Low-order approximation of the Jastrow correlation method is considered. Closed analytical expressions for the two-body density matrix, the center of mass and relative local densities and momentum distributions are presented. The effects of the short-range correlations on the two-body nuclear characteristics are investigated. (orig.)

  3. Identical bands in (even, odd) nuclei as evidence for spectator nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Schmeing, N C [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1992-08-01

    An explanation is sought for ``identical`` moments of inertia for pairs of rotational bands in superdeformed nuclei differing in particle number. The authors postulate that certain nucleons do not participate in the collective rotation. The energy of superdeformed {sup 152}Dy has been calculated using this model with a deformed Woods-Saxon potential and full mixing of oscillator shells. A significant reduction in energy is achieved when the protons and neutron with asymptotic quantum number N < 4 constitute a nonrotating factor, as compared to the conventional prolate nucleus. 9 refs.

  4. Characteristic 7- and 5- states observed in the (p,t) reactions on even-even rare earth nuclei

    International Nuclear Information System (INIS)

    Ishizaki, Y.; Kubono, S.; Iwasaki, Y.

    1984-01-01

    The (p,t) reactions have been studied for the even-even rare earth nuclei with 40 MeV proton beam from the INS SF cyclotron. A pair of 7 - and 5 - states was observed with large cross sections in each of the nuclei with the neutron number (N) ranging from 86 to 100. For sup(140,142)Nd of N = 80 and 82 the data were obtained at KVI in Groningen, and the data for 152 Sm of N = 90 at MSU. Q value systematics of (p,t) reactions to these states seem to suggest that these are excited by the two neutron pick-up from the neutron core of N = 82. The (p,t) cross sections leading to these states of N from 82 to 96 are nearly constant. (author)

  5. Collective and non-collective structures in nuclei of mass region A ≈ 125

    International Nuclear Information System (INIS)

    Singh, A. K.

    2014-01-01

    Generation of angular momentum in nuclei is a key question in nuclear structure studies. In single particle model, it is due to alignment of spin of individual nucleon available in the valence space, whereas coherent motion of nucleons are assumed in the collective model. The nuclei near the closed shell at Z = 50 with mass number A ≈ 120-125 represent ideal cases to explore the interplay between these competing mechanisms and the transition from non-collective to collective behavior or vice versa. Recent spectroscopic studies of nuclei in this region reveal several non-collective maximally aligned states representing the first kind of excitation mechanism, where 8-12 particles above the 114 Sn align their spins to generate these states. Deformed rotational bands feeding the non-collective states in the spin range I=20-25 and excitation energies around 10 MeV have also been observed. Structure of the collective and non-collective states are discussed in the framework of Cranked-Nilsson-Strutinsky model

  6. The interacting quasiparticle–phonon picture and odd–even nuclei. Overview and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Mishev, S., E-mail: mishev@theor.jinr.ru; Voronov, V. V., E-mail: voronov@theor.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2016-11-15

    The role of the nucleon correlations in the ground states of even–even nuclei on the properties of low-lying states in odd–even spherical and transitional nuclei is studied. We reason about this subject using the language of the quasiparticle–phonon model which we extend to take account of the existence of quasiparticle⊗phonon configurations in the wave functions of the ground states of the even–even cores. Of paramount importance to the structure of the low-lying states happens to be the quasiparticle–phonon interaction in the ground states which we evaluated using both the standard and the extended random phase approximations. Numerical calculations for nuclei in the barium and cadmium regions are performed using pairing and quadrupole–quadrupole interaction modes which have the dominant impact on the lowest-lying states’ structure. It is found that states with same angular momentum and parity become closer in energy as compared to the predictions of models disregarding the backward amplitudes, which turns out to be in accord with the experimental data. In addition we found that the interaction between the last quasiparticle and the ground-state phonon admixtures produces configurations which contribute significantly to the magnetic dipolemoment of odd-A nuclei. It also reveals a potential for reproducing their experimental values which proves impossible if this interaction is neglected.

  7. nuclei

    Directory of Open Access Journals (Sweden)

    Minkov N.

    2016-01-01

    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  8. Nuclear charge radii of the 1fsub(7/2) shell nuclei from muonic atoms

    International Nuclear Information System (INIS)

    Wohlfahrt, H.D.

    1979-01-01

    Muonic X-ray of medium-weight nuclei have been performed in recent years by the Los Alamos muonic X-ray group, using the high intensity muon beam available at the LAMPF 800 MeV proton accelerator. These studies, which together include all stable 1fsub(7/2) neutron shell nuclei, provide information about the proton core polarization due to the successive addition of neutrons for the proton cores Z = 20 (Ca), 22 (Ti), 24(Cr), 26(Fe) and 28(Ni). In addition, these studies, which represent the first systematic investigations of isotone shifts, provide the opportunity to compare the core polarization caused by protons with core polarization caused by neutrons in the same (1fsub(7/2)) shell. (KBE)

  9. Precise mass measurements of exotic nuclei--the SHIPTRAP Penning trap mass spectrometer

    International Nuclear Information System (INIS)

    Herfurth, F.; Ackermann, D.; Block, M.; Dworschak, M.; Eliseev, S.; Hessberger, F.; Hofmann, S.; Kluge, H.-J.; Maero, G.; Martin, A.; Mazzocco, M.; Rauth, C.; Vorobjev, G.; Blaum, K.; Ferrer, R.; Neidherr, D.; Chaudhuri, A.; Marx, G.; Schweikhard, L.; Neumayr, J.

    2007-01-01

    The SHIPTRAP Penning trap mass spectrometer has been designed and constructed to measure the mass of short-lived, radioactive nuclei. The radioactive nuclei are produced in fusion-evaporation reactions and separated in flight with the velocity filter SHIP at GSI in Darmstadt. They are captured in a gas cell and transfered to a double Penning trap mass spectrometer. There, the cyclotron frequencies of the radioactive ions are determined and yield mass values with uncertainties ≥4.5·10 -8 . More than 50 nuclei have been investigated so far with the present overall efficiency of about 0.5 to 2%

  10. Microscopic mechanism of moments of inertia and odd-even differences for well-deformed actinide nuclei

    International Nuclear Information System (INIS)

    Yu Lei; Liu Shuxin; Zeng Jinyan

    2004-01-01

    The microscopic mechanism of the variation with rotational frequency of moments of inertia and their odd-even differences for well-deformed actinide nuclei are analyzed by using the particle-number conserving (PNC) method for treating nuclear pairing interaction. The moments of inertia for bands building on high j intruder orbitals in odd-A nuclei, e.g., the 235 U (ν[743]7/2) band, are found to be much larger than those of ground-state bands in neighboring even-even nuclei. Moreover, there exist large odd-even differences in the ω variation of moments of inertia. All these experimental odd-even differences are reproduced quite well in the PNC calculation, in which the effective monopole and quadrupole pairing interaction strengths are determined by the experimental odd-even differences in binding energies and bandhead moments of inertia, and no free parameter is involved in the PNC calculation

  11. Precision mass measurements with ISOLTRAP to study the evolution of the $\\textit{N}$=82 shell gap far from stability

    CERN Multimedia

    Shell effects and their evolution across the nuclear chart impose important constraints on the modelling of the nucleon-nucleon interaction. The strength of shell closures in neutron-rich nuclei also influences the path of the $\\textit{r}$-process of nucleo-synthesis and the predicted elemental abundances. We propose to measure the masses of the isotopes $^{132,133}$In, $^{129-132}$Cd, $^{125-129}$Ag with the Penning-trap mass spectrometer ISOLTRAP. The recently developed multi-reflection time-of-flight mass separator of ISOLTRAP will allow, as a beam purifier, to handle higher contamination ratios than before and, for the more exotic cases, to directly determine the mass of the nuclides of interest. The masses of the proposed isotopes will allow the investigation of a possible weakening of the $\\textit{N}$ = 82 shell gap for $\\textit{Z}$ < 50 and corresponding $\\textit{r}$-process waiting point. This in turn enables an exploration of the impact on the $\\textit{A}$ = 130 $\\textit{r}$-process abundances.

  12. Shape coexistence measurements in even-even neutron-deficient polonium isotopes by Coulomb excitation, using REX-ISOLDE and the Ge MINIBALL array

    CERN Multimedia

    Butler, P; Bastin, B; Kruecken, R; Voulot, D; Rahkila, P J; Orr, N A; Srebrny, J; Grahn, T; Clement, E; Paul, E S; Gernhaeuser, R A; Dorsival, A; Diriken, J V J; Huyse, M L; Iwanicki, J S

    The neutron-deficient polonium isotopes with two protons outside the closed Z=82 shell represent a set of nuclei with a rich spectrum of nucleus structure phenomena. While the onset of the deformation in the light Po isotopes is well established experimentally, questions remain concerning the sign of deformation and the magnitude of the mixing between different configurations. Furthermore, controversy is present with respect to the transition from the vibrational-like character of the heavier Po isotopes to the shape coexistence mode observed in the lighter Po isotopes. We propose to study this transition in the even-mass neutron-deficient $^{198,200,202}$Po isotopes by using post-accelerated beams from REX-ISOLDE and "safe"-energy Coulomb excitation. $\\gamma$- rays will be detected by the MINIBALL array. The measurements of the Coulomb excitation differential cross section will allow us to deduce both the transition and diagonal matrix elements for these nuclei and, combined with lifetime measurements, the s...

  13. Optical model analysis of 3He elastic scattering from s-d shell nuclei at 25 MeV

    International Nuclear Information System (INIS)

    Vernotte, J.; Berrier-Ronsin, G.; Kalifa, J.; Tamisier, R.; Nantes Univ., 44

    1982-01-01

    Angular distributions of elastically scattered 3 He particles from 16 O, 18 O, 19 F, 23 Na, 24 Mg, 25 Mg, 26 Mg, 27 Al, 28 Si, 29 Si, 30 Si, 31 P, 35 Cl, 37 Cl, 39 K and 40 Ca nuclei were measured at 25 MeV bombarding energy. The absolute differential cross-section data were analysed in the framework of the standard optical model with either a volume or a surface imaginary part. Three families of parameters were considered. For all these families, the real potential volume integral Jsub(R) per interacting nucleon pair decreases as the mass number A increases. The family with Jsub(R) = 380 MeV x fm 3 for 40 Ca and Jsub(R) = 590 MeV x fm 3 for 16 O has been identified with the unique family obtained at higher energies, and is therefore considered as the 'physical' family. The matter and charge radii deduced from the analysis are presented. The charge radii are compared with the ones obtained from muonic X-ray transitions and electron scattering measurements. (orig.)

  14. Quenching of the Gamow-Teller matrix element in closed LS-shell-plus-one nuclei

    International Nuclear Information System (INIS)

    Towner, I.S.

    1989-06-01

    It is evident that nuclear Gamow-Teller matrix elements determined from β-decay and charge-exchange reactions are significantly quenched compared to simple shell-model estimates based on one-body operators and free-nucleon coupling constants. Here we discuss the theoretical origins of this quenching giving examples from light nuclei near LS-closed shells, such as 16 0 and 40 Ca. (Author) 12 refs., 2 tabs

  15. Masses of nuclei close to the dripline

    International Nuclear Information System (INIS)

    Herfurth, F.; Blaum, K.; Audi, G.; Lunney, D.; Beck, D.; Kluge, H.J.; Rodriguez, D.; Sikler, G.; Weber, C.; Bollen, G.; Schwarz, S.; Kellerbauer, A.

    2003-01-01

    Mass measurements of radioactive nuclides are one of the cornerstones of our understanding of the nucleus. The Penning trap spectrometer ISOLTRAP performs direct mass measurements far away from the valley of stability, as well as high-precision measurements of key nuclei to anchor long decay chains. Both schemes provide valuable information on the dripline itself and on nuclei in its close vicinity. (orig.)

  16. Probing the Evolution of the Shell Structures in Exotic Nuclei

    International Nuclear Information System (INIS)

    De Angelis, Giacomo

    2008-01-01

    Magic numbers are a key feature in finite Fermion systems since they are strongly related to the underlying mean field. The size of the shell gaps and their evolution far from stability can be linked to the shape and symmetry of the nuclear mean field. Moreover the study of nuclei with large neutron/proton ratio allow to probe the density dependence of the effective interaction. Changes of the nuclear density and size in nuclei with increasing N/Z ratios are expected to lead to different nuclear symmetries and excitations. In this contribution I will discuss some selected examples which show the big potential of stable beams and of binary reactions for the study of the properties of the neutron-rich nuclear many body systems.

  17. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  18. NEW EQUATIONS OF STATE BASED ON THE LIQUID DROP MODEL OF HEAVY NUCLEI AND QUANTUM APPROACH TO LIGHT NUCLEI FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

    International Nuclear Information System (INIS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2013-01-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ∼1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes

  19. New Equations of State Based on the Liquid Drop Model of Heavy Nuclei and Quantum Approach to Light Nuclei for Core-collapse Supernova Simulations

    Science.gov (United States)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  20. NEW EQUATIONS OF STATE BASED ON THE LIQUID DROP MODEL OF HEAVY NUCLEI AND QUANTUM APPROACH TO LIGHT NUCLEI FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Shun; Yamada, Shoichi [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Sumiyoshi, Kohsuke [Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Suzuki, Hideyuki, E-mail: furusawa@heap.phys.waseda.ac.jp [Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan)

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to {approx}1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  1. Study of neutron-rich nuclei structure around the N=28 shell closure using the in-beam gamma spectroscopy technique

    International Nuclear Information System (INIS)

    Bastin, B.

    2007-10-01

    For a few years now, a loss of magicity in neutron-rich nuclei near the neutron drip-line at N=28 has been suggested and observed. Deformation in these nuclei has been observed. The deformation was explained in S isotopes as being due to a moderate reduction of the N=28 shell closure together with a proton induced collectivity originating from the near degeneracy of the proton d3/2 and s1/2 orbitals. As a consequence, the observed deformation seems to result from a subtle interplay between neutron and proton excitations. Since the proton configuration in the Si isotopes is expected to be more stable due to the Z=14 sub-shell gap, 42 Si was considered as a key nucleus in order to distinguish the different effects responsible for the structural changes observed at N=28. Even if it is at the limits of our technical possibilities, an in-beam gamma-spectroscopy experiment using two-step fragmentation and one or several nucleons knockout reaction mechanisms was performed at GANIL. The measurement of the energy of the first excited state in 42 Si, combined with the observation of 38,40 Si and the spectroscopy of 41,43 P, has given evidence for the loss of magicity at N=28 far from stability. Modifications of the effective interaction used in modern shell model calculations have been completed following this investigation, increasing its predictive character. This study confirms the role of the tensor force and the density dependence of the spin-orbit interaction in the collapse of the N=28 shell closure. (author)

  2. Reduced widths of alpha -decay of near-magic even-even nuclei

    CERN Document Server

    Kar Yan, N

    1972-01-01

    Precision on-line investigations on the linear heavy-ion Berkeley accelerator, and on the CERN synchrophasotron were carried out recently on new alpha -emitters. The results obtained are analysed with a view to finding the degree of correspondence, or disagreement, with the authors' own ideas about alpha -decay processes. The discussion is confined to examining even isotopes of polonium, radon, radium and thorium Several theoretical and experimental plots are given of reduced widths of alpha -disintegration for different regions of shell filling and a comparison is made between barrier penetration coefficients, obtained by rigorous methods and with the aid of WKB- approximation, for /sup 212/Po, /sup 208/Po and /sup 212/Po isotopes. (24 refs).

  3. Long-lived high-spin isomers in the neutron-deficient 1g sub(9/2)-shell nuclei

    International Nuclear Information System (INIS)

    Ogawa, K.

    1981-09-01

    The neutron-deficient 1g sub(9/2)-shell nuclei are studied in the framework of the shell model with active nucleons occuping the 1g sub(9/2) and 2p sub(1/2) shells. The calculated result for 95 Pd shows good agreement with the recent experiment by Nolte and Hick. Many ''spin-gap'' Isomers are predicted in the region of A = 76 -- 84 and A = 95 -- 100. (author)

  4. Collective properties of the odd-mass I nuclei: 123,125,127I

    Science.gov (United States)

    Shroy, R. E.; Gordon, D. M.; Gai, M.; Fossan, D. B.; Gaigalas, A. K.

    1982-09-01

    The high-spin states of 123,125,127I have been investigated via the ASn(6Li, 3n)A+3I reactions to study the collective properties of the odd-mass I isotopes. In-beam measurements of γ-ray excitations, γ-γ coincidences, γ-ray angular distributions, and pulsed beam-γ timing were performed with Ge detectors to determine level energies, decay schemes, γ-ray multipolarities, Jπ assignments, and lifetime information. A similar study of the 117,119,121I isotopes is reported in the following paper. Two collective features have been identified in these odd-mass I nuclei. Systematic ΔJ=1 bands built on low-lying 92+ proton-hole (4p-1h) states were observed. The 92+ bandheads, that involve the excitation of a 1g92 proton across the Z=50 shell, drop to very low energies near the middle of the neutron shell. The properties of the 92+ proton-hole states for all of the odd-mass I isotopes are presented and related to the systematic information for the proton-hole states in the entire Z>50 transition region. Systematic ΔJ=2 bands built on 112- (1h112 quasiproton) states, on 72+ (1g72 quasiproton) states, and on 52+ (2d52 quasiproton) states were also observed. The ΔJ=2 band spacings generally follow the spacings of the Te-core ground-state bands with the exception of the 112- ΔJ=2 bands, for which the spacings decrease significantly relative to those for the Te cores as A decreases. These systematic properties are discussed in terms of several theoretical approaches to the onset of collectivity in transitional nuclei. An isomer at 2660 keV in 123I was observed to have a mean lifetime τ=38+/-3 ns. NUCLEAR REACTIONS 120-124Sn(6Li, 3n)123-127I measured γ-γ coincidences, γ(E, θ, t) deduced level schemes in odd-mass 123-127I, γ multipolarities, Jπ, T12. Enriched targets, Ge(Li) detectors.

  5. Inner shell ionization by incident nuclei

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1974-10-01

    The atomic Coulomb excitation process induced by impinging heavy charged particles such as protons, deuterons, α-particles and complex heavy ions is reviewed. Recent experimental and theoretical efforts have led toimproved understanding of the atomic Coulomb excitation as well as to discovery of new types of ionization mechanisms. The following models are mentioned: the Plane Wave Born Approximation (PWBA); theeeeeeeeeeeee modified PWBA model; the Binary Encounter Approximation (BEA); the Semi-Classical Approximation (SCA); the Perturbed-Stationary-State model (PSS). The structure of the SCA model is more thoroughly treated. Experimental results on single Coulomb ionizations of the K-, L-, and M-shells, and of the connected sub-shells by protons are compared with predictions. Most calculations are based on straight line projectile paths and non-relativistic hydrogen-like target electron wave functions. The BEA model and the SCA model seem to work reasonably well for multiple Coulomb ionizations by stripped light ions. Background effects in ion-atom collisions are commented upon. Future aspects of atomic Coulomb excitation by incident nuclei and ions are discussed. The interplay between Coulomb induced processes and united atom phenomena is especially mentioned. The simple ionization models have yielded valuable insights but it is suggested that this branch of collision physics has reached a turning point where new and more advanced and unifying models are needed. (JIW)

  6. Evolution of Structure in Nuclei: Meditation by Sub-Shell Modifications and Relation to Binding Energies

    Science.gov (United States)

    Casten, R. F.; Cakirli, R. B.

    2009-03-01

    Understanding the development of configuration mixing, coherence, collectivity, and deformation in nuclei is one of the crucial challenges in nuclear structure physics, and one which has become all the more important with the advent of next generation facilities for the study of exotic nuclei. We will discuss recent work on phase/shape transitional behavior in nuclei, and the role of changes in sub-shell structure in mediating such transitional regions. We will also discuss a newly found, much deeper, link between nuclear structure and nuclear binding energies.

  7. Microscopic description of low-lying M1 excitations in odd-mass actinide nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tabar, Emre, E-mail: etabar@sakarya.edu.tr [Physics Department, Sakarya University, 54187 Sakarya (Turkey); Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, 54187 Sakarya (Turkey); Yakut, Hakan, E-mail: hyakut@sakarya.edu.tr [Physics Department, Sakarya University, 54187 Sakarya (Turkey); Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, 54187 Sakarya (Turkey); Kuliev, Ali Akbar [Azerbaijan National Academy of Aviation, Baku (Azerbaijan)

    2017-01-15

    A restoration method of a broken symmetry which allows self-consistent determination of the separable effective restoration forces is now adapted to odd-mass nuclei in order to restore violated rotational invariance (RI-) of the Quasiparticle Phonon Nuclear Model (QPNM) Hamiltonian. Because of the self-consistency of the method, these effective forces contain no arbitrary parameters. Within RI-QPNM, the properties of the low-lying magnetic dipole excitations in odd-mass deformed {sup 229–233}Th and {sup 233–239}U nuclei have been investigated for the first time. It has been shown that computed fragmentation of the M1 strengths below 4 MeV in these nuclei is much stronger than that in neighboring doubly even {sup 228–232}Th and {sup 232–238}U nuclei. For {sup 235}U the summed M1 strength in the energy range 1.5–2.8 MeV is in agreement with the relevant experimental data where the missing strength was extracted by means of a fluctuation analysis.

  8. The effect of quadrupole force to the spectra of nuclei in the f7/2 shell

    International Nuclear Information System (INIS)

    Zhang Qingying

    1992-01-01

    The effect of quadrupole force on the spectra of nuclei in the f 7/2 shell is tested. The nuclear spectra are calculated by using the surface delta interaction plus quadrupole interaction and the modified surface delta interaction respectively. The results calculated with the former are much better than those with the latter, the role of the isospin modified term in the modified surface delta interaction can be substituted by the quadrupole interaction term. It is also shown that the effect of quadrupole interaction in the f 7/2 shell is important although the quadrupole deformations of nuclei in this region are not large

  9. Microscopic studies of electric dipole resonances in 1p shell nuclei

    International Nuclear Information System (INIS)

    Kissener, H.R.; Rotter, I.; Goncharova, N.G.

    1986-05-01

    Recent data on total and partial photonuclear cross sections in the GDR region of the nuclei 6 Li to 16 O are compared with theoretical predictions, mostly from shell model and continuum shell model studies. The influence of the size of the configuration space, of the adopted residual interaction and of the continuous spectrum on the isovector E1 response is discussed to some detail. The observed trends of the localization, the shape and width, the isospin and the configurational structure of the GDR with increasing 1p shell occupation are related to the microscopic structure of the nuclear ground state. Particular attention is given to the partial (γ, N/sub i/) disintegration channels. Complex-particle emission and isospin mixing in the nuclear states are discussed for a few cases. An attempt is made to bring some systematics also in the evidence on excited-state giant resonances through the 1p shell region. The photonuclear GDR is compared with other giant multipole excitations, mostly for the example of the 14 C nucleus. (author)

  10. Differences in neurogenesis differentiate between core and shell regions of auditory nuclei in the turtle (Pelodiscus sinensis): evolutionary implications.

    Science.gov (United States)

    Zeng, Shao-Ju; Xi, Chao; Zhang, Xin-Wen; Zuo, Ming-Xue

    2007-01-01

    There is a clear core-versus-shell distinction in cytoarchitecture, electrophysiological properties and neural connections in the mesencephalic and diencephalic auditory nuclei of amniotes. Determining whether the embryogenesis of auditory nuclei shows a similar organization is helpful for further understanding the constituent organization and evolution of auditory nuclei. Therefore in the present study, we injected [(3)H]-thymidine into turtle embryos (Pelodiscus sinensis) at various stages of development. Upon hatching, [(3)H]-thymidine labeling was examined in both the core and shell auditory regions in the midbrain, diencephalon and dorsal ventricular ridge. Met-enkephalin and substance P immunohistochemistry was used to distinguish the core and shell regions. In the mesencephalic auditory nucleus, the occurrence of heavily labeled neurons in the nucleus centralis of the torus semicircularis reached its peak at embryonic day 9, one day later than the surrounding shell. In the diencephalic auditory nucleus, the production of heavily labeled neurons in the central region of the reuniens (Re) was highest at embryonic day (E) 8, one day later than that in the shell region of reuniens. In the region of the dorsal ventricular ridge that received inputs from the central region of Re, the appearance of heavily labeled neurons also reached a peak one day later than that in the area receiving inputs from the shell region of reuniens. Thus, there is a core-versus-shell organization of neuronal generation in reptilian auditory areas. Copyright (c) 2007 S. Karger AG, Basel.

  11. The quadrupole moments of some even–even nuclei around the mass of A ~ 80: {sup 68−80}Ge on the neighborhood of {sup 76−84}Kr and {sup 76−84}Se isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Yoruk, Abdulkadir, E-mail: yorukabdulkadir@hotmail.com [Süleyman Demirel University, Nursery Medical School (Turkey); Turkan, Nureddin, E-mail: nureddin.turkan@medeniyet.edu.tr [Istanbul Medeniyet University, Faculty of Science (Turkey)

    2016-09-15

    We have carried out the calculation of the quadrupole moments Q(2{sub 1}{sup +}) and electromagnetic transition rates B(E2) of some levels within the framework of the interacting boson model for even-mass Ge nuclei. The presented predictions of the quadrupole moments and B(E2) ratios for Ge nuclei are compared with the results of some previous experimental and theoretical ones along with those of the neighboring Kr and Se isotopes and then it was seen that they agree well with the previous experimental and theoretical ones.

  12. Realistic Gamow shell model for resonance and continuum in atomic nuclei

    Science.gov (United States)

    Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.

    2018-02-01

    The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.

  13. Gamma band odd-even staggering in some deformed nuclei

    International Nuclear Information System (INIS)

    Khairy, M.K.; Talaat, SH.M.; Morsy, M.

    2005-01-01

    A complete investigation was carried out in studying the odd-even staggering (OES) of gamma bands energy levels in some deformed nuclei up to angular momentum L=13 . With the help of Minkov treatment in the framework of a collective Vector Boson Model (VBM) with broken SU (3) symmetry. The OES behavior of deformed isotopes 162 E r, 164 E r, 166 E r, 156 G d, 170 Y b and 232 T h was studied and discussed

  14. Shell model test of the Porter-Thomas distribution

    International Nuclear Information System (INIS)

    Grimes, S.M.; Bloom, S.D.

    1981-01-01

    Eigenvectors have been calculated for the A=18, 19, 20, 21, and 26 nuclei in an sd shell basis. The decomposition of these states into their shell model components shows, in agreement with other recent work, that this distribution is not a single Gaussian. We find that the largest amplitudes are distributed approximately in a Gaussian fashion. Thus, many experimental measurements should be consistent with the Porter-Thomas predictions. We argue that the non-Gaussian form of the complete distribution can be simply related to the structure of the Hamiltonian

  15. Roles of nuclear weak rates on the evolution of degenerate cores in stars

    Directory of Open Access Journals (Sweden)

    Suzuki Toshio

    2017-01-01

    Full Text Available Electron-capture and β-decay rates in stellar environments are evaluated with the use of new shell-model Hamiltonians for sd-shell and pf-shell nuclei as well as for nuclei belonging to the island of inversion. Important role of the nuclear weak rates on the final evolution of stellar degenerate cores is presented. The weak interaction rates for sd-shell nuclei are calculated to study nuclear Urca processes in O-Ne-Mg cores of stars with 8-10 M⊙ (solar mass and their effects on the final fate of the stars. Nucleosynthesis of iron-group elements in Type Ia supernova explosions are studied with the weak rates for pf-shell nuclei. The problem of the neutron-rich iron-group isotope over-production compared to the solar abundances is shown to be nearly solved with the use of the new rates and explosion model of slow defraglation with delayed detonation. Evaluation of the weak rates is extended to the island of inversion and the region of neutron-rich nuclei near 78Ni, where two major shells contribute to their configurations.

  16. E0 and E2 decay of low-lying 0+ states in the even-even nuclei 206Pb, 208Po, 112-120 Sn and 112114Cd

    International Nuclear Information System (INIS)

    Julin, Rauno.

    1979-04-01

    Several new methods of in-beam conversion-electron and γ-ray spectrometry, applicable in the determination of E0 and E2 decay properties of low-lying 0 + states in even-mass nuclei, have been developed. The main attention has been paid to direct lifetime-measurement and coincidence methods based on the use of the natural pulsing of a cyclotron beam. With the aid of these methods, the similarity of the absolute decay rates of the two-neutron-hole 0 + 2 states in the N = 124 nuclei 206 Pb and 208 Po has been shown. A systematic investigation of the de-excitation of the 0 + 2 and 0 + 3 states in 112 , 11 4 , 116 , 118 , 120 Sn has been carried out. Twelve E0 transitions connecting the 0 + states have been observed, including very strong low-energy E0 transitions between the excited 0 + states, and several absolute transition probabilities have been determined. Furthermore, the new techniques have been applied successfully in determining the absolute E0 and E2 transition rates from the 0 + 2 and 0 + 3 states in 112 Cd and 114 Cd. The use of isotope-shift data in the calculation of the monopole strengths in 206 Pb and 208 Po is discussed. The results on even Sn and Cd nuclei are discussed within the framework of the coexistence of different shapes and of configuration mixing. (author)

  17. Atomic mass formula with linear shell terms

    International Nuclear Information System (INIS)

    Uno, Masahiro; Yamada, Masami; Ando, Yoshihira; Tachibana, Takahiro.

    1981-01-01

    An atomic mass formula is constructed in the form of a sum of gross terms and empirical linear shell terms. Values of the shell parameters are determined after the statistical method of Uno and Yamada, Which is characterized by inclusion of the error inherent in the mass formula. The resulting formula reproduces the input masses with the standard deviation of 393 keV. A prescription is given for estimating errors of calculated masses. The mass formula is compared with recent experimental data of Rb, Cs and Fr isotopes, which are not included in the input data, and also with the constant-shell-term formula of Uno and Yamada. (author)

  18. A systematic fast-timing study of even-even nuclei in the well deformed A 170-180 region

    Energy Technology Data Exchange (ETDEWEB)

    Jolie, J.; Regis, J.M.; Dannhoff, M.; Gerst, R.B.; Karayonchev, V.; Mueller-Gatermann, C.; Saed-Samii, N.; Stegemann, S.; Blazhev, A. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Rudigier, M. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Department of Physics, University of Surrey (United Kingdom)

    2016-07-01

    At the Cologne Tandem accelerator we are performing a systematic study of lifetimes in the ground state bands of well deformed even-even nuclei in order to increase the precision of the ns-ps lifetimes and to solve inconsistencies in the literature. The measurements are done using Orange spectrometers, LaBr{sub 3}(Ce) scintillators and Ge detectors. The data are analyzed using the slope and the generalized centroid difference method. The latter allows the measurement of lifetimes down to 5 ps. First results on Yb, Hf and W isotopes are presented.

  19. Interplay of spherical closed shells and N /Z asymmetry in quasifission dynamics

    Science.gov (United States)

    Mohanto, G.; Hinde, D. J.; Banerjee, K.; Dasgupta, M.; Jeung, D. Y.; Simenel, C.; Simpson, E. C.; Wakhle, A.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.

    2018-05-01

    Background: Quasifission (QF) has gained tremendous importance in heavy-ion nuclear physics research because of its strong influence on superheavy-element synthesis. Collisions involving closed-shell nuclei in the entrance channel are found to affect the QF reaction mechanism. Hence, it is important to improve the understanding of their effect on QF. Apart from that, some recent studies show that the difference in N /Z of reaction partners influences the reaction dynamics. Since heavier doubly magic nuclei have different N /Z than lighter doubly magic nuclei, it is important to understand the effect of N /Z mismatch as well as the effect of shell closures. Purpose: To investigate the effect of entrance-channel shell closures and N /Z asymmetry on QF. The reactions were chosen to decouple these effects from the contributions of other entrance-channel parameters. Method: Fission fragment mass-angle distributions were measured using the CUBE fission spectrometer, consisting of two large area position-sensitive multi-wire proportional counters (MWPCs), for five reactions, namely, 50Cr+208Pb , 52Cr+Pb,208206 , 54Cr+Pb,208204 . Result: Two components were observed in the measured fragment mass angle distribution, a fast mass-asymmetric quasifission and a slow mass-symmetric component having a less significant mass-angle correlation. The ratio of these components was found to depend on spherical closed shells in the entrance channel nuclei and the magnitude of the N /Z mismatch between the two reaction partners, as well as the beam energy. Conclusions: Entrance-channel spherical closed shells can enhance compound nucleus formation provided the N /Z asymmetry is small. Increase in the N /Z asymmetry is expected to destroy the effect of entrance-channel spherical closed shells, through nucleon transfer reactions.

  20. New estimates of quadrupole deformation β of some nearly spherical even Mo nuclei

    International Nuclear Information System (INIS)

    Singh, Y.; Gupta, K.K.; Singh, M.; Bihari, Chhail; Varshney, A.K.; Gupta, D.K.

    2013-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. In recent past the sets of deformation parameters (β, γ) have been extracted from both level energies and E2 transition rates in even Xe, Ba and Ce nuclei and Hf, W, Os, Pt and Hg nuclei using rigid triaxial rotor model of Davydov – Filippov

  1. Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries

    International Nuclear Information System (INIS)

    Draayer, J P; Dytrych, T; Launey, K D; Dreyfuss, A C; Langr, D

    2015-01-01

    An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si

  2. Mass coefficient systematics in triaxially deformed Xe and Ba nuclei

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Bihari, Chhail; Singh, M.; Varshney, A.K.; Gupta, K.K.; Gupta, D.K.

    2009-01-01

    In A ∼ 120-140 region where transition occurs from vibrator like stretching around the neutron closed shell (N = 82) to a region with more rotational character (N = 66) energies and B(E2) values of the low lying states change slowly and smoothly with N and Z indicating the collective nature of the levels. The systematic investigation of such nuclei within an isotopic chain undergoing shape or phase transitions is of particular current interest in nuclear structure physics. Rotation is one of the specific collective motions in finite body systems. When the angular momentum increase, one can observe how the energies of the quantum state change due to the effect of the coriolis and centrifugal forces. Thus in the transition to excited states the axial symmetry of the nucleus is violated even if it existed in the ground state

  3. High mass-asymmetry distributions of fissioning nuclei

    International Nuclear Information System (INIS)

    Sandulescu, A.; Lusting, H.J.; Hahn, J.; Greiner, W.

    1978-07-01

    It is shown that new mass-asymmetry valleys are appearing in the fragmentation potential V(l,eta) as function of the length l and mass-asymmetry coordinate eta = (A 1 - A 2 )to a correct treatment of the shell effects such that for separated fragments the shell effects equal the sum of the shell effects of the individual fragments and correspond to the double magic fragments 48 Ca, 78 Ni, 132 Sn and 208 Pb or may be 56 Ni. Also is shown that the fission mass-distributions have additional peaks corresponding to the bottom of these new valleys. The calculations are illustrated for 252 No and 238 U. The preliminary results show for 238 U relatively high percent yields in agreement with present available experimental data. (author)

  4. In-medium no-core shell model for ab initio nuclear structure calculations

    International Nuclear Information System (INIS)

    Gebrerufael, Eskendr

    2017-01-01

    calculations. Moreover, we explore island-of-inversion physics in magnesium isotopes, where the shell-model magic numbers vanish and new ones appear. Due to our implementation of the IM-NCSM method, we are restricted to nuclei with even mass numbers. We propose and benchmark a simple and straightforward idea for the extension to odd nuclei within the framework of IM-NCSM using a particle-attached or particle-removed scheme.

  5. (6Li,d) reaction on sd-, fp- and g-shell nuclei in ZR- and FR-DWBA formalisms

    International Nuclear Information System (INIS)

    Rahman, M.A.; Mecking, M.; Strohbusch, U.

    1991-06-01

    ( 6 Li,d) reaction angular distributions on target nuclei 16 ≤ A ≤ 90 have been analyzed using both ZR- and FR-DWBA formalisms. The most prevalent method of analysis of alpha-transfer reactions such as( 6 Li,d) and its reverse (d, 6 Li) (where the wave function at zero distance in the p-state of relative cluster motion in the A = 6 nuclei will not have node) is the ZR-DWBA calculations due to the relatively short time of computation. It is of particular interest to verify whether FR-DWBA calculations result in similar S α - values to those of ZR-DWBA or not. It is found that to derive similar S α -values as in FR-DWBA calculations, one requires relatively large real well depth in ZR-DWBA calculations. Qualitative discussions have been made in this direction. (author). 12 refs, 3 figs, 2 tabs

  6. Charge radii of magnesium isotopes by laser spectroscopy a structural study over the $sd$ shell

    CERN Multimedia

    Schug, M; Krieger, A R

    We propose to study the evolution of nuclear sizes and shapes over the magnesium chain by measuring the root-mean-square charge radii of $^{21 - 32}$Mg, essentially covering the entire $\\textit{sd}$ shell. Our goal is to detect the structural changes, which in the neutron-deficient isotopes may originate from clustering, in a way similar to neon, and on the neutron-rich side would characterize the transition to the "island of inversion". We will combine, for the first time, the sensitive $\\beta$-detection technique with traditional fluorescence spectroscopy for isotope-shift measurements and in such a way gain access to the exotic species near the ${N}$ = 8 and ${N}$ = 20 shell closures.

  7. Neutron-proton mass difference in finite nuclei and the Nolen-Schiffer anomaly

    International Nuclear Information System (INIS)

    Meissner, U.G.; Rakhimov, A.M.; Wirzba, A.; Yakhshiev, U.T.

    2008-01-01

    The neutron-proton mass difference in finite nuclei is studied in the framework of a medium-modified Skyrme model. The possible interplay between the effective nucleon mass in finite nuclei and the Nolen-Schiffer anomaly is discussed. In particular, we find that a correct description of the properties of mirror nuclei leads to a stringent restriction of possible modifications of the nucleon's effective mass in nuclei. (orig.)

  8. Structure of neutron-rich nuclei around the N = 50 shell-gap closure

    Science.gov (United States)

    Faul, T.; Duchêne, G.; Thomas, J.-C.; Nowacki, F.; Huyse, M.; Van Duppen, P.

    2010-04-01

    The structure of neutron-rich nuclei in the vicinity of 78Ni have been investigated via the β-decay of 71,73,75Cu isotopes (ISOLDE, CERN). Experimental results have been compared with shell-model calculations performed with the ANTOINE code using a large (2p3/21f5/22p1/21g9/2) valence space and a 56/28Ni28 core.

  9. Particle-number fluctuations and neutron-proton pairing effects on proton and neutron radii of even-even N Almost-Equal-To Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Douici, M.; Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R. [Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria) and Institut des Sciences et Technologie, Centre Universitaire de Khemis Miliana, Route de Theniet-El-Had, 44225 Khemis-Milia (Algeria); Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria) and Centre de Recherche Nucleaire d' Alger, COMENA, BP399 Alger-Gare, Alger (Algeria); Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria)

    2012-10-20

    The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.

  10. First Direct Mass Measurements of Nuclides around Z =100 with a Multireflection Time-of-Flight Mass Spectrograph

    Science.gov (United States)

    Ito, Y.; Schury, P.; Wada, M.; Arai, F.; Haba, H.; Hirayama, Y.; Ishizawa, S.; Kaji, D.; Kimura, S.; Koura, H.; MacCormick, M.; Miyatake, H.; Moon, J. Y.; Morimoto, K.; Morita, K.; Mukai, M.; Murray, I.; Niwase, T.; Okada, K.; Ozawa, A.; Rosenbusch, M.; Takamine, A.; Tanaka, T.; Watanabe, Y. X.; Wollnik, H.; Yamaki, S.

    2018-04-01

    The masses of 246Es, 251Fm, and the transfermium nuclei Md-252249 and 254No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed N =152 neutron shell closure, have been directly measured using a multireflection time-of-flight mass spectrograph. The masses of 246Es and 249,250,252Md were measured for the first time. Using the masses of Md,250249 as anchor points for α decay chains, the masses of heavier nuclei, up to 261Bh and 266Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter δ2 n derived from three isotopic masses was updated with the new masses and corroborates the existence of the deformed N =152 neutron shell closure for Md and Lr.

  11. Study of fp States in Nuclei with High Neutron Excess

    CERN Multimedia

    2002-01-01

    Previous results obtained at ISOLDE on GT transitions in n-rich Na and Mg nuclei have shown the sharp decrease of excitation energy for fp states when A$>$29. \\\\ \\\\ Independently, shell model calculations have revealed that the onset of a deformation region near N=20 for Ne, Na and Mg nuclei was related to a sudden transition in the ground state properties with the appearance of a major (sd)$^{-2}$(fp)$^2$ component. \\\\ \\\\ We propose to use the new possibilities of producing and detecting n-rich nuclei to study by $\\gamma$ and n spectroscopy the properties of fp states with different cores: around N=20 (Na, Mg and Al) and N=28 (Ar, K and Ca). In particular, the cases of $^3

  12. The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ghumman, S. S. [Department of Physics, Sant Longowal Institute of Engineering and Technology (Deemed University), Longowal, Sangrur-148106, Punjab, India s-ghumman@yahoo.com (India)

    2015-08-28

    The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.

  13. Shape transition and collective dynamics in even 94-100Zr nuclei

    International Nuclear Information System (INIS)

    Skalski, J.; Heenen, P.H.; Flocard, H.; Bonche, P.

    1992-01-01

    Quadrupole and octupole excitations in even 94-100 Zr nuclei were studied within the fully microscopic generator coordinate method, using a basis generated by the self-consistent Hartree-Fock method with the Skyrme force. Results relevant for the A=100 shape transition and for the octupole mode properties are reported. (authors) 17 refs., 1 fig., 1 tab

  14. Influence of i13/2 proton and j15/2 neutron intruding orbitals on the behaviour of 190 mass region superdeformed nuclei

    International Nuclear Information System (INIS)

    Duprat, J.

    1995-01-01

    This work concerns the study of the nuclear superdeformation phenomenon in the A = 190 mass region. The superdeformed (SD) states in 193 Tl, 194 Tl 195 Tl were produced via heavy-ion induced reactions and studied with the EUROGAM gamma multidetector array. The analysis of high-multiplicity events allowed the study of the magnetic properties of the SD states in these nuclei. For the first time, the g-factor of a proton orbital in a SD nucleus in the A = 190 mass region has been extracted. This measurement indicates that the two known bands in 195 Tl-SD are built on the i 13/2 proton intruder orbital. A new SD band has been found in this isotope: it is the first SD band built on an excited proton state found in the A = 190 region. Finally an interaction between two pairs of bands has been established in 194 Tl; this interaction indicate the crossing of two neutron orbitals above the N = 112 gap. The magnetic properties of the states of the SD bands in 194 Tl reveals that these bands are built on configurations in which the single proton and neutron intrinsic spins are aligned. Comparison between different SD bands in the Thallium isotopes shows the prominent role of the i 13/2 proton and the j 15/2 neutron intruder orbitals in the smooth increase of the dynamical moment of inertia as a function of the rotational frequency. In addition, this work reports on the first observation of a SD rotational band produced in a (HI, αxn) reaction channel. The study of the maximum spin reached by the SD bands indicates both a competition between alpha emission and fission of the compound nucleus, and the limitation due to the fission process in the population of the SD nuclei in the A = 190 region. (author). 120 refs., 112 figs., 22 tabs., 2 ann

  15. Pairing field and moments of inertia of superdeformed nuclei

    International Nuclear Information System (INIS)

    Chen Yongjing; Chen Yongshou; Xu Fuxin

    2002-01-01

    The authors have systematically analysed the dynamic moments of inertia of the experimental superdeformed (SD) bands observed in the A = 190, 150 and 60-80 mass regions as functions of rotational frequency. By combining the different mass regions, the dramatic features of the dynamic moments of inertia were found and explained based on the calculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairing Hartree-Fock-Bogoliubov model

  16. Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei

    Science.gov (United States)

    Benbouzid, Y.; Allal, N. H.; Fellah, M.; Oudih, M. R.

    2018-04-01

    Isovector neutron-proton (np) pairing and particle-number fluctuation effects on the spectroscopic factors (SF) corresponding to one-pair like-particle transfer reactions in proton-rich even-even nuclei are studied. With this aim, expressions of the SF corresponding to two-neutron stripping and two-proton pick-up reactions, which take into account the isovector np pairing effect, are established within the generalized BCS approach, using a schematic definition proposed by Chasman. Expressions of the same SF which strictly conserve the particle number are also established within the Sharp-BCS (SBCS) discrete projection method. In both cases, it is shown that these expressions generalize those obtained when only the pairing between like particles is considered. First, the formalism is tested within the Richardson schematic model. Second, it is applied to study even-even proton-rich nuclei using the single-particle energies of a Woods-Saxon mean-field. In both cases, it is shown that the np pairing effect and the particle-number projection effect on the SF values are important, particularly in N = Z nuclei, and must then be taken into account.

  17. The B(E2;4^+1->2^+1) / B(E2;2^+1->0^+1) Ratio in Even-Even Nuclei

    Science.gov (United States)

    Loelius, C.; Sharon, Y. Y.; Zamick, L.; G"Urdal, G.

    2009-10-01

    We considered 207 even-even nuclei throughout the chart of nuclides for which the NNDC Tables had data on the energies and lifetimes of the 2^+1 and 4^+1 states. Using these data we calculated for each nucleus the electric quadrupole transition strengths B(E2;4^+1->2^+1) and B(E2;2^+1->0^+1), as well as their ratio. The internal conversion coefficients were obtained by using the NNDC HSICC calculator. For each nucleus we plotted the B(E2) ratio against A, N, and Z. We found that for close to 90% of the nuclei considered the ratio had values between 0.5 and 2.5. Most of the outliers had magic numbers of protons or neutrons. Our ratio results were compared with the theoretical predictions for this ratio by different models--10/7 in the rotational model and 2 in the simplest vibrational model. In the rotational regions (for 150 220) the ratios were indeed close to 10/7. For the few nuclei thought to be vibrational the ratios were usually less than 2. Otherwise, we got a wide scatter of ratio values. Hence other models, including the NpNn scheme, must be considered in interpreting these results.

  18. Study of band structure in 78,80Sr using Triaxial Projected Shell Model

    International Nuclear Information System (INIS)

    Behera, N.; Naik, Z.; Bhat, G.H.; Sheikh, J.A.; Palit, R.; Sun, Y.

    2017-01-01

    The purpose of present work is to carry out a systematic study of the yrast-band and gamma-band structure for the even-even 78-80 Sr nuclei using Triaxial Projected Shell Model (TPSM) approach. These nuclei were chosen because 78 Sr has well developed side band(unassigned configuration) and 80 Sr has well developed band observed experimentally

  19. Intruder states at the N=20 shell closure

    International Nuclear Information System (INIS)

    Heyde, K.

    1991-01-01

    It is indicated that mp-mh (multiple) excitations across closed shells can occur at low energy throughout the nuclear mass region. Besides the 4p-4h, 8p-8h configurations, that are deformed, coexisting low-lying excitations are mainly observed for light N=Z nuclei. A new class of 2p-2h intruder O + state is shown to exist in nuclei where a neutron excess is present. In the latter cases, the proton-neutron interaction energy between the excited 2p-2h configuration and the open shell accounts for a very specific mass dependence in the intruder excitation energy. The experimental evidence that corroborates the idea of intruder states will be given. (G.P.) 28 refs.; 13 figs

  20. Fully self-consistent multiparticle-multi-hole configuration mixing method - Applications to a few light nuclei

    International Nuclear Information System (INIS)

    Robin, Caroline

    2014-01-01

    This thesis project takes part in the development of the multiparticle-multi-hole configuration mixing method aiming to describe the structure of atomic nuclei. Based on a double variational principle, this approach allows to determine the expansion coefficients of the wave function and the single-particle states at the same time. In this work we apply for the first time the fully self-consistent formalism of the mp-mh method to the description of a few p- and sd-shell nuclei, using the D1S Gogny interaction. A first study of the 12 C nucleus is performed in order to test the doubly iterative convergence procedure when different types of truncation criteria are applied to select the many-body configurations included in the wave-function. A detailed analysis of the effect caused by the orbital optimization is conducted. In particular, its impact on the one-body density and on the fragmentation of the ground state wave function is analyzed. A systematic study of sd-shell nuclei is then performed. A careful analysis of the correlation content of the ground state is first conducted and observables quantities such as binding and separation energies, as well as charge radii are calculated and compared to experimental data. Satisfactory results are found. Spectroscopic properties are also studied. Excitation energies of low-lying states are found in very good agreement with experiment, and the study of magnetic dipole features are also satisfactory. Calculation of electric quadrupole properties, and in particular transition probabilities B(E2), however reveal a clear lack of collectivity of the wave function, due to the reduced valence space used to select the many-body configurations. Although the renormalization of orbitals leads to an important fragmentation of the ground state wave function, only little effect is observed on B(E2) probabilities. A tentative explanation is given. Finally, the structure description of nuclei provided by the multiparticle

  1. Neutron rich nuclei around 132Sn

    International Nuclear Information System (INIS)

    Bhattacharya, Sarmishtha

    2016-01-01

    The neutron rich nuclei with few particles or holes in 132 Sn have various experimental and theoretical interest to understand the evolution of nuclear structure around the doubly magic shell closure Z=50 and N=82. Some of the exotic neutron rich nuclei in this mass region are situated near waiting points in the r-process path and are of special astrophysical interest. Neutron rich nuclei near 132 Sn have been studied using fission fragment spectroscopy. The lifetime of low lying isomeric states have been precisely measured and the beta decay from the ground and isomeric states have been characterized using gamma-ray spectroscopy

  2. Spectroscopy of exotic nuclei with A {approx} 190: single particle states and collective properties of {sup 187,189}Bi and {sup 188}Pb; Spectroscopie de noyaux exotiques dans la region de masse A {approx} 190: la structure des isotopes {sup 187,189}Bi et {sup 188}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Huerstel, A

    2002-11-01

    This thesis is devoted to the study of very neutron deficient nuclei in the lead region of the nuclear chart and more precisely to the investigation of the single particle states and collective properties of the {sup 187,189}Bi isotopes by gamma-ray spectroscopy. These nuclei were produced via fusion-evaporation reaction induced by a krypton beam on a silver target. In this mass region, the cross section for producing these nuclei are very low, of the order of a few micro-barns, making experimental studies very difficult. The identification of the nuclei was done using the very powerful RDT (Recoil Decay Tagging) technique, based on the selection of the isotopes through their characteristic alpha-particle decays. The experiments were performed at the university of Jyvdskyla (Finland) with the facility combining the gamma-ray spectrometer JUROSPHERE and the magnetic gas-filled separator RITU. Isomeric states were observed in both nuclei and their life-times measured. The systematics of individual proton states in odd-mass bismuth isotopes have been reproduced with a shell model up to 20 neutrons away from the valley of stability. Furthermore, rotational bands, a signature of collective nuclear motion, have been established for the first time in these nuclei. The interpretation of these results led to the conclusion that {sup 187,189}Bi have a prolate shape at low excitation energy, unlike the heavier bismuth isotopes which have been interpreted to have oblate deformation, implying a shape transition in this mass region. Hartree-Fock-Bogolyubov calculations are consistent with the experimental indication of shape coexistence, as seen in the neighbouring even-even lead nuclei. (author)

  3. Study of even-Z nuclei up to Mg with the Gogny force using AMD

    Energy Technology Data Exchange (ETDEWEB)

    Sugawa, Yoshio; Kimura, Masaaki; Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics

    2001-12-01

    Employing the Gogny force as an effective force, we study the ground state properties of light nuclei using antisymmetrized molecular dynamics (AMD). In this study, we are mainly concerned with the binding energies and radii of light even-Z isotopes, namely He, Be, C, O, Ne and Mg. Using a new technique to calculate the density dependent term of the effective force, we have realized fast and accurate calculations. From a comparison with Skyrme SIII results within the same AMD framework, we find that the Gogny and SIII forces well reproduce the experimental binding energies of stable nuclei. The two forces give almost equal radii, except in the case of {sup 7}Be and {sup 9}Be. For both forces, approximate treatment of the center-of-mass kinetic energy causes overestimation of the binding energy compared with the exact treatment. It also causes a decrease of the nuclear deformation compared with the exact treatment. We also carry out an energy variation after the parity projection. With regard to the binding energies and radii, parity-projected calculations do not exhibit a large difference compared to non-projected results, although the density distribution and clustering features are often significantly changed by the parity projection. (author)

  4. Study of even-Z nuclei up to Mg with the Gogny force using AMD

    International Nuclear Information System (INIS)

    Sugawa, Yoshio; Kimura, Masaaki; Horiuchi, Hisashi

    2001-01-01

    Employing the Gogny force as an effective force, we study the ground state properties of light nuclei using antisymmetrized molecular dynamics (AMD). In this study, we are mainly concerned with the binding energies and radii of light even-Z isotopes, namely He, Be, C, O, Ne and Mg. Using a new technique to calculate the density dependent term of the effective force, we have realized fast and accurate calculations. From a comparison with Skyrme SIII results within the same AMD framework, we find that the Gogny and SIII forces well reproduce the experimental binding energies of stable nuclei. The two forces give almost equal radii, except in the case of 7 Be and 9 Be. For both forces, approximate treatment of the center-of-mass kinetic energy causes overestimation of the binding energy compared with the exact treatment. It also causes a decrease of the nuclear deformation compared with the exact treatment. We also carry out an energy variation after the parity projection. With regard to the binding energies and radii, parity-projected calculations do not exhibit a large difference compared to non-projected results, although the density distribution and clustering features are often significantly changed by the parity projection. (author)

  5. Evolution of the shell structure in medium-mass nuclei: search for the 2d5/2 neutron orbital in 69Ni

    International Nuclear Information System (INIS)

    Moukaddam, M.

    2012-01-01

    The harmonic oscillator shell closure at N=40 in 68 Ni is weak and loses its strength when removing (or adding) pair of protons. Calculations performed in this mass region predict a new island of inversion at N=40 similar to the one at N=20. Using a large valence space, the neutron orbital 2d(5/2) is shown to be a crucial ingredient for the interpretation of the nuclear structure at N ∼40. The neutron 1g(9/2) -2d(5/2) energy difference has been determined in 69 Ni beam at 25.14 MeV/u separated by the LISE3 spectrometer was impinging a CD 2 target of 2.6 mg/cm 2 thickness. The experimental setup consisted of CATS/MUST2-S1/EXOGAM detectors coupled to an ionization chamber and a plastic scintillator. The angular moment and spectroscopic factors of the ground state (J π =9/2 + ) and a doublet of states (J π =5/2 + ) around 2.48 MeV corresponding to the population of the 1g(9/2) and the 2d(5/2) orbitals, were obtained from the comparison between the experimental cross-sections as a function of the proton detection angle and ADWA calculations. The spins of the observed states were assigned by comparison to large scale Shell-Model calculations. The position of the 2d(5/2) orbital in 69 Ni has been established for the first time. Our measurements support the hypothesis of a low-lying 2d(5/2) orbital (∼2.5 MeV) with respect to the 1g(9/2) neutron orbital and thus its major role in the structure of the nuclei around N=40. (author)

  6. Magicity of neutron-rich nuclei within relativistic self-consistent approaches

    Directory of Open Access Journals (Sweden)

    Jia Jie Li

    2016-02-01

    Full Text Available The formation of new shell gaps in intermediate mass neutron-rich nuclei is investigated within the relativistic Hartree–Fock–Bogoliubov theory, and the role of the Lorentz pseudo-vector and tensor interactions is analyzed. Based on the Foldy–Wouthuysen transformation, we discuss in detail the role played by the different terms of the Lorentz pseudo-vector and tensor interactions in the appearing of the N=16, 32 and 34 shell gaps. The nuclei 24O, 48Si and 52,54Ca are predicted with a large shell gap and zero (24O, 52Ca or almost zero (48Si, 54Ca pairing gap, making them candidates for new magic numbers in exotic nuclei. We find from our analysis that the Lorentz pseudo-vector and tensor interactions induce very specific evolutions of single-particle energies, which could clearly sign their presence and reveal the need for relativistic approaches with exchange interactions.

  7. Investigation of the structure of core-coupled odd-proton copper nuclei in fpg valence space using the projected shell model

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Anuradha; Singh, Suram; Bharti, Arun [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)

    2017-01-15

    By employing a systematically parametrized Hamiltonian and the best fit of the various input parameters, high-spin yrast energy states for an isotopic chain of odd mass {sup 59-69}Cu nuclei have been investigated by using a novel computational quantum mechanical framework-projected shell model. Comparison of calculations and experiments yields good agreement. The present study of various intriguing nuclear structure properties along the yrast lines in these odd proton isotopes reflects some interesting informative nuclear physics results. The calculations successfully describe the formation of the yrast level structures from multi-quasi-particle configurations based on πf x νg bands for {sup 59-69}Cu isotopes. The present calculations indicate the evolution of the nuclear structure near the magic nuclei, Ni, and also provide an indication of coexistence of both, collective as well as single-particle, levels for {sup 69}Cu nucleus at N=40. (orig.)

  8. Application of shell model with the modified surface delta interaction to 42Ca and 42Sc nuclei

    International Nuclear Information System (INIS)

    Jasielska, A.; Wiktor, S.

    1975-01-01

    The shell model with MSDI residual interaction is used to investigate properties of levels in the 42 Ca and 42 Sc nuclei. The 40 Ca core with two active outer nucleons is assumed. The energy matrices are diagonalized and the calculated level schemes for both 42 Ca and 42 Sc nuclei are presented. In both nuclei the density of the calculated levels is significantly less than of the observed levels. This fact leads to the conclusion, that some core excitation modes play an important role in the formation of low-lying states in the 42 Ca and 42 Sc nuclei. The calculated eigenvalues and eigenvectors of the states below 5 MeV are given. (author)

  9. Evidence for two-dimensional ising structure in atomic nuclei

    International Nuclear Information System (INIS)

    MacGregor, M.H.

    1976-01-01

    Although the unpaired nucleons in an atomic nucleus exhibit pronounced shell-model-like behavior, the situation with respect to the paired-off ''core region'' nucleons is considerably more obscure. Several recent ''multi-alpha knockout'' and ''quasi-fission'' experiments indicate that nucleon clustering is prevalent throughout the core region of the nucleus; this same conclusion is suggested by nuclear-binding-energy systematics, by the evidence for a ''neutron halo'' in heavy nuclei and by the magnetic-moment systematics of low-mass odd-A nuclei. A number of arguments suggests, in turn, that this nucleon clustering is not spherical or spheroidal in shape, as has generally been assumed, but instead is in the form of two-dimensional Ising-like layers, with the layers arrayed perpendicular to the symmetry axis of the nucleus. The effects of this two-dimensional layering are observed most clearly in low-energy-induced fission, where nuclei with an even (odd) number of Ising layers fission symmetrically (asymmetrically). This picture of the nucleus gives an immediate quantitative explanation for the observed asymmetry in the fission of uranium, and also for the transition from symmetric to asymmetric and back to symmetric fission as the atomic number of the fissioning nuclues increase from A = 197 up to A = 258. These results suggest that, in the shell model formulation of the atomic nucleus, the basis states for the paired-off nucleon core region should be modified so as to contain laminar nucleon cluster correlations

  10. Theory, ch. 4

    International Nuclear Information System (INIS)

    Brussaard, P.J.; Deukeren, H. van; Eijkern, F.E.H. van; Glaudemans, P.W.M.; Hees, A.G.M. van; Kolfschoten, A.W.; Koops, J.E.; Meurders, F.; Timmer, G.A.; Smitt, P.; Vries, H.F. de; Zalm, P.C.

    1977-01-01

    Shell model calculations have been concentrated mainly on nuclei in the middle of the sd shell (A=24-32), the middle of the fp shell (A=54-68) and on the doubly-even isotopes of Zn and Be. Several interactions were investigated, each of them optimized such that the experimental energies were reproduced as well as possible. Considerable thought was given to an improvement of the wave functions. A different approach was considered for the doubly-even isotopes of Zn and Ge, where quasiparticles constructed from the (1fsub(7/2), 2psub(3/2), 1fsub(5/2), 2psub(1/2) and 1gsub(1/2) orbits, were coupled to quadrupole oscillations of the core. Attention was paid to quasi-rotational states in doubly-even nuclei in the rotational invariant core model. It was shown that the electric quadrupole moments of such states can be related to the moments of inertia without detailed assumptions on the nuclear matter distribution. As the nuclear Su(3) model may provide the means for a shell-model truncation procedure, the reductions U(6) [sd shell] → Su(3) and U(10) [fp shell] → Su(3) were considered

  11. Neutron roton pairing effect on some even ven rare-earth proton-rich nuclei

    International Nuclear Information System (INIS)

    Mokhtari, D.

    2004-01-01

    The neutron roton pairing effect on some even ven rare-earth proton-rich nuclei is studied. It is taken into account, in the isovector case, within the framework of the generalized Bogoliubov-Valatin transformation, using Woods-Saxon single-particle energies. (author)

  12. The 1(h/2π)ω spectra of nuclei with a nearly half-filled 1p shell

    International Nuclear Information System (INIS)

    Jaeger, H.U.; Kirchbach, M.

    1977-01-01

    The effective particle-hole interaction of Millener and Kurath which contains non-central components is used to study the non-normal parity states of A = 9 - 12 nuclei in the framework of all non-spurious 1(h/2π)ω excitations. Additional calculations with a pure central force confirm the conclusion that non-central forces are necessary for a unified description of non-normal parity states in 1p-shell nuclei. (author)

  13. No-Core Shell Model for A = 47 and A = 49

    Energy Technology Data Exchange (ETDEWEB)

    Vary, J P; Negoita, A G; Stoica, S

    2006-11-13

    We apply the no-core shell model to the nuclear structure of odd-mass nuclei straddling {sup 48}Ca. Starting with the NN interaction, that fits two-body scattering and bound state data, we evaluate the nuclear properties of A = 47 and A = 49 nuclei while preserving all the underlying symmetries. Due to model space limitations and the absence of three-body interactions, we incorporate phenomenological interaction terms determined by fits to A = 48 nuclei in a previous effort. Our modified Hamiltonian produces reasonable spectra for these odd-mass nuclei. In addition to the differences in single-particle basis states, the absence of a single-particle Hamiltonian in our no-core approach complicates comparisons with valence effective NN interactions. We focus on purely off-diagonal two-body matrix elements since they are not affected by ambiguities in the different roles for one-body potentials and we compare selected sets of fp-shell matrix elements of our initial and modified Hamiltonians in the harmonic oscillator basis with those of a recent model fp-shell interaction, the GXPF1 interaction of Honma et al. While some significant differences emerge from these comparisons, there is an overall reasonably good correlation between our off-diagonal matrix elements and those of GXPF1.

  14. High spin structure of nuclei near N = 50 shell gap and search for high-spin isomers using time stamped data

    International Nuclear Information System (INIS)

    Saha, S.; Palit, R.; Trivedi, T.; Sethi, J.; Joshi, P.K.; Naidu, B.S.; Donthi, R.; Jadhav, S.; Nanal, V.; Pillay, R.G.; Jain, H.C.; Kumar, S.; Biswas, D.C.; Mukherjee, G.; Saha, S.

    2011-01-01

    Information on the high-spin states of nuclei promises to provide stringent test of the interaction of the Hamiltonian used in the calculation due to smaller basis space for high J-values. It is reported in a recent shell model review that no interaction is optimized for the region of interest around N = 50 and Z = 40 shell closure. The detailed spectroscopic information of the medium and high spin states in these nuclei is required to understand the shape transition between spherical and deformed shapes at N =60 as the higher orbitals are filled. Structure of isomers near shell closure carries important information of, for example, the extent of core excitation. In the present work, the spectroscopic study of the high spin states of 89 Zr isotope have been discussed

  15. Effect of closed shells on the multipole mixing parameter δ(E2/M1)

    International Nuclear Information System (INIS)

    Morozov, V.A.

    1992-01-01

    The behavior of the magnitude and sign of the mixing parameter δ(E2/M1) in even-even nuclei has been studied in a number of papers. The most extensive data has been given for transitions of the type 3 γ + , 2 γ + , 2 β + →2 g + . The data on δ are relatively scarce for mixed transitions in odd nuclei with magic or semimagic cores. However, certain conclusions can be drawn about the behavior of δ in transitions in odd nuclei near magic numbers, and also in transitions in even-even nuclei when passing through quasishells: (1) the absolute value of the reduced mixing parameter in transitions between particle and cluster-vibrational states in odd nuclei decreases as a closed shell is approached; (2) δ has the same sign for transitions between particle and cluster-vibrational levels in nuclei with Z=83 and 85 and N=83, 85, and 87; (3) in odd nuclei the sign of δ is positive for transitions between positive-parity states s 1/2 -d 3/2 in Cd, Sm, and Tl isotopes and is negative for transitions between negative-parity states f 7/2 π and h 9/2 π in Sm, Gd, Bi, and At isotopes, independently of whether these transitions are neutron or proton transitions; (4) the removal of ±2 nucleons in an even shell from a magic core (and in certain nuclei a larger number of pairs of nucleons) does not lead to a change in sign of δ in transitions producing an odd nucleus; (5) the closure of quasishells at N=96 and 104 in even-even nuclei is associated with an increase in the absolute value of δ(E2/M1)/E γ , but the sign of δ does not change

  16. B(E2) ↑ (01+ -> 21+) predictions for even–even nuclei in the differential equation model

    International Nuclear Information System (INIS)

    Nayak, R.C.; Pattnaik, S.

    2015-01-01

    We use the recently developed differential equation model (DEM) for the reduced electric quadrupole transition probability B(E2)↑ for the transition from the ground to the first 2 + state for predicting its values for a wide range of even–even nuclides almost throughout the nuclear landscape from Neon to Californium. This is made possible as the principal equation in the model, namely, the differential equation connecting the B(E2)↑ value of a given even–even nucleus with its derivatives with respect to the neutron and proton numbers, provides two different recursion relations, each connecting three different neighboring even–even nuclei from lower- to higher-mass numbers and vice versa. These relations are primarily responsible in extrapolating from known to unknown terrain of the B(E2)↑-landscape and thereby facilitate the predictions throughout. As a result, we have succeeded in predicting its hitherto unknown value for the adjacent 251 isotopes lying on either side of the known B(E2)↑ database. (author)

  17. Superdeformed bands in Hg and Tl nuclei for N≤112

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Jannsens, R.V.F.; Liang, Y.; Ahmad, I.; Henry, R.; Khoo, T.L.; Lauritsen, T.; Soramel, F.; Lewis, J.M.; Riedinger, L.L.; Yu, C.H.; Garg, U.; Reviol, W.; Pilotte, S.; Bearden, I.G.; Daly, P.J.

    1992-01-01

    The study of superdeformed (SD) nuclei in the A ∼ 190 region has provided a wealth of new information on SD states at moderate to high spins (I ∼ 10 to 50 h). The dynamical moment of inertia for almost all of the SD bands reported on to date in this mass region display a similar behavior, i.e. a smooth increase with increasing rotational frequency. This increase has been attributed to both quasiparticle alignments and a decrease in pairing with increasing rotational frequency. However, standard mean-field calculations have problems reproducing the magnitude and extent of the rise. The authors' recent results on SD states in the Hg-Tl nuclei at and below the N = 112 SD-gap add support to this interpretation of the rise in the dynamical moment of inertia while at the same time showing more clearly the inadequacies of the previous theoretical calculations

  18. Relativistic mean field theory for unstable nuclei

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    2000-01-01

    We discuss the properties of unstable nuclei in the framework of the relativistic mean field (RMF) theory. We take the RMF theory as a phenomenological theory with several parameters, whose form is constrained by the successful microscopic theory (RBHF), and whose values are extracted from the experimental values of unstable nuclei. We find the outcome with the newly obtained parameter sets (TM1 and TMA) is promising in comparison with various experimental data. We calculate systematically the ground state properties of even-even nuclei up to the drip lines; about 2000 nuclei. We find that the neutron magic shells (N=82, 128) at the standard magic numbers stay at the same numbers even far from the stability line and hence provide the feature of the r-process nuclei. However, many proton magic numbers disappear at the neutron numbers far away from the magic numbers due to the deformations. We discuss how to describe giant resonances for the case of the non-linear coupling terms for the sigma and omega mesons in the relativistic RPA. We mention also the importance of the relativistic effect on the spin observables as the Gamow-Teller strength and the longitudinal and transverse spin responses. (author)

  19. Theoretical description and predictions of the properties of superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sobiczewski, A [Department of Theoretical Physics, Andrzej Soltan Institute for Nuclear Studies (Poland)

    2009-12-31

    Theoretical descriptions of superheavy atomic nuclei are shortly reviewed and illustrated by their results. Such properties of these nuclei as their shapes, masses, fission barriers, decay modes, decay energies, half-lives, are discussed. Special attention is given to the shell structure of the nuclei, due to which they exist. The role of the physical studies of the superheavy nuclei for the chemical research on the superheavy elements and, more generally, the relationship between these two kinds of investigation is underlined. This stresses the importance of close cooperation between physicists and chemists, experimentalists and theoreticians, in these studies.

  20. Many-body forces in nuclear shell-model

    International Nuclear Information System (INIS)

    Rath, P.K.

    1985-01-01

    In the microscopic derivation of the effective Hamiltonian for the nuclear shell model many-body forces between the valence nucleons occur. These many-body forces can be discriminated in ''real'' many-body forces, which can be related to mesonic and internal degrees of freedom of the nucleons, and ''effective'' many-body forces, which arise by the confinement of the nucleonic Hilbert space to the finite-dimension shell-model space. In the present thesis the influences of such three-body forces on the spectra of sd-shell nuclei are studied. For this the two common techniques for shell-model calculations (Oak Ridge-Rochester and Glasgow representation) are extended in such way that a general three-body term in the Hamiltonian can be regarded. The studies show that the repulsive contributions of the considered three-nucleon forces become more important with increasing number of valence nucleons. By this the particle-number dependence of empirical two-nucleon forces can be qualitatively explained. A special kind of effective many-body force occurs in the folded diagram expansion of the energy-dependent effective Hamiltonian for the shell model. Thereby it is shown that the contributions of the folded diagrams with three nucleons are just as important as those with two nucleons. Thus it is to be suspected that the folded diagram expansion contains many-particle terms with arbitrary particle number. The present studies however show that four nucleon effects are neglegible so that the folded diagram expansion can be confined to two- and three-particle terms. In shell-model calculations which extend over several main shells the influences of the spurious center-of-mass motion must be regarded. A procedure is discussed by which these spurious degrees of freedom can be exactly separated. (orig.) [de

  1. Penning Trap Experiments with the Most Exotic Nuclei on Earth: Precision Mass Measurements of Halo Nuclei

    Science.gov (United States)

    Brodeur, M.; Brunner, T.; Ettenauer, S.; Lapierre, A.; Ringle, R.; Delheij, P.; Dilling, J.

    2009-05-01

    Exotic nuclei are characterized with an extremely unbalanced protons-neutrons ratio (p/n) where for instance, the halo isotopes of He and Li have up to 3X more n than p (compared to p/n = 1 in ^12C). The properties of these exotic halo nuclei have long been recognized as the most stringent tests of our understanding of the strong force. ^11Li belongs to a special category of halos called Borromean, bound as a three-body family, while the two-body siblings, ^10Li and 2 n, are unbound as separate entities. Last year, a first mass measurement of the radioisotope ^11Li using a Penning trap spectrometer was carried out at the TITAN (Triumf's Ion Trap for Atomic and Nuclear science) facility at TRIUMF-ISAC. Penning traps are proven to be the most precise device to make mass measurements, yet until now they were unable to reach these nuclei. At TRIUMF we managed to measure the mass of ^11Li to an unprecedented precision of dm/m = 60 ppb, which is remarkable since it has a half-life of only 8.8 ms which it the shortest-lived nuclide to be measured with this technique. Furthermore, new and improved masses for the 2 and 4 n halo ^6,8He, as well has the 1 n halo ^11Be have been performed. An overview of the TITAN mass measurement program and its impact in understanding the most exotic nuclei will be given.

  2. Study of the influence of the shell correction energy on the nuclear reactions leading to the region of the superheavy nuclei

    International Nuclear Information System (INIS)

    Marchix, A.

    2007-11-01

    The aim of this work is to study the influence of shell correction energy on the deexcitation of superheavy nuclei. For that purpose, a new statistical code, called Kewpie2, which is based on an original algorithm allowing to have access to very weak probabilities, was developed. The results obtained with Kewpie2 have been compared to the experimental data on residue cross sections obtained by cold fusion (Z=108 to Z=113) and by hot fusion (Z=112, Z=114 and Z=116), as well as data on fission times (Z=114, Z=120 and Z=126). Constraints on the microscopic structure of the studied nuclei have been obtained by means of the shell correction energy. By adjusting the intrinsic parameters of the models of fusion in order to reproduce the data on the fusion cross sections, this study shows the necessity of decreasing very strongly the shell correction energy predicted by the calculations of Moller and Nix, during the study of the residues cross sections as well for the nuclei produced by cold fusion as by hot fusion. On the other hand, during the confrontation of the results of Kewpie2 to the data on mean fission times, it is rather advisable to increase it. A shift of the proton shell closure predicted for Z=114 by the calculations of Moller and Nix towards larger Z would allow to explain these opposite conclusions. In this thesis, we also have shown the significant influence of the inclusion of isomeric states on fission times for the superheavy nuclei. (author)

  3. Particle-hole excitations in N=50 nuclei

    International Nuclear Information System (INIS)

    Johnstone, I.P.; Skouras, L.D.

    1997-01-01

    Energy levels in N=50 nuclei are calculated allowing single-particle excitations from the p 1/2 and g 9/2 shells into the d 5/2 , s 1/2 , d 3/2 , and g 7/2 shells. Important parts of the interaction are determined by least-squares fits to known levels. Agreement with experiment is very good. The high-spin particle-hole states appear to be mainly yrast levels in mass 93 and higher, but are not in 90 Zr. copyright 1997 The American Physical Society

  4. Systematic studies for medium-heavy even-even nuclei

    International Nuclear Information System (INIS)

    Chen, Y.; Zhao, Y.M.; Chen, J.Q.

    1995-01-01

    The systematics for the excitation energies of the ground, β, and γ bands are presented using the empirical total np interaction V NP . Some regularities found in the previous studies are tested by the systematics in the V NP schemes. The systematics of the β and γ bands are presented in detail. Elegant regularities are observed for the excitation energies. The correlation phenomenon of the general behavior among different bands within each major shell is pointed out

  5. New mass analysis and results for neutron rich nuclei performed with isochronous mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Diwisch, Marcel [Justus-Liebig-Universitaet Giessen, Giessen (Germany); Knoebel, Ronja; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Patyk, Zygmunt [Soltan Institute for Nuclear Studies, Warsaw (Poland); Weick, Helmut [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2015-07-01

    The Isochronous Mass Spectrometry (IMS) allows to measure masses of rare exotic nuclei in a storage ring in a timescale of tens of μs. The ring is operated in an isochronous mode, i.e. such that particles with different velocities but same mass-to-charge ratio (m/q) travel different paths in the ring arcs (faster ions travel longer paths whereas slower ions travel shorter paths). This means that for each m/q a fix revolution time exists and can be measured by a time-of-flight (TOF) detector which then yields the masses of the nuclei for known charge states. A new analysis approach of IMS data with a correlation matrix method allowed combining data with different quality. The latest production run was using an additional determination of the magnetic rigidity which increased the resolving power of the experiment. Combining this experiment with previous experiments one can increase the statistics and accuracy of the overall mass determination. It was possible to deduce mass values of neutron rich isotopes which have not been measured before. One of those isotopes is {sup 130}Cd which is a very important nuclei involved in the r-process. Those mass values and a comparison to theoretical predictions will be presented in the poster.

  6. Mass-23 nuclei in astrophysics

    International Nuclear Information System (INIS)

    Fraser, P R; Amos, K; Van der Kniff, D; Canton, L; Karataglidis, S; Svenne, J P

    2015-01-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22 Na puzzle of ONe white dwarf novae, where the abundance of 22 Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22 Ne, a necessary step in studying the mass-23 nuclei mentioned above. (paper)

  7. Mass-shell properties of the dynamical quark mass

    International Nuclear Information System (INIS)

    Reinders, L.J.; Stam, K.

    1986-07-01

    We discuss the running dynamical quark mass in the framework of the operator product expansion. It is shown that for vertical strokep 2 vertical stroke>m 2 the quark-condensate part of the quark self energy has no contributions of order m 2 or higher, and is frozen to its mass-shell value for smaller vertical strokep 2 vertical stroke. (orig.)

  8. Systematic of triaxial moment of inertia in even nuclei of mass region A = 90 - 120

    International Nuclear Information System (INIS)

    Bihari, Chhail; Sharma, Aparna; Varshney, A.K.; Singh, M.; Gupta, D.K.; Varshney, Mani; Singh, Yuvraj; Gupta, K.K.

    2011-01-01

    The Ru - isotopes with Z > 50 lie in a region of structural change that has been a challenge to theoretical interpretations. The Zr and Sr - isotopes near A ∼ 100 undergo the most rapid spherical deformed transition in heavy nuclei. The rate of change of structure with neutron number becomes more gradual with increasing proton number in Mo, Ru, Pd and Cd - nuclei. The qualitative trend of 'a' versus N p N n are found similar in Ru and Pd isotopes. The present study points out a systematic difference in the rates of growth of collectivity in different regions i.e. particle-particle and hole-hole (P,P and P,H) that seems not to have been noted before in moment of inertia 'a'

  9. Fission of nuclei far from stability

    International Nuclear Information System (INIS)

    Schmidt, K.H.; Benlliure, J.; Junghans, A.R.

    2000-11-01

    The secondary-beam facility of GSI provided the technical equipment for a new kind of fission experiment. Fission properties of short-lived neutron-deficient nuclei have been investigated in inverse kinematics. The measured element distributions reveal new kinds of systematics on shell structure and even-odd effects and lead to an improved understanding of structure effects in nuclear fission. Prospects for further experimental studies are discussed. (orig.)

  10. Real and complex boson expansions in even-even deformed nuclei

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Piepenbring, R.

    1977-01-01

    Analysis of real and complex boson expansions of the Kishimoto-Tamura type is performed in a deformed basis in order to allow a further study of the anharmonicities of vibrations in deformed nuclei. It is shown that complex solutions cannot be found in the cases where no real one exists. (Auth.)

  11. Redundancy-free single-particle equation-of-motion method for nuclei. Pt. 1

    International Nuclear Information System (INIS)

    Rolnick, P.; Goswami, A.; Oregon Univ., Eugene

    1986-01-01

    The problem of coupling an odd nucleon to the collective states of an even core is considered in the intermediate-coupling limit. It is now well known that such intermediate-coupling calculations in spherical open-shell nuclei necessitate the inclusion of ground-state correlation or backward coupling which gives rise to an overcomplete basic set of states for the diagonalization of the hamiltonian. In a recent letter, we have derived a technique to free the single-particle equation-of-motion method of redundancy. Here we shall apply this redundancy-free equation-of-motion method to intermediate-coupling calculations in two regions of near-spherical odd-mass nuclei where forward coupling alone has not been successful. It is shown that qualitative effects of backward coupling previously reported are not spurious effects of double counting, although they are significantly modified by the removal of redundancy. We also discuss what further modifications of the theory will be needed in order to treat the dynamical interplay of collective and single-particle modes in nuclei self-consistently on the same footing. (orig.)

  12. Decay out of the yrast and excited highly-deformed bands in the even-even nucleus {sup 134}Nd

    Energy Technology Data Exchange (ETDEWEB)

    Petrache, C.M.; Bazzacco, D.; Lunardi, S. [Sezione di Padova (Italy)] [and others

    1996-12-31

    The resolving power achieved by the new generation of {gamma}-ray detector arrays allows now to observe transitions with intensities of the order of {approximately}10{sup {minus}3} of the population of the final residual nucleus, making therefore feasible the study of the very weakly populated excited bands built on the superdeformed (SD) minimum or of the decay out of the SD bands. As a matter of fact, numerous excited SD bands have been observed in the different regions of superdeformation, which led to a deeper understanding of the single-particle excitation in the second minimum. The first experimental breakthrough in the study of the decay out process has been achieved in the odd-even {sup 133,135}Nd nuclei of the A=130 mass region. There, the observation of the discrete linking transitions has been favored by the relatively higher intensity of the highly-deformed (HD) bands ({approximately}10%), as well as by the small excitation energy with respect to the yrast line in the decay-out region ({approximately}1 MeV). No discrete linking transitions have been so far observed in the A=80, 150 mass regions. The present results suggest that the decay out of the HD bands in {sup 134}Nd is triggered by the crossing with the N=4 [402]5/2{sup +} Nilsson orbital, that has a smaller deformation than the corresponding N=6 intruder configuration. The crossing favours the mixing with the ND rotational bands strongly enhancing the decay-out process and weakening the in-band transition strength. The HD band becomes fragmented and looses part of its character. The intensity of the decay-out transitions increases when the spin of the HD state decreases, indicating enhanced ND amplitude in the wavefunction when going down the band. Lifetime measurements of the HD bands are crucial to further elucidate the decay-out process.

  13. Investigations of collective and single-particle aspects of excitation in 1fsub(7/2) shell nuclei

    International Nuclear Information System (INIS)

    Styczen, J.

    1976-01-01

    Experimental data are presented which were obtained in spectroscopic studies on 1fsub(7/2) shell nuclei in the following reactions: 30 Si( 16 0,pn) 44 Sc, 44 Ca(p,n) 44 Sc, 42 Ca(α,p) 45 Sc, 42 Ca(α,n) 45 Sc, 45 Sc(α,pn) 47 Ti, 46 Ti(α,p) 49 V, 47 Ti(α,pn) 49 V, and 49 Ti(p,n) 49 V. Experimental reduced transition probabilities B(M1) and B(E2) have been systematically compared for inband transitions of Ksup(π)=3/2 + bands in sup(43,45,47)Sc, 45 Ti and sup(47,49)V nuclei. In the framework of the pure rotational model, intrinsic quadrupole moments |Qsub(o)| and |gsub(K)-gsub(R)| ratios have been derived. Band mixing calculations in a strong coupling model treating more correctly the j 2 term in the hamiltonian and hole excitations, have been indertaken on properties of negativeparity states in the cross-conjugate nuclei 47 Ti- 49 V and V 47 - 49 Dr. There is an overall good agreement between the experimental data and the theoretical predictions. The strong coupling model has been also used to study possible regions of stable deformation for the positive parity states of the odd nuclei in the 1fsub(7/2) shell. Band mixing calculations performed for these states have shown that the experimental data are well reproduced in the calculations with a deformation parameter corresponding to a minimum of the static potential energy. (author)

  14. Nuclear mass formulas and its application for astrophysics

    International Nuclear Information System (INIS)

    Koura, Hiroyuki

    2003-01-01

    Some nuclear mass formulae are reviewed and applied for the calculation of the rapid neutron-capture-process (r-process) nucleosynthesis. A new mass formula composed of the gross term, the even-odd term, and the shell term is also presented. The new mass formula is a revised version of the spherical basis mass formula published in 2001, that is, the even-odd term is treated more carefully, and a considerable improvement is brought about. The root-mean-square deviation of the new formula from experimental masses is 641 keV for Z ≥ 8 and N ≥ 8. Properties on systematic of the neutron-separation energy is compared with some mass formulas. The calculated abundances of the r-process from different mass formulae are compared with use of a simple reaction model, and the relation between the calculated abundances and the corresponding masses are discussed. Furthermore, fission barriers for the superheavy and neutron-rich nuclei are also applied for the endpoint of the r-process. (author)

  15. Dynamical interplay between pairing and quadrupole correlations in odd-mass nuclei

    International Nuclear Information System (INIS)

    Kaneko, Kazunari; Takada, Kenjiro; Sakata, Fumihiko; Tazaki, Shigeru.

    1982-01-01

    Study of the dynamical interplay between pairing and quadrupole correlations in odd-mass nuclei has been developed. One of the purposes of this paper is to predict that the new collective excited states may exist system-atically in odd-mass nuclei. Other purpose is to discuss a new collective band structure on the top of a unique-parity one-quasiparticle state. Through the numerical calculations, it has been clarified that the dynamical mutual interplay between the pairing and the quadrupole degrees of freedom played an important role in the odd-mass transitional nuclei to bring about the new type of collective states. The results of calculation were compared with the experimental data. (Kato, T.)

  16. Shell Effect and Temperature Influence on Nuclear Level Density Parameter: the role of the effective mass interaction

    International Nuclear Information System (INIS)

    Queipo-Ruiz, J.; Guzman-Martinez, F.; Rodriguez-Hoyos, O.

    2011-01-01

    The level density parameter is a very important ingredient in statistic study of nuclear reaction, it has been studied to low energies excitation E < 2MeV where it values is approximately constant, experimental results to energies of excitation more than 2 MeV has been obtained of evaporation spectrum, to nuclei with A=160. In this work we present a calculation of densities level parameter, for a wide range of mass and temperature, taking in accounts the shell effects and the mass effective interaction. The result has been carried out within the semi classical approximation, for the single particle level densities. We results have a reasonable agreement with the experimental data available. (Author)

  17. Mass-measurements far from stability of neutron rich light nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Gregoire, C.; Schutz, Y.

    1987-07-01

    The study of nuclei far from stability is a verification of nuclear models that generally have been established using the properties of stable nuclei. The direct measurement of the mass has considerable advantages for nuclei very far from stability. This implies a high resolution measurement device, reasonable production rates of the nuclei of interest, and very low systematic errors. This is discussed here. Some of the results have been published recently. They are compared to different classes of models. Region presented is Z=9-15 region

  18. Spectrum of {gamma} rays from the decay of SD to normal states in {sup 191}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Gassmann, D.; Khoo, T.L.; Lauritsen, T. [and others

    1995-08-01

    In B.a.7. we propose that the statistical spectrum emitted from a sharp single excited state serves as a probe of pairing in excited states. A specific test of this proposal is the comparison of the spectra from even-even and odd-even nuclei. Whereas a pair gap exists in an even-even nucleus, it gets filled in an odd-even nucleus. Consequently, low-energy transitions can arise in the latter case, whereas they are calculated to be absent in the former case because very few levels exist in the cold gap region. In addition, transitions between 1.4 - 2.2 MeV, which {open_quotes}jump{close_quotes} across the gap, are predicted to have lower yield in the odd-even nuclei. Serendipitously, decay from a superdeformed state serves as a good initial excited sharp state. We extracted the spectrum pairwise-coincident with SD lines in {sup 191}Hg from Gammasphere data and compared it with the equivalent spectra from the even-even nuclei {sup 192,194}Hg. The differences that are predicted to occur are indeed observed. Thus, the data support our proposal that the reduction of pairing with thermal excitation energy can be probed with statistical decay spectra.

  19. Yang-Mills theory on the mass shell

    International Nuclear Information System (INIS)

    Cvitanovic, P.

    1976-01-01

    Gauge-invariant mass-shell amplitudes for quantum electrodynamics (QED) and Yang-Mills theory are defined by dimensional regularization. Gauge invariance of the mass-shell renormalization constants is maintained through interplay of ultraviolet and infrared divergences. Quark renormalizations obey the same simple Ward identity as do the electron renormalizations in QED, while the gluon contributions to gluon renormalizations are identically zero. The simplest amplitude finite in QED, the magnetic moment, is gauge-invariant but divergent in Yang-Mills theory for both external gluon and external photon

  20. Giant monopole resonance in even-A Cd isotopes, the asymmetry term in nuclear incompressibility, and the 'softness' of Sn and Cd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Patel, D. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Garg, U., E-mail: garg@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Fujiwara, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Akimune, H. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Berg, G.P.A. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Harakeh, M.N. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); Itoh, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Kawabata, T. [Center for Nuclear Studies, University of Tokyo, Tokyo 113-0033 (Japan); Kawase, K. [Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047 (Japan); Nayak, B.K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Ohta, T. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Ouchi, H. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Piekarewicz, J. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Uchida, M. [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8850 (Japan); Yoshida, H.P. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Yosoi, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan)

    2012-12-05

    The isoscalar giant monopole resonance (ISGMR) in even-A Cd isotopes has been studied by inelastic {alpha}-scattering at 100 MeV/u and at extremely forward angles, including 0 Degree-Sign . The asymmetry term in the nuclear incompressibility extracted from the ISGMR in Cd isotopes is found to be K{sub {tau}}=-555{+-}75 MeV, confirming the value previously obtained from the Sn isotopes. ISGMR strength has been computed in relativistic RPA using NL3 and FSUGold effective interactions. Both models significantly overestimate the centroids of the ISGMR strength in the Cd isotopes. Combined with other recent theoretical effort, the question of the 'softness' of the open-shell nuclei in the tin region remains open still.

  1. F-spin study of rare-earth nuclei using F-spin multiplets and angular momentum projected intrinsic states

    International Nuclear Information System (INIS)

    Diallo, A.F.

    1993-01-01

    The proton-neutron Interacting-Boson Model contains both symmetric and mixed-symmetry proton-neutron boson configurations. These states of different proton-neutron symmetry can be classified in terms of an SU(2) symmetry, called F-spin. This dissertation deals with some new applications of F-spin. Even-even nuclei drawn from the proton and neutron shells 50 + scissor mode, and the gyromagnetic ratios of the ground-band members, for which formulas are derived. A no-free-parameter calculation is performed for the summed M1 strength and the centroid energy of ( 146-158 )Sm isotopes. The g factors of deformed and transitional nuclei in the rare-earth mass region are also computed. The data in all cases are found to be well reproduced, in general. A weak L dependence is predicted for the g factors, and there appears to be no need to include two-body terms in the T(M1) operator for determining the M1 strength

  2. Static quadrupole moments of first 2+ states in the 2s1d shell: a review of experiment and theory

    International Nuclear Information System (INIS)

    Spear, R.H.

    1981-01-01

    Available experimental information on the static electric quadrupole moments Q 2 + of the 2 + first excited states of even-mass nuclei in the 2s-1d shell is tabulated and critically reviewed, and adopted values are presented. The results reveal a well defined pattern for the variation of Q 2 + through the shell. Predictions of Q 2 + made from various nuclear models are tabulated and compared with experiment. For each nucleus the quantity and quality of the existing data for Q 2 + , together with the current theoretical significance of the result, are used as criteria to determine whether new experimental work is desirable

  3. Investigation of dynamic characteristics of shells with holes and added mass

    Directory of Open Access Journals (Sweden)

    Seregin Sergey Valer’evich

    2014-04-01

    Full Text Available Thin cylindrical shells are widely used in construction, engineering and other industries. In case of designing a reservoir for the isothermal storage of liquefied gases such cases are inevitable, when housing requires various technical holes. A point wise added mass can appear into practice in the form of suspended spotlights, radar, architectural inclusions in buildings and structures of various purposes. It is known, that the dynamic asymmetry as an initial irregular geometric shape, including holes, and the added mass leads to specific effects in shells. In the paper the impact of a cut on the frequency and form of its own vibrations of thin circular cylindrical shells is theoretically examined with the help of the equations of linear shallow shell theory. For modal equations with Nav’e boundary conditions, we used the Bubnov - Galerkin method. The authors have expressed a formula for finding the lowest of the split-frequency vibrations of a shell with a cutout. It is stated, that in case of an appropriate choice of added mass value the lower frequencies are comparable with the case of vibrations of a shell with a hole. By numerical and experimental modeling and finite element method in the environment of MSC "Nastran" oscillation frequencies a shell supporting a concentrated mass and a shell with a cutout were compared. It is shown, that the results of the dynamic analysis of shells with holes with a suitable choice of the attached mass values are comparable with the results of the analysis of shells carrying a point mass. It was concluded that the edges in the holes, significantly affect the reduction in the lowest frequency, and need to be strengthened.

  4. Precision measurement of the mass difference between light nuclei and anti-nuclei with ALICE at the LHC

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    is produced in the central pseudorapidity region allowing for a precise investigation of their properties. Mass and binding energy are expected to be the same in nuclei and anti-nuclei as long as the CPT invariance holds for the nuclear force, a remnant of the underlying strong interaction between quarks and gluons. The measurements of the difference in mass-to-charge ratio between deuteron and anti-deuteron, and 3He and 3\\bar{He} nuclei performed with the ALICE detector at the LHC is presented. The ALICE measurements improve by one to two orders of magnitude previous analogous direct measurements. Given the equivalence between mass and energy, the results improve by a factor two the constraints on CPT invariance inferred from measurements in the (anti-)deuteron system. The binding energy difference has been determined for the first time in the case of (anti-)3He, with a precision comparable to the one obtained in the...

  5. Recent developments for high-precision mass measurements of the heaviest elements at SHIPTRAP

    International Nuclear Information System (INIS)

    Minaya Ramirez, E.; Ackermann, D.; Blaum, K.; Block, M.; Droese, C.; Düllmann, Ch. E.; Eibach, M.; Eliseev, S.; Haettner, E.; Herfurth, F.; Heßberger, F.P.

    2013-01-01

    Highlights: • Direct high-precision mass measurements of No and Lr isotopes performed. • High-precision mass measurements with a count rate of 1 ion/hour demonstrated. • The results provide anchor points for a large region connected by alpha-decay chains. • The binding energies determine the strength of the deformed shell closure N = 152. • Technical developments and new techniques will pave the way towards heavier elements. -- Abstract: Atomic nuclei far from stability continue to challenge our understanding. For example, theoretical models have predicted an “island of stability” in the region of the superheavy elements due to the closure of spherical proton and neutron shells. Depending on the model, these are expected at Z = 114, 120 or even 126 and N = 172 or 184. Valuable information on the road to the island of stability is derived from high-precision mass measurements, which give direct access to binding energies of short-lived trans-uranium nuclei. Recently, direct mass measurements at SHIPTRAP have been extended to nobelium and lawrencium isotopes around the deformed shell gap N = 152. In order to further extend mass measurements to the region of superheavy elements, new technical developments are required to increase the performance of our setup. The sensitivity will increase through the implementation of a new detection method, where observation of one single ion is sufficient. Together with the use of a more efficient gas stopping cell, this will us allow to significantly enhance the overall efficiency of SHIPTRAP

  6. (p,3He) reactions on 1p shell nuclei at 41 and 45 MeV

    International Nuclear Information System (INIS)

    Rapp, V.

    1982-01-01

    In the present thesis the (p, 3 He) reactions on target nuclei of the 1p shell were studied. The measurements were performed at the isochronous cyclotron of the KFA Juelich. Angular distribution at 41 and 45 MeV to residual nuclear states in 7 Li, 8 Be, 9 Be, 10 B, 11 B, 12 C, 13 C, and 14 N. were evaluated. (orig.) [de

  7. Electromagnetic and weak observables in the context of the shell model

    International Nuclear Information System (INIS)

    Wildenthal, B.H.

    1984-01-01

    Wave functions for A = 17-39 nuclei have been obtained from diagonalizations of a single Hamiltonian formulation in the complete sd-shell configuration space for each NTJ system. These wave functions are used to generate the one-body density matrices corresponding to weak and electromagnetic transitions and moments. These densities are combined with different assumptions for the single-particle matrix elements of the weak and electromagnetic operators to produce theoretical matrix elements. The predictions are compared with experiment to determine, in some ''linearly dependent'' fashion, the correctness of the wave functions themselves, the optimum values of the single-particle matrix elements, and the viability of the overall shell-model formulation. (author)

  8. Selected properties of nuclei at the magic shell closures from the studies of E1, M1 and E2 transition rates

    International Nuclear Information System (INIS)

    Mach, H.; Baluyut, A.-M.; Smith, D.; Ruchowska, E.; Koester, U.; Fraile, L. M.; Penttilae, H.; Aeystoe, J.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Jokinen, A.; Karvonen, P.; Kessler, T.; Moore, I. D.; Rahaman, S.; Rissanen, J.; Ronkainen, J.; Ronkanen, P.; Saastamoinen, A.

    2009-01-01

    Using the Advanced Time-Delayed method we have studied transition rates in several neutron-rich nuclei at the magic shell closures. These include the heavy Co and Fe nuclei just below the Z = 28 shell closure at the point of transition from spherical to collective structures. Of particular interest is 63 Fe located exactly at the point of transition at N = 37. A substantial increase in the information on this nucleus was obtained from a brief fast timing study conducted at ISOLDE. The new results indicate that 63 Fe seems to depart from a simple shell model structure observed for heavier N = 37 isotones of 65 Ni and 67 Zn.Another region of interest are the heavy Cd and Sn nuclei at N = 72, 74 and the properties of negative parity quasi-particle excitations. These experiments, performed at the IGISOL separator at Jyvaeskylae, revealed interesting properties of the E2 rates in the sequence of E2 transitions connecting the 10 + , 8 + , 6 + , 4 + , 2 + and 0 + members of the multiplet of levels in 122 Sn due to neutrons in the h 11/2 orbit.

  9. Fusability and survivability in reactions leading to heavy nuclei in the vicinity of the N = 126 shell

    International Nuclear Information System (INIS)

    Sagajdak, R.N.

    2008-01-01

    The production of heavy nuclei from Rn to Th around the N = 126 neutron shell in complete fusion reactions of nuclei has been considered in a systematic way in the framework of the conventional barrier-passing fusion model coupled with the Standard Statistical Model (SSM). Available data on the excitation functions for fusion and production of evaporation residues obtained in very asymmetric combinations are described with these models rather well. In the interaction of massive projectiles with heavy target nuclei quasi-fission effects appear in the entrance reaction channel. The quantity of the fusion probability introduced empirically has been used to reproduce excitation functions with the same SSM parameters (fission barriers) as those obtained in the analysis of very asymmetric combinations. A lack of stabilization against fission around N = 126 for Th nuclei was earlier explained with a reduced collective contribution to the level density in spherical nuclei. However, the present analysis shows severe inhibition for fusion, i.e., the drop in production cross sections of Th nuclei in the vicinity of N = 126 is mainly caused by entrance channel effects. The macroscopic component of fission barriers for nuclei involved in a deexcitation cascade has been derived and compared with the theoretical model predictions and available data

  10. Masses of exotic calcium isotopes pin down nuclear forces

    CERN Document Server

    Wienholtz, F; Blaum, K; Borgmann, Ch; Breitenfeldt, M; Cakirli, R B; George, S; Herfurth, F; Holt, J D; Kowalska, M; Kreim, S; Lunney, D; Manea, V; Menéndez, J; Neidherr, D; Rosenbusch, M; Schweikhard, L; Schwenk, A; Simonis, J; Stanja, J; Wolf, R N; Zuber, K

    2013-01-01

    The properties of exotic nuclei on the verge of existence play a fundamental part in our understanding of nuclear interactions. Exceedingly neutron-rich nuclei become sensitive to new aspects of nuclear forces. Calcium, with its doubly magic isotopes $^{40}$Ca and $^{48}$Ca, is an ideal test for nuclear shell evolution, from the valley of stability to the limits of existence. With a closed proton shell, the calcium isotopes mark the frontier for calculations with three-nucleon forces from chiral effective field theory. Whereas predictions for the masses of $^{51}$Ca and $^{52}$Ca have been validated by direct measurements$^4$, it is an open question as to how nuclear masses evolve for heavier calcium isotopes. Here we report the mass determination of the exotic calcium isotopes $^{53}$Ca and $^{54}$Ca, using the multi-reflection time-of-flight mass spectrometer of ISOLTRAP at CERN. The measured masses unambiguously establish a prominent shell closure at neutron number N = 32, in excellent agreement with our t...

  11. Exotic Nuclei and Yukawa's Forces

    International Nuclear Information System (INIS)

    Otsuka, Takaharu; Suzuki, Toshio; Utsuno, Yutaka

    2008-01-01

    In this plenary talk, we will overview the evolution of the shell structure in stable and exotic nuclei as a new paradigm of nuclear structure physics. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The nuclear magic numbers have been believed, since Mayer and Jensen, to be constants as 2, 8, 20, 28, 50, ... This turned out to be changed, once we entered the regime of exotic nuclei. This shell evolution develops at many places on the nuclear chart in various forms. For example, superheavy magic numbers may be altered. Thus, we are led to a new paradigm as to how and where the nuclear shell evolves, and what consequences arise. The evolution of the shell affects weak process transitions, and plays a crucial role in deformation. The π and ρ mesons generate tensor forces, and are the fundamental elements of such intriguing phenomena. Thus, physics of exotic nuclei arises as a manifestation of Yukawa's forces

  12. The salient features of charge density distributions of medium and heavy even-even nuclei determined from a systematic analysis of elastic electron scattering from factors

    International Nuclear Information System (INIS)

    Friedrich, J.; Voegler, N.

    1982-01-01

    All available information on charge distributions of even-even nuclei is analysed systematically. For medium and heavy nuclei five general features of p(r) are investigated: (i) The extension for which we discuss several different definitions. The measured extension together with experimental binding energies allows a determination of nuclear compressibility within the framework of the droplet model, the resulting value being K = 165 +- 10 MeV. (ii) The surface thickness. Here too, several definitions are discussed. A close relationship between the surface thickness and binding energies is demonstrated. (iii) The average slope in the inner part of the nucleus. A method is formulated to separate this slope from the oscillations observed. All nuclei show a positive slope of comparable size. (iv) The oscillations on p(r). They are related to an abrupt breakdown in the form factor around q = 2.25 fm -1 . This effect seems to be closely related to the fact that p(r) is built up out of single particles, details however being unimportant. (v) The high-q components of the form factor are indicative for a scattering mechanism involving pairs of nucleons. (orig.)

  13. Meson-exchange forces and medium polarization in finite nuclei

    International Nuclear Information System (INIS)

    Hengeveld, W.

    1986-01-01

    A G-matrix, derived from a meson-exchange potential in nuclear matter, is applied to finite, semi-magic nuclei. For the open shell the broken-pair model, which can accomodate many particle levels, is used. The excitations of the closed shell are treated as particle-hole states. Energy spectra and electromagnetic transition densities are calculated for 88 Sr and 58 Ni. The standard random-phase approximation for finite systems is extended by including the effects of the exchange of the RPA phonons in the residual interaction selfconsistently. It is shown that this particle-hole interaction is strongly energy dependent due to the presence of poles corresponding to 2p-2h (and more complex) excitations. The RPA eigenvalue problem with this energy-dependent residual interaction also provides solutions for these predominantly 2p2h-like states. In addition a modified normalization condition is obtained. This scheme is applied to 56 Ni( 56 Co) in a large configuration space using a residual interaction of the G-matrix type. The effect of dynamic medium polarization on the properties of giant resonances is illustrated for the case of A=48 nuclei. A large fragmentation of the monopole strength is calculated, which is in accordance with the non-observation of the GMR in light nuclei. Properties of A=48 nuclei are computed with an interaction deduced from the NN scattering data without introduction of additional parameters. The role of medium polarization is illustrated for spectra and (e,e') form factors. It is shown how medium polarization induces a coupling between excitations in even-even and in the adjacent odd-odd nuclei. (Auth.)

  14. References for HNF-SD-WM-TRD-007, ''System specification for the double-shell tank system: HNF-PROs, CFRs, DOE Orders, WACs''

    International Nuclear Information System (INIS)

    Shaw, C.P.

    1998-01-01

    HNF-SD-WM-TRD-O07, System Specification for the Double-Shell Tank System, (hereafter referred to as DST Specification), defines the requirements of the double-shell tank system at the Hanford Site for Phase 1 privatization. Many of the sections in this document reference other documents for design guidance and requirements. Referenced documents include Project Hanford Management Contract (PHMC) procedures (HNF-PROS), Codes of Federal Regulation (CFRs), DOE Orders, and Washington Administrative Codes (WACs). This document provides rationale for the selection and inclusion of HNF-PROS, CFRs, DOE Orders and WACs

  15. Superheavy nuclei: a relativistic mean field outlook

    International Nuclear Information System (INIS)

    Afanasjev, A.V.

    2006-01-01

    The analysis of quasi-particle spectra in the heaviest A∼250 nuclei with spectroscopic data provides an additional constraint for the choice of effective interaction for the description of superheavy nuclei. It strongly suggests that only the parametrizations which predict Z = 120 and N = 172 as shell closures are reliable for superheavy nuclei within the relativistic mean field theory. The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied. A large central depression produces large shell gaps at Z = 120 and N = 172. The shell gaps at Z = 126 and N = 184 are favoured by a flat density distribution in the central part of the nucleus. It is shown that approximate particle number projection (PNP) by means of the Lipkin-Nogami (LN) method removes pairing collapse seen at these gaps in the calculations without PNP

  16. Systematic behavior of B(E2) values in the yrast bands of doubly even nuclei

    International Nuclear Information System (INIS)

    Andrejtscheff, W.; Rutgers - the State Univ., New Brunswick, NJ; Nadjakov, E.; Venkova, T.

    1980-01-01

    The experimental information on B(E2) transition rates in the yrast bands of doubly even nuclei (126 2 (J: moment of inertia) are plotted versus the rotational frequency squared h/2π 2 ω 2 for each nucleus. In strongly deformed nuclei (N >= 90), the Ssub(exp) curves smoothly increase for low rotational frequencies suggesting that up to spin values I approx. 8 the ratio Q 2 0 /J is nearly constant (Q 0 : quadrupole moment). This is not the case in nuclei with a soft core (N <= 88). In the relevant discussion, the hydrodynamical model as well as the CAP effect are considered. The results in the backbending region are qualitatively discussed in terms of the two-band crossing model. Evidence is found supporting the prediction of an oscillating behavior of the yrast-yrare interaction. (orig.)

  17. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  18. Reactions with fast radioactive beams of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Aumann, T.

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like 11 Li and 12 Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  19. Test of complex effective interaction by folding analysis of 32S elastic scattering on s-d shell nuclei

    International Nuclear Information System (INIS)

    Bilwes, B.; Bilwes, R.; Diaz, J.; Ferrero, J.L.; Pacheco, J.C.; Ruiz, J.A.

    1988-01-01

    Experimental data of elastic scattering between nuclei of various structures on a large energy scale has been analyzed in the framework of the folding model by use of the complex effective interaction of Faessler et al (1981). A general good reproduction of the data is obtained if renormalization coefficients for the real and the imaginary parts of the optical potential are introduced. The application of the dispersion relation of Mahaux et al (1986) allows to reproduce the observed energy dependence of the real part of the potential

  20. Origin of fine structure of the giant dipole resonance in s d -shell nuclei

    Science.gov (United States)

    Fearick, R. W.; Erler, B.; Matsubara, H.; von Neumann-Cosel, P.; Richter, A.; Roth, R.; Tamii, A.

    2018-04-01

    A set of high-resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the giant dipole resonance (GDR) in s d -shell nuclei. Understanding is achieved by comparison with random phase approximation calculations for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows one to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement for scales in the range of a few hundred keV supports the surmise that the fine structure arises from ground-state deformation driven by α clustering.

  1. Heavy ions as probes of nuclei far from stability

    International Nuclear Information System (INIS)

    Moltz, D.M.; Nitschke, J.M.; Wilmarth, P.A.; Toth, K.S.

    1989-01-01

    Nuclei located far from stability provide us with an opportunity for studying nuclear matter existing under unusual conditions. In these regions of instability, radioactive decay becomes the predominant technique by which one can obtain structure information. We have been involved in the investigation of nuclear properties of nuclei close to the proton drip line. In our explorations we have utilized heavy-ion fusion, followed by particle evaporation, to produce the extremely neutron-deficient nuclei of interest. In our studies, single-particle states near the 82-neutron shell, populated in the β decay of short-lived nuclides, have been examined and their excitation energies determined. Numerous new isotopes, isomers, and β-delayed-proton and α-particle emitters have been discovered. This contribution will discuss our particle-decay investigations. These decay modes provide us with a convenient means of discovering new isotopes whose identification opens the way for further, more extensive explorations. Also, particle-decay energies in many instances can be used to determine mass differences between parent and daughter ground states. Such measurements are therefore used to test mass formulae and to obtain estimates of masses for proton rich nuclei. 19 refs., 13 figs

  2. Towards a non empirical description of heavy nuclei

    International Nuclear Information System (INIS)

    Duguet, Thomas

    2012-01-01

    Since the defence of my Ph.D. thesis in September 2002, I have essentially devoted nine years of research activity to advancing the formal understanding and enhancing the predictive power of SR and MR EDF approaches to structure and reaction properties of medium-to-heavy mass nuclei. In the most recent years, I have engaged myself into developing innovative ab-initio many-body methods applicable to medium-mass open-shell nuclei. On the long term, my two main objectives are (i) to advancing many-body methods and the understanding of many-fermion systems in general and (ii) to reducing decisively the phenomenological character of methods applicable to systems made out of a few tens to a few hundreds of fermions by addressing the points raised in the above introduction. The present document does not aim at summarizing those ten years of research activity. Rather, I made the choice to report in some details on three selected topics that are somewhat representative of my overall contribution to the field. The first part (Sec. II) describes an in-depth re-analysis of the concept of single-nucleon shell structure in the context of many-fermion systems. The second part (Sec. III) summarizes recent advances towards a more rigorous formulation of the MR-EDF method and discusses the corresponding remaining difficulties as well as ways under current development to overcome them. The third part (Sec. IV) discusses the on-going quest towards a microscopic description of superfluidity in nuclei and reports on the first-ever ab-initio calculations of open-shell medium-mass nuclei based on Self-consistent Gorkov Green's function theory. Although representative, the three above topics only cover a fraction of my research activity since my Ph.D. thesis defence. Consequently several other studies I have been involved with are briefly summarized in apps. A-E. For completeness, my publication list is also provided as an appendix. Last but not least, it is essential to stress that many

  3. The 1992 FRDM mass model and unstable nuclei

    International Nuclear Information System (INIS)

    Moeller, P.

    1994-01-01

    We discuss the reliability of a recent global nuclear-structure calculation in regions far from β stability. We focus on the results for nuclear masses, but also mention other results obtained in the nuclear-structure calculation, for example ground-state spins. We discuss what should be some minimal requirements of a nuclear mass model and study how the macroscopic-microscopic method and other nuclear mass models fullfil such basic requirements. We study in particular the reliability of nuclear mass models in regions of nuclei that were not considered in the determination of the model parameters

  4. Pairing correlations. I. Description of odd nuclei in mean-field theories

    International Nuclear Information System (INIS)

    Duguet, T.; Bonche, P.; Heenen, P.-H.; Meyer, J.

    2002-01-01

    In order to extract informations on pairing correlations in nuclei from experimental masses, the different contributions to odd-even mass differences are investigated within the Skyrme Hartree-Fock-Bogoliubov (HFB) method. In this part of the paper, the description of odd nuclei within HFB is discussed since it is the key point for the understanding of the above mentioned contributions. To go from an even nucleus to an odd one, the advantage of a two steps process is demonstrated and its physical content is discussed. New results concerning time-reversal symmetry breaking in odd nuclei are also reported

  5. New isotopes of elements 104, 106 and 108 - highly stable superheavy nuclei

    International Nuclear Information System (INIS)

    Oganessian, Yuri

    1994-01-01

    In April 1993, as part of a joint Dubna-Livermore experiment at the Flerov Laboratory of Nuclear Reactions, new heavy isotopes of elements 104 and 106 were synthesized - 262 104, 265 106 and 266 106. Compared with the known even-even isotopes of elements 104 and 106, the new nuclei are characterized by their extraordinary high resistance to spontaneous fission. This is a direct proof of the macro-microscopic theory predictions in its version calculated by A.Sobiczewski et al. regarding a substantial increase in the half-lives of heavy nuclei near deformed shells with atomic number (Z) 108 and neutron number (N) 162.

  6. Symmetry energy, unstable nuclei and neutron star crusts

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kei [Kochi University, Department of Natural Science, Kochi (Japan); RIKEN Nishina Center, Saitama (Japan); Oyamatsu, Kazuhiro [RIKEN Nishina Center, Saitama (Japan); Aichi Shukutoku University, Department of Human Informatics, Aichi (Japan)

    2014-02-15

    The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters. (orig.)

  7. The In-Medium Similarity Renormalization Group: A novel ab initio method for nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hergert, H., E-mail: hergert@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics, The Ohio State University, Columbus, OH 43210 (United States); Bogner, S.K., E-mail: bogner@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Morris, T.D., E-mail: morrist@nscl.msu.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Schwenk, A., E-mail: schwenk@physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Tsukiyama, K., E-mail: tsuki.kr@gmail.com [Center for Nuclear Study, Graduate School of Science, University of Tokyo, Hongo, Tokyo, 113-0033 (Japan)

    2016-03-21

    We present a comprehensive review of the In-Medium Similarity Renormalization Group (IM-SRG), a novel ab initio method for nuclei. The IM-SRG employs a continuous unitary transformation of the many-body Hamiltonian to decouple the ground state from all excitations, thereby solving the many-body problem. Starting from a pedagogical introduction of the underlying concepts, the IM-SRG flow equations are developed for systems with and without explicit spherical symmetry. We study different IM-SRG generators that achieve the desired decoupling, and how they affect the details of the IM-SRG flow. Based on calculations of closed-shell nuclei, we assess possible truncations for closing the system of flow equations in practical applications, as well as choices of the reference state. We discuss the issue of center-of-mass factorization and demonstrate that the IM-SRG ground-state wave function exhibits an approximate decoupling of intrinsic and center-of-mass degrees of freedom, similar to Coupled Cluster (CC) wave functions. To put the IM-SRG in context with other many-body methods, in particular many-body perturbation theory and non-perturbative approaches like CC, a detailed perturbative analysis of the IM-SRG flow equations is carried out. We conclude with a discussion of ongoing developments, including IM-SRG calculations with three-nucleon forces, the multi-reference IM-SRG for open-shell nuclei, first non-perturbative derivations of shell-model interactions, and the consistent evolution of operators in the IM-SRG. We dedicate this review to the memory of Gerry Brown, one of the pioneers of many-body calculations of nuclei.

  8. The In-Medium Similarity Renormalization Group: A novel ab initio method for nuclei

    International Nuclear Information System (INIS)

    Hergert, H.; Bogner, S.K.; Morris, T.D.; Schwenk, A.; Tsukiyama, K.

    2016-01-01

    We present a comprehensive review of the In-Medium Similarity Renormalization Group (IM-SRG), a novel ab initio method for nuclei. The IM-SRG employs a continuous unitary transformation of the many-body Hamiltonian to decouple the ground state from all excitations, thereby solving the many-body problem. Starting from a pedagogical introduction of the underlying concepts, the IM-SRG flow equations are developed for systems with and without explicit spherical symmetry. We study different IM-SRG generators that achieve the desired decoupling, and how they affect the details of the IM-SRG flow. Based on calculations of closed-shell nuclei, we assess possible truncations for closing the system of flow equations in practical applications, as well as choices of the reference state. We discuss the issue of center-of-mass factorization and demonstrate that the IM-SRG ground-state wave function exhibits an approximate decoupling of intrinsic and center-of-mass degrees of freedom, similar to Coupled Cluster (CC) wave functions. To put the IM-SRG in context with other many-body methods, in particular many-body perturbation theory and non-perturbative approaches like CC, a detailed perturbative analysis of the IM-SRG flow equations is carried out. We conclude with a discussion of ongoing developments, including IM-SRG calculations with three-nucleon forces, the multi-reference IM-SRG for open-shell nuclei, first non-perturbative derivations of shell-model interactions, and the consistent evolution of operators in the IM-SRG. We dedicate this review to the memory of Gerry Brown, one of the pioneers of many-body calculations of nuclei.

  9. Gamow-Teller decay of T = 1 nuclei to odd-odd N = Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lisetskiy, A F [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI 48824 (United States); Gelberg, A [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany); Institute of Physical and Chemical Reasearch (RIKEN), Wako, 351-0198 (Japan); Brentano, P von [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany)

    2005-01-01

    Transition strengths of Gamow-Teller decay of T{sub z} = {+-}1 nuclei to N = Z odd-odd nuclei have been calculated in a two-nucleon approximation for spherical and deformed nuclei. The results obtained for the latter are quite close to the values obtained by full-space shell-model calculations and to the experiment.

  10. Microscopic description of quadrupole collectivity in neutron-rich nuclei across the N = 126 shell closure

    Science.gov (United States)

    Rodríguez-Guzmán, R.; Robledo, L. M.; Sharma, M. M.

    2015-06-01

    The quadrupole collectivity in Nd, Sm, Gd, Dy, Er, Yb, Hf and W nuclei with neutron numbers 122 ≤ N ≤ 156 is studied, both at the mean field level and beyond, using the Gogny energy density functional. Besides the robustness of the N = 126 neutron shell closure, it is shown that the onset of static deformations in those isotopic chains with increasing neutron number leads to an enhanced stability and further extends the corresponding two-neutron drip lines far beyond what could be expected from spherical calculations. Independence of the mean-field predictions with respect to the particular version of the Gogny energy density functional employed is demonstrated by comparing results based on the D1S and D1M parameter sets. Correlations beyond mean field are taken into account in the framework of the angular momentum projected generator coordinate method calculation. It is shown that N = 126 remains a robust neutron magic number when dynamical effects are included. The analysis of the collective wave functions, average deformations and excitation energies indicate that, with increasing neutron number, the zero-point quantum corrections lead to dominant prolate configurations in the 0{1/+}, 0{2/+}, 2{1/+} and 2{2/+} states of the studied nuclei. Moreover, those dynamical deformation effects provide an enhanced stability that further supports the mean-field predictions, corroborating a shift of the r-process path to higher neutron numbers. Beyond mean-field calculations provide a smaller shell gap at N = 126 than the mean-field one in good agreement with previous theoretical studies. However, the shell gap still remains strong enough in the two-neutron drip lines.

  11. Coulomb interaction in atomic and nuclear physics: Inner-Shell excitation, Coulomb dissociation of nuclei, and nuclear polarizability in electronic atoms

    International Nuclear Information System (INIS)

    Hoffmann, B.

    1984-07-01

    In three chapters different physical situations are described which have commonly the Coulomb interaction as driving force. The first two chapters study the Coulomb interactions in connection with the excitation of inner electron shells and the Coulomb excitation of nuclei in first order. In the third part on effect ofthe Coulomb interaction between electronic shell and nucleus is treated in second order (nuclear polarization), and its effect on the isotopic and isomeric shift is studied. (orig./HSI) [de

  12. Infinite nuclear matter model and mass formulae for nuclei

    International Nuclear Information System (INIS)

    Satpathy, L.

    2016-01-01

    The matter composed of the nucleus is a quantum-mechanical interacting many-fermionic system. However, the shell and classical liquid drop have been taken as the two main features of nuclear dynamics, which have guided the evolution of nuclear physics. These two features can be considered as the macroscopic manifestation of the microscopic dynamics of the nucleons at fundamental level. Various mass formulae have been developed based on either of these features over the years, resulting in many ambiguities and uncertainties posing many challenges in this field. Keeping this in view, Infinite Nuclear Matter (INM) model has been developed during last couple of decades with a many-body theoretical foundation employing the celebrated Hugenholtz-Van Hove theorem, quite appropriate for the interacting quantum-mechanical nuclear system. A mass formula called INM mass formula based on this model yields rms deviation of 342 keV being the lowest in literature. Some of the highlights of its result includes its determination of INM density in agreement with the electron scattering data leading to the resolution of the long standing 'r 0 -paradox' it predicts new magic numbers giving rise to new island of stability in the drip-line regions. This is the manifestation of a new phenomenon where shell-effect over comes the repulsive component of nucleon-nucleon force resulting in the broadening of the stability peninsula. Shell quenching in N= 82,and N= 126 shells, and several islands of inversion have been predicted. The model determines the empirical value of the nuclear compression modulus, using high precission 4500 data comprising nuclear masses, neutron and proton separation energies. The talk will give a critical review of the field of mass formula and our understanding of nuclear dynamics as a whole

  13. Electric quadrupole moments of neutron-rich nuclei {sup 32}Al and {sup 31}Al

    Energy Technology Data Exchange (ETDEWEB)

    Kameda, D., E-mail: kameda@ribf.riken.jp; Ueno, H. [RIKEN Nishina Center (Japan); Asahi, K.; Nagae, D.; Takemura, M.; Shimada, K. [Tokyo Institute of Technology, Department of Physics (Japan); Yoshimi, A.; Nagatomo, T.; Sugimoto, T. [RIKEN Nishina Center (Japan); Uchida, M.; Arai, T.; Takase, K.; Suda, S.; Inoue, T. [Tokyo Institute of Technology, Department of Physics (Japan); Murata, J.; Kawamura, H. [Rikkyo University, Department of Physics (Japan); Watanabe, H. [Australian National University, Department of Nuclear Physics (Australia); Kobayashi, Y.; Ishihara, M. [RIKEN Nishina Center (Japan)

    2007-11-15

    The electric quadrupole moments for the ground states of {sup 32}Al and {sup 31}Al have been measured by the {beta} ray-detected nuclear quadrupole resonance method. Spin-polarized {sup 32}Al and {sup 31}Al nuclei were obtained from the fragmentation of {sup 40}Ar projectiles at E/A = 95 MeV/nucleon, and were implanted in a single crystal {alpha}-Al{sub 2}O{sub 3} stopper. The measured Q moment of {sup 32}Al, |Q({sup 32}Al)| = 24(2) mb, is in good agreement with a conventional shell-model calculation with a full sd model space and empirical effective charges, while that of {sup 31}Al is considerably smaller than the sd calculations.

  14. Breaking of the SU(4) limit for the Gamow-Teller strength in N{proportional_to}Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Petermann, I. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Gesellschaft fuer Schwerionenforschung Darmstadt, Darmstadt (Germany); Martinez-Pinedo, G. [Gesellschaft fuer Schwerionenforschung Darmstadt, Darmstadt (Germany); Langanke, K. [Gesellschaft fuer Schwerionenforschung Darmstadt, Darmstadt (Germany); Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Caurier, E. [Universite Louis Pasteur, Institut de Recherches Subatomiques, Strasbourg (France)

    2007-12-15

    We have performed large-scale shell model calculations of the Gamow-Teller strength distributions in N{proportional_to}Z pf-shell nuclei. These calculations were motivated by the experimental attempts to measure the low-lying GT strength for the even-even N=Z+2 or N=Z-2 nuclei {sup 46}Ti, {sup 50}Cr, {sup 54}Fe and {sup 62}Ge, where a sizable low-energy GT strength could be interpreted as reminiscence of SU(4) symmetry; in the limit of exact SU(4) symmetry the GT{sub -} strength would be concentrated in a single transition to the lowest T=0, J=1{sup +} state in the daughter. We confirm that the SU(4) symmetry is strongly broken by the spin-orbit interaction and by increasing neutron excess. (orig.)

  15. Microscopic theory of light exotic nuclei. Shell Models Embedded in the Continuum

    International Nuclear Information System (INIS)

    Bennaceur, K.

    1999-01-01

    The recent advances in experimental nuclear physics make it possible to study nuclear systems far from the beta stability line. The discovery of new phenomena, like halos or neutron skins, requires the development of new theoretical models which enable to study these systems. The first part of this work is devoted to the development and the applications of the Shell Model Embedded in the Continuum (SMEC). This new formalism allows to take into account the correlations between the bound and scattering states of loosely bound nuclei. SMEC is applied here to the study of the spectroscopy of the Mirror nuclei 8 B- 8 Li and 17 F- 17 O. It can also be used to calculate the cross sections of the elastic scattering, the Coulomb breakup processes and the radiative n,p capture processes. The results concerning the reactions of astrophysical interest: 18 O(p, γ) 17 F and 7 Be(p, γ) 8 B, are discussed in details. This last reaction is very important because the disintegration of 8 B is the main source of High energy neutrinos in the sun. The second part of this work is related to the analysis of pairing interaction for weakly bound nuclei. We have developed a new approach, based on the Hartree-Fock-Bogolyubov (HFB) theory, that allows to study the pairing correlations between bound and scattering states, both resonant and not resonant ones. The 'particle-hole' potential is replaced by a model potential for which the solutions are analytically known. This method allows to analyse the effect of pairing on bound and resonant states, independently of their energy position. We have clearly demonstrated that the non-resonant continuum plays a crucial role in the loosely bound nuclei and that solving the HFB equations in the coordinate space is the only method that permits to treat this problem correctly. (author)

  16. Testing the predictive power of nuclear mass models

    International Nuclear Information System (INIS)

    Mendoza-Temis, J.; Morales, I.; Barea, J.; Frank, A.; Hirsch, J.G.; Vieyra, J.C. Lopez; Van Isacker, P.; Velazquez, V.

    2008-01-01

    A number of tests are introduced which probe the ability of nuclear mass models to extrapolate. Three models are analyzed in detail: the liquid drop model, the liquid drop model plus empirical shell corrections and the Duflo-Zuker mass formula. If predicted nuclei are close to the fitted ones, average errors in predicted and fitted masses are similar. However, the challenge of predicting nuclear masses in a region stabilized by shell effects (e.g., the lead region) is far more difficult. The Duflo-Zuker mass formula emerges as a powerful predictive tool

  17. ENAM'04 Fourth International Conference on Exotic Nuclei and Atomic Masses

    International Nuclear Information System (INIS)

    Gross, C. J.; Nazarewicz, W.; Rykaczewski, K. P.

    2005-01-01

    The conference can trace its origins to the 1950s and 1960s with the Atomic Mass and Fundamental Constants (AMCO) and the Nuclei Far From Stability (NFFS) series of conferences. Held jointly in 1992, the conferences officially merged in 1995 and the fourth conference was held at Callaway Gardens in Pine Mountain, GA and was organized by the Physics Division at Oak Ridge National Laboratory. The conference covered a broad list of topics consisting of a series of invited and contributed presentation highlighting recent research in the following fields: Atomic masses, nuclear moments, and nuclear radii; Forms of radioactivity; Nuclear structure, nuclei at the drip lines, cluster phenomena; Reactions with radioactive ion beams; Nuclear astrophysics; Fundamental symmetries and interactions; Heaviest elements and fission; Radioactive ion beam production and experimental developments; Applications of exotic nuclei

  18. Bridging quantum chemistry and nuclear structure theory: Coupled-cluster calculations for closed- and open-shell nuclei

    International Nuclear Information System (INIS)

    Piecuch, Piotr; Wloch, Marta; Gour, Jeffrey R.; Dean, David J.; Papenbrock, Thomas; Hjorth-Jensen, Morten

    2005-01-01

    We review basic elements of the single-reference coupled-cluster theory and discuss large scale ab initio calculations of ground and excited states of 15O, 16O, and 17O using coupled-cluster methods and algorithms developed in quantum chemistry. By using realistic two-body interactions and the renormalized form of the Hamiltonian obtained with a no-core G-matrix approach, we obtain the converged results for 16O and promising preliminary results for 15O and 17O at the level of two-body interactions. The calculated properties other than energies include matter density, charge radius, and charge form factor. The relatively low costs of coupled-cluster calculations, which are characterized by the low-order polynomial scaling with the system size, enable us to probe large model spaces with up to 7 or 8 major oscillator shells, for which non-truncated shell-model calculations for nuclei with A = 15 17 active particles are presently not possible. We argue that the use of coupled-cluster methods and computer algorithms developed by quantum chemists to calculate properties of nuclei is an important step toward the development of accurate and affordable many-body theories that cross the boundaries of various physical sciences

  19. Structure and symmetries of odd-odd triaxial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Palit, R. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Colaba, Mumbai (India); Bhat, G.H. [University of Kashmir, Department of Physics, Srinagar (India); Govt. Degree College Kulgam, Department of Physics, Kulgam (India); Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India); Cluster University of Srinagar, Srinagar, Jammu and Kashmir (India)

    2017-05-15

    Rotational spectra of odd-odd Rh and Ag isotopes are investigated with the primary motivation to search for the spontaneous chiral symmetry breaking phenomenon in these nuclei. The experimental results obtained on the degenerate dipole bands of some of these isotopes using a large array of gamma detectors are discussed and studied using the triaxial projected shell (TPSM) approach. It is shown that, first of all, to reproduce the odd-even staggering of the known yrast bands of these nuclei, large triaxial deformation is needed. This large triaxial deformation also gives rise to doublet band structures in many of these studied nuclei. The observed doublet bands in these isotopes are shown to be reproduced reasonably well by the TPSM calculations. Further, the TPSM calculations for neutron-rich nuclei indicate that the ideal manifestation of the chirality can be realised in {sup 106}Rh and {sup 112}Ag, where the doublet bands have similar electromagnetic properties along with small differences in excitation energies. (orig.)

  20. Constituent quark mass and nucleon properties in nuclei

    International Nuclear Information System (INIS)

    Beyer, M.; Singh, S.K.

    1986-01-01

    It is shown that the Nolen-Schiffer anomaly, the quenching of gsub(A) and the increase in some electromagnetic properties of nucleons in nuclei can all be explained qualitatively in a constituent quark model if the quark mass is assumed to depend on its confinement size. (author)

  1. Selfconsistent calculations for hyperdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  2. A nucleon-pair and boson coexistent description of nuclei

    Science.gov (United States)

    Dai, Lianrong; Pan, Feng; Draayer, J. P.

    2017-07-01

    We study a mixture of s-bosons and like-nucleon pairs with the standard pairing interaction outside an inert core. Competition between the nucleon-pairs and s-bosons is investigated in this scenario. The robustness of the BCS-BEC coexistence and crossover phenomena are examined through an analysis of pf-shell nuclei with realistic single-particle energies, in which two configurations with Pauli blocking of nucleon-pair orbits due to the formation of the s-bosons is taken into account. When the nucleon-pair orbits are considered to be independent of the s-bosons, the BCS-BEC crossover becomes smooth, with the number of the s-bosons noticeably more than that of the nucleon-pairs near the half-shell point, a feature that is demonstrated in the pf-shell for several values of the standard pairing interaction strength. As a further test of the robustness of the BCS-BEC coexistence and crossover phenomena in nuclei, results are given for values of even-even 102-130Sn with 100Sn taken as a core and valence neutron pairs confined within the 1d 5/2, 0g 7/2, 1d 3/2, 2s 1/2, 1h 11/2 orbits in the nucleon-pair orbit and the s-boson independent approximation. The results indicate that the B(E2) values are reproduced well. Supported by National Natural Science Foundation of China (11375080, 11675071), the U.S. National Science Foundation (OCI-0904874 and ACI-1516338), U. S. Department of Energy (DE-SC0005248), the Southeastern Universities Research Association, the China-U. S. Theory Institute for Physics with Exotic Nuclei (CUSTIPEN) (DE-SC0009971), and the LSU-LNNU joint research program (9961) is acknowledged

  3. Mass and lifetime measurements of exotic nuclei in storage rings

    International Nuclear Information System (INIS)

    Franzke, B.; Geissel, H.; Muenzenberg, G.

    2007-11-01

    Mass and lifetime measurements lead to the discovery and understanding of basic properties of matter. The isotopic nature of the chemical elements, nuclear binding, and the location and strength of nuclear shells are the most outstanding examples leading to the development of the first nuclear models. More recent are the discoveries of new structures of nuclides far from the valley of stability. A new generation of direct mass measurements which allows the exploration of extended areas of the nuclear mass surface with high accuracy has been opened up with the combination of the Experimental Storage Ring ESR and the FRragment Separator FRS at GSI Darmstadt. In-flight separated nuclei are stored in the ring. Their masses are directly determined from the revolution frequency. Dependent on the half-life two complementary methods are applied. Schottky Mass Spectrometry SMS relies on the measurement of the revolution frequency of electron cooled stored ions. The cooling time determines the lower half-life limit to the order of seconds. For Isochronous Mass Spectrometry IMS the ring is operated in an isochronous ion-optical mode. The revolution frequency of the individual ions coasting in the ring is measured using a time-of-flight method. Nuclides with lifetimes down to microseconds become accessible. With SMS masses of several hundreds nuclides have been measured simultaneously with an accuracy in the 2 x 10 -7 -range. This high accuracy and the ability to study large areas of the mass surface are ideal tools to discover new nuclear structure properties and to guide improvements for theoretical mass models. In addition, nuclear half-lives of stored bare and highly-charged ions have been measured. This new experimental development is a significant progress since nuclear decay characteristics are mostly known for neutral atoms. For bare and highly-charged ions new nuclear decay modes become possible, such as bound-state beta decay. Dramatic changes in the nuclear lifetime

  4. Prediction of mass excess, β-decay energy and neutron separation energy from the atomic mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Uno, Masahiro; Yamada, Masami

    1983-02-01

    Recently we proposed two types of atomic mass formula (constant-shell-term formula, linear-shell-term formula). With use of these formulas, we calculate and tabulate mass excesses, neutron separation energies, and β-decay energies (β-decay and/or electron capture) for about 5000 nuclides. The mass excess values and their errors in the 1977 atomic mass evaluation by A.H. Wapstra and K. Bos which we used in constructing our formulas, are also tabulated for reference. The constant-shell-term formula is fitted to 1468 input mass data with the standard deviation of 626 keV and the linear-shell-term formula with 394 keV

  5. Prediction of mass excess, #betta#-decay energy and neutron separation energy from the atomic mass formula with empirical shell terms

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Uno, Masahiro; Yamada, Masami.

    1983-02-01

    Recently we proposed two types of atomic mass formula (constant-shell-term formula, linear-shell-term formula). With use of these formulas, we calculate and tabulate mass excesses, neutron separation energies, and #betta#-decay energies (#betta# - -decay and/or electron capture) for about 5000 nuclides. The mass excess values and their errors in the 1977 atomic mass evaluation by A.H. Wapstra and K. Bos which we used in constructing our formulas, are also tabulated for reference. The constant-shell-term formula is fitted to 1468 input mass data with the standard deviation of 626 keV and the linear-shell-term formula with 394 keV. (author)

  6. Approximate symmetries in atomic nuclei from a large-scale shell-model perspective

    Science.gov (United States)

    Launey, K. D.; Draayer, J. P.; Dytrych, T.; Sun, G.-H.; Dong, S.-H.

    2015-05-01

    In this paper, we review recent developments that aim to achieve further understanding of the structure of atomic nuclei, by capitalizing on exact symmetries as well as approximate symmetries found to dominate low-lying nuclear states. The findings confirm the essential role played by the Sp(3, ℝ) symplectic symmetry to inform the interaction and the relevant model spaces in nuclear modeling. The significance of the Sp(3, ℝ) symmetry for a description of a quantum system of strongly interacting particles naturally emerges from the physical relevance of its generators, which directly relate to particle momentum and position coordinates, and represent important observables, such as, the many-particle kinetic energy, the monopole operator, the quadrupole moment and the angular momentum. We show that it is imperative that shell-model spaces be expanded well beyond the current limits to accommodate particle excitations that appear critical to enhanced collectivity in heavier systems and to highly-deformed spatial structures, exemplified by the second 0+ state in 12C (the challenging Hoyle state) and 8Be. While such states are presently inaccessible by large-scale no-core shell models, symmetry-based considerations are found to be essential.

  7. High spin states in 33S

    International Nuclear Information System (INIS)

    Bisoi, Abhijit; Ray, S.; Kshetri, R.

    2013-01-01

    Nuclei in the neighbourhood of doubly closed 40 Ca usually exhibit characteristics of single particle excitations. The ground state and low lying excited states of several nuclei in this mass region have been reproduced by using untruncated shell model calculation over the sd space. In the present work, 33 S has been populated through heavy-ion fusion evaporation reaction and the level scheme has been extended

  8. Shell model and spectroscopic factors

    International Nuclear Information System (INIS)

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  9. A study of Gamow-Teller transitions for N = Z nuclei, {sup 24}Mg, {sup 28}Si, and {sup 32}S, by a deformed QRPA

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Eunja; Cheoun, Myung-Ki [Soongsil University, Origin of Matter and Evolution of Galaxy Institute and Department of Physics, Seoul (Korea, Republic of)

    2017-02-15

    We investigated Gamow-Teller (GT) transitions and strength distributions of s-d shell N = Z nuclei, {sup 24}Mg, {sup 28}Si, and {sup 32}S, by a deformed quasi-particle random phase approximation (DQRPA). In the DQRPA, we included particle model space up to p-f shell and considered explicitly the deformation as well as the like- and unlike-pairing correlations. Shell evolution by deformation and attractive force by unlike-pairing correlations turned out to play vital roles to reproduce the experimental GT data. Correlations between the deformation and the pairing correlations are also discussed with the comparison to the experimental data shape. (orig.)

  10. Superheavy nuclei in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.; Ring, P.; Gambhir, Y.K.

    1996-01-01

    We have carried out a study of superheavy nuclei in the framework of the relativistic mean-field theory. Relativistic Hartree-Bogoliubov (RHB) calculations have been performed for nuclei with large proton and neutron numbers. A finite-range pairing force of Gogny type has been used in the RHB calculations. The ground-state properties of very heavy nuclei with atomic numbers Z=100-114 and neutron numbers N=154-190 have been obtained. The results show that in addition to N=184 the neutron numbers N=160 and N=166 exhibit an extra stability as compared to their neighbors. For the case of protons the atomic number Z=106 is shown to demonstrate a closed-shell behavior in the region of well deformed nuclei about N=160. The proton number Z=114 also indicates a shell closure. Indications for a doubly magic character at Z=106 and N=160 are observed. Implications of shell closures on a possible synthesis of superheavy nuclei are discussed. (orig.)

  11. Isospin dependence of the spin-orbit splitting in nuclei

    International Nuclear Information System (INIS)

    Isakov, V.I.

    2007-01-01

    The analysis has been made of experimental data on level spectra, single-nucleon transfer reactions near closed shells, and data on polarization effects in charge-exchange (p, n) reactions between isoanalogous states of nuclei with even A. It is concluded that there is a significant difference between the spin-orbit splittings of neutrons and protons in identical orbitals. This conclusion is confirmed in the frame work of different theoretical approaches [ru

  12. Study of deep inelastic reactions on sd-shell nuclei with 100 MeV α-particles

    International Nuclear Information System (INIS)

    Seniwongse, G.

    1985-04-01

    Energy spectra and angular distributions of light particles (p, d, t, 3 He, α) were measured. As projectiles α-particles with the incident energy of 100 MeV were used. The measurement data result from an inclusive measurement of the reactions on 24 Mg, 25 Mg, 26 Mg, 27 Al, 28 Si. The double differential cross sections and the angular distributions were analyzed in the framework of the exciton-coalescence model. Thereby model parameters as the initial exciton number n 0 one-particle state density, and coalescence radii were determined. From the model analysis it can be concluded that n 0 =5 describes the data optimally contrarily to earlier results. The proton spectra can be explained by different one-particle state densities with pairing effects. The probability for the formation of complex particles seems to be independent from the structure of the target nuclei studied here. The calculated cross sections agree well with the measured values. This is valid both for the angle-integrated spectra and for the angular distributions. The agreement was especially well for the angle-integrated cross sections of the (α, p) reaction over the whole spectrum. For the complex particles the agreement in the energy of the produced particle was well up to about 60 MeV, i.e. before the superposition from the breakup respectively direct reactions begins. These reactions are indeed not regarded in the model. The measurement data and the calculated angular distributions agree for all types of particles at measurement angles below about 60 0 well. At larger angles the calculated values are too large. The reasons for this are not yet clear. (orig.) [de

  13. On the odd-even effect in the charge radii of isotopes

    International Nuclear Information System (INIS)

    Talmi, I.

    1984-01-01

    Core polarization by valence neutrons is suggested as a possible mechanism for producing odd-even variation in the charge radii of isotopes. The nuclei considered have closed proton shells and neutrons in states with lowest seniority or generalized seniority. Simple expressions are derived for jsup(n) neutron configurations and various multipole terms of the pn interaction. The resulting expressions give a good fit to the radii of calcium isotopes and also of lead isotopes for which these expressions are only approximate. (orig.)

  14. Structure of Light Neutron-rich Nuclei

    International Nuclear Information System (INIS)

    Dlouhy, Zdenek

    2007-01-01

    In this contribution we searched for irregularities in various separation energies in the frame of mass measurement of neutron-rich nuclei at GANIL. On this basis we can summarize that the new doubly magic nuclei are 8 He, 22 O and 24 O. They are characterized by extra stability and, except 24 O, they cannot accept and bind additional neutrons. However, if we add to these nuclei a proton we obtain 9 Li and 25 F which are the core for two-neutron halo nucleus 11 Li and enables that fluorine can bound even 6 more neutrons, respectively. In that aspect the doubly magic nuclei in the neutron-rich region can form the basis either for neutron halo or very neutron-rich nuclei. (Author)

  15. A differential equation for the transition probability B(E2)↑ and the resulting recursion relations connecting even–even nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pattnaik, S. [Taratarini College, Purusottampur, Ganjam, Odisha (India); Nayak, R. C. [Department of Physics, Berhampur University, Brahmapur-760007 (India)

    2014-04-15

    We obtain here a new relation for the reduced electric quadrupole transition probability B(E2)↑ of a given nucleus in terms of its derivatives with respect to neutron and proton numbers based on a similar local energy relation in the Infinite Nuclear Matter (INM) model of atomic nuclei, which is essentially built on the foundation of the Hugenholtz–Van Hove (HVH) theorem of many-body theory. Obviously, such a relation in the form of a differential equation is expected to be more powerful than the usual algebraic difference equations. Although the relation for B(E2)↑ has been perceived simply on the basis of a corresponding differential equation for the local energy in the INM model, its theoretical foundation otherwise has been clearly demonstrated. We further exploit the differential equation in using the very definitions of the derivatives to obtain two different recursion relations for B(E2)↑, connecting in each case three neighboring even–even nuclei from lower to higher mass numbers and vice versa. We demonstrate their numerical validity using available data throughout the nuclear chart and also explore their possible utility in predicting B(E2)↑ values. (author)

  16. A differential equation for the transition probability B(E2)↑ and the resulting recursion relations connecting even–even nuclei

    International Nuclear Information System (INIS)

    Pattnaik, S.; Nayak, R.C.

    2014-01-01

    We obtain here a new relation for the reduced electric quadrupole transition probability B(E2)↑ of a given nucleus in terms of its derivatives with respect to neutron and proton numbers based on a similar local energy relation in the Infinite Nuclear Matter (INM) model of atomic nuclei, which is essentially built on the foundation of the Hugenholtz–Van Hove (HVH) theorem of many-body theory. Obviously, such a relation in the form of a differential equation is expected to be more powerful than the usual algebraic difference equations. Although the relation for B(E2)↑ has been perceived simply on the basis of a corresponding differential equation for the local energy in the INM model, its theoretical foundation otherwise has been clearly demonstrated. We further exploit the differential equation in using the very definitions of the derivatives to obtain two different recursion relations for B(E2)↑, connecting in each case three neighboring even–even nuclei from lower to higher mass numbers and vice versa. We demonstrate their numerical validity using available data throughout the nuclear chart and also explore their possible utility in predicting B(E2)↑ values. (author)

  17. Nucleon mass difference and off-shell form factors

    International Nuclear Information System (INIS)

    Kimel, I.

    1981-08-01

    The use of off-shell form factors in calculating the proton-neutron mass difference is advocated. These form factors appear in a Cottingham rotated Born-like expression for the mass difference and could lead to a good value for Δ = M sub(p) - M sub(n). (Author) [pt

  18. Pseudo SU(3) shell model: Normal parity bands in odd-mass nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2000-01-01

    A pseudo shell SU(3) model description of normal parity bands in 159 Tb is presented. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms. A systematic parametrization is introduced, accompanied by a detailed discussion of the effect each term in the Hamiltonian has on the energy spectrum. Yrast and excited band wavefunctions are analyzed together with their B(E2) values

  19. MAGIC NUCLEI: Tin-100 turns up

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the same way as the Periodic Table of chemical elements reflects the successive filling of orbital electron shells, in nuclear physics the socalled 'magic' numbers correspond to closed shells of 2, 8, 20, 28, 50, 82, 126,... neutrons and/or protons. More tightly bound than other nuclei, these are the nuclear analogues of the inert gases. 'Doubly magic' nuclei have closed shells of both neutrons and protons. Examples in nature are helium-4 (2 protons and 2 neutrons), oxygen-16 (8 and 8), calcium-40 (20 and 20) and calcium-48 (20 and 28). Radioactive tin-132 (50+82) has been widely studied

  20. Lead reduces shell mass in juvenile garden snails (Helix aspersa)

    International Nuclear Information System (INIS)

    Beeby, Alan; Richmond, Larry; Herpe, Florian

    2002-01-01

    A high Pb diet causes differential depression of juvenile shell mass in populations of Helix. - In an earlier paper examining inherited tolerance to Pb, the shell growth of laboratory-bred offspring of Helix aspersa from contaminated sites was compared with that of juveniles from naieve populations on dosed and undosed diets. Eight-week-old snails were fed either 500 μg g -1 Pb or a control food in competitive trials between two populations. In the first series of trials, a parental history of exposure to Pb did not confer any advantage to either of two populations (BI and MI) competing with a naieve population (LE), whether Pb was present in the diet or not. However, in the analysis of their metal concentrations reported here, LE are found to retain higher levels of Pb in the soft tissues than either BI or MI. Compared to their siblings on the unleaded diet, dosed LE and BI juveniles had lower soft tissue concentrations of Ca and Mg. Although the growth in shell height is unaffected by diet, LE and BI juveniles build lighter shells on the Pb-dosed diet, achieving around 75% of the shell mass of their controls. In contrast, the shell weights of dosed MI juveniles are depressed by only 15% and show no change in the essential metal concentrations of their soft tissues. A second experiment using five populations fed only the dosed food show that the shell weight/soft tissue weight ratios are comparable to the dosed snails of the previous experiment. Building a lighter shell thus appears to be the common response of all Helix populations to a high Pb diet, at least amongst juveniles. The reduction in its mass means that less Ca and Mg is added to the shell and, along with the lowered soft tissue concentrations observed in some populations, may be a consequence of an increased effort to excrete Pb. The possibility that the MI population shows a genotypic adaptation, perhaps as some form of modification of its Ca metabolism, is briefly discussed

  1. Theory of magic nuclei

    International Nuclear Information System (INIS)

    Nosov, V.G.; Kamchatnov, A.M.

    A consistent theory of the shell and magic oscillations of the masses of spherical nuclei is developed on the basis of the Fermi liquid concept of the energy spectrum of nuclear matter. A ''magic'' relationship between the system's dimensions and the limiting momentum of the quasi-particle distribution is derived; an integer number of the de Broglie half-waves falls on the nuclear diameter. An expression for the discontinuity in the nucleon binding energy in the vicinity of a magic nucleus is obtained. The role of the residual interaction is analyzed. It is shown that the width of the Fermi-surface diffuseness due to the residual interaction is proportional to the squared vector of the quasi-particle orbital angular momentum. The values of the corresponding proportionality factors (the coupling constant for quasi particles) are determined from the experimental data for 52 magic nuclei. The rapid drop of the residual interaction with increasing nuclear size is demonstrated. (7 figures, 3 tables) (U.S.)

  2. Physics of the N = Z and N = Z + 1 Nuclei in the A = 80 -100 Region

    International Nuclear Information System (INIS)

    Bucurescu, D.

    2007-01-01

    A review of the experimental work performed at the GASP array with the purpose of the identification and first spectroscopic measurements of the heaviest even-even N = Z and odd-A N = Z + 1 nuclei (mass larger than 80) is made. Systematic experiments in this mass region led to the first study of seven such nuclei: 88 Ru, 81 Zr, 85 Mo, 89 Ru, 91 Rh, 93 Pd, and 95 Ag, and extensive data on many other nuclei in their neighborhood. The systematic evolution of the level structures in both even-even and odd-A nuclei, between N ∼ Z ∼ 40 and N ∼ Z ∼ 47 is briefly presented. The possibility that effects of the neutron-proton pairing have been observed, as well as the type of collectivity observed in this region are discussed. (author)

  3. Study of the (p,pn) reaction on 1p shell nuclei at 46 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C A

    1974-01-01

    The (p,pn) reaction on four 1p shell nuclei, /sup 6/Li, /sup 9/Be, /sup 13/C and /sup 12/C, as well as the /sup 6/Li(p,2p) reaction, have been studied at 46 MeV. The /sup 6/Li(p,pn) cross section was found to be approximately four times that for (p,2p) and to have a very different angular dependence. Both reactions show the s-state admixture in /sup 6/Li observed with (p,2p) at higher energies. For all of the target nuclei, the cross sections have features that cannot be fitted by a renormalized Plane Wave Impulse Approximation (PWIA) calculation. A zero range distorted wave calculation was found to be in only fair agreement with the /sup 9/Be and /sup 13/C data. The overall magnitudes of the results of the calculation were found to be very sensitive to the RMS radii of the bound state wave functions of the knocked-out neutrons.

  4. The nickel isotopes in a generalized-seniority approach

    International Nuclear Information System (INIS)

    Monnoye, O.; Van Isacker, P.; Pittel, S.; Bennett, J.

    2002-01-01

    The nickel isotopes exist over a wide range of neutron numbers, extending from proton-rich to very neutron-rich nuclei. We report here a consistent study of the odd-mass Z = 28 nuclei in the full p∫ + g 9/2 shell using the generalized-seniority shell model. We include up to three unpaired nucleons in the odd sector and up to two in the even sector. We also report related results for the odd-mass 69 Cu and odd-odd 66 Co nuclei. Our calculations make use of a realistic shell-model interaction, whose monopole part has been renormalized to fit the properties of nuclei near closed shells. The calculated results are in good global agreement with experimental data and contain some evidence for the persistence of the N = 40 sub-shell closure around 68 Ni. The results demonstrate the importance of keeping the entire p∫ + g 9/2 space as active, both for neutrons and protons. (authors)

  5. Production of proton-rich nuclei around Z = 84-90 in fusion-evaporation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peng-Hui [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Feng, Zhao-Qing; Li, Jun-Qing; Jin, Gen-Ming [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Niu, Fei [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Henan Normal University, Institute of Particle and Nuclear Physics, Xinxiang (China); Guo, Ya-Fei [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); Zhang, Hong-Fei [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China)

    2017-05-15

    Within the framework of the dinuclear system model, production cross sections of proton-rich nuclei with charged numbers of Z = 84-90 are investigated systematically. Possible combinations with the {sup 28}Si, {sup 32}S, {sup 40}Ar bombarding the target nuclides {sup 165}Ho, {sup 169}Tm, {sup 170-174}Yb, {sup 175,176}Lu, {sup 174,} {sup 176-180}Hf and {sup 181}Ta are analyzed thoroughly. The optimal excitation energies and evaporation channels are proposed to produce the proton-rich nuclei. The systems are feasible to be constructed in experiments. It is found that the neutron shell closure of N = 126 is of importance during the evaporation of neutrons. The experimental excitation functions in the {sup 40}Ar induced reactions can be nicely reproduced. The charged particle evaporation is comparable with neutrons in cooling the excited proton-rich nuclei, in particular for the channels with α and proton evaporation. The production cross section increases with the mass asymmetry of colliding systems because of the decrease of the inner fusion barrier. The channels with pure neutron evaporation depend on the isotopic targets. But it is different for the channels with charged particles and more sensitive to the odd-even effect. (orig.)

  6. Isospin asymmetry dependence of the α spectroscopic factor for heavy nuclei

    International Nuclear Information System (INIS)

    Seif, W. M.; Shalaby, M.; Alrakshy, M. F.

    2011-01-01

    Both the valence nucleons (holes) and the isospin asymmetry dependencies of the preformation probability of an α-cluster inside parents radioactive nuclei are investigated. The calculations are employed in the framework of the density-dependent cluster model of an α-decay process for the even-even spherical parents nuclei with protons number around the closed shell Z 0 = 82 and neutrons number around the closed shells Z 0 = 82 and Z 0 = 126. The microscopic α-daughter nuclear interaction potential is calculated in the framework of the Hamiltonian energy density approach based on the SLy4 Skyrme-like effective interaction. Also, the calculations based on the realistic effective M3Y-Paris nucleon-nucleon force have been used to confirm the results. The calculations then proceed to find the assault frequency and the α penetration probability within the WKB approximation. The half-lives of the different mentioned α decays are then determined and have been used in turn to find the α spectroscopic factor. We found that the spectroscopic factor increases with increasing the isospin asymmetry of the parent nuclei if they have valence protons and neutrons. When the parent nuclei have neutron or proton holes in addition to the valence protons or neutrons, then the spectroscopic factor is found to decrease with increasing isospin asymmetry. The obtained results show also that the deduced spectroscopic factors follow individual linear behaviors as a function of the multiplication of the valence proton (N p ) and neutron (N n ) numbers. These linear dependencies are correlated with the closed shells core (Z 0 ,N 0 ). The same individual linear behaviors are obtained as a function of the multiplication of N p N n and the isospin asymmetry parameter, N p N n I. Moreover, the whole deduced spectroscopic factors are found to exhibit a nearly general linear trend with the function N p N n /(Z 0 +N 0 ).

  7. Mass Measurement of Very Short Half-Lived Nuclei

    CERN Document Server

    Duma, M; Iacob, V E; Thibault, C

    2002-01-01

    The MISTRAL (Mass measurements at ISolde with a Transmission RAdiofrequency spectrometer on-Line) experiment exploits a rapid measurement technique to make accurate mass determinations of very short-lived nuclei. The physics goals are to elucidate new nuclear structure effects and constrain nuclear mass models in regions of interest to nuclear astrophysics.\\\\ \\\\The spectrometer, installed in May 97, performed as promised in the proposal with mass resolution exceeding 100,000. In its first experiment in July 1998, neutron-rich Na isotopes having half-lives as short as 31 ms were measured. A second experiment in November 1998 enabled us to improve the measurement precision of the isotopes $^{26-30}$Na to about 20 keV. The measurement program continues as experiment IS 373.

  8. Analyzing powers and interference between one- and multi-step processes in (polarized p, t) reactions on medium-mass vibrational nuclei

    International Nuclear Information System (INIS)

    Yagi, K.; Kunori, S.; Aoki, Y.; Nagano, K.; Tagishi, Y.

    1978-01-01

    A neutron-number (N) dependence of analyzing powers A (theta) has been observed for the first time in (polarized p, t) reactions leading to the quadrupole vibrational states (2 1 + ) in 98 Ru, sup(102,108)Pd, 114 Cd, 116 Sn, and sup(120,126)Te. Although analyzing powers for the ground-state transitions A(theta,0 sub(g)sup(+)) are very similar to each other, those for the 2 1 + transitions A(theta,2 1 + ) for the nuclei belonging to the beginning of the N = 50 - 82 shell are markedly different, having almost opposite signs, from A(theta,2 1 + ) for nuclei belonging to the latter half of the major shell. The difference is explained as a result of a sign change of the interference between one- and inelastic multi-step processes in two-neutron pickup reactions. Nuclear structure effects on such an interference are discussed on the basis of the microscopic description of collective quadrupole oscillation of nuclei. (author)

  9. From heavy nuclei to super-heavy nuclei

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  10. Up-down quark mass difference effect in nuclear many-body systems

    International Nuclear Information System (INIS)

    Nakamura, S.; Muto, K.; Oka, M.; Takeuchi, S.; Oda, T.

    1995-01-01

    A charge-symmetry-breaking nucleon-nucleon force due to the up-down quark mass difference is evaluated in the quark cluster model. It is applied to the shell-model calculation for the isovector mass shifts of isospin multiplets and the isospin-mixing matrix elements in 1s0d-shell nuclei. We find that the contribution of the quark mass difference effect is large and agrees with experiment. This contribution may explain the Okamoto-Nolen-Schiffer anomaly, alternatively to the meson-mixing contribution, which is recently predicted to be reduced by the large off-shell correction. (author)

  11. Up-down quark mass difference effect in nuclear many-body systems

    International Nuclear Information System (INIS)

    Nakamura, S.; Muto, K.; Oka, M.; Takeuchi, S.; Oda, T.

    1996-01-01

    A charge-symmetry-breaking nucleon-nucleon force due to the up-down quark mass difference is evaluated in the quark cluster model. It is applied to the shell-model calculation for the isovector mass shifts of isospin multiplets in 1s0d-shell nuclei. We find that the contribution of the quark mass difference effect explains the systematic behavior of experiment. This contribution is large and may explain the Okamoto-Nolen-Schiffer anomaly, alternatively to the meson-mixing contribution, which is recently predicted to be reduced by the large off-shell correction. copyright 1996 The American Physical Society

  12. Hadronic interaction and structure of exotic nuclei

    International Nuclear Information System (INIS)

    Otsuka, Takaharu

    2009-01-01

    I will overview recent studies on the evolution of the shell structure in stable and exotic nuclei, and will show its relevance to hadronic interaction, including nuclear forces. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The shell structure and existing limit of nuclei depend also on the three-body interaction in a specific way. I will sketch how the Δ-hole excitation induced three-body force (Fujita-Miyazawa force) modifies them. (author)

  13. Cluster form factor calculation in the ab initio no-core shell model

    International Nuclear Information System (INIS)

    Navratil, Petr

    2004-01-01

    We derive expressions for cluster overlap integrals or channel cluster form factors for ab initio no-core shell model (NCSM) wave functions. These are used to obtain the spectroscopic factors and can serve as a starting point for the description of low-energy nuclear reactions. We consider the composite system and the target nucleus to be described in the Slater determinant (SD) harmonic oscillator (HO) basis while the projectile eigenstate to be expanded in the Jacobi coordinate HO basis. This is the most practical case. The spurious center of mass components present in the SD bases are removed exactly. The calculated cluster overlap integrals are translationally invariant. As an illustration, we present results of cluster form factor calculations for 5 He vertical bar 4 He+n>, 5 He vertical bar 3 H+d>, 6 Li vertical bar 4 He+d>, 6 Be vertical bar 3 He+ 3 He>, 7 Li vertical bar 4 He+ 3 H>, 7 Li vertical bar 6 Li+n>, 8 Be vertical bar 6 Li+d>, 8 Be vertical bar 7 Li+p>, 9 Li vertical bar 8 Li+n>, and 13 C vertical bar 12 C+n>, with all the nuclei described by multi-(ℎ/2π)Ω NCSM wave functions

  14. Probing the N = 14 subshell closure: g factor of the 26Mg (21+) state

    Science.gov (United States)

    McCormick, B. P.; Stuchbery, A. E.; Kibédi, T.; Lane, G. J.; Reed, M. W.; Eriksen, T. K.; Hota, S. S.; Lee, B. Q.; Palalani, N.

    2018-04-01

    The first-excited state g factor of 26Mg has been measured relative to the g factor of the 24Mg (21+) state using the high-velocity transient-field technique, giving g = + 0.86 ± 0.10. This new measurement is in strong disagreement with the currently adopted value, but in agreement with the sd-shell model using the USDB interaction. The newly measured g factor, along with E (21+) and B (E 2) systematics, signal the closure of the νd5/2 subshell at N = 14. The possibility that precise g-factor measurements may indicate the onset of neutron pf admixtures in first-excited state even-even magnesium isotopes below 32Mg is discussed and the importance of precise excited-state g-factor measurements on sd shell nuclei with N ≠ Z to test shell-model wavefunctions is noted.

  15. Exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model

    International Nuclear Information System (INIS)

    Divari, P.C.; Vergados, J.D.; Kosmas, T.S.; Skouras, L.D.

    2001-01-01

    A comprehensive study of the exotic (μ - ,e + ) conversion in 27 Al, 27 Al(μ - ,e + ) 27 Na is presented. The relevant operators are deduced assuming one-pion and two-pion modes in the framework of intermediate neutrino mixing models, paying special attention to the light neutrino case. The total rate is calculated by summing over partial transition strengths for all kinematically accessible final states derived with s-d shell model calculations employing the well-known Wildenthal realistic interaction

  16. Hyperdeformed nuclei and the residual pseudo-SU(3) symmetry

    International Nuclear Information System (INIS)

    Dudek, J.; Werner, T.

    1988-01-01

    The author discusses superdeformed and hypothetical hyperdeformed nuclei. Quadrupole deformations characteristic of these types of nuclei are defined. Symmetry features are also discussed. The characteristic cycle dependence of shell structures as functions of the deformation gives rise to chains of the deformed shell closures. Such a chain structure applies to moderately-, super- and hyper-deformed nuclei as well. The resulting total energy calculations give a systematic variation of super- and hyperdeformations with, e.g., increasing N at fixed Z, thus predicting the way nuclei deviate from the simple a:b = 2:1 and a:b = 3:1 symmetries

  17. Synergy of decay spectroscopy and mass spectrometry for the study of exotic nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Stanja, Juliane

    2013-04-12

    With only two ingredients, atomic nuclei exhibit a rich structure depending on the ordering of the different proton- and neutron-occupied states. This ordering can give rise to excited states with exceptionally long half-lives, also known as isomers, especially near shell closures. On-line mass spectrometry can often be compromised by the existence of such states that may even be produced in higher proportion than the ground state. This thesis presents the first results obtained from a nuclear spectroscopy setup coupled with the high-resolution Penning-trap mass spectrometer ISOLTRAP, at CERN's radioactive ion beam facility ISOLDE. The isomerism in the neutron-deficient thallium isotopes was investigated. The data on {sup 184,190,193-195}Tl allow an improvement of existing mass values as well as a mass-spin-state assignment in {sup 190,193,194}Tl. Due to the presence of the ground and isomeric state for {sup 194}Tl the excitation energy of the latter was determined for the first time experimentally. Systematic trends in the vicinity of the Z = 82 shell closure have been discussed.

  18. Spin-isospin excitation in sd-shell nuclei studied by the (d,2He) reaction at Ed=270MeV

    International Nuclear Information System (INIS)

    Niizeki, T.; Ohnuma, H.; Yamamoto, T.; Katoh, K.; Yamashita, T.; Hara, Y.; Okamura, H.; Sakai, H.; Ishida, S.; Sakamoto, N.; Otsu, H.; Wakasa, T.; Uesaka, T.; Satou, Y.; Fujita, T.; Ichihara, T.; Orihara, H.; Toyokawa, H.; Hatanaka, K.; Kato, S.; Kubono, S.; Yosoi, M.

    1994-01-01

    The (d, 2 He) reactions on 24 Mg, 26 Mg and 28 Si were studied at E d =270MeV. The 0 cross sections obtained for the 1 + states from the 24 Mg, 28 Si(d, 2 He) reactions show a good correlation with those from the mirror (p,n) reactions. Four peaks were identified in the 26 Mg(d, 2 He) 26 Ne reaction as being due to the 1 + excitation. The B(GT + ) values for these transitions were estimated and compared with the shell model prediction. ((orig.))

  19. Influence of i{sub 13/2} proton and j{sub 15/2} neutron intruding orbitals on the behaviour of 190 mass region superdeformed nuclei; Influence des orbitales intruses proton i{sub 13/2} et neutron j{sub 15/2} sur le comportement des noyaux superdeformes de la region de masse 190

    Energy Technology Data Exchange (ETDEWEB)

    Duprat, J

    1995-01-01

    This work concerns the study of the nuclear superdeformation phenomenon in the A = 190 mass region. The superdeformed (SD) states in {sup 193}Tl, {sup 194}Tl {sup 195}Tl were produced via heavy-ion induced reactions and studied with the EUROGAM gamma multidetector array. The analysis of high-multiplicity events allowed the study of the magnetic properties of the SD states in these nuclei. For the first time, the g-factor of a proton orbital in a SD nucleus in the A = 190 mass region has been extracted. This measurement indicates that the two known bands in {sup 195}Tl-SD are built on the i{sub 13/2} proton intruder orbital. A new SD band has been found in this isotope: it is the first SD band built on an excited proton state found in the A = 190 region. Finally an interaction between two pairs of bands has been established in {sup 194}Tl; this interaction indicate the crossing of two neutron orbitals above the N = 112 gap. The magnetic properties of the states of the SD bands in {sup 194}Tl reveals that these bands are built on configurations in which the single proton and neutron intrinsic spins are aligned. Comparison between different SD bands in the Thallium isotopes shows the prominent role of the i{sub 13/2} proton and the j{sub 15/2} neutron intruder orbitals in the smooth increase of the dynamical moment of inertia as a function of the rotational frequency. In addition, this work reports on the first observation of a SD rotational band produced in a (HI, {alpha}xn) reaction channel. The study of the maximum spin reached by the SD bands indicates both a competition between alpha emission and fission of the compound nucleus, and the limitation due to the fission process in the population of the SD nuclei in the A = 190 region. (author). 120 refs., 112 figs., 22 tabs., 2 ann.

  20. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    CERN Document Server

    Oganessian, Yu T; Dmitriev, S N; Itkis, M G; Gulbekyan, G G; Khabarov, M V; Bekhterev, V V; Bogomolov, S L; Efremov, A A; Pashenko, S V; Stepantsov, S V; Yeremin, A V; Yavor, M I; Kalimov, A G

    2003-01-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 sup - sup 3. The set up can work in the wide mass range from A approx 20 to A approx 500, its mass acceptance is as large as +-2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considere...

  1. High-performance multiple-reflection time-of-flight mass spectrometers for research with exotic nuclei and for analytical mass spectrometry

    Science.gov (United States)

    Plaß, Wolfgang R.; Dickel, Timo; Ayet San Andres, Samuel; Ebert, Jens; Greiner, Florian; Hornung, Christine; Jesch, Christian; Lang, Johannes; Lippert, Wayne; Majoros, Tamas; Short, Devin; Geissel, Hans; Haettner, Emma; Reiter, Moritz P.; Rink, Ann-Kathrin; Scheidenberger, Christoph; Yavor, Mikhail I.

    2015-11-01

    A class of multiple-reflection time-of-flight mass spectrometers (MR-TOF-MSs) has been developed for research with exotic nuclei at present and future accelerator facilities such as GSI and FAIR (Darmstadt), and TRIUMF (Vancouver). They can perform highly accurate mass measurements of exotic nuclei, serve as high-resolution, high-capacity mass separators and be employed as diagnostics devices to monitor the production, separation and manipulation of beams of exotic nuclei. In addition, a mobile high-resolution MR-TOF-MS has been developed for in situ applications in analytical mass spectrometry ranging from environmental research to medicine. Recently, the MR-TOF-MS for GSI and FAIR has been further developed. A novel RF quadrupole-based ion beam switchyard has been developed that allows merging and splitting of ion beams as well as transport of ions into different directions. It efficiently connects a test and reference ion source and an auxiliary detector to the system. Due to an increase in the kinetic energy of the ions in the time-of-flight analyzer of the MR-TOF-MS, a given mass resolving power is now achieved in less than half the time-of-flight. Conversely, depending on the time-of-flight, the mass resolving power has been increased by a factor of more than two.

  2. Beta decay and structure of exotic nuclei in the mass regions N=Z, A {approx} 70 and near the N=20 closed shell

    Energy Technology Data Exchange (ETDEWEB)

    Courtin, S.; Baumann, P.; Dessagne, Ph.; Marechal, F.; Miehe, Ch.; Perrot, F.; Poirier, E.; Ramdhane, M. [Institut de Recherches Subatomiques, Strasbourg Cedex 2 (France); ISOLDE collaboration

    2004-09-15

    This paper describes two beta decay experiments performed at the CERN/ISOLDE mass separator. The structure of {sup 74}Kr has been studied using a total absorption {gamma} spectrometer (TAgS). The measured Gamow-Teller strength is presented and compared to HFBCS+QRPA calculations. The {sup 33}Na decay is also presented. The structure of the {sup 33}Mg daughter nucleus is compared to shell-model calculations, showing for the first time an inversion of states in the A{sub {approx}}35 mass region. (author)

  3. Fusion excitation functions involving transitional nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Jiang, C.L.; Esbensen, H. [and others

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  4. Signatures of shell evolution in alpha decay across the N = 126 shell closure

    Science.gov (United States)

    Rui-Wang; Wang, Rui-Yao; Qian, Yi-Bin; Ren, Zhong-Zhou

    2017-06-01

    Within the alpha-cluster model, we particularly investigate the alpha decay of exotic nuclei in the vicinity of the N = 126 neutron shell plus the Z = 82 proton shell. The systematics of alpha-preformation probability (P α ), as an indicator of the shell effect, is deduced from the ratio of the experimental decay width to the calculated one. Through the comparative analysis of the P α trend in the N = 124-130 isotonic chain, the N = 126 and Z = 82 shell closures are believed to strongly affect the formation of the alpha particle before its penetration. Additionally, the P α variety in Po and Rn isotopes is presented as another proof for such an influence. More importantly, it may be concluded that the expected neutron (or proton) shell effect gradually fades away along with the increasing valence proton (or neutron) number. The odd-even staggering presented in the P α value is also discussed. Supported by National Natural Science Foundation of China (11375086, 11535004, 11605089, 11120101005), Natural Science Youth Fund of Jiangsu Province (BK20150762), Fundamental Research Funds for the Central Universities (30916011339), 973 National Major State Basic Research and Development Program of China (2013CB834400), and a Project Funded by the Priority Academic Programme Development of JiangSu Higher Education Institutions (PAPD)

  5. Survivability and Fusibility in Reactions Leading to Heavy Nuclei in the Vicinity of the N=126 Closed Shell

    International Nuclear Information System (INIS)

    Sagaidak, R. N.

    2009-01-01

    Nuclear fission is well suited to study the dynamic properties and dissipative processes in cold and moderately excited nuclei. It is also a unique tool to explore level density and shell effects at an extreme deformation. Despite the significant progress in the fission studies, the isospin dependence of fission properties and, in particular, of fission barrier heights still remains an open problem. Theoretical fission model parameters are tuned by using the experimental nuclear and fission data close to stability [1]. The models provide a reasonable description of the fission barriers close to the stability line. However, large deviations are observed between predictions of different models for the fission barriers of very neutron-deficient and neutron-rich nuclei. These discrepancies (by as much as 20-30 MeV, see, e.g. [2]) become especially important in the r-process calculations for extremely neutron-rich nuclei, whose fission barriers determine the termination of the r-process by fission [3]. Unfortunately, such neutron-rich nuclei will probably not become accessible in the nearest experiments. Therefore, fission properties of exotic nuclei and especially their isospin dependence can be investigated in alternative regions of the Nuclide Chart, which are accessible for such studies now. Fusion-evaporation cross sections for heavy fissile nuclei obtained in heavy ion induced reactions as well as their fission cross sections are mainly determined by statistical properties of decaying compound nuclei (CN) and first of all by the fission-barrier heights of nuclei involved in the de-excitation chains leading to observable evaporation residues (ER). At the same time, the ER production and fission in nearly symmetric projectile-target fusion reactions leading to the most neutron-deficient CN could be strongly suppressed due to the quasi-fission (QF) effect [4], as observed recently in the 4 8C a induced reactions leading to Ra [5] and Pb [6] CN. The production of

  6. Measurement of critical mass for an assembly of bare uranium shells

    International Nuclear Information System (INIS)

    Myers, W.L.; Goulding, C.A.; Hollas, C.L.

    1997-01-01

    As part of the research into nuclear measurement techniques, a series of measurements was performed that have applications to criticality safety and nuclear material handling. The critical mass of a set of bare, enriched-uranium metal hemispherical shells, known as the Rocky Flats shells, was measured for an assembly having an inside radius of 2.347 cm. The critical mass value was extrapolated from a series of subcritical measurements using three different kinds of sources (AmBe, AmF, and 252 Cf) placed at the center of the shells. Two kinds of neutron detection configurations (a 1% efficiency and a 25% efficiency configuration) were used to make the measurements

  7. Direct mass measurements of light neutron-rich nuclei using fast recoil spectrometers

    International Nuclear Information System (INIS)

    Vieira, D.J.; Wouters, J.M.

    1987-01-01

    Extensive new mass measurement capabilities have evolved with the development of recoil spectrometers. In the Z = 3 to 9 neutron-rich region alone, 12 neutron-rich nuclei have been determined for the first time by the fast-recoil direct mass measurement method. A recent experiment using the TOFI spectrometer illustrates this technique. A systematic investigation of nuclei that lie along or near the neutron-drip line has provided a valuable first glimpse into the nuclear structure of such nuclei. No evidence for a large single-particle energy gap at N = 14 is observed; however, a change in the two-neutron separation model calculations, and is interpreted in terms of the smaller 1s/sub 1/2/ - 1s/sub 1/2/ interaction compared to that of the 0d/sub 5/2/ - 0d/sub 5/2/ neutron-neutron interaction. 18 refs., 7 figs., 1 tab

  8. Neutron-Proton Mass Difference in Nuclear Matter and in Finite Nuclei and the Nolen-Schiffer Anomaly

    Directory of Open Access Journals (Sweden)

    Yakhshiev U.T.

    2010-04-01

    Full Text Available The neutron-proton mass difference in (isospin asymmetric nuclear matter and finite nuclei is studied in the framework of a medium-modified Skyrme model. The proposed effective Lagrangian incorporates both the medium influence of the surrounding nuclear environment on the single nucleon properties and an explicit isospin-breaking effect in the mesonic sector. Energy-dependent charged and neutral pion optical potentials in the s- and p-wave channels are included as well. The present approach predicts that the neutron-proton mass difference is mainly dictated by its strong part and that it markedly decreases in neutron matter. Furthermore, the possible interplay between the effective nucleon mass in finite nuclei and the Nolen-Schiffer anomaly is discussed. In particular, we find that a correct description of the properties of mirror nuclei leads to a stringent restriction of possible modifications of the nucleon’s effective mass in nuclei.

  9. The Masses and Stellar Content of Nuclei in Early-Type Galaxies from Multi-Band Photometry and Spectroscopy

    Science.gov (United States)

    Spengler, Chelsea; Côté, Patrick; Roediger, Joel; Ferrarese, Laura; Sánchez-Janssen, Rubén; Toloba, Elisa; Liu, Yiqing; Guhathakurta, Puragra; Cuillandre, Jean-Charles; Gwyn, Stephen; Zirm, Andrew; Muñoz, Roberto; Puzia, Thomas; Lançon, Ariane; Peng, Eric; Mei, Simona; Powalka, Mathieu

    2018-01-01

    It is now established that most, if not all, massive galaxies host central supermassive black holes (SMBHs), and that these SMBHs are linked to the growth their host galaxies as shown by several scaling relations. Within the last couple of decades, it has become apparent that most lower-mass galaxies without obvious SMBHs nevertheless contain some sort of central massive object in the form of compact stellar nuclei that also follow identical (or similar) scaling relations. These nuclei are challenging to study given their small sizes and relatively faint magnitudes, but understanding their origins and relationship to their hosts is critical to gaining a more complete picture of galaxy evolution. To that end, we highlight selected results from an analysis of 39 nuclei and their early-type hosts in the Virgo Cluster using ten broadband filters: F300W, F475W, F850LP, F160W, u*griz, and Ks. We estimate masses, metallicities and ages using simple stellar population (SSP) models. For 19 nuclei, we compare to SSP parameters derived from Keck and Gemini spectra and find reasonable agreement between the photometric and spectroscopic metallicity: the RMS scatter is 0.3 dex. We reproduce the nucleus-galaxy mass fraction of 0.33 ± 0.08% for galaxy stellar masses 108.4-1010.3 M⊙ with a typical precision of ~35% for the nuclei masses. Based on available model predictions, there is no single preferred formation scenario for nuclei, suggesting that nuclei are formed stochastically through a mix of processes. Nuclei metallicities are statistically identical to those of their hosts, appearing 0.07 ± 0.3 dex more metal-rich on average — although, omitting galaxies with unusual origins (i.e., compact ellipticals), nuclei are 0.20 ± 0.28 dex more metal-rich. We find no clear age difference between nuclei and their galaxies, with nuclei displaying a broad range of ages. Interestingly, we find that the most massive nuclei may be flatter and more closely aligned with the semi

  10. Study of single-nucleon spectroscopic characteristics in light nuclei

    International Nuclear Information System (INIS)

    Zhusupova, K.A.

    1998-01-01

    Single-nucleon characteristics of 1 p-shell nuclei are investigated in the thesis. These characteristics are necessary for describing nuclear processes leaded to separation of target nuclei or to addition of one nucleon to it. Multi-particle shell model and three-body cluster model (for 6 L i and 9 Be) are used. It is shown that shell model explains well spectroscopic S-factors for stripping and pick-up reactions of nucleon. Three body α2 N-model reproduces well S-factors and momentum distribution extracted from (e, e p) reactions for separation of proton from ground state of 6 L i nucleus accompanied by appearance of ground and high exited states of 5 He nucleolus. The classification and explanation for small value nucleon partial widths for high lying states for odd nuclei 1 p-shell with isospin T=3/2 are given. (author)

  11. A study of the (p,pn) reaction on 1p shell nuclei at 46 MeV

    International Nuclear Information System (INIS)

    Miller, C.A.

    1974-01-01

    The (p,pn) reaction on four 1p shell nuclei, 6 Li, 9 Be, 13 C and 12 C, as well as the 6 Li(p,2p) reaction, have been studied at 46 MeV. The 6 Li(p,pn) cross section was found to be approximately four times that for (p,2p) and to have a very different angular dependence. Both reactions show the s-state admixture in 6 Li observed with (p,2p) at higher energies. For all of the target nuclei, the cross sections have features that cannot be fitted by a renormalized Plane Wave Impulse Approximation (PWIA) calculation. A zero range distorted wave calculation was found to be in only fair agreement with the 9 Be and 13 C data. The overall magnitudes of the results of the calculation were found to be very sensitive to the RMS radii of the bound state wave functions of the knocked-out neutrons. (author)

  12. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    Science.gov (United States)

    Oganessian, Yu. Ts.; Shchepunov, V. A.; Dmitriev, S. N.; Itkis, M. G.; Gulbekyan, G. G.; Khabarov, M. V.; Bekhterev, V. V.; Bogomolov, S. L.; Efremov, A. A.; Pashenko, S. V.; Stepantsov, S. V.; Yeremin, A. V.; Yavor, M. I.; Kalimov, A. G.

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3. The set up can work in the wide mass range from A≈20 to A≈500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90° electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  13. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    International Nuclear Information System (INIS)

    Oganessian, Yu.Ts.; Shchepunov, V.A.; Dmitriev, S.N.; Itkis, M.G.; Gulbekyan, G.G.; Khabarov, M.V.; Bekhterev, V.V.; Bogomolov, S.L.; Efremov, A.A.; Pashenko, S.V.; Stepantsov, S.V.; Yeremin, A.V.; Yavor, M.I.; Kalimov, A.G.

    2003-01-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3 . The set up can work in the wide mass range from A∼20 to A∼500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given

  14. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Oganessian, Yu.Ts.; Shchepunov, V.A. E-mail: shchepun@sunhe.jinr.rushchepun@cv.jinr.ru; Dmitriev, S.N.; Itkis, M.G.; Gulbekyan, G.G.; Khabarov, M.V.; Bekhterev, V.V.; Bogomolov, S.L.; Efremov, A.A.; Pashenko, S.V.; Stepantsov, S.V.; Yeremin, A.V.; Yavor, M.I.; Kalimov, A.G

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10{sup -3}. The set up can work in the wide mass range from A{approx}20 to A{approx}500, its mass acceptance is as large as {+-}2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  15. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.

    1996-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs

  16. Nuclear-charge polarization at scission in fission from moderately excited light-actinide nuclei

    International Nuclear Information System (INIS)

    Nishinaka, Ichiro

    2009-01-01

    Fragment mass yields and the average neutron multiplicity in the proton-induced fission of 232 Th and 238 U were measured by a double time-of-flight method. The most probable charges of secondary fragments were evaluated from the fragment mass yields measured by the double time-of-flight method and the fractional cumulative and independent yields reported in literature. The nuclear-charge polarization of primary fragments at scission was obtained by correcting the most probable charge of secondary fragments for neutron evaporation. The results show that the nuclear-charge polarization at scission is associated with the liquid-drop properties of nuclei and the proton shell effect with Z = 50 of heavy fragments and that it is practically insensitive to mass and excitation energy of the fissioning nucleus in the region of light-actinide nuclei. (author)

  17. Shell effects at the touching point of nuclear fragments

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Gherghescu, R.A.; Greiner, W.

    1999-01-01

    Shell correction energy of the fission fragments remains practically unchanged when the separation distance increases from the sum of their radii up to infinity. The variation with mass asymmetry of the total deformation energy at the touching point configuration shows the valleys corresponding to different decay modes, which are produced when the two proton and/or the two neutron numbers are magic or almost magic. We present a potential energy surface of the proton-rich α-emitter 106 Te, showing the α-decay valley, obtained with a phenomenological shell correction. We discuss the difficulties to produce such a valley on a potential energy surface of 236 Pu, calculated with the macroscopic-microscopic method, in which the nuclear level scheme is found within the two center shell model. The valleys mainly due to the double magic nuclei 100,132 Sn, 208 Pb, and other magic numbers, are illustrated by plotting the deformation energy at the touching point versus the proton number of the fragment, for the following parent nuclei: 106 Te, 116 Ce, 212 Po, 238 Th, 258 Fm and 264 Fm. For ternary fission the gain in energy of compact configurations as compared to aligned ones is analysed. (authors)

  18. Universal charge-mass relation: From black holes to atomic nuclei

    International Nuclear Information System (INIS)

    Hod, Shahar

    2010-01-01

    The cosmic censorship hypothesis, introduced by Penrose forty years ago, is one of the corner stones of general relativity. This conjecture asserts that spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. The elimination of a black-hole horizon is ruled out by this principle because that would expose naked singularities to distant observers. We test the consistency of this prediction in a gedanken experiment in which a charged object is swallowed by a charged black hole. We find that the validity of the cosmic censorship conjecture requires the existence of a charge-mass bound of the form q≤μ 2/3 E c -1/3 , where q and μ are the charge and mass of the physical system respectively, and E c is the critical electric field for pair-production. Applying this bound to charged atomic nuclei, one finds an upper limit on the number Z of protons in a nucleus of given mass number A: Z≤Z * =α -1/3 A 2/3 , where α=e 2 /h is the fine structure constant. We test the validity of this novel bound against the (Z,A)-relation of atomic nuclei as deduced from the Weizsaecker semi-empirical mass formula.

  19. Universal charge-mass relation: From black holes to atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar, E-mail: shaharhod@gmail.co [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Institute, Jerusalem 91010 (Israel)

    2010-10-04

    The cosmic censorship hypothesis, introduced by Penrose forty years ago, is one of the corner stones of general relativity. This conjecture asserts that spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. The elimination of a black-hole horizon is ruled out by this principle because that would expose naked singularities to distant observers. We test the consistency of this prediction in a gedanken experiment in which a charged object is swallowed by a charged black hole. We find that the validity of the cosmic censorship conjecture requires the existence of a charge-mass bound of the form q{<=}{mu}{sup 2/3}E{sub c}{sup -1/3}, where q and {mu} are the charge and mass of the physical system respectively, and E{sub c} is the critical electric field for pair-production. Applying this bound to charged atomic nuclei, one finds an upper limit on the number Z of protons in a nucleus of given mass number A: Z{<=}Z{sup *}={alpha}{sup -1/3}A{sup 2/3}, where {alpha}=e{sup 2}/h is the fine structure constant. We test the validity of this novel bound against the (Z,A)-relation of atomic nuclei as deduced from the Weizsaecker semi-empirical mass formula.

  20. Ground-state properties of neutron magic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, G., E-mail: gauravphy@gmail.com [Govt. Women Engineering College, Department of Physics (India); Kaushik, M. [Shankara Institute of Technology, Department of Physics (India)

    2017-03-15

    A systematic study of the ground-state properties of the entire chains of even–even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126 has been carried out using relativistic mean-field plus Bardeen–Cooper–Schrieffer approach. Our present investigation includes deformation, binding energy, two-proton separation energy, single-particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using nonrelativistic approach (Skyrme–Hartree–Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip-lines, the (Z, N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

  1. Study on the systematics of two-neutron high spin states in fp shell nuclei by means of the (α,2He) reaction

    International Nuclear Information System (INIS)

    Wienands, U.

    1983-05-01

    The (α, 2 He)-reaction was studied at 56-57 MeV incident energy at the target nuclei sup(58,60,62,64)Ni. In a laboratory angular range from 15 0 -37.5 0 the angular distributions of the absolute differential cross section were taken up. The measurements were performed with the position resolving 2 He detector developed in Bonn. By means of DWBA calculations for the first time in all final nuclei states with the configurations (fsub(5/2), gsub(9/2)) 7 -(gsub(9/2)) 8 2 +, and (gsub(9/2), dsub(5/2)) 6 + could be identified; these were except the Jsup(π)=7 - states in 60 Ni hitherto not known. The two-neutron binding energies of these states were under inclusion of further states known from literature compared with shell model calculations according to the weak coupling method of Bansal and French. By a set of 4 parameters both the two-neutron binding energies of the (fsub(5/2), gsub(9/2)) 7 - and (gsub(9/2)) 2 sub(8+) states and the one-particle binding energies of the f - sub(5/2) and g + sub(5/2) one-neutron states over a large number of nuclei could very well be reproduced. For calculations on the states with the configuration (gsub(9/2), dsub(5/2)) 6 + the present data set is not yet sufficient. The found agreement of the calculations with the experimental data shows that two-neutron high spin states in the fp shell nuclei can be correctly described by this simple picture. (orig.) [de

  2. Decay properties of heavier nuclei and mass formula

    International Nuclear Information System (INIS)

    Uno, Masahiro

    2000-01-01

    The stabilities of heavy nuclei, including super-heavy elements, are governed by alpha decay and fission. Some exotic types of decay, such as heavy cluster decay, which does not occur so frequently as to govern stability, have been also reported. The half-time estimations of various types of decay are reviewed. And the possibility of decay, mainly in case of heavy cluster decay, is discussed with Q-value obtained from mass formulae as well. Some topics concerning other types of exotic decay are presented. Recent trends in the research on mass formula are reviewed from the historical point of view, to get perspectives of future development. (Yamamoto, A.)

  3. Decay properties of heavier nuclei and mass formula

    Energy Technology Data Exchange (ETDEWEB)

    Uno, Masahiro [Ministry of Education, Science and Culture, Tokyo (Japan)

    2000-03-01

    The stabilities of heavy nuclei, including super-heavy elements, are governed by alpha decay and fission. Some exotic types of decay, such as heavy cluster decay, which does not occur so frequently as to govern stability, have been also reported. The half-time estimations of various types of decay are reviewed. And the possibility of decay, mainly in case of heavy cluster decay, is discussed with Q-value obtained from mass formulae as well. Some topics concerning other types of exotic decay are presented. Recent trends in the research on mass formula are reviewed from the historical point of view, to get perspectives of future development. (Yamamoto, A.)

  4. Structure function of off-mass-shell pions and the calculation of the Sullivan process

    International Nuclear Information System (INIS)

    Shakin, C.M.; Sun, W.

    1994-01-01

    We construct a model for the pion (valence) structure function that fits the experimental data obtained in the study of the Drell-Yan process. The model may also be used to calculate the structure function of off-mass-shell pions. We apply our model in the study of deep-inelastic scattering from off-mass-shell pions found in the nucleon and are thus able to resolve a problem encountered in the standard analysis of such processes. The usual analysis is made using the structure function of on-mass-shell pions and requires the use of a soft πNN form factor that is inconsistent with standard nuclear physics phenomenology. The use of our off-mass-shell structure functions allows for a fit to the data for nonperturbative aspects of the nucleon ''sea'' with a pion-nucleon form factor of the standard form

  5. Pair correlations in nuclei

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi

    2009-01-01

    Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)

  6. Single Particle Entropy in Heated Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Syed, N. U. H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2006-01-01

    The thermal motion of single particles represents the largest contribution to level density (or entropy) in atomic nuclei. The concept of single particle entropy is presented and shown to be an approximate extensive (additive) quantity for mid-shell nuclei. A few applications of single particle entropy are demonstrated

  7. The decay from the two-quasiparticle regime in even-even deformed rare earth nuclei

    International Nuclear Information System (INIS)

    Henriques, A.; Thorstensen, T.F.; Hammaren, E.

    1983-06-01

    A bump at 1 MeV has been identified in coincidence gamma-ray spectra from the ( 3 He, 4 He) reaction in deformed rare earth nuclei. Particle/gamma-ray angular correlation indicates a dipole character. It is suggested that this bump corresponds to transitions from two-quasiparticle states to the ground state band

  8. Spectroscopy of N approximately 82 nuclei near the proton drip line

    International Nuclear Information System (INIS)

    Daly, P.J.

    1984-01-01

    The yrast spectroscopy of Z>64 nuclei close to the proton drip line is discussed. This is a region of shell model nuclei in which high-spin excitations are accessible with heavy ion beams, and the occurrence of many isomers will facilitate future spectroscopic study of these nuclei to much higher spins that were observed in these investigations. The study of πhsub(11/2)sup(n) excitations in n=82 nuclei above 146 Gd provided particularly interesting results, since in certain respects their properties match shell model predictions better than those of jsup(n) states near traditional doubly magic nuclei. First results for N=81 nuclei above Z=64 were also reported, but much work remains to be done in the Z>64, N<82 quadrant

  9. Mass measurements of 56-57Cr and the question of shell reincarnation at N = 32

    International Nuclear Information System (INIS)

    Guenaut, C; Audi, G; Beck, D

    2005-01-01

    Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for 56-57 Cr for which an accuracy of 4 x 10 -8 was achieved. Analysis of the mass surface for the supposed new N = 32 shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as 94 Sr

  10. Mass measurements of 56-57Cr and the question of shell reincarnation at N = 32

    Science.gov (United States)

    Guénaut, C.; Audi, G.; Beck, D.; Blaum, K.; Bollen, G.; Delahaye, P.; Herfurth, F.; Kellerbauer, A.; Kluge, H.-J.; Lunney, D.; Schwarz, S.; Schweikhard, L.; Yazidjian, C.

    2005-10-01

    Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for 56-57Cr for which an accuracy of 4 × 10-8 was achieved. Analysis of the mass surface for the supposed new N = 32 shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as 94Sr.

  11. Mass measurements of $^{56-57}$Cr and the question of shell reincarnation at $N = 32$

    CERN Document Server

    Guenaut, Celine; Beck, D; Blaum, Klaus; Bollen, Georg; Delahaye, P; Herfurth, F; Kellerbauer, A G; Kluge, H J; Lunney, M D; Schwarz, S; Schweikhard, L; Yazidjian, C

    2005-01-01

    Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for $^{56-57}$Cr for which an accuracy of $4 \\times 10^{-8}$ was achieved. Analysis of the mass surface for the supposed new $N = 32$ shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as $^{94}$Sr.

  12. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.; Dean, D.J.; Langanke, K.

    1997-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)

  13. Microscopic calculation of level densities: the shell model Monte Carlo approach

    International Nuclear Information System (INIS)

    Alhassid, Yoram

    2012-01-01

    The shell model Monte Carlo (SMMC) approach provides a powerful technique for the microscopic calculation of level densities in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We discuss a number of developments: (i) Spin distribution. We used a spin projection method to calculate the exact spin distribution of energy levels as a function of excitation energy. In even-even nuclei we find an odd-even staggering effect (in spin). Our results were confirmed in recent analysis of experimental data. (ii) Heavy nuclei. The SMMC approach was extended to heavy nuclei. We have studied the crossover between vibrational and rotational collectivity in families of samarium and neodymium isotopes in model spaces of dimension approx. 10 29 . We find good agreement with experimental results for both state densities and 2 > (where J is the total spin). (iii) Collective enhancement factors. We have calculated microscopically the vibrational and rotational enhancement factors of level densities versus excitation energy. We find that the decay of these enhancement factors in heavy nuclei is correlated with the pairing and shape phase transitions. (iv) Odd-even and odd-odd nuclei. The projection on an odd number of particles leads to a sign problem in SMMC. We discuss a novel method to calculate state densities in odd-even and odd-odd nuclei despite the sign problem. (v) State densities versus level densities. The SMMC approach has been used extensively to calculate state densities. However, experiments often measure level densities (where levels are counted without including their spin degeneracies.) A spin projection method enables us to also calculate level densities in SMMC. We have calculated the SMMC level density of 162 Dy and found it to agree well with experiments

  14. Ab Initio Symmetry-Adapted No-Core Shell Model

    International Nuclear Information System (INIS)

    Draayer, J P; Dytrych, T; Launey, K D

    2011-01-01

    A multi-shell extension of the Elliott SU(3) model, the SU(3) symmetry-adapted version of the no-core shell model (SA-NCSM), is described. The significance of this SA-NCSM emerges from the physical relevance of its SU(3)-coupled basis, which – while it naturally manages center-of-mass spuriosity – provides a microscopic description of nuclei in terms of mixed shape configurations. Since typically configurations of maximum spatial deformation dominate, only a small part of the model space suffices to reproduce the low-energy nuclear dynamics and hence, offers an effective symmetry-guided framework for winnowing of model space. This is based on our recent findings of low-spin and high-deformation dominance in realistic NCSM results and, in turn, holds promise to significantly enhance the reach of ab initio shell models.

  15. Contribution of the radioactive decay to the study of the structure of N=Z nuclei of mass A>70

    International Nuclear Information System (INIS)

    Longour, Christophe

    1999-01-01

    Radioactive decay study gives an access to the interaction which rules the β decay process as well as the structure of the nuclear states involved. This work describes the observation of the decay of N = Z nuclei with mass A > 70. For the odd-odd N = Z nuclei 78 Y, 82 Nb and 86 Tc, the decay has been established as superallowed Fermi type transitions. The results pave the way for more precise measurements and extend the mass range nowadays used to understand the behaviour of the weak interaction in the nuclear matter. The observation of the decay of the even-even N = Z 72 Kr leads us to build the Gamow-Teller strength distribution from which some clues about the ground state deformation of this isotope can be obtained. More complete experimental observation and some developments of the calculations used to interpret the distribution of the Gamow-Teller strength are needed. Finally, this work describes the developments and tests of a prototype detector the aim of which to determine the contribution of β particles to energy distribution observed in germanium detector. The tests we have performed show that this prototype can identify and reject 80% of the β particles emitted by a source with a 2,3 MeV end-point. The very satisfactory performances of this prototype need now to be confirmed under experimental conditions. (author)

  16. Neutrino-Induced Nucleosynthesis in Helium Shells of Early Core-Collapse Supernovae

    Directory of Open Access Journals (Sweden)

    Banerjee Projjwal

    2016-01-01

    Full Text Available We summarize our studies on neutrino-driven nucleosynthesis in He shells of early core-collapse supernovae with metallicities of Z ≲ 10−3 Z⊙. We find that for progenitors of ∼ 11–15 M⊙, the neutrons released by 4He(ν¯ee, e+n3H in He shells can be captured to produce nuclei with mass numbers up to A ∼ 200. This mechanism is sensitive to neutrino emission spectra and flavor oscillations. In addition, we find two new primary mechanisms for neutrino-induced production of 9Be in He shells. The first mechanism produces 9Be via 7Li(n,γ8Li(n,γ9Li(e− ν¯ee9Be and relies on a low explosion energy for its survival. The second mechanism operates in progenitors of ∼ 8 M⊙, where 9Be can be produced directly via 7Li(3H, n09Be during the rapid expansion of the shocked Heshell material. The light nuclei 7Li and 3H involved in these mechanisms are produced by neutrino interactions with 4He. We discuss the implications of neutrino-induced nucleosynthesis in He shells for interpreting the elemental abundances in metal-poor stars.

  17. Extended interacting boson model description of Pd nuclei in the A∼100 transitional region

    Directory of Open Access Journals (Sweden)

    Böyükata M.

    2014-03-01

    Full Text Available Studies of even-even nuclei in the A∼100 transitional mass region within the framework of the interacting boson model-1 (IBM-1 have been expanded down to 98Pd nuclei to compare the calculation with new experimental results from measurements obtained at the Institute of Nuclear Physics in Cologne. The low-lying energy levels and the E2 transition rates of 98−100Pd nuclei are investigated and their geometric structures are described in the present work. We have also focused on the new B(E2:21+ → 01+ values of 112,114Pd nuclei to compare with previously calculated values.

  18. Core polarization and 3/2 states of some f-p shell nuclei

    International Nuclear Information System (INIS)

    Shelly, S.

    1976-01-01

    The energies, wavefunctions, spectroscopic factors and M1 transition strengths have been calculated for the 3/2 - states excited via single proton transfer to 2p3/2 orbit of the target nuclei 50 Ti, 52 Cr, 54 Fe and 56 Fe. The calculations have been done by using the Kuo and Brown interaction in the entire four shell space as well as the shrunk Kuo and Brown interaction calculated in (1f7/2-2p3/2) space. The salient feature of the calculation is that whereas the systematics of single particle strength distribution are well reproduced, the energy splitting between the calculated T> centroid and the centroid of T> states is always much smaller than that observed experimentally. It has been found, however, that the modified KB interaction widens the energy gap between the T> centroid and the centroid of T> states without appreciably affecting the final wave-functions. (author)

  19. Infrared divergences, mass shell singularities and gauge dependence of the dynamical fermion mass

    International Nuclear Information System (INIS)

    Das, Ashok K.; Frenkel, J.; Schubert, C.

    2013-01-01

    We study the behavior of the dynamical fermion mass when infrared divergences and mass shell singularities are present in a gauge theory. In particular, in the massive Schwinger model in covariant gauges we find that the pole of the fermion propagator is divergent and gauge dependent at one loop, but the leading singularities cancel in the quenched rainbow approximation. On the other hand, in physical gauges, we find that the dynamical fermion mass is finite and gauge independent at least up to one loop

  20. Nuclear moments and charge radii of argon isotopes between the neutron-shell closures N=20 and N=28

    CERN Document Server

    Blaum, K; Lassen, J; Lievens, P; Marinova, K; Neugart, R

    2008-01-01

    We report the measurement of optical isotope shifts for $^{40-44}\\!$Ar relative to $^{38}$Ar from which changes in the mean square nuclear charge radii across the 1$\\scriptstyle{f}_{7/2}$ neutron shell are deduced. In addition, the hyperfine structure of $^{41\\!}$Ar and $^{43}$Ar yields the spins, magnetic dipole and electric quadrupole moments, in particular the spin $\\,\\scriptstyle\\textrm{I}$ = 5/2 for $\\,^{43}\\!$Ar. The investigations were carried out by fast-beam collinear laser spectroscopy using highly sensitive detection based on optical pumping and state-selective collisional ionization. Mean square charge radii are now known from $^{32}$Ar to $^{46}$Ar, covering sd-shell as well as $\\scriptstyle{f}_{7/2}$-shell nuclei. They are discussed in the framework of spherical SGII Skyrme-type Hartree-Fock calculations, semi-empirically corrected for quadrupole core polarization. The Zamick-Talmi formula excellently describes the charge radii across the $\\scriptstyle{f}_{7/2}$ neutron shell, as it does for the...

  1. Dynamical and luminosity evolution of active galactic nuclei - Models with a mass spectrum

    International Nuclear Information System (INIS)

    Murphy, B.W.; Cohn, H.N.; Durisen, R.H.

    1991-01-01

    A multimass energy-space Fokker-Planck code is used to follow the dynamical and luminosity evolution of an AGN model that consists of a dense stellar system surrounding a massive black hole. It is found that stellar evolution and tidal disruption are the predominant mass-loss mechanisms for low-density nuclei, whereas physical collisions dominate in high-density nuclei. For initial central densities greater than 10 million solar masses/cu pc the core of the stellar system contacts due to the removal of kinetic energy by collisions, whereas for densities less than this the core of the stellar system expands due to heating that results from the settling of a small population of stars into orbits tightly bound to the black hole. These mechanisms produce differing power-law slopes in the resulting stellar density cusp surrounding the black hole, -7/4 and -1/2 for low- and high-density nuclei, respectively. 60 refs

  2. Spin-flip ΔL = 0 transitions excited by proton inelastic scattering

    International Nuclear Information System (INIS)

    Marty, N.; Willis, A.

    1989-01-01

    In this talk the results obtained by (p,p') at Orsay on a heavy nucleus 90 Zr, a medium-heavy nucleus 48 Ca, will be recalled; data on even-even nuclei of the s-d shell will be discussed in more detail, very preliminary data obtained at Saturne on the main T = 1 and T = 0 states in 28 Si, at 200, 400, 600 MeV with a polarized beam will be given

  3. Review of even element super-heavy nuclei and search for element 120

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Barth, W.; Burkhard, H.G.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Schoett, H.J.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Muenzenberg, G. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Antalic, S.; Saro, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbuilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-06-15

    The reaction {sup 54}Cr + {sup 248}Cm was investigated at the velocity filter SHIP at GSI, Darmstadt, with the intention to study production and decay properties of isotopes of element 120. Three correlated signals were measured, which occurred within a period of 279ms. The heights of the signals correspond with the expectations for a decay sequence starting with an isotope of element 120. However, a complete decay chain cannot be established, since a signal from the implantation of the evaporation residue cannot be identified unambiguously. Measured properties of the event chain are discussed in detail. The result is compared with theoretical predictions. Previously measured decay properties of even element super-heavy nuclei were compiled in order to find arguments for an assignment from the systematics of experimental data. In the course of this review, a few tentatively assigned data could be corrected. New interpretations are given for results which could not be assigned definitely in previous studies. The discussion revealed that the cross-section for production of element 120 could be high enough so that a successful experiment seems possible with presently available techniques. However, a continuation of the experiment at SHIP for a necessary confirmation of the results obtained in a relatively short irradiation of five weeks is not possible at GSI presently. Therefore, we decided to publish the results of the measurement and of the review as they exist now. In the summary and outlook section we also present concepts for the continuation of research in the field of super-heavy nuclei. (orig.)

  4. Mass-spectrometer of knock-on nuclei for reactor 'Pik'

    International Nuclear Information System (INIS)

    Begzhanov, P.B.; Nazarov, A.G.; Petrov, G.A.; Pikul', V.P.

    1999-01-01

    For reactor 'Pik' (that is being built in St. Petersburg Institute of Nuclear Physics) there was designed a universal two shoulder mass-spectrometer for non-decelerated fission products (FP) of nuclei. The spectrometer helps to obtain different values of linear magnification, dispersion, aberration coefficients and transmission without making structural changes in the device. To separate FP for one shoulder of spectrometer we chose ion-optical scheme (IOS) consisting of three electrostatic analyzers and three-sectional magnet 'JOSEF' that had high dispersion by masses at small deflection radius. IOS calculations of mass-spectrometer were performed with the help of program TRANSVOL (transfer of phase volume) designed basing on TRIO program. The program allows calculating of complete IOS transmission with taking into account elements aperture and beam officering

  5. Microscopic description of fission in odd-mass uranium and plutonium nuclei with the Gogny energy density functional

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Guzman, R. [Kuwait University, Physics Department, Kuwait (Kuwait); Robledo, L.M. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Universidad Politecnica de Madrid, Center for Computational Simulation, Boadilla del Monte (Spain)

    2017-12-15

    The parametrization D1M of the Gogny energy density functional is used to study fission in the odd-mass Uranium and Plutonium isotopes with A = 233,.., 249 within the framework of the Hartree-Fock-Bogoliubov (HFB) Equal Filling Approximation (EFA). Ground state quantum numbers and deformations, pairing energies, one-neutron separation energies, barrier heights and fission isomer excitation energies are given. Fission paths, collective masses and zero point rotational and vibrational quantum corrections are used to compute the systematic of the spontaneous fission half-lives t{sub SF}, the masses and charges of the fission fragments as well as their intrinsic shapes. Although there exits a strong variance of the predicted fission rates with respect to the details involved in their computation, it is shown that both the specialization energy and the pairing quenching effects, taken into account fully variationally within the HFB-EFA blocking scheme, lead to larger spontaneous fission half-lives in odd-mass U and Pu nuclei as compared with the corresponding even-even neighbors. It is shown that modifications of a few percent in the strengths of the neutron and proton pairing fields can have a significant impact on the collective masses leading to uncertainties of several orders of magnitude in the predicted t{sub SF} values. Alpha-decay lifetimes have also been computed using a parametrization of the Viola-Seaborg formula. (orig.)

  6. Study of ground-state configuration of neutron-rich aluminium isotopes through electromagnetic excitation

    International Nuclear Information System (INIS)

    Chakraborty, S.; Datta Pramanik, U.; Chatterjee, S.

    2013-01-01

    The region of the nuclear chart around neutron magic number, N∼20 and proton number (Z), 10≤ Z≤12 is known as the Island of Inversion. The valance neutron(s) of these nuclei, even in their ground state, are most likely occupying the upper pf orbitals which are normally lying above sd orbitals, N∼20 shell closure. Nuclei like 34,35 Al are lying at the boundary of this Island of Inversion. Little experimental information about their ground state configuration are available in literature

  7. Laser method of free atom nuclei orientation

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1987-01-01

    Orientation process of free atom (atoms in beams) nuclei, scattering quanta of circularly polarized laser radiation is considered. A method for the evaluation of nuclei orientation parameters is developed. It is shown that in the process of pumping between the ground and first excited atomic states with electron shell spins J 1 and J 2 , so that J 2 = J 1 + 1, a complete orientation of nuclei can be attained

  8. Application of the gradient method to Hartree-Fock-Bogoliubov theory

    International Nuclear Information System (INIS)

    Robledo, L. M.; Bertsch, G. F.

    2011-01-01

    A computer code is presented for solving the equations of the Hartree-Fock-Bogoliubov (HFB) theory by the gradient method, motivated by the need for efficient and robust codes to calculate the configurations required by extensions of the HFB theory, such as the generator coordinate method. The code is organized with a separation between the parts that are specific to the details of the Hamiltonian and the parts that are generic to the gradient method. This permits total flexibility in choosing the symmetries to be imposed on the HFB solutions. The code solves for both even and odd particle-number ground states, with the choice determined by the input data stream. Application is made to the nuclei in the sd shell using the universal sd-shell interaction B (USDB) shell-model Hamiltonian.

  9. Allowed unhindered beta connected states in rare earth nuclei

    International Nuclear Information System (INIS)

    Sood, P.C.; Ray, R.S.

    1986-03-01

    The beta-connected states in odd-mass as well as even mass rare earth nuclei, where the transition is of allowed unhindered nature, are listed. The tabulation includes 54 cases of such transitions. Validity of Alaga selection rules is examined and the results are used to assign configurations to the involved single particle and two-particle states. (author)

  10. Direct mass measurements of 100Sn and magic nuclei near the N=Z line

    International Nuclear Information System (INIS)

    Chartier, M.

    1996-01-01

    The masses of nuclei far from stability are of particular interest in nuclear structure studies, and many methods of varying precision have been developed to undertake their measurement. A direct time of flight technique in conjunction with the SPEG spectrometer at GANIL has been extended to the mass measurement of proton-rich nuclei near N = Z line in the mass region A ≅ 60-80 known to provide input for astrophysical modelling of the rp-process and information relevant to the nuclear structure in a region of high deformation. The radioactive beams were produced via the fragmentation of a 78 Kr beam on a nat Ni target, using the new SISSI device. A purification method based on the stripping of the secondary ions was successfully used for the first time, and the masses of 70 Se and 71 Se were measured. In order to improve the mass resolution for heavier nuclei, another method using the second cyclotron of GANIL (CSS2) as a high resolution spectrometer has been developed. An experiment aimed at measuring the masses of A 100 isobars in the vicinity of the doubly magic nucleus 100 Sn was successfully performed, using this original technique. Secondary ions of 100 Ag, 100 Cd, 100 In and 100 Sn produced via fusion-evaporation reaction 50 Cr + 58 Ni and simultaneously accelerated in the CSS2 cyclotron. The mass of 100 Cd and, for the first time, the masses of 100 Sn were determined directly with respect to the reference mass of 100 Ag. These results have been compared to various theoretical predictions and open the discussion on considerations of spin-isospin symmetry. (author)

  11. A systematic study of odd-odd Gallium nuclei

    International Nuclear Information System (INIS)

    Allegro, P.R.P.; Medina, N.H.; Oliveira, J.R.B.; Ribas, R.V.; Cybulska, E.W.; Seale, W.A.; Zagatto, V.A.B.; Zahn, G.S.; Genezini, F.A.; Silveira, M.A.G.; Tabor, S.; Bender, P.; Tripathi, V.; Baby, L.

    2012-01-01

    Full text: Recently, many studies have been published attempting to explain the role of the 0g 9/2 orbital in the high spin excited states of nuclei in the region of the mass A=50-80, especially very neutron rich nuclei like, for example 59-66 Fe [1], 65,67 Cu [2], 70,80 Ge [3,4] nuclei and those with odd mass number like As, Ge and Ga [5]. Stefanescu et al. [6] demonstrated the presence of bands in the neutron-rich isotopes Ga formed from excitation of a proton to the 0g 9/2 orbital and Cheal et al. [7] revealed, from the study of the spins and moments of the ground state, changes in nuclear structure of the odd Ga isotopes between N = 40 and N 50, indicating a change in the energy gap between the 0g 9/2 orbital and the pf shell. In this work, we have performed a systematic study of odd-odd 64,66,68,70 Ga nuclei to examine the behavior of the 0g 9/2 orbital with an increasing number of neutrons. We have compared the predictions of the Large Scale Shell Model, obtained using the Antoine code [8] with the FPG [9] and JUN45 [10] effective interactions, with the experimental results obtained with in-beam gamma-ray spectroscopy experiments performed at University of Sao Paulo using SACI-PERERE spectrometer and at Florida State University using the Clover Array System. We have also performed calculations to study 67 Ge, an odd nucleus in the same mass region, in order to verify the behavior of the effective interactions in a nucleus without the proton-neutron interaction. [1] S. Lunardi. et al., Phys. Rev. C 76, 034303 (2007). [2] C. J. Chiara et al., Phys. Rev. C 85, 024309 (2012). [3] M. Sugawara et al., Phys. Rev. C 81, 024309 (2010). [4] H. Iwasaki.et al., Phys. Rev. C 78, 021304(R) (2008). [5] N. Yoshinaga et al. Phys. Rev. C 78, 044320 (2008). [6] I. Stefanescu et al., Phys. Rev. C 79, 064302 (2009). [7] B. Cheal et al. Phys. Rev. Lett. 104, 252502 (2010). [8] E. Caurier and F. Nowacki, Acta Phys. Polonica B 30, 705 (1999). [9] O. Sorlin et al., Phys. Rev. Lett

  12. Nuclear spectroscopy of doubly-even130,132Ba

    Science.gov (United States)

    Gupta, Anuradha; Gupta, Surbhi; Singh, Suram; Bharti, Arun

    2018-05-01

    A comparative study of some high-spin characteristic nuclear structure properties of doubly-even 130,132Ba nuclei has been made using two microscopic frameworks - CHFB and PSM. The yrast spectra, intrinsic quadrupole moment and deformation systematics of these nuclei have been successfully calculated. Further, the calculated data from both the frameworks is also compared with the available experimental data and a good agreement has been obtained. The present CHFB calculations describes very well the low spin structure of even-even 130,132Ba nuclei whereas PSM calculations provide a qualitative description of the high-spin band structure of doubly-even 130,132Ba nuclei.

  13. Selfconsistent theory of Coulomb mixing in nuclei

    International Nuclear Information System (INIS)

    Pyatov, N.I.

    1978-01-01

    The theory of isobaric states is considered according to the Coulomb mixing in nuclei. For a given form of the isovestor potential the separable residual interactions are constructed by means of the isotopic invariance principle. The strength parameter of the force is found from a selfconsistency condition. The charge dependent force is represented by the Coulomb effective potential. The theory of the isobaric states is developed using the random phase approximation. The Coulomb mixing effects in the ground and isobaric 0 + states of even-mass nuclei are investigated

  14. Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Kondo, Y.

    2016-06-01

    Large acceptance spectrometers at in-flight RI separators have played significant roles in investigating the structure of exotic nuclei. Such spectrometers are in particular useful for probing unbound states of exotic nuclei, using invariant mass spectroscopy with reactions at intermediate and high energies. We discuss here the key characteristic features of such spectrometers, by introducing the recently commissioned SAMURAI facility at the RIBF, RIKEN. We also investigate the issue of cross talk in the detection of multiple neutrons, which has become crucial for exploring further unbound states and nuclei beyond the neutron drip line. Finally we discuss future perspectives for large acceptance spectrometers at the new-generation RI-beam facilities.

  15. Superdeformation in the mass A ∼ 80 region

    International Nuclear Information System (INIS)

    Baktash, C.

    1996-01-01

    A new island of superdeformed nuclei with major-to-minor axis ratio of 2:1 has recently been discovered in the A ∼ 80 medium-mass region, confirming the predictions for the existence of a large SD gap at particle number N,Z ∼ 44. The general properties of more than 20 bands observed so far will be reviewed here, and compared with those of the superdeformed bands in the heavier nuclei

  16. Computational nuclear structure: Challenges, rewards, and prospects

    International Nuclear Information System (INIS)

    Dean, D.J.

    1997-12-01

    The shell model Monte Carlo technique (SMMC) transforms the traditional nuclear shell model problem into a path-integral over auxiliary fields. Applications of the method to studies of various properties of fp-shell nuclei, including Gamow-Teller strengths and distributions, are reviewed. Part of the future of nuclear structure physics lies in the study of nuclei far from beta-stability. The author discusses preliminary work on proton deficient Xe isotopes, and on neutron rich nuclei in the sd-Jp shells

  17. The sdA problem - I. Physical properties

    Science.gov (United States)

    Pelisoli, Ingrid; Kepler, S. O.; Koester, D.

    2018-04-01

    The so-called sdA stars are defined by having H-rich spectra and surface gravities similar to hot subdwarf stars, but effective temperature below the zero-age horizontal branch. Their evolutionary history is an enigma: their surface gravity is too high for main-sequence stars, but too low for single evolution white dwarfs. They are most likely byproducts of binary evolution, including blue-stragglers, extremely-low mass white dwarf stars (ELMs) and their precursors (pre-ELMs). A small number of ELMs with similar properties to sdAs is known. Other possibilities include metal-poor A/F dwarfs, second generation stars, or even stars accreted from dwarf galaxies. In this work, we analyse colours, proper motions, and spacial velocities of a sample of sdAs from the Sloan Digital Sky Survey to assess their nature and evolutionary origin. We define a probability of belonging to the main sequence and a probability of being a (pre-)ELM based on these properties. We find that 7 per cent of the sdAs are more likely to be (pre-)ELMs than main-sequence stars. However, the spacial velocity distribution suggests that over 35 per cent of them cannot be explained as single metal-poor A/F stars.

  18. The tensor part of the Skyrme energy density functional. I. Spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lesinski, T.; Meyer, J. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France); Bender, M. [DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France)]|[Universite Bordeaux, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR5797, Chemin du Solarium, BP120, F-33175 Gradignan (France); Bennaceur, K. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France)]|[DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Duguet, T. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2007-04-15

    We perform a systematic study of the impact of the J-vector{sup 2} tensor term in the Skyrme energy functional on properties of spherical nuclei. In the Skyrme energy functional, the tensor terms originate both from zero-range central and tensor forces. We build a set of 36 parameterizations which cover a wide range of the parameter space of the isoscalar and isovector tensor term coupling constants with a fit protocol very similar to that of the successful SLy parameterizations. We analyze the impact of the tensor terms on a large variety of observables in spherical mean-field calculations, such as the spin-orbit splittings and single-particle spectra of doubly-magic nuclei, the evolution of spin-orbit splittings along chains of semi-magic nuclei, mass residuals of spherical nuclei, and known anomalies of radii. The major findings of our study are (i) tensor terms should not be added perturbatively to existing parameterizations, a complete refit of the entire parameter set is imperative. (ii) The free variation of the tensor terms does not lower the {chi}{sup 2} within a standard Skyrme energy functional. (iii) For certain regions of the parameter space of their coupling constants, the tensor terms lead to instabilities of the spherical shell structure, or even the coexistence of two configurations with different spherical shell structure. (iv) The standard spin-orbit interaction does not scale properly with the principal quantum number, such that single-particle states with one or several nodes have too large spin-orbit splittings, while those of node-less intruder levels are tentatively too small. Tensor terms with realistic coupling constants cannot cure this problem. (v) Positive values of the coupling constants of proton-neutron and like-particle tensor terms allow for a qualitative description of the evolution of spin-orbit splittings in chains of Ca, Ni and Sn isotopes. (vi) For the same values of the tensor term coupling constants, however, the overall

  19. High spin spectroscopy of 70Ge

    International Nuclear Information System (INIS)

    Kumar Raju, M.; Sugathan, P.; Seshi Reddy, T.; Thirumala Rao, B.V.; Madhusudhana Rao, P.V.; Muralithar, S.; Singh, R.P.; Bhowmik, R.K.

    2011-01-01

    Structure of nuclei in mass 70 region is of interest due to presence of a variety of complex phenomenon. In these nuclei rapid change of nuclear shape with proton and neutron numbers, spin and excitation energy. Valance nucleons in f-p-g shell configuration will drive the nuclei towards high deformations. Relatively large values of quadrupole deformation are evident in the even-even nuclei in this region. Present study is aimed to explore the high spin structure of the 70 Ge nucleus. A negative parity structure was reported in an earlier study

  20. Mass measurements of {sup 56-57}Cr and the question of shell reincarnation at N = 32

    Energy Technology Data Exchange (ETDEWEB)

    Guenaut, C [CSNSM-IN2P3/CNRS, Universite de Paris Sud, 91405 Orsay (France); Audi, G [CSNSM-IN2P3/CNRS, Universite de Paris Sud, 91405 Orsay (France); Beck, D [GSI, Planckstrasse 1, 64291 Darmstadt (Germany)] [and others

    2005-10-01

    Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for {sup 56-57}Cr for which an accuracy of 4 x 10{sup -8} was achieved. Analysis of the mass surface for the supposed new N = 32 shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as {sup 94}Sr.

  1. Reaction cross section measurements of neutron-rich exotic nuclei in the vicinity of closed shells N=20 and N=28

    International Nuclear Information System (INIS)

    Khouaja, A.

    2003-12-01

    Using the direct method, the mean energy integrated reaction cross section was investigated for a wide range of neutron-rich nuclei (N → Ar) at GANIL. Using the parametrisation of S. Kox, 19 new radii measurements (reaction cross sections) were obtained. By the isotopic, isotonic and isospin dependence, the evolution of the strong reduced radius was studied according to the excess of neutrons. New halo effect is proposed to the nuclei of Mg 35 and S 44 . A quadratic parametrization is also proposed for the nuclear radius as a function of the isospin in the region of closed shells N=8 and N=28. In addition, we used a modified version of the Glauber model for studying the tail and matter distribution of nuclei. Indeed, using our new data the effects of the nuclear size (root mean square radii) and the matter distribution (diffusivity) were de-convoluted for each isotope. The root mean square radii of Na and Mg isotopes obtained so far were consistent with the ones from literature. (author)

  2. Scattering of mass-3 projectiles from heavy nuclei

    International Nuclear Information System (INIS)

    Mukhopadyay, S.; Srivastava, D.K.; Ganguly, N.K.

    1976-01-01

    The interaction between heavy ions is a subject of great interest. It is well known that α-particle scattering shows most of the features which are observed in heavy ion scattering. In as much as mass-3 system is intermediate between heavy and light particles it will be interesting to investigate the scattering of mass-3 projectiles to see if it is possible to extend it to study the heavy ion scattering. Indeed; it has been seen that the 'molecular type' potentials, with a soft repulsive core and a shallow attractive well used for heavy ion collisions can be used to fit the elastic scattering data of mass-3 projectiles also. In the first part of this paper, a description is given of how this potential is generated with a special emphasis on saturation and second order effect through a density dependent interaction between nucleon and mass-3 projectiles. In the second part it is shown that the asymmetry dependence observed in the potential describing the scattering of mass-3 particles from heavier nuclei actually originates from the isospin interaction, when triton and helion are treated as two members of an isospin doublet. (Auth.)

  3. Structure of neutron-rich nuclei around the N = 126 closed shell; the yrast structure of {sup 205}Au{sub 126} up to spin-parity I{sup {pi}} = (19/2{sup +})

    Energy Technology Data Exchange (ETDEWEB)

    Podolyak, Zs.; Steer, S.J.; Pietri, S.; Regan, P.H.; Brandau, C.; Catford, W.N.; Cullen, I.J.; Gelletly, W.; Jones, G.A.; Liu, Z.; Walker, P.M. [University of Surrey, Department of Physics, Guildford (United Kingdom); Gorska, M.; Gerl, J.; Wollersheim, H.J.; Grawe, H.; Becker, F.; Geissel, H.; Kelic, A.; Kojouharov, I.; Kurz, N.; Montes, F.; Prokopowicz, W.; Saito, T.; Schaffner, H.; Tashenov, S.; Werner-Malento, E. [GSI, Darmstadt (Germany); Rudolph, D.; Hoischen, R. [Lund University, Department of Physics, Lund (Sweden); Garnsworthy, A.B. [University of Surrey, Department of Physics, Guildford (United Kingdom); Yale University, WNSL, New Haven, CT (United States); Maier, K.H. [Institute of Nuclear Physics, Krakow (Poland); University of the West of Scotland, Dept. of Physics, Paisley (United Kingdom); Bednarczyk, P.; Grebosz, J. [GSI, Darmstadt (Germany); Institute of Nuclear Physics, Krakow (Poland); Caceres, L. [GSI, Darmstadt (Germany); Universidad Autonoma de Madrid, Dept. de Fisica Teorica, Madrid (Spain); Doornenbal, P. [GSI, Darmstadt (Germany); Universitaet zu Koeln, IKP, Koeln (Germany); Heinz, A. [Yale University, WNSL, New Haven, CT (United States); Kurtukian-Nieto, T. [Universidad de Santiago de Compostela, Santiago de Campostela (Spain); Benzoni, G.; Wieland, O. [Universita degli Studi di Milano (Italy); INFN, Milano (Italy); Pfuetzner, M. [Warsaw University, IEP, Warsaw (Poland); Jungclaus, A. [Universidad Autonoma de Madrid, Dept. de Fisica Teorica, Madrid (Spain); Balabanski, D.L. [Bulgarian Academy of Sciences, INRNE, Sofia (Bulgaria); Brown, B.A. [Univ. of Surrey, Dept. of Physics, Guildford (United Kingdom); Michigan State Univ., NSCL, East Lansing, MI (United States); Bruce, A.M.; Lalkovski, S. [Univ. of Brighton, School of Environment and Technology, Brighton (United Kingdom); Dombradi, Zs. [Institute for Nuclear Research, Debrecen (Hungary); Estevez, M.E. [Instituto de Fisica Corpuscular, Valencia (Spain)] [and others

    2009-12-15

    Heavy neutron-rich nuclei have been populated through the relativistic fragmentation of a {sup 208}{sub 82} Pb beam at E/A = 1 GeV on a 2.5 g/cm{sup 2} thick Be target. The synthesised nuclei were selected and identified in-flight using the fragment separator at GSI. Approximately 300 ns after production, the selected nuclei were implanted in an {proportional_to}8 mm thick perspex stopper, positioned at the centre of the RISING {gamma} -ray detector spectrometer array. A previously unreported isomer with a half-life T{sub 1/2} = 163(5) ns has been observed in the N=126 closed-shell nucleus {sup 205}{sub 79} Au. Through {gamma}-ray singles and {gamma}-{gamma} coincidence analysis a level scheme was established. The comparison with a shell model calculation tentatively identifies the spin-parity of the excited states, including the isomer itself, which is found to be I{sup {pi}} = (19/2{sup +}). (orig.)

  4. Electro-magnetic properties of heavy nuclei

    International Nuclear Information System (INIS)

    Otsuka, Takaharu

    1989-01-01

    Two topics of electro-magnetic properties of heavy nuclei are discussed. The first topic is the M1 excitation from well-deformed heavy nuclei, and the other is the sudden increase of the isotope shift as a function of N in going away from the closed shell. These problems are considered in terms of the particle-number projected (Nilsson-) BCS calculation. (author)

  5. Structures of exotic nuclei

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1987-01-01

    Discoveries of many different types of nuclear shape coexistence are being found at both low and high excitation energies throughout the periodic table, as documented in recent reviews. Many new types of shape coexistence have been observed at low excitation energies, for examples bands on more than four different overlapping and coexisting shapes are observed in 185 Au, and competing triaxial and prolate shapes in 71 Se and 176 Pt. Discrete states in super-deformed bands with deformations β 2 ∼ 0.4-0.6, coexisting with other shapes, have been seen to high spin up to 60ℎ in 152 Dy, 132 Ce and 135 Nd. Super-deformed nuclei with N and Z both around 38 and around Z = 38, N ≥ 60. These data led to the discovery of new shell gaps and magic numbers of 38 for N and Z and 60 for N but now for deformed shapes. Marked differences in structure are observed at spins of 6 to 20 in nuclei in this region, which differ by only two protons; for example, 68 Ge and 70 Se. The differences are thought to be related to the competing shell gaps in these nuclei

  6. Effect of the Pauli principle on the excited states of doubly-even deformed nuclei

    International Nuclear Information System (INIS)

    Jolos, R.V.; Molina, J.L.; Soloviev, V.G.

    1980-01-01

    It is shown that the commutation relations between the quasiparticles forming phonons can correctly be taken into account within the quasiparticle-phonon nuclear model. The doubly-even deformed nuclei with the isoscalar and isovector multipole-multipole forces are studied. The exact and approximate secular equations are derived. It is shown that the two-phonon poles in the secular equation are shifted due to the Pauli principle. These shifts are large for the two identical collective phonons. In some cases pronounced shifts are found for the poles composed of a low-lying collective phonon and a collective phonon forming the giant resonance. In other cases the shifts are not large, as a rule. (orig.) 891 FKS/orig. 892 MB

  7. Four-loop relation between the MS and on-shell quark mass

    International Nuclear Information System (INIS)

    Marquard, Peter; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias

    2016-01-01

    In this contribution we discuss the four-loop relation between the on-shell and MS definition of heavy quark masses which is applied to the top, bottom and charm case. We also present relations between the MS quark mass and various threshold mass definitions and discuss the uncertainty at next-to-next-to-next-to-leading order.

  8. Is there chirality in atomic nuclei?

    International Nuclear Information System (INIS)

    Meng Jie

    2009-01-01

    Static chiral symmetries are common in nature, for example, the macroscopic spirals of snail shells, the microscopic handedness of certain molecules, and human hands. The concept of chirality in atomic nuclei was first proposed in 1997, and since then many efforts have been made to understand chiral symmetry and its spontaneous breaking in atomic nuclei. Recent theoretical and experimental progress in the verification of chirality in atomic nuclei will be reviewed, together with a discussion of the problems that await to be solved in the future. (authors)

  9. Pseudomagic nuclei

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1979-01-01

    It was shown previously that, below a critical angular momentum, yrast bands of nonmagic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these pseudomagic nuclei resemble those in magic nuclei. 17 references

  10. β4 systematics in rare-earth and actinide nuclei: sdg interacting boson model description

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1992-01-01

    The observed variation of hexadecupole deformation parameter β 4 with mass number A in rare-earth and actinide nuclei is studied in the sdg interacting boson model (IBM) using single j-shell Otsuka-Arima-Iachello mapped and IBM-2 to IBM-1 projected hexadecupole transition operator together with SU sdg (3) and SU sdg (5) coherent states. The SU sdg (3) limit is found to provide a good description of data

  11. Experimental study on p-wave neutron strength functions for light nuclei

    International Nuclear Information System (INIS)

    Koester, L.; Waschkowski, W.; Meier, J.; Rau, G.; Salehi, M.

    1988-01-01

    Broad energy distributions in fast neutron beams have been achieved by appropriate filtering of the 236 U fission radiation provided from the RENT converter facility at the FRM research reactor. Transmission measurements in such beams result in average cross sections to which resonance reactions and shape elastic scattering contribute. We used a silicon (124.5 cm) filtered beam with a median energy of 143 keV (width 20 keV) and beams with 1.3 MeV (0.55 to 3 MeV) and 2.1 MeV (1 to 5.5 MeV) obtained through different filter combinations of lead and polyethylene. The relative high energies and the broad spectra made it possible to determine experimentally the contributions of s- and p-wave resonance reactions to the average cross section even for light nuclei. Using the three different beams we determined the average cross sections for the elements in the mass region A = 9 to 65. Analysing the measured cross sections by means of the R matrix formalism provided a complete set of p-wave strength functions and distant level parameters. Moreover, single particle shell effects in the cross sections were observed. In conclusion we obtained information on the 2P and the 3S size resonances and about the validity of the optical model for neutron reactions with light nuclei. (orig.)

  12. Neutrino nucleosynthesis in supernovae: Shell model predictions

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1989-01-01

    Almost all of the 3 · 10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. I will argue that these neutrinos interact with nuclei in the ejected shells of the supernovae to produce new elements. It appears that this nucleosynthesis mechanism is responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, and 180 Ta, and contributes significantly to the abundances of about 15 other light nuclei. I discuss shell model predictions for the charged and neutral current allowed and first-forbidden responses of the parent nuclei, as well as the spallation processes that produce the new elements. 18 refs., 1 fig., 1 tab

  13. Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei

    DEFF Research Database (Denmark)

    Onken, Christopher A.; Ferrarese, Laura; Merritt, David

    2004-01-01

    We calibrate reverberation-based black hole masses in active galactic nuclei (AGNs) by using the correlation between black hole mass, M, and bulge/spheroid stellar velocity dispersion, sigma. We use new measurements of sigma for 6 AGNs and published velocity dispersions for 10 others......, in conjunction with improved reverberation mapping results, to determine the scaling factor required to bring reverberation-based black hole masses into agreement with the quiescent galaxy M-sigma relationship. The scatter in the AGN black hole masses is found to be less than a factor of 3. The current...

  14. Investigation of copper nuclei

    International Nuclear Information System (INIS)

    Delfini, M.G.

    1983-01-01

    An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64 Cu and 66 Cu. They were obtained by bombarding the 63 Cu and 65 Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64 Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)

  15. Role of deformation in odd-even staggering in reaction cross sections for 30,31,32Ne and 36,37,38Mg isotopes

    Science.gov (United States)

    Urata, Y.; Hagino, K.; Sagawa, H.

    2017-12-01

    We discuss the role of pairing antihalo effect in the observed odd-even staggering in reaction cross sections for 30,31,32Ne and 36,37,38Mg isotopes by taking into account the ground-state deformation of these nuclei. To this end, we construct the ground-state density for the Ne,3130 and Mg,3736 nuclei based on a deformed Woods-Saxon potential, while for the 32Ne and 38Mg nuclei we also take into account the pairing correlation using the Hartree-Fock-Bogoliubov method. We demonstrate that, when the one-neutron separation energy is small for the odd-mass nuclei, a significant odd-even staggering still appears even with finite deformation, although the degree of staggering is somewhat reduced compared to the spherical case. This implies that the pairing antihalo effect in general plays an important role in generating the odd-even staggering in reaction cross sections for weakly bound nuclei.

  16. Choice of the density-dependent effective interaction and alpha decay of heavy spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.; Ratis, Yu.L.; Rybak, K.S.; Furman, V.I.

    1978-01-01

    The parameters of density-dependent effective interaction are studied for some nuclei in the vicinity of a 208 Pb double-magic nucleus. Both nuclei having two nucleons (holes) over magic core and some superfluid nuclei are considered. It is found that the magnitudes of the matrix elements for the zero-range forces (delta forces) are more than three times larger in comparison with the case of the finite-range forces (f forces). Sets of parameters for the effective interaction, which does not lead to the superfluidity of nuclear matter are obtained. Besides, these parameters depend weakly on mass number. It is shown that the attractive part of interaction is substantially larger for the case of f forces than for the delta forces. The theoretical enhancement coefficients for the favoured α decay of 210 Po, 210 Pb and 224 Th nuclei are calculated. For the case of f forces a tendency to saturation of the enhancement coefficients with the increase of the shell-model basis is found

  17. High spin spectroscopy of near spherical nuclei: Role of intruder orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S.; Bhattacharjee, T.; Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064 (India); Chanda, S. [Fakir Chand College, Diamond Herbour, West Bengal (India); Banerjee, D.; Das, S. K.; Guin, R. [Radiochemistry Division, Variable Energy Cyclotron Centre, BARC, Kolkata - 700064 (India); Gupta, S. Das [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064, India and Saha Institute of Nuclear Physics, Kolkata-700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064, India and Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states of nuclei in the vicinity of neutron shell closure N = 82 and proton shell closure Z = 82 have been studied using the Clovere Ge detectors of Indian National Gamma Array. The shape driving effects of proton and neutron unique parity intruder orbitals for the structure of nuclei around the above shell closures have been investigated using light and heavy ion beams. Lifetime measurements of excited states in {sup 139}Pr have been done using pulsed-beam-γ coincidence technique. The prompt spectroscopy of {sup 207}Rn has been extended beyond the 181μs 13/2{sup +} isomer. Neutron-rich nuclei around {sup 132}Sn have been produced from proton induced fission of {sup 235}U and lifetime measurement of low-lying states of odd-odd {sup 132}I have been performed from offline decay.

  18. Stability and production of superheavy nuclei

    International Nuclear Information System (INIS)

    Moeller, P.; Los Alamos National Lab., NM; Nix, J.R.

    1997-01-01

    Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z = 100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficient to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond 208 Pb, that is, at proton number Z 114 and neutron number N = 184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z = 110 and N = 162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z = 114 and N = 184. The authors review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. They discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation

  19. A versatile triple radiofrequency quadrupole system for cooling, mass separation and bunching of exotic nuclei

    Science.gov (United States)

    Haettner, Emma; Plaß, Wolfgang R.; Czok, Ulrich; Dickel, Timo; Geissel, Hans; Kinsel, Wadim; Petrick, Martin; Schäfer, Thorsten; Scheidenberger, Christoph

    2018-02-01

    The combination of in-flight separation with a gas-filled stopping cell has opened a new field for experiments with exotic nuclei. For instance, at the SHIP/SHIPTRAP facility at GSI in Darmstadt high-precision mass measurements of rare nuclei have been successfully performed. In order to extend the reach of SHIPTRAP to exotic nuclei that are produced together with high rates of unwanted reaction products, a novel compact radio frequency quadrupole (RFQ) system has been developed. It implements ion cooling, identification and separation according to mass numbers and bunching capabilities. The system has a total length of one meter only and consists of an RFQ cooler, an RFQ mass filter and an RFQ buncher. A mass resolving power (FWHM) of 240 at a transmission efficiency of 90% has been achieved. The suppression of contaminants from neighboring masses by more than four orders of magnitude has been demonstrated at rates exceeding 106 ions/s. A longitudinal emittance of 0.45 eV μs has been achieved with the RFQ buncher, which will enable improved time-of-flight mass spectrometry downstream of the device. With this triple RFQ system the measurement of e.g. N= Z nuclides in the region up to tin will become possible at SHIPTRAP. The technology is also well suited for other rare-isotope facilities with experimental setups behind a stopping cell, such as the fragment separator FRS with the FRS Ion Catcher at GSI.

  20. Predicting the optical observables for nucleon scattering on even-even actinides

    Science.gov (United States)

    Martyanov, D. S.; Soukhovitskiĩ, E. Sh.; Capote, R.; Quesada, J. M.; Chiba, S.

    2017-09-01

    The previously derived Lane consistent dispersive coupled-channel optical model for nucleon scattering on 232Th and 238U nuclei is extended to describe scattering on even-even actinides with Z = 90-98. A soft-rotator-model (SRM) description of the low-lying nuclear structure is used, where the SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate the coupling matrix elements of the generalized optical model. The “effective” deformations that define inter-band couplings are derived from the SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a dynamic monopolar term to the deformed potential, leading to additional couplings between rotational bands. The fitted static deformation parameters are in very good agreement with those derived by Wang and collaborators using the Weizsäcker-Skyrme global mass model (WS4), allowing use of the latter to predict cross sections for nuclei without experimental data. A good description of the scarce “optical” experimental database is achieved. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus formation cross sections, which is significantly different from that calculated with rigid-rotor potentials coupling the ground-state rotational band. The derived parameters can be used to describe both neutron- and proton-induced reactions. Supported by International Atomic Energy Agency, through the IAEA Research Contract 19263, by the Spanish Ministry of Economy and Competitivity under Contracts FPA2014-53290-C2-2-P and FPA2016-77689-C2-1-R.

  1. Exotic nuclei: another aspect of nuclear structure

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Blumenfeld, Y.; Flocard, H.; Garcia Borge, M.J.; Nowacki, F.; Rombouts, S.; Theisen, Ch.; Marques, F.M.; Lacroix, D.; Dessagne, P.; Gaeggeler, H.

    2002-01-01

    This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements

  2. Study of Neutron-Rich $^{124,126,128}$Cd Isotopes; Excursion from Symmetries to Shell-Model Picture

    CERN Multimedia

    Nieminen, A M; Reponen, M

    2002-01-01

    A short outline is given on a number of topics that are present in the long series of even-even Cd nuclei and therefore, may turn out to constitute an ideal test bench in order to verify a number of theoretical ideas on how collective motion, near closed shells, builds up taking into account both the valence and core nucleons when studying the nucleon correlations. Moreover, these experiments can reveal new challenges when moving towards very neutron-rich systems.

  3. Double shell tank waste analysis plan

    International Nuclear Information System (INIS)

    Mulkey, C.H.; Jones, J.M.

    1994-01-01

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations

  4. Seeking the purported magic number N= 32 with high-precision mass spectrometry

    CERN Multimedia

    Schweikhard, L C; Herfurth, F; Boehm, C; Manea, V; Blaum, K; Beck, D; Kowalska, M; Kreim, K D; Stanja, J; Audi, G; Rosenbusch, M; Wienholtz, F; Litvinov, Y

    Accounting for the appearance of new magic numbers represents an exacting test for nuclear models. Binding energies offer a clear signature for the presence (or disappearance) of shell closures. To determine the strength of the purported N = 32 shell closure, we propose using the Penning-trap spectrometer ISOLTRAP for mass measurements of N = 34 isotones $^{58}$Cr (Z = 24), $^{55}$Sc (Z = 21) and $^{54}$Ca (Z = 20), as well as the N = 32 isotones $^{53}$Sc and $^{52}$Ca. We also propose measuring the mass of $^{60}$Cr to test the shell model prediction of a new magic number at N = 34. In addition to the Penning-trap system at ISOLTRAP, we intend to use the newly commissioned multi-reflection time-of-flight mass separator, which enables direct mass measurements on nuclei with half-lives below 50 ms.

  5. Seeking the purported magic number N= 32 with high-precision mass spectrometry

    CERN Document Server

    Kreim, S; Blaum, K; Bohm, Ch; Borgmann, Ch; Breitenfeldt, M; Cakirli, R B; Herfurth, F; Kowalska, M; Litvinov, Y; Lunney, D; Manea, V; Naimi, S; Neidherr, D; Rosenbusch, M; Schweikhard, L; Stanja, J; Stora, Th; Wienholtz, F; Wolf, R N; Zuber, K

    2011-01-01

    Accounting for the appearance of new magic numbers represents an exacting test for nuclear models. Binding energies o er a clear signature for the presence (or dis- appearance) of shell closures. To determine the strength of the purported N = 32 shell closure, we propose using the Penning-trap spectrometer ISOLTRAP for mass measure- ments of N = 34 isotones 58 Cr ( Z = 24), 55 Sc ( Z = 21) and 54 Ca ( Z = 20), as well as the N = 32 isotones 53 Sc and 52 Ca. We also propose measuring the mass of 60 Cr to test the shell model prediction of a new magic number at N = 34. In addition to the Penning-trap system at ISOLTRAP, we intend to use the newly commissioned multi-re ection time-of- ight mass separator, which enables direct mass measurements on nuclei with half-lives below 50 ms.

  6. High-precision mass measurements of nickel, copper, and gallium isotopes and the purported shell closure at N=40

    International Nuclear Information System (INIS)

    Guenaut, C.; Audi, G.; Beck, D.

    2007-01-01

    High-precision mass measurement of more than thirty neutron-rich nuclides around the Z=28 closed proton shell were performed with the triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN to address the question of a possible neutron shell closure at N=40. The results for 57,60,64-69 Ni, 65-74,76 Cu (Z=29), and 63-65,68-78 Ga (Z=31), have a relative uncertainty of the order of 10 -8 . In particular, the masses of 72-74,76 Cu have been measured for the first time. We analyse the resulting mass surface for signs of magicity, comparing the behavior of N=40 to that of known magic numbers and to mid-shell behavior. Contrary to nuclear spectroscopy studies, no indications of a shell or sub-shell closure are found for N=40. (authors)

  7. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2001-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on physics from extra dimensions, new physics in the new millennium with GENIUS: double beta decay, dark matter, solar neutrinos, the (μ - , e + ) conversion in nuclei mediated by light Majorana neutrinos, exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model, solar neutrino problem accounting for self consistent magnetohydrodynamics solution for solar magnetic fields, first neutrino observations from the Sudbury neutrino observatory and status report on BOREXINO and results of the muon-background measurements at CERN

  8. The structure of neutron-rich nuclei explored via in-beam gamma-ray spectroscopy of fast beams

    International Nuclear Information System (INIS)

    Glasmacher, T.; Campbell, C.M.; Church, J.A.; Dinca, D.C.; Hansen, P.G.; Olliver, H.; Perry, B.C.; Sherrill, B.M.; Terry, J.R.; Bazin, D.; Enders, J.; Gade, A.; Hu, Z.; Mueller, W.F.

    2003-01-01

    In-beam gamma-ray spectroscopy with fast exotic beams provides an efficient tool to study bound states in exotic neutron-rich nuclei. Specialized experimental techniques have been developed and explore different aspects of nuclear structure. Inelastic scattering experiments with γ-ray detection can measure the response of exotic nuclei to electromagnetic (Coulomb excitation with a heavy target) or hadronic probes (proton scattering with hydrogen target). In-beam fragmentation populates higher-lying bound states to establish levels. Single- and two-nucleon knockout reactions allow for detailed wavefunction spectroscopy of individual levels and for the measurement of spectroscopic factors. Experimental programs employing these techniques are now underway at all projectile-fragmentation facilities around the world. Here we report on several successful in-beam gamma-ray spectroscopy experiments that have been performed at the Coupled Cyclotron Facility at Michigan State University with an emphasis on elucidating the evolution of nuclear structure around neutron numbers N=16, N=20, and N=28 in the π(sd) shell. (orig.)

  9. ''Identical'' bands in normally-deformed nuclei

    International Nuclear Information System (INIS)

    Garrett, J.D.; Baktash, C.; Yu, C.H.

    1990-01-01

    Gamma-ray transitions energies in neighboring odd- and even-mass nuclei for normally-deformed nuclear configurations are analyzed in a manner similar to recent analyses for superdeformed states. The moment of inertia is shown to depend on pair correlations and the aligned angular momentum of the odd nucleon. The implications of this analysis for ''identical'' super-deformed bands are discussed. 26 refs., 9 figs

  10. The core-quasiparticle model for odd-odd nuclei and applications to candidates for gamma-ray lasers

    International Nuclear Information System (INIS)

    Strottman, D.D.

    1988-01-01

    A reliable estimate of the properties of isomers that may be viable candidates for a gamma-ray laser requires the use of the most accurate save functions possible. The majority of models that have been used to estimate the properties of isomers are applicable to only selected regions of the nuclear mass table. In particular, the Bohr-Mottelson model of odd-A and odd-odd nuclei will fail if the even-even core is not strongly deformed or if the deformations are changing strongly as a function of mass. This paper reports how the problem is overcome in a new core- quasiparticle model for odd-odd nuclei. The model introduces the pairing interaction ab initio; the odd-A states are mixtures of particle and hole states. The core may be soft towards deformation or axial asymmetry and may change rapidly as a function of mass. Thus, the model is ideally suited for application to the region of transitional nuclei such as the Te, La, and Os regions

  11. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  12. Systematics of first 2+ state g factors around mass 80

    International Nuclear Information System (INIS)

    Mertzimekis, T.J.; Stuchbery, A.E.; Benczer-Koller, N.; Taylor, M.J.

    2003-01-01

    The systematics of the first 2 + state g factors in the mass 80 region are investigated in terms of an IBM-II analysis, a pairing-corrected geometrical model, and a shell-model approach. Subshell closure effects at N=38 and overall trends were examined using IBM-II. A large-space shell-model calculation was successful in describing the behavior for N=48 and N=50 nuclei, where single-particle features are prominent. A schematic truncated-space calculation was applied to the lighter isotopes. The variations of the effective boson g factors are discussed in connection with the role of F-spin breaking, and comparisons are made between the mass 80 and mass 180 regions

  13. High-spin states in 214Rn, 216Ra and a study of even-even N=128 systematics

    Science.gov (United States)

    Lönnroth, T.; Horn, D.; Baktash, C.; Lister, C. J.; Young, G. R.

    1983-01-01

    High-spin states in 214Rn and 216Ra have been studied by means of the reaction 208Pb(13C, α 3n γ)214Rn and 208Pb(13C, 5n γ)216Ra at beam energies in the range 75-95 MeV. In-beam spectroscopy techniques, including γ-decay excitation functions, α-γ coincidences, γ-γ coincidences, γ-ray angular distributions, and pulsed-beam-γ timing, were utilized to establish level energies, γ-ray multipolarities, Jπ assignments, and isomeric lifetimes. Excited states with spins up to 23ℏ in 214Rn and ~30ℏ in 216Ra were observed. Isomers were found in 214Rn at 1625 keV (T12=9 ns, Jπ=8+), 1787 keV (22 ns, 10+), 3485 keV (95 ns, 16), 4509 keV (230 ns, 20), and 4738 keV (8 ns, 22), and in 216Ra at 1708 keV (8 ns, 8+) and 5868 keV (10 ns, ~24). B(EL) values were deduced and compared to previously known lead-region electric transition rates. Shell-model calculations were performed and used to make configurational assignments. The absence of major α-decay branching in the isomers is explained and the systematic behavior of N=128 even-even nuclei is discussed. NUCLEAR STRUCTURE 208Pb(13C, α 3n γ)214Rn, 208Pb(13C, 5n γ) 216Ra, Elab=75-95 MeV. Measured α-γ coin, γ-γ(t) coin, I(θ), pulsed-beam-γ timing. Deduced level schemes, Jπ, T12, B(EL), multipolarities. Shell model calculations, Ge(Li) and Si detectors, enriched target.

  14. Two proton decay in 12O

    International Nuclear Information System (INIS)

    Kumawat, M.; Singh, U.K.; Jain, S.K.; Saxena, G.; Kaushik, M.; Aggarwal, Mamta

    2017-01-01

    Two-proton radioactivity was observed experimentally in the decay of 45 Fe, 54 Zn and 48 Ni. From then many theoretical studies of one and two-proton radioactivity have been carried out within the framework of different models including RMF+BCS approach for medium mass region. Towards light mass region proton-proton correlations were observed in two-proton decay of 19 Mg and 16 Ne. Recently, different mechanism of two-proton emission from proton-rich nuclei 23 Al and 22 Mg has been investigated and transition from direct to sequential two-proton decay in sd shell nuclei is observed. Encouraged with these recent studies of two proton emission in light mass nuclei, we have applied our RMF+BCS approach for the study of two proton emission in light mass region and in this paper we present our result of two proton emission in 12 O

  15. Negative masses, even if isolated, imply self-acceleration, hence a catastrophic world

    International Nuclear Information System (INIS)

    Cavalleri, G.; Tonni, E.

    1997-01-01

    The conjecture of the existence of negative masses together with ordinary positive masses leads to runaway motions even if no self-reaction is considered. Pollard and Dunning-Davies have shown other constraints as a modification of the principle of least action and that negative masses can only exist at negative temperature, and must be adiabatically separate from positive masses. They show here that the self-reaction on a single isolated negative mass implies a runaway motion. Consequently, the consideration of self-fields and relevant self-reaction excludes negative masses even if isolated

  16. The mass (charge) spectrum of superheavy nuclei fission fragments: the new perspectives for the theory of nucleosynthesis

    International Nuclear Information System (INIS)

    Maslyuk, V.T.

    2012-01-01

    A new approach to the problem of nucleosynthesis based on assumption of a nuclear matter or superheavy nuclei series fragmentation up to atomic nuclei is proposed. It is shown that studies of the mass (charge) fragments yields (MCFY) after nuclear matter disintegration is possible within proposed statistical theory. The data of MCFY calculation for exotic superheavy nuclei multifragmentation with A=300, 900 and 1200 and arbitrary Z values are demonstrated

  17. Synergy of decay spectroscopy and mass spectrometry for the study of exotic nuclides

    CERN Document Server

    Stanja, Juliane

    With only two ingredients, atomic nuclei exhibit a rich structure depending on the ordering of the different proton- and neutron-occupied states. This ordering can give rise to excited states with exceptionally long half-lives, also known as isomers, especially near shell closures. On-line mass spectrometry can often be compromised by the existence of such states that may even be produced in higher proportion than the ground state. This thesis presents the first results obtained from a nuclear spectroscopy setup coupled with the high-resolution Penning-trap mass spectrometer ISOLTRAP, at CERN’s radioactive ion beam facility ISOLDE. The isomerism in the neutron-deficient thallium isotopes was investigated. The data on $^{184,190,193−195}$Tl allow an improvement of existing mass values as well as a mass-spin- state assignment in $^{ 190,193,194}$Tl. Due to the presence of the ground and isomeric state for $^{ 194}$Tl the excitation energy of the latter was determined for the first time experimentally. Syste...

  18. Correlations in microscopic optical model for nucleon elastic scattering off doubly closed-shell nuclei

    International Nuclear Information System (INIS)

    Dupuis, M.; Karataglidis, S.; Bauge, E.; Delaroche, J.P.; Gogny, D.

    2006-01-01

    The random phase approximation (RPA) long-range correlations are known to play a significant role in understanding the depletion of single particle-hole states observed in (e,e ' ) and (e,e ' p) measurements. Here the RPA theory, implemented using the D1S force is considered for the specific purpose of building correlated ground states and related one-body density matrix elements. These may be implemented and tested in a fully microscopic optical model for NA scattering off doubly closed-shell nuclei. A method is presented to correct for the correlations overcounting inherent to the RPA formalism. One-body density matrix elements in the uncorrelated (i.e., Hartree-Fock) and correlated (i.e., RPA) ground states are then challenged in proton scattering studies based on the Melbourne microscopic optical model to highlight the role played by the RPA correlations. Agreement between the parameter free scattering predictions and measurements is good for incident proton energies ranging from 200 MeV down to approximately 60 MeV and becomes gradually worse in the lower energy range. Those features point unambiguously to the relevance of the g-matrix method to build microscopic optical model potentials at medium energies, and emphasize the need to include nucleon-phonon coupling, that is, a second-order component of the Feshbach type in the potential at lower energies. Illustrations are given for proton scattering observables measured up to 201 MeV for the 16 O, 40 Ca, 48 Ca, and 208 Pb target nuclei

  19. Basic Evidence and Properties of Single-Particle States in Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cindro, N. [Institute ' ' Rudjer Boskovic' ' , Zagreb, Yugoslavia (Croatia)

    1970-07-15

    1. Introduction: the shell-model orbitals; 2. Information about single-particle orbitals: a critical evaluation; 3. Experimental evidence: 3.1. The lead region; 3.2. The calcium region; 3.3. Nuclei far from closed shells; 4. Conclusion. (author)

  20. Perspectives of production of superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Adamian, G. G.; Antonenko, N. V., E-mail: antonenk@theor.jinr.ru; Bezbakh, A. N.; Sargsyan, V. V. [Joint Institute for Nuclear Research, RU–141980 Dubna (Russian Federation); Scheid, W. [Institut für Theoretische Physik der Justus-Liebig-Universität, D–35392 Giessen (Germany)

    2016-07-07

    Possible ways of production of superheavies are discussed. Impact of nuclear structure on the production of superheavy nuclei in complete fusion reactions is discussed. The proton shell closure at Z = 120 is discussed.

  1. The circumstellar shells and mass loss rates of four M supergiants

    International Nuclear Information System (INIS)

    Bernat, A.P.

    1977-01-01

    A reanalysis of the physical structure of the circumstellar gas shells of four bright M supergiants, Betelgeuse, Antares, α Herculis, and μ Cephei, has been undertaken. The observational data include old Hale Observatories plates, recent McDonald Struve telescope plates, and McDonald 2.7 m photoelectric scans. These data are analyzed in the full expanding spherical geometry formulation of the radiative transfer equation.The results of the present analysis indicate that column densities in the gas shells must be revised downward compared with the previous plane-parallel results. However, the physical extents of the shells are considerably larger than previously assumed. These extents are inferred through ionization modeling, Weymann's Ca II technique, and direct observation. Also inferred are schematic wavelength-dependent chromospheric color temperatures. These results lead to much larger mass loss rates (in the range 6.7 x 10 -7 to 4.2 x 10 -4 M/sub sun/ yr -2 ) than previously inferred. The influence of these large rates of mass loss on the evolution of both stars and the Galaxy is briefly discussed

  2. Electromagnetic properties in {sup 160-170}Dy nuclei. A microscopic description by the pseudo-SU(3) shell model

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Carlos E.; Bagatella-Flores, Norma [Universidad Veracruzana, Facultad de Fisica, Veracruz (Mexico); Velazquez, Victor [Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Mexico D.F. (Mexico); Lerma-Hernandez, Sergio [Universidad Veracruzana, Facultad de Fisica, Veracruz (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico D.F. (Mexico)

    2017-04-15

    The large collectivity observed in the rare-earth region of the nuclear landscape is well known. The microscopic studies are difficult to perform in this region due to the enormous size of the valence spaces, a problem that can be avoided by means of the use of symmetry-based models. Here we present calculations for electromagnetic properties of {sup 160-170}Dy nuclei within the pseudo-SU(3) scheme. The model Hamiltonian includes the preserving symmetry Q.Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized for all members of the chain. The model is used to calculate B(E2) and B(M1) inter-band transition strengths between the ground state, γ and β-bands. In addition, we present results for quadrupole moments and g factors in these rotational bands. The results show that the pseudo-SU(3) shell model is a powerful microscopic theory for a description of electromagnetic properties of states in the normal parity sector in heavy deformed nuclei. (orig.)

  3. Coupled-cluster calculations for ground and excited states of closed- and open-shell nuclei using methods of quantum chemistry

    International Nuclear Information System (INIS)

    Wloch, Marta; Gour, Jeffrey R; Piecuch, Piotr; Dean, David J; Hjorth-Jensen, Morten; Papenbrock, Thomas

    2005-01-01

    We discuss large-scale ab initio calculations of ground and excited states of 16 O and preliminary calculations for 15 O and 17 O using coupled-cluster methods and algorithms developed in quantum chemistry. By using realistic two-body interactions and the renormalized form of the Hamiltonian obtained with a no-core G-matrix approach, we are able to obtain the virtually converged results for 16 O and promising results for 15 O and 17 O at the level of two-body interactions. The calculated properties other than binding and excitation energies include charge radius and charge form factor. The relatively low costs of coupled-cluster calculations, which are characterized by the low-order polynomial scaling with the system size, enable us to probe large model spaces with up to seven or eight major oscillator shells, for which nontruncated shell-model calculations for nuclei with A = 15-17 active particles are presently not possible

  4. From heavy nuclei to super-heavy nuclei; Des noyaux lourds aux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, Ch

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  5. Beta Decay Study of the T{sub z}=−2{sup 56}Zn Nucleus and the Determination of the Half-Lives of a Few fp-shell Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, B., E-mail: Berta.Rubio@ific.uv.es [IFIC, CSIC-Universidad de Valencia, E-46071 Valencia (Spain); Orrigo, S.E.A. [IFIC, CSIC-Universidad de Valencia, E-46071 Valencia (Spain); Kucuk, L. [Department of Physics, Istanbul University, Istanbul (Turkey); Montaner-Pizá, A. [IFIC, CSIC-Universidad de Valencia, E-46071 Valencia (Spain); Fujita, Y. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); RCNP, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Fujita, H. [RCNP, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Blank, B. [CENBG, Université Bordeaux 1, UMR 5797 CNRS/IN2P3, BP 120, F-33175 Gradignan (France); Gelletly, W. [Department of Physics, University of Surrey, Guildford GU2 7XH, Surrey (United Kingdom); Adachi, T. [RCNP, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Agramunt, J.; Algora, A. [IFIC, CSIC-Universidad de Valencia, E-46071 Valencia (Spain); Ascher, P. [CENBG, Université Bordeaux 1, UMR 5797 CNRS/IN2P3, BP 120, F-33175 Gradignan (France); Bilgier, B. [Department of Physics, Istanbul University, Istanbul (Turkey); Cáceres, L. [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Cakirli, R.B. [Department of Physics, Istanbul University, Istanbul (Turkey); France, G. de [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Ganioğlu, E. [Department of Physics, Istanbul University, Istanbul (Turkey); Gerbaux, M.; Giovinazzo, J.; Grevy, S. [CENBG, Université Bordeaux 1, UMR 5797 CNRS/IN2P3, BP 120, F-33175 Gradignan (France); and others

    2014-06-15

    This paper concerns the experimental study of the β decay properties of few proton-rich fp-shell nuclei. The nuclei were produced at GANIL in fragmentation reactions, separated with the LISE spectrometer and stopped in an implantation detector surrounded by Ge detectors. The β-delayed gammas, β-delayed protons and the exotic β-delayed gamma-proton emission have been studied. Preliminary results are presented. The decay of the T{sub z}=−2 nucleus {sup 56}Zn has been studied in detail. Information from the β-delayed protons and β-delayed gammas has been used to deduce the decay scheme. The exotic beta-delayed gamma-proton decay has been observed for the first time in the fp-shell. The interpretation of the data was made possible thanks to the detailed knowledge of the mirror Charge Exchange (CE) process and the gamma de-excitation of the states in {sup 56}Co, the mirror nucleus of {sup 56}Cu.

  6. The first observation of EO transitions from negative parity states in even-even nucleus 160Dy

    International Nuclear Information System (INIS)

    Grigoriev, E.P.

    1988-01-01

    In even-even deformed nuclei up to now EO-transitions were found only between the states of the same spin belonging to Κ π = O + rotational bands. There is no forbidenness for EO-transitions between states belonging to bands with any other quantum number Κ provided both initial and final states have the same J π Κ values. EO-transitions may depopulate odd-parity states. In odd nuclei β-vibrational states are identified by transition with EO-components. Here transitions also proceed between states with the same J π K numbers. Even-even nuclide 160 Dy is the first nucleus where the EO-transitions between odd-parity states have been found

  7. A microscopic multiphonon approach to even and odd nuclei

    Czech Academy of Sciences Publication Activity Database

    De Gregorio, G.; Knapp, F.; Lo Iudice, N.; Veselý, Petr

    2017-01-01

    Roč. 92, č. 7 (2017), č. článku 074003. ISSN 0031-8949 R&D Projects: GA ČR GA13-07117S Institutional support: RVO:61389005 Keywords : E1 response in nuclei * nuclear many-body theory * nuclear structure Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.280, year: 2016

  8. Study of neutron-rich nuclei structure around the N=28 shell closure using the in-beam gamma spectroscopy technique; Etude de la structure des noyaux riches en neutrons autour de la fermeture de couches N=28 par spectroscopie gamma en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, B

    2007-10-15

    For a few years now, a loss of magicity in neutron-rich nuclei near the neutron drip-line at N=28 has been suggested and observed. Deformation in these nuclei has been observed. The deformation was explained in S isotopes as being due to a moderate reduction of the N=28 shell closure together with a proton induced collectivity originating from the near degeneracy of the proton d3/2 and s1/2 orbitals. As a consequence, the observed deformation seems to result from a subtle interplay between neutron and proton excitations. Since the proton configuration in the Si isotopes is expected to be more stable due to the Z=14 sub-shell gap, {sup 42}Si was considered as a key nucleus in order to distinguish the different effects responsible for the structural changes observed at N=28. Even if it is at the limits of our technical possibilities, an in-beam gamma-spectroscopy experiment using two-step fragmentation and one or several nucleons knockout reaction mechanisms was performed at GANIL. The measurement of the energy of the first excited state in {sup 42}Si, combined with the observation of {sup 38,40}Si and the spectroscopy of {sup 41,43}P, has given evidence for the loss of magicity at N=28 far from stability. Modifications of the effective interaction used in modern shell model calculations have been completed following this investigation, increasing its predictive character. This study confirms the role of the tensor force and the density dependence of the spin-orbit interaction in the collapse of the N=28 shell closure. (author)

  9. Gross shell structure at high spin in heavy nuclei

    International Nuclear Information System (INIS)

    Deleplanque, Marie-Agnes; Frauendorf, Stefan; Pashkevich, Vitaly V.; Chu, S.Y.; Unzhakova, Anja

    2003-01-01

    Experimental nuclear moments of inertia at high spins along the yrast line have been determined systematically and found to differ from the rigid-body values. The difference is attributed to shell effect and these have been calculated microscopically. The data and quantal calculations are interpreted by means of the semiclassical Periodic Orbit Theory. From this new perspective, features in the moments of inertia as a function of neutron number and spin, as well as their relation to the shell energies can be understood. Gross shell effects persist up to the highest angular momenta observed

  10. A new barrier potential and alpha-decay half-lives of even–even nuclei in the 82⩽Z⩽92 regime

    Energy Technology Data Exchange (ETDEWEB)

    Hassanabadi, Hasan [Physics Department, Shahrood University of Technology, Shahrood (Iran, Islamic Republic of); Javadimanesh, ELham, E-mail: elham_javadimanesh89@yahoo.com [Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of); Zarrinkamar, Saber [Department of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar (Iran, Islamic Republic of)

    2013-05-15

    The alpha-decay half-life in a nuclear reaction is mainly affected by the penetration probability, which itself depends on the choice of the barrier potential. Here, we propose a new barrier potential to investigate the alpha-decay half-lives in the even–even nuclei from {sup 178}Po to {sup 238}U. The obtained results are motivating.

  11. Spin Modes in Nuclei and Nuclear Forces

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Otsuka, Takaharu

    2011-01-01

    Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in 12 C and 14 C and an anomalous M1 transition in 17 C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by Δ excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.

  12. Nuclear spectroscopy in nuclei with Z ≥ 110

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, D., E-mail: D.Ackermann@gsi.de

    2015-12-15

    The nuclear structure of species at the extreme of highest atomic numbers Z and nuclear masses A promises to reveal intriguing new features of this exotic hadronic matter. Their stability itself they owe to quantum-mechanic effects only. They form metastable states which, governed by the subtle interplay of α decay and spontaneous fission versus quantum-mechanic stabilization via shell effects, are in some cases more robust against disintegration than their ground states. Following the isotopic and isotonic trends of single particle levels, as well as collective features like deformation, may reveal the path towards the gap in the level densities, expected for the next closed proton and neutron shells at the so-called “island of stability” of spherical superheavy nuclei. Their atomic configuration offers via X-ray spectroscopy a tool to identify the atomic number of heavy species, where other more traditional methods like evaporation residue (ER)–α correlation are not applicable.

  13. New development of the projected shell model and description of low-lying collective states in transitional nuclei

    International Nuclear Information System (INIS)

    Chen, F. Q.; Sun, Y.

    2013-01-01

    Description of the interplay between different nuclear shapes is an interesting but challenging problem. The original projected shell model (PSM) is applicable to nuclei with fixed shapes. We extend the PSM by superimposing (angular-momentum- and particle-number-) projected product wave functions in the spirit of the generate coordinate method. With this development, the Gd isotopes across the N = 90 region are studied, and the results indicate spectroscopic features of shape phase transition with varying neutron number. In order to illustrate the shape distribution in microscopic wave functions, we introduce a deformation representation and show that the collectively excited K π = 0 + states in the Gd isotopes have characters of shape vibration. (authors)

  14. Gross theory of beta-decay and half-lives of short-lived nuclei

    International Nuclear Information System (INIS)

    Yamada, Masami; Kondo, Norikatsu.

    1976-01-01

    The gross theory of beta-decay has been developed, and this theory offers the means of calculating directly the function of beta-decay intensity, then half-lives, complex beta spectra and so on are estimated from it. This paper presents the more refined theory by introducing the shell effect. The shell effect is considered in the intensity function. The half-lives in the electron decay of In with spin of 9/2 + , the positron decay of Bi, Po, At and Rn, and the decay of odd-odd nuclei were estimated. The introduction of the shell effect shows better agreement between the theory and the experimental data. The inequality relations of intensity functions and half-lives of two adjacent nuclei were obtained. When the spins and parities of two nuclei are same, the inequality relations hold especially good. (Kato, T.)

  15. Gamow-Teller transitions and proton-neutron pair correlation in N =Z odd-odd p -shell nuclei

    Science.gov (United States)

    Morita, Hiroyuki; Kanada-En'yo, Yoshiko

    2017-10-01

    We have studied the Gamow-Teller (GT) transitions from N =Z +2 neighbors to N =Z odd-odd nuclei in the p -shell region by using isospin-projected and β γ -constraint antisymmetrized molecular dynamics combined with the generator coordinate method. The calculated GT transition strengths from 0+1 states to 1+0 states such as 6He(01+1 ) →6Li(11+0 ) , 10Be(01+1 ) →10B(11+0 ) , and 14C(01+1 ) →14N(12+0 ) exhaust more than 50% of the sum rule. These N =Z +2 initial states and N =Z odd-odd final states are found to dominantly have S =0 ,T =1 n n pairs and S =1 ,T =0 p n pairs, respectively. Based on the two-nucleon (N N ) pair picture, we can understand the concentration of the GT strengths as the spin-isospin-flip transition n n (S =0 ,T =1 )→p n (S =1 ,T =0 ) in L S coupling. The GT transition can be a good probe to identify the spin-isospin partner states with n n pairs and p n pairs of N =Z +2 and N =Z odd-odd nuclei, respectively.

  16. Structure of the N=50 As, Ge, Ga nuclei

    International Nuclear Information System (INIS)

    Sahin, E.; Angelis, G. de; Duchene, G.; Faul, T.; Gadea, A.; Lisetskiy, A.F.; Ackermann, D.; Algora, A.; Aydin, S.; Azaiez, F.; Bazzacco, D.; Benzoni, G.; Bostan, M.; Byrski, T.; Celikovic, I.; Chapman, R.; Corradi, L.

    2012-01-01

    The level structures of the N=50 83 As, 82 Ge, and 81 Ga isotones have been investigated by means of multi-nucleon transfer reactions. A first experiment was performed with the CLARA-PRISMA setup to identify these nuclei. A second experiment was carried out with the GASP array in order to deduce the γ-ray coincidence information. The results obtained on the high-spin states of such nuclei are used to test the stability of the N=50 shell closure in the region of 78 Ni (Z=28). The comparison of the experimental level schemes with the shell-model calculations yields an N=50 energy gap value of 4.7(3) MeV at Z=28. This value, in a good agreement with the prediction of the finite-range liquid-drop model as well as with the recent large-scale shell model calculations, does not support a weakening of the N=50 shell gap down to Z=28.

  17. Effective interactions and coupling schemes in nuclei

    International Nuclear Information System (INIS)

    Talmi, I.

    1994-01-01

    Eigenstates of the shell model are obtained by diagonalization of the Hamiltonian submatrix defined by a given shell model subspace. Matrix elements of the effective nuclear interaction can be determined from experiment in a consistent way. This approach was introduced in 1956 with the 38 Cl- 40 K spectra, has been applied in many cases and its latest success is in the s, d shell. This way, general features of the effective interaction have been determined. The T=1 interaction is diagonal in the seniority scheme as clearly demonstrated in proton 1g 9/2 n and 1h 11/2 n configurations and in the description of semimagic nuclei by generalized seniority. Apart from a strong and attractive pairing term, T=1 interactions are repulsive on the average. The T=0 interaction is attractive and is the origin of the central potential well in which nucleons are bound. It breaks seniority in a major way leading to deformed nuclei and rotational spectra. Such an interaction may be approximated by a quadrupole-quadrupole interaction which is the basis of the interacting boson model. Identical nucleons with pairing and quadrupole interactions cannot be models of actual nuclei. Symmetry properties of states with maximum T are very different from those of ground states of actual nuclei. The T=1 interaction between identical nucleons cannot be approximated by pairing and quadrupole interactions. The rich variety of nuclear spectra is due to the competition between seniority conserving T=1 interactions and the T=0 quadrupole interaction between protons and neutrons. (orig.)

  18. Effect of zero-point oscillations of nuclear surface on observable properties of nuclei

    International Nuclear Information System (INIS)

    Masterov, V.S.; Rabotnov, N.S.

    1982-01-01

    Possible effect of zero-point oscillations of nuclear surface on such observable nucleus characteristics as the mass of ground state, edge diffusion and height of fission barrier is considered. Within the framework of a drop model the calculation of binding energy per nucleon for even-even nuclei with a mass number 8 <= A <= 60 depending on A is given. It is shown that consideration of even quadrupole and octupole oscillations results in marked effects which are necessary to consider when comparing results of model calculations with experiment

  19. Distribution of nuclei in equilibrium stellar matter from the free-energy density in a Wigner-Seitz cell

    Science.gov (United States)

    Grams, G.; Giraud, S.; Fantina, A. F.; Gulminelli, F.

    2018-03-01

    The aim of the present study is to calculate the nuclear distribution associated at finite temperature to any given equation of state of stellar matter based on the Wigner-Seitz approximation, for direct applications in core-collapse simulations. The Gibbs free energy of the different configurations is explicitly calculated, with special care devoted to the calculation of rearrangement terms, ensuring thermodynamic consistency. The formalism is illustrated with two different applications. First, we work out the nuclear statistical equilibrium cluster distribution for the Lattimer and Swesty equation of state, widely employed in supernova simulations. Secondly, we explore the effect of including shell structure, and consider realistic nuclear mass tables from the Brussels-Montreal Hartree-Fock-Bogoliubov model (specifically, HFB-24). We show that the whole collapse trajectory is dominated by magic nuclei, with extremely spread and even bimodal distributions of the cluster probability around magic numbers, demonstrating the importance of cluster distributions with realistic mass models in core-collapse simulations. Simple analytical expressions are given, allowing further applications of the method to any relativistic or nonrelativistic subsaturation equation of state.

  20. P-shell hyperon binding energies

    International Nuclear Information System (INIS)

    Koetsier, D.; Amos, K.

    1991-01-01

    A shell model for lambda hypernuclei has been used to determine the binding energy of the hyperon in nuclei throughout the p shell. Conventional (Cohen and Kurath) potential energies for nucleon-nucleon interactions were used with hyperon-nucleon interactions taken from Nijmegen one boson exchange potentials. The hyperon binding energies calculated from these potentials compare well with measured values. 7 refs., 2 figs