WorldWideScience

Sample records for even-a germanium isotopes

  1. Coexistence in even-even nuclei with emphasis on the germanium isotopes

    International Nuclear Information System (INIS)

    Carchidi, M.A.V.

    1985-01-01

    No simple model to date can explain in a self-consistent way the results of direct transfer data and BE2 electromagnetic rates in the germanium isotopes. The simplest models use a two-state interaction for describing the ground state and first excited O + state. In all cases, these models can account for some of the data, but they are in drastic conflict with other experimental measurements. In this thesis, it is shown that a two-state model can consistently account for two-neutron and alpha transfer O + 2 /g.s. cross-section ratio data in the germanium region (ie. zinc, germanium, and selenium), proton occupation number data in the ground states of the even stable zinc, germanium, and selenium isotopes, and BE2 transition rates in isotopes of germanium and zinc. In addition the author can account for most of the one-neutron and two-neutron transfer O + 2 /g.s. and (9/2 + 2 )/(9/2 + 1 ) cross-section ratio data in the odd-mass germanium isotopes. In this generalized two-state model (called Rerg1), the author makes as few assumptions as possible about the nature of the basis states; rather the author allows the experimental data to dictate the properties of the basis-state overlaps. In this sense, the author has learned much about the basis states and has a useful tool for constructing them. The author also shows that the Rerg1 model can quantitatively account for all two-neutron O + 2 /g.s. cross-section ratio data in all even-even nuclei from calcium to uranium

  2. Germanium-76 Isotope Separation by Cryogenic Distillation. Final Report

    International Nuclear Information System (INIS)

    Stohler, Eric

    2007-01-01

    The current separation method for Germanium isotopes is electromagnetic separation using Calutrons. The Calutrons have the disadvantage of having a low separation capacity and a high energy cost to achieve the separation. Our proposed new distillation method has the advantage that larger quantities of Germanium isotopes can be separated at a significantly lower cost and in a much shorter time. After nine months of operating the column that is 1.5 meter in length, no significant separation of the isotopes has been measured. We conclude that the length of the column we have been using is too short. In addition, other packing material than the 0.16 inch Propak, 316 ss Protruded metal packing that we used in the column, should be evaluated which may have a better separation factor than the 0.16 inch Propak, 316 ss Protruded metal packing that has been used. We conclude that a much longer column - a minimum of 50 feet length - should be built and additional column packing should be tested to verify that isotopic separation can be achieved by cryogenic distillation. Even a longer column than 50 feet would be desirable.

  3. Melting point of high-purity germanium stable isotopes

    Science.gov (United States)

    Gavva, V. A.; Bulanov, A. D.; Kut'in, A. M.; Plekhovich, A. D.; Churbanov, M. F.

    2018-05-01

    The melting point (Tm) of germanium stable isotopes 72Ge, 73Ge, 74Ge, 76Ge was determined by differential scanning calorimetry. With the increase in atomic mass of isotope the decrease in Tm is observed. The decrease was equal to 0.15 °C per the unit of atomic mass which qualitatively agrees with the value calculated by Lindemann formula accounting for the effect of "isotopic compression" of elementary cell.

  4. The isotope composition of inorganic germanium in seawater and deep sea sponges

    Science.gov (United States)

    Guillermic, Maxence; Lalonde, Stefan V.; Hendry, Katharine R.; Rouxel, Olivier J.

    2017-09-01

    Although dissolved concentrations of germanium (Ge) and silicon (Si) in modern seawater are tightly correlated, uncertainties still exist in the modern marine Ge cycle. Germanium stable isotope systematics in marine systems should provide additional constraints on marine Ge sources and sinks, however the low concentration of Ge in seawater presents an analytical challenge for isotopic measurement. Here, we present a new method of pre-concentration of inorganic Ge from seawater which was applied to measure three Ge isotope profiles in the Southern Ocean and deep seawater from the Atlantic and Pacific Oceans. Germanium isotopic measurements were performed on Ge amounts as low as 2.6 ng using a double-spike approach and a hydride generation system coupled to a MC-ICP-MS. Germanium was co-precipitated with iron hydroxide and then purified through anion-exchange chromatography. Results for the deep (i.e. >1000 m depth) Pacific Ocean off Hawaii (nearby Loihi Seamount) and the deep Atlantic off Bermuda (BATS station) showed nearly identical δ74/70Ge values at 3.19 ± 0.31‰ (2SD, n = 9) and 2.93 ± 0.10‰ (2SD, n = 2), respectively. Vertical distributions of Ge concentration and isotope composition in the deep Southern Ocean for water depth > 1300 m yielded an average δ74/70Ge = 3.13 ± 0.25‰ (2SD, n = 14) and Ge/Si = 0.80 ± 0.09 μmol/mol (2SD, n = 12). Significant variations in δ74/70Ge, from 2.62 to 3.71‰, were measured in the first 1000 m in one station of the Southern Ocean near Sars Seamount in the Drake Passage, with the heaviest values measured in surface waters. Isotope fractionation by diatoms during opal biomineralization may explain the enrichment in heavy isotopes for both Ge and Si in surface seawater. However, examination of both oceanographic parameters and δ74/70Ge values suggest also that water mass mixing and potential contribution of shelf-derived Ge also could contribute to the variations. Combining these results with new Ge isotope data

  5. Normal processes of phonon-phonon scattering and thermal conductivity of germanium crystals with isotopic disorder

    CERN Document Server

    Kuleev, I G

    2001-01-01

    The effect of normal processes of the phonon-phonon scattering on the thermal conductivity of the germanium crystals with various isotopic disorder degrees is considered. The phonon pulse redistribution in the normal scattering processes both inside each oscillatory branch (the Simons mechanism) and between various phonon oscillatory branches (the Herring mechanism) is accounted for. The contributions of the longitudinal and cross-sectional phonons drift motion into the thermal conductivity are analyzed. It is shown that the pulse redistribution in the Herring relaxation mechanism leads to essential suppression of the longitudinal phonons drift motion in the isotopically pure germanium crystals. The calculations results of thermal conductivity for the Herring relaxation mechanism agree well with experimental data on the germanium crystals with various isotopic disorder degrees

  6. Search for α + core states in even-even Cr isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.A. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo, Departamento de Mecanica, Sao Paulo, SP (Brazil); Miyake, H. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil)

    2017-07-15

    The α + core structure is investigated in even-even Cr isotopes from the viewpoint of the local potential model. The comparison of Q{sub α}/A values for even-even Cr isotopes and even-even A = 46, 54, 56, 58 isobars indicates that {sup 46}Cr and {sup 54}Cr are the most favorable even-even Cr isotopes for the α + core configuration. The ground state bands of the two Cr isotopes are calculated through a local α + core potential containing a nuclear term with (1 + Gaussian) x (W.S. + W.S.{sup 3}) shape. The calculated spectra give a very good description of most experimental {sup 46}Cr and {sup 54}Cr levels, including the 0{sup +} bandheads. The reduced α-widths, rms intercluster separations and B(E2) transition rates are determined for the ground state bands. The calculations reproduce the order of magnitude of the available experimental B(E2) values without using effective charges, indicate that the low-spin members of the ground state bands present a stronger α-cluster character, and point out that the {sup 46}Cr ground state band has a significant degree of α-clustering in comparison with {sup 44}Ti. The volume integral per nucleon pair and rms radius obtained for the α + {sup 50}Ti potential are consistent with those reported previously in the analysis of α elastic scattering on {sup 50}Ti. (orig.)

  7. Isotopic yield in cold binary fission of even-even 230-244U isotopes

    International Nuclear Information System (INIS)

    Cyriac, Annu; Krishnan, Sreejith; Santhosh, K.P.

    2017-01-01

    The binary fission of even-even 230-244 U isotopes has been studied using the concept of cold reaction valley which was introduced in relation to the structure of minima in the so called driving potential

  8. Systematics of even-a polonium isotopes

    International Nuclear Information System (INIS)

    Younes, W.; Cizewski, J.A.; Bernstein, L.A.

    1995-01-01

    Polonium nuclei, with two valence protons, provide fertile ground for the study of the onset of collectivity: from the textbook two-particle levels of 210 Po to the phonon-like multiplets of 196 Po. In their earlier work the authors described the low-lying structure of even-A Po nuclei down to 196 Po as two protons interacting via a surface-δ interaction and adiabatically coupled to a vibrating core. However, this particle-core model (PCM) fails to adequately describe the recently measured level scheme of 194 Po. Also because it assumes a pre-existing vibrational core, this model does not help to understand the single particle contributions to the collective motion. Therefore, the authors have also studied the Po systematics using a more microscopic model: the quasi-particle random phase approximation (QRPA). They will present a phenomenological analysis of the rapidity of the onset of collectivity for the Po isotopes as well as results of both PCM and QRPA calculations. The microscopic nature of the collectivity for the even-A Po isotopes will be discussed

  9. Isotopic shift in even-even barium isotopes

    International Nuclear Information System (INIS)

    Karim, Afaque; Naz, Tabassum; Ahmad, Shakeb

    2017-01-01

    We have discussed the correlation between a nuclear shape and its matter distribution. Here, we present the root-mean-square radii (r rms ) and rms charge radius (r ch ). We have also discussed the isotopic shift in terms of the observable ‹Δr 2 c › N,82 and its differential ‹Δr 2 c › N-2,N . We present nuclear radii evaluated using different interactions. Neutron radii and charge radii for all the isotopic chains are shown. Neutron radii for Ba isotopes show an increasing trend with the neutron number for all isotopic chains. One can observe a clear kink about magic number N=82

  10. Ligand isotopic exchange of tris(acetylacetonato)germanium(IV) perchlorate in organic solvents

    International Nuclear Information System (INIS)

    Nagasawa, Akira; Saito, Kazuo

    1978-01-01

    The ligand isotopic exchange between tris(acetylacetonato)germanium(IV) perchlorate and acetylacetone[ 14 C] has been studied in 1,1,2,2-tetrachloroethane (TCE), nitromethane (NM), and acetonitrile (AN), at 100 - 120 0 C. In these solvents, the rate formula was R = k[H 2 O][complex]; the concentrations of the complex, free ligand, and water in solution were in the ranges from 0.01 to 0.1 mol dm -3 . The activation enthalpies and entropies for the k's are 105, 98, and 90 kJ mol -1 ; and -25, -53, and -69 JK -1 mol -1 , in TCE, NM, and AN, respectively. Influence of acid and base concentrations, and deuterium isotope effect on the rate in AN suggest that the rate controlling step of the exchange is governed by the ease of the proton transfer between the leaving and the incoming acac - in an intermediate. (auth.)

  11. The germanium isotopes production rate in background process in SAGE experiment

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Gorbachev, V.V.; Ibragimova, T.V.; Cleveland, B.T.

    2002-01-01

    The analysis of the direct determination of systematics connected with the germanium isotopes generation of in background processes in radiochemical SAGE experiments on measuring solar neutrinos is described. The found 68 Ge generation rate is 6.5 (1 ± 1.0) times higher than expected; the generation rate of 69 Ge does not exceed preliminary evaluations. The result on 68 Ge corresponds to the systematic of cosmic ray muons of 5.8% (4.5 SNU) for the measured capture rate of solar neutrino of 77.0 SNU. To check the cosmic-ray muon influence of the SAGE systematic one suggests the experiment in place of underground scintillation telescope of the Baksan neutrino observatory on the Institute for Nuclear Research of the RAS [ru

  12. Rate of germanium-isotope production by background processes in the SAGE experiment

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Gorbachev, V.V.; Ibragimova, T.V.; Cleveland, B.T.

    2002-01-01

    Data on a direct determination of systematic uncertainties caused by the background production of germanium isotopes in the radiochemical SAGE experiment measuring the solar-neutrino flux are analyzed. The result obtained for the rate of 68 Ge production is 6.5(1±1.0) times greater than the expected one; the rate of 69 Ge production does not exceed preliminary estimates. The above result for 68 Ge corresponds to the systematic uncertainty that is caused by the interaction of cosmic-ray muons and which is equal to 5.8% (4.5 SNU) at a solar-neutrino-capture rate of 77.0 SNU. An experiment is proposed that would test the effect of cosmic-ray muon influence on the SAGE systematic uncertainty and which would be performed at the location of the underground scintillation telescope facilities of the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences)

  13. Shape coexistence in the neutron-deficient even-even (182-188)Hg isotopes studied via coulomb excitation.

    Science.gov (United States)

    Bree, N; Wrzosek-Lipska, K; Petts, A; Andreyev, A; Bastin, B; Bender, M; Blazhev, A; Bruyneel, B; Butler, P A; Butterworth, J; Carpenter, M P; Cederkäll, J; Clément, E; Cocolios, T E; Deacon, A; Diriken, J; Ekström, A; Fitzpatrick, C; Fraile, L M; Fransen, Ch; Freeman, S J; Gaffney, L P; García-Ramos, J E; Geibel, K; Gernhäuser, R; Grahn, T; Guttormsen, M; Hadinia, B; Hadyńska-Kle K, K; Hass, M; Heenen, P-H; Herzberg, R-D; Hess, H; Heyde, K; Huyse, M; Ivanov, O; Jenkins, D G; Julin, R; Kesteloot, N; Kröll, Th; Krücken, R; Larsen, A C; Lutter, R; Marley, P; Napiorkowski, P J; Orlandi, R; Page, R D; Pakarinen, J; Patronis, N; Peura, P J; Piselli, E; Rahkila, P; Rapisarda, E; Reiter, P; Robinson, A P; Scheck, M; Siem, S; Singh Chakkal, K; Smith, J F; Srebrny, J; Stefanescu, I; Tveten, G M; Van Duppen, P; Van de Walle, J; Voulot, D; Warr, N; Wenander, F; Wiens, A; Wood, J L; Zielińska, M

    2014-04-25

    Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85  MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interpreted within a two-state mixing model. Partial agreement with the model calculations was obtained. The presence of two different structures in the light even-mass mercury isotopes that coexist at low excitation energy is firmly established.

  14. Pushing the pseudo-SU(3) model towards its limits: Excited bands in even-even Dy isotopes

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Hirsch, Jorge G.

    2004-01-01

    The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands. A realistic Hamiltonian is employed. Both the success of model and its limitations are discussed

  15. On the odd-even effect in the charge radii of isotopes

    International Nuclear Information System (INIS)

    Talmi, I.

    1984-01-01

    Core polarization by valence neutrons is suggested as a possible mechanism for producing odd-even variation in the charge radii of isotopes. The nuclei considered have closed proton shells and neutrons in states with lowest seniority or generalized seniority. Simple expressions are derived for jsup(n) neutron configurations and various multipole terms of the pn interaction. The resulting expressions give a good fit to the radii of calcium isotopes and also of lead isotopes for which these expressions are only approximate. (orig.)

  16. A comparative analysis of alpha-decay half-lives for even-even 178Pb to 234U isotopes

    Science.gov (United States)

    Hosseini, S. S.; Hassanabadi, H.; Zarrinkamar, S.

    2018-02-01

    The feasibility for the alpha decay from the even-even transitions of 178Pb to 234U isotopes has been studied within the Coulomb and proximity potential model (CPPM). The alpha decay half-lives are considered from different theoretical approaches using Semi-empirical formula of Poenaru et al. (SemFIS), the Universal Decay law (UDL) of Qi et al., Akrawy-Dorin formula of Akrawy and Poenaru (ADF), the Scaling law of Brown (SLB) and the Scaling Law of Horoi et al. (SLH). The numerical results obtained by the CPPM and compared with other method as well the experimental data.

  17. States with a great number of quasi-particles in even lead isotopes

    International Nuclear Information System (INIS)

    Auger, G.; Manfredi, V.R.

    1975-01-01

    The even lead isotopes have been studied by means of a spectral distribution calculation in the sub-spaces defined by their number of quasi-particles. The comparison with results obtained in the thin isotopes shows that the overlap of the various sub-spaces is strongly dependent on the residual interaction used; namely, states with a great number of quasi-particles do exist in the low energy part of the spectra. The problem of spurious states implied by this method, states responsible for an over-estimation of the sub-space coupling, is treated and various corrections are proposed for the dimensions as well as for the centroids and widths of the sub-spaces [fr

  18. Charged-Current Neutrino-Nucleus Scattering off the Even Molybdenum Isotopes

    Directory of Open Access Journals (Sweden)

    E. Ydrefors

    2012-01-01

    Full Text Available Neutrinos from supernovae constitute important probes of both the currently unknown supernova mechanisms and of neutrino properties. Reliable information about the nuclear responses to supernova neutrinos is therefore crucial. In this work, we compute the cross sections for the charged-current neutrino-nucleus scattering off the even-even molybdenum isotopes. The nuclear responses to supernova neutrinos are subsequently calculated by folding the cross sections with a Fermi-Dirac distribution.

  19. Electrical Manipulation of Donor Spin Qubits in Silicon and Germanium

    Science.gov (United States)

    Sigillito, Anthony James

    Many proposals for quantum information devices rely on electronic or nuclear spins in semiconductors because of their long coherence times and compatibility with industrial fabrication processes. One of the most notable qubits is the electron spin bound to phosphorus donors in silicon, which offers coherence times exceeding seconds at low temperatures. These donors are naturally isolated from their environments to the extent that silicon has been coined a "semiconductor vacuum". While this makes for ultra-coherent qubits, it is difficult to couple two remote donors so quantum information proposals rely on high density arrays of qubits. Here, single qubit addressability becomes an issue. Ideally one would address individual qubits using electric fields which can be easily confined. Typically these schemes rely on tuning a donor spin qubit onto and off of resonance with a magnetic driving field. In this thesis, we measure the electrical tunability of phosphorus donors in silicon and use the extracted parameters to estimate the effects of electric-field noise on qubit coherence times. Our measurements show that donor ionization may set in before electron spins can be sufficiently tuned. We therefore explore two alternative options for qubit addressability. First, we demonstrate that nuclear spin qubits can be directly driven using electric fields instead of magnetic fields and show that this approach offers several advantages over magnetically driven spin resonance. In particular, spin transitions can occur at half the spin resonance frequency and double quantum transitions (magnetic-dipole forbidden) can occur. In a second approach to realizing tunable qubits in semiconductors, we explore the option of replacing silicon with germanium. We first measure the coherence and relaxation times for shallow donor spin qubits in natural and isotopically enriched germanium. We find that in isotopically enriched material, coherence times can exceed 1 ms and are limited by a

  20. Odd-even parity splittings and octupole correlations in neutron-rich Ba isotopes

    Science.gov (United States)

    Fu, Y.; Wang, H.; Wang, L.-J.; Yao, J. M.

    2018-02-01

    The odd-even parity splittings in low-lying parity-doublet states of atomic nuclei with octupole correlations have usually been interpreted as rotational excitations on top of octupole vibration in the language of collective models. In this paper, we report a deep analysis of the odd-even parity splittings in the parity-doublet states of neutron-rich Ba isotopes around neutron number N =88 within a full microscopic framework of beyond-mean-field multireference covariant energy density functional theory. The dynamical correlations related to symmetry restoration and quadrupole-octupole shape fluctuation are taken into account with a generator coordinate method combined with parity, particle-number, and angular-momentum projections. We show that the behavior of odd-even parity splittings is governed by the interplay of rotation, quantum tunneling, and shape evolution. Similar to 224Ra, a picture of rotation-induced octupole shape stabilization in the positive-parity states is exhibited in the neutron-rich Ba isotopes.

  1. A Convenient Method for Estimation of the Isotopic Abundance in Uranium Bearing Samples

    International Nuclear Information System (INIS)

    AI -Saleh, F.S.; AI-Mukren, Alj.H.; Farouk, M.A.

    2008-01-01

    A convenient and simple method for estimation of the isotopic abundance in some uranium bearing samples using gamma-ray spectrometry is developed using a hyper pure germanium spectrometer and a standard uranium sample with known isotopic abundance

  2. Positive parity states and some electromagnetic transition properties of even-odd europium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Yazar, Harun Resit, E-mail: yazar@nevsehir.edu.tr [Nevsehir University, Faculty of Art and Science (Turkey)

    2013-06-15

    The positive-parity low-spin states of even-odd Europium isotopes ({sup 151-155}Eu) were studied within the framework of the interacting boson-fermion model. The calculated positive low-spin state energy spectra of the odd Eu isotope were found to agree quite well with the experimental data. The B(E2) values were also calculated and it was found that the calculated positive-parity low-spin state energy spectra of the odd-A Eu isotopes agree quite well with the experimental data.

  3. Cosmogenic activation of germanium used for tonne-scale rare event search experiments

    Science.gov (United States)

    Wei, W.-Z.; Mei, D.-M.; Zhang, C.

    2017-11-01

    We report a comprehensive study of cosmogenic activation of germanium used for tonne-scale rare event search experiments. The germanium exposure to cosmic rays on the Earth's surface are simulated with and without a shielding container using Geant4 for a given cosmic muon, neutron, and proton energy spectrum. The production rates of various radioactive isotopes are obtained for different sources separately. We find that fast neutron induced interactions dominate the production rate of cosmogenic activation. Geant4-based simulation results are compared with the calculation of ACTIVIA and the available experimental data. A reasonable agreement between Geant4 simulations and several experimental data sets is presented. We predict that cosmogenic activation of germanium can set limits to the sensitivity of the next generation of tonne-scale experiments.

  4. Even zinc isotopes in the interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; McCullen, J.D.; Duval, P.D.; Barrett, B.R. (Arizona Univ., Tucson (USA). Dept. of Physics)

    1982-11-01

    The interacting boson model is applied to the even zinc isotopes /sup 62/Zn-/sup 72/Zn. Two boson configurations are used to account for the behaviour of excited O/sup +/ states; one is the usual particle boson configuration and the other a configuration representing proton excitation from the /sup 56/Ni core. The parameter variation in the model is constrained as much as possible to agree with calculations from a non-degenerate multi-shell fermion basis for the bosons. Energy levels, quadrupole moments and B(E2) values are calculated. Values obtained compare favourably with experiment and with other calculations.

  5. Shape coexistence measurements in even-even neutron-deficient polonium isotopes by Coulomb excitation, using REX-ISOLDE and the Ge MINIBALL array

    CERN Multimedia

    Butler, P; Bastin, B; Kruecken, R; Voulot, D; Rahkila, P J; Orr, N A; Srebrny, J; Grahn, T; Clement, E; Paul, E S; Gernhaeuser, R A; Dorsival, A; Diriken, J V J; Huyse, M L; Iwanicki, J S

    The neutron-deficient polonium isotopes with two protons outside the closed Z=82 shell represent a set of nuclei with a rich spectrum of nucleus structure phenomena. While the onset of the deformation in the light Po isotopes is well established experimentally, questions remain concerning the sign of deformation and the magnitude of the mixing between different configurations. Furthermore, controversy is present with respect to the transition from the vibrational-like character of the heavier Po isotopes to the shape coexistence mode observed in the lighter Po isotopes. We propose to study this transition in the even-mass neutron-deficient $^{198,200,202}$Po isotopes by using post-accelerated beams from REX-ISOLDE and "safe"-energy Coulomb excitation. $\\gamma$- rays will be detected by the MINIBALL array. The measurements of the Coulomb excitation differential cross section will allow us to deduce both the transition and diagonal matrix elements for these nuclei and, combined with lifetime measurements, the s...

  6. Neutron Transmission of Germanium Poly- and Monocrystals

    International Nuclear Information System (INIS)

    Habib, N.

    2009-01-01

    The measured total neutron cross-sections of germanium poly- and mono-crystals were analyzed using an additive formula. The formula takes into account the germanium crystalline structure and its physical parameters. Computer programs have developed in order to provide the required analyses. The calculated values of the total cross-section of polycrystalline germanium in the neutron wavelength range from 0.001 up to 0.7 nm were fitted to the measured ones at ETRR-1. From the fitting the main constants of the additive formula were determined. The experimental data measured at ETRR-1 of the total cross-section of high quality Ge single crystal at 4400 K, room, and liquid nitrogen temperatures, in the wavelength range between 0.028 nm and 0.64 nm, were also compared with the calculated values using the formula having the same constants. An overall agreement is noticed between the formula fits and experimental data. A feasibility study is done for the use of germanium in poly-crystalline form, as cold neutron filter, and in mono-crystalline one as an efficient filter for thermal neutrons. The filtering efficiency of Ge single crystal is detailed in terms of its isotopic abundance, crystal thickness, mosaic spread, and temperature. It can be concluded that the 7.5 cm thick 76 Ge single crystal (0.10 FWHM mosaic spread) cooled at liquid nitrogen temperature is an efficient thermal neutron filter.

  7. Quadrupole boson densities in the germanium region by inelastic electron scattering

    International Nuclear Information System (INIS)

    Goutte, D.

    1984-08-01

    The collective properties of four germanium isotopes have been explored through the measurement of the transition charge densities of the first two 2 + states. Their spatial features and their apparent anomalous behavior is readily explained in the frame of the Interacting Boson Model

  8. Polarization transfer between oriented metastable helium atoms and neon atoms. A comparison of even and odd isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D M; Wang, H T.M.

    1983-11-01

    Collision-induced polarization transfer from optically pumped helium to excited states of neon is studied using various combinations of even and odd isotopes. It is found that, within our experimental accuracy of 10%, the resultant polarization is independent of the isotopic composition of the binary mixture. Possible applications using this mechanism are discussed.

  9. Collective effects in even-mass samarium isotopes by polarized-proton scattering

    NARCIS (Netherlands)

    Petit, R.M.A.L.; Hall, van P.J.; Klein, S.S.; Moonen, W.H.L.; Nijgh, G.J.; Overveld, van C.W.A.M.; Poppema, O.J.

    1993-01-01

    The even-mass samarium isotopes 148,...,152Sm have been investigated by polarized proton scattering at 20.4 MeV beam energy. The data have been analysed with an 'extended' optical model, where the intensities of the first maxima of the main inelastic channels are fitted in a coupled-channels

  10. Triaxiality in the even-mass Hg isotopes: A discontinuity at 200Hg

    International Nuclear Information System (INIS)

    Morrison, I.; Spear, R.H.

    1981-01-01

    The mass dependence of excitation energies of the 2 + 1 , 2 + 2 , and 4 + 1 states of the even-mass Hg isotopes, and of some related B(E2) values, shows a marked discontinuity at 200 Hg. Analysis of B(E2;0 + 1 →2 + 1 ) values in terms of an extended interacting boson approximation model suggests that this discontinuity is due to a change in the proton and neutron distributions at 200 Hg. Apart from 200 Hg, the data favor γ-soft models rather than the rigid triaxial-rotor model

  11. AN INVESTIGATION OF THE ENERGY L.EVELS AND MUL TIPOLE MIXING RATIO OF ELECTROMAGNETIC TRANSITIONSIN THE EVEN-EVEN ISOTOPES

    Directory of Open Access Journals (Sweden)

    R. KARAKAYA

    1998-12-01

    Full Text Available In this work some of the electromagnetic interactions of even-even Haf nium isotopes in the 150lt;k:;l90 defoıınation region were studied in a detailed manner. l n this region� us ing the experimental 8(E2/lv11 ınultipole ınixing ratios the deformation parameters �o and the quadrupole moments q0 and q'2 were calculated. The obtained results are in a good agreement ·with the ge neral systematic of the defoıınation region under consideration.

  12. Measurement of energy transitions for the decay radiations of 75Ge and 69Ge in a high purity germanium detector

    Science.gov (United States)

    Aydın, Güral; Usta, Metin; Oktay, Adem

    2018-06-01

    Photoactivation experiments have a wide range of application areas in nuclear, particle physics, and medical physics such as measuring energy levels and half-lifes of nuclei, experiments for understanding imaging methods in medicine, isotope production for patient treatment, radiation security and transportation, radiation therapy, and astrophysics processes. In this study, some energy transition values of the decay radiations of 75Ge and 69Ge, which are the products of photonuclear reactions (γ, n) with germanium isotopes (75Ge and 69Ge), were measured. The gamma spectrum as a result of atomic transitions were analysed by using a high purity semiconductor germanium detector and the energy transition values which are presented here were compared with the ones which are the best in literature. It was observed that the results presented are in agreement with literature in error range and some results have better precisions.

  13. Fragmentation of two-quasiparticle states in 92Zr and even-even Sn isotopes

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Stoyanova, O.; Voronov, V.V.

    1981-01-01

    The fragmentation of two-quasiparticle states in doubly even spherical nuclei is calculated within the quasiparticle-phonon nuclear model. The fragmentation is due to the interactions leading to the formation of phonons and to the quasiparticle-phonon interaction. The spectroscopic factors for the ''particle-valence particle'' states in 92 Zr are calculated. The agreement with the experimental data of the reaction 91 Zr(d, p) 92 Zr is obtained. The centroid energy Esub(jjsub(0)) and width GITAsub(jjsub(0)) are calculated for the configurations excited in the (p, d) reactions on odd-A isotopes of Cd, Sn and Te. It is shown that the valence particle-hole lgsub(9/2) configuration is localized at the excitation energies of 7-9 MeV. The corresponding experimental data are well described

  14. Isotopic Dependence of the Giant Monopole Resonance in the Even-A 112-124Sn Isotopes and the Asymmetry Term in Nuclear Incompressibility

    International Nuclear Information System (INIS)

    Li, T.; Garg, U.; Liu, Y.; Marks, R.; Nayak, B. K.; Rao, P. V. Madhusudhana; Fujiwara, M.; Hashimoto, H.; Kawase, K.; Nakanishi, K.; Okumura, S.; Yosoi, M.; Itoh, M.; Ichikawa, M.; Matsuo, R.; Terazono, T.; Uchida, M.; Kawabata, T.; Akimune, H.; Iwao, Y.

    2007-01-01

    The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A Sn isotopes (A=112-124) with inelastic scattering of 400-MeV α particles in the angular range 0 deg. - 8.5 deg. We find that the experimentally observed GMR energies of the Sn isotopes are lower than the values predicted by theoretical calculations that reproduce the GMR energies in 208 Pb and 90 Zr very well. From the GMR data, a value of K τ =-550±100 MeV is obtained for the asymmetry term in the nuclear incompressibility

  15. Isotopic Dependence of the Giant Monopole Resonance in the Even-A Sn112 124 Isotopes and the Asymmetry Term in Nuclear Incompressibility

    Science.gov (United States)

    Li, T.; Garg, U.; Liu, Y.; Marks, R.; Nayak, B. K.; Rao, P. V. Madhusudhana; Fujiwara, M.; Hashimoto, H.; Kawase, K.; Nakanishi, K.; Okumura, S.; Yosoi, M.; Itoh, M.; Ichikawa, M.; Matsuo, R.; Terazono, T.; Uchida, M.; Kawabata, T.; Akimune, H.; Iwao, Y.; Murakami, T.; Sakaguchi, H.; Terashima, S.; Yasuda, Y.; Zenihiro, J.; Harakeh, M. N.

    2007-10-01

    The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A Sn isotopes (A=112 124) with inelastic scattering of 400-MeV α particles in the angular range 0° 8.5°. We find that the experimentally observed GMR energies of the Sn isotopes are lower than the values predicted by theoretical calculations that reproduce the GMR energies in Pb208 and Zr90 very well. From the GMR data, a value of Kτ=-550±100MeV is obtained for the asymmetry term in the nuclear incompressibility.

  16. A 20MeV (p,d) study of nuclear structure in the even and odd tin isotopes

    International Nuclear Information System (INIS)

    Fleming, D.G.; Paris-11 Univ., 91 - Orsay

    1978-01-01

    The even and odd tin isotopes have been studied by 20 MeV (p,d) reactions. States strongly populated in the odd isotopes are due to the valence neutron shells and extend up to only 2 MeV of excitation energy; 'deep hole' states were not identified. The occupation probabilities extracted from finite-range distorted-wave-Born-approximation calculations generally agree well with the predictions of the BCS theory of superconducting nuclei, particularly with the calculations of Clement and Baranger. In the even tin isotopes, strongly populated states are characterized predominantly by L=2 transfers extending up to 4 MeV excitation energy. The experimental spectroscopic factors are compared with the BCS calculated values of Clement and Baranger, Alzetta and Sawicki, and Van Gunsteren; relatively good agreement is obtained for L=2 transitions, but not for L=0 transitions. A considerable fraction of the sum rule L=2 strength in 118 Sn is missing in the 119 Sn(p,d) 118 Sn experimental spectrum; in like manner, no 4 + strength could be identified in either 114 Sn or 118 Sn

  17. Germanium detectors and natural radioactivity in food

    Energy Technology Data Exchange (ETDEWEB)

    Garbini, Lucia [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: GeDet-Collaboration

    2013-07-01

    Potassium is a very important mineral for many physiological processes, like fluid balance, protein synthesis and signal transmission in nerves. Many aliments like raisins, bananas or chocolate contain potassium. Natural potassium contains 0.012% of the radioactive isotope Potassium 40. This isotope decays via β{sup +} decay into a metastable state of Argon 40, which reaches its ground state emitting a gamma of 1460 keV. A commercially produced Germanium detector has been used to measure the energy spectra of different selected food samples. It was calibrated with KCl and potassium contents were extracted. Results verify the high potassium content of commonly recommended food samples. However, the measurement quantitatively differ from the expectations in several cases. One of the most interesting results concerns chocolate bars with different percentages of cacao.

  18. Electromechanically cooled germanium radiation detector system

    International Nuclear Information System (INIS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-01-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++, GAMANL, GRPANL and MGAU, typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service . The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted

  19. NTD germanium: a novel material for low-temperature bolometers

    International Nuclear Information System (INIS)

    Haller, E.E.; Palaio, N.P.; Rodder, M.; Hansen, W.L.; Kreysa, E.

    1982-06-01

    Six samples of ultra-pure (absolute value N/sub A/ - N/sub D/ absolute value less than or equal to 10 11 cm -3 ), single-crystal germanium have been neutron transmutation doped with neutron doses between 7.5 x 10 16 and 1.88 x 10 18 cm -2 . After thermal annealing at 400 0 C for six hours in a pure argon atmosphere, the samples have been characterized with Hall effect and resistivity measurements between 300 and 0.3 K. Our results show that the resistivity in the low temperature, hopping conduction regime can be approximated with rho = rho 0 exp(Δ/T). The three more heavily doped samples show values for rho 0 and Δ ranging from 430 to 3.3 Ω cm and from 4.9 to 2.8 K, respectively. The excellent reproducibility of neutron transmutation doping and the values of rho 0 and Δ make NTD Ge a prime candidate for the fabrication of low temperature, low noise bolometers. The large variation in the tabulated values of the thermal neutron cross sections for the different germanium isotopes makes it clear that accurate measurements of these cross-sections for well defined neutron energy spectra would be highly desirable

  20. Two-proton transfer reactions on even Ni and Zn isotopes

    International Nuclear Information System (INIS)

    Boucenna, A.; Kraus, L.; Linck, I.; Tsan Ung Chan

    1988-01-01

    Two-proton transfer reactions induced by 112 MeV 12 C ions on even Ni and Zn isotopes are found to be less selective than the analogous two-neutron transfer reactions induced on the same targets in a similar incident energy range. The additional collective aspects observed in the proton transfer are examined in view of a semiphenomenological model of two quasi-particles coupled to a triaxial asymmetric rotor. Tentative spin and parity assignments emerge from this comparison, from crude shell model calculations and from systematic trends

  1. Solution of kinetic equation by means of the moments method for phonon thermoconductivity and effect of isotopic disorder on it in the case of germanium and silicon crystals at T = 300 K

    CERN Document Server

    Zhernov, A P

    2001-01-01

    The problem on solving the kinetic equation through the moments method for the dielectric and semiconductor thermal conductivity is discussed. The evaluations of the isotopic disorder effect on the germanium crystals heat resistance in the multimoment approximation are obtained on the basis of the microscopic models. The contributions of the acoustic and optical phonons to the thermal conductivity are accounted for. The DELTA W surplus heat resistance in comparison with highly-enriched samples was determined for the natural composition samples. Good agreement between the theory and experiment for DELTA W is observed in the case of germanium. The theoretical value in the case of silicon is essentially lower as compared to the DELTA W experimental value

  2. Shape coexistence of light, even A mercury isotopes

    International Nuclear Information System (INIS)

    Cole, J.D.

    1978-01-01

    The results of the studies of the decay of thallium isotopes establish the coexistence and crossing of two bands in the mercury isotopes. The two bands are built on states of different deformation. The band built upon the ground state has an associated small negative β value (oblate shape) while the second band has a large positive β value (prolate shape). The band heads for the deformed bands in the 184 186 188 Hg isotopes are established as 0 + levels at 375.2, 523.8, and 824.5 keV respectively. A comparison between the experimental results and the predictions of calculations based upon the coexistence of two different nuclear deformations has been made. The presence of two different deformations as described by two minima in the nuclear potential energy curve is termed ''shape coexistence.'' The good agreement of the calculations with the experimental results adds further support to the coexistence interpretation. The coexistence and crossing of two bands of different deformation explains the unusual behavior of the yrast level spacing that is referred to as 'backbending' when discussing moment of inertia versus rotational frequency plots based on the yrast levels. The studies of the 186 188 Pt levels have established the lower members of the ground state band and of a rotation-alignment band. The experimental results confirm the rotation-alignment explanation of backbending in the platinum cases discussed. (Auth.)

  3. Superconductivity of tribolayers formed on germanium by friction between germanium and lead

    Energy Technology Data Exchange (ETDEWEB)

    Dukhovskoi, A.; Karapetyan, S.S.; Morozov, Y.G.; Onishchenko, A.S.; Petinov, V.I.; Ponomarev, A.N.; Silin, A.A.; Stepanov, B.M.; Tal' roze, V.L.

    1978-04-05

    A superconducting state was observed for the first time in tribolayers of germanium produced by friction of germanium with lead at 42 K. The maximum value of T/sub c/ obtained in the experiment was 19 K, which is much higher than T/sub c/ of bulk lead itself or of lead films sputtered on germanium.

  4. Calculations of the Low-Lying Structures in the Even-Even Nd/Sm/Gd/Dy Isotopes

    Science.gov (United States)

    Lee, Su Youn; Lee, J. H.; Lee, Young Jun

    2018-05-01

    The nuclear structure of deformed nuclei has been studied using the interacting boson model (IBM). In this study, energy levels and E2 transition probabilities were determined for even nuclei in the Nd/Sm/Gd/Dy chains which have a transition characteristic between the rotational, SU(3) and vibrational, U(5) limits. The structure of the nuclei exhibits a slight breaking of the SU(3) symmetry in the direction of U(5), and therefore, we add the d-boson number operator n d , which is the main term of the U(5) symmetric Hamiltonian, to the SU(3) Hamiltonian of the IBM. The calculated results for low-lying energy levels and E2 transition rates in Nd/Sm/Gd/Dy isotopes are in reasonably good agreement with known experimental results.

  5. Pulse shapes and surface effects in segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Daniel

    2010-03-24

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of {sup 76}Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope {sup 76}Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  6. Pulse shapes and surface effects in segmented germanium detectors

    International Nuclear Information System (INIS)

    Lenz, Daniel

    2010-01-01

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of 76 Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope 76 Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  7. Tunable conductivity in mesoporous germanium

    Science.gov (United States)

    Beattie, Meghan N.; Bioud, Youcef A.; Hobson, David G.; Boucherif, Abderraouf; Valdivia, Christopher E.; Drouin, Dominique; Arès, Richard; Hinzer, Karin

    2018-05-01

    Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10‑3) Ω‑1 cm‑1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10‑3 Ω‑1 cm‑1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

  8. Smooth germanium nanowires prepared by a hydrothermal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei1977@163.com [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhao, H.S. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Tan, W. [Henkel Huawei Electronics Co. Ltd., Lian' yungang, Jiangsu 222006 (China); Yu, H.Y. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Chen, Y.W. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Fan, C.G. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhang, Qian-Feng, E-mail: zhangqf@ahut.edu.cn [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2009-11-15

    Smooth germanium nanowires were prepared using Ge and GeO{sub 2} as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  9. Smooth germanium nanowires prepared by a hydrothermal deposition process

    International Nuclear Information System (INIS)

    Pei, L.Z.; Zhao, H.S.; Tan, W.; Yu, H.Y.; Chen, Y.W.; Fan, C.G.; Zhang, Qian-Feng

    2009-01-01

    Smooth germanium nanowires were prepared using Ge and GeO 2 as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  10. Filtering microphonics in dark matter germanium experiments

    International Nuclear Information System (INIS)

    Morales, J.; Garcia, E.; Ortiz de Solorzano, A.; Morales, A.; Nunz-Lagos, R.; Puimedon, J.; Saenz, C.; Villar, J.A.

    1992-01-01

    A technique for reducing the microphonic noise in a germanium spectrometer used in dark matter particles searches is described. Filtered energy spectra, corresponding to 48.5 kg day of data in a running experiment in the Canfranc tunnel are presented. Improvements of this filtering procedure with respect to the method of rejecting those events not distributed evenly in time are also discussed. (orig.)

  11. Evolution of quadrupole and octupole collectivity north-east of $^{132}$ Sn: the even Te and Xe isotopes

    CERN Multimedia

    We propose to study excited states in isotopes north-east of the doubly-magic $^{132}$Sn by $\\gamma$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to the determine B(E2) and B(E3) values to follow the evolution of quadrupole and octupole collectivity when going away from the shell closures at Z = 50 and N = 82. The B(E2; 0$^+_{gs}$ $\\rightarrow$ 2$^+_{1}$) values in the even isotopes $^{138-144}$Xe have been measured at REX-ISOLDE and the systematic trend towards neutron-rich nuclei is well described even by an empirical Grodzins-type formula. An increasing dipole moment observed for $^{140,142}$Xe is interpreted as indirect signature of increasing octupole correlations peaking at N = 88. So far, no B(E3) values are known. In contrast to the Xe isotopes, the Te ones, in particular $^{136}$Te, are known for their notoriously irregular behaviour. In order to understand the nuclear structure also on a microscopic basis, the isotope $^{136}$Te with just one pair of protons and neutrons...

  12. Pair phase transition and its evolution on even 64-68Ge isotopes

    International Nuclear Information System (INIS)

    Tong Hong; Shi Zhuyi

    2004-01-01

    By using a microscopic sdIBM-2+2q . p . approach which is the phenomenological core plus two-quasi-particle model and the experimental single-particle energies, the levels of the ground-band, β-band, γ-band, and partial two-quasi-particle states on 64-68 Ge isotopes are successfully reproduced. Based on the phenomenological model and microscopic approach, it has been deduced that no s-boson in the nucleus is breaking up and aligning; and that when one d-boson does, the minimum aligned energy can be calculated. This paper explicitly indicates that, with the increase of neutron number, an evolution process of PPT objects, i.e. from the two-quasi-proton states (on 64 Ge nucleus) to the two-quasi-neutron states (on 68 Ge nucleus) may take place in even Ge isotopes. (authors)

  13. In vitro binding of germanium to proteins of rice shoots

    International Nuclear Information System (INIS)

    Matsumoto, Hideaki; Takahashi, Eiichi

    1976-01-01

    The possibility of in vitro binding between proteins of rice shoots and germanium (Ge) was investigated. The proteins in mixtures of aqueous extracts of rice shoots and radioactive germanium ( 68 GeO 2 ) were fractionated. The binding of radioactivity to the proteins was observed even after 5 successive fractionation steps from the original mixtures. At the final fractionation step using polyacrylamide gel electrophoresis, a constant proportionality between protein concentration and associated radioactivity was found in most samples although not all. These results indicate that the binding of 68 Ge to proteins is not due to the simple adsorption by proteins. (auth.)

  14. The interacting boson approximation and the spectroscopy of the even Cadmium and Tin isotopes

    International Nuclear Information System (INIS)

    Morrison, I.; Smith, R.

    1981-01-01

    Within the framework of the Interacting Boson Approximation (IBA), the authors investigate, using the even-mass isotopes Cd 108 to Cd 116 and Sn 116 to Sn 124 , whether a single two-boson interaction can describe the energy, B(E2), quadrupole moment and some inelastic nucleon scattering systematics of these nuclei

  15. The processing of enriched germanium for the MAJORANA DEMONSTRATOR and R&D for a next generation double-beta decay experiment

    Science.gov (United States)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caja, J.; Caja, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Dunstan, D. T.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R. S.; Henning, R.; Hoppe, E. W.; Jasinski, B. R.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Meyer, J. H.; Myslik, J.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Reising, J. A.; Rielage, K.; Robertson, R. G. H.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Toth, L. M.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.

    2018-01-01

    The MAJORANA DEMONSTRATOR is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76 Ge to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76 Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluids from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of 68Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of 68Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.

  16. Next Generation Germanium Systems for Safeguards Applications

    International Nuclear Information System (INIS)

    Dreyer, J.; Burks, M.; Hull, E.

    2015-01-01

    We are developing the latest generation of highly portable, mechanically cooled germanium systems for safeguard applications. In collaboration with our industrial partner, Ph.D.s Co, we have developed the Germanium Gamma Ray Imager (GeGI), an imager with a 2π field of view. This instrument has been thoroughly field tested in a wide range of environments and have performed reliably even in the harshest conditions. The imaging capability of GeGI complements existing safeguards techniques by allowing for the spatial detection, identification, and characterization of nuclear material. Additionally, imaging can be used in design information verification activities to address potential material diversions. Measurements conducted at the Paducah Gaseous Diffusion Plant highlight the advantages this instrument offers in the identification and localization of LEU, HEU and Pu holdup. GeGI has also been deployed to the Savannah River Site for the measurement of radioactive waste canisters, providing information valuable for waste characterization and inventory accountancy. Measuring 30 x 15 x 23 cm and weighing approximately 15 kg, this instrument is the first portable germanium-based imager. GeGI offers high reliability with the convenience of mechanical cooling, making this instrument ideal for the next generation of safeguards instrumentation. (author)

  17. Gamma-ray emission from 80-86As isotopes

    International Nuclear Information System (INIS)

    Kratz, J.V.; Franz, H.; Kaffrell, N.; Hermann, G.

    1975-01-01

    Activities of 80-86 As were produced in (n,p) reactions on stable selenium nuclei as fission products, and via β - decay from their precursors. To separate arsenic and germanium from fission product mixtures, rapid chemical separations were applied. Gamma-ray emission from arsenic isotopes was studied in γ-singles and γγ coincidence experiments. Partial decay schemes are proposed for 34sec 81 As, 14.0sec and 19.1sec 82 As, 13.3sec 83 As and 5.3sec 84 As. The delayed-neutron branch in the decay of 2.05sec 85 As was shown to preferentially populate several excited levels in 84 Se while the ground state of 84 Se is fed to 29% only. The systematics of low-lying levels in doubly even selenium isotopes is extended up to mass number 86. Discontinuities in the systematics at N=48 are interpreted as an indication of a soft character of the nucleus 82 Se. (Auth.)

  18. Isotope shifts in odd and even energy levels of the neutral and singly ionised gadolinium atom

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Venugopalan, A.; Saksena, G.D.

    1979-01-01

    Isotope shift studies in the gadolinium spectra have been extended in the region 4140 to 4535 A. Isotope shift Δσ(156 to 160) have been measured in 315 lines of the neutral and singly ionised gadolinium atom using a recording Fabry-Perot Spectrometer and gadolinium samples enriched in 156 Gd and 160 Gd isotopes. Some of the Gd I lines studied involve transitions from newly identified high odd levels of 4f 8 6s6p, 4f 7 5d6s7s and 4f 7 5d 3 configurations to low even levels of 4f 8 6s 2 and 4f 7 6s 2 6p configurations. Electronic configurations of the energy levels have been discussed on the basis of observed isotope shifts. In some cases assigned configurations have been revised and probable configurations have been suggested. (author)

  19. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation

    International Nuclear Information System (INIS)

    Cai, Qi; Xu, Baojian; Ye, Lin; Di, Zengfeng; Huang, Shanluo; Du, Xiaowei; Zhang, Jishen; Jin, Qinghui; Zhao, Jianlong

    2015-01-01

    Highlights: • A simple and effective approach for higly stable germanium passivation. • 1-Dodecanethiol self-assembled monolayers for germanium oxidation resistance. • The influence factors of germanium passivation were systematically studied. • The stability of the passivated Ge was more than 10 days even in water conditions. - Abstract: As a typical semiconductor material, germanium has the potential to replace silicon for future-generation microelectronics, due to its better electrical properties. However, the lack of stable surface state has limited its extensive use for several decades. In this work, we demonstrated highly stable self-assembled monolayers (SAMs) on Ge surface to prevent oxidization for further applications. After the pretreatment in hydrochloric acid, the oxide-free and Cl-terminated Ge could be further coated with 1-dodecanethiol (NDM) SAMs. The influence factors including reaction time, solvent component and reaction temperature were optimized to obtain stable passivated monolayer for oxidation resistance. Contact angle analysis, atomic force microscopy, ellipsometer and X-ray photoelectron spectroscopy were performed to characterize the functionalized Ge surface respectively. Meanwhile, the reaction mechanism and stability of thiols SAMs on Ge (1 1 1) surface were investigated. Finally, highly stable passivated NDM SAMs on Ge surface could be formed through immersing oxide-free Ge in mixture solvent (water/ethanol, v/v = 1:1) at appropriately elevated temperature (∼80 °C) for 24 h. And the corresponding optimized passivated Ge surface was stable for more than 10 days even in water condition, which was much longer than the data reported and paved the way for the future practical applications of Ge.

  20. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qi [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Xu, Baojian, E-mail: xbj@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Shanghai Internet of Things Co., LTD, No. 1455, Pingcheng Road, Shanghai 201899 (China); Ye, Lin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Di, Zengfeng [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Huang, Shanluo; Du, Xiaowei [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Zhang, Jishen; Jin, Qinghui [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Zhao, Jianlong, E-mail: jlzhao@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China)

    2015-10-30

    Highlights: • A simple and effective approach for higly stable germanium passivation. • 1-Dodecanethiol self-assembled monolayers for germanium oxidation resistance. • The influence factors of germanium passivation were systematically studied. • The stability of the passivated Ge was more than 10 days even in water conditions. - Abstract: As a typical semiconductor material, germanium has the potential to replace silicon for future-generation microelectronics, due to its better electrical properties. However, the lack of stable surface state has limited its extensive use for several decades. In this work, we demonstrated highly stable self-assembled monolayers (SAMs) on Ge surface to prevent oxidization for further applications. After the pretreatment in hydrochloric acid, the oxide-free and Cl-terminated Ge could be further coated with 1-dodecanethiol (NDM) SAMs. The influence factors including reaction time, solvent component and reaction temperature were optimized to obtain stable passivated monolayer for oxidation resistance. Contact angle analysis, atomic force microscopy, ellipsometer and X-ray photoelectron spectroscopy were performed to characterize the functionalized Ge surface respectively. Meanwhile, the reaction mechanism and stability of thiols SAMs on Ge (1 1 1) surface were investigated. Finally, highly stable passivated NDM SAMs on Ge surface could be formed through immersing oxide-free Ge in mixture solvent (water/ethanol, v/v = 1:1) at appropriately elevated temperature (∼80 °C) for 24 h. And the corresponding optimized passivated Ge surface was stable for more than 10 days even in water condition, which was much longer than the data reported and paved the way for the future practical applications of Ge.

  1. Consistent evaluations of (n,2n) and (n,np) reaction excitation functions for some even-even isotopes using empirical systematics

    Energy Technology Data Exchange (ETDEWEB)

    Manokhin, Vassily N. [Russian Nuclear Data Center, Institute of Physics and Power Engineering, Obninsk (Russian Federation); Odano, Naoteru; Hasegawa, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    An approach for consistent evaluation of (n,2n) and (n,np) reaction excitation functions for some even-even isotopes with the (n,np) reaction thresholds lower than (n,2n) reaction ones is described. For determination of cross sections in the maximum of the (n,2n) and (n,np) reaction excitation functions some empirical systematics developed by Manokhin were used together with trends in dependence of gaps between the (n,2n) and (n,np) thresholds on atomic mass number A. The shapes of the (n,2n) and (n,np) reaction excitation functions were calculated using the normalized functions from the Manokhin's systematics. Excitation functions of (n,2n) and (n,np) reactions were evaluated for several nuclei by using the systematics and it was found that the approach used for the present study gives reasonable results. (author)

  2. Towards 100Sn: Studies on neutron-deficient even isotopes of tin

    International Nuclear Information System (INIS)

    Rathke, G.E.

    1987-02-01

    Neutron-deficient 108,106,104 Sn isotopes were produced by heavy ion induced fusion reactions using high-intensity 59 Ni beams from the UNILAC of the GSI. Their decay properties were studied by techniques of gamma and conversion electron spectroscopy employing the mass separator on-line to the UNILAC. Earlier information on the 108 Sn → 108 In and 106 Sn → 106 In decays was complemented and improved in the course of this work. The new nucleus 104 Sn and its decay to excited states in 104 In was identified and studied for the first time. These investigations yield the following results: the mass of 104 Sn and of nuclei linked to it by alpha decay or proton radioactivity, 108 Te, 112 Xe and 109 I, 113 Cs, respectively were determined from the measured Q EC value of 104 Sn and the known mass value of 104 In. These are nuclei very close or beyond the proton drip line. In addition, information on the quenching of the fast Gamow-Teller beta decay of the even neutron-deficient tin isotopes was obtained. This complements investigations on the N = 50 isotones 94 Ru and 96 Pd, and allows a systematic comparison of these transition strengths for nuclei near the doubly magic 100 Sn. The spreading of the vertical strokeπg 9/2 -1 vg 7/2 , 1 + > configuration over several states, due to residual interactions, and the centroid energies of these magnetic dipole states were determined for the corresponding odd-odd indium isotopes. (orig./HSI)

  3. Isotope shift studies in the spectra of gadolinium in UV region and term shifts of high even levels of Gd I

    International Nuclear Information System (INIS)

    Afzal, S.M.; Venugopalan, A.; Ahmad, S.A.

    1997-01-01

    Isotope shift Δσ( 156 Gd- 160 Gd) is reported in 70 spectral lines of neutral gadolinium atom (Gd I) in the 3290-3920 A region providing isotope shift data in UV lines of Gd I spectrum for the first time. The measurements were carried out on a photoelectric recording Fabry-Perot Spectrometer using highly enriched isotopic samples of gadolinium. Term isotope shifts ΔT( 156 Gd- 160 Gd) have been evaluated for 48 high lying even parity energy levels of Gd I using this data; new ΔT values have been obtained for 24 levels. Electronic configurations 4f 7 5d6s6p, 4f 7 5d 2 6p and 4f 8 5d6s assigned earlier to these even levels have been either confirmed or configuration mixing pointed out in some of these levels. Probable assignment of 4f 8 5d6s configuration to 8 even levels between 32930 and 35500 cm -1 have been confirmed. (orig.)

  4. Excited bands in even-even rare-earth nuclei

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Hirsch, Jorge G.

    2004-01-01

    The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands

  5. Theoretical estimates of supernova-neutrino cross sections for the stable even-even lead isotopes: Charged-current reactions

    Science.gov (United States)

    Almosly, W.; Carlsson, B. G.; Suhonen, J.; Toivanen, J.; Ydrefors, E.

    2016-10-01

    A detailed study of the charged-current supernova electron neutrino and electron antineutrino scattering off the stable even-mass lead isotopes A =204 , 206, and 208 is reported in this work. The proton-neutron quasiparticle random-phase approximation (pnQRPA) is adopted to construct the nuclear final and initial states. Three different Skyrme interactions are tested for their isospin and spin-isospin properties and then applied to produce (anti)neutrino-nucleus scattering cross sections for (anti)neutrino energies below 80 MeV. Realistic estimates of the nuclear responses to supernova (anti)neutrinos are computed by folding the computed cross sections with a two-parameter Fermi-Dirac distribution of the electron (anti)neutrino energies. The computed cross sections are compared with earlier calculations and the analyses are extended to take into account the effects coming from the neutrino oscillations.

  6. Germanium and indium

    Science.gov (United States)

    Shanks, W.C. Pat; Kimball, Bryn E.; Tolcin, Amy C.; Guberman, David E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Germanium and indium are two important elements used in electronics devices, flat-panel display screens, light-emitting diodes, night vision devices, optical fiber, optical lens systems, and solar power arrays. Germanium and indium are treated together in this chapter because they have similar technological uses and because both are recovered as byproducts, mainly from copper and zinc sulfides.The world’s total production of germanium in 2011 was estimated to be 118 metric tons. This total comprised germanium recovered from zinc concentrates, from fly ash residues from coal burning, and from recycled material. Worldwide, primary germanium was recovered in Canada from zinc concentrates shipped from the United States; in China from zinc residues and coal from multiple sources in China and elsewhere; in Finland from zinc concentrates from the Democratic Republic of the Congo; and in Russia from coal.World production of indium metal was estimated to be about 723 metric tons in 2011; more than one-half of the total was produced in China. Other leading producers included Belgium, Canada, Japan, and the Republic of Korea. These five countries accounted for nearly 95 percent of primary indium production.Deposit types that contain significant amounts of germanium include volcanogenic massive sulfide (VMS) deposits, sedimentary exhalative (SEDEX) deposits, Mississippi Valley-type (MVT) lead-zinc deposits (including Irish-type zinc-lead deposits), Kipushi-type zinc-lead-copper replacement bodies in carbonate rocks, and coal deposits.More than one-half of the byproduct indium in the world is produced in southern China from VMS and SEDEX deposits, and much of the remainder is produced from zinc concentrates from MVT deposits. The Laochang deposit in Yunnan Province, China, and the VMS deposits of the Murchison greenstone belt in Limpopo Province, South Africa, provide excellent examples of indium-enriched deposits. The SEDEX deposits at Bainiuchang, China (located in

  7. Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications

    Science.gov (United States)

    Haller, E. E.; Itoh, K. M.; Beeman, J. W.

    1996-01-01

    Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.

  8. Isotopic dependence of the giant quadrupole resonance in the stable even-mass molybdenum nuclei

    International Nuclear Information System (INIS)

    Moalem, A.; Gaillard, Y.; Bemolle, A.M.; Buenerd, M.; Chauvin, J.; Duhamel, G.; Lebrun, D.; Martin, P.; Perrin, G.; de Saintignon, P.

    1979-01-01

    Inelastic scattering of 110 MeV 3 He particles is used to probe the quadrupole strength in the even Mo isotopes. The peak position of the giant quadrupole resonance is found to decrease more rapidly than predicted by the A/sup -1/3/ law, a behavior very similar to that exhibited by the photonuclear giant dipole resonance. The width and strength of the giant quadrupole resonance are practically constant in 92 Mo through 100 Mo

  9. Precipitation of lithium in germanium

    International Nuclear Information System (INIS)

    Masaik, M.; Furgolle, B.

    1969-01-01

    The precipitation of Lithium in Germanium was studied. Taking account of the interactions Ga LI, LiO, we calculated the oxygen content in germanium samples from the resistivity measurements. (authors)

  10. Zone refining high-purity germanium

    International Nuclear Information System (INIS)

    Hubbard, G.S.; Haller, E.E.; Hansen, W.L.

    1977-10-01

    The effects of various parameters on germanium purification by zone refining have been examined. These parameters include the germanium container and container coatings, ambient gas and other operating conditions. Four methods of refining are presented which reproducibly yield 3.5 kg germanium ingots from which high purity (vertical barN/sub A/ - N/sub D/vertical bar less than or equal to2 x 10 10 cm -3 ) single crystals can be grown. A qualitative model involving binary and ternary complexes of Si, O, B, and Al is shown to account for the behavior of impurities at these low concentrations

  11. Isospin degree of freedom in even-even 68-76Ge and 62-70Zn isotopes

    International Nuclear Information System (INIS)

    Jalili Majarshin, A.

    2018-01-01

    The introduction of isotopic spin is significant in light nuclei as Ge and Zn isotopes in order to take into account isospin effects on energy spectra. Dynamical symmetries in spherical, γ-soft limits and transition in the interacting boson model IBM-3 are analyzed. Analytic expressions and exact eigenenergies, electromagnetic transitions probabilities are obtained for the transition between spherical and γ-soft shapes by using the Bethe ansatz within an infinite-dimensional Lie algebra in light mass nuclei. The corresponding algebraic structure and reduction chain are studied in IBM-3. For examples, the nuclear structure of the 68-76 Ge and 62-70 Zn isotopes is calculated in IBM-3 and compared with experimental results. (orig.)

  12. Isospin degree of freedom in even-even 68-76Ge and 62-70Zn isotopes

    Science.gov (United States)

    Jalili Majarshin, A.

    2018-01-01

    The introduction of isotopic spin is significant in light nuclei as Ge and Zn isotopes in order to take into account isospin effects on energy spectra. Dynamical symmetries in spherical, γ-soft limits and transition in the interacting boson model IBM-3 are analyzed. Analytic expressions and exact eigenenergies, electromagnetic transitions probabilities are obtained for the transition between spherical and γ-soft shapes by using the Bethe ansatz within an infinite-dimensional Lie algebra in light mass nuclei. The corresponding algebraic structure and reduction chain are studied in IBM-3. For examples, the nuclear structure of the 68-76Ge and 62-70Zn isotopes is calculated in IBM-3 and compared with experimental results.

  13. Large odd-even staggering in the very light platinum isotopes from laser spectroscopy

    CERN Document Server

    Le Blanc, F; Cabaret, L A; Crawford, J E; Duong, H T; Genevey, J; Girod, M; Huber, G; Krieg, M; Lee, J K P; Lettry, Jacques; Lunney, M D; Obert, J; Oms, J; Peru, S; Putaux, J C; Roussière, B; Sauvage, J; Sebastian, V; Zemlyanoi, S G

    1998-01-01

    Laser spectroscopy measurements have been carried out on very neutron-deficient platinum isotopes with the COMPLIS experimental set-up on line with the ISOLDE-Booster facility. For the first time, Hg alpha -decay was exploited to extend the very light platinum chain. Using the 5d/sup 9/6s /sup 3/D/sub 3/ to 5d/sup 9/6p /sup 3/P /sub 2/ optical transition, hyperfine spectra of /sup 182,181,180,179,178/Pt and /sup 183/Pt/sup m/ were recorded for the first time. The variation of the mean square charge radius between these nuclei, the magnetic moments of the odd isotopes and the quadrupole moment of /sup 183/Pt/sup m/ were thus measured. A large deformation change between /sup 183/Pt/sup 9/ and /sup 183/Pt/sup m/, an odd-even staggering of the charge radius and a deformation drop from A=179 are clearly observed. All these results are discussed and compared with microscopic theoretical predictions using Hartree-Fock- Bogolyubov calculations using the Gogny force. (20 refs).

  14. Mesostructured metal germanium sulfides

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, M.J.; Coombs, N.; Bedard, R.L.; White, S.; Thompson, L.K.; Ozin, G.A.

    1999-12-29

    A new class of mesostructured metal germanium sulfide materials has been prepared and characterized. The synthesis, via supramolecular assembly of well-defined germanium sulfide anionic cluster precursors and transition-metal cations in formamide, represents a new strategy for the formation of this class of solids. A variety of techniques were employed to examine the structure and composition of the materials. Structurally, the material is best described as a periodic mesostructured metal sulfide-based coordination framework akin to periodic hexagonal mesoporous silica, MCM-41. At the molecular scale, the materials strongly resemble microstructured metal germanium sulfides, in which the structure of the [Ge{sub 4}S{sub 10}]{sup 4{minus}} cluster building-blocks are intact and linked via {mu}-S-M-S bonds. Evidence for a metal-metal bond in mesostructured Cu/Ge{sub 4}S{sub 10} is also provided.

  15. New hydrogen donors in germanium

    International Nuclear Information System (INIS)

    Pokotilo, Yu.M.; Petukh, A.N.; Litvinov, V.V.

    2003-01-01

    The electrophysical properties of the n-type conductivity germanium, irradiated through protons, is studied by the volt-farad method. It is shown that the heat treatment of the implanted germanium at the temperature of 200-300 deg C leads to formation of the fast-diffusing second-rate donors. It is established that the diffusion coefficient of the identified donors coincides with the diffusion coefficient of the atomic hydrogen with an account of the capture on the traps. The conclusion is made, that the atomic hydrogen is the second-rate donor center in germanium [ru

  16. Giant monopole resonance in even-A Cd isotopes, the asymmetry term in nuclear incompressibility, and the 'softness' of Sn and Cd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Patel, D. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Garg, U., E-mail: garg@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Fujiwara, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Akimune, H. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Berg, G.P.A. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Harakeh, M.N. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); Itoh, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Kawabata, T. [Center for Nuclear Studies, University of Tokyo, Tokyo 113-0033 (Japan); Kawase, K. [Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047 (Japan); Nayak, B.K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Ohta, T. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Ouchi, H. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Piekarewicz, J. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Uchida, M. [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8850 (Japan); Yoshida, H.P. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Yosoi, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan)

    2012-12-05

    The isoscalar giant monopole resonance (ISGMR) in even-A Cd isotopes has been studied by inelastic {alpha}-scattering at 100 MeV/u and at extremely forward angles, including 0 Degree-Sign . The asymmetry term in the nuclear incompressibility extracted from the ISGMR in Cd isotopes is found to be K{sub {tau}}=-555{+-}75 MeV, confirming the value previously obtained from the Sn isotopes. ISGMR strength has been computed in relativistic RPA using NL3 and FSUGold effective interactions. Both models significantly overestimate the centroids of the ISGMR strength in the Cd isotopes. Combined with other recent theoretical effort, the question of the 'softness' of the open-shell nuclei in the tin region remains open still.

  17. Metal induced crystallization of silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gjukic, M.

    2007-05-15

    In the framework of this thesis the applicability of the aluminium-induced layer exchange on binary silicon germanium alloys was studied. It is here for the first time shown that polycrstalline silicon-germanium layers can be fabricated over the whole composition range by the aluminium-induced layer exchange. The experimental results prove thet the resulting material exhibits a polycrystalline character with typocal grain sizes of 10-100 {mu}m. Raman measurements confirm that the structural properties of the resulting layers are because of the large crystallites more comparable with monocrystalline than with nano- or microcrystalline silicon-germanium. The alloy ratio of the polycrystalline layer correspondes to the chemical composition of the amorphous starting layer. The polycrystalline silicon-germanium layers possess in the range of the interband transitions a reflection spectrum, as it is otherwise only known from monocrystalline reference layers. The improvement of the absorption in the photovoltaically relevant spectral range aimed by the application of silicon-germanium could be also proved by absorption measurments. Strongly correlated with the structural properties of the polycrystalline layers and the electronic band structure resulting from this are beside the optical properties also the electrical properties of the material, especially the charge-carrier mobility and the doping concentration. For binary silicon-germanium layers the hole concentration of about 2 x 10{sup 18} cm{sup -3} for pure silicon increrases to about 5 x 10{sup 20} cm{sub -3} for pure germanium. Temperature-resolved measurements were applied in order to detect doping levels respectively semiconductor-metal transitions. In the last part of the thesis the hydrogen passivation of polycrystalline thin silicon-germanium layers, which were fabricated by means of aluminium-induced layer exchange, is treated.

  18. Spin-dependent γ softness or triaxiality in even-even 132-138Nd nuclei

    Science.gov (United States)

    Chai, Qing-Zhen; Wang, Hua-Lei; Yang, Qiong; Liu, Min-Liang

    2015-02-01

    The properties of γ instability in rapidly rotating even-even 132-138Nd isotopes have been investigated using the pairing-deformation self-consistent total-Routhian-surface calculations in a deformation space of (β2, γ, β4). It is found that even-even 134-138Nd nuclei exhibit triaxiality in both ground and excited states, even up to high-spin states. The lightest isotope possesses a well-deformed prolate shape without a γ deformation component. The current numerical results are compared with previous calculations and available observables such as quadrupole deformation β2 and the feature of γ-band levels, showing basically a general agreement with the observed trend of γ correlations (e.g. the pattern of the odd-even energy staggering of the γ band). The existing differences between theory and experiment are analyzed and discussed briefly. Supported by National Natural Science Foundation of China (10805040,11175217), Foundation and Advanced Technology Research Program of Henan Province(132300410125) and S & T Research Key Program of Henan Province Education Department (13A140667)

  19. Germanium content in Polish hard coals

    Directory of Open Access Journals (Sweden)

    Makowska Dorota

    2016-01-01

    Full Text Available Due to the policy of the European Union, it is necessary to search for new sources of scarce raw materials. One of these materials is germanium, listed as a critical element. This semi-metal is widely used in the electronics industry, for example in the production of semiconductors, fibre optics and solar cells. Coal and fly ash from its combustion and gasification for a long time have been considered as a potential source of many critical elements, particularly germanium. The paper presents the results of germanium content determination in the Polish hard coal. 23 coal samples of various coal ranks were analysed. The samples were collected from 15 mines of the Upper Silesian Coal Basin and from one mine of the Lublin Coal Basin. The determination of germanium content was performed with the use of Atomic Absorption Spectrometry with Electrothermal Atomization (GFAAS. The investigation showed that germanium content in the analysed samples was at least twice lower than the average content of this element in the hard coals analysed so far and was in the range of 0.08 ÷ 1.28 mg/kg. Moreover, the content of Ge in the ashes from the studied coals does not exceed 15 mg/kg, which is lower than the average value of Ge content in the coal ashes. The highest content of this element characterizes coals of the Lublin Coal Basin and young coals type 31 from the Vistula region. The results indicate a low utility of the analysed coal ashes as a source of the recovery of germanium. On the basis of the analyses, the lack of the relationship between the content of the element and the ash content in the tested coals was noted. For coals of the Upper Silesian Coal Basin, the relationship between the content of germanium in the ashes and the depth of the seam was observed.

  20. A segmented, enriched N-type germanium detector for neutrinoless double beta-decay experiments

    Science.gov (United States)

    Leviner, L. E.; Aalseth, C. E.; Ahmed, M. W.; Avignone, F. T.; Back, H. O.; Barabash, A. S.; Boswell, M.; De Braeckeleer, L.; Brudanin, V. B.; Chan, Y.-D.; Egorov, V. G.; Elliott, S. R.; Gehman, V. M.; Hossbach, T. W.; Kephart, J. D.; Kidd, M. F.; Konovalov, S. I.; Lesko, K. T.; Li, Jingyi; Mei, D.-M.; Mikhailov, S.; Miley, H.; Radford, D. C.; Reeves, J.; Sandukovsky, V. G.; Umatov, V. I.; Underwood, T. A.; Tornow, W.; Wu, Y. K.; Young, A. R.

    2014-01-01

    We present data characterizing the performance of the first segmented, N-type Ge detector, isotopically enriched to 85% 76Ge. This detector, based on the Ortec PT6×2 design and referred to as SEGA (Segmented, Enriched Germanium Assembly), was developed as a possible prototype for neutrinoless double beta-decay measurements by the MAJORANA collaboration. We present some of the general characteristics (including bias potential, efficiency, leakage current, and integral cross-talk) for this detector in its temporary cryostat. We also present an analysis of the resolution of the detector, and demonstrate that for all but two segments there is at least one channel that reaches the MAJORANA resolution goal below 4 keV FWHM at 2039 keV, and all channels are below 4.5 keV FWHM.

  1. Germanium field-effect transistor made from a high-purity substrate

    International Nuclear Information System (INIS)

    Hansen, W.L.; Goulding, F.S.; Haller, E.E.

    1978-11-01

    Field effect transistors have been fabricated on high-purity germanium substrates using low-temperature technology. The aim of this work is to preserve the low density of trapping centers in high-quality starting material by low-temperature ( 0 C) processing. The use of germanium promises to eliminate some of the traps which cause generation-recombination noise in silicon field-effect transistors (FET's) at low temperatures. Typically, the transconductance (g/sub m/) in the germanium FET's is 10 mA/V and the gate leakage can be less than 10 -12 A. Present devices exhibit a large 1/f noise component and most of this noise must be eliminated if they are to be competitive with silicon FET's commonly used in high-resolution nuclear spectrometers

  2. Bond particle model for semiconductor melts and its application to liquid structure germanium

    International Nuclear Information System (INIS)

    Ferrante, A.; Tosi, M.P.

    1988-08-01

    A simple type of liquid state model is proposed to describe on a primitive level the melt of an elemental group IV semiconductor as a mixture of atoms and bond particles. The latter, on increase of a coupling strength parameter becomes increasingly localized between pairs of atoms up to local tetrahedral coordination of atoms by bond particles. Angular interatomic correlations are built into the model as bond particle localization grows, even though the bare interactions between the components of the liquid are formally described solely in terms of central pair potentials. The model is solved for liquid structure by standard integral equation techniques of liquid state theory and by Monte Carlo simulation, for values of the parameters which are appropriate to liquid germanium down to strongly supercooled states. The calculated liquid structure is compared with the results of diffraction experiments on liquid germanium near freezing and discussed in relation to diffraction data on amorphous germanium. The model suggests simple melting criteria for elemental and polar semiconductors, which are empirically verified. (author). 25 refs, 9 figs, 3 tabs

  3. Isospin degree of freedom in even-even {sup 68-76}Ge and {sup 62-70}Zn isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Jalili Majarshin, A. [University of Tabriz, Department of Physics, Tabriz (Iran, Islamic Republic of)

    2018-01-15

    The introduction of isotopic spin is significant in light nuclei as Ge and Zn isotopes in order to take into account isospin effects on energy spectra. Dynamical symmetries in spherical, γ-soft limits and transition in the interacting boson model IBM-3 are analyzed. Analytic expressions and exact eigenenergies, electromagnetic transitions probabilities are obtained for the transition between spherical and γ-soft shapes by using the Bethe ansatz within an infinite-dimensional Lie algebra in light mass nuclei. The corresponding algebraic structure and reduction chain are studied in IBM-3. For examples, the nuclear structure of the {sup 68-76}Ge and {sup 62-70}Zn isotopes is calculated in IBM-3 and compared with experimental results. (orig.)

  4. Insights into thermal diffusion of germanium and oxygen atoms in HfO2/GeO2/Ge gate stacks and their suppressed reaction with atomically thin AlOx interlayers

    International Nuclear Information System (INIS)

    Ogawa, Shingo; Asahara, Ryohei; Minoura, Yuya; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji; Sako, Hideki; Kawasaki, Naohiko; Yamada, Ichiko; Miyamoto, Takashi

    2015-01-01

    The thermal diffusion of germanium and oxygen atoms in HfO 2 /GeO 2 /Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that 18 O-tracers composing the GeO 2 underlayers diffuse within the HfO 2 overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO 2 also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO 2 surfaces, and the reaction was further enhanced at high temperatures with the assistance of GeO desorption. A technique to insert atomically thin AlO x interlayers between the HfO 2 and GeO 2 layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks

  5. A systematic fast-timing study of even-even nuclei in the well deformed A 170-180 region

    Energy Technology Data Exchange (ETDEWEB)

    Jolie, J.; Regis, J.M.; Dannhoff, M.; Gerst, R.B.; Karayonchev, V.; Mueller-Gatermann, C.; Saed-Samii, N.; Stegemann, S.; Blazhev, A. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Rudigier, M. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Department of Physics, University of Surrey (United Kingdom)

    2016-07-01

    At the Cologne Tandem accelerator we are performing a systematic study of lifetimes in the ground state bands of well deformed even-even nuclei in order to increase the precision of the ns-ps lifetimes and to solve inconsistencies in the literature. The measurements are done using Orange spectrometers, LaBr{sub 3}(Ce) scintillators and Ge detectors. The data are analyzed using the slope and the generalized centroid difference method. The latter allows the measurement of lifetimes down to 5 ps. First results on Yb, Hf and W isotopes are presented.

  6. Band structure of even-even selenium isotopes in the proton-neutron interacting boson model

    International Nuclear Information System (INIS)

    Kaup, U.; Moenkemeyer, C.; Brentano, P. von

    1983-01-01

    Available systematic IBM calculations [1-6] for Krypton and Strontium isotopes have been extended to Selenium. The analysis in terms of the IBM is complicated by the interplay of collective and noncollective degrees of freedom. However, satisfactory agreement has been obtained for N>=42. (orig.)

  7. Two-electron germanium centers with a negative correlation energy in lead chalcogenides

    International Nuclear Information System (INIS)

    Terukov, E. I.; Marchenko, A. V.; Zaitseva, A. V.; Seregin, P. P.

    2007-01-01

    It is shown that the charge state of the 73 Ge antisite defect that arises in anionic sublattices of PbS, PbSe, and PbTe after radioactive transformation of 73 As does not depend on the position of the Fermi level, whereas the 73 Ge center in cationic sublattices of PbS and PbSe represents a two-electron donor with the negative correlation energy: the Moessbauer spectrum for the n-type samples corresponds to the neutral state of the donor center (Ge 2+ ), while this spectrum corresponds to the doubly ionized state (Ge 4+ ) of the center in the p-type samples. In partially compensated PbSe samples, a fast electron exchange between the neutral and ionized donor centers is realized. It is shown by the method of Moessbauer spectroscopy for the 119 Sn isotope that the germanium-related energy levels are located higher than the levels formed in the band gap of these semiconductors by the impurity tin atoms

  8. Method of beryllium implantation in germanium substrate

    International Nuclear Information System (INIS)

    Kagawa, S.; Baba, Y.; Kaneda, T.; Shirai, T.

    1983-01-01

    A semiconductor device is disclosed, as well as a method for manufacturing it in which ions of beryllium are implanted into a germanium substrate to form a layer containing p-type impurity material. There after the substrate is heated at a temperature in the range of 400 0 C. to 700 0 C. to diffuse the beryllium ions into the substrate so that the concentration of beryllium at the surface of the impurity layer is in the order of 10 17 cm- 3 or more. In one embodiment, a p-type channel stopper is formed locally in a p-type germanium substrate and an n-type active layer is formed in a region surrounded by, and isolated from, the channel stopper region. In another embodiment, a relatively shallow p-type active layer is formed at one part of an n-type germanium substrate and p-type guard ring regions are formed surrounding, and partly overlapping said p-type active layer. In a further embodiment, a p-type island region is formed at one part of an n-type germanium substrate, and an n-type region is formed within said p-type region. In these embodiments, the p-type channel stopper region, p-type guard ring regions and the p-type island region are all formed by implanting ions of beryllium into the germanium substrate

  9. Germanium soup

    Science.gov (United States)

    Palmer, Troy A.; Alexay, Christopher C.

    2006-05-01

    This paper addresses the variety and impact of dispersive model variations for infrared materials and, in particular, the level to which certain optical designs are affected by this potential variation in germanium. This work offers a method for anticipating and/or minimizing the pitfalls such potential model variations may have on a candidate optical design.

  10. Investigation of reduced transition-strengths in neutron-rich chromium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Braunroth, Thomas; Dewald, Alfred; Fransen, Christoph; Litzinger, Julia [Institut fuer Kernphysik, Universitaet Koeln (Germany); Iwasaki, Hironori [National Superconducting Cyclotron Laboratory, MSU (United States); Lemasson, Antoine [GANIL, Laboratoire Commun DSM/CEA (France); Lenzi, Silvia [Department of Physics and Astronomy, University of Padova (Italy); INFN, Sezione di Padova (Italy)

    2015-07-01

    Neutron-rich nuclei close to N=40 are known for their rapid changes in nuclear structure. While {sup 68}Ni exhibits signatures of a shell closure, experimental data - e.g. excitation energies of the 2{sup +}{sub 1}-state and B(E2;2{sup +}{sub 1} → 0{sup +}{sub 1})-values - along the isotopic chains in even more exotic Fe and Cr-isotopes suggest a sudden rise in collective behaviour for N → 40. Lifetimes of low-lying yrast states in {sup 58,60,62}Cr were measured with the Recoil Distance Doppler-shift (RDDS) technique at NSCL, MSU (USA) to deduce model independent B(E2)-values. After fragmentation of a primary {sup 82}Se beam (E=140 AMeV) on a {sup 9}Be target and subsequent filtering with the A1900 fragment separator, high purity {sup 59,61,63}Mn-beams (E ∝ 95 AMeV) impinged on the {sup 9}Be plunger target, where excited states in the above mentioned Cr-isotopes were then populated in one proton knockout reactions. The S800 spectrograph allowed a clear recoil identification, which then lead to clean γ-spectra as measured by the Segmented Germanium Array (SeGA). Final results of this experiment will be shown and discussed in the context of state-of-the-art shell-model calculations.

  11. Application of the Broad Energy Germanium detector: A technique for elucidating β-decay schemes which involve daughter nuclei with very low energy excited states

    Energy Technology Data Exchange (ETDEWEB)

    Venhart, M., E-mail: martin.venhart@savba.sk [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Wood, J.L. [Department of Physics, Georgia Institute of Technology, Atlanta GA 30332 (United States); Boston, A.J. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Cocolios, T.E. [School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); KU Leuven, Instituut voor Kern, en Stralingsfysica, B-3001 Leuven (Belgium); Harkness-Brennan, L.J.; Herzberg, R.-D.; Joss, D.T.; Judson, D.S. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Kliman, J.; Matoušek, V. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Motyčák, Š. [Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, SK-812 19 Bratislava (Slovakia); Page, R.D.; Patel, A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Petrík, K.; Sedlák, M.; Veselský, M. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia)

    2017-03-21

    A technique for elucidating β-decay schemes of isotopes with a large density of states at low excitation energy has been developed, in which a Broad Energy Germanium (BEGe) detector is used in conjunction with coaxial hyper-pure germanium detectors. The power of this technique is demonstrated using the example of {sup 183}Hg decay. Mass-separated samples of {sup 183}Hg were produced by a deposition of the low-energy radioactive-ion beam delivered by the ISOLDE facility at CERN. The excellent energy resolution of the BEGe detector allowed γ-ray energies to be determined with a precision of a few tens of eV, which was sufficient for the analysis of the Rydberg-Ritz combinations (in conjunction with γ-γ coincidences) in the level scheme. The timestamped structure of the data was used for unambiguous separation of γ rays arising from the decay of {sup 183}Hg from those due to the daughter decays.

  12. Predictions on the modes of decay of even Z superheavy isotopes within the range 104 ≤ Z ≤ 136

    Science.gov (United States)

    Santhosh, K. P.; Nithya, C.

    2018-01-01

    The decay modes and half lives of all the even Z isotopes of superheavy elements within the range 104 ≤ Z ≤ 136 have been predicted by comparing the alpha decay half-lives with the spontaneous fission half-lives. The Coulomb and proximity potential model for deformed nuclei (CPPMDN) and the shell-effect-dependent formula of Santhosh et al. are used to calculate the alpha half-lives and spontaneous fission half-lives respectively. For theoretical comparison the alpha decay half-lives are also calculated using Coulomb and proximity potential model (CPPM), the Viola-Seaborg-Sobiczewski semi-empirical (VSS) relation, the universal (UNIV) curve of Poenaru et al., the analytical formula of Royer and the universal decay law (UDL) of Qi et al. Another tool used for the evaluation of spontaneous fission half-lives is the semi-empirical formula of Xu et al. The nuclei with alpha decay half-lives less than spontaneous fission half-lives will survive fission and hence decay through alpha emission. The predicted half lives and decay modes are compared with the available experimental results. The one-proton and two-proton separation energies of all the isotopes are calculated to find nuclei which lie beyond the proton drip line. Among 1119 even Z nuclei within the range 104 ≤ Z ≤ 136, 164 nuclei show sequential alpha emission followed by subsequent spontaneous fission. Since the isotopes decay through alpha decay chain and the half-lives are in measurable range, these isotopes are predicted to be synthesized and detected in laboratory via alpha decay. 2 nuclei will decay by alpha decay followed by proton emission, 54 nuclei show full alpha chains, 642 nuclei will decay through spontaneous fission, 166 nuclei exhibit proton decay and 91 isotopes are found to be stable against alpha decay. All the isotopes are tabulated according to their decay modes. The study is intended to enhance further experimental investigations in superheavy region.

  13. Status report on the International Germanium Experiment

    International Nuclear Information System (INIS)

    Brodzinski, R.L.; Avignone, F.T.; Collar, J.I.; Courant, H.; Garcia, E.; Guerard, C.K.; Hensley, W.K.; Kirpichnikov, I.V.; Miley, H.S.; Morales, A.; Morales, J.; Nunez-Lagos, R.; Osetrov, S.B.; Pogosov, V.S.; Pomansky, A.A.; Puimedon, J.; Reeves, J.H.; Ruddick, K.; Saenz, C.; Salinas, A.; Sarsa, M.L.; Smolnikov, A.A.; Starostin, A.S.; Tamanyan, A.G.; Vasiliev, S.I.; Villar, J.A.

    1993-01-01

    Phase II detector fabrication for the International Germanium Experiment is in progress. Sources of background observed during Phase I are discussed. Cosmogenic 7 Be is measured in germanium. Radium contamination, presumably in electroformed copper, is reported. (orig.)

  14. Synthesis and evaluation of germanium organometallic compounds as precursors for chemical vapor deposition (CVD) and for obtaining nanoparticles of elemental germanium

    International Nuclear Information System (INIS)

    Ballestero Martinez, Ernesto

    2014-01-01

    The interest in the development of materials having applications such as electronics areas or biomarkers has affected the synthesis of new compounds based on germanium. This element has had two common oxidation states, +4 and +2, of them, +2 oxidation state has been the least studied and more reactive. Additionally, compounds of germanium (II) have had similarities with carbenes regarding the chemical acid-base Lewis. The preparation of compounds of germanium (II) with ligands β-decimations has enabled stabilization of new chemical functionalities and, simultaneously, provided interesting thermal properties to develop new preparation methodologies of materials with novel properties. The preparation of amides germanium(II) L'Ge(NHPh) [1, L' = {HC (CMeN-2,4,6-Me 3 C 6 H 2 ) 2 }], L'Ge(4-NHPy) [2] L'Ge(2-NHPy) [3] and LGe(2-NHPy) [4, L = {HC(CMeN-2,6- i Pr 2 C 6 H 3 ) 2 }]; the structural chemical composition were determined using techniques such as nuclear magnetic resonance ( 1 H, 13 C), other techniques are treated: elemental analysis, melting point, infrared spectroscopy, X-ray diffraction of single crystal and thermal gravimetric analysis (TGA). The TGA has showed that 4-1 have experimented a thermal decomposition; therefore, these compounds could be considered as potential starting materials for obtaining germanium nitride (GeN x ). Certainly, the availability of nitrogen coordinating atoms in the chemical composition in 2-4 have been interesting because it could act as ligands in reactions with transition metal complexes. That way, information could be obtained at the molecular level for some reactions and interactions that in surface chemistry have used similar link sites, for example, chemical functionalization of silicon and germanium substrates. The synthesis and structural characterization of germanium chloride compound(II) L''GeCl [5, L'' = HC{(CMe) (N-2,6-Me 2 C 6 H 3 )} 2 ], which could be used later for the

  15. Neutron-transmutation-doped germanium bolometers

    International Nuclear Information System (INIS)

    Palaio, N.P.; Rodder, M.; Haller, E.E.; Kreysa, E.

    1983-02-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 16 and 1.88 x 10 18 cm - 2 . After thermal annealing the resistivity was measured down to low temperatures ( 0 exp(δ/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers

  16. Isotopic germanium targets for high beam current applications at GAMMASPHERE

    International Nuclear Information System (INIS)

    Greene, J. P.; Lauritsen, T.

    2000-01-01

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce 152 Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the 80 Se on 76 Ge reaction rather than the standard 48 Ca on 108 Pd reaction. Because the recoil velocity of the 152 Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the 76 Ge target stacks were mounted on a rotating target wheel. A description of the 76 Ge target stack preparation will be presented and the target performance described

  17. Status report on the International Germanium Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brodzinski, R L; Avignone, F.T.; Collar, J I; Courant, H; Garcia, E; Guerard, C K; Hensley, W K; Kirpichnikov, I V; Miley, H S; Morales, A; Morales, J; Nunez-Lagos, R; Osetrov, S B; Pogosov, V S; Pomansky, A A; Puimedon, J; Reeves, J H; Ruddick, K; Saenz, C; Salinas, A; Sarsa, M L; Smolnikov, A A; Starostin, A S; Tamanyan, A G; Vasiliev, S I; Villar, J A [Pacific Northwest Lab., Richland, WA (United States) Univ. of South Carolina, Columbia, SC (United States) Univ. of Minnesota, Minneapolis, MN (United States) Univ. of Zaragoza (Spain) Inst. for Theoretical and Experimental Physics, Moscow (Russian Federation) Inst. for Nuclear Research, Baksan Neutrino Observatory (Russian Federation) Yerevan Physical Inst., Yerevan (Armenia)

    1993-04-01

    Phase II detector fabrication for the International Germanium Experiment is in progress. Sources of background observed during Phase I are discussed. Cosmogenic [sup 7]Be is measured in germanium. Radium contamination, presumably in electroformed copper, is reported. (orig.)

  18. SU-F-I-56: High-Precision Gamma-Ray Analysis of Medical Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, N; Chillery, T; Chowdhury, P; Lister, C [University of Massachusetts-Lowell, Lowell, MA (United States); McCutchan, E [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY (United States); Smith, C [BLIP Facility, Brookhaven National Laboratory, Upton, NY (United States)

    2016-06-15

    Purpose: Advanced, time-resolved, Compton-suppressed gamma-ray spectroscopy with germanium detectors is implemented for assaying medical isotopes to study the radioactive decay process leading to a more accurate appraisal of the received dose and treatment planning. Lowell’s Array for Radiological Assay (LARA), a detector array that is comprised of six Compton-suppressed high-purity germanium detectors, is currently under development at UMass-Lowell which combines Compton-suppression and time-and-angle correlations to allow for highly efficient and highly sensitive measurements. Methods: Two isotopes produced Brookhaven Linac Isotope Producer (BLIP) were investigated. {sup 82}Sr which is the parent isotope for producing {sup 82}Rb is often used in cardiac PET. {sup 82}Sr gamma-ray spectrum is dominated by the 511keV photons from positron annihilation which prevent precise measurement of co-produced contaminant isotopes. A second project was to investigate the production of platinum isotopes. Natural platinum was bombarded with protons from 53MeV to 200MeV. The resulting spectrum was complicated due to the large number of stable platinum isotopes in the target, the variety of open reaction channels (p,xn), (p,pxn), (p,axn). Results: By using face-to-face NaI(Tl) counters 90-degrees to the Compton-suppressed germaniums to detect the 511keV photons, a much cleaner and more sensitive measurement of {sup 85}Sr and other contaminants was obtained. For the platinum target, we identified the production of {sup 188–189–191–195}Pt, {sup 191–192–193–194–195–196}Au and {sup 186–188–189–190–192–194–189–190–192–194}Ir. For example, at the lower energies (53 and 65MeV), we measured {sup 191}Pt production cross-sections of 144mb and 157mb. Considerable care was needed in following the process of dissolving and diluting the samples to get consistent results. The new LARA array will help us better ascertain the absolute efficiency of the counting

  19. Determination of plutonium isotopic ratios and total concentration by gamma ray spectrometry

    International Nuclear Information System (INIS)

    Despres, Michele.

    1980-11-01

    A non-destructive method of analysis is being investigated for the control in situ of plutonium isotopic composition and total concentration in different matrix without preliminary calibration. The plutonium isotopic composition is determined by gamma-ray spectrometry using germanium detector systems. The same apparatus is used for direct measuring of the total plutonium concentration in solutions or solids by a differential attenuation technique based on two transmitted gamma rays with energies on both sides of the k shell absorption edge of plutonium [fr

  20. Manufacturing P-N junctions in germanium bodies

    International Nuclear Information System (INIS)

    Hall, R.N.

    1980-01-01

    A method of producing p-n junctions in Ge so as to facilitate their use as radiation detectors involves forming a body of high purity p-type germanium, diffusing lithium deep into the body, in the absence of electrolytic processes, to form a junction between n-type and p-type germanium greater than 1 mm depth. (UK)

  1. HEROICA: A fast screening facility for the characterization of germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Andreotti, Erica [Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany); Collaboration: GERDA Collaboration

    2013-08-08

    In the course of 2012, a facility for the fast screening of germanium detectors called HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) has been installed at the HADES underground laboratory in the premises of the Belgian Nuclear Research Centre SCK•CEN, in Mol (Belgium). The facility allows performing a complete characterization of the critical germanium detectors' operational parameters with a rate of about two detectors per week.

  2. Germanium-overcoated niobium Dayem bridges

    International Nuclear Information System (INIS)

    Holdeman, L.B.; Peters, P.N.

    1976-01-01

    Overcoating constriction microbridges with semiconducting germanium provides additional thermal conductivity at liquid-helium temperatures to reduce the effects of self-heating in these Josephson junctions. Microwave-induced steps were observed in the I-V characteristics of an overcoated Dayem bridge fabricated in a 15-nm-thick niobium film; at 4.2 K (T/sub c/-T=2.6 K), at least 20 steps could be counted. No steps were observed in the I-V characteristics of the bridge prior to overcoating. In addition, the germanium overcoat can protect against electrical disturbances at room temperature

  3. Study of neutron shell structure of even-even 40-56Ca isotopes by the dispersive optical model

    International Nuclear Information System (INIS)

    Bespalova, O.V.; Boboshin, I.N.; Varlamov, V.V.; Ermakova, T.A.; Ishkhanov, B.S.; Romanovskij, E.A.; Spasskaya, T.I.; Timokhina, T.P.

    2005-01-01

    The single-particle energies and occupation probabilities of the bound neutron states in 40,42,44,46,48 Ca isotopes were obtained by the joint evaluation of the stripping and pick-up reaction data. The results were analyzed by the dispersive optical model and a good agreement was achieved. The dispersive optical potential was extrapolated to unstable 50,52,54,56 Ca nuclei. The calculated single-particle energies of the bound neutron states in unstable Ca isotopes were compared with the nuclear shell-model calculations, which predicted new magic number N = 34 for nuclei with Z = 20 [ru

  4. Amorphous germanium as an electron or hole blocking contact on high-purity germanium detectors

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.

    1976-10-01

    Experiments were performed in an attempt to make thin n + contacts on high-purity germanium by the solid phase/sup 1)/ epitaxial regrowth of arsenic doped amorphous germanium. After cleaning the crystal surface with argon sputtering and trying many combinations of layers, it was not found possible to induce recrystallization below 400 0 C. However, it was found that simple thermally evaporated amorphous Ge made fairly good electron or hole blocking contacts. Excellent spectrometers have been made with amorphous Ge replacing the n + contact. As presently produced, the amorphous Ge contact diodes show a large variation in high-voltage leakage current

  5. A Time-Measurement System Based on Isotopic Ratios

    International Nuclear Information System (INIS)

    Vo, Duc T.; Karpius, P.J.; MacArthur, D.W.; Thron, J.L.

    2007-01-01

    A time-measurement system can be built based on the ratio of gamma-ray peak intensities from two radioactive isotopes. The ideal system would use a parent isotope with a short half-life decaying to a long half-life daughter. The activities of the parent-daughter isotopes would be measured using a gamma-ray detector system. The time can then be determined from the ratio of the activities. The best-known candidate for such a system is the 241 Pu- 241 Am parent-daughter pair. However, this 241 Pu- 241 Am system would require a high-purity germanium detector system and sophisticated software to separate and distinguish between the many gamma-ray peaks produced by the decays of the two isotopes. An alternate system would use two different isotopes, again one with a short half-life and one with a half-life that is long relative to the other. The pair of isotopes 210 Pb and 241 Am (with half-lives of 22 and 432 years, respectively) appears suitable for such a system. This time-measurement system operates by measuring the change in the ratio of the 47-keV peak of 210 Pb to the 60-keV peak of 241 Am. For the system to work reasonably well, the resolution of the detector would need to be such that the two gamma-ray peaks are well separated so that their peak areas can be accurately determined using a simple region-of-interest (ROI) method. A variety of detectors were tested to find a suitable system for this application. The results of these tests are presented here.

  6. The germination of germanium

    Science.gov (United States)

    Burdette, Shawn C.; Thornton, Brett F.

    2018-02-01

    Shawn C. Burdette and Brett F. Thornton explore how germanium developed from a missing element in Mendeleev's periodic table to an enabler for the information age, while retaining a nomenclature oddity.

  7. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    Directory of Open Access Journals (Sweden)

    Orlov Alexey

    2016-01-01

    Full Text Available This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge cascades for separation of multicomponent isotope mixtures.

  8. Calculation of ground state deformation of even-even rare-earth nuclei in sdg interacting boson model

    International Nuclear Information System (INIS)

    Wang Baolin

    1995-01-01

    The analytical calculation of the nuclear ground state deformation of the even-even isotopes in the rare-earth region is given by utilizing the intrinsic states of the sdg interacting boson model. It is compared systematically with the reported theoretical and experimental results. It is shown that the sdg interacting boson model is a reasonable scheme for the description of even-even nuclei deformation

  9. Silver-compensated germanium center in α-quartz

    International Nuclear Information System (INIS)

    Laman, F.C.; Weil, J.A.

    1977-01-01

    A synthetic germanium-doped crystal of α-quartz was subjected to an electro-diffusion process (ca. 600 V/cm, 625 0 K), in which Ag + ions were introduced along the crystal's optic axis (c). A 9800 MHz electron paramagnetic resonance spectrum at room temperature, taken after room temperature X-irradiation, revealed the presence of a silver-compensated germanium center Asub(Ge-Ag) with large, almost isotropic 107 Ag and 109 Ag hyperfine splittings. Measurement of the spin-Hamiltonian discloses that a suitable model for the observed center utilizes germanium, substituted for silicon, with the accompanying silver interstitial in a nearby c-axis channel, and with electronic structure in which an appreciable admixture Ge 4+ - Ag 0 to Ge 3+ - Ag + exists. Estimates of the unpaired electron orbital are presented. (author)

  10. Structure of compensating centers in neutron irradiated n-type germanium

    International Nuclear Information System (INIS)

    Erchak, D.P.; Kosobutskij, V.S.; Stel'makh, V.F.

    1989-01-01

    Structural model of one of the main compensating defects of Ge-M1, Ge-M5, Ge-M6 in neutron irradiated (10 18 -10 20 cm -2 ) germanium, strongly alloyed (2x10 18 -3x10 19 cm -3 ) with antimony, phosphorus and arsenic respectively, is suggested. The above mentioned compensating centers are paramagnetic in a positive charge state and represent a vacancy, two nearby germanium atoms of which are replaced with two atoms of corresponding fine donor impurity. It is mainly contributed (63%- for Ge-M5 centers, 56% - for Ge-M6 centers) by orbitals of two germanium atoms neighbouring the vacancy. The angle of the bonds of each of two mentioned germanium atoms with its three neighbours and orientation of maximum electron density of hybride orbital, binding both germanium atoms, is approximately by 5 deg greater the tetrahedral one

  11. Low energy structure of even-even Ni isotopes close to 78Ni

    International Nuclear Information System (INIS)

    Rykaczewski, Krzysztof Piotr; Mazzocchi, C.; Grzywacz, Robert Kazimierz; Batchelder, J.C.; Bingham, Carrol R.; Fong, D.; Hamilton, J.H.; Hwang, J.K.; Karny, M.; Krolas, W.; Liddick, S.N.; Lisetskiy, A. F.; Morton, N.H.; Mantica, P.F.; Mueller, W.F.; Steiner, M.; Stolz, A.; Winger, J.A.

    2005-01-01

    The structure of magic neutron-rich nickel isotopes produced in the fragmentation of a 140 A MeV 86 Kr beam was investigated. For the first time four gamma transitions were assigned to the decay of the I π =8 + , T 1/2 = 590 +180 -110 isomer, thus establishing the 0 + -2 + -4 + -6 + -8 + ground-state band in 76 Ni. The previously unknown 2 + and 4 + levels belonging to the ground-state band in 74 Ni were identified in the β decay of 74 Co (T 1/2 =30(3) ms). The decay properties of 72 Co → 72 Ni were verified and confirmed on the basis of γ-γ coincidence data. The relevance of the measured level properties for the magicity of 78 Ni is analyzed with the help of advanced shell-model predictions

  12. Mesostructured germanium with cubic pore symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Armatas, G S; Kanatzidis, M G [Michigan State Univ., Michigan (United States), Dept. of Chemistry

    2006-11-15

    Regular mesoporous oxide materials have been widely studied and have a range of potential applications, such as catalysis, absorption and separation. They are not generally considered for their optical and electronic properties. Elemental semiconductors with nanopores running through them represent a different form of framework material with physical characteristics contrasting with those of the more conventional bulk, thin film and nanocrystalline forms. Here we describe cubic meso structured germanium, MSU-Ge-l, with gyroidal channels containing surfactant molecules, separated by amorphous walls that lie on the gyroid (G) minimal surface as in the mesoporous silica MCM-48. Although Ge is a high-meltin covalent semiconductor that is difficult to prepare from solution polymerization, we succeeded in assembling a continuous Ge network using a suitable precursor for Ge{sup 4-} atoms. Our results indicate that elemental semiconductors from group 14 of the periodic table can be made to adopt meso structured forms such as MSU-Ge-1, which features two three-dimensional labyrinthine tunnels obeying la3d space group symmetry and separated by a continuous germanium minimal surface that is otherwise amorphous. A consequence of this new structure for germanium, which has walls only one nanometre thick, is a wider electronic energy bandgap (1.4 eV versus 0.66 eV) than has crystalline or amorphous Ge. Controlled oxidation of MSU-Ge-1 creates a range of germanium suboxides with continuously varying Ge:O ratio and a smoothly increasing energy gap. (author)

  13. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    OpenAIRE

    Orlov Alexey; Ushakov Anton; Sovach Victor

    2016-01-01

    This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge casca...

  14. Microscopic study of low-lying yrast spectra and deformation systematics of even-even barium isotopes

    International Nuclear Information System (INIS)

    Sarswat, S.P.; Bharti, Arun; Khosa, S.K.

    1996-01-01

    The yrast spectra has been obtained in the variation-after-projection framework using pairing-plus-quadrupole- quadrupole model for the two body interaction. Besides the low-lying yrast spectra, the calculated values of intrinsic quadrupole moments of some of the barium isotopes i.e. 124-134 Ba are presented

  15. A study on the forms of existence of germanium in uranium-bearing coals of Bangmai basin of Yunnan

    International Nuclear Information System (INIS)

    Zhang Shuling; Wang Shuying; Yin Jinshuang

    1988-07-01

    The Bangmai basin is an asymmetrical intermontane synclinal basin with a Hercynian-Yenshan granitic body (γ 3 3 -γ 5 2 ) as its basement. Its overlying strata are made up of the N 1 of coal-bearing clastic rocks of Neogene period. Germanium ore mostly occur within the N 1 2 coal-seam. Uranium, germanium-bearing coals are mainly lignites of low grade in coalation and belong to semidurain, semiclarain, duroclarain and clarodurain. In order to probe into the forms of existence of germanium in coal, six kinds of analytical methods (electronic probe analysis, separation of heavy liquid, grain-size analysis, electric osmosis, chemical extraction and grade-extraction) have been adopted. A simulated test of humic complex germanium in the laboratory was carried out. According to infrared spectral analysis, it is found that 1700 cm -1 wavecrest almost disappears, 1250 cm -1 peak weakens and 1600 cm -1 peak strengthens, 1400 cm -1 peak slightly strengthens. No doubt, these illustrate the formatiion of humic germanium complex. Afterward, through differential thermal analysis and measurement of pH variation of media, it futher proves the presence of humic germanium complex. It is considered that the forms of existence of germanium in uranium-bearing coals mainly are: (1) In close chemical combination with organic matter, usually in the form of humic germanium complex and germanium organic compound; (2) In the state of adsorption, germanium is adsorbed by some organic matter, clay minerals and limonite etc.; (3) A very rare part occurring as isomorphous form

  16. Investigation of the single Particle Structure of the neutron-rich Sodium Isotopes $^{27-31}\\!$Na

    CERN Document Server

    2002-01-01

    We propose to study the single particle structure of the neutron-rich isotopes $^{27-31}\\!$Na. These isotopes will be investigated via neutron pickup reactions in inverse kinematics on a deuterium and a beryllium target. Scattered beam particles and transfer products are detected in a position sensitive detector located around 0$^\\circ$. De-excitation $\\gamma$-rays emitted after an excited state has been populated will be registered by the MINIBALL Germanium array. The results will shed new light on the structure of the neutron-rich sodium isotopes and especially on the region of strong deformation around the N=20 nucleus $^{31}\\!$Na.

  17. Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals

    International Nuclear Information System (INIS)

    Gresback, Ryan; Holman, Zachary; Kortshagen, Uwe

    2007-01-01

    Germanium nanocrystals may be of interest for a variety of electronic and optoelectronic applications including photovoltaics, primarily due to the tunability of their band gap from the infrared into the visible range of the spectrum. This letter discusses the synthesis of monodisperse germanium nanocrystals via a nonthermal plasma approach which allows for precise control of the nanocrystal size. Germanium crystals are synthesized from germanium tetrachloride and hydrogen entrained in an argon background gas. The crystal size can be varied between 4 and 50 nm by changing the residence times of crystals in the plasma between ∼30 and 440 ms. Adjusting the plasma power enables one to synthesize fully amorphous or fully crystalline particles with otherwise similar properties

  18. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  19. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlö gl, Udo

    2015-01-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  20. Neutron-transmutation-doped germanium bolometers

    Science.gov (United States)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  1. The GALATEA test facility and a first study of α-induced surface events in a germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Irlbeck, Sabine

    2014-01-30

    Germanium detectors are a choice technology in fundamental research. They are suitable for the search for rare events due to their high sensitivity and excellent energy resolution. As an example, the GERDA (GERmanium Detector Array) experiment searching for neutrinoless double beta decay is described. The observation of this decay would resolve the fundamental question whether the neutrino is its own antiparticle. Especially adapted detector technologies and low background rates needed to detect very rare events such as neutrinoless double beta decays are discussed. The identification of backgrounds originating from the interaction of radiation, especially α-particles, is a focus of this thesis. Low background experiments face problems from α-particles due to unavoidable surface contaminations of the germanium detectors. The segmentation of detectors is used to obtain information about the special characteristics of selected events. The high precision test stand GALATEA was especially designed for surface scans of germanium detectors. As part of this work, GALATEA was completed and commissioned. The final commissioning required major upgrades of the original design which are described in detail. Collimator studies with two commercial germanium detectors are presented. Different collimation levels for a β-source were investigated and crystal axis effects were examined. The first scan with an α-source of the passivated end-plate of a special 19-fold segmented prototype detector mounted in GALATEA is described. The α-induced surface events were studied and characterized. Crosstalk and mirror pulses seen in the segments of the germanium detector were analyzed. The detector studies presented in this thesis will help to further improve the design of germanium detectors for low background experiments.

  2. The GALATEA test facility and a first study of α-induced surface events in a germanium detector

    International Nuclear Information System (INIS)

    Irlbeck, Sabine

    2014-01-01

    Germanium detectors are a choice technology in fundamental research. They are suitable for the search for rare events due to their high sensitivity and excellent energy resolution. As an example, the GERDA (GERmanium Detector Array) experiment searching for neutrinoless double beta decay is described. The observation of this decay would resolve the fundamental question whether the neutrino is its own antiparticle. Especially adapted detector technologies and low background rates needed to detect very rare events such as neutrinoless double beta decays are discussed. The identification of backgrounds originating from the interaction of radiation, especially α-particles, is a focus of this thesis. Low background experiments face problems from α-particles due to unavoidable surface contaminations of the germanium detectors. The segmentation of detectors is used to obtain information about the special characteristics of selected events. The high precision test stand GALATEA was especially designed for surface scans of germanium detectors. As part of this work, GALATEA was completed and commissioned. The final commissioning required major upgrades of the original design which are described in detail. Collimator studies with two commercial germanium detectors are presented. Different collimation levels for a β-source were investigated and crystal axis effects were examined. The first scan with an α-source of the passivated end-plate of a special 19-fold segmented prototype detector mounted in GALATEA is described. The α-induced surface events were studied and characterized. Crosstalk and mirror pulses seen in the segments of the germanium detector were analyzed. The detector studies presented in this thesis will help to further improve the design of germanium detectors for low background experiments.

  3. Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong, E-mail: wang.dong.539@m.kyushu-u.ac.jp; Maekura, Takayuki; Kamezawa, Sho [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Yamamoto, Keisuke; Nakashima, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2015-02-16

    We demonstrated direct band gap (DBG) electroluminescence (EL) at room temperature from n-type bulk germanium (Ge) using a fin type asymmetric lateral metal/Ge/metal structure with TiN/Ge and HfGe/Ge contacts, which was fabricated using a low temperature (<400 °C) process. Small electron and hole barrier heights were obtained for TiN/Ge and HfGe/Ge contacts, respectively. DBG EL spectrum peaked at 1.55 μm was clearly observed even at a small current density of 2.2 μA/μm. Superlinear increase in EL intensity was also observed with increasing current density, due to superlinear increase in population of elections in direct conduction band. The efficiency of hole injection was also clarified.

  4. High Resolution Gamma Ray Analysis of Medical Isotopes

    Science.gov (United States)

    Chillery, Thomas

    2015-10-01

    Compton-suppressed high-purity Germanium detectors at the University of Massachusetts Lowell have been used to study medical radioisotopes produced at Brookhaven Linac Isotope Producer (BLIP), in particular isotopes such as Pt-191 used for cancer therapy in patients. The ability to precisely analyze the concentrations of such radio-isotopes is essential for both production facilities such as Brookhaven and consumer hospitals across the U.S. Without accurate knowledge of the quantities and strengths of these isotopes, it is possible for doctors to administer incorrect dosages to patients, thus leading to undesired results. Samples have been produced at Brookhaven and shipped to UML, and the advanced electronics and data acquisition capabilities at UML have been used to extract peak areas in the gamma decay spectra. Levels of Pt isotopes in diluted samples have been quantified, and reaction cross-sections deduced from the irradiation parameters. These provide both cross checks with published work, as well as a rigorous quantitative framework with high quality state-of-the-art detection apparatus in use in the experimental nuclear physics community.

  5. Reduced widths of alpha -decay of near-magic even-even nuclei

    CERN Document Server

    Kar Yan, N

    1972-01-01

    Precision on-line investigations on the linear heavy-ion Berkeley accelerator, and on the CERN synchrophasotron were carried out recently on new alpha -emitters. The results obtained are analysed with a view to finding the degree of correspondence, or disagreement, with the authors' own ideas about alpha -decay processes. The discussion is confined to examining even isotopes of polonium, radon, radium and thorium Several theoretical and experimental plots are given of reduced widths of alpha -disintegration for different regions of shell filling and a comparison is made between barrier penetration coefficients, obtained by rigorous methods and with the aid of WKB- approximation, for /sup 212/Po, /sup 208/Po and /sup 212/Po isotopes. (24 refs).

  6. Collective states of even Xe isotopes in IBM+MQRPA

    Directory of Open Access Journals (Sweden)

    Efimov A. D.

    2016-01-01

    Full Text Available A modification of the Quasiparticle Random Phase Approximation (QRPA with small ground state correlations is suggested. The lowest energy phonon is used as the image of d-boson of the Interacting Boson Model 1 (IBM1 and applied to microscopical calculations of the IBM1 parameters. Results are compared with experimental data for Xe isotopes.

  7. Performance of a 6x6 segmented germanium detector for {gamma}-ray tracking

    Energy Technology Data Exchange (ETDEWEB)

    Valiente-Dobon, J.J. E-mail: j.valiente-dobon@surrey.ac.uk; Pearson, C.J.; Regan, P.H.; Sellin, P.J.; Gelletly, W.; Morton, E.; Boston, A.; Descovich, M.; Nolan, P.J.; Simpson, J.; Lazarus, I.; Warner, D

    2003-06-01

    A 36 fold segmented germanium coaxial detector has been supplied by EURISYS MESURES. The outer contact is segmented both radially and longitudinally. The signals from the fast preamplifiers have been digitised by 12 bit, 40 MHz ADCs. In this article we report preliminary results obtained using this detector and their relevance for future germanium {gamma}-ray tracking arrays.

  8. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingen; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-07-15

    Highlights: • An environmental friendly vacuum reduction metallurgical process is proposed. • Rare and valuable metal germanium from coal fly ash is recycled. • Residues are not a hazardous material and can be further recycled. • A germanium recovery ratio of 94.64% is obtained in pilot scale experiments. - Abstract: The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173 K and 10 Pa with 10 wt% coke addition for 40 min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473 K, 1–10 Pa and heating time 40 min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes.

  9. Long-term radiation damage to a spaceborne germanium spectrometer

    CERN Document Server

    Kurczynski, P; Hull, E L; Palmer, D; Harris, M J; Seifert, H; Teegarden, B J; Gehrels, N; Cline, T L; Ramaty, R; Sheppard, D; Madden, N W; Luke, P N; Cork, C P; Landis, D A; Malone, D F; Hurley, K

    1999-01-01

    The Transient Gamma-Ray Spectrometer aboard the Wind spacecraft in deep space has observed gamma-ray bursts and solar events for four years. The germanium detector in the instrument has gradually deteriorated from exposure to the approx 10 sup 8 p/cm sup 2 /yr(>100 MeV) cosmic-ray flux. Low-energy tailing and loss of efficiency, attributed to hole trapping and conversion of the germanium from n- to p-type as a result of crystal damage, were observed. Raising the detector bias voltage ameliorated both difficulties and restored the spectrometer to working operation. Together, these observations extend our understanding of the effects of radiation damage to include the previously unsuccessfully studied regime of long-term operation in space. (author)

  10. Insights into thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks and their suppressed reaction with atomically thin AlO{sub x} interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Shingo, E-mail: Shingo-Ogawa@trc.toray.co.jp [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Asahara, Ryohei; Minoura, Yuya; Hosoi, Takuji, E-mail: hosoi@mls.eng.osaka-u.ac.jp; Shimura, Takayoshi; Watanabe, Heiji [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sako, Hideki; Kawasaki, Naohiko; Yamada, Ichiko; Miyamoto, Takashi [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan)

    2015-12-21

    The thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that {sup 18}O-tracers composing the GeO{sub 2} underlayers diffuse within the HfO{sub 2} overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO{sub 2} also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO{sub 2} surfaces, and the reaction was further enhanced at high temperatures with the assistance of GeO desorption. A technique to insert atomically thin AlO{sub x} interlayers between the HfO{sub 2} and GeO{sub 2} layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks.

  11. Radiation-electromagnetic effect in germanium monocrystals

    International Nuclear Information System (INIS)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-01-01

    Experimentally investigated is the radiation-electromagnetic effect (REM) in germanium monocrystals on excitation of excess current carriers by α particles, protons and X-rays in magnetic fields up to 8 kOe. A cyclotron was used as an α particle source, and a standard X-ray tube with a copper anode - as an X-ray source. The e.m.f. of the REM effect linearly increases with the increase of the magnetic field and is proportional to the charged particle flux at small flux values, saturation occurs at great flux values (approximately 5x10 11 part./cm 2 xs). In the 4-40 MeV energy range the e.m.f. of the REM effect practically does not depend on the α particle energy. On irradiation of the samples with a grinding front surface the REM e.m.f. changes its sign. The REM and Hall effect measurement on α particle irradiated samples has shown that during irradiation a p-n transition is formed in the samples, which must be taken into account while studying the REM effect. The e.m.f. measured for the even REM effect quadratically increases with the magnetic field increase. The barrier radiation-voltaic effect (the effect e.m.f. is measured between the irradiated and nonirradiated sample faces) is studied. Using special masks the samples with a set of consecutive p-n transitions are produced by irradiation of germanium crystals by α particles. Investigation of the photovoltaic and photoelectromagnetic effects on such samples has shown that using this method the efficiency of the REM devices can be increased

  12. The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Alexis G.; Aguayo, Estanislao; Avignone, F. T.; Zhang, C.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Leon, Jonathan D.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, Mark; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Sobolev, V.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, Werner; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2012-09-28

    The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge neutrinoless double-beta decay Q-value of 2039 keV.

  13. Radiation-electromagnetic effect in germanium single crystals

    International Nuclear Information System (INIS)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-01-01

    An experimental study was made of the radiation-electromagnetic effect in germanium single crystals when excess carriers were generated by bombardment with α particles, protons, or x rays in magnetic fields up to 8 kOe. The source of α particles and protons was a cyclotron and x rays were provided by a tube with a copper anode. The radiation-electromagnetic emf increased linearly on increase in the magnetic field and was directly proportional to the flux of charged particles at low values of the flux, reaching saturation at high values of the flux (approx.5 x 10 11 particles .cm -2 .sec -1 ). In the energy range 4--40 MeV the emf was practically independent of the α-particle energy. The sign of the emf was reversed when samples with a ground front surface were irradiated. Measurements of the photoelectromagnetic and Hall effects in the α-particle-irradiated samples showed that a p-n junction was produced by these particles and its presence should be allowed for in investigations of the radiation-electromagnetic effect. The measured even radiation-electromagnetic emf increased quadratically on increase in the magnetic field. An investigation was made of the barrier radiation-voltaic effect (when the emf was measured between the irradiated and unirradiated surfaces). Special masks were used to produce a set of consecutive p-n junctions in germanium crystals irradiated with α particles. A study of the photovoltaic and photoelectromagnetic effects in such samples showed that the method could be used to increase the efficiency of devices utilizing the photoelectromagnetic effect

  14. Diffusion of interstitial oxygen in silicon and germanium: a hybrid functional study

    International Nuclear Information System (INIS)

    Colleoni, Davide; Pasquarello, Alfredo

    2016-01-01

    The minimum-energy paths for the diffusion of an interstitial O atom in silicon and germanium are studied through the nudged-elastic-band method and hybrid functional calculations. The reconsideration of the diffusion of O in silicon primarily serves the purpose of validating the procedure for studying the O diffusion in germanium. Our calculations show that the minimum energy path goes through an asymmetric transition state in both silicon and germanium. The stability of these transition states is found to be enhanced by the generation of unpaired electrons in the highest occupied single-particle states. Calculated energy barriers are 2.54 and 2.14 eV for Si and Ge, in very good agreement with corresponding experimental values of 2.53 and 2.08 eV, respectively. (paper)

  15. Bandgap-customizable germanium using lithographically determined biaxial tensile strain for silicon-compatible optoelectronics.

    Science.gov (United States)

    Sukhdeo, David S; Nam, Donguk; Kang, Ju-Hyung; Brongersma, Mark L; Saraswat, Krishna C

    2015-06-29

    Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.

  16. Modeling of dislocation dynamics in germanium Czochralski growth

    Science.gov (United States)

    Artemyev, V. V.; Smirnov, A. D.; Kalaev, V. V.; Mamedov, V. M.; Sidko, A. P.; Podkopaev, O. I.; Kravtsova, E. D.; Shimansky, A. F.

    2017-06-01

    Obtaining very high-purity germanium crystals with low dislocation density is a practically difficult problem, which requires knowledge and experience in growth processes. Dislocation density is one of the most important parameters defining the quality of germanium crystal. In this paper, we have performed experimental study of dislocation density during 4-in. germanium crystal growth using the Czochralski method and comprehensive unsteady modeling of the same crystal growth processes, taking into account global heat transfer, melt flow and melt/crystal interface shape evolution. Thermal stresses in the crystal and their relaxation with generation of dislocations within the Alexander-Haasen model have been calculated simultaneously with crystallization dynamics. Comparison to experimental data showed reasonable agreement for the temperature, interface shape and dislocation density in the crystal between calculation and experiment.

  17. Test results of a new detector system for gamma ray isotopic measurements

    International Nuclear Information System (INIS)

    Malcom, J.E.; Bonner, C.A.; Hurd, J.R.; Fleissner,

    1993-01-01

    A new type of gamma-ray detector system for isotopic measurements has been developed. This new system, a ''Duo detector'' array, consists of two intrinsic germanium detectors, a planar followed by a coaxial mounted on the same axis within a single cryostat assembly. This configuration allows the isotopic analysis system to take advantage of spectral data results that are collected simultaneously from different gamma-ray energy regimes. Princeton Gamma Tech (PGT) produced several prototypes of this Duo detector array which were then tested by Rocky Flats personnel until the design was optimized. An application for this detector design is in automated, roboticized NDA systems such as those being developed at the Los Alamos TA-55 Plutonium Facility. The Duo detector design reduces the space necessary for the isotopic instrument by a factor of two (only one liquid nitrogen dewar is needed), and also reduces the complexity of the mechanical systems and controlling software. Data will be presented on measurements of nuclear material with a Duo detector for a wide variety of matrices. Results indicate that the maximum count rate can be increased up to 100,000 counts per second yet maintaining excellent resolution and energy rate product

  18. Lattice site and thermal stability of transition metals in germanium

    CERN Document Server

    Augustyns, Valérie; Pereira, Lino

    Although the first transistor was based on germanium, current chip technology mainly uses silicon due to its larger abundance, a lower price and higher quality silicon-oxide. However, a very important goal in microelectronics is to obtain faster integrated circuits. The advantages of germanium compared to silicon (e.g. a higher mobility of the charge carriers) motivates further research on germanium based materials. Semiconductor doping (e.g. introducing impurities into silicon and germanium in order to alter - and control - their properties) can be done by ion implantation or by in situ doping, whereby the host material is doped during growth. This thesis focuses on introducing dopants by ion implantation. The implantation as well as the subsequent measurements were performed in ISOLDE (CERN) using the emission channeling technique. Although ion implantation generates undesired defects in the host material (e.g. vacancies), such damage can be reduced by performing the implantation at an elevated temperature....

  19. Status report on the International Germanium Experiment

    International Nuclear Information System (INIS)

    Brodzinski, R.L.; Hensley, W.K.; Miley, H.S.; Reeves, J.H.; Avignone, F.T.; Collar, J.I.; Guerard, C.K.; Courant, H.; Ruddick, K.; Kirpichnikov, I.V.; Starostin, A.S.; Osetrov, S.B.; Pomansky, A.A.; Smolnikov, A.A.; Vasiliev, S.I.

    1992-06-01

    Phase II detector fabrication for the International Germanium Experiment is awaiting resolution of technical details observed during Phase I. Measurements of fiducial volume, configuration of the tansistor-reset preamplifier stage, and sources of background are discussed. Cosmogenic 7 Be is measured in germanium. Radium contamination in electroformed copper reported. The 2ν double- beta decay half-life of 76 Ge measured with a Phase I detector is in reasonable agreement with previously reported values. No events are observed in the vicinity of the Oν double-beta decay energy

  20. Co-doping with antimony to control phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.

    2013-02-15

    In germanium, phosphorous and antimony diffuse quickly and as such their transport must be controlled in order to design efficient n-typed doped regions. Here, density functional theory based calculations are used to predict the influence of double donor co-doping on the migration activation energies of vacancy-mediated diffusion processes. The migration energy barriers for phosphorous and antimony were found to be increased significantly when larger clusters involving two donor atoms and a vacancy were formed. These clusters are energetically stable and can lead to the formation of even larger clusters involving a number of donor atoms around a vacancy, thereby affecting the properties of devices.

  1. Near-infrared emission from mesoporous crystalline germanium

    Energy Technology Data Exchange (ETDEWEB)

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard, E-mail: richard.ares@usherbrooke.ca [Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Korinek, Andreas [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada)

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  2. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Debertin, K.

    1983-01-01

    The process of determining the energy-dependent detection probability with measurements using Ge (Li) and high-grade germanium detectors is described. The paper explains which standards are best for a given purpose and given requirements as to accuracy, and how to assess measuring geometry variations and summation corrections. (DG) [de

  3. Effects of electronically neutral impurities on muonium in germanium

    International Nuclear Information System (INIS)

    Clawson, C.W.; Crowe, K.M.; Haller, E.E.; Rosenblum, S.S.; Brewer, J.H.

    1983-04-01

    Low-temperature measurements of muonium parameters in various germanium crystals have been performed. We have measured crystals with different levels of neutral impurities, with and without dislocations, and with different annealing histories. The most striking result is the apparent trapping of Mu by silicon impurities in germanium

  4. Analytical product study of germanium-containing medicine by different ICP-MS applications

    NARCIS (Netherlands)

    Krystek, Petra; Ritsema, Rob

    2004-01-01

    For several years organo-germanium containing medicine has been used for special treatments of e.g. cancer and AIDS. The active substances contain germanium as beta-carboxyethylgermanium sesquioxide ((GeCH2CH 2COO-H)2O3/"Ge-132"), spirogermanium, germanium-lactate-citrate or unspecified forms. For

  5. Performance of a Small Anode Germanium Well detector

    International Nuclear Information System (INIS)

    Adekola, A.S.; Colaresi, J.; Douwen, J.; Mueller, W.F.; Yocum, K.M.

    2015-01-01

    The performance of Small Anode Germanium (SAGe) Well detector [1] has been evaluated for a range of sample sizes and geometries counted inside the well, on the end cap or in Marinelli beakers. The SAGe Well is a new type of low capacitance germanium well detector manufactured using small anode technology. The detector has similar energy resolution performance to semi-planar detectors, and offers significant improvement over the Coaxial and existing Well detectors. Resolution performance of 0.75 keV Full Width at Half Maxiumum (FWHM) at 122 keV γ-ray energy and resolution of 2.0–2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. This paper reports the counting performance of SAGe Well detector for range of sample sizes and geometries and how it compares to other detector types

  6. Performance of a Small Anode Germanium Well detector

    Energy Technology Data Exchange (ETDEWEB)

    Adekola, A.S., E-mail: aderemi.adekola@canberra.com; Colaresi, J.; Douwen, J.; Mueller, W.F.; Yocum, K.M.

    2015-06-01

    The performance of Small Anode Germanium (SAGe) Well detector [1] has been evaluated for a range of sample sizes and geometries counted inside the well, on the end cap or in Marinelli beakers. The SAGe Well is a new type of low capacitance germanium well detector manufactured using small anode technology. The detector has similar energy resolution performance to semi-planar detectors, and offers significant improvement over the Coaxial and existing Well detectors. Resolution performance of 0.75 keV Full Width at Half Maxiumum (FWHM) at 122 keV γ-ray energy and resolution of 2.0–2.3 keV FWHM at 1332 keV γ-ray energy are guaranteed. Such outstanding resolution performance will benefit environmental applications in revealing the detailed radionuclide content of samples, particularly at low energy, and will enhance the detection sensitivity resulting in reduced counting time. This paper reports the counting performance of SAGe Well detector for range of sample sizes and geometries and how it compares to other detector types.

  7. Technology CAD for germanium CMOS circuit

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A.R. [Department of Electronics and ECE, IIT Kharagpur, Kharagpur-721302 (India)]. E-mail: ars.iitkgp@gmail.com; Maiti, C.K. [Department of Electronics and ECE, IIT Kharagpur, Kharagpur-721302 (India)

    2006-12-15

    Process simulation for germanium MOSFETs (Ge-MOSFETs) has been performed in 2D SILVACO virtual wafer fabrication (VWF) suite towards the technology CAD for Ge-CMOS process development. Material parameters and mobility models for Germanium were incorporated in simulation via C-interpreter function. We also report on the device design issues along with the DC and RF characterization of the bulk Ge-MOSFETs, AC parameter extraction and circuit simulation of Ge-CMOS. Simulation results are compared with bulk-Si devices. Simulations predict a cut-off frequency, f {sub T} of about 175 GHz for Ge-MOSFETs compared to 70 GHz for a similar gate-length Si MOSFET. For a single stage Ge-CMOS inverter circuit, a GATE delay of 0.6 ns is predicted.

  8. Technology CAD for germanium CMOS circuit

    International Nuclear Information System (INIS)

    Saha, A.R.; Maiti, C.K.

    2006-01-01

    Process simulation for germanium MOSFETs (Ge-MOSFETs) has been performed in 2D SILVACO virtual wafer fabrication (VWF) suite towards the technology CAD for Ge-CMOS process development. Material parameters and mobility models for Germanium were incorporated in simulation via C-interpreter function. We also report on the device design issues along with the DC and RF characterization of the bulk Ge-MOSFETs, AC parameter extraction and circuit simulation of Ge-CMOS. Simulation results are compared with bulk-Si devices. Simulations predict a cut-off frequency, f T of about 175 GHz for Ge-MOSFETs compared to 70 GHz for a similar gate-length Si MOSFET. For a single stage Ge-CMOS inverter circuit, a GATE delay of 0.6 ns is predicted

  9. Segmentation of the Outer Contact on P-Type Coaxial Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.

    2006-09-21

    Germanium detector arrays are needed for low-level counting facilities. The practical applications of such user facilities include characterization of low-level radioactive samples. In addition, the same detector arrays can also perform important fundamental physics measurements including the search for rare events like neutrino-less double-beta decay. Coaxial germanium detectors having segmented outer contacts will provide the next level of sensitivity improvement in low background measurements. The segmented outer detector contact allows performance of advanced pulse shape analysis measurements that provide additional background reduction. Currently, n-type (reverse electrode) germanium coaxial detectors are used whenever a segmented coaxial detector is needed because the outer boron (electron barrier) contact is thin and can be segmented. Coaxial detectors fabricated from p-type germanium cost less, have better resolution, and are larger than n-type coaxial detectors. However, it is difficult to reliably segment p-type coaxial detectors because thick (~1 mm) lithium-diffused (hole barrier) contacts are the standard outside contact for p-type coaxial detectors. During this Phase 1 Small Business Innovation Research (SBIR) we have researched the possibility of using amorphous germanium contacts as a thin outer contact of p-type coaxial detectors that can be segmented. We have developed amorphous germanium contacts that provide a very high hole barrier on small planar detectors. These easily segmented amorphous germanium contacts have been demonstrated to withstand several thousand volts/cm electric fields with no measurable leakage current (<1 pA) from charge injection over the hole barrier. We have also demonstrated that the contact can be sputter deposited around and over the curved outside surface of a small p-type coaxial detector. The amorphous contact has shown good rectification properties on the outside of a small p-type coaxial detector. These encouraging

  10. Reaction studies of hot silicon, germanium and carbon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1990-01-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms? This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs

  11. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    Science.gov (United States)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  12. Measurement of Plutonium Isotopic Composition - MGA

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc Ta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-21

    In this module, we will use the Canberra InSpector-2000 Multichannel Analyzer with a high-purity germanium detector (HPGe) and the MGA isotopic anlysis software to assay a variety of plutonium samples. The module provides an understanding of the MGA method, its attributes and limitations. You will assess the system performance by measuring a range of materials similar to those you may assay in your work. During the final verification exercise, the results from MGA will be combined with the 240Pueff results from neutron coincidence or multiplicity counters so that measurements of the plutonium mass can be compared with the operator-declared (certified) values.

  13. γ-ray tracking in germanium: the backtracking method

    International Nuclear Information System (INIS)

    Marel, J. van der; Cederwall, B.

    2002-01-01

    In the framework of a European TMR network project the concept for a γ-ray tracking array is being developed for nuclear physics spectroscopy in the energy range of ∼10 keV up to several MeV. The tracking array will consist of a large number of position-sensitive germanium detectors in a spherical geometry around a target. Due to the high segmentation, a Compton scattered γ-ray will deposit energy in several different segments. A method has been developed to reconstruct the tracks of multiple coincident γ-rays and to find their initial energies. By starting from the final point the track can be reconstructed backwards to the origin with the help of the photoelectric and Compton cross-sections and the Compton scatter formula. Every reconstructed track is given a figure of merit, thus allowing suppression of wrongly reconstructed tracks and γ-rays that have scattered out of the detector system. This so-called backtracking method has been tested on simulated events in a shell-like geometry for germanium and in planar geometries for silicon, germanium and CdTe

  14. Collective motions and band structures in A = 60 to 80, even--even nuclei

    International Nuclear Information System (INIS)

    Hamilton, J.H.; Robinson, R.L.; Ramayya, A.V.

    1978-01-01

    Evidence for and the theoretical understanding of the richness of the collective band structures as illustrated by at least seven bands seen in levels of 68 Ge, 74 Se are reviewed. The experimental data on even-even nuclei in the A = 60 to 80 region have now revealed a wide variety of collective bands with different structures. The even parity yrast cascades alone are seen to involve multiple collective structures. In addition to the ground-state bands, strong evidence is presented for both neutron and proton rotation-aligned bands built on the same orbital, (g 9 / 2 ) 2 , in one nucleus. Several other nuclei also show the crossing of RAL bands around the 8 + level in this region. Evidence continues to be strong experimentally and supported theoretically that there is some type of shape transition and shape coexistence occurring now both in the Ge and Se isotopes around N = 40. Negative parity bands with odd and even spins with very collective nature are seen in several nuclei to high spin. These bands seem best understood in the RAL model. Very collective bands with ΔI = 1, extending from 2 + to 9 + are seen with no rotation-alignment. The purity of these bands and their persistence to such high spin establish them as an independent collective mode which is best described as a gamma-type vibration band in a deformed nucleus. In addition to all of the above bands, new bands are seen in 76 Kr and 74 Se. The nature of these bands is not presently known. 56 references

  15. Characterization of a high-purity germanium detector for small-animal SPECT.

    Science.gov (United States)

    Johnson, Lindsay C; Campbell, Desmond L; Hull, Ethan L; Peterson, Todd E

    2011-09-21

    We present an initial evaluation of a mechanically cooled, high-purity germanium double-sided strip detector as a potential gamma camera for small-animal SPECT. It is 90 mm in diameter and 10 mm thick with two sets of 16 orthogonal strips that have a 4.5 mm width with a 5 mm pitch. We found an energy resolution of 0.96% at 140 keV, an intrinsic efficiency of 43.3% at 122 keV and a FWHM spatial resolution of approximately 1.5 mm. We demonstrated depth-of-interaction estimation capability through comparison of pinhole acquisitions with a point source on and off axes. Finally, a flood-corrected flood image exhibited a strip-level uniformity of less than 1%. This high-purity germanium offers many desirable properties for small-animal SPECT.

  16. The low thermal gradient CZ technique as a way of growing of dislocation-free germanium crystals

    Science.gov (United States)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.

    2014-09-01

    This paper considers the possibility of growth of dislocation-free germanium single crystals. This is achieved by reducing the temperature gradients at the level of 1 K/cm and lower. Single germanium crystals 45-48 mm in diameter with a dislocation density of 102 cm-2 were grown by a Low Thermal Gradient Czochralski technique (LTG CZ).

  17. Oriented bottom-up growth of armchair graphene nanoribbons on germanium

    Science.gov (United States)

    Arnold, Michael Scott; Jacobberger, Robert Michael

    2016-03-15

    Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a scalable, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of the germanium is used to orient the graphene nanoribbon crystals along the [110] directions of the germanium.

  18. Techniques to distinguish between electron and photon induced events using segmented germanium detectors

    International Nuclear Information System (INIS)

    Kroeninger, K.

    2007-01-01

    Two techniques to distinguish between electron and photon induced events in germanium detectors were studied: (1) anti-coincidence requirements between the segments of segmented germanium detectors and (2) the analysis of the time structure of the detector response. An 18-fold segmented germanium prototype detector for the GERDA neutrinoless double beta-decay experiment was characterized. The rejection of photon induced events was measured for the strongest lines in 60 Co, 152 Eu and 228 Th. An accompanying Monte Carlo simulation was performed and the results were compared to data. An overall agreement with deviations of the order of 5-10% was obtained. The expected background index of the GERDA experiment was estimated. The sensitivity of the GERDA experiment was determined. Special statistical tools were developed to correctly treat the small number of events expected. The GERDA experiment uses a cryogenic liquid as the operational medium for the germanium detectors. It was shown that germanium detectors can be reliably operated through several cooling cycles. (orig.)

  19. Techniques to distinguish between electron and photon induced events using segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeninger, K.

    2007-06-05

    Two techniques to distinguish between electron and photon induced events in germanium detectors were studied: (1) anti-coincidence requirements between the segments of segmented germanium detectors and (2) the analysis of the time structure of the detector response. An 18-fold segmented germanium prototype detector for the GERDA neutrinoless double beta-decay experiment was characterized. The rejection of photon induced events was measured for the strongest lines in {sup 60}Co, {sup 152}Eu and {sup 228}Th. An accompanying Monte Carlo simulation was performed and the results were compared to data. An overall agreement with deviations of the order of 5-10% was obtained. The expected background index of the GERDA experiment was estimated. The sensitivity of the GERDA experiment was determined. Special statistical tools were developed to correctly treat the small number of events expected. The GERDA experiment uses a cryogenic liquid as the operational medium for the germanium detectors. It was shown that germanium detectors can be reliably operated through several cooling cycles. (orig.)

  20. Tunnel current across linear homocatenated germanium chains

    International Nuclear Information System (INIS)

    Matsuura, Yukihito

    2014-01-01

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e −βL , of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge–Ge bond length is longer than the Si–Si bond length

  1. Germanium detector studies in the framework of the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Budjas, Dusan

    2009-05-06

    The GERmanium Detector Array (GERDA) is an ultra-low background experiment under construction at Laboratori Nazionali del Gran Sasso. GERDA will search for {sup 76}Ge neutrinoless double beta decay with an aim for 100-fold reduction in background compared to predecessor experiments. This ambition necessitates innovative design approaches, strict selection of low-radioactivity materials, and novel techniques for active background suppression. The core feature of GERDA is its array of germanium detectors for ionizing radiation, which are enriched in {sup 76}Ge. Germanium detectors are the central theme of this dissertation. The first part describes the implementation, testing, and optimisation of Monte Carlo simulations of germanium spectrometers, intensively involved in the selection of low-radioactivity materials. The simulations are essential for evaluations of the gamma ray measurements. The second part concerns the development and validation of an active background suppression technique based on germanium detector signal shape analysis. This was performed for the first time using a BEGe-type detector, which features a small read-out electrode. As a result of this work, BEGe is now one of the two detector technologies included in research and development for the second phase of the GERDA experiment. A suppression of major GERDA backgrounds is demonstrated, with (0.93{+-}0.08)% survival probability for events from {sup 60}Co, (21{+-}3)% for {sup 226}Ra, and (40{+-}2)% for {sup 228}Th. The acceptance of {sup 228}Th double escape events, which are analogous to double beta decay, was kept at (89{+-}1)%. (orig.)

  2. Optical properties of Germanium nanoparticles synthesized by pulsed laser ablation in acetone

    Directory of Open Access Journals (Sweden)

    Saikiran eVadavalli

    2014-10-01

    Full Text Available Germanium (Ge nanoparticles (NPs are synthesized by means of pulsed laser ablation of bulk germanium target immersed in acetone with ns laser pulses at different pulse energies. The fabricated NPs are characterized by employing different techniques such as UV-visible absorption spectroscopy, photoluminescence, micro-Raman spectroscopy, transmission electron microscopy (TEM and field emission scanning electron microscopy (FESEM. The mean size of the Ge NPs is found to vary from few nm to 40 nm with the increase in laser pulse energy. Shift in the position of the absorption spectra is observed and also the photoluminescence peak shift is observed due to quantum confinement effects. High resolution TEM combined with micro-Raman spectroscopy confirms the crystalline nature of the generated germanium nanoparticles. The formation of various sizes of germanium NPs at different laser pulse energies is evident from the asymmetry in the Raman spectra and the shift in its peak position towards the lower wavenumber side. The FESEM micrographs confirm the formation of germanium micro/nanostructures at the laser ablated position of the bulk germanium. In particular, the measured NP sizes from the micro-Raman phonon quantum confinement model are found in good agreement with TEM measurements of Ge NPs.

  3. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    Science.gov (United States)

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  4. Multiphysical simulation analysis of the dislocation structure in germanium single crystals

    Science.gov (United States)

    Podkopaev, O. I.; Artemyev, V. V.; Smirnov, A. D.; Mamedov, V. M.; Sid'ko, A. P.; Kalaev, V. V.; Kravtsova, E. D.; Shimanskii, A. F.

    2016-09-01

    To grow high-quality germanium crystals is one of the most important problems of growth industry. The dislocation density is an important parameter of the quality of single crystals. The dislocation densities in germanium crystals 100 mm in diameter, which have various shapes of the side surface and are grown by the Czochralski technique, are experimentally measured. The crystal growth is numerically simulated using heat-transfer and hydrodynamics models and the Alexander-Haasen dislocation model in terms of the CGSim software package. A comparison of the experimental and calculated dislocation densities shows that the dislocation model can be applied to study lattice defects in germanium crystals and to improve their quality.

  5. Strain distribution in single, suspended germanium nanowires studied using nanofocused x-rays

    DEFF Research Database (Denmark)

    Keplinger, Mario; Grifone, Raphael; Greil, Johannes

    2016-01-01

    Within the quest for direct band-gap group IV materials, strain engineering in germanium is one promising route. We present a study of the strain distribution in single, suspended germanium nanowires using nanofocused synchrotron radiation. Evaluating the probed Bragg reflection for different ill...

  6. Influence of the disorder in doped germanium changed by compensation on the critical indices of the metal-insulator transition

    International Nuclear Information System (INIS)

    Rentzsch, R.; Reich, Ch.; Ionov, A.N.; Ginodman, V.; Slimak, I.; Fozooni, P.; Lea, M.J.

    1999-01-01

    We present a critical review of the present status of the critical exponent puzzle of the metal-insulator transition of doped semiconductors with the emphasis on the role of meso- and macroscopy inhomogeneity caused by the disorder of acceptors and donors in the crystals. By using the isotopic and engineering and the neutron transmutation doping of germanium we found for low compensations (at K = 1.4 and 12%) that the critical exponents of the localization length and the dielectric constant are nearly ν = 1/2 and ξ = 1, which double for medium compensations (at K = 39 and 54%) to ν 1 and ξ = 2, respectively

  7. Role of deformation in odd-even staggering in reaction cross sections for 30,31,32Ne and 36,37,38Mg isotopes

    Science.gov (United States)

    Urata, Y.; Hagino, K.; Sagawa, H.

    2017-12-01

    We discuss the role of pairing antihalo effect in the observed odd-even staggering in reaction cross sections for 30,31,32Ne and 36,37,38Mg isotopes by taking into account the ground-state deformation of these nuclei. To this end, we construct the ground-state density for the Ne,3130 and Mg,3736 nuclei based on a deformed Woods-Saxon potential, while for the 32Ne and 38Mg nuclei we also take into account the pairing correlation using the Hartree-Fock-Bogoliubov method. We demonstrate that, when the one-neutron separation energy is small for the odd-mass nuclei, a significant odd-even staggering still appears even with finite deformation, although the degree of staggering is somewhat reduced compared to the spherical case. This implies that the pairing antihalo effect in general plays an important role in generating the odd-even staggering in reaction cross sections for weakly bound nuclei.

  8. Quantum interference magnetoconductance of polycrystalline germanium films in the variable-range hopping regime

    Science.gov (United States)

    Li, Zhaoguo; Peng, Liping; Zhang, Jicheng; Li, Jia; Zeng, Yong; Zhan, Zhiqiang; Wu, Weidong

    2018-06-01

    Direct evidence of quantum interference magnetotransport in polycrystalline germanium films in the variable-range hopping (VRH) regime is reported. The temperature dependence of the conductivity of germanium films fulfilled the Mott VRH mechanism with the form of ? in the low-temperature regime (?). For the magnetotransport behaviour of our germanium films in the VRH regime, a crossover, from negative magnetoconductance at the low-field to positive magnetoconductance at the high-field, is observed while the zero-field conductivity is higher than the critical value (?). In the regime of ?, the magnetoconductance is positive and quadratic in the field for some germanium films. These features are in agreement with the VRH magnetotransport theory based on the quantum interference effect among random paths in the hopping process.

  9. Thermal recrystallization of physical vapor deposition based germanium thin films on bulk silicon (100)

    KAUST Repository

    Hussain, Aftab M.

    2013-08-16

    We demonstrate a simple, low-cost, and scalable process for obtaining uniform, smooth surfaced, high quality mono-crystalline germanium (100) thin films on silicon (100). The germanium thin films were deposited on a silicon substrate using plasma-assisted sputtering based physical vapor deposition. They were crystallized by annealing at various temperatures ranging from 700 °C to 1100 °C. We report that the best quality germanium thin films are obtained above the melting point of germanium (937 °C), thus offering a method for in-situ Czochralski process. We show well-behaved high-κ /metal gate metal-oxide-semiconductor capacitors (MOSCAPs) using this film. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Selective photoionization of gadolinium isotopes with a polarized laser

    International Nuclear Information System (INIS)

    Le Guyadec, E.

    1990-06-01

    The aim of this study is the use of gadolinium 157 as burnable poison in nuclear reactors. Spectroscopic isotopic displacements between Gd 156 and Gd 157 are low and the separation method studied is based on differentiated behavior, concerning polarized light, of even and odd gadolinium isotopes coming from their difference of nuclear spin. On this principle is based the simplest photoionization scheme. Selective ionization of odd isotopes is realized from the fundamental state with three resonating photons colinearly polarized. The experimental study confirms the possibility of efficient photoionization. The measured selectivity between Gd 157 and even isotope is over 48 in defined conditions because it can be destroyed by a magnetic field or if photons are not well polarized. Calculations and observations are in good agreement. Odd gadolinium isotope separation is feasible and effects preventing separation are evidenced [fr

  11. Controllable growth of stable germanium dioxide ultra-thin layer by means of capacitively driven radio frequency discharge

    Energy Technology Data Exchange (ETDEWEB)

    Svarnas, P., E-mail: svarnas@ece.upatras.gr [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26 504, Patras (Greece); Botzakaki, M.A. [Department of Physics, University of Patras, Rion 26 504 (Greece); Skoulatakis, G.; Kennou, S.; Ladas, S. [Surface Science Laboratory, Department of Chemical Engineering, University of Patras, Rion 26 504 (Greece); Tsamis, C. [NCSR “Demokritos”, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, Aghia Paraskevi 15 310, Athens (Greece); Georga, S.N.; Krontiras, C.A. [Department of Physics, University of Patras, Rion 26 504 (Greece)

    2016-01-29

    It is well recognized that native oxide of germanium is hygroscopic and water soluble, while germanium dioxide is thermally unstable and it is converted to volatile germanium oxide at approximately 400 °C. Different techniques, implementing quite complicated plasma setups, gas mixtures and substrate heating, have been used in order to grow a stable germanium oxide. In the present work a traditional “RF diode” is used for germanium oxidation by cold plasma. Following growth, X-ray photoelectron spectroscopy demonstrates that traditional capacitively driven radio frequency discharges, using molecular oxygen as sole feedstock gas, provide the possibility of germanium dioxide layer growth in a fully reproducible and controllable manner. Post treatment ex-situ analyses on day-scale periods disclose the stability of germanium oxide at room ambient conditions, offering thus the ability to grow (ex-situ) ultra-thin high-k dielectrics on top of germanium oxide layers. Atomic force microscopy excludes any morphological modification in respect to the bare germanium surface. These results suggest a simple method for a controllable and stable germanium oxide growth, and contribute to the challenge to switch to high-k dielectrics as gate insulators for high-performance metal-oxide-semiconductor field-effect transistors and to exploit in large scale the superior properties of germanium as an alternative channel material in future technology nodes. - Highlights: • Simple one-frequency reactive ion etcher develops GeO{sub 2} thin layers controllably. • The layers remain chemically stable at ambient conditions over day-scale periods. • The layers are unaffected by the ex-situ deposition of high-k dielectrics onto them. • GeO{sub 2} oxidation and high-k deposition don't affect the Ge morphology significantly. • These conditions contribute to improved Ge-based MOS structure fabrication.

  12. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    CERN Document Server

    Van de Walle, J; Behrens, T; Bildstein, V; Blazhev, A; Cederkäll, J; Clément, E; Cocolios, T E; Davinson, T; Delahaye, P; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V; Fraile, L M; Franchoo, S; Gernhäuser, R; Georgiev, G; Habs, D; Heyde, K; Huber, G; Huyse, M; Ibrahim, F; Ivanov, O; Iwanicki, J; Jolie, J; Kester, O; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lisetskiy, A F; Lutter, R; Marsh, B A; Mayet, P; Niedermaier, O; Pantea, M; Raabe, R; Reiter, P; Sawicka, M; Scheit, H; Schrieder, G; Schwalm, D; Seliverstov, M D; Sieber, T; Sletten, G; Smirnova, N; Stanoiu, M; Stefanescu, I; Thomas, J C; Valiente-Dobón, J J; Van Duppen, P; Verney, D; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Zielinska, M

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,20) values in 74-80Zn, B(E2,42) values in 74,76Zn and the determination of the energy of the first excited 2 states in 78,80Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of 238U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, i...

  13. Research and Development Supporting a Next Generation Germanium Double Beta Decay Experiment

    Science.gov (United States)

    Rielage, Keith; Elliott, Steve; Chu, Pinghan; Goett, Johnny; Massarczyk, Ralph; Xu, Wenqin

    2015-10-01

    To improve the search for neutrinoless double beta decay, the next-generation experiments will increase in source mass and continue to reduce backgrounds in the region of interest. A promising technology for the next generation experiment is large arrays of Germanium p-type point contact detectors enriched in 76-Ge. The experience, expertise and lessons learned from the MAJORANA DEMONSTRATOR and GERDA experiments naturally lead to a number of research and development activities that will be useful in guiding a future experiment utilizing Germanium. We will discuss some R&D activities including a hybrid cryostat design, background reduction in cabling, connectors and electronics, and modifications to reduce assembly time. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  14. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  15. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    Science.gov (United States)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2 at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS). The purpose of the microgravity experiments includes differentiating among proposed mechanisms contributing to detachment, and confirming or refining our understanding of the detachment mechanism. Because large contact angle are critical to detachment, sessile drop measurements were used to determine the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases from 150 deg to an equilibrium value of 117 deg (Ge) or from 129 deg to an equilibrium value of 100 deg (GeSi) over the duration of the experiment. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. Results in this presentation will show that we have established the effects on detachment of ampoule material, pressure difference above and below the melt, and silicon concentration; samples that are nearly completely detached can be grown repeatedly in pBN.

  16. Germanium geochemistry and mineralogy

    Science.gov (United States)

    Bernstein, L.R.

    1985-01-01

    Germanium is enriched in the following geologic environments: 1. (1) iron meteorites and terrestrial iron-nickel; 2. (2) sulfide ore deposits, particularly those hosted by sedimentary rocks; 3. (3) iron oxide deposits; 4. (4) oxidized zones of Ge-bearing sulfide deposits; 5. (5) pegmatites, greisens, and skarns; and 6. (6) coal and lignitized wood. In silicate melts, Ge is highly siderophile in the presence of native iron-nickel; otherwise, it is highly lithophile. Among silicate minerals, Ge is concentrated in those having less polymerized silicate tetrahedra such as olivine and topaz. In deposits formed from hydrothermal solutions, Ge tends to be enriched mostly in either sulfides or in fluorine-bearing phases; it is thus concentrated both in some hydrothermal sulfide deposits and in pegmatites, greisens, and skarns. In sulfide deposits that formed from solutions having low to moderate sulfur activity, Ge is concentrated in sphalerite in amounts up to 3000 ppm. Sulfide deposits that formed from solutions having higher sulfur activity allowed Ge to either form its own sulfides, particularly with Cu, or to substitute for As, Sn, or other metals in sulfosalts. The Ge in hydrothermal fluids probably derives from enrichment during the fractional crystallization of igneous fluids, or is due to the incorporation of Ge from the country rocks, particularly from those containing organic material. Germanium bonds to lignin-derivative organic compounds that are found in peat and lignite, accounting for its common concentration in coals and related organic material. Germanium is precipitated from water together with iron hydroxide, accounting for its concentration in some sedimentary and supergene iron oxide deposits. It also is able to substitute for Fe in magnetite in a variety of geologic environments. In the oxidized zone of Ge-bearing sulfide deposits, Ge is concentrated in oxides, hydroxides, and hydroxy-sulfates, sometimes forming its own minerals. It is particularly

  17. Impurity diffusion, point defect engineering, and surface/interface passivation in germanium

    KAUST Repository

    Chroneos, Alexander I.

    2012-01-26

    In recent years germanium has been emerging as a mainstream material that could have important applications in the microelectronics industry. The principle aim of this study is to review investigations of the diffusion of technologically important p- and n-type dopants as well as surface and interface passivation issues in germanium. The diffusion of impurities in germanium is interrelated to the formation of clusters whenever possible, and possibilities for point defect engineering are discussed in view of recent results. The importance of electrically active defects on the Ge surface and interfaces is addressed considering strategies to suppress them and to passivate the surfaces/interfaces, bearing in mind their importance for advanced devices. © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Symmetries of Quadrupole-Collective Vibrational Motion in Transitional Even-Even 124−134Xenon Nuclei

    CERN Document Server

    Pietralla, N; Rainovski, G; Ahn, T; Bauer, C; Leske, J; Möller, O; Möller, T

    2010-01-01

    Projectile-Coulomb excitation of Xe isotopes has been performed at ANL using the Gammasphere array for the detection of γ-rays. The one-quadrupole phonon 2+ 1,ms mixed-symmetry state (MSS) has been traced in the stable N=80 isotones down to 134Xe. First, the data on absolute E2 andM1 transition rates quantify the amount of F-spin symmetry in these nuclei and provide a new local measure for the pn-QQ interaction. Second, the evolution of the 2+ 1,ms state has been studied along the sequence of stable even-even 124−134Xe isotopes that are considered to form a shape transition path from vibrational nuclei with vibrational U(5) symmetry near N=82 to γ-softly deformed shapes with almost O(6) symmetry. Third, our data on more than 50 absolute E2 transition rates between off-yrast low-spin states of 124,126Xe enable us to quantitatively test O(6) symmetry in these nuclei. As a result we find that O(6) symmetry is more strongly broken in the A=130 mass region than previously thought. The data will be discussed.

  19. Silicon-germanium (Sige) nanostructures production, properties and applications in electronics

    CERN Document Server

    Usami, N

    2011-01-01

    Nanostructured silicon-germanium (SiGe) provides the prospect of novel and enhanced electronic device performance. This book reviews the materials science and technology of SiGe nanostructures, including crystal growth, fabrication of nanostructures, material properties and applications in electronics.$bNanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices. The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and mo...

  20. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    International Nuclear Information System (INIS)

    Heusser, G.; Weber, M.; Hakenmüller, J.; Laubenstein, M.; Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H.

    2015-01-01

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut für Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ≤100 μBq kg -1 for primordial radionuclides from U and Th in typical γ ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites

  1. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Heusser, G., E-mail: gerd.heusser@mpi-hd.mpg.de; Weber, M., E-mail: marc.weber@mpi-hd.mpg.de; Hakenmüller, J. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg (Germany); Laubenstein, M. [Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100, Assergi, AQ (Italy); Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg (Germany)

    2015-11-09

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut für Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ≤100 μBq kg{sup -1} for primordial radionuclides from U and Th in typical γ ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites.

  2. GIOVE: a new detector setup for high sensitivity germanium spectroscopy at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Heusser, G.; Weber, M.; Hakenmueller, J.; Lindner, M.; Maneschg, W.; Simgen, H.; Stolzenburg, D.; Strecker, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Laubenstein, M. [Laboratori Nazionali del Gran Sasso, Assergi (Italy)

    2015-11-15

    We report on the development and construction of the high-purity germanium spectrometer setup GIOVE (Germanium Inner Outer VEto), recently built and now operated at the shallow underground laboratory of the Max-Planck-Institut fuer Kernphysik, Heidelberg. Particular attention was paid to the design of a novel passive and active shield, aiming at efficient rejection of environmental and muon induced radiation backgrounds. The achieved sensitivity level of ≤ 100μBq kg{sup -1} for primordial radionuclides from U and Th in typical γ ray sample screening measurements is unique among instruments located at comparably shallow depths and can compete with instruments at far deeper underground sites. (orig.)

  3. Ultraviolet-light-induced processes in germanium-doped silica

    DEFF Research Database (Denmark)

    Kristensen, Martin

    2001-01-01

    A model is presented for the interaction of ultraviolet (UV) light with germanium-doped silica glass. It is assumed that germanium sites work as gates for transferring the excitation energy into the silica. In the material the excitation induces forbidden transitions to two different defect states...... which are responsible for the observed refractive index changes. Activation energies [1.85 +/-0.15 eV and 1.91 +/-0.15 eV] and rates [(2.7 +/-1.9) x 10(13) Hz and(7.2 +/-4.5) x 10(13) Hz] are determined for thermal elimination of these states. Good agreement is found with experimental results and new UV...

  4. Determination of the Wetting Angle of Germanium and Germanium-Silicon Melts on Different Substrate Materials

    Science.gov (United States)

    Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.

    1999-01-01

    During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.

  5. Development of neutron-transmutation-doped germanium bolometer material

    International Nuclear Information System (INIS)

    Palaio, N.P.

    1983-08-01

    The behavior of lattice defects generated as a result of the neutron-transmutation-doping of germanium was studied as a function of annealing conditions using deep level transient spectroscopy (DLTS) and mobility measurements. DLTS and variable temperature Hall effect were also used to measure the activation of dopant impurities formed during the transmutation process. In additioon, a semi-automated method of attaching wires on to small chips of germanium ( 3 ) for the fabrication of infrared detecting bolometers was developed. Finally, several different types of junction field effect transistors were tested for noise at room and low temperature (approx. 80 K) in order to find the optimum device available for first stage electronics in the bolometer signal amplification circuit

  6. Imaging capabilities of germanium gamma cameras

    International Nuclear Information System (INIS)

    Steidley, J.W.

    1977-01-01

    Quantitative methods of analysis based on the use of a computer simulation were developed and used to investigate the imaging capabilities of germanium gamma cameras. The main advantage of the computer simulation is that the inherent unknowns of clinical imaging procedures are removed from the investigation. The effects of patient scattered radiation were incorporated using a mathematical LSF model which was empirically developed and experimentally verified. Image modifying effects of patient motion, spatial distortions, and count rate capabilities were also included in the model. Spatial domain and frequency domain modeling techniques were developed and used in the simulation as required. The imaging capabilities of gamma cameras were assessed using low contrast lesion source distributions. The results showed that an improvement in energy resolution from 10% to 2% offers significant clinical advantages in terms of improved contrast, increased detectability, and reduced patient dose. The improvements are of greatest significance for small lesions at low contrast. The results of the computer simulation were also used to compare a design of a hypothetical germanium gamma camera with a state-of-the-art scintillation camera. The computer model performed a parametric analysis of the interrelated effects of inherent and technological limitations of gamma camera imaging. In particular, the trade-off between collimator resolution and collimator efficiency for detection of a given low contrast lesion was directly addressed. This trade-off is an inherent limitation of both gamma cameras. The image degrading effects of patient motion, camera spatial distortions, and low count rate were shown to modify the improvements due to better energy resolution. Thus, based on this research, the continued development of germanium cameras to the point of clinical demonstration is recommended

  7. Astroparticle physics with a customized low-background broad energy Germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, Craig E.; Amman, M.; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Barbeau, P. S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Bugg, William; Burritt, Tom H.; Busch, Matthew; Capps, Greg L.; Chan, Yuen-Dat; Collar, J. I.; Cooper, R. J.; Creswick, R.; Detwiler, Jason A.; Diaz, J.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Ely, James H.; Esterline, James H.; Farach, H. A.; Fast, James E.; Fields, N.; Finnerty, P.; Fujikawa, Brian; Fuller, Erin S.; Gehman, Victor M.; Giovanetti, G. K.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Harper, Gregory; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Hossbach, Todd W.; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Miley, Harry S.; Miller, M. L.; Mizouni, Leila; Myers, Allan W.; Nomachi, Masaharu; Orrell, John L.; Peterson, David; Phillips, D.; Poon, Alan; Prior, Gersende; Qian, J.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Rodriguez, Larry; Rykaczewski, Krzysztof P.; Salazar, Harold; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Steele, David; Strain, J.; Swift, Gary; Thomas, K.; Timkin, V.; Tornow, W.; Van Wechel, T. D.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Wilkerson, J. F.; Wolfe, B. A.; Xiang, W.; Yakushev, E.; Yaver, Harold; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.; Zimmerman, S.

    2011-10-01

    The Majorana Collaboration is building the Majorana Demonstrator, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The Majorana Demonstrator will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c² mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the Majorana Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.

  8. A high resolution germanium detector array for hypernuclear studies at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Gerl, Juergen; Kojouharova, Jasmina; Kojouharov, Ivan [GSI Darmstadt (Germany); Iazzi, Felice [Politecnico, Torino (Italy); INFN, Torino (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institute for Nuclear Physics, JGU Mainz (Germany)

    2014-07-01

    The PANDA experiment, planned at the FAIR facility in Darmstadt, aims at the high resolution γ-spectroscopy of double Λ hypernuclei. For this purpose a devoted detector setup is required, consisting of a primary nuclear target, an active secondary target and a germanium detector array for the γ-spectroscopy. Due to the limited space within the PANDA detector a compact design is required. In particular the conventional LN{sub 2} cooling system must be replaced by an electro mechanical device and a new arrangement of the crystals is needed. This presentation shows the progress in the development of the germanium detectors. First results of in-beam measurements at COSY with a new electro mechanically cooled single crystal prototype are presented. Digital pulse shape analysis is used to disentangle pile up events due to the high event rate. This analysis technique also allows to recover the high original energy resolution in case of neutron damage. Finally the status of the new triple crystal detector prototype is given.

  9. Neutron activation determination of phosphorus and sulfur in semiconductor materials by 32P-isotope

    International Nuclear Information System (INIS)

    Nikolaev, A.V.; Gol'dshtejn, M.M.; Gil'bert, Eh.N.; Verevkin, G.V.; Yudelevich, I.G.

    1977-01-01

    A neutron-activation method has been developed for determining phosphorus and sulphur in germanium, gallium, gallium arsenide, and silicon structures using 32 P isotope. The dioctyl-sulphoxide (DOSO) extraction of phosphoric molybdenum acid (PMA) has been used to separate 32 P in a radiochemically pure form. Correction factors have been calculated due to the 2nd order interference on 30 Si nuclei in determining phosphorus in silicon for various irradiation times and at various cadmium proportions

  10. Harmonic Lattice Dynamics of Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Nelin, G

    1974-07-01

    The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.

  11. Harmonic Lattice Dynamics of Germanium

    International Nuclear Information System (INIS)

    Nelin, G.

    1974-01-01

    The phonon dispersion relations of the Δ-, Λ-, and Σ-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field

  12. Triaxial shapes in the ground states of even-even neutron-rich Ru isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Lister, C.J.; Morss, L.R. [and others

    1995-08-01

    Partial level schemes for {sup 108,110,112}Ru, and {sup 114}Ru about which nothing was previously known, were determined from the measurement of prompt, triple-gamma coincidences in {sup 248}Cm fission fragments. A 5-mg {sup 249}Cm source, mixed with 65-mg KCl and pressed in the form of a 7-mm diameter pellet, was used for the experiment. Prompt {gamma} rays emitted from the fission fragments were detected with the Eurogam array at Daresbury, which at that time consisted of 45 Compton suppressed Ge detectors and 5 LEPS spectrometers. Transitions in Ru were identified by gating on {gamma} rays in the complementary Te fragments. Figure I-25 shows the technique used to identify the previously unknown transitions in {sup 114}Ru and its partial level scheme. High spin states up to spin 10 h were observed and the {gamma}-ray branching ratios were determined. The ratios of electric quadrupole transition probabilities deduced from the experimental branching ratios were found to be in good agreement with the predictions of a simple model of rigid triaxial rotor. Our analysis shows that gamma deformation in Ru isotopes is increasing with the neutron number and the gamma value for {sup 112}Ru and {sup 114}Ru is {approximately} 25 degrees. This is one of the highest gamma values encountered in nuclei, suggesting soft triaxial shapes for {sup 112}Ru and {sup 114}Ru. The results of this investigation were published.

  13. Charge Spreading and Position Sensitivity in a Segmented Planar Germanium Detector (Preprint)

    National Research Council Canada - National Science Library

    Kroeger, R. A; Gehrels, N; Johnson, W. N; Kurfess, J. D; Phlips, B. P; Tueller, J

    1998-01-01

    The size of the charge cloud collected in a segmented germanium detector is limited by the size of the initial cloud, uniformity of the electric field, and the diffusion of electrons and holes through the detector...

  14. Gold catalytic Growth of Germanium Nanowires by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    M. Zahedifar

    2013-03-01

    Full Text Available Germanium nanowires (GeNWs were synthesized using chemical vapor deposition (CVD based on vapor–liquid–solid (VLS mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4 as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal solution, which resulted in Au nanoparticles with different sizes. GeNWs were synthesized at 400 °C, which is a low temperature for electrical device fabrication. Effect of different parameters such as Au nanoparticles size, carrier gas (Ar flow and mixture of H2 with the carrier gas on GeNWs diameter and shape was studied by SEM images. The chemical composition of the nanostructure was also examined by energy dispersive X-ray spectroscopy (EDS.

  15. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Ordu

    2017-09-01

    Full Text Available Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3 response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.

  16. Quantitative spectrographic determination of traces of germanium in lignite

    International Nuclear Information System (INIS)

    Martin, M.; Roca, M.

    1972-01-01

    A burning technique in a d.c. arc at 10 amp has been employed. The standards have been prepared from a natural lignite with a low germanium content. In order to enhance sensitivity, AgCl, K 2 SO 4 , CuF 2 , Sb 2 S 3 and Bi 2 S 3 have been tested as sweeping materials. Using 2% CuF 2 a detection limit of 1 ppm germanium is attainable. Bi, Cu, Sb and Sn have been studied as internal standards: the former leads to the, highest precision (1 6%. Results show good agreement with those obtained by the addition method. (Author) 6 refs

  17. Recrystallization behaviour and electrical properties of germanium ion implanted polycrystalline silicon films

    International Nuclear Information System (INIS)

    Kang, Myeon-Koo; Matsui, Takayuki; Kuwano, Hiroshi

    1996-01-01

    The recrystallization behaviour of undoped and phosphorus-doped polycrystalline silicon films amorphized by germanium ion implantation at doses ranging from 1 x 10 15 to 1 x 10 16 cm -2 are investigated, and the electrical properties of phosphorus-doped films after recrystallization are studied. The phosphorus doping concentration ranges from 3 x 10 18 to 1 x 10 20 cm -3 . It is found that the nucleation rate decreases for undoped films and increases for phosphorus-doped films with increasing germanium dose; the growth rates decrease for both doped and undoped films. The decrease in nucleation rate is caused by the increase in implantation damage. The decrease in growth rate is considered to be due to the increase in lattice strain. The grain size increases with germanium dose for undoped films, but decreases for phosphorus-doped films. The dependence of the electrical properties of the recrystallized films as a function of phosphorus doping concentration with different germanium doses can be explained in terms of the grain size, crystallinity and grain boundary barrier height. (Author)

  18. Organotrichlorogermane synthesis by the reaction of elemental germanium, tetrachlorogermane and organic chloride via dichlorogermylene intermediate.

    Science.gov (United States)

    Okamoto, Masaki; Asano, Takuya; Suzuki, Eiichi

    2004-08-07

    Organotrichlorogermanes were synthesized by the reaction of elemental germanium, tetrachlorogermane and organic chlorides, methyl, propyl, isopropyl and allyl chlorides. Dichlorogermylene formed by the reaction of elemental germanium with tetrachlorogermane was the reaction intermediate, which was inserted into the carbon-chlorine bond of the organic chloride to give organotrichlorogermane. When isopropyl or allyl chloride was used as an organic chloride, organotrichlorogermane was formed also in the absence of tetrachlorogermane. These chlorides were converted to hydrogen chloride, which subsequently reacted with elemental germanium to give the dichlorogermylene intermediate. The reaction of elemental germanium, tetrachlorogermane and organic chlorides provides a simple and easy method for synthesizing organotrichlorogermanes, and all the raw materials are easily available.

  19. Low temperature carrier transport properties in isotopically controlled germanium

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kohei [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled 75Ge and 70Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the [74Ge]/[70Ge] ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples the authors have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition.

  20. Characterisation of two AGATA asymmetric high purity germanium capsules

    International Nuclear Information System (INIS)

    Colosimo, S.J.; Moon, S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Harkness-Brennan, L.; Judson, D.S.; Lazarus, I.H.; Nolan, P.J.; Simpson, J.; Unsworth, C.

    2015-01-01

    The AGATA spectrometer is an array of highly segmented high purity germanium detectors. The spectrometer uses pulse shape analysis in order to track Compton scattered γ-rays to increase the efficiency of nuclear spectroscopy studies. The characterisation of two high purity germanium detector capsules for AGATA of the same A-type has been performed at the University of Liverpool. This work will examine the uniformity of performance of the two capsules, including a comparison of the resolution and efficiency as well as a study of charge collection. The performance of the capsules shows good agreement, which is essential for the efficient operation of the γ-ray tracking array

  1. Characterisation of two AGATA asymmetric high purity germanium capsules

    Energy Technology Data Exchange (ETDEWEB)

    Colosimo, S.J., E-mail: sjc@ns.ph.liv.ac.uk [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Moon, S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Harkness-Brennan, L.; Judson, D.S. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury, Daresbury, Warrington WA4 4AD (United Kingdom); Nolan, P.J. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [STFC Daresbury, Daresbury, Warrington WA4 4AD (United Kingdom); Unsworth, C. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2015-02-11

    The AGATA spectrometer is an array of highly segmented high purity germanium detectors. The spectrometer uses pulse shape analysis in order to track Compton scattered γ-rays to increase the efficiency of nuclear spectroscopy studies. The characterisation of two high purity germanium detector capsules for AGATA of the same A-type has been performed at the University of Liverpool. This work will examine the uniformity of performance of the two capsules, including a comparison of the resolution and efficiency as well as a study of charge collection. The performance of the capsules shows good agreement, which is essential for the efficient operation of the γ-ray tracking array.

  2. GRAN SASSO: Enriched germanium in action

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-12-15

    Two large crystals of carefully enriched germanium, one weighing 1 kilogram and the other 2.9 kilograms, and worth many millions of dollars, are being carefully monitored in the Italian Gran Sasso Laboratory in the continuing search for neutrinoless double beta decay.

  3. GRAN SASSO: Enriched germanium in action

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Two large crystals of carefully enriched germanium, one weighing 1 kilogram and the other 2.9 kilograms, and worth many millions of dollars, are being carefully monitored in the Italian Gran Sasso Laboratory in the continuing search for neutrinoless double beta decay

  4. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    International Nuclear Information System (INIS)

    Liu, Jing

    2009-01-01

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of 76 Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse shape

  5. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing

    2009-06-09

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of {sup 76}Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse

  6. Niobium nitride Josephson junctions with silicon and germanium barriers

    International Nuclear Information System (INIS)

    Cukauskas, E.J.; Carter, W.L.

    1988-01-01

    Niobium nitride based junctions with silicon, germanium, and composite silicon/germanium barriers were fabricated and characterized for several barrier compositions. The current-voltage characteristics were analyzed at several temperatures using the Simmons model and numerical integration of the WKB approximation for the average barrier height and effective thickness. The zero voltage conductance was measured from 1.5 K to 300 K and compared to the Mott hopping conductivity model and the Stratton tunneling temperature dependence. Conductivity followed Mott conductivity at temperatures above 60 K for junctions with less than 100 angstrom thick barriers

  7. Study of the possibility of growing germanium single crystals under low temperature gradients

    Science.gov (United States)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.; Zhdankov, V. N.

    2014-03-01

    The possibility of growing germanium single crystals under low temperature gradients in order to produce a dislocation-free material has been studied. Germanium crystals with a dislocation density of about 100-200 cm-2 have been grown in a system with a weight control of crystal growth at maximum axial gradients of about 1.5 K/cm.

  8. High temperature dielectric function of silicon, germanium and GaN

    Energy Technology Data Exchange (ETDEWEB)

    Leyer, Martin; Pristovsek, Markus; Kneissl, Michael [Technische Universitaet Berlin (Germany). Institut fuer Festkoerperphysik

    2010-07-01

    In the last few years accurate values for the optical properties of silicon, germanium and GaN at high temperatures have become important as a reference for in-situ analysis, e.g. reflectometry. Precise temperature dependent dielectric measurements are necessary for the growth of GaInP/GaInAs/Ge triple-junction solar cells and the hetero epitaxy of GaN on silicon and sapphire. We performed spectroscopic ellipsometry (SE) measurements of the dielectric function of silicon, germanium and GaN between 1.5 eV and 6.5 eV in the temperature range from 300 K to 1300 K. The Samples were deoxidized chemically or by heating. High resolution SE spectra were taken every 50 K while cooling down to room temperature. The temperature dependence of the critical energies is compared to literature. Measurements for germanium showed a shift of the E{sub 2} critical point of {proportional_to}0.1 eV toward lower energies. The reason for this behavior is a non-negligible oxide layer on the samples in the literature.

  9. A high resolution germanium detector array for hypernuclear studies at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Gerl, Juergen; Kojouharov, Ivan [GSI, Darmstadt (Germany); Iazzi, Felice [Politecnico, Torino, Turin (Italy); INFN, Torino, Turin (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institute for Nuclear Physics, JGU Mainz (Germany); Collaboration: PANDA-Collaboration

    2013-07-01

    The PANDA experiment, planned at the FAIR facility in Darmstadt, aims at the high resolution γ-spectroscopy of double Λ hypernuclei. For this purpose a devoted detector setup is required, consisting of a primary nuclear target, an active secondary target and a germanium detector array for the γ-spectroscopy. Due to the limited space within the PANDA detector a compact design is required. In particular the conventional LN{sub 2} cooling system must be replaced by an electro-mechanical device and a new arrangement of the crystals is needed. This poster shows the ongoing development of the germanium detectors. Test measurements of a single crystal prototype with an improved cooling concept are shown. Thermal simulations for a triple crystal detector are presented. Aditionally studies of the optimization of the detector arrangement inside the PANDA barrel spectrometer are shown. Finally the status on digital pulse shape analysis is presented which will be necessary to deal with high counting rates and to recover the high original energy resolution in case of neutron damage.

  10. Dazai super-large uranium-bearing germanium deposit in western Yunnan region metallogenic geological conditions and prospect

    International Nuclear Information System (INIS)

    Han Yanrong; Yuan Qingbang; Li Yonghua; Zhang Ling; Dai Jiemin

    1995-05-01

    The Dazai super-large uranium-bearing germanium deposit is located in Bangmai Fault Basin, Western Yunnan, China. The basin basement is migmatitic granite and the cover is miocene coal-bearing clastics, Bangmai Formation. The basin development had undergone faulted rhombus basin forming, synsedimentary structure-developing and up-lifted-denuded stages. Synsedimentary faults had controlled distribution of sedimentary formation and lithofacies, and uranium and germanium mineralization. Germanium ore-bodies occur mainly in master lignite-bed of lower rhythmite. Hosted germanium-lignite is taken as main ore-type. Germanium occurs in vitrinite of lignite in the form of metal-organic complex. The metallogenetic geological conditions of the deposit are that ground preparation is uplift zone-migmatitic granite-fault basin-geothermal anomaly area, rich and thick ore-body is controlled by synsedimentary fault, peat-bog phase is favorable to accumulation for ore-forming elements, and unconformity between overlying cover and underlying basement is a channel-way of mineralizing fluid. A multiperiodic composite, being regarded sedimentation and diagenesis as a major process, uranium and germanium ore deposit has been formed through two mineralization. Four prospecting areas have been forecasted and two deposits have been accordingly discovered again. Technical-economic provableness shows that the deposit is characterized by shallow-buried, rich grade, large scale, easy mining and smelting. (9 figs.)

  11. High-purity germanium crystal growing

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.

    1982-10-01

    The germanium crystals used for the fabrication of nuclear radiation detectors are required to have a purity and crystalline perfection which is unsurpassed by any other solid material. These crystals should not have a net electrically active impurity concentration greater than 10 10 cm - 3 and be essentially free of charge trapping defects. Such perfect crystals of germanium can be grown only because of the highly favorable chemical and physical properties of this element. However, ten years of laboratory scale and commercial experience has still not made the production of such crystals routine. The origin and control of many impurities and electrically active defect complexes is now fairly well understood but regular production is often interrupted for long periods due to the difficulty of achieving the required high purity or to charge trapping in detectors made from crystals seemingly grown under the required conditions. The compromises involved in the selection of zone refining and crystal grower parts and ambients is discussed and the difficulty in controlling the purity of key elements in the process is emphasized. The consequences of growing in a hydrogen ambient are discussed in detail and it is shown how complexes of neutral defects produce electrically active centers

  12. Germanium films by polymer-assisted deposition

    Science.gov (United States)

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  13. Empirical correction of crosstalk in a low-background germanium γ-γ analysis system

    International Nuclear Information System (INIS)

    Keillor, M.E.; Erikson, L.E.; Aalseth, C.E.; Day, A.R.; Fuller, E.S.; Glasgow, B.D.; Hoppe, E.W.; Hossbach, T.W.; Mizouni, L.K.; Myers, A.W.

    2013-01-01

    The Pacific Northwest National Laboratory (PNNL) is currently developing a custom software suite capable of automating many of the tasks required to accurately analyze coincident signals within gamma spectrometer arrays. During the course of this work, significant crosstalk was identified in the energy determination for spectra collected with a new low-background intrinsic germanium (HPGe) array at PNNL. The HPGe array is designed for high detection efficiency, ultra-low-background performance, and sensitive γ-γ coincidence detection. The first half of the array, a single cryostat containing seven HPGe crystals, was recently installed into a new shallow underground laboratory facility. This update will present a brief review of the germanium array, describe the observed crosstalk, and present a straight-forward empirical correction that significantly reduces the impact of this crosstalk on the spectroscopic performance of the system. (author)

  14. Germanium-doped gallium phosphide obtained by neutron irradiation

    Science.gov (United States)

    Goldys, E. M.; Barczynska, J.; Godlewski, M.; Sienkiewicz, A.; Heijmink Liesert, B. J.

    1993-08-01

    Results of electrical, optical, electron spin resonance and optically detected magnetic resonance studies of thermal neutron irradiated and annealed at 800 °C n-type GaP are presented. Evidence is found to support the view that the main dopant introduced via transmutation of GaP, germanium, occupies cation sites and forms neutral donors. This confirms the possibility of neutron transmutation doping of GaP. Simultaneously, it is shown that germanium is absent at cation sites. Presence of other forms of Ge-related defects is deduced from luminescence and absorption data. Some of them are tentatively identified as VGa-GeGa acceptors leading to the self-compensation process. This observation means that the neutron transmutation as a doping method in application to GaP is not as efficient as for Si.

  15. Nature of oxygen donors and radiation defects in oxygen-doped germanium

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Atobe, Kozo; Honda, Makoto; Matsuda, Koji.

    1991-01-01

    The nature of oxygen donors and radiation defects in oxygen-doped germanium were studied through measurements of the infrared absorption spectrum, deep level transient spectroscopy spectrum and carrier concentration. It is revealed that a new donor is not formed in oxygen-doped germanium. An A-center (interstitial oxygen-vacancy pair) forms a complex with a thermal donor in its annealing stage at 60degC-140degC. The introduction rate of defects by 1.5 MeV electron irradiation was enhanced in thermal-donor-doped samples. (author)

  16. Electrodeposition at room temperature of amorphous silicon and germanium nanowires in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, F; Namur, K; Mallet, J; Delavoie, F; Troyon, M; Molinari, M [Laboratoire de Microscopies et d' Etude de Nanostructures (LMEN EA3799), Universite de Reims Champagne Ardennes (URCA), Reims Cedex 2 (France); Endres, F, E-mail: michael.molinari@univ-reims.fr [Institute of Particle Technology, Chair of Interface Processes, Clausthal University of Technology, D-36678 Clausthal-Zellerfeld (Germany)

    2009-11-15

    The electrodeposition at room temperature of silicon and germanium nanowires from the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P{sub 1,4}) containing SiCl{sub 4} as Si source or GeCl{sub 4} as Ge source is investigated by cyclic voltammetry. By using nanoporous polycarbonate membranes as templates, it is possible to reproducibly grow pure silicon and germanium nanowires of different diameters. The nanowires are composed of pure amorphous silicon or germanium. The nanowires have homogeneous cylindrical shape with a roughness of a few nanometres on the wire surfaces. The nanowires' diameters and lengths well match with the initial membrane characteristics. Preliminary photoluminescence experiments exhibit strong emission in the near infrared for the amorphous silicon nanowires.

  17. Program LEPS to addition of gamma spectra from germanium detectors

    International Nuclear Information System (INIS)

    Romero, L.

    1986-01-01

    The LEP program, written in FORTRAN IV, performs the addition of two spectra, collected with different detectors, from the same sample. This application, adds the two gamma spectra obtained from two opposite LEPS Germanium Detectors (Low Energy Photon Spectrometer), correcting the differences (channel/energy) between both two spectra, and fitting them before adding. The total-spectrum is recorded at the computer memory as a single spectrum. The necessary equipment, to run this program is: - Two opposite germanium detectors, with their associate electronics. - Multichannel analyzer (2048 memory channel minimum) - Computer on-line interfacing to multichannel analyzer. (Author) 4 refs

  18. Mechanically-cooled germanium detector using two stirling refrigerators

    International Nuclear Information System (INIS)

    Katagiri, Masaki; Kobayashi, Yoshii; Takahashi, Koji

    1996-01-01

    In this paper, we present a developed mechanically-cooled germanium gamma-ray detector using Stirling refrigerators. Two Stirling refrigerators having cooling faculty of 1.5W at 80K were used to cool down a germanium detector element to 77K instead of a dewar containing liquid nitrogen. An 145cm 3 (56.0mmf x 59.1 mml) closed-end Ge(I) detector having relative detection efficiency of 29.4% was attached at the refrigerators. The size of the detector was 60cml x 15cmh x 15cmw. The lowest cooling temperature, 70K was obtained after 8 hours operation. The energy resolutions for 1.33MeV gamma-rays and for pulser signals were 2.43keV and 1.84keV at an amplifier shaping time of 2μsec, respectively

  19. Evaluation Of The Impact Of The Defense Waste Processing Facility (DWPF) Laboratory Germanium Oxide Use On Recycle Transfers To The H-Tank Farm

    International Nuclear Information System (INIS)

    Jantzen, C.; Laurinat, J.

    2011-01-01

    goal of 400 canisters. Since no Waste Acceptance Criteria (WAC) exists for germanium in the Tank Farm, the Effluent Treatment Project, or the Saltstone Production Facility, DWPF has requested an evaluation of the fate of the germanium in the caustic environment of the RCT, the 2H evaporator, and the tank farm. This report evaluates the effect of the addition of germanium to the tank farm based on: (1) the large dilution of Ge in the RCT and tank farm; (2) the solubility of germanium in caustic solutions (pH 12-13); (3) the potential of germanium to precipitate as germanium sodalites in the 2H Evaporator; and (4) the potential of germanium compounds to precipitate in the evaporator feed tank. This study concludes that the impacts of transferring up to 4 kg/yr germanium to the RCT (and subsequently the 2H evaporator feed tank and the 2H evaporator) results in <2 ppm per year (1.834 mg/L) which is the maximum instantaneous concentration expected from DWPF. This concentration is insignificant as most sodium germanates are soluble at the high pH of the feed tank and evaporator solutions. Even if sodium aluminosilicates form in the 2H evaporator, the Ge will likely substitute for some small amount of the Si in these structures and will be insignificant. It is recommended that the DWPF continue with their strategy to add germanium as a laboratory chemical to Attachment 8.2 of the DWPF Waste Compliance Plan (WCP).

  20. Buried melting in germanium implanted silicon by millisecond flash lamp annealing

    International Nuclear Information System (INIS)

    Voelskow, Matthias; Yankov, Rossen; Skorupa, Wolfgang; Pezoldt, Joerg; Kups, Thomas

    2008-01-01

    Flash lamp annealing in the millisecond range has been used to induce buried melting in silicon. For this purpose high dose high-energy germanium implantation has been employed to lower the melting temperature of silicon in a predetermined depth region. Subsequent flash lamp treatment at high energy densities leads to local melting of the germanium rich layer. The thickness of the molten layer has been found to depend on the irradiation energy density. During the cool-down period, epitaxial crystallization takes place resulting in a largely defect-free layer

  1. Germanium nitride and oxynitride films for surface passivation of Ge radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Maggioni, G., E-mail: maggioni@lnl.infn.it [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Carturan, S. [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Fiorese, L. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali, Università di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Pinto, N.; Caproli, F. [Scuola di Scienze e Tecnologie, Sezione di Fisica, Università di Camerino, Via Madonna delle Carceri 9, Camerino (Italy); INFN, Sezione di Perugia, Perugia (Italy); Napoli, D.R. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Giarola, M.; Mariotto, G. [Dipartimento di Informatica—Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy)

    2017-01-30

    Highlights: • A surface passivation method for HPGe radiation detectors is proposed. • Highly insulating GeNx- and GeOxNy-based layers are deposited at room temperature. • Deposition parameters affect composition and electrical properties of the layers. • The improved performance of a GeNx-coated HPGe diode is assessed. - Abstract: This work reports a detailed investigation of the properties of germanium nitride and oxynitride films to be applied as passivation layers to Ge radiation detectors. All the samples were deposited at room temperature by reactive RF magnetron sputtering. A strong correlation was found between the deposition parameters, such as deposition rate, substrate bias and atmosphere composition, and the oxygen and nitrogen content in the film matrix. We found that all the films were very poorly crystallized, consisting of very small Ge nitride and oxynitride nanocrystallites, and electrically insulating, with the resistivity changing from three to six orders of magnitude as a function of temperature. A preliminary test of these films as passivation layers was successfully performed by depositing a germanium nitride film on the intrinsic surface of a high-purity germanium (HPGe) diode and measuring the improved performance, in terms of leakage current, with respect to a reference passivated diode. All these interesting results allow us to envisage the application of this coating technology to the surface passivation of germanium-based radiation detectors.

  2. Diffusion of tin in germanium: A GGA+U approach

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander; Grimes, R. W.; Schwingenschlö gl, Udo

    2011-01-01

    Density functional theory calculations are used to investigate the formation and diffusion of tin-vacancy pairs (SnV) in germanium(Ge). Depending upon the Fermi energy, SnV pairs can form in neutral, singly negative, or doubly negative charged states. The activation energies of diffusion, also as function of the Fermi energy, are calculated to lie between 2.48-3.65 eV, in agreement with and providing an interpretation of available experimental work.

  3. Diffusion of tin in germanium: A GGA+U approach

    KAUST Repository

    Tahini, H. A.

    2011-10-18

    Density functional theory calculations are used to investigate the formation and diffusion of tin-vacancy pairs (SnV) in germanium(Ge). Depending upon the Fermi energy, SnV pairs can form in neutral, singly negative, or doubly negative charged states. The activation energies of diffusion, also as function of the Fermi energy, are calculated to lie between 2.48-3.65 eV, in agreement with and providing an interpretation of available experimental work.

  4. A small diameter, flexible, all attitude, self-contained germanium spectrometer. Operator's manual

    International Nuclear Information System (INIS)

    Bordzindki, R.L.; Lepel, E.A.; Reeves, J.H.; Kohli, R.

    1997-05-01

    The end of the Cold War has brought about tremendous changes in the nuclear complex of the Department of Energy. One of the many changes has been the shutdown or decommissioning of many facilities that performed nuclear work. One of the steps in the process of decommissioning a facility involves the decontamination or removal of drain lines or pipes that may have carried radioactive materials at one time. The removal of all these pipes and drain lines to a nuclear disposal facility could be quite costly. It was suggested by Pacific Northwest National Laboratory (PNNL) that a germanium spectrometer could be built that could fit through straight pipes with a diameter as small as 5.08 cm (2 inches) and pass through curved pipes with a diameter as small as 7.6 cm (3 inches) such as that of a 3-inch p-trap in a drain line. The germanium spectrometer could then be used to simultaneously determine all gamma-ray emitting radionuclides in or surrounding the pipe. By showing the absence of any gamma-ray emitting radionuclides, the pipes could then be reused in place or disposed of as non-radioactive material, thus saving significantly in disposal costs. A germanium spectrometer system has been designed by PNNL and fabricated by Princeton Gamma Tech (PGT) that consists of three segments, each 4.84 cm in diameter and about 10 cm in length. Flexible stainless steel bellows were used to connect the segments. Segment 1 is a small liquid nitrogen reservoir. The reservoir is filled with a sponge-like material which enables the detector to be used in any orientation. A Stirling cycle refrigerator is under development which can replace the liquid nitrogen reservoir to provide continuous cooling and operation

  5. Secondary ion formation during electronic and nuclear sputtering of germanium

    Science.gov (United States)

    Breuer, L.; Ernst, P.; Herder, M.; Meinerzhagen, F.; Bender, M.; Severin, D.; Wucher, A.

    2018-06-01

    Using a time-of-flight mass spectrometer attached to the UNILAC beamline located at the GSI Helmholtz Centre for Heavy Ion Research, we investigate the formation of secondary ions sputtered from a germanium surface under irradiation by swift heavy ions (SHI) such as 5 MeV/u Au by simultaneously recording the mass spectra of the ejected secondary ions and their neutral counterparts. In these experiments, the sputtered neutral material is post-ionized via single photon absorption from a pulsed, intensive VUV laser. After post-ionization, the instrument cannot distinguish between secondary ions and post-ionized neutrals, so that both signals can be directly compared in order to investigate the ionization probability of different sputtered species. In order to facilitate an in-situ comparison with typical nuclear sputtering conditions, the system is also equipped with a conventional rare gas ion source delivering a 5 keV argon ion beam. For a dynamically sputter cleaned surface, it is found that the ionization probability of Ge atoms and Gen clusters ejected under electronic sputtering conditions is by more than an order of magnitude higher than that measured for keV sputtered particles. In addition, the mass spectra obtained under SHI irradiation show prominent signals of GenOm clusters, which are predominantly detected as positive or negative secondary ions. From the m-distribution for a given Ge nuclearity n, one can deduce that the sputtered material must originate from a germanium oxide matrix with approximate GeO stoichiometry, probably due to residual native oxide patches even at the dynamically cleaned surface. The results clearly demonstrate a fundamental difference between the ejection and ionization mechanisms in both cases, which is interpreted in terms of corresponding model calculations.

  6. Study on ground state energy band of even 114-124Cd isotopes under the framework of interacting boson model (IBM-1)

    International Nuclear Information System (INIS)

    Hossain, I.; Abdullah, Hewa Y.; Ahmed, I.M.; Saeed, M.A.; Ahmad, S.T.

    2012-01-01

    In this research, the ground state gamma ray bands of even 114-124 Cd isotopes are calculated using interacting boson model (IBM-1). The theoretical energy levels for Z = 48, N = 66–76 up to spin-parity 8 + have been obtained by using PHINT computer program. The values of the parameters in the IBM-1 Hamiltonian yield the best fit to the experimental energy spectrum. The calculated results of the ground state energy band are compared to the previous experimental results and the obtained theoretical calculations in IBM-1 are in good agreement with the experimental energy level. (author)

  7. Comparison of the NaI-CsI phoswich and a hyperpure germanium array for in vivo detection of the actinides

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C D; Goans, R E [Oak Ridge National Lab., TN (USA)

    1981-04-01

    An array of hyperpure germanium detectors has recently been employed at ORNL for the identification and quantification of internally deposited actinides. Its advantages over the phoswich detector - the current state-of-the-art for detection of the actinides - were found to be improved background reduction and superior energy resolution. The germanium system and the currently operating phoswich system are discussed and compared. The improvement in performance of the germanium system over the phoswich system (a factor of 2.5 for /sup 239/Pu and 15.3 for /sup 241/Am) appears to justify the financial investment, particularly when /sup 241/Am is used as an indirect means of detection and measurement of /sup 239/Pu.

  8. Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting.

    Science.gov (United States)

    Lai, Min; Zhang, Xiaodong; Fang, Fengzhou

    2017-12-01

    Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.

  9. Methods to improve and understand the sensitivity of high purity germanium detectors for searches of rare events

    International Nuclear Information System (INIS)

    Volynets, Oleksandr

    2012-01-01

    Observation of neutrinoless double beta-decay could answer fundamental questions on the nature of neutrinos. High purity germanium detectors are well suited to search for this rare process in germanium. Successful operation of such experiments requires a good understanding of the detectors and the sources of background. Possible background sources not considered before in the presently running GERDA high purity germanium detector experiment were studied. Pulse shape analysis using artificial neural networks was used to distinguish between signal-like and background-like events. Pulse shape simulation was used to investigate systematic effects influencing the efficiency of the method. Possibilities to localize the origin of unwanted radiation using Compton back-tracking in a granular detector system were examined. Systematic effects in high purity germanium detectors influencing their performance have been further investigated using segmented detectors. The behavior of the detector response at different operational temperatures was studied. The anisotropy effects due to the crystallographic structure of germanium were facilitated in a novel way to determine the orientation of the crystallographic axes.

  10. Methods to improve and understand the sensitivity of high purity germanium detectors for searches of rare events

    Energy Technology Data Exchange (ETDEWEB)

    Volynets, Oleksandr

    2012-07-27

    Observation of neutrinoless double beta-decay could answer fundamental questions on the nature of neutrinos. High purity germanium detectors are well suited to search for this rare process in germanium. Successful operation of such experiments requires a good understanding of the detectors and the sources of background. Possible background sources not considered before in the presently running GERDA high purity germanium detector experiment were studied. Pulse shape analysis using artificial neural networks was used to distinguish between signal-like and background-like events. Pulse shape simulation was used to investigate systematic effects influencing the efficiency of the method. Possibilities to localize the origin of unwanted radiation using Compton back-tracking in a granular detector system were examined. Systematic effects in high purity germanium detectors influencing their performance have been further investigated using segmented detectors. The behavior of the detector response at different operational temperatures was studied. The anisotropy effects due to the crystallographic structure of germanium were facilitated in a novel way to determine the orientation of the crystallographic axes.

  11. Lifetimes of excited states in 196198Pt; application of interacting bason approximation model to even Pt isotopes systematics

    International Nuclear Information System (INIS)

    Bolotin, H.H.; Stuchbery, A.E.; Morrison, I.; Kennedy, D.L.; Ryan, C.G.; Sie, S.H.

    1981-01-01

    The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 1 + levels in 196 198 Pt were determined by the rcoil-distance method (RDM). Gamma-ray angular distributions in 198 Pt were also measured. These states were populated by multiple Coulomb excitation using 220-MeV 58 Ni ion beams and the measurements carried out in coincidence with backscattered projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even 194 - 198 Pt isotopes, are critically compared with our structure calculations employing the Interacting Boson Approximation (IBA) model incorporating a symmetry-breaking quadrupole force. Evaluative comparisons are also made with Boson Expansion Theory (BET) calculations

  12. Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties

    Science.gov (United States)

    Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.

    2017-12-01

    Graphene provides numerous possibilities for structural modification and functionalization of its carbon backbone. Localized magnetic moments can, as well, be induced in graphene by the formation of structural defects which include vacancies, edges, and adatoms. In this work, graphene was functionalized using germanium atoms, we report the effect of the Ge ad atoms on the structural, electrical, optical and magnetic properties of graphene. Reduced graphene oxide (rGO)-germanium quantum dot nanocomposites of high crystalline quality were synthesized by the microwave-assisted solvothermal reaction. Highly crystalline spherical shaped germanium quantum dots, of diameter ranging between 1.6-9.0 nm, are anchored on the basal planes of rGO. The nanocomposites exhibit high electrical conductivity with a sheet resistance of up to 16 Ω sq-1. The electrical conductivity is observed to increase with the increase in Ge content in the nanocomposites. High defect-induced magnetization is attained in the composites via germanium adatoms. The evolution of the magnetic moments in the nanocomposites and the coercivity showed marked dependence on the Ge quantum dots size and concentration. Quantum confinement effects is evidenced in the UV-vis absorbance spectra and photoluminescence emission spectra of the nanocomposites which show marked size-dependence. The composites manifest strong absorption in the UV region, strong luminescence in the near UV region, and a moderate luminescence in the visible region.

  13. Event timing in high purity germanium coaxial detectors

    International Nuclear Information System (INIS)

    El-Ibiary, M.Y.

    1979-08-01

    The timing of gamma ray radiation in systems using high purity coaxial germanium detectors is analyzed and compared to that of systems using Ge(Li) detectors. The analysis takes into account the effect of the residual impurities on the electric field distribution, and hence on the rate of rise of the electrical pulses delivered to the timing module. Conditions under which the electric field distribution could lead to an improvement in timing performance, are identified. The results of the analysis confirm the experimental results published elsewhere and when compared with those for Ge(Li) detectors, which usually operate under conditions of charge carrier velocity saturation, confirm that high purity germanium detectors need not have inferior timing characteristics. A chart is given to provide a quantitative basis on which the trade off between the radius of the detector and its time resolution may be made

  14. Determination of plutonium isotopic abundances by gamma-ray spectrometry. Interim report on the status of methods and techniques developed by the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Gunnink, R.

    1980-03-01

    This report presents an overview of methods and techniques developed by the Lawrence Livermore Laboratory for determining plutonium isotopic abundances from gamma-ray spectra that have been measured with germanium detectors. The methodology of fitting the spectral features includes discussions of algorithms for gamma-ray and x-ray peak shape fitting and generation of response spectra profiles characteristic of specific isotopes. Applications of the techniques developed at government, commercial, and Japanese reprocessing plants are described. Current development of the methodology for the nondestructive analysis of samples containing nondescript solid materials is also presented

  15. Germanium recovery from gasification fly ash: evaluation of end-products obtained by precipitation methods.

    Science.gov (United States)

    Arroyo, Fátima; Font, Oriol; Fernández-Pereira, Constantino; Querol, Xavier; Juan, Roberto; Ruiz, Carmen; Coca, Pilar

    2009-08-15

    In this study the purity of the germanium end-products obtained by two different precipitation methods carried out on germanium-bearing solutions was evaluated as a last step of a hydrometallurgy process for the recovery of this valuable element from the Puertollano Integrated Gasification Combined Cycle (IGCC) fly ash. Since H(2)S is produced as a by-product in the gas cleaning system of the Puertollano IGCC plant, precipitation of germanium as GeS(2) was tested by sulfiding the Ge-bearing solutions. The technological and hazardous issues that surround H(2)S handling conducted to investigate a novel precipitation procedure: precipitation as an organic complex by adding 1,2-dihydroxy benzene pyrocatechol (CAT) and cetyltrimethylammonium bromide (CTAB) to the Ge-bearing solutions. Relatively high purity Ge end-products (90 and 93% hexagonal-GeO(2) purity, respectively) were obtained by precipitating Ge from enriched solutions, as GeS(2) sulfiding the solutions with H(2)S, or as organic complex with CAT/CTAB mixtures and subsequent roasting of the precipitates. Both methods showed high efficiency (>99%) to precipitate selectively Ge using a single precipitation stage from germanium-bearing solutions.

  16. Characterization of nanocrystalline silicon germanium film and ...

    African Journals Online (AJOL)

    The nanocrystalline silicon-germanium films (Si/Ge) and Si/Ge nanotubes have low band gaps and high carrier mobility, thus offering appealing potential for absorbing gas molecules. Interaction between hydrogen molecules and bare as well as functionalized Si/Ge nanofilm and nanotube was investigated using Monte ...

  17. Strong quantum-confined stark effect in germanium quantum-well structures on silicon

    International Nuclear Information System (INIS)

    Kuo, Y.; Lee, Y. K.; Gei, Y.; Ren, S; Roth, J. E.; Miller, D. A.; Harris, J. S.

    2006-01-01

    Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such component with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimeters) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger Quantum-Confined Stark Effect (QCSE) mechanism, which allows modulator structures with only micrometers of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor, such semiconductors often display much weak optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture. (author)

  18. Experience from operating germanium detectors in GERDA

    Science.gov (United States)

    Palioselitis, Dimitrios; GERDA Collaboration

    2015-05-01

    Phase I of the Germanium Detector Array (GERDA) experiment, searching for the neutrinoless double beta (0νββ) decay of 76Ge, was completed in September 2013. The most competitive half-life lower limit for the 0νββ decay of 76Ge was set (T-0ν1/2 > 2.1 · 1025 yr at 90% C.L.). GERDA operates bare Ge diodes immersed in liquid argon. During Phase I, mainly refurbished semi-coaxial high purity Ge detectors from previous experiments were used. The experience gained with handling and operating bare Ge diodes in liquid argon, as well as the stability and performance of the detectors during GERDA Phase I are presented. Thirty additional new enriched BEGe-type detectors were produced and will be used in Phase II. A subgroup of these detectors has already been used successfully in GERDA Phase I. The present paper gives an overview of the production chain of the new germanium detectors, the steps taken to minimise the exposure to cosmic radiation during manufacturing, and the first results of characterisation measurements in vacuum cryostats.

  19. Use of Germanium as comparator and integral monitor of neutron flux in activation analysis

    International Nuclear Information System (INIS)

    Furnari, Juan C.; Cohen, Isaac M.; Arribere, Maria A.; Kestelman, Abraham J.

    1997-01-01

    The possibility of using germanium as monitor of the thermal and epithermal components of the neutron flux, and comparator in parametric activation analysis, is discussed. The advantages and drawbacks associated to the use of this element are commented on, and the comparison with zirconium, in terms of the determination relative error, is performed. The utilisation of germanium as integral flux monitor, including the fast component of the neutron spectrum, is also discussed. Data corresponding to measurements of k 0 factor for the most relevant gamma transitions from Ge-75 and Be-77 are presented, as well as the results of the reference material analysis, employing germanium as flux monitor and comparator in a simultaneous way. (author). 8 refs., 3 figs., 2 tabs

  20. Ion-beam mixing in silicon and germanium at low temperatures

    International Nuclear Information System (INIS)

    Clark, G.J.; Marwick, A.D.; Poker, D.B.

    1982-01-01

    Ion-beam mixing of thin marker layers in amorphous silicon and germanium was studied using irradiations with Xe ions at temperatures of 34k and 77k. The marker species, ion energies and doses were: in silicon, markers of Ge and Pt irradiated with 200-keV Xe up to 2.7x10 16 ions cm -2 ; and in germanium, markers of Al and Si bombarded with 295-keV Xe up to 1.63x10 16 ions cm -2 . In silicon, Pt markers were found to broaden at about the same rate at 34k and 77k; and the rate of broadening was similar to that found by other workers when expressed as an efficiency of mixing, i.e., when dependence on ion dose and deposited energy was factored out. However, a Ge marker irradiated at 34k did not broaden from its original thickness. In germanium, markers of both Al and Si were mixed by irradiation at 34k, but at 77k only the Al marker broadened; the Si marker did not. The broadening of the markers is ascribed to ballistic mixing, while the cases where no broadening occurred are explicable if diffusion by a defect mechanism transported displaced marker atoms back to traps near their original sites

  1. Two-Dimensional Spatial Imaging of Charge Transport in Germanium Crystals at Cryogenic Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Moffatt, Robert [Stanford Univ., CA (United States)

    2016-03-01

    In this dissertation, I describe a novel apparatus for studying the transport of charge in semiconductors at cryogenic temperatures. The motivation to conduct this experiment originated from an asymmetry observed between the behavior of electrons and holes in the germanium detector crystals used by the Cryogenic Dark Matter Search (CDMS). This asymmetry is a consequence of the anisotropic propagation of electrons in germanium at cryogenic temperatures. To better model our detectors, we incorporated this effect into our Monte Carlo simulations of charge transport. The purpose of the experiment described in this dissertation is to test those models in detail. Our measurements have allowed us to discover a shortcoming in our most recent Monte Carlo simulations of electrons in germanium. This discovery would not have been possible without the measurement of the full, two-dimensional charge distribution, which our experimental apparatus has allowed for the first time at cryogenic temperatures.

  2. Study of the effect of neutron and electron irradiations on the low temperature thermal conductivity of germanium and silicon; Etude de l'effet des irradiations neutronique et electronique sur la conductibilite thermique aux basses temperatures du germanium et du silicium

    Energy Technology Data Exchange (ETDEWEB)

    Vandevyver, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-06-15

    The main results obtained from this work are the following: 1 Neutron irradiation (at 300 deg. K) produces lattice defects in germanium and silicon, and a corresponding very large lowering of the thermal conductivity is observed in the low temperature region (4-300 ). The results obtained have been explained with the help of the following hypotheses: for silicon a scattering of phonons by the stress fields produced by the defects; for germanium, a supplementary scattering of the electron phonon type. 2 Annealing treatments carried out on these materials above 373 deg. K restored the thermal conductivity over the whole temperature range of the measurements (4-300 deg. K); in the case of both germanium and silicon there were two steps in the annealing process. 3 A study of the thermal conductivity of germanium (initially P or N) after an electronic irradiation showed that the scattering of phonons could depend on the state of charge of the defects thus produced. (author) [French] Les principaux resultats obtenus au cours de ce travail sont les suivants : 1 Les irradiations neutroniques (a 300 deg. K) introduisent des defauts de reseau dans le germanium et le silicium et l'on observe correlativement pour ces materiaux, une tres importante diminution de conductibilite thermique dans le domaine des basses temperatures (4-300 deg. K). Les resultats obtenus ont pu etre interpretes en admettant principalement: pour le silicium, une diffusion des phonons par les champs de contrainte dus aux defauts; pour le germanium, une diffusion additionnelle du type electron-phonon. 2 Des recuits effectues sur ces materiaux au-dessus de 373 deg. K ont montre une restauration de la conductibilite thermique dans tout l'intervalle de temperature de mesure (4-300 deg. K) et comportant pour le germanium et le silicium, deux etapes de recuit 3 L'etude de la conductibilite thermique de germanium (initialement N ou P) apres une irradiation electronique, a montre que la diffusion des phonons

  3. Vacancy-acceptor complexes in germanium produced by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, U.; Vianden, R. (Inst. fuer Strahlen- und Kernphysik, Univ. Bonn (Germany)); Alves, E.; Silva, M.F. da (Dept. de Fisica, ICEN/LNETI, Sacavem (Portugal)); Szilagyi, E.; Paszti, F. (Central Research Inst. for Physics, Hungarian Academy of Sciences, Budapest (Hungary)); Soares, J.C. (Centro de Fisica Nuclear, Univ. Lisbon (Portugal))

    1991-07-01

    Combining results obtained by the {gamma}-{gamma} perturbed angular correlation method, Rutherford backscattering and elastic recoil detection of hydrogen, a defect complex formed in germanium by indium implantation is identified as a vacancy trapped by the indium probe. (orig.).

  4. Silicon-Germanium Front-End Electronics for Space-Based Radar Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past two decades, Silicon-Germanium (SiGe) heterojunction bipolar transistor (HBT) technology has emerged as a strong platform for high-frequency...

  5. Mass fractionation processes of transition metal isotopes

    Science.gov (United States)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  6. Controlled localised melting in silicon by high dose germanium implantation and flash lamp annealing

    International Nuclear Information System (INIS)

    Voelskow, Matthias; Skorupa, Wolfgang; Pezoldt, Joerg; Kups, Thomas

    2009-01-01

    High intensity light pulse irradiation of monocrystalline silicon wafers is usually accompanied by inhomogeneous surface melting. The aim of the present work is to induce homogeneous buried melting in silicon by germanium implantation and subsequent flash lamp annealing. For this purpose high dose, high energy germanium implantation has been employed to lower the melting temperature of silicon in a predetermined depth region. Subsequent flash lamp irradiation at high energy densities leads to local melting of the germanium rich buried layer, whereby the thickness of the molten layer depends on the irradiation energy density. During the cooling down epitaxial crystallization takes place resulting in a largely defect-free layer. The combination of buried melting and dopant segregation has the potential to produce unusually buried doping profiles or to create strained silicon structures.

  7. Laser isotope separation - a new class of chemical process

    International Nuclear Information System (INIS)

    Woodall, K.B.; Mannik, L.; O'Neill, J.A.; Mader, D.L.; Nickerson, S.B.; Robins, J.R.; Bartoszek, F.E.; Gratton, D.

    1983-01-01

    Lasers may soon find several applications in chemical processing. The applications that have attracted the most research funding to date involve isotope separation for the nuclear industry. These isotopes have an unusually high value (≥$1000/kg) compared to bulk chemicals (∼$1/kg) and are generally required in very large quantities. In a laser isotope separation process, light is used to convert a separation that is very difficult or even impossible by conventional chemical engineering techniques to one that is readily handled by conventional separation technology. For some isotopes this can result in substantial capital and energy savings. A uranium enrichment process developed at the Lawrence Livermore National Laboratory is the closest to commercialization of the large scale laser isotope separation processes. Of particular interest to the Canadian nuclear industry are the laser separation of deuterium, tritium, zirconium-90 and carbon-14. In this paper, the basic principles behind laser isotope separation are reviewed and brief dscriptions of the more developed processes are given

  8. Continuously tunable photonic fractional Hilbert transformer using a high-contrast germanium-doped silica-on-silicon microring resonator.

    Science.gov (United States)

    Shahoei, Hiva; Dumais, Patrick; Yao, Jianping

    2014-05-01

    We propose and experimentally demonstrate a continuously tunable fractional Hilbert transformer (FHT) based on a high-contrast germanium-doped silica-on-silicon (SOS) microring resonator (MRR). The propagation loss of a high-contrast germanium-doped SOS waveguide can be very small (0.02 dB/cm) while the lossless bend radius can be less than 1 mm. These characteristics lead to the fabrication of an MRR with a high Q-factor and a large free-spectral range (FSR), which is needed to implement a Hilbert transformer (HT). The SOS MRR is strongly polarization dependent. By changing the polarization direction of the input signal, the phase shift introduced at the center of the resonance spectrum is changed. The tunable phase shift at the resonance wavelength can be used to implement a tunable FHT. A germanium-doped SOS MRR with a high-index contrast of 3.8% is fabricated. The use of the fabricated MRR for the implementation of a tunable FHT with tunable orders at 1, 0.85, 0.95, 1.05, and 1.13 for a Gaussian pulse with the temporal full width at half-maximum of 80 ps is experimentally demonstrated.

  9. Atomic ionization of germanium by neutrinos from an ab initio approach

    International Nuclear Information System (INIS)

    Chen, Jiunn-Wei; Chi, Hsin-Chang; Huang, Keh-Ning; Liu, C.-P.; Shiao, Hao-Tse; Singh, Lakhwinder; Wong, Henry T.; Wu, Chih-Liang; Wu, Chih-Pan

    2014-01-01

    An ab initio calculation of atomic ionization of germanium by neutrinos was carried out in the framework of multiconfiguration relativistic random phase approximation and benchmarked by related atomic structure and photoabsorption data. This improves over the conventional approach based on scattering off free electrons whose validity at sub-keV energy transfer is questionable. Limits on neutrino magnetic moments are derived using reactor neutrino data taken with low threshold germanium detectors. Future applications of these atomic techniques will greatly reduce the atomic uncertainties in low-energy neutrino and dark matter detections.

  10. Vacancy-indium clusters in implanted germanium

    KAUST Repository

    Chroneos, Alexander I.

    2010-04-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  11. Vacancy-indium clusters in implanted germanium

    KAUST Repository

    Chroneos, Alexander I.; Kube, R.; Bracht, Hartmut A.; Grimes, Robin W.; Schwingenschlö gl, Udo

    2010-01-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  12. Lithium-Ion (de)insertion reaction of Germanium thin-film electrodes : an electrochemical and in situ XRD study

    NARCIS (Netherlands)

    Baggetto, L.; Notten, P.H.L.

    2009-01-01

    Germanium is a promising negative electrode candidate for lithium-ion thin-film batteries because of its very high theoretical storage capacity. When assuming full conversion of the material into the room-temperature equilibrium lithium saturated germanium phase, a theoretical capacity of or of

  13. First-principles study of the diffusion mechanisms of the self-interstitial in germanium

    International Nuclear Information System (INIS)

    Carvalho, A; Jones, R; Janke, C; Goss, J P; Briddon, P R; Oeberg, S

    2008-01-01

    The self-interstitial in germanium can assume multiple configurations depending on the temperature and charge state. Here, we employ a first-principles density functional method to investigate the diffusion mechanisms of this defect. The energy barriers associated with the transformation between different structures are determined by the climbing nudged elastic band method, as a function of the charge state. The relation between the thermodynamic properties of the self-interstitial and the temperature evolution of electron radiation damage in germanium are discussed

  14. Photoluminescent polysaccharide-coated germanium(IV) oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Lobaz, Volodymyr; Rabyk, Mariia; Pánek, Jiří; Doris, E.; Nallet, F.; Štěpánek, Petr; Hrubý, Martin

    2016-01-01

    Roč. 294, č. 7 (2016), s. 1225-1235 ISSN 0303-402X R&D Projects: GA MŠk(CZ) 7AMB14FR027; GA ČR(CZ) GA13-08336S; GA MZd(CZ) NV15-25781A Institutional support: RVO:61389013 Keywords : germanium oxide nanoparticles * polysaccharide coating * photoluminescent label Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.723, year: 2016

  15. Segmented Monolithic Germanium Detector Arrays for X-ray Absorption Spectroscopy. Final Report

    International Nuclear Information System (INIS)

    Hull, Ethan L.

    2011-01-01

    The experimental results from the Phase I effort were extremely encouraging. During Phase I PHDs Co. made the first strides toward a new detector technology that could have great impact on synchrotron x-ray absorption (XAS) measurements, and x-ray detector technology in general. Detector hardware that allowed critical demonstration measurements of our technology was designed and fabricated. This new technology allows good charge collection from many pixels on a single side of a multi-element monolithic germanium planar detector. The detector technology provides 'dot-like' collection electrodes having very low capacitance. The detector technology appears to perform as anticipated in the Phase I proposal. In particular, the 7-pixel detector studied showed remarkable properties; making it an interesting example of detector physics. The technology is enabled by the use of amorphous germanium contact technology on germanium planar detectors. Because of the scalability associated with the fabrication of these technologies at PHDs Co., we anticipate being able to supply larger detector systems at significantly lower cost than systems made in the conventional manner.

  16. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Nathan Robert [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular β C-H insertion mechanism.

  17. Time-resolved spectroscopy of plasma resonances in highly excited silicon and germanium

    International Nuclear Information System (INIS)

    Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.; Kurz, H.

    1985-01-01

    The dynamics of the electron-hole plasma in silicon and germanium samples irradiated by 20 ps. 532 nm laser pulses has been investigated in the near infrared by the time-resolved picosecond optical spectroscopy. The experimental reflectivities and transmission are compared with the predictions of the thermal model for degenerate carrier distributions through the Drude formalism. Above a certain fluence, a significant deviation between measured and calculated values indicates a strong increase of the recombination rate as soon as the plasma resonances become comparable with the band gaps. These new plasmon-aided recombination channels are particularly pronounced in germanium. 15 refs., 8 figs

  18. Recent results on neutron rich tin isotopes by laser spectroscopy

    CERN Document Server

    Roussière, B; Crawford, J E; Essabaa, S; Fedosseev, V; Geithner, W; Genevey, J; Girod, M; Huber, G; Horn, R; Kappertz, S; Lassen, J; Le Blanc, F; Lee, J K P; Le Scornet, G; Lettry, Jacques; Mishin, V I; Neugart, R; Obert, J; Oms, J; Ouchrif, A; Peru, S; Pinard, J; Ravn, H L; Sauvage, J; Verney, D

    2001-01-01

    Laser spectroscopy measurements have been performed on neutron rich tin isotopes using the COMPLIS experimental setup. The nuclear charge radii of the even-even isotopes from A=108 to 132 are compared to the results of macroscopic and microscopic calculations. The improvements and optimizations needed to perform the isotope shift measurement on $^{134}$Sn are presented.

  19. Gamma ray polarimetry using a position sensitive germanium detector

    CERN Document Server

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  20. Lifetimes of excited states in 196, 198Pt; Application of interacting boson approximation model to even Pt isotopes systematics

    Science.gov (United States)

    Bolotin, H. H.; Stuchbery, A. E.; Morrison, I.; Kennedy, D. L.; Ryan, C. G.; Sie, S. H.

    1981-11-01

    The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 1+ levels in 196, 198Pt were determined by the recoil-distance method (RDM). Gamma-ray angular distributions in 198Pt were also measured. These states were populated by multiple Coulomb excitation using 220 MeV 58Ni ion beams and the measurements were carried out in coincidence with back-scattered projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even 194-198Pt isotopes, are critically compared with our structure calculations employing the interacting boson approximation (IBA) model incorporating a symmetry-breaking quadrupole force; evaluative comparisons are also made with boson expansion theory (BET) calculations.

  1. Lifetimes of excited states in 196,198Pt; application of interacting boson approximation model to even Pt isotopes systematics

    International Nuclear Information System (INIS)

    Bolotin, H.H.; Stuchbery, A.E.; Morrison, I.; Kennedy, D.L.; Ryan, C.G.; Sie, S.H.

    1981-01-01

    The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 + 1 levels in sup(196, 198)Pt were determined by the recoil-distance method (RDM). Gamma-ray angular distributions in 198 Pt were also measured. These states were populated by multiple Coulomb excitation using 220 MeV 58 Ni ion beams and the measurements were carried out in coincidence with backscattering projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even sup(194-198)Pt isotopes, are critically compared with our structure calculations employing the interacting boson approximation (IBA) model incorporating a symmetry-breaking quadrupole force; evaluative comparisons are also made with boson expansion theory (BET) calculations. (orig.)

  2. Characterization system for Germanium detectors dedicated to gamma spectroscopy applied to nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Roccaz, J.; Portella, C.; Saurel, N. [CEA, DAM, VALDUC, F-21120 Is-sur-Tille (France)

    2009-07-01

    CEA-Valduc produces some radioactive waste (mainly alpha emitters). Legislation requires producers to sort their waste by activity and type of isotopes, and to package them in order to forward them to the appropriate reprocessing or storage facility. Our lab LMDE (laboratory for measurements on nuclear wastes and valuation) is in charge of the characterization of the majority of waste produced by CEA-Valduc. Among non-destructive methods to characterize a radioactive object, gamma-spectroscopy is one of the most efficient. We present to this conference the method we use to characterize nuclear waste and the system we developed to characterize our germanium detectors. The goal of this system is to obtain reliable numerical models of our detectors and calculate their efficiency curves. Measurements are necessary to checks models and improve them. These measurements are made on a bench using pinpoint sources ({sup 133}Ba, {sup 152}Eu) from 60 keV to 1500 keV, with distances from 'on contact' to a few meters from the diode and variable angles between the source and the detector axis. We have demonstrated that we are able to obtain efficiency curves

  3. Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Partha Talukdar

    Full Text Available Rice plants accumulate high concentrations of silicon. Silicon has been shown to be involved in plant growth, high yield, and mitigating biotic and abiotic stresses. However, it has been demonstrated that inorganic arsenic is taken up by rice through silicon transporters under anaerobic conditions, thus the ability to efficiently take up silicon may be considered either a positive or a negative trait in rice. Germanium is an analogue of silicon that produces brown lesions in shoots and leaves, and germanium toxicity has been used to identify mutants in silicon and arsenic transport. In this study, two different genetic mapping methods were performed to determine the loci involved in germanium sensitivity in rice. Genetic mapping in the biparental cross of Bala × Azucena (an F6 population and a genome wide association (GWA study with 350 accessions from the Rice Diversity Panel 1 were conducted using 15 μM of germanic acid. This identified a number of germanium sensitive loci: some co-localised with previously identified quantitative trait loci (QTL for tissue silicon or arsenic concentration, none co-localised with Lsi1 or Lsi6, while one single nucleotide polymorphism (SNP was detected within 200 kb of Lsi2 (these are genes known to transport silicon, whose identity was discovered using germanium toxicity. However, examining candidate genes that are within the genomic region of the loci detected above reveals genes homologous to both Lsi1 and Lsi2, as well as a number of other candidate genes, which are discussed.

  4. Characterisation of the SmartPET planar Germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.C. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom)], E-mail: H.C.Boston@liverpool.ac.uk; Boston, A.J.; Cooper, R.J.; Cresswell, J.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Hall, C.J.; Lazarus, I. [CCLRC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia)

    2007-08-21

    Small Animal Reconstruction PET (SmartPET) is a project funded by the UK medical research council (MRC) to demonstrate proof of principle that Germanium can be utilised in Positron Emission Tomography (PET). The SmartPET demonstrator consists of two orthogonal strip High Purity Germanium (HPGe) planar detectors manufactured by ORTEC. The aim of the project is to produce images of an internal source with sub mm{sup 3} spatial resolution. Before this image can be achieved the detectors have to be fully characterised to understand the response at any given location to a {gamma}-ray interaction. This has been achieved by probing the two detectors at a number of specified points with collimated sources of various energies and strengths. A 1 mm diameter collimated beam of photons was raster scanned in 1 mm steps across the detector. Digital pulse shape data were recorded from all the detector channels and the performance of the detector for energy and position determination has been assessed. Data will be presented for the first SmartPET detector.

  5. The U-Pu inspector, a new instrument to determine the isotopic compositions of uranium and plutonium

    International Nuclear Information System (INIS)

    Verplancke, J.; Van Dyck, R.; Tench, O.; Sielaff, B.

    1994-01-01

    The U/Pu-InSpector is a new integrated, portable instrument that can measure the isotopic composition of samples containing uranium and/or plutonium without prior calibration and without the need for skilled operators. It consists of a Low Energy Germanium detector in a Multi-attitude Cryostat (MAC). A shield and collimator are built-in, directly around the detector element, reducing the weight of this detector and shield to approximately 8 kg with a full dewar. The dewar can quickly and easily be filled with a self-pressurizing funnel. The detector is connected to a small portable battery operated analyzer and a Notebook computer. The spectra are automatically stored and analyzed with the help of the MGA codes for plutonium and/or for uranium. 5 refs., 1 fig

  6. Evaluation of Segmented Amorphous-Contact Planar Germanium Detectors for Heavy-Element Research

    Science.gov (United States)

    Jackson, Emily G.

    The challenge of improving our understanding of the very heaviest nuclei is at the forefront of contemporary low-energy nuclear physics. In the last two decades, "in-beam" spectroscopy experiments have advanced from Z=98 to Z=104, Rutherfordium, allowing insights into the dynamics of the fission barrier, high-order deformations, and pairing correlations. However, new detector technologies are needed to advance to even heavier nuclei. This dissertation is aimed at evaluating one promising new technology; large segmented planar germanium wafers for this area of research. The current frontier in gamma-ray spectroscopy involves large-volume (>9 cm thick) coaxial detectors that are position sensitive and employ gamma-ray "tracking". In contrast, the detectors assessed in this dissertation are relatively thin (~1 cm) segmented planar wafers with amorphous-germanium strip contacts that can tolerate extremely high gamma-ray count rates, and can accommodate hostile neutron fluxes. They may be the only path to heavier "in-beam" spectroscopy with production rates below 1 nanobarn. The resiliency of these detectors against neutron-induced damage is examined. Two detectors were deliberately subjected to a non-uniform neutron fluence leading to considerable degradation of performance. The neutrons were produced using the 7Li(p, n)7Be reaction at the UMass Lowell Van-de-Graaff accelerator with a 3.7-MeV proton beam incident on a natural Li target. The energy of the neutrons emitted at zero degrees was 2.0 MeV, close to the mean energy of the fission neutron spectrum, and each detector was exposed to a fluence >3.6 x109 n/cm2. A 3-D software "trap-corrector" gain-matching algorithm considerably restored the overall performance. Other neutron damage mitigation tactics were explored including over biasing the detector and flooding the detector with a high gamma-ray count rate. Various annealing processes to remove neutron damage were investigated. An array of very large diameter

  7. Impurity engineering for germanium-doped Czochralski silicon wafer used for ultra large scale integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiahe; Yang, Deren [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou (China)

    2009-07-01

    Internal gettering (IG) technology has been challenged by both the reduction of thermal budget during device fabrication and the enlargement of wafer diameter. Improving the properties of Czochralski (Cz) silicon wafers by intentional impurity doping, the so-called 'impurity engineering (IE)', is defined. Germanium has been found to be one of the important impurities for improving the internal gettering effect in Cz silicon wafer. In this paper, the investigations on IE involved with the conventional furnace anneal based denudation processing for germanium-doped Cz silicon wafer are reviewed. Meanwhile, the potential mechanisms of germanium effects for the IE of Cz silicon wafer are also interpreted based on the experimental facts. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Far-Infrared Magneto-Optical Studies in Germanium and Indium-Antimonide at High Intensities

    Science.gov (United States)

    Leung, Michael

    Observations of nonlinear magneto-optical phenomena occurring in p-type Germanium and n-type Indium Antimonide are reported. These include multi-photon ionization of impurity states, and a new observation, the magneto-photon ionization of impurity states, and a new observation, the magneto-photon drag effect. A novel source of far-infrared radiation has been used. This source uses a pulsed CO(,2) LASER to optically pump a super-radiant cell, generating light with intensities up to 100 KW/cm('2) and wavelengths from 66 (mu)m to 496 (mu)m in a pulse of 150 nanoseconds duration. The Germanium samples were doped with Gallium, which is a shallow acceptor with an ionization potential of 11 meV. At liquid Helium temperature virtually all charge carriers are bound to acceptor sites. However, the high intensity radiation unexpectedly ionizes the acceptors. This is demonstrated through measurements of photoconductivity, transmission and the photo-Hall Effect. This observation is unexpected because the photon energy is one-fourth the ionization potential. Rate equations describing sequential multiphoton excitations are in agreement with the experimental results. The intermediate states are postulated to be acceptor exciton band states. Studies of the photoexcited mobility at 496 (mu)m suggest that at non-saturating levels of photoexcitation, the primary scattering mechanism of hot holes in Germanium is by neutral impurities. A new magneto-optical effect, the magneto-photon drag effect, has been studied in both Germanium and Indium Antimonide. This is simply the absorption of momentum by free carriers, from an incident photon field. It has been found that the mechanism for this effect is different in the two materials. In Germanium, the effect occurs when carriers make optical transitions from the heavy hole band to the light hole band. Thus, the magneto-optical behavior depends heavily upon the band structure. On the other hand, a modified Drude model (independent electron

  9. Experience from operating germanium detectors in GERDA

    International Nuclear Information System (INIS)

    Palioselitis, Dimitrios

    2015-01-01

    Phase I of the Germanium Detector Array (GERDA) experiment, searching for the neutrinoless double beta (0νββ) decay of 76 Ge, was completed in September 2013. The most competitive half-life lower limit for the 0νββ decay of 76 Ge was set (T- 0ν 1/2 > 2.1 · 10 25 yr at 90% C.L.). GERDA operates bare Ge diodes immersed in liquid argon. During Phase I, mainly refurbished semi-coaxial high purity Ge detectors from previous experiments were used. The experience gained with handling and operating bare Ge diodes in liquid argon, as well as the stability and performance of the detectors during GERDA Phase I are presented. Thirty additional new enriched BEGe-type detectors were produced and will be used in Phase II. A subgroup of these detectors has already been used successfully in GERDA Phase I. The present paper gives an overview of the production chain of the new germanium detectors, the steps taken to minimise the exposure to cosmic radiation during manufacturing, and the first results of characterisation measurements in vacuum cryostats. (paper)

  10. Geometrical and band-structure effects on phonon-limited hole mobility in rectangular cross-sectional germanium nanowires

    International Nuclear Information System (INIS)

    Tanaka, H.; Mori, S.; Morioka, N.; Suda, J.; Kimoto, T.

    2014-01-01

    We calculated the phonon-limited hole mobility in rectangular cross-sectional [001], [110], [111], and [112]-oriented germanium nanowires, and the hole transport characteristics were investigated. A tight-binding approximation was used for holes, and phonons were described by a valence force field model. Then, scattering probability of holes by phonons was calculated taking account of hole-phonon interaction atomistically, and the linearized Boltzmann's transport equation was solved to calculate the hole mobility at low longitudinal field. The dependence of the hole mobility on nanowire geometry was analyzed in terms of the valence band structure of germanium nanowires, and it was found that the dependence was qualitatively reproduced by considering an average effective mass and the density of states of holes. The calculation revealed that [110] germanium nanowires with large height along the [001] direction show high hole mobility. Germanium nanowires with this geometry are also expected to exhibit high electron mobility in our previous work, and thus they are promising for complementary metal-oxide-semiconductor (CMOS) applications

  11. Modeling and Simulation of - and Silicon Germanium-Base Bipolar Transistors Operating at a Wide Range of Temperatures.

    Science.gov (United States)

    Shaheed, M. Reaz

    1995-01-01

    Higher speed at lower cost and at low power consumption is a driving force for today's semiconductor technology. Despite a substantial effort toward achieving this goal via alternative technologies such as III-V compounds, silicon technology still dominates mainstream electronics. Progress in silicon technology will continue for some time with continual scaling of device geometry. However, there are foreseeable limits on achievable device performance, reliability and scaling for room temperature technologies. Thus, reduced temperature operation is commonly viewed as a means for continuing the progress towards higher performance. Although silicon CMOS will be the first candidate for low temperature applications, bipolar devices will be used in a hybrid fashion, as line drivers or in limited critical path elements. Silicon -germanium-base bipolar transistors look especially attractive for low-temperature bipolar applications. At low temperatures, various new physical phenomena become important in determining device behavior. Carrier freeze-out effects which are negligible at room temperature, become of crucial importance for analyzing the low temperature device characteristics. The conventional Pearson-Bardeen model of activation energy, used for calculation of carrier freeze-out, is based on an incomplete picture of the physics that takes place and hence, leads to inaccurate results at low temperatures. Plasma -induced bandgap narrowing becomes more pronounced in device characteristics at low temperatures. Even with modern numerical simulators, this effect is not well modeled or simulated. In this dissertation, improved models for such physical phenomena are presented. For accurate simulation of carrier freeze-out, the Pearson-Bardeen model has been extended to include the temperature dependence of the activation energy. The extraction of the model is based on the rigorous, first-principle theoretical calculations available in the literature. The new model is shown

  12. Charge collection performance of a segmented planar high-purity germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, The University of Liverpool, Oliver Lodge Laboratory, Liverpool Merseyside L69 7ZE (United Kingdom)], E-mail: R.Cooper@liverpool.ac.uk; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P. [Department of Physics, The University of Liverpool, Oliver Lodge Laboratory, Liverpool Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD (United Kingdom); Dobson, J. [Rosemere Cancer Centre, Royal Preston Hospital, Preston PR2 9HT (United Kingdom)

    2008-10-01

    High-precision scans of a segmented planar high-purity germanium (HPGe) detector have been performed with a range of finely collimated gamma ray beams allowing the response as a function of gamma ray interaction position to be quantified. This has allowed the development of parametric pulse shape analysis (PSA) techniques and algorithms for the correction of imperfections in performance. In this paper we report on the performance of this detector, designed for use in a positron emission tomography (PET) development system.

  13. Non-local electrical spin injection and detection in germanium at room temperature

    Science.gov (United States)

    Rortais, F.; Vergnaud, C.; Marty, A.; Vila, L.; Attané, J.-P.; Widiez, J.; Zucchetti, C.; Bottegoni, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2017-10-01

    Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain." The next generation electronics may operate on the spin of carriers in addition to their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the predicted long electron spin lifetime at room temperature. In this letter, we demonstrate injection of pure spin currents (i.e., with no associated transport of electric charges) in germanium, combined with non-local spin detection at 10 K and room temperature. For this purpose, we used a lateral spin valve with epitaxially grown magnetic tunnel junctions as spin injector and spin detector. The non-local magnetoresistance signal is clearly visible and reaches ≈15 mΩ at room temperature. The electron spin lifetime and diffusion length are 500 ps and 1 μm, respectively, the spin injection efficiency being as high as 27%. This result paves the way for the realization of full germanium spintronic devices at room temperature.

  14. Synthesis and characterization of germanium monosulphide (GeS)

    Indian Academy of Sciences (India)

    This paper reports the growth of germanium monosulphide (GeS) single crystals by vapour phase technique using different transporting agents. The single crystallinity and composition of the grown crystals have been verified by transmission electron microscopy (TEM) and energy dispersive analysis of X-rays (EDAX) ...

  15. Germanium microstrip detectors with 50 and 100 μm pitch

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giannetti, P.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Raso, G.; Ristori, L.; Scribano, A.; Stefanini, A.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Haller, E.E.; Hansen, W.L.; Luke, P.N.

    1984-01-01

    Multi-electrode germanium detectors are being used as an active target for decay path measurements of charmed mesons. The procedure used to fabricate such detectors is described and a brief analysis of their performance is given. (orig.)

  16. Position resolution simulations for the inverted-coaxial germanium detector, SIGMA

    Science.gov (United States)

    Wright, J. P.; Harkness-Brennan, L. J.; Boston, A. J.; Judson, D. S.; Labiche, M.; Nolan, P. J.; Page, R. D.; Pearce, F.; Radford, D. C.; Simpson, J.; Unsworth, C.

    2018-06-01

    The SIGMA Germanium detector has the potential to revolutionise γ-ray spectroscopy, providing superior energy and position resolving capabilities compared with current large volume state-of-the-art Germanium detectors. The theoretical position resolution of the detector as a function of γ-ray interaction position has been studied using simulated detector signals. A study of the effects of RMS noise at various energies has been presented with the position resolution ranging from 0.33 mm FWHM at Eγ = 1 MeV, to 0.41 mm at Eγ = 150 keV. An additional investigation into the effects pulse alignment have on pulse shape analysis and in turn, position resolution has been performed. The theoretical performance of SIGMA operating in an experimental setting is presented for use as a standalone detector and as part of an ancillary system.

  17. X-ray radiometric analysis of lead and zinc concentrates using germanium radiation detector

    International Nuclear Information System (INIS)

    Vajgachev, A.A.; Mamysh, V.A.; Mil'chakov, V.I.; Shchekin, K.I.; Berezkin, V.V.

    1975-01-01

    The results of determination of lead, zinc and iron in lead and zinc concentrates by the X-ray-radiometric method with the use of germanium semiconductor detector are presented. In the experiments the 57 Co source and tritium-zirconium target were used. The activity of 57 Co was 2 mc. The area of the germanium detector employed was 5g mm 2 , its thickness - 2.3 mm. In lead concentrates zinc and iron were determined from the direct intensity of K-series radiation. In the analysis of zinc concentrates the same conditions of recording and excitation were used as in the case of lead concentrates, but the measurements were conducted in saturated layers. It is demonstrated that the use of germanium semiconductor detectors in combination with the suggested methods of measurements makes it possible to perform determination of iron, zinc and lead in zinc and lead concentrates with permissible error

  18. Enhanced light trapping by focused ion beam (FIB) induced self-organized nanoripples on germanium (100) surface

    Science.gov (United States)

    Kamaliya, Bhaveshkumar; Mote, Rakesh G.; Aslam, Mohammed; Fu, Jing

    2018-03-01

    In this paper, we demonstrate enhanced light trapping by self-organized nanoripples on the germanium surface. The enhanced light trapping leading to high absorption of light is confirmed by the experimental studies as well as the numerical simulations using the finite-difference time-domain method. We used gallium ion (Ga+) focused ion beam to enable the formation of the self-organized nanoripples on the germanium (100) surface. During the fabrication, the overlap of the scanning beam is varied from zero to negative value and found to influence the orientation of the nanoripples. Evolution of nanostructures with the variation of beam overlap is investigated. Parallel, perpendicular, and randomly aligned nanoripples with respect to the scanning direction are obtained via manipulation of the scanning beam overlap. 95% broadband absorptance is measured in the visible electromagnetic region for the nanorippled germanium surface. The reported light absorption enhancement can significantly improve the efficiency of germanium-silicon based photovoltaic systems.

  19. Radiation-enhanced self- and boron diffusion in germanium

    DEFF Research Database (Denmark)

    Schneider, S.; Bracht, H.; Klug, J.N.

    2013-01-01

    We report experiments on proton radiation-enhanced self- and boron (B) diffusion in germanium (Ge) for temperatures between 515 ∘ C and 720 ∘ C. Modeling of the experimental diffusion profiles measured by means of secondary ion mass spectrometry is achieved on the basis of the Frenkel pair reaction...

  20. Humidity-dependent stability of amorphous germanium nitrides fabricated by plasma nitridation

    International Nuclear Information System (INIS)

    Kutsuki, Katsuhiro; Okamoto, Gaku; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2007-01-01

    We have investigated the stability of amorphous germanium nitride (Ge 3 N 4 ) layers formed by plasma nitridation of Ge(100) surfaces using x-ray photoelectron spectroscopy and atomic force microscopy. We have found that humidity in the air accelerates the degradation of Ge 3 N 4 layers and that under 80% humidity condition, most of the Ge-N bonds convert to Ge-O bonds, producing a uniform GeO 2 layer, within 12 h even at room temperature. After this conversion of nitrides to oxides, the surface roughness drastically increased by forming GeO 2 islands on the surfaces. These findings indicate that although Ge 3 N 4 layers have superior thermal stability compared to the GeO 2 layers, Ge 3 N 4 reacts readily with hydroxyl groups and it is therefore essential to take the best care of the moisture in the fabrication of Ge-based devices with Ge 3 N 4 insulator or passivation layers

  1. Mass-independent isotope effects in chemical exchange reaction

    International Nuclear Information System (INIS)

    Nishizawa, Kazushige

    2000-01-01

    Isotope effects of some elements in chemical exchange reaction were investigated by use of liquid-liquid extraction, liquid membrane or chromatographic separation. Cyclic polyether was used for every method. All polyethers used in a series of the studies were made clear that they distinguished the isotopes not only by their nuclear masses but also by their nuclear sizes and shapes. Chromium isotopes, for example, were recognized to have enrichment factors being proportional to δ 2 > which is a parameter to show field shift or the nuclear size and shape of the isotope. It follows that the chromium isotopes are separated not by their masses but by their field shift effects. Nuclear spin also played a great role to separate odd mass number isotopes from even mass number isotopes in even atomic number elements. Contribution of the nuclear spin (I=3/2) of 53 Cr to total enrichment factor, ε 53/52 = -0.00028, for 53 Cr to 52 Cr was observed to be, ε spin = -0.0025. (author)

  2. Cryogenic readout techniques for germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Benato, G. [University of Zurich, (Switzerland); Cattadori, C. [INFN - Milano Bicocca, (Italy); Di Vacri, A. [INFN LNGS, (Italy); Ferri, E. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy); D' Andrea, V.; Macolino, C. [GSSI/INFN LNGS, (Italy); Riboldi, S. [Universita degli Studi di Milano/INFN Milano, (Italy); Salamida, F. [Universita Milano Bicocca/INFN Milano Bicocca, (Italy)

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  3. An ultralow background germanium gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Reeves, R.H.; Brodzinski, R.L.; Hensley, W.K.; Ryge, P.

    1984-01-01

    The monitoring of minimum detectable activity is becoming increasingly important as environmental concerns and regulations require more sensitive measurement of the radioactivity levels in the workplace and the home. In measuring this activity, however, the background becomes one of the limiting factors. Anticoincidence systems utilizing both NaI(T1) and plastic scintillators have proven effective in reducing some components of the background, but radiocontaminants in the various regions of these systems have limited their effectiveness, and their cost is often prohibitive. In order to obtain a genuinely low background detector system, all components must be free of detectable radioactivity, and the cosmic ray produced contribution must be significantly reduced. Current efforts by the authors to measure the double beta decay of Germanium 76 as predicted by Grand Unified Theories have resulted in the development of a high resolution germanium diode gamma spectrometer with an exceptionally low background. This paper describes the development of this system, outlines the configuration and operation of its preamplifier, linear amplifier, analog-to-digital converter, 4096-channel analyzer, shielding consisting of lead-sandwiched plastic scintillators wrapped in cadmium foil, photomultiplier, and its pulse generator and discriminator, and then discusses how the system can be utilized to significantly reduce the background in high resolution photon spectrometers at only moderate cost

  4. Composite germanium monochromators - results for the TriCS

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, J.; Fischer, S.; Boehm, M.; Keller, L.; Horisberger, M.; Medarde, M.; Fischer, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Composite germanium monochromators are in the beginning of their application in neutron diffraction. We show here the importance of the permanent quality control with neutrons on the example of the 311 wafers which will be used on the single crystal diffractometer TriCS at SINQ. (author) 2 figs., 3 refs.

  5. Effect of normal processes on thermal conductivity of germanium ...

    Indian Academy of Sciences (India)

    Abstract. The effect of normal scattering processes is considered to redistribute the phonon momentum in (a) the same phonon branch – KK-S model and (b) between differ- ent phonon branches – KK-H model. Simplified thermal conductivity relations are used to estimate the thermal conductivity of germanium, silicon and ...

  6. Interaction between radiation-induced defects and lithium impurity atoms in germanium

    International Nuclear Information System (INIS)

    Vasil'eva, E.D.; Daluda, Yu.N.; Emtsev, V.V.; Kervalishvili, P.D.; Mashovets, T.V.

    1981-01-01

    The effect of gamma radiation on germanium doped with lithium in the course of extraction from a melt was studied. 60 Co γ-ray irradiation with the 6.2x10 12 cm -2 x1 -1 intensity was performed at 300 K. The temperature dependences of conductivity and Hall effect was studied in the 4.2-300 K range. It was shown that using this alloying technique lithium atoms in germanium were in a ''free'' state. It was found that on irradiation the lithium atom concentration decreases as a result of production of electrically inactive complexes with participation of lithium atoms. Besides this principal process secondary ones are observed: production of radiation donor-defects with the ionization energy Esub(c) of 80 MeV and compensating acceptors

  7. Measurement of the quantum conductance of germanium by an electrochemical scanning tunneling microscope break junction based on a jump-to-contact mechanism.

    Science.gov (United States)

    Xie, Xufen; Yan, Jiawei; Liang, Jinghong; Li, Jijun; Zhang, Meng; Mao, Bingwei

    2013-10-01

    We present quantum conductance measurements of germanium by means of an electrochemical scanning tunneling microscope (STM) break junction based on a jump-to-contact mechanism. Germanium nanowires between a platinum/iridium tip and different substrates were constructed to measure the quantum conductance. By applying appropriate potentials to the substrate and the tip, the process of heterogeneous contact and homogeneous breakage was realized. Typical conductance traces exhibit steps at 0.025 and 0.05 G0. The conductance histogram indicates that the conductance of germanium nanowires is located between 0.02 and 0.15 G0 in the low-conductance region and is free from the influence of substrate materials. However, the distribution of conductance plateaus is too discrete to display distinct peaks in the conductance histogram of the high-conductance region. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Podkopaev, O. I. [Joint-Stock Company “Germanium” (Russian Federation); Shimanskiy, A. F., E-mail: shimanaf@mail.ru [Siberian Federal University (Russian Federation); Kopytkova, S. A.; Filatov, R. A. [Joint-Stock Company “Germanium” (Russian Federation); Golubovskaya, N. O. [Siberian Federal University (Russian Federation)

    2016-10-15

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  9. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    International Nuclear Information System (INIS)

    Podkopaev, O. I.; Shimanskiy, A. F.; Kopytkova, S. A.; Filatov, R. A.; Golubovskaya, N. O.

    2016-01-01

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  10. Electron, hole and exciton self-trapping in germanium doped silica glass from DFT calculations with self-interaction correction

    International Nuclear Information System (INIS)

    Du Jincheng; Rene Corrales, L.; Tsemekhman, Kiril; Bylaska, Eric J.

    2007-01-01

    Density functional theory (DFT) calculations were employed to understand the refractive index change in germanium doped silica glasses for the trapped states of electronic excitations induced by UV irradiation. Local structure relaxation and excess electron density distribution were calculated upon self-trapping of an excess electron, hole, and exciton in germanium doped silica glass. The results show that both the trapped exciton and excess electron are highly localized on germanium ion and, to some extent, on its oxygen neighbors. Exciton self-trapping is found to lead to the formation of a Ge E' center and a non-bridging hole center. Electron trapping changes the GeO 4 tetrahedron structure into trigonal bi-pyramid with the majority of the excess electron density located along the equatorial line. The self-trapped hole is localized on bridging oxygen ions that are not coordinated to germanium atoms that lead to elongation of the Si-O bonds and change of the Si-O-Si bond angles. We carried out a comparative study of standard DFT versus DFT with a hybrid PBE0 exchange and correlation functional. The results show that the two methods give qualitatively similar relaxed structure and charge distribution for electron and exciton trapping in germanium doped silica glass; however, only the PBE0 functional produces the self-trapped hole

  11. Zeeman spectroscopy of Zn-H complex in germanium

    International Nuclear Information System (INIS)

    Prabakar, J.P.C.; Vickers, R.E.M.; Fisher, P.

    1998-01-01

    Full text: A divalent substitutional zinc atom in germanium complexed with an interstitial hydrogen atom gives rise to a monovalent acceptor of trigonal symmetry. The axial nature of this complex splits the four-fold degenerate states associated with substitutional point defects into two two-fold degenerate states. Zeeman spectra of the Zn-H complex have been observed for B along and crystallographic directions in the Voigt configuration using linearly polarised radiation. Spectra of the C and D lines for B ≤ 2 Tesla are essentially identical to those of these lines of group III impurities; here B is the field strength. At all fields, splitting of the excited state of the D lines is identical to that for group III acceptors in germanium. The magnetic field dependence of the D components for both E parallel B and E perpendicular B and the selection rules demand that only one of the two two-fold 1s-like energy levels is occupied at the temperatures used instead of both. The results confirm piezospectroscopic studies which demonstrated that the axes of the complexes are along the four covalent bond directions of the host

  12. Use of Isotopes for Studying Reaction Mechanisms -RE ...

    Indian Academy of Sciences (India)

    can give even greater details of chemical processes. Isotopic substitution ... isotope effect (KIE) would depend on the location of the isotope with respect to ... magnitude of KIE is given by kH/ko. ... How can one explain these variations? Theory.

  13. Mapping the electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers

    NARCIS (Netherlands)

    Calandrini, Eugenio; Venanzi, Tommaso; Appugliese, Felice; Badioli, Michela; Giliberti, Valeria; Baldassarre, Leonetta; Biagioni, Paolo; De Angelis, Francesco; Klesse, Wolfgang M.; Scappucci, G.; Ortolani, Michele

    2016-01-01

    We study plasmonic nanoantennas for molecular sensing in the mid-infrared made of heavily doped germanium, epitaxially grown with a bottom-up doping process and featuring free carrier density in excess of 1020 cm-3. The dielectric function of the 250 nm thick germanium film

  14. Electrochemical characterization of irreversibly adsorbed germanium on platinum stepped surfaces vicinal to Pt(1 0 0)

    International Nuclear Information System (INIS)

    Rodriguez, P.; Herrero, E.; Solla-Gullon, J.; Vidal-Iglesias, F.J.; Aldaz, A.; Feliu, J.M.

    2005-01-01

    The electrochemical behavior of germanium irreversibly adsorbed at stepped surfaces vicinal to the Pt(1 0 0) pole is reported. The process taking part on the (1 0 0) terraces is evaluated from charge density measurements and calibration lines versus the terrace dimension are plotted. On the series Pt(2n - 1,1,1) having (1 1 1) monoatomic steps, the charge involved in the redox process undergone by the irreversibly adsorbed germanium is able to account for (n - 0.5) terrace atoms, thus suggesting some steric difficulties in the growth of the adlayer on the (1 0 0) terraces. Conversely, no steric problems are apparent in the series Pt(n,1,0) in which more open (1 0 0) steps are present on the (1 0 0) terraces. In this latter case the charge density under the germanium redox peaks is proportional to the number of terrace atoms. Some comparison is made with other stepped surfaces to understand the behavior and stability of germanium irreversibly adsorbed on the different platinum surface sites

  15. Defects reduction of Ge epitaxial film in a germanium-on-insulator wafer by annealing in oxygen ambient

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2015-01-01

    Full Text Available A method to remove the misfit dislocations and reduce the threading dislocations density (TDD in the germanium (Ge epilayer growth on a silicon (Si substrate is presented. The Ge epitaxial film is grown directly on the Si (001 donor wafer using a “three-step growth” approach in a reduced pressure chemical vapour deposition. The Ge epilayer is then bonded and transferred to another Si (001 handle wafer to form a germanium-on-insulator (GOI substrate. The misfit dislocations, which are initially hidden along the Ge/Si interface, are now accessible from the top surface. These misfit dislocations are then removed by annealing the GOI substrate. After the annealing, the TDD of the Ge epilayer can be reduced by at least two orders of magnitude to <5 × 106 cm−2.

  16. Level and decay schemes of even-A Se and Ge isotopes from (n,n'γ) reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Sigaud, J.; Patin, Y.; McEllistrem, M. T.; Haouat, G.; Lachkar, J.

    1975-06-01

    The energy levels and the decay schemes of {sup 76}Se, {sup 78}Se, {sup 80}Se, {sup 82}Se and {sup 76}Ge have been studied through the measurements of (n,n'γ) differential cross sections. Gamma-ray excitation functions have been measured between 2.0- and 4.1-MeV incident neutron energy, and angular distribution have been observed for all of these isotopes.

  17. Gyromagnetic ratios of low-lying excited states in the even 192-198Pt isotopes; experimental measurements and theoretical predictions

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, C.G.; Morrison, I.; Bolotin, H.H.

    1981-01-01

    The gyromagnetic ratios of the 2 2 + and 4 1 + states in 196 Pt were measured relative to that of its 2 1 + level. The thin-foil IMPAC technique was employed utilizing the enhanced transient hyperfine magnetic field present at the nuclei of swiftly recoiling ions traversing magnetized ferromagetic materials. The states of interest were populated by Coulomb excitation using beams of 220-MeV 58 Ni ions. For g(2 1 + ) taken as 0.326+-0.014, the present measurements yielded g(2 2 + ) = 0.30+-0.06 and g(4 1 + ) 0.30+-0.05. These results and those reported by prior workers for the g-factors of corresponding levels in 192 Pt, 194 Pt, 198 Pt are used to trace the systematics of the magnetic moments of these low-lying levels in the even 192 - 198 Pt isotopes. Interacting Boson Approximation model-based calculations of the g-factors of these states were also carried out. The experimental theoretical results are compared

  18. Isotope analytics for the evaluation of the feeding influence on the isotope ratio in beef samples

    International Nuclear Information System (INIS)

    Herwig, Nadine

    2010-01-01

    Information about the origin of food and associated production systems has a high significance for food control. An extremely promising approach to obtain such information is the determination of isotope ratios of different elements. In this study the correlation of the isotope ratios C-13/C-12, N-15/N-14, Mg-25/Mg-24, and Sr-87/Sr-86 in bovine samples (milk and urine) and the corresponding isotope ratios in feed was investigated. It was shown that in the bovine samples all four isotope ratios correlate with the isotope composition of the feed. The isotope ratios of strontium and magnesium have the advantage that they directly reflect the isotope ratios of the ingested feed since there is no isotope fractionation in the bovine organism which is in contrast to the case of carbon and nitrogen isotope ratios. From the present feeding study it is evident, that a feed change leads to a significant change in the delta C-13 values in milk and urine within 10 days already. For the deltaN-15 values the feed change was only visible in the bovine urine after 49 days. Investigations of cows from two different regions (Berlin/Germany and Goestling/Austria) kept at different feeding regimes revealed no differences in the N-15/N-14 and Mg-26/Mg-24 isotope ratios. The strongest correlation between the isotope ratio of the bovine samples and the kind of ingested feed was observed for the carbon isotope ratio. With this ratio even smallest differences in the feed composition were traceable in the bovine samples. Since different regions usually coincide with different feeding regimes, carbon isotope ratios can be used to distinguish bovine samples from different regions if the delta C-13 values of the ingested feed are different. Furthermore, the determination of strontium isotope ratios revealed significant differences between bovine and feed samples of Berlin and Goestling due to the different geologic realities. Hence the carbon and strontium isotope ratios allow the best

  19. Study of the effect of neutron and electron irradiations on the low temperature thermal conductivity of germanium and silicon

    International Nuclear Information System (INIS)

    Vandevyver, M.

    1967-06-01

    The main results obtained from this work are the following: 1 Neutron irradiation (at 300 deg. K) produces lattice defects in germanium and silicon, and a corresponding very large lowering of the thermal conductivity is observed in the low temperature region (4-300 ). The results obtained have been explained with the help of the following hypotheses: for silicon a scattering of phonons by the stress fields produced by the defects; for germanium, a supplementary scattering of the electron phonon type. 2 Annealing treatments carried out on these materials above 373 deg. K restored the thermal conductivity over the whole temperature range of the measurements (4-300 deg. K); in the case of both germanium and silicon there were two steps in the annealing process. 3 A study of the thermal conductivity of germanium (initially P or N) after an electronic irradiation showed that the scattering of phonons could depend on the state of charge of the defects thus produced. (author) [fr

  20. Volume reflection and channeling of ultrarelativistic protons in germanium bent single crystals

    Directory of Open Access Journals (Sweden)

    S. Bellucci

    2016-12-01

    Full Text Available The paper is devoted to the investigation of volume reflection and channeling processes of ultrarelativistic positive charged particles moving in germanium single crystals. We demonstrate that the choice of atomic potential on the basis of the Hartree-Fock method and the correct choice of the Debye temperature allow us to describe the above mentioned processes in a good agreement with the recent experiments. Moreover, the universal form of equations for volume reflection presented in the paper gives a true description of the process at a wide range of particle energies. Standing on this study we make predictions for the mean angle reflection (as a function of the bending radius of positive and negative particles for germanium (110 and (111 crystallographic planes.

  1. CDEX-1 1 kg point-contact germanium detector for low mass dark matter searches

    International Nuclear Information System (INIS)

    Kang Kejun; Yue Qian; Wu Yucheng

    2013-01-01

    The CDEX collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold point-contact p-type germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact P + electrode and the outside N + electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both P + and N + electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments. (authors)

  2. The electronic and optical properties of germanium tellurite glasses containing various transition metal oxides

    International Nuclear Information System (INIS)

    Khan, M.N.

    1988-01-01

    Various transition metal oxides, such as TiO 2 , V 2 O 5 , NiO, CuO, and ZnO are added to germanium-tellurite glass and measurements are reported of the electrical conductivity, density, optical absorption, infra-red absorption spectra, and electron spin resonance. It is found that the d.c. conductivity of glasses containing the same amount of V 2 O 5 is higher than that of germanium tellurite glasses containing a similar amount of other transition metal oxides, and is due to hopping between localized states. The optical absorption measurements show that the fundamental absorption edge is a function of glass composition and the optical absorption is due to forbidden indirect transitions. From the infra-red absorption spectra, it is found that the addition of transition metal oxides does not introduce any new absorption band in the infra-red spectrum of germanium tellurite glasses. A small shift of existing absorptions toward higher wave number is observed. The ESR measurements revealed that some transition metal ions are diamagnetic while others are paramagnetic in the glass network. (author)

  3. ICT: isotope correction toolbox.

    Science.gov (United States)

    Jungreuthmayer, Christian; Neubauer, Stefan; Mairinger, Teresa; Zanghellini, Jürgen; Hann, Stephan

    2016-01-01

    Isotope tracer experiments are an invaluable technique to analyze and study the metabolism of biological systems. However, isotope labeling experiments are often affected by naturally abundant isotopes especially in cases where mass spectrometric methods make use of derivatization. The correction of these additive interferences--in particular for complex isotopic systems--is numerically challenging and still an emerging field of research. When positional information is generated via collision-induced dissociation, even more complex calculations for isotopic interference correction are necessary. So far, no freely available tools can handle tandem mass spectrometry data. We present isotope correction toolbox, a program that corrects tandem mass isotopomer data from tandem mass spectrometry experiments. Isotope correction toolbox is written in the multi-platform programming language Perl and, therefore, can be used on all commonly available computer platforms. Source code and documentation can be freely obtained under the Artistic License or the GNU General Public License from: https://github.com/jungreuc/isotope_correction_toolbox/ {christian.jungreuthmayer@boku.ac.at,juergen.zanghellini@boku.ac.at} Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. The Future of Low Temperature Germanium as Dark Matter Detectors

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The Weakly Interactive Massive Particles (WIMPs) represent one of the most attractive candidates for the dark matter in the universe. With the combination of experiments attempting to detect WIMP scattering in the laboratory, of searches for their annihilation in the cosmos and of their potential production at the LHC, the next five years promise to be transformative. I will review the role played so far by low temperature germanium detectors in the direct detection of WIMPs. Because of its high signal to noise ratio, the simultaneous measurement of athermal phonons and ionization is so far the only demonstrated approach with zero-background. I will argue that this technology can be extrapolated to a target mass of the order of a tonne at reasonable cost and can keep playing a leading role, complementary to noble liquid technologies. I will describe in particular GEODM, the proposed Germanium Observatory for Dark Matter at the US Deep Underground Science and Engineering Laboratory (DUSEL).

  5. Environmental applications for an intrinsic germanium well detector

    International Nuclear Information System (INIS)

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1984-01-01

    The overall performance of an intrinsic germanium well detector for 125 I measurements was investigated in a program of environmental surveillance. Concentrations of 125 I and 131 I were determined in thyroids of road-killed deer showing the highest activities of 125 I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bioindicator for radioiodine around nuclear facilities

  6. Numerical evaluation of Auger recombination coefficients in relaxed and strained germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dominici, Stefano [Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary' s Street, Boston, Massachusetts 02215 (United States); Wen, Hanqing; Bellotti, Enrico [Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary' s Street, Boston, Massachusetts 02215 (United States); Bertazzi, Francesco; Goano, Michele [Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); IEIIT-CNR, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2016-05-23

    The potential applications of germanium and its alloys in infrared silicon-based photonics have led to a renewed interest in their optical properties. In this letter, we report on the numerical determination of Auger coefficients at T = 300 K for relaxed and biaxially strained germanium. We use a Green's function based model that takes into account all relevant direct and phonon-assisted processes and perform calculations up to a strain level corresponding to the transition from indirect to direct energy gap. We have considered excess carrier concentrations ranging from 10{sup 16} cm{sup −3} to 5 × 10{sup 19} cm{sup −3}. For use in device level simulations, we also provide fitting formulas for the calculated electron and hole Auger coefficients as functions of carrier density.

  7. On the accuracy of gamma spectrometric isotope ratio measurements of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ramebäck, H., E-mail: henrik.ramebeck@foi.se [Swedish Defence Research Agency, FOI, CBRN Defence and Security, SE-901 82 Umeå (Sweden); Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Göteborg (Sweden); Lagerkvist, P.; Holmgren, S.; Jonsson, S.; Sandström, B.; Tovedal, A. [Swedish Defence Research Agency, FOI, CBRN Defence and Security, SE-901 82 Umeå (Sweden); Vesterlund, A. [Swedish Defence Research Agency, FOI, CBRN Defence and Security, SE-901 82 Umeå (Sweden); Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Göteborg (Sweden); Vidmar, T. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Kastlander, J. [Swedish Defence Research Agency, FOI, Defence and Security, Systems and Technology, SE-164 90 Stockholm (Sweden)

    2016-04-11

    The isotopic composition of uranium was measured using high resolution gamma spectrometry. Two acid solutions and two samples in the form of UO{sub 2} pellets were measured. The measurements were done in close geometries, i.e. directly on the endcap of the high purity germanium detector (HPGe). Applying no corrections for count losses due to true coincidence summing (TCS) resulted in up to about 40% deviation in the abundance of {sup 235}U from the results obtained with mass spectrometry. However, after correction for TCS, excellent agreement was achieved between the results obtained using two different measurement methods, or a certified value. Moreover, after corrections, the fitted relative response curves correlated excellently with simulated responses, for the different geometries, of the HPGe detector.

  8. Active noise canceling system for mechanically cooled germanium radiation detectors

    Science.gov (United States)

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  9. Synthesis and evaluation of germanic organometallic compounds as precursors for chemical vapor deposition (CVD) and for obtaining nanoparticles of elemental germanium

    International Nuclear Information System (INIS)

    Ballestero Martinez, Ernesto

    2014-01-01

    The interest in the development of materials that have applications in areas such as electronics or biomarkers has affected the synthesis of new compounds based on germanium. This element has two states of common oxidation, +4 and +2, of them, the +2 oxidation state is the least studied and more reactive. Additionally, compounds of germanium (II) have similarities to carbenes in terms Lewis'acid base chemistry. The preparation of compounds of germanium (II) with ligands β-diketiminates has made possible the stabilization of new chemical functionalities and, simultaneously, it has provided interesting thermal properties to develop new methods of preparation of materials with novel properties. The preparation of amides germanium (II) L'Ge (NHPh) [1, L'= {HC (CMeN-2,4,6-Me 3 C 6 H 2 ) 2 } - ], L'Ge (4-NHPy) [2], L'Ge (2-NHPy) [3] and LGe(2-NHPy) [4, L = {HC (CMeN-2,6- i Pr 2 C 6 H 3 ) 2 ] - ] are presented, the chemical and structural composition was determined by using techniques such as nuclear magnetic resonance ( 1 H, 13 C), elemental analysis, melting point, infrared spectroscopy, X-ray diffraction of single crystal and thermogravimetric analysis (TGA). The TGA has demonstrated that 1-4 experience a thermal decomposition, therefore, these compounds could be considered as potential starting materials for the obtaining of germanium nitride (GeN x ). Certainly, the availability of coordinating nitrogen atoms in the chemical composition in 2-4 have been interesting given that it could act as ligands in reactions with transition metal complexes. Thus, relevant information to molecular level could be obtained for some reactions and interactions that have used similar link sites in surface chemistry, for example, the chemical functionalization of silicon and germanium substrate. Additionally, the synthesis and structural characterization of germanium chloride compound (II) L G eCl [5, L' = HC{(CMe) (N-2,6-Me 2 C 6 H 3 )} 2 - ] is reported

  10. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.

    Science.gov (United States)

    Kang, Seung-Kyun; Park, Gayoung; Kim, Kyungmin; Hwang, Suk-Won; Cheng, Huanyu; Shin, Jiho; Chung, Sangjin; Kim, Minjin; Yin, Lan; Lee, Jeong Chul; Lee, Kyung-Mi; Rogers, John A

    2015-05-06

    Semiconducting materials are central to the development of high-performance electronics that are capable of dissolving completely when immersed in aqueous solutions, groundwater, or biofluids, for applications in temporary biomedical implants, environmentally degradable sensors, and other systems. The results reported here include comprehensive studies of the dissolution by hydrolysis of polycrystalline silicon, amorphous silicon, silicon-germanium, and germanium in aqueous solutions of various pH values and temperatures. In vitro cellular toxicity evaluations demonstrate the biocompatibility of the materials and end products of dissolution, thereby supporting their potential for use in biodegradable electronics. A fully dissolvable thin-film solar cell illustrates the ability to integrate these semiconductors into functional systems.

  11. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  12. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed; Rubin, Andrew; Refaat, Mohamed; Sedky, Sherif; Abdo, Mohammad

    2014-01-01

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  13. Vanadocene reactions with mixed acylates of silicon, germanium and tin

    International Nuclear Information System (INIS)

    Latyaeva, V.N.; Lineva, A.N.; Zimina, S.V.; Gordetsov, A.S.; Dergunov, Yu.I.

    1981-01-01

    Vanadocene interaction with di-and tri-alkyl (aryl)-derivatives of silicon, tin and germanium is studied. Dibutyltin dibenzoate under mild conditions (20 deg C, toluene) oxidates vanadocene to [CpV(OCOC 6 H 5 ) 2 ] 2 , at that, the splitting off of one Cp group in the form of cyclopentadiene and formation of the products of tin-organic fragment disproportionation (tributyltin benzoate, dibutyltin, metallic tin) take place. Tributyltin benzoate oxidates vanadocene at the mole ratio 2:1 and during prolong heating (120 deg C) in the absence of the solvent, [CpV(OCOC 6 H 5 ) 2 ] 2 and hexabutyldistannate are the products of the reaction. Acetates R 3 SnOCOCH 3 react in the similar way. The reactivity of mono- and diacylates of germanium and silicon decreases in the series of derivatives Sn>Ge>Si [ru

  14. Doping of germanium telluride with bismuth tellurides

    International Nuclear Information System (INIS)

    Abrikosov, N.Kh.; Karpinskij, O.G.; Makalatiya, T.Sh.; Shelimova, L.E.

    1981-01-01

    Effect of germanium telluride doping with bismuth fellurides (Bi 2 Te 3 ; BiTe; Bi 2 Te) on phase transition temperature, lattice parameters and electrophysical properties of alloys is studied. It is shown that in alloys of GeTe-Bi 2 Te 3 (BiTe)(Bi 2 Te) cross sections solid solution of GeTe with Bi 2 Te 3 , characterized by deviation from stoichiometry, and germanium in the second phase the quantity of which increases during the transition from GeTe-Bi 2 Te 3 cross section to GeTe-Bi 2 Te are in equilibrium. Lower values of holes concentration and of electric conductivity and higher values of thermo e.m.f. coefficient in comparison with alloys of GeTe-Bi 2 Te 3 cross section with the same bismuth content are characterized for GeTe-Bi 2 Te cross section alloys. It is shown that in the range of GeTe-base solid solution the α→γ phase transformation which runs trough the two-phase region (α→γ) is observed with tellurium content increase. Extension of α-phase existence region widens with the bismuth content increase. Peculiarities of interatomic interaction in GeTe-base solid solutions with isovalent and heterovalent cation substitution are considered [ru

  15. The establishment of bed type germanium-based whole body counters

    International Nuclear Information System (INIS)

    Chen, M.C.; Sun, C.L.; Yeh, W.W.

    1996-01-01

    A coaxial germanium detector was installed in a shadow-shield counter for the in-vivo measurement of γ emitters in the body. It is divided into two subparts, automatic liquid nitrogen transfer system and the Ge-based counting system. The automatic liquid nitrogen transfer system and a complete gamma spectroscopy software package were manufactured by EG and G ORTEC company. Some experiments were finished to get the optimum three setting parameters for how to operate the auto liquid nitrogen transfer system in good conditions. The filling interval should be setting at eight hours, the filling time should be setting at ten minutes, and the pressure of dewar should operate in a range from 14 to 26 PSI. The RMC-II phantom that is designed by Canberra company is used as standard man for all kinds of calibrations. The detector has resolutions that are less than 2.5 keV with an average of 1.87 keV for the 60 Co 1.33-MeV γ-ray peak. The efficiency value of thyroid geometry for four different organs is highest in the phantom. The resolution of the Germanium detector for measuring radioactivity in the body that is better than the sodium iodide detector is used to measure the internal depositions of radionuclide mixtures. So, the advantage of the germanium counter can just compensate the disadvantage of the NaI(TI) detector. The qualitative and quantitative analysis for whole body counting can keep in the best conditions if both whole body counters are operated at the same time for routine measurement purpose in the laboratory

  16. Equilibrium deuterium isotope effect of surprising magnitude

    International Nuclear Information System (INIS)

    Goldstein, M.J.; Pressman, E.J.

    1981-01-01

    Seemingly large deuterium isotope effects are reported for the preference of deuterium for the α-chloro site to the bridgehead or to the vinyl site in samples of anti-7-chlorobicyclo[4.3.2]undecatetraene-d 1 . Studies of molecular models did not provide a basis for these large equilibrium deuterium isotope effects. The possibility is proposed that these isotope effects only appear to be large for want of comparison with isotope effects measured for molecules that might provide even greater contrasts in local force fields

  17. A latitudinal study of oxygen isotopes within horsehair

    Science.gov (United States)

    Thompson, E.; Bronk Ramsey, C.; McConnell, J. R.

    2016-12-01

    This study aims to explore the hypothesis that 'if oxygen isotope ratios deplete with decreasing temperature then a study of oxygen isotope ratios within horsehair from Oxfordshire to Iceland will show a latitudinal depletion gradient'. By looking at oxygen isotope values at different geographical positions, we can track the relationship with latitude and with different regional climate features. This will provide a firmer understanding of how to compare climate records from different locations. Additionally, a comparison of the horse breeds from this study to those analysed within previous studies will create an even better understanding of the intra-species variation within the δ18O values of horsehair. A total of 24 horses were sampled on the 7th March from Thordale Stud in Shetland, the Icelandic Food And Veterinary Authority in Iceland, the Exmoor Pony Centre in Exmoor and the Pigeon House Equestrian Centre in Oxfordshire. By starting the sampling process from the most recent growth at the follicle, the sampling date becomes a chronological marker, temporally fixing the first sample within a sequential set of data points extending for one year or longer, depending on the length of each individual hair. The samples were analysed for oxygen isotope values using an IRMS coupled within a Sercon HTEA. Preliminary results show a latitudinal gradient is evident on comparison between the locations, consistent with the findings of Darling and Talbot's study of fresh water isotopes in the British Isles (2003). These results support the hypothesis, showing that a study of oxygen isotope ratios within horse hair from Oxfordshire to Iceland showing a latitudinal depletion gradient, consistent with a depletion of oxygen isotope ratios due to decreasing temperatures. Darling, W. and Talbot, J. (2003). The O and H stable isotope composition of freshwaters in the British Isles. 1. Rainfall. Hydrol. Earth System Science, 7(2), pp.163-181.

  18. Study and characterization of porous germanium for radiometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Akkari, E.; Benachour, Z.; Touayar, O.; Benbrahim, J. [Activites de Recherche, Metrologie des Rayonnements, Institut National des Sciences Appliquees et de Technologie, INSAT, Tunis (Tunisia); Aouida, S.; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes de l' Energie, LaNSE, Centre de Recherche et des Technologies de l' Energie, CRTEn, Hammam-Lif (Tunisia)

    2009-07-15

    The aim of this article is to study and realize a new detector based on a porous germanium (pGe) photodiode to be used as a standard for radiometric measurement in the wavelength region between 800 nm and 1700 nm. We present the development and characterization of a porous structure realized on a single-crystal substrate of p-type germanium (Ga doped) and of crystallographic orientation (100). The obtained structure allows, on the one hand, to trap the incident radiation, and on the other hand, to minimize the fluctuations of the front-face reflection coefficient of the photodiode. The first studies thus made show that it is possible to optimize, respectively, the electrical current density and the electrochemical operation time necessary for obtaining exploitable porous structures. The obtained results show that for 50 mA/cm{sup 2} and 5 min as operational parameters, we obtain a textured aspect of the porous samples that present a pyramidal form. The reflectivity study of the front surface shows a constant value of around 38% in a spectral range between 800 nm and 1700 nm approximately. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Development of revitalisation technique for impaired lithium doped germanium detector

    International Nuclear Information System (INIS)

    Singh, N.S.B.; Rafi Ahmed, A.G.; Balasubramanian, G.R.

    1994-01-01

    Semiconductor detectors play very significant role in photon detection and are important tools in the field of gamma spectroscopy. Lithium doped germanium detectors belong to this category. The development of revitalisation technique for these impaired detectors are discussed in this report

  20. The position response of a large-volume segmented germanium detector

    International Nuclear Information System (INIS)

    Descovich, M.; Nolan, P.J.; Boston, A.J.; Dobson, J.; Gros, S.; Cresswell, J.R.; Simpson, J.; Lazarus, I.; Regan, P.H.; Valiente-Dobon, J.J.; Sellin, P.; Pearson, C.J.

    2005-01-01

    The position response of a large-volume segmented coaxial germanium detector is reported. The detector has 24-fold segmentation on its outer contact. The output from each contact was sampled with fast digital signal processing electronics in order to determine the position of the γ-ray interaction from the signal pulse shape. The interaction position was reconstructed in a polar coordinate system by combining the radial information, contained in the rise-time of the pulse leading edge, with the azimuthal information, obtained from the magnitude of the transient charge signals induced on the neighbouring segments. With this method, a position resolution of 3-7mm is achieved in both the radial and the azimuthal directions

  1. The position response of a large-volume segmented germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Descovich, M. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom)]. E-mail: mdescovich@lbl.gov; Nolan, P.J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Boston, A.J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Dobson, J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Gros, S. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Lazarus, I. [CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Regan, P.H. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Valiente-Dobon, J.J. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Sellin, P. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Pearson, C.J. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2005-11-21

    The position response of a large-volume segmented coaxial germanium detector is reported. The detector has 24-fold segmentation on its outer contact. The output from each contact was sampled with fast digital signal processing electronics in order to determine the position of the {gamma}-ray interaction from the signal pulse shape. The interaction position was reconstructed in a polar coordinate system by combining the radial information, contained in the rise-time of the pulse leading edge, with the azimuthal information, obtained from the magnitude of the transient charge signals induced on the neighbouring segments. With this method, a position resolution of 3-7mm is achieved in both the radial and the azimuthal directions.

  2. GeMini: The Next-Generation Mechanically-Cooled Germanium Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Burks, M

    2008-11-12

    The next-generation mechanically-cooled germanium spectrometer has been developed. GeMini (MINIature GErmanium spectrometer) has been designed to bring high-resolution gamma-ray spectroscopy to a range of demanding field environments. Intended applications include short-notice inspections, border patrol, port monitoring and emergency response, where positive nuclide identification of radioactive materials is required but power and liquid cryogen are not easily available. GeMini weighs 2.75 kg for the basic instrument and 4.5 kg for the full instrument including user interface and ruggedized hermetic packaging. It is very low power allowing it to operate for 10 hours on a single set of rechargeable batteries. This instrument employs technology adapted from the gamma-ray spectrometer currently flying on NASA's Mercury MESSENGER spacecraft. Specifically, infrared shielding techniques allow for a vast reduction of thermal load. This in turn allows for a smaller, lighter-weight design, well-suited for a hand-held instrument. Three working prototypes have been built and tested in the lab. The measured energy resolution is 3 keV fwhm at 662 keV gamma-rays. This paper will focus on the design and performance of the instrument.

  3. The reactor and the production of isotopes

    International Nuclear Information System (INIS)

    Hevesy, G. de

    1962-01-01

    The construction of the cyclotron immensely advanced the availability of radioactive tracers, a few of which even today can be produced only with the aid of this device. But even this great advance was overshadowed by the fabulous production of isotopes by the reactors. Isotopes of almost any element and of almost unlimited activity became available. It now became possible to apply H 3 - discovered already in the 'thirties by Rutherford and Oliphant - and C 14 , and these were used in thousands of investigations

  4. Carbon in high-purity germanium

    International Nuclear Information System (INIS)

    Haller, E.E.; Hansen, W.L.; Luke, P.; McMurray, R.; Jarrett, B.

    1981-10-01

    Using 14 C-spiked pyrolytic graphite-coated quartz crucibles for the growth of nine ultra-pure germanium single crystals, we have determined the carbon content and distribution in these crystals. Using autoradiography, we observe a rapidly decreasing carbon cluster concentration in successively grown crystals. Nuclear radiation detectors made from the crystals measure the betas from the internally decaying 14 C nuclei with close to 100% efficiency. An average value for the total carbon concentration [ 14 C + 12 C] is approx. 2 x 10 14 cm -3 , a value substantially larger than expected from earlier metallurgical studies. Contrary to the most recent measurement, we find the shape of the beta spectrum to agree very well with the statistical shape predicted for allowed transitions

  5. Effect of the microstructure on electrical properties of high-purity germanium

    Science.gov (United States)

    Podkopaev, O. I.; Shimanskii, A. F.; Molotkovskaya, N. O.; Kulakovskaya, T. V.

    2013-05-01

    The interrelation between the electrical properties and the microstructure of high-purity germanium crystals has been revealed. The electrical conductivity of polycrystalline samples increases and the life-time of nonequilibrium charge carriers in them decreases with a decrease in the crystallite sizes.

  6. High-precision efficiency calibration of a high-purity co-axial germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Blank, B., E-mail: blank@cenbg.in2p3.fr [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Souin, J.; Ascher, P.; Audirac, L.; Canchel, G.; Gerbaux, M.; Grévy, S.; Giovinazzo, J.; Guérin, H.; Nieto, T. Kurtukian; Matea, I. [Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, CNRS/IN2P3, Université de Bordeaux, Chemin du Solarium, BP 120, 33175 Gradignan Cedex (France); Bouzomita, H.; Delahaye, P.; Grinyer, G.F.; Thomas, J.C. [Grand Accélérateur National d' Ions Lourds, CEA/DSM, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, F-14076 CAEN Cedex 5 (France)

    2015-03-11

    A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and γ-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived online sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed β decays for tests of the weak-interaction standard model.

  7. Two quasi-particle excitations with particle-hole core polarization in even-even single closed shell nuclei

    International Nuclear Information System (INIS)

    Gillet, V.; Giraud, B.; Rho, M.

    1976-01-01

    The energy levels and transition properties of the even-even N=28, 50 isotones and Z=28, 50, 82 isotopes are calculated in the framework of the Tamm-Dancoff and Random Phase Approximation, with an effective central interaction in an extended space consisting of two quasi-particle configurations for the open shell and particle-hole configurations for the closed core. Using the results of the Inverse Gap Equation Method, practically all the necessary input data (single quasi-particle energies, force strength) are extracted from the odd-mass nuclei. The ratios of the force components are kept at fixed values for all studied nuclei and no effective charge is used. An overall excellent agreement is obtained for the energies of the vibrational states. On the other hand, while the transition properties of the 3 - states are always well reproduced, those of the 2 + and 4 + states are often too small by about one order of magnitude [fr

  8. Collinear resonance ionization spectroscopy of exotic francium and radium isotopes

    CERN Document Server

    AUTHOR|(CDS)2094150

    Two experimental campaigns were performed at the Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE radioactive-beam facility. The spectroscopic quadrupole moment of $^{203}$Fr was measured. Its magnitude with respect to the other even-$N$ francium isotopes below $N = 126$ suggests an onset of static deformation. However, calculations of the static and total deformation parameters reveal that it cannot be considered as purely statically deformed. The neutron-rich radium isotopes were investigated. The spectroscopic quadrupole moment of $^{231}$Ra was measured and the continuation of increasing quadrupole deformation with neutron number in neutron-rich radium isotopes was further established. Measurements of the changes in mean-square charge radii of $^{231,233}$Ra allowed the odd-even staggering parameter to be calculated for $^{230-232}$Ra. A normal odd-even staggering which increases in magnitude with neutron number was observed in these isotopes.

  9. Exploring the isotopic niche: isotopic variance, physiological incorporation, and the temporal dynamics of foraging

    Directory of Open Access Journals (Sweden)

    Justin Douglas Yeakel

    2016-01-01

    Full Text Available Consumer foraging behaviors are dynamic, changing in response to prey availability, seasonality, competition, and even the consumer's physiological state. The isotopic composition of a consumer is a product of these factors as well as the isotopic `landscape' of its prey, i.e. the isotopic mixing space. Stable isotope mixing models are used to back-calculate the most likely proportional contribution of a set of prey to a consumer's diet based on their respective isotopic distributions, however they are disconnected from ecological process. Here we build a mechanistic framework that links the ecological and physiological processes of an individual consumer to the isotopic distribution that describes its diet, and ultimately to the isotopic composition of its own tissues, defined as its `isotopic niche’. By coupling these processes, we systematically investigate under what conditions the isotopic niche of a consumer changes as a function of both the geometric properties of its mixing space and foraging strategies that may be static or dynamic over time. Results of our derivations reveal general insight into the conditions impacting isotopic niche width as a function of consumer specialization on prey, as well as the consumer's ability to transition between diets over time. We show analytically that moderate specialization on isotopically unique prey can serve to maximize a consumer's isotopic niche width, while temporally dynamic diets will tend to result in peak isotopic variance during dietary transitions. We demonstrate the relevance of our theoretical findings by examining a marine system composed of nine invertebrate species commonly consumed by sea otters. In general, our analytical framework highlights the complex interplay of mixing space geometry and consumer dietary behavior in driving expansion and contraction of the isotopic niche. Because this approach is established on ecological mechanism, it is well-suited for enhancing the

  10. Fabrication of Hydrogenated Amorphous Germanium Thin Layer Film and ItsCharacterization

    International Nuclear Information System (INIS)

    Agus-Santoso; Lely-Susita RM; Tjipto-Sujitno

    2000-01-01

    Fabrication of hydrogenated amorphous Germanium thin film by vacuumevaporation method and then deposition with hydrogen atom by glow dischargeplasma radio frequency has been done. This germanium amorphous (a-Ge) thinfilm involves a lot of dangling bonds in the network due to the irregularityof the atomic structures and it will decrease is conductivity. To improve theband properties of (a-Ge) thin film layer a hydrogenated plasma isintroduced. Process of introducing of the hydrogen into the a-Ge film is meanto reduce the dangling bonds so that the best electric conductivity of a Ge:Hthin film will obtained. To identify the hydrogen atom in the sample acharacterization using infrared spectrometer has been done, as well as themeasurement of conductivity of the samples. From the characterization usinginfrared spectroscopy the existence of hydrogen atom was found at absorptionpeak with wave number 1637.5 cm -1 , while the optimum conductivity of thesample 1634.86 Ω -1 cm -1 was achieved at 343 o K. (author)

  11. Environmental applications for an intrinsic germanium well detector

    International Nuclear Information System (INIS)

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1984-01-01

    The overall performance of an intrinsic germanium well detector for 125 I measurements was investigated in a program of environmental surveillance. Concentrations of 125 I and 131 I were determined in thyroids of road-killed deer showing the highest activities of 125 I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bionindicator for radioiodine around nuclear facilities. 6 refs., 2 figs., 3 tabs

  12. Environmental applications for an intrinsic germanium well detector

    International Nuclear Information System (INIS)

    Stegnar, P.; Eldridge, J.S.; Teasley, N.A.; Oakes, T.W.

    1983-01-01

    The overall performance of an intrinsic germanium well detector for 125 I measurements was investigated in a program of environmental surveillance. Concentrations of 125 I and 131 I were determined in thyroids of road-killed deer showing the highest activities of 125 I in the animals from the near vicinity of Oak Ridge National Laboratory. This demonstrates the utility of road-killed deer as a bioindicator for radioiodine around nuclear facilities. 6 refs., 2 figs., 3 tabs

  13. Nuclear size comparison of even titanium isotopes using 140-MeV α-particle scattering

    International Nuclear Information System (INIS)

    Roberson, P.L.; Goldberg, D.A.; Wall, N.S.; Woo, L.W.; Chen, H.L.

    1979-01-01

    Systematic variations in nuclear-matter distributions have been determined by analyzing the measured elastic scattering of 140-MeV alpha particles from /sup 46,48,50/Ti. The ''unique'' optical potentials obtained (J/sub R//4A approx. = 300 MeV fm 3 , J/sub I//4A approx. = 100 MeV fm 3 ) indicate that isotopic differences occur primarily in the strength of the imaginary potential. The rms matter radii increase with A, in contrast to those of the charge distributions. The matter-radius results are in agreement with Hartree-Fock calculations

  14. MOVPE growth and characterization of heteroepitaxial germanium on silicon using iBuGe as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Attolini, G. [IMEM-CNR, Parco Area delle Scienze, 37 A, 43124 Parma (Italy); Ponraj, J.S. [University of Information Science and Technology, St Paul the Apostle, Ohrid 6000 (Macedonia, The Former Yugoslav Republic of); Frigeri, C.; Buffagni, E.; Ferrari, C. [IMEM-CNR, Parco Area delle Scienze, 37 A, 43124 Parma (Italy); Musayeva, N.; Jabbarov, R. [Research and Development Center for Hi-Technologies, MCIT, Inshaatchilar ave., 2, AZ1073, Baku (Azerbaijan); Institute of Physics, ANAS, H. Javid ave., 33, AZ1143, Baku (Azerbaijan); Bosi, M., E-mail: bosi@imem.cnr.it [IMEM-CNR, Parco Area delle Scienze, 37 A, 43124 Parma (Italy)

    2016-01-01

    Graphical abstract: - Highlights: • Germanium layer were deposited on silicon substrates. • A novel metal organic precursor (isobutyl germane) was used. • MOVPE growth process was optimized. • Layers were characterized by TEM, XRD; SEM and AFM. - Abstract: Being an attractive and demanding candidate in the field of energy conversion, germanium has attained widespread applications. The present work is aimed at the study of metal organic vapour phase epitaxy of germanium thin films on (0 0 1) silicon at different growth temperatures using isobutyl germane as a precursor. The epilayers were characterized by X-ray diffraction, high resolution transmission electron microscopy, atomic force microscopy and scanning electron microscopy in order to understand the structural and morphological properties. The films were found to be epitaxially grown and single crystalline with slight misorientation (below 0.1 degrees). The interface between the film and substrate was analyzed in depth and different temperature dependent growth behaviours were evidenced. The major relevant lattice imperfections observed were attributed to planar defects and threading dislocations.

  15. Solution synthesis of germanium nanocrystals

    Science.gov (United States)

    Gerung, Henry [Albuquerque, NM; Boyle, Timothy J [Kensington, MD; Bunge, Scott D [Cuyahoga Falls, OH

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  16. Direct observations of the vacancy and its annealing in germanium

    DEFF Research Database (Denmark)

    Slotte, J.; Kilpeläinen, S.; Tuomisto, F.

    2011-01-01

    Weakly n-type doped germanium has been irradiated with protons up to a fluence of 3×1014 cm-2 at 35 K and 100 K in a unique experimental setup. Positron annihilation measurements show a defect lifetime component of 272±4 ps at 35 K in in situ positron lifetime measurements after irradiation at 100...

  17. Radiation exposure during transmission measurements: comparison between CT- and germanium-based techniques with a current PET scanner

    International Nuclear Information System (INIS)

    Wu, Tung-Hsin; Huang, Yung-Hui; Lee, Jason J.S.; Wang, Shih-Yuan; Wang, Su-Cheng; Su, Cheng-Tau; Chen, Liang-Kung; Chu, Tieh-Chi

    2004-01-01

    In positron emission tomographic (PET) scanning, transmission measurements for attenuation correction are commonly performed by using external germanium-68 rod sources. Recently, combined PET and computed tomographic (CT) scanners have been developed in which the CT data can be used for both anatomical-metabolic image formation and attenuation correction of the PET data. The purpose of this study was to evaluate the difference between germanium- and CT-based transmission scanning in terms of their radiation doses by using the same measurement technique and to compare the doses that patients receive during brain, cardiac and whole-body scans. Measurement of absorbed doses to organs was conducted by using a Rando Alderson phantom with thermoluminescent dosimeters. Effective doses were calculated according to the guidelines in the International Commission on Radiation Protection Publication Number 60. Compared with radionuclide doses used in routine 2-[fluorine-18]-fluoro-2-deoxy-d-glucose PET imaging, doses absorbed during germanium-based transmission scans were almost negligible. On the other hand, absorbed doses from CT-based transmission scans were significantly higher, particularly with a whole-body scanning protocol. Effective doses were 8.81 mSv in the high-speed mode and 18.97 mSv in the high-quality mode for whole-body CT-based transmission scans. These measurements revealed that the doses received by a patient during CT-based transmission scanning are more than those received in a typical PET examination. Therefore, the radiation doses represent a limitation to the generalised use of CT-based transmission measurements with current PET/CT scanner systems. (orig.)

  18. Effects of Germanium Tetrabromide Addition to Zinc Tetraphenyl Porphyrin / Fullerene Bulk Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Atsushi Suzuki

    2014-03-01

    Full Text Available The effects of germanium tetrabromide addition to tetraphenyl porphyrin zinc (Zn-TPP/fullerene (C60 bulk heterojunction solar cells were characterized. The light-induced charge separation and charge transfer were investigated by current density and optical absorption. Addition of germanium tetrabromide inserted into active layer of Zn-TPP/C60 as bulk heterojunction had a positive effect on the photovoltaic and optical properties. The photovoltaic mechanism of the solar cells was discussed by experimental results. The photovoltaic performance was due to light-induced exciton promoted by insert of GeBr4 and charge transfer from HOMO of Zn-TPP to LUMO of C60 in the active layer.

  19. Perfomance of a high purity germanium multi-detector telescope for long range particles

    International Nuclear Information System (INIS)

    Riepe, G.; Protic, D.; Suekoesd, C.; Didelez, J.P.; Frascaria, N.; Gerlic, E.; Hourani, E.; Morlet, M.

    1980-01-01

    A telescope of stacked high purity germanium detectors designed for long range charged particles was tested using medium energy protons. Particle identification and the rejection of the low energy tail could be accomplished on-line allowing the measurement of complex spectra. The efficiency of the detector stack for protons was measured up to 156 MeV incoming energy. The various factors affecting the energy resolution are discussed and their estimated contributions are compared with the experimental results

  20. Isotope effects of sulfur in chemical reactions

    International Nuclear Information System (INIS)

    Mikolajczuk, A.

    1999-01-01

    Sulfur is an important component of organic matter because it forms compounds with many elements. Due to high chemical activity of sulfur, it takes part in biological and geological processes in which isotope effects are occurring. It has been shown during last years research of isotope effects that we have take into account not only mass difference but also many other physical properties of nuclides e.g. even or odd number of neutrons in nuclei, shape and distribution of charge, turn of nuclear spin etc. The factor remains that new theoretical ideas have been formed on the base of data, being obtained in fractionation processes of heavy element isotope, particularly uranium. Now it is being well known that effects unconnected with vibration energy have also caused an effect on fractionation of considerably lighter elements like iron and magnesium. The important question is, if these effects would come to light during the separation of sulfur isotopes. Sulfur have three even isotopes M = (32, 34, 36) and one odd M 33). This problem is still open. (author)

  1. Fabrication of diamond-coated germanium ATR prisms for IR-spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Babchenko, Oleg; Kozak, Halyna; Ižák, Tibor; Stuchlík, Jiří; Remeš, Zdeněk; Rezek, Bohuslav; Kromka, Alexander

    2016-01-01

    Roč. 87, May (2016), 67-73 ISSN 0924-2031 R&D Projects: GA ČR GA15-01687S Institutional support: RVO:68378271 Keywords : diamond * low temperature growth * linear antenna microwave plasma * germanium * SEM * FTIR Subject RIV: JI - Composite Materials Impact factor: 1.740, year: 2016

  2. Calibration of Single High Purity Germanium Detector for Whole Body Counter

    International Nuclear Information System (INIS)

    Taha, T.M.; Morsi, T.M.

    2009-01-01

    A new Accuscan II single germanium detector for whole body counter was installed in NRC (Egypt). The current paper concerned on calibration of single high purity germanium detector for whole body counter. Physical parameters affecting on performance of whole body counter such as linearity, minimum detectable activity and source detector distance, SDD were investigated. Counting efficiencies for the detector have been investigated in rear wall, fixed diagnostic position in air. Counting efficiencies for organ compartments such as thyroid, lung, upper and lower gastrointestinal tract have been investigated using transfer phantom in fixed diagnostic and screening positions respectively. The organ compartment efficiencies in screening geometry were higher than that value of diagnostic geometry by a factor of three. The committed dose equivalents of I-131 in thyroid were ranged from 0.073 ± 0.004 to 1.73±0.09 mSv and in lung was 0.02±0.001 mSv

  3. Gamma band odd-even staggering in some deformed nuclei

    International Nuclear Information System (INIS)

    Khairy, M.K.; Talaat, SH.M.; Morsy, M.

    2005-01-01

    A complete investigation was carried out in studying the odd-even staggering (OES) of gamma bands energy levels in some deformed nuclei up to angular momentum L=13 . With the help of Minkov treatment in the framework of a collective Vector Boson Model (VBM) with broken SU (3) symmetry. The OES behavior of deformed isotopes 162 E r, 164 E r, 166 E r, 156 G d, 170 Y b and 232 T h was studied and discussed

  4. Liquid-helium scintillation detection with germanium photodiodes

    International Nuclear Information System (INIS)

    Luke, P.N.; Haller, E.E.; Steiner, H.M.

    1982-05-01

    Special high-purity germanium photodiodes have been developed for the direct detection of vacuum ultraviolet scintillations in liquid helium. The photodiodes are immersed in the liquid helium, and scintillations are detected through one of the bare sides of the photodiodes. Test results with scintillation photons produced by 5.3-MeV α particles are presented. The use of these photodiodes as liquid-helium scintillation detectors may offer substantial improvements over the alternate detection method requiring the use of wavelength shifters and photomultiplier tubes

  5. Porous germanium multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Garralaga Rojas, Enrique; Hensen, Jan; Brendel, Rolf [Institut fuer Solarenergieforschung Hameln (ISFH), Emmerthal (Germany); Carstensen, Juergen; Foell, Helmut [Chair for General Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany)

    2011-06-15

    We present the reproducible fabrication of porous germanium (PGe) single- and multilayers. Mesoporous layers form on heavily doped 4'' p-type Ge wafers by electrochemical etching in highly concentrated HF-based electrolytes with concentrations in a range of 30-50 wt.%. Direct PGe formation is accompanied by a constant dissolution of the already-formed porous layer at the electrolyte/PGe interface, hence yielding a thinner substrate after etching. This effect inhibits multilayer formation as the starting layer is etched while forming the second layer. We avoid dissolution of the porous layer by alternating the etching bias from anodic to cathodic. PGe formation occurs during anodic etching whereas the cathodic step passivates pore walls with H-atoms and avoids electropolishing. The passivation lasts a limited time depending on the etching current density and electrolyte concentration, necessitating a repetition of the cathodic step at suitable intervals. With optimized alternating bias mesoporous multilayer production is possible. We control the porosity of each single layer by varying the etching current density and the electrolyte (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Determination of Shear Deformation Potentials from the Free-Carrier Piezobirefringence in Germanium and Silicon

    DEFF Research Database (Denmark)

    Riskaer, Sven

    1966-01-01

    The present investigations of the free-carrier piezobirefringence phenomenon verify that in n-type germanium and silicon as well as in p-type silicon this effect can be ascribed to intraband transitions of the carriers. It is demonstrated how a combined investigation of the low-stress and high......-stress piezobirefringence in these materials provides a direct and independent method for determining deformation-potential constants. For n-type germanium we obtain Ξu=18.0±0.5 eV, for n-type silicon Ξu=8.5±0.4 eV; for p-type silicon a rather crude analytical approximation yields b=-3.1 eV and d=-8.3 eV. Finally...

  7. Surface passivation of high-purity germanium gamma-ray detector

    International Nuclear Information System (INIS)

    Alexiev, D.; Butcher, K.S.A.; Edmondson, M.; Lawson, E.M.

    1993-01-01

    The experimental work consists of two parts. The first involves fabrication of hyper-pure germanium gamma ray detectors using standard surface treatment, chemical etchings and containment in a suitable cryostat. Then, after cooling the detectors to 77 K, γ-ray emissions from radioisotopes are resolved, resolution, depletion depth, V R versus I R characteristics and /N A -N D / of the germanium are measured. The second part of the work involves investigation of surface states in an effort to achieve long-term stability of operating characteristics. Several methods are used: plasma hydrogenation, a-Si and a-Ge pinch-off effect and simple oxidation. A-Ge and a-Si thicknesses were measured using Rutherford backscattering techniques; surface states were measured with deep level transient spectroscopy and diode reverse current versus reverse voltage plots. Some scanning electron microscope measurements were used in determining major film contaminants during backscattering of a-Si and a-Ge films. Surface passivation studies revealed unexpected hole trapping defects generated when a-Ge:H film is applied. The a-Si:H films were found to be mechanically strong, no defect traps were found and preliminary results suggest that such films will be good passivants. 14 refs., 2 tabs., 7 figs., 13 ills

  8. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  9. Thermodynamic calculations of self- and hetero-diffusion parameters in germanium

    International Nuclear Information System (INIS)

    Saltas, V.; Vallianatos, F.

    2015-01-01

    In the present work, the diffusion coefficients of n- and p-type dopants (P, As, Sb, Al) and self-diffusion in crystalline germanium are calculated from the bulk elastic properties of the host material based on the cBΩ thermodynamic model. The calculated diffusion coefficients as a function of temperature and the activation enthalpies prove to be in full agreement with the reported experimental results. Additional point defect parameters such as activation entropy, activation volume and activation Gibbs free energy are also calculated for each diffusing element. The pressure dependence of self-diffusion coefficients in germanium is also verified at high temperatures (876 K–1086 K), in agreement with reported results ranging from ambient pressure up to 600 MPa and is further calculated at pressures up to 3 GPa, where the phase transition to Ge II occurs. - Highlights: • Calculation of diffusivities of n- and p-type dopants in Ge from elastic properties. • Calculation of point defect parameters according to the cBΩ thermodynamic model. • Prediction of the pressure dependence of self-diffusion coefficients in Ge

  10. In-source laser spectroscopy of mercury isotopes

    CERN Multimedia

    This proposal follows on from the Letter of Intent, I-153. The neutron-deficient mercury isotopes are one of the prime examples of shape coexistence anywhere in the nuclear chart. Wide-ranging and complementary experimental and theoretical approaches have been used to investigate their structure over the last few years, however mean-square charge radii are unknown for isotopes with $\\textit{A}$ < 181. It is proposed to measure the isotope shift (IS) and hyperfine structure (HFS) of the 253-nm transition in $^{177-182}$Hg in an attempt to study the propagation of the famous odd-even staggering behaviour. At the other end of the chain, no information exists on the optical spectroscopy of Hg isotopes beyond the $\\textit{N}$ = 126 shell closure. There is a well-known "kink" in mean-square charge radii beyond this point in the even $\\textit{Z}$ $\\geq$ 82 elements. It is proposed to measure the IS of $^{207,208}$Hg in order to provide the first information on this effect below $\\textit{Z}$ = 82.

  11. Dislocation multiplication rate in the early stage of germanium plasticity

    Czech Academy of Sciences Publication Activity Database

    Fikar, J.; Dupas, Corinne; Kruml, Tomáš; Jacques, A.; Martin, J. L.

    400-401, - (2005), s. 431-434 ISSN 0921-5093. [Dislocations 2004. La Colle-sur-Loup, 13.09.2004-17.09.2004] Institutional research plan: CEZ:AV0Z2041904 Keywords : dislocation multiplication * germanium * constitutive modelling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.347, year: 2005

  12. Fission and the discovery of isotopes

    International Nuclear Information System (INIS)

    Thoennessen, M.

    2014-01-01

    The discovery of new isotopes requires new developments in accelerator and detector technology. The new RI Beam Factory at RIKEN and the future projects FAIR at GSI and FRIB at MSU promise to expand the nuclear horizon even further. In the talk a short history of the role that fission played in the discovery of isotopes will be presented and future perspectives will be discussed

  13. Isotope effect and isotope separation. A chemist's view

    International Nuclear Information System (INIS)

    Ishida, Takanobu

    2002-01-01

    What causes the isotope effects (IE)? This presentation will be centered around the equilibrium isotope effects due to the differences in the nuclear masses. The occurrence of the equilibrium constant, K, of isotope exchange reactions which differ from the values predicted by the classical theory of statistical mechanics, K cl , is explored. The non-classical K corresponds to the unit-stage separation factor, α, that is different from unity and forms a basis of an isotope separation process involving the chemical exchange reaction. Here, the word 'chemical exchange' includes not only the isotope exchange chemical reactions between two or more chemical species but also the isotope exchanges involving the equilibria between liquid and vapor phases and liquid-gas, liquid solution-gas, liquid-liquid, and solid-liquid phases. In Section I, origins of the isotope effect phenomena will be explored and, in the process, various quantities used in discussions of isotope effect that have often caused confusions will be unambiguously defined. This Section will also correlate equilibrium constant with separation factor. In Section II, various forms of temperature-dependence of IE and separation factor will be discussed. (author)

  14. Climatic signals in multiple highly resolved stable isotope records from Greenland

    DEFF Research Database (Denmark)

    Vinther, Bo Møllesøe; Dahl-Jensen, Dorthe; Johnsen, Sigfus Johann

    2010-01-01

    are found to correspond better with winter stable isotope data than with summer or annual average stable isotope data it is suggested that a strong local Greenland temperature signal can be extracted from the winter stable isotope data even on centennial to millennial time scales. Udgivelsesdato: Feb....

  15. Strain-induced changes to the electronic structure of germanium

    KAUST Repository

    Tahini, H. A.

    2012-04-17

    Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.

  16. Strain-induced changes to the electronic structure of germanium

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander I.; Grimes, Robin W.; Schwingenschlö gl, Udo; Dimoulas, Athanasios Dimoulas

    2012-01-01

    Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.

  17. Decay of new mass-separated neutron-deficient La and Ce isotopes

    International Nuclear Information System (INIS)

    Genevey, J.; Gizon, A.; Idrissi, N.; Weiss, B.; Beraud, R.; Charvet, A.; Duffait, R.; Emsallem, A.; Meyer, M.; Ollivier, T.; Redon, N.

    1987-01-01

    By use of a He jet system coupled to a Bernas-Nier ion-source, several new mass-separated A = 122 - 127 isotopes reached in heavy ion fusion reactions at SARA have been identified and studied. From experimental decay properties of La isotopes, systematics of low-lying energy levels have been extended for even-even and odd-A barium. New informations on Ce decay schemes are briefly reported

  18. A potential method using Ge{iPrNC[N(SiMe_3)_2]NiPr}{sub 2}, (Et{sub 3}Si){sub 2}Te and anhydrous hydrazine for germanium tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Du, Liyong; Du, Shulei; Ding, Yuqiang [School of Chemical and Material Engineering, Jiangnan University, Wuxi (China)

    2017-12-29

    A germanium(II)-guanidine derivative of formula Ge{iPrNC[N(SiMe_3)_2]NiPr}{sub 2} (1) was synthesized and characterized by {sup 1}H NMR, {sup 13}C NMR, elemental analysis, and X-ray diffraction method. Thermal property was also studied to identify its thermal stability and volatility. More importantly, compound 1 was synthesized to develop a new method for germanium tellurides, where anhydrous hydrazine was introduced to prompt the activity of germanium(II) guanidines (or derivatives) towards (Et{sub 3}Si){sub 2}Te. Solution reaction of compound 1, (Et{sub 3}Si){sub 2}Te, and anhydrous hydrazine was investigated to pre-identify the feasibility of this combination for ALD process. The EDS data of the black precipitate from this reaction verified the potential of this method to manufacture germanium tellurides. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Neutrino and dark matter physics with sub-keV germanium detectors

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Germanium detectors with sub-keV sensitivities open a window to study neutrino physics to search for light weakly interacting massive particle (WIMP) dark matter. We summarize the recent results on spin-independent couplings of light WIMPs from the TEXONO experiment at the Kuo-Sheng Reactor ...

  20. Thermal neutron capture cross sections of tellurium isotopes

    International Nuclear Information System (INIS)

    Tomandl, I.; Honzatko, J.; Egidy, T. von; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2003-01-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122 Te, 124 Te, 125 Te, 126 Te, 128 Te, and 130 Te are reported. These values are based on a combination of newly determined partial γ-ray cross sections obtained from experiments on targets contained natural Te and γ intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  1. Thermal neutron capture cross sections of tellurium isotopes

    International Nuclear Information System (INIS)

    Tomandl, I.; Honzatko, J.; Egidy, T. von; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-01-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  2. Thermal neutron capture cross sections of tellurium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  3. Determination of carbon and nitrogen in silicon and germanium

    International Nuclear Information System (INIS)

    Gebauhr, W.; Martin, J.

    1975-01-01

    The essential aim of this study is to examine the various technical and economic problems encountered in the determination of carbon and nitrogen in silicon and germanium, for this is in a way an extension of the discussion concerning the presence of oxygen in these two elements. The greater part of the study is aimed at drawing up a catalogue of the methods of analysis used and of the results obtained so far

  4. Isotopic Analysis of Fingernails as a USGS Open House Demonstration of the Use of Stable Isotopes in Foodweb Studies

    Science.gov (United States)

    Silva, S. R.; Kendall, C.; Young, M. B.; Choy, D.

    2011-12-01

    The USGS Isotope Tracers Project uses stable isotopes and tritium to add a unique dimension of chemical information to a wide range of environmental investigations. The use and application of isotopes is usually an unfamiliar and even esoteric topic to the general public. Therefore during three USGS open house events, as a public outreach effort, we demonstrated the use of stable isotopes by analyzing nitrogen and carbon isotopes from very small fragments of fingernail from willing participants. We titled the exhibit "You Are What You Eat". The results from all participants were plotted on a graph indicating the general influence of different food groups on the composition of body tissues as represented by fingernails. All participants were assigned a number and no personal-identification information was collected. A subset of participants provided us with an estimate of the number of days a week various foods were eaten and if they were vegetarians, vegans or non-vegetarians. Volunteers from our research group were on hand to explain and discuss fundamental concepts such as how foods attain their isotopic composition, the difference between C3 and C4 plants, the effects of assimilation, trophic enrichment, and the various uses of stable isotopes in environmental studies. The results of the fingernail analyses showed the variation of the range of isotopic compositions among about 400 people at each event, the distinct influence of C4 plants (mainly corn and cane sugar) on our carbon isotopic composition, and the isotopic differences between vegetarians and non vegetarians among other details (http://wwwrcamnl.wr.usgs.gov/isoig/projects/fingernails/). A poll of visitors attending the open house event in 2006 indicated that "You Are What You Eat" was among the most popular exhibits. Following the first two open house events we were contacted by a group of researchers from Brazil who had completed a very similar study. Our collaboration resulted in a publication in

  5. Speleothem stable isotope records for east-central Europe: resampling sedimentary proxy records to obtain evenly spaced time series with spectral guidance

    Science.gov (United States)

    Gábor Hatvani, István; Kern, Zoltán; Leél-Őssy, Szabolcs; Demény, Attila

    2018-01-01

    Uneven spacing is a common feature of sedimentary paleoclimate records, in many cases causing difficulties in the application of classical statistical and time series methods. Although special statistical tools do exist to assess unevenly spaced data directly, the transformation of such data into a temporally equidistant time series which may then be examined using commonly employed statistical tools remains, however, an unachieved goal. The present paper, therefore, introduces an approach to obtain evenly spaced time series (using cubic spline fitting) from unevenly spaced speleothem records with the application of a spectral guidance to avoid the spectral bias caused by interpolation and retain the original spectral characteristics of the data. The methodology was applied to stable carbon and oxygen isotope records derived from two stalagmites from the Baradla Cave (NE Hungary) dating back to the late 18th century. To show the benefit of the equally spaced records to climate studies, their coherence with climate parameters is explored using wavelet transform coherence and discussed. The obtained equally spaced time series are available at PANGAEA.875917" target="_blank">https://doi.org/10.1594/PANGAEA.875917.

  6. Isotope decay equations solved by means of a recursive method

    International Nuclear Information System (INIS)

    Grant, Carlos

    2009-01-01

    The isotope decay equations have been solved using forward finite differences taking small time steps, among other methods. This is the case of the cell code WIMS, where it is assumed that concentrations of all fissionable isotopes remain constant during the integration interval among other simplifications. Even when the problem could be solved running through a logical tree, all algorithms used for resolution of these equations used an iterative programming formulation. That happened because nearly all computer languages used up to a recent past by the scientific programmers did not support recursion, such as the case of the old versions of FORTRAN or BASIC. Nowadays also an integral form of the depletion equations is used in Monte Carlo simulation. In this paper we propose another programming solution using a recursive algorithm, running through all descendants of each isotope and adding their contributions to all isotopes in each generation. The only assumption made for this solution is that fluxes remain constant during the whole time step. Recursive process is interrupted when a stable isotope was attained or the calculated contributions are smaller than a given precision. These algorithms can be solved by means an exact analytic method that can have some problems when circular loops appear for isotopes with alpha decay, and a more general polynomial method. Both methods are shown. (author)

  7. Amorphous Silicon-Germanium Films with Embedded Nanocrystals for Thermal Detectors with Very High Sensitivity

    Directory of Open Access Journals (Sweden)

    Cesar Calleja

    2016-01-01

    Full Text Available We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nanocrystals in a plasma enhanced chemical vapor deposition (PECVD reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR, which is a signature of the sensitivity in thermal detectors (microbolometers. Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9% K−1. Our results show that amorphous silicon-germanium films with embedded nanocrystals can be used as thermosensitive films in high performance infrared focal plane arrays (IRFPAs used in commercial thermal cameras.

  8. Isotope shift studies in gadolinium spectra

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Saksena, G.D.; Venugopalan, A.

    1976-01-01

    Isotope shift studies have been carried out in the gadolinium spectrum using a recording Fabry-Perot spectrometer and gadolinium samples enriched in 156 Gd and 160 Gd isotopes. Isotope shifts Δsigma(156-160) have been recorded in 134 lines in the region 3930-4140 A. Some of these lines involve the recently identified even configuration 4f 8 5d6s of Gd I and the newly classified transition 4f 8 6s-4f 8 6p of Gd II. From the isotope shift measurements of lines involving the 4f 8 6s-4f 8 6p transition in Gd II, the isotope shift, ΔT(156-160)=87 mK, has been obtained for the 4f 8 6s configuration. Electronic configurations have been suggested for a number of energy levels and configuration mixing has been pointed out in certain cases. (Auth.)

  9. Calculation of nucleon densities in calcium, nickel, and molybdenum isotopes on the basis of the dispersive optical model

    Science.gov (United States)

    Bespalova, O. V.; Klimochkina, A. A.

    2017-09-01

    The radial distributions of proton and neutron densities in the even-even isotopes 40-70Ca and 48-78Ni and the analogous distributions of neutron densities in the even-even isotopes 92-138Mo were calculated on the basis of the mean-fieldmodel involving a dispersive optical potential. The respective root-mean-square radii and neutron-skin thicknesses were determined for the nuclei under study. In N > 40 calcium isotopes, the calculated neutron root-mean-square radius exhibits a fast growth with increasing N, and this is consistent with the prediction of the neutron-halo structure in calcium isotopes near the neutron drip line.

  10. An Implant-Passivated Blocked Impurity Band Germanium Detector for the Far Infrared, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate the feasibility of fabricating a germanium blocked-impurity-band (BIB) detector using a novel process which will enable us to: 1- fabricate...

  11. An Implant-Passivated Blocked Impurity Band Germanium Detector for the Far Infrared, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to fabricate a germanium blocked-impurity-band (BIB) detector using a novel process which will enable us to: 1- fabricate a suitably-doped active layer...

  12. Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector.

    Science.gov (United States)

    Ren, Fang-Fang; Ang, Kah-Wee; Ye, Jiandong; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2011-03-09

    Bull's eye antennas are capable of efficiently collecting and concentrating optical signals into an ultrasmall area, offering an excellent solution to break the bottleneck between speed and photoresponse in subwavelength photodetectors. Here, we exploit the idea of split bull's eye antenna for a nanometer germanium photodetector operating at a standard communication wavelength of 1310 nm. The nontraditional plasmonic metal aluminum has been implemented in the resonant antenna structure fabricated by standard complementary metal-oxide-semiconductor (CMOS) processing. A significant enhancement in photoresponse could be achieved over the conventional bull's eye scheme due to an increased optical near-field in the active region. Moreover, with this novel antenna design the effective grating area could be significantly reduced without sacrificing device performance. This work paves the way for the future development of low-cost, high-density, and high-speed CMOS-compatible germanium-based optoelectronic devices.

  13. Tensile strain mapping in flat germanium membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rhead, S. D., E-mail: S.Rhead@warwick.ac.uk; Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Shah, V. A. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Department of Engineering, University of Warwick, Coventry, CV4 7AL (United Kingdom); Kachkanov, V.; Dolbnya, I. P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Reparaz, J. S. [ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Sotomayor Torres, C. M. [ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2014-04-28

    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ∼4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge.

  14. Tensile strain mapping in flat germanium membranes

    International Nuclear Information System (INIS)

    Rhead, S. D.; Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R.; Shah, V. A.; Kachkanov, V.; Dolbnya, I. P.; Reparaz, J. S.; Sotomayor Torres, C. M.

    2014-01-01

    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ∼4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge

  15. Electron scattering off palladium isotopes

    International Nuclear Information System (INIS)

    Laan, J.B. van der.

    1986-01-01

    The low-lying states of the even Pd isotopes are characterized by vibrator-like properties. In this thesis the results of an electron scattering experiment on the Pd isotopes, designed to study the description of such nuclei in the Anharmonic Vibrator Model (AVM) and the Interacting Boson Approximation (IBA), are presented and discussed. Data have been taken at the high-resolution electron scattering facility of NIKHEF-K and covered a momentum-transfer range of 0.4 to 2.5 fm -1 . (Auth.)

  16. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    Science.gov (United States)

    Tengku Kamarul Bahri, T. N. H.; Wagiran, H.; Hussin, R.; Saeed, M. A.; Hossain, I.; Ali, H.

    2014-10-01

    Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5-4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy.

  17. Thermoluminescence study of aluminium oxide doped germanium prepared by combustion synthesis method

    Directory of Open Access Journals (Sweden)

    Saharin Nurul Syazlin Binti

    2017-01-01

    Full Text Available The present paper reports the optimum concentration of germanium (Ge dopant in aluminium oxide (AhO3 samples prepared by combustion synthesis (CS method for thermoluminescence (TL studies. The samples were prepared at various Ge concentration i.e. 1 to 5% mol. The phase formation of un-doped and Ge-doped Al2O3 samples was determined using X-ray Diffraction (XRD. The sharp peaks present in the XRD pattern confirms the crystallinity of the samples. The samples were then exposed to 50 Gy Cobalt-60 sources (Gamma cell 220. TL glow curves were measured and recorded using a Harshaw Model 3500 TLD reader. Comparison of TL peaks were observed to obtain the best composition of Ge dopants. A simple glow curves TL peak at around 175̊C for all composition samples was observed. It was also found that the composition of aluminium oxide doped with 3.0% of germanium exhibits the highest thermoluminescence (TL intensity which is 349747.04 (a.u.

  18. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, M., E-mail: mmoreno@inaoep.mx [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Delgadillo, N. [Universidad Autónoma de Tlaxcala, Av. Universidad No. 1, Z. P. 90006 Tlaxcala (Mexico); Torres, A. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Ambrosio, R. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, Z. P. 32310 Chihuahua (Mexico); Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico)

    2013-12-02

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E{sub a}) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ{sub RT}), E{sub a} and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E{sub a}, TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors.

  19. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    International Nuclear Information System (INIS)

    Moreno, M.; Delgadillo, N.; Torres, A.; Ambrosio, R.; Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W.

    2013-01-01

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E a ) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ RT ), E a and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E a , TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors

  20. Array of germanium detectors for nuclear safeguards

    International Nuclear Information System (INIS)

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data-acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through moderns and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with an overall resolution that is between the resolution of the best detector and that of the worst

  1. Self-interstitials and Frenkel pairs in electron-irradiated germanium

    International Nuclear Information System (INIS)

    Carvalho, A.; Jones, R.; Goss, J.; Janke, C.; Coutinho, J.; Oberg, S.; Briddon, P.R.

    2007-01-01

    First principles calculations were used to study the structures and electrical levels of the self-interstitial in Ge. We considered the possibility of structural changes consequent with change in charge state and show these have important implications in the mobility and electrical activity of the defect. The theoretical model is compared to the results of low temperature electron irradiation in germanium reported in the literature

  2. Monte Carlo simulation of the X-ray response of a germanium microstrip detector with energy and position resolution

    CERN Document Server

    Rossi, G; Fajardo, P; Morse, J

    1999-01-01

    We present Monte Carlo computer simulations of the X-ray response of a micro-strip germanium detector over the energy range 30-100 keV. The detector consists of a linear array of lithographically defined 150 mu m wide strips on a high purity monolithic germanium crystal of 6 mm thickness. The simulation code is divided into two parts. We first consider a 10 mu m wide X-ray beam striking the detector surface at normal incidence and compute the interaction processes possible for each photon. Photon scattering and absorption inside the detector crystal are simulated using the EGS4 code with the LSCAT extension for low energies. A history of events is created of the deposited energies which is read by the second part of the code which computes the energy histogram for each detector strip. Appropriate algorithms are introduced to account for lateral charge spreading occurring during charge carrier drift to the detector surface, and Fano and preamplifier electronic noise contributions. Computed spectra for differen...

  3. A portable system for nuclear, chemical agent, and explosives identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.; Caffrey, A.J.

    2001-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electromechanically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine a prompt-gamma neutron-activation analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  4. A Distinct Magnetic Isotope Effect Measured in Atmospheric Mercury in Epiphytes

    Science.gov (United States)

    Ghosh, S.; Odom, A. L.

    2007-12-01

    Due to the importance of Mercury as an environmental contaminant, mercury cycling in the atmosphere has been extensively studied. However, there still remain uncertainties in the relative amounts of natural and anthropogenic emissions, atmospheric deposition rates as well as the spatial variation of atmospheric mercury. Part of a study to determine the isotopic composition of mercury deposited from the atmosphere has involved the use of epiphytes as monitors. The greatest advantage of such natural monitors is that a widespread, high-density network is possible at low cost. One of the disadvantages at present is that these monitors likely contain different mercury species (for example both gaseous, elemental mercury trapped by adsorption and Hg (II) by wet deposition). The project began with the understanding that biochemical reactions involving metallothioneins within the epiphytes might have produced an isotopic effect. One such regional network was composed of samples of Tillandsia usenoides (common name: Spanish moss) collected along the eastern Coastal Plain of the U.S. from northern Florida to North Carolina. The isotopic composition of a sample is expressed as permil deviations from a standard. The deviations are defined as δAHg = \\left(\\frac{Rsample}{Rstd}-1 \\right)1000 ‰ , where A represents the atomic mass number. R=\\frac{AHg}{202Hg} were measured for the isotopes 198Hg, 199Hg, 200Hg, 201Hg, 202Hg and 204Hg relative to the mercury standard SRM NIST 3133, by a standard-sample bracketing technique. For all samples, the delta values of the even-N plotted against atomic mass numbers define a linear curve. For the odd-N isotopes, δ199Hg and δ201Hg deviate from this mass-dependent fractionation (MDF) relationship and indicate a mass-independent fractionation (MIF) effect and a negative anomaly, i.e. a depletion in 199Hg and 201Hg relative to the even-N isotopes. These deviations are expressed as Δ199Hg = δ199Hgtotal - δ199HgMDF. A Δ201Hg/Δ199Hg

  5. Efficiency for close geometries and extended sources of a p-type germanium detector with low-energy sensitivity

    International Nuclear Information System (INIS)

    Keyser, R.M.; Twomey, T.R.

    2007-01-01

    Typically, germanium detectors designed to have good sensitivity to low-energy photons and good efficiency at high energies are constructed from n-type crystals with a boron-implanted outer contact. These detectors usually exhibit inferior resolution and peak shape compared to ones made from p-type crystals. To overcome the resolution and peak-shape deficiencies, a new method of construction of a germanium detector element was developed. This has resulted in a gamma-ray detector with high sensitivity to photon energies from 14 keV to 2 MeV, while maintaining good resolution and peak shape over this energy range. Efficiency measurements, done according to the draft IEEE 325-2004 standard, show efficiencies typical of a GMX or n-type detector at low energies. The detectors are of large diameter suitable for counting extended samples such as filter papers. The Gaussian peak shape and good resolution typical of a GEM or p-type are maintained for the high count rates and peak separation needed for activation analysis. (author)

  6. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Caffrey, A.J.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.

    2000-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  7. Ge14 Br8 (PEt3 )4 : A Subhalide Cluster of Germanium.

    Science.gov (United States)

    Kunz, Tanja; Schrenk, Claudio; Schnepf, Andreas

    2018-04-03

    Heating a metastable solution of Ge I Br to room temperature led to the first structurally characterized metalloid subhalide cluster Ge 14 Br 8 (PEt 3 ) 4 (1). Furthermore 1 can be seen as the first isolated binary halide cluster on the way from Ge I Br to elemental germanium, giving insight into the complex reaction mechanism of its disproportionation reaction. Quantum chemical calculations further indicate that a classical bonding situation is realized within 1 and that the last step of the formation of 1 might include the trapping of GeBr 2 units. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hall mobility of free charge carriers in highly compensated p-Germanium

    International Nuclear Information System (INIS)

    Gavrilyuk, V.Yi.; Kirnas, Yi.G.; Balakyin, V.D.

    2000-01-01

    Hall mobility of free charge carriers in initial detectors Ge (Ga) is studied. It is established that an increase in the compensation factor results in the enlargement of Hall mobility in germanium highly compensated by introduction of Li ions during their drift in an electrical field

  9. GeMini: The Next Generation Mechanically-Cooled Germanium Spectrometer

    International Nuclear Information System (INIS)

    Burks, M.

    2008-01-01

    The next-generation mechanically-cooled germanium spectrometer has been developed. GeMini (GErmanium MINIature spectrometer) has been designed to bring high-resolution gamma-ray spectroscopy to a range of demanding field environments. Intended applications include short-notice and surprise inspections where positive nuclide identification of radioactive materials is required. GeMini weighs 2.75 kg (6 lbs) total including the detector, cryostat, cryocooler, batteries, electronics and readout. It is very low power allowing it to operate for 10 hours on a single set of rechargeable batteries. This instrument employs technology adapted from the gamma-ray spectrometer currently flying on NASA's Mercury MESSENGER spacecraft. Specifically, infrared shielding techniques allow for a vast reduction of thermal load. This in turn allows for a smaller, lighter-weight design, well-suited for a hand-held instrument. Two working prototypes have been built and tested in the lab. The target energy resolution is 3 keV fwhm or better for 1332 keV gamma-rays. The detectors currently achieve around 4.5 keV resolution, which is slightly higher than our goal due to microphonic noise. Our present work focuses on improving the resolution through mechanical and electronic means of reducing the microphonic noise. This paper will focus on the performance of the instrument and its applicability for inspectors in the field

  10. Focusing of a new germanium counter type : the composite detector. Uses of the TREFLE detector in the EUROGAM multidetector

    International Nuclear Information System (INIS)

    Han, L.

    1995-05-01

    The aim of this thesis is the development of new types of germanium detectors: the composite detectors. Two types of prototypes are then conceived: the stacked planar detector (EDP) and the assembly of coaxial diodes (TREFLE). They are designed for the multidetector EUROGAM destined to the research of nuclear structure at high angular momentum. The four planar diodes of EDP detector were of 7 cm diameter and of 15 to 20 mm thick. The difference between the calculated and measured photopic efficiency is observed. The importance of surface channel induces a weak resistance of neutron damages. The sputtering method for the surface treatment reducing the germanium dead layer as well as a rule of selection concerning the impurity concentration and the thickness of crystal is helpful for the later production of germanium detector. The CLOVER detector consist of for mean size crystals in the same cryostat. The photopic efficiency is much larger than that of the greatest monocrystal detector. And the granulation of composite detector allowed the Doppler broadening correction of gamma ray observed in the nuclear reaction where the recoil velocity is very high. This new type of detector enable the linear polarization measurement of gamma ray. Twenty-four CLOVER detector are actually mounted in the EUROGAM array. The characteristics measured in source as well as in beam, reported in this thesis, meet exactly the charge account. (author). 47 refs., 61 figs., 18 tabs

  11. Low temperature synthesis and electrical characterization of germanium doped Ti-based nanocrystals for nonvolatile memory

    International Nuclear Information System (INIS)

    Feng, Li-Wei; Chang, Chun-Yen; Chang, Ting-Chang; Tu, Chun-Hao; Wang, Pai-Syuan; Lin, Chao-Cheng; Chen, Min-Chen; Huang, Hui-Chun; Gan, Der-Shin; Ho, New-Jin; Chen, Shih-Ching; Chen, Shih-Cheng

    2011-01-01

    Chemical and electrical characteristics of Ti-based nanocrystals containing germanium, fabricated by annealing the co-sputtered thin film with titanium silicide and germanium targets, were demonstrated for low temperature applications of nonvolatile memory. Formation and composition characteristics of nanocrystals (NCs) at various annealing temperatures were examined by transmission electron microscopy and X-ray photon-emission spectroscopy, respectively. It was observed that the addition of germanium (Ge) significantly reduces the proposed thermal budget necessary for Ti-based NC formation due to the rise of morphological instability and agglomeration properties during annealing. NC structures formed after annealing at 500 °C, and separated well at 600 °C annealing. However, it was also observed that significant thermal desorption of Ge atoms occurs at 600 °C due to the sublimation of formatted GeO phase and results in a serious decrease of memory window. Therefore, an approach to effectively restrain Ge thermal desorption is proposed by encapsulating the Ti-based trapping layer with a thick silicon oxide layer before 600 °C annealing. The electrical characteristics of data retention in the sample with the 600 °C annealing exhibited better performance than the 500 °C-annealed sample, a result associated with the better separation and better crystallization of the NC structures.

  12. Fundamental aspects of nucleation and growth in the solution-phase synthesis of germanium nanocrystals

    KAUST Repository

    Codoluto, Stephen C.; Baumgardner, William J.; Hanrath, Tobias

    2010-01-01

    Colloidal Ge nanocrystals (NCs) were synthesized via the solution phase reduction of germanium(ii) iodide. We report a systematic investigation of the nanocrystal nucleation and growth as a function of synthesis conditions including the nature

  13. The effect of proton correlations in the M1 scattering strengths of even calcium isotopes

    International Nuclear Information System (INIS)

    Chaves, L.; Poves, A.

    1986-01-01

    The proton correlations are evaluated in Ca isotopes using the wave functions obtained in an extended shell model calculation in the [1dsub(3/2), 1fsub(7/2), 1fsub(5/2)] valence space. The inclusion of 2p-2h correlations in M1 scattering strengths and magnetic moments improves the agrreement with the experimental data. The M1 strength in 40 Ca is correctly reproduced. (orig.)

  14. Reduction of Defects in Germanium-Silicon

    Science.gov (United States)

    2003-01-01

    Crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached- Bridgman growth is a promising tool to improve crystal quality, without the limitations of float zoning or the defects introduced by normal Bridgman growth. Goals of this project include the development of the detached Bridgman process to be reproducible and well understood and to quantitatively compare the defect and impurity levels in crystals grown by these three methods. Germanium (Ge) and germanium-silicon (Ge-Si) alloys are being used. At MSFC, we are responsible for the detached Bridgman experiments intended to differentiate among proposed mechanisms of detachment, and to confirm or refine our understanding of detachment. Because the contact angle is critical to determining the conditions for detachment, the sessile drop method was used to measure the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. Etch pit density (EPD) measurements of normal and detached Bridgman-grown Ge samples show a two order of magnitude improvement in the detached-grown samples. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. We have investigated the effects on detachment of ampoule material, pressure difference above and below the melt, and Si concentration; samples that are nearly completely detached can be grown repeatedly in pBN. Current work is concentrated on developing a

  15. Current experiments in germanium 0 ν β β search -- GERDA and MAJORANA

    Science.gov (United States)

    von Sturm, K.

    2015-01-01

    There are unanswered questions regarding neutrino physics that are of great interest for the scientific community. For example the absolute masses, the mass hierarchy and the nature of neutrinos are unknown up to now. The discovery of neutrinoless double beta decay (0νββ) would prove the existence of a Majorana mass, which would be linked to the half-life of the decay, and would in addition provide an elegant solution for the small mass of the neutrinos via the seesaw mechanism. Because of an existing discovery claim of 0νββ of 76Ge and the excellent energy resolution achievable, germanium is of special interest in the search for 0νββ . In this article the state of the art of germanium 0νββ search, namely the GERDA experiment and MAJORANA demonstrator, is presented. In particular, recent results of the GERDA collaboration, which strongly disfavour the above mentioned claim, are discussed.

  16. Experimental Search for Solar Axions via Coherent Primakoff Conversion in a Germanium Spectrometer

    CERN Document Server

    Avignone, F T; Brodzinski, R; Collar, J I; Creswick, R J; Di Gregorio, D E; Farach, H A; Gattone, A O; Guérard, C K; Hasenbalg, F; Huck, H; Miley, H S; Morales, A; Morales, J; Nussinov, S; De Solorzano, A O; Reeves, J H; Villar, J; Zioutas, Konstantin

    1998-01-01

    Results are reported of an experimental search for the unique, rapidly varying temporal pattern of solar axions coherently converting into photons via the Primakoff effect in a single crystal germanium detector. This conversion is predicted when axions are incident at a Bragg angle with a crystalline plane. The analysis of approximately 1.94 kg.yr of data from the 1 kg DEMOS detector in Sierra Grande, Argentina, yields a new laboratory bound on axion-photon coupling of $g_{a\\gamma \\gamma} < 2.7\\cdot 10^{-9}$ GeV$^{-1}$, independent of axion mass up to ~ 1 keV.

  17. Thermophysical Properties of Molten Germanium Measured by the High Temperature Electrostatic Levitator

    Science.gov (United States)

    Rhim, W. K.; Ishikawa, T.

    1998-01-01

    Thermophysical properties of molten germanium such as the density, the thermal expansion coefficient, the hemisphereical total emissivity, the constant pressure specific heat capacity, the surface tension, and the electrical resistivity have been measured using the High Temperature Electrostatic Levitator at JPL.

  18. Silicon and Germanium (111) Surface Reconstruction

    Science.gov (United States)

    Hao, You Gong

    Silicon (111) surface (7 x 7) reconstruction has been a long standing puzzle. For the last twenty years, various models were put forward to explain this reconstruction, but so far the problem still remains unsolved. Recent ion scattering and channeling (ISC), scanning tunneling microscopy (STM) and transmission electron diffraction (TED) experiments reveal some new results about the surface which greatly help investigators to establish better models. This work proposes a silicon (111) surface reconstruction mechanism, the raising and lowering mechanism which leads to benzene -like ring and flower (raised atom) building units. Based on these building units a (7 x 7) model is proposed, which is capable of explaining the STM and ISC experiment and several others. Furthermore the building units of the model can be used naturally to account for the germanium (111) surface c(2 x 8) reconstruction and other observed structures including (2 x 2), (5 x 5) and (7 x 7) for germanium as well as the (/3 x /3)R30 and (/19 x /19)R23.5 impurity induced structures for silicon, and the higher temperature disordered (1 x 1) structure for silicon. The model is closely related to the silicon (111) surface (2 x 1) reconstruction pi-bonded chain model, which is the most successful model for the reconstruction now. This provides an explanation for the rather low conversion temperature (560K) of the (2 x 1) to the (7 x 7). The model seems to meet some problems in the explanation of the TED result, which is explained very well by the dimer, adatom and stacking fault (DAS) model proposed by Takayanagi. In order to explain the TED result, a variation of the atomic scattering factor is proposed. Comparing the benzene-like ring model with the DAS model, the former needs more work to explain the TED result and the later has to find a way to explain the silicon (111) surface (1 x 1) disorder experiment.

  19. Reactivity of silicon and germanium doped CNTs toward aromatic sulfur compounds: A theoretical approach

    International Nuclear Information System (INIS)

    Galano, Annia; Francisco-Marquez, Misaela

    2008-01-01

    Adsorption processes of thiophene and benzothiophene on pristine carbon nanotubes (CNTs), and on CNTs doped with Si or Ge, have been modeled with Density Functional. This is the first study on the chemical reactivity of such doped tubes. The calculated data suggest that the presence of silicon or germanium atoms in CNTs increases their reactivity toward thiophene, and benzothiophene. The adsorption of these species on pristine CNTs seems very unlikely to occur, while the addition products involving doped CNTs were found to be very stable, with respect to the isolated reactants, in terms of Gibbs free energy. Several of these adsorption processes were found to be significantly exergonic (ΔG < 0) in non-polar liquid phase. The results reported in this work suggest that Si and Ge defects on CNTs increase their reactivity toward unsaturated species, and could make them useful in the removal processes of aromatic sulfur compounds from oil-hydrocarbons. However, according to our results, CNTs doped with Si atoms are expected to be more efficient as aromatic sulfur compounds scavengers than those doped with Ge. These results also suggest that the presence of silicon and germanium atoms in the CNTs structures enhances their reactivity toward nucleophilic molecules, compared to pristine carbon nanotubes

  20. Methane clumped isotopes: Progress and potential for a new isotopic tracer

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, Peter M. J.; Stolper, Daniel A.; Eiler, John M.; Sessions, Alex L.; Lawson, Michael; Shuai, Yanhua; Bishop, Andrew; Podlaha, Olaf G.; Ferreira, Alexandre A.; Santos Neto, Eugenio V.; Niemann, Martin; Steen, Arne S.; Huang, Ling; Chimiak, Laura; Valentine, David L.; Fiebig, Jens; Luhmann, Andrew J.; Seyfried, William E.; Etiope, Giuseppe; Schoell, Martin; Inskeep, William P.; Moran, James J.; Kitchen, Nami

    2017-11-01

    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding hydrocarbon systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a potentially valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here we present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. We review different processes affecting methane clumped isotope compositions, describe the relationships between conventional isotope and clumped isotope data, and summarize the types of information that this measurement can provide in different Earth and planetary environments.

  1. Experimental test of the background rejection, through imaging capability, of a highly segmented AGATA germanium detector

    International Nuclear Information System (INIS)

    Doncel, M.; Recchia, F.; Quintana, B.; Gadea, A.; Farnea, E.

    2010-01-01

    The development of highly segmented germanium detectors as well as the algorithms to identify the position of the interaction within the crystal opens the possibility to locate the γ-ray source using Compton imaging algorithms. While the Compton-suppression shield, coupled to the germanium detector in conventional arrays, works also as an active filter against the γ rays originated outside the target, the new generation of position sensitive γ-ray detector arrays has to fully rely on tracking capabilities for this purpose. In specific experimental conditions, as the ones foreseen at radioactive beam facilities, the ability to discriminate background radiation improves the sensitivity of the gamma spectrometer. In this work we present the results of a measurement performed at the Laboratori Nazionali di Legnaro (LNL) aiming the evaluation of the AGATA detector capabilities to discriminate the origin of the γ rays on an event-by-event basis. It will be shown that, exploiting the Compton scattering formula, it is possible to track back γ rays coming from different positions, assigning them to specific emitting locations. These imaging capabilities are quantified for a single crystal AGATA detector.

  2. Young’s modulus of [111] germanium nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Maksud, M.; Palapati, N. K. R.; Subramanian, A., E-mail: asubramanian@vcu.edu [Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Yoo, J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Harris, C. T. [Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-11-01

    This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  3. Amorphous Silicon-Germanium Films with Embedded Nano crystals for Thermal Detectors with Very High Sensitivity

    International Nuclear Information System (INIS)

    Calleja, C.; Torres, A.; Rosales-Quintero, P.; Moreno, M.

    2016-01-01

    We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nano crystals in a plasma enhanced chemical vapor deposition (PECVD) reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR), which is a signature of the sensitivity in thermal detectors (micro bolometers). Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9%K -1 ). Our results show that amorphous silicon-germanium films with embedded nano crystals can be used as thermo sensitive films in high performance infrared focal plane arrays (IRFPAs) used in commercial thermal cameras.

  4. Measuring Pu in a glove box using portable NaI and germanium detectors

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1984-01-01

    A NaI crystal or germanium detector inside a portable lead shield can determine the amount of plutonium in a glove box. The number of counts required are defined and the locations outside the box where the detector needs to be positioned are given. The calculated accuracy for measuring the Pu when these locations are used is within +/-30% for most glove boxes. Other factors that may affect this accuracy, such as γ-ray absorption by glove-box materials, self-absorption by Pu, absorption by equipment in the glove box, and the limits of the counting equipment are also discussed

  5. The germanium wall of the GEM detector system GEM Collaboration

    International Nuclear Information System (INIS)

    Betigeri, M.; Biakowski, E.; Bojowald, H.; Budzanowski, A.; Chatterjee, A.; Drochner, M.; Ernst, J.; Foertsch, S.; Freindl, L.; Frekers, D.; Garske, W.; Grewer, K.; Hamacher, A.; Igel, S.; Ilieva, J.; Jarczyk, L.; Jochmann, M.; Kemmerling, G.; Kilian, K.; Kliczewski, S.; Klimala, W.; Kolev, D.; Kutsarova, T.; Lieb, J.; Lippert, G.; Machner, H.; Magiera, A.; Nann, H.; Pentchev, L.; Plendl, H.S.; Protic, D.; Razen, B.; Rossen, P. von; Roy, B.J.; Siudak, R.; Smyrski, J.; Srikantiah, R.V.; Strzakowski, A.; Tsenov, R.; Zolnierczuk, P.A.; Zwoll, K.

    1999-01-01

    A stack of annular detectors made of high-purity germanium was developed. The detectors are position sensitive with radial structures. The first one ('Quirl') is double-sided position sensitive defining 40,000 pixels, the following three (E1, E2 and E3) have 32 wedges each. The Quirl acts as tracker while the other three act as calorimeter. The stack was successfully operated in meson production reactions close to threshold

  6. Self-absorption corrections for well-type germanium detectors

    International Nuclear Information System (INIS)

    Appleby, P.G.; Richardson, N.; Nolan, P.J.

    1992-01-01

    Corrections for self-absorption are of vital importance to accurate determination by gamma spectrometry of radionuclides such as 210 Pb, 241 Am and 234 Th which emit low energy gamma radiation. A simple theoretical model for determining the necessary corrections for well-type germanium detectors is presented. In this model, self-absorption factors are expressed in terms of the mass attenuation coefficient of the sample and a parameter characterising the well geometry. Experimental measurements of self-absorption are used to evaluate the model and to determine a semi-empirical algorithm for improved estimates of the geometrical parameter. (orig.)

  7. Effect of pressure on arsenic diffusion in germanium

    International Nuclear Information System (INIS)

    Mitha, S.; Theiss, S.D.; Aziz, M.J.; Schiferl, D.; Poker, D.B.

    1994-01-01

    We report preliminary results of a study of the activation volume for diffusion of arsenic in germanium. High-temperature high-pressure anneals were performed in a liquid argon pressure medium in a diamond anvil cell capable of reaching 5 GPa and 750 C,l which is externally heated for uniform and repeatable temperature profiles. Broadening of an ion-implanted arsenic profile was measured by Secondary Ion Mass Spectrometry. Hydrostatic pressure retards the diffusivity at 575 C, characterized by an activation volume that is +15% of the atomic volume of Ge. Implications for diffusion mechanisms are discussed

  8. Energy levels of germanium, Ge I through Ge XXXII

    International Nuclear Information System (INIS)

    Sugar, J.; Musgrove, A.

    1993-01-01

    Atomic energy levels of germanium have been compiled for all stages of ionization for which experimental data are available. No data have yet been published for Ge VIII through Ge XIII and Ge XXXII. Very accurate calculated values are compiled for Ge XXXI and XXXII. Experimental g-factors and leading percentages from calculated eigenvectors of levels are given. A value for the ionization energy, either experimental when available or theoretical, is included for the neutral atom and each ion. section

  9. Deformation potentials for band-to-band tunneling in silicon and germanium from first principles

    Science.gov (United States)

    Vandenberghe, William G.; Fischetti, Massimo V.

    2015-01-01

    The deformation potentials for phonon-assisted band-to-band tunneling (BTBT) in silicon and germanium are calculated using a plane-wave density functional theory code. Using hybrid functionals, we obtain: DTA = 4.1 × 108 eV/cm, DTO = 1.2 × 109 eV/cm, and DLO = 2.2 × 109 eV/cm for BTBT in silicon and DTA = 7.8 × 108 eV/cm and DLO = 1.3 × 109 eV/cm for BTBT in germanium. These values agree with experimentally measured values and we explain why in diodes, the TA/TO phonon-assisted BTBT dominates over LO phonon-assisted BTBT despite the larger deformation potential for the latter. We also explain why LO phonon-assisted BTBT can nevertheless dominate in many practical applications.

  10. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    Science.gov (United States)

    Frigerio, J.; Ballabio, A.; Gallacher, K.; Giliberti, V.; Baldassarre, L.; Millar, R.; Milazzo, R.; Maiolo, L.; Minotti, A.; Bottegoni, F.; Biagioni, P.; Paul, D.; Ortolani, M.; Pecora, A.; Napolitani, E.; Isella, G.

    2017-11-01

    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  1019 cm-3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  1020 cm-3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved.

  11. Bibliographical study on the high-purity germanium radiation detectors used in gamma and X spectrometry

    International Nuclear Information System (INIS)

    Bornand, Bernard; Friant, Alain

    1979-03-01

    The germanium or silicon lithium-drifted detectors, Ge(Li) or Si(Li), and high-purity germanium detectors, HP Ge (impurity concentration approximately 10 10 cm -3 ), are the most commonly used at the present time as gamma and X-ray spectrometers. The HP Ge detectors for which room temperature storage is the main characteristic can be obtained with a large volume and a thin window, and are used as the Ge(Li) in γ ray spectrometry or the Si(Li) in X-ray spectrometry. This publication reviews issues from 1974 to 1978 on the state of the art and applications of the HP Ge semiconductor detectors. 101 bibliographical notices with French summaries are presented. An index for authors, documents and periodicals, and subjects is included [fr

  12. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100).

    Science.gov (United States)

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-11-06

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm -1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm -1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  13. Theoretical study of the localization-delocalization transition in amorphous molybdenum-germanium alloys

    International Nuclear Information System (INIS)

    Ding, K.; Andersen, H.C.

    1987-01-01

    Electronic structure calculations were performed for amorphous germanium and amorphous alloys of molybdenum and germanium. The calculations used Harrison's universal linear-combination-of-atomic-orbitals parameters to generate one-electron Hamiltonians for structural configurations obtained from molecular-dynamics simulations. The density of states calculated for a model of a-Ge showed a distinct pseudogap, although with an appreciable density of states at the minimum. The states in the pseudogap are localized. As the concentration of Mo atoms increases, the pseudogap of the density of states is gradually filled up. The density of states at the Fermi energy calculated for our model of the alloys agrees quite well with that experimentally determined by Yoshizumi, Geballe, and co-workers. The localization index for the states at the Fermi energy is a decreasing function of Mo concentration in the range of 2--14 at. % Mo and the localization length is an increasing function of molybdenum concentration. These results are consistent with the experimental observation of an insulator-metal transition at about 10 at. % Mo

  14. Focusing of a new germanium counter type : the composite detector. Uses of the TREFLE detector in the EUROGAM multidetector; Mise au point d`un nouveau type de compteur germanium: le detecteur composite. Utilisation du detecteur TREFLE dans le multidetecteur EUROGAM

    Energy Technology Data Exchange (ETDEWEB)

    Han, L

    1995-05-01

    The aim of this thesis is the development of new types of germanium detectors: the composite detectors. Two types of prototypes are then conceived: the stacked planar detector (EDP) and the assembly of coaxial diodes (TREFLE). They are designed for the multidetector EUROGAM destined to the research of nuclear structure at high angular momentum. The four planar diodes of EDP detector were of 7 cm diameter and of 15 to 20 mm thick. The difference between the calculated and measured photopic efficiency is observed. The importance of surface channel induces a weak resistance of neutron damages. The sputtering method for the surface treatment reducing the germanium dead layer as well as a rule of selection concerning the impurity concentration and the thickness of crystal is helpful for the later production of germanium detector. The CLOVER detector consist of for mean size crystals in the same cryostat. The photopic efficiency is much larger than that of the greatest monocrystal detector. And the granulation of composite detector allowed the Doppler broadening correction of gamma ray observed in the nuclear reaction where the recoil velocity is very high. This new type of detector enable the linear polarization measurement of gamma ray. Twenty-four CLOVER detector are actually mounted in the EUROGAM array. The characteristics measured in source as well as in beam, reported in this thesis, meet exactly the charge account. (author). 47 refs., 61 figs., 18 tabs.

  15. Correspondence between phenomenological and IBM-1 models of even isotopes of Yb

    Science.gov (United States)

    A. Okhunov, A.; I. Sharrad, F.; Anwer, A. Al-Sammarraie; U. Khandaker, M.

    2015-08-01

    Energy levels and the reduced probability of E2- transitions for ytterbium isotopes with proton number Z = 70 and neutron numbers between 100 and 106 have been calculated through phenomenological (PhM) and interacting boson (IBM-1) models. The predicted low-lying levels (energies, spins and parities) and the reduced probability for E2- transitions results are reasonably consistent with the available experimental data. The predicted low-lying levels (gr-, β1- and γ1- band) produced in the PhM are in good agreement with the experimental data compared with those by IBM-1 for all nuclei of interest. In addition, the phenomenological model was successful in predicting the β2-, β3-, β4-, γ2- and 1+ - band while it was a failure with IBM-1. Also, the 3+- band is predicted by the IBM-1 model for 172Yb and 174Yb nuclei. All calculations are compared with the available experimental data. Supported by Fundamental Research Grant Scheme (FRGS) of Ministry of Higher Education of Malaysia (FRGS13-074-0315), Islamic Development Bank (IDB) (36/11201905/35/IRQ/D31, 37/IRQ/P30)

  16. Violet and visible up-conversion emission in Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yanmin, E-mail: mihuyym@163.co [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Zhang Meixin [Forensic Science Lab, Hebei University, Baoding 071002 (China); Yang Zhiping [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Fu Zuoling [Key Laboratory of Coherent Light, Atomic and Molecular Spectroscopy, College of physics, Jilin University, Ministry of Education, Changchun 130023 (China)

    2010-10-15

    The up-conversion emission properties of Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses have been investigated with 980 nm excitation. The violet, blue, green and red emission bands at about 350, 485, 544 and 653 nm can be identified, respectively. Experimental results indicated that the relative intensity ratios of the peaks I{sub Red}/I{sub Green} increased with increasing B{sub 2}O{sub 3} concentration, which led to changing color of up-conversion emission from green at x=0 to yellow at x=40, to red at x=60. The violet emission at 350 nm was first reported in germanium-borate glass host and up-conversion mechanisms of the emissions were discussed. The Yb{sup 3+}-Ho{sup 3+} co-doped germanium-borate glasses could be an alternative for the generation of violet and primary colors for application in solid-state displays.

  17. Mapping the electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers

    Science.gov (United States)

    Calandrini, Eugenio; Venanzi, Tommaso; Appugliese, Felice; Badioli, Michela; Giliberti, Valeria; Baldassarre, Leonetta; Biagioni, Paolo; De Angelis, Francesco; Klesse, Wolfgang M.; Scappucci, Giordano; Ortolani, Michele

    2016-09-01

    We study plasmonic nanoantennas for molecular sensing in the mid-infrared made of heavily doped germanium, epitaxially grown with a bottom-up doping process and featuring free carrier density in excess of 1020 cm-3. The dielectric function of the 250 nm thick germanium film is determined, and bow-tie antennas are designed, fabricated, and embedded in a polymer. By using a near-field photoexpansion mapping technique at λ = 5.8 μm, we demonstrate the existence in the antenna gap of an electromagnetic energy density hotspot of diameter below 100 nm and confinement volume 105 times smaller than λ3.

  18. A variable temperature cryostat that produces in situ clean-up germanium detector surfaces

    International Nuclear Information System (INIS)

    Pehl, R.H.; Madden, N.W.; Malone, D.F.; Cork, C.P.; Landis, D.A.; Xing, J.S.; Friesel, D.L.

    1988-11-01

    Variable temperature cryostats that can maintain germanium detectors at temperatures from 82 K to about 400 K while the thermal shield surrounding the detectors remains much colder when the detectors are warmed have been developed. Cryostats such as these offer the possibility of cryopumping material from the surface of detectors to the colder thermal shield. The diode characteristics of several detectors have shown very significant improvement following thermal cycles up to about 150 K in these cryostats. Important applications for cryostats having this attribute are many. 4 figs

  19. The quadrupole moments of some even–even nuclei around the mass of A ~ 80: {sup 68−80}Ge on the neighborhood of {sup 76−84}Kr and {sup 76−84}Se isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Yoruk, Abdulkadir, E-mail: yorukabdulkadir@hotmail.com [Süleyman Demirel University, Nursery Medical School (Turkey); Turkan, Nureddin, E-mail: nureddin.turkan@medeniyet.edu.tr [Istanbul Medeniyet University, Faculty of Science (Turkey)

    2016-09-15

    We have carried out the calculation of the quadrupole moments Q(2{sub 1}{sup +}) and electromagnetic transition rates B(E2) of some levels within the framework of the interacting boson model for even-mass Ge nuclei. The presented predictions of the quadrupole moments and B(E2) ratios for Ge nuclei are compared with the results of some previous experimental and theoretical ones along with those of the neighboring Kr and Se isotopes and then it was seen that they agree well with the previous experimental and theoretical ones.

  20. TIGRESS highly-segmented high-purity germanium clover detector

    Science.gov (United States)

    Scraggs, H. C.; Pearson, C. J.; Hackman, G.; Smith, M. B.; Austin, R. A. E.; Ball, G. C.; Boston, A. J.; Bricault, P.; Chakrawarthy, R. S.; Churchman, R.; Cowan, N.; Cronkhite, G.; Cunningham, E. S.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Leslie, J. R.; Martin, J.-P.; Morris, D.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.; Zimmerman, L.

    2005-05-01

    The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) will consist of twelve units of four high-purity germanium (HPGe) crystals in a common cryostat. The outer contacts of each crystal will be divided into four quadrants and two lateral segments for a total of eight outer contacts. The performance of a prototype HPGe four-crystal unit has been investigated. Integrated noise spectra for all contacts were measured. Energy resolutions, relative efficiencies for both individual crystals and for the entire unit, and peak-to-total ratios were measured with point-like sources. Position-dependent performance was measured by moving a collimated source across the face of the detector.

  1. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    International Nuclear Information System (INIS)

    Frigerio, J; Ballabio, A; Isella, G; Gallacher, K; Millar, R; Paul, D; Gilberti, V; Baldassarre, L; Ortolani, M; Milazzo, R; Napolitani, E; Maiolo, L; Minotti, A; Pecora, A; Bottegoni, F; Biagioni, P

    2017-01-01

    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  10 19 cm −3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  10 20 cm −3 . Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved. (paper)

  2. Silicon germanium (SiGe) radioisotope thermoelectric generator (RTG) program for space missions. Nineteenth technical progress report, December 1980-January 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Work accomplished during the reporting period on the DOE Silicon Germanium RTG Program, Contract DE-AC01-79ET-32043 is described. This program consists of the following three tasks: multi-hundred watt RTG for the Galileo probe mission; reestablishment of silicon germanium unicouple capability; and general purpose heat source RTG for the international solar polar and Galileo orbiter missions. Details of program progress for each task, including a milestone schedule and a discussion of current problem areas (if any) are presented

  3. Application of heavy stable isotopes in forensic isotope geochemistry: A review

    International Nuclear Information System (INIS)

    Aggarwal, Jugdeep; Habicht-Mauche, Judith; Juarez, Chelsey

    2008-01-01

    Light stable isotopes have been used for many years to characterize the source and transport of materials. More recently heavy isotope systems such as Sr, Nd and Pb have been added to this list in order to aid source identification. With the advent of multiple collector ICP-MS, the range of isotopic tools now available has increased considerably, however, until the isotope systematics of these new non-traditional isotope systems have become better understood, they will not be as useful in characterizing material source and transportation. Applications using heavy metal stable isotopes (mostly traditional heavy isotopes) have reached most avenues in science, including earth sciences, archaeology, anthropology, animal physiology, ecology and toxicology. This field will continue to grow as new applications are developed and techniques become simpler and quicker. This paper provides a review of how this field has grown and presents two new applications using Pb and Sr isotopes in glazes to determine the source of ore used in glazes, and using Sr isotopes to determine the origin of undocumented deceased Mexican border crossers

  4. Application of heavy stable isotopes in forensic isotope geochemistry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Jugdeep [W.M. Keck Isotope Laboratory, Department of Earth Sciences, University of California, Santa Cruz, CA 95064 (United States)], E-mail: jaggarwal@pmc.ucsc.edu; Habicht-Mauche, Judith; Juarez, Chelsey [Department of Anthropology, University of California, Santa Cruz, CA 95064 (United States)

    2008-09-15

    Light stable isotopes have been used for many years to characterize the source and transport of materials. More recently heavy isotope systems such as Sr, Nd and Pb have been added to this list in order to aid source identification. With the advent of multiple collector ICP-MS, the range of isotopic tools now available has increased considerably, however, until the isotope systematics of these new non-traditional isotope systems have become better understood, they will not be as useful in characterizing material source and transportation. Applications using heavy metal stable isotopes (mostly traditional heavy isotopes) have reached most avenues in science, including earth sciences, archaeology, anthropology, animal physiology, ecology and toxicology. This field will continue to grow as new applications are developed and techniques become simpler and quicker. This paper provides a review of how this field has grown and presents two new applications using Pb and Sr isotopes in glazes to determine the source of ore used in glazes, and using Sr isotopes to determine the origin of undocumented deceased Mexican border crossers.

  5. Thickness, Doping Accuracy, and Roughness Control in Graded Germanium Doped Ch{sub x} Micro-shells for Lmj

    Energy Technology Data Exchange (ETDEWEB)

    Legay, G.; Theobald, M.; Barnouin, J.; Peche, E.; Bednarczyk, S.; Hermerel, C. [CEA Valduc, Dept Rech Mat Nucl, Serv Microcibles, 21 - Is-sur-Tille (France)

    2009-05-15

    In the Commissariat a l'Energie Atomique Laser Megajoule (LMJ) facility, amorphous hydrogenated carbon (a-C: H or CH{sub x}) is the nominal ablator used to achieve inertial confinement fusion experiments. These targets are filled with of fusible mixture of deuterium-tritium in order to perform ignition. The a-C: H shell is deposited on a poly-alpha-methylstyrene (PAMS) mandrel by glow discharge polymerization with trans-2-butene, hydrogen, and helium. Graded germanium doped CH{sub x} micro-shells are supposed to be more stable regarding hydrodynamic instabilities. The shells are composed of four layers for a total thickness of 180 {mu}m. The germanium gradient is obtained by doping the different a-C: H layers with the addition of tetra-methylgermanium in the gas mixture. As the achievement of ignition greatly depends on the physical properties of the shell, the thicknesses, doping concentration, and roughness must be precisely controlled. Quartz microbalances were used to perform an in situ and real-time measurement of the thickness in order to reduce the variations and so our fabrication tolerances on each layer thickness. Ex situ control of the thickness of each layer was carried out, with both optical coherent tomography and interferometry, (wall-mapper). High-quality, PAMS and a rolling system have been used to lower the low-mode roughness [root-mean-square (rms) (mode 2) {<=} 70 nm]. High modes were clearly, reduced by, coating the pan containing the shells with polyvinyl alcohol + CH{sub x} instead of polystyrene + CH{sub x} resulting in an rms ({>=}mode 10) {<=} 20 nm, which can be {<=}15 nm for the best micro-shells. The germanium concentration (0. 4 and 0. 75 at. %) in the a-CH layer is obtained by regulating the tetramethyl-germanium flow. Low range mass flow controllers have been used to improve the doping accuracy. (authors)

  6. Current experiments in germanium 0νββ search — GERDA and MAJORANA

    International Nuclear Information System (INIS)

    Von Sturm, K.

    2015-01-01

    There are unanswered questions regarding neutrino physics that are of great interest for the scientific community. For example the absolute masses, the mass hierarchy and the nature of neutrinos are unknown up to now. The discovery of neutrinoless double beta decay (0νββ) would prove the existence of a Majorana mass, which would be linked to the half-life of the decay, and would in addition provide an elegant solution for the small mass of the neutrinos via the seesaw mechanism. Because of an existing discovery claim of 0νββ of 76 Ge and the excellent energy resolution achievable, germanium is of special interest in the search for 0νββ. In this article the state of the art of germanium 0νββ search, namely the Gerda experiment and Majorana demonstrator, is presented. In particular, recent results of the Gerda collaboration, which strongly disfavour the above mentioned claim, are discussed.

  7. High-capacity nanostructured germanium-containing materials and lithium alloys thereof

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, Jason A. (Upton, NY); Fultz, Brent T. (Pasadena, CA); Ahn, Channing (Pasadena, CA); Yazami, Rachid (Los Angeles, CA)

    2010-08-24

    Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0germanium exhibit a combination of improved capacities, cycle lives, and/or cycling rates compared with similar electrodes made from graphite. These electrodes are useful as anodes for secondary electrochemical cells, for example, batteries and electrochemical supercapacitors.

  8. Formation probabilities and relaxation rates of muon states in germanium

    International Nuclear Information System (INIS)

    Clawson, C.W.; Haller, E.E.; Crowe, K.M.; Rosenblum, S.S.; Brewer, J.H.; British Columbia Univ., Vancouver

    1981-01-01

    We report the first results of a study of the muonium states in ultra-pure germanium crystals grown under a variety of conditions at Lawrence Berkeley Laboratory. Among the variations studied are: 1) Hydrogen, deuterium, or nitrogen atmosphere during growth; 2) Dislocation-free vs. dislocated crystals; 3) Grown from quartz, graphite, and pyrolytic graphite coated quartz crucibles; 4) n-type vs. p-type. We report a significant difference in the muonium relaxation rate between the dislocated and non-dislocated crystals. (orig.)

  9. Modelling the structure factors and pair distribution functions of amorphous germanium, silicon and carbon

    International Nuclear Information System (INIS)

    Dalgic, Seyfettin; Gonzalez, Luis Enrique; Baer, Shalom; Silbert, Moises

    2002-01-01

    We present the results of calculations of the static structure factor S(k) and the pair distribution function g(r) of the tetrahedral amorphous semiconductors germanium, silicon and carbon using the structural diffusion model (SDM). The results obtained with the SDM for S(k) and g(r) are of comparable quality with those obtained by the unconstrained Reverse Monte Carlo simulations and existing ab initio molecular dynamics simulations for these systems. We have found that g(r) exhibits a small peak, or shoulder, a weak remnant of the prominent third neighbour peak present in the crystalline phase of these systems. This feature has been experimentally found to be present in recently reported high energy X-ray experiments of amorphous silicon (Phys. Rev. B 60 (1999) 13520), as well as in the previous X-ray diffraction of as-evaporated amorphous germanium (Phys. Rev. B 50 (1994) 539)

  10. Modelling the structure factors and pair distribution functions of amorphous germanium, silicon and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Dalgic, Seyfettin; Gonzalez, Luis Enrique; Baer, Shalom; Silbert, Moises

    2002-12-01

    We present the results of calculations of the static structure factor S(k) and the pair distribution function g(r) of the tetrahedral amorphous semiconductors germanium, silicon and carbon using the structural diffusion model (SDM). The results obtained with the SDM for S(k) and g(r) are of comparable quality with those obtained by the unconstrained Reverse Monte Carlo simulations and existing ab initio molecular dynamics simulations for these systems. We have found that g(r) exhibits a small peak, or shoulder, a weak remnant of the prominent third neighbour peak present in the crystalline phase of these systems. This feature has been experimentally found to be present in recently reported high energy X-ray experiments of amorphous silicon (Phys. Rev. B 60 (1999) 13520), as well as in the previous X-ray diffraction of as-evaporated amorphous germanium (Phys. Rev. B 50 (1994) 539)

  11. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    International Nuclear Information System (INIS)

    Padilla, J. L.; Alper, C.; Ionescu, A. M.; Medina-Bailón, C.; Gámiz, F.

    2015-01-01

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I ON levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures

  12. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Medina-Bailón, C.; Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2015-06-29

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I{sub ON} levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures.

  13. Advanced characterization of carrier profiles in germanium using micro-machined contact probes

    DEFF Research Database (Denmark)

    Clarysse, T.; Konttinen, M.; Parmentier, B.

    2012-01-01

    of new concepts based on micro machined, closely spaced contact probes (10 μm pitch). When using four probes to perform sheet resistance measurements, a quantitative carrier profile extraction based on the evolution of the sheet resistance versus depth along a beveled surface is obtained. Considering...... the properties of both approaches on Al+ implants in germanium with different anneal treatments....

  14. Systematics of the properties of excited states of odd-even nuclei in the mass range A approximately 100

    International Nuclear Information System (INIS)

    Kleymann, G.

    1976-01-01

    This paper is a compilation of results of experimental and theoretical studies on the term diagrams of odd-even nuclei from the isotope series of Nb, Tc, Rh and Ag, published until October 1975. As a relatively simple interpretation of the excitements of these nuclei, De Shalit proposed the coupling of a particle, whose quantum numbers may be derived from a shell model, to excited states of the core of the nucleus. (orig./BJ) [de

  15. Isotopic composition of water in precipitation in a region or place

    International Nuclear Information System (INIS)

    Singh, B.P.

    2013-01-01

    Stable isotopes of water molecules in hydrology, the water cycle and Craig's global meteoric water line (GMWL) relating δ 18 O and δ 2 H are well established with a slope of around 8 and an intercept of around 10. However, in many situations the slope is less than 8 and the intercept is smaller or even negative. These observations need to be understood and a method is suggested to correlate with the global meteoric water line (GMWL). How to find the isotopic composition of water at a particular place is also suggested. - Highlights: ► A best fit line is drawn between slopes of plots on δ 18 O and δ 2 H line versus intercept of the measurement in a region. ► A new approach is suggested to understand this experimental best fit line. ► The new method is suggested to achieve the isotopic composition of meteoric water in region or a place

  16. Temperature-dependent dielectric function of germanium in the UV–vis spectral range: A first-principles study

    International Nuclear Information System (INIS)

    Yang, J.Y.; Liu, L.H.; Tan, J.Y.

    2014-01-01

    The study of temperature dependence of thermophysical parameter dielectric function is key to understanding thermal radiative transfer in high-temperature environments. Limited by self-radiation and thermal oxidation, however, it is difficult to directly measure the high-temperature dielectric function of solids with present experimental technologies. In this work, we implement two first-principles methods, the ab initio molecular dynamics (AIMD) and density functional perturbation theory (DFPT), to study the temperature dependence of dielectric function of germanium (Ge) in the UV–vis spectral range in order to provide data of high-temperature dielectric function for radiative transfer study in high-temperature environments. Both the two methods successfully predict the temperature dependence of dielectric function of Ge. Moreover, the good agreement between the calculated results of the AIMD approach and experimental data at 825 K enables us to predict the high-temperature dielectric function of Ge with the AIMD method in the UV–vis spectral range. - Highlights: • The temperature dependence of dielectric function of germanium (Ge) is investigated with two first-principles methods. • The temperature effect on dielectric function of Ge is discussed. • The high-temperature dielectric function of Ge is predicted

  17. Germanium content and base doping level influence on extrinsic base resistance and dynamic performances of SiGe:C heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Ramirez-Garcia, E; Valdez-Monroy, L A; Rodriguez-Mendez, L M; Valdez-Perez, D; Galaz-Larios, M C; Enciso-Aguilar, M A; Zerounian, N; Aniel, F

    2014-01-01

    We describe a reliable technique to separate the different contributions to the apparent base resistance (R B  = R Bx  + X R Bi ) of silicon germanium carbon (SiGe:C) heterojunction bipolar transistors (HBTs). The extrinsic base resistance (R Bx ) is quantified using small-signal measurements. The base-collector junction distribution factor (X) and the intrinsic base resistance (R Bi ) are extracted from high frequency noise (MWN) measurements. This method is applied to five different SiGe:C HBTs varying in base doping level and germanium content. The results show that high doping levels improve high frequency noise performances while germanium gradient helps to maintain outstanding dynamic performances. This method could be used to elucidate the base technological configuration that ensures low noise together with remarkable dynamic performances in state-of-the-art SiGe:C HBTs. (paper)

  18. Structural properties of relaxed thin film germanium layers grown by low temperature RF-PECVD epitaxy on Si and Ge (100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cariou, R., E-mail: romain.cariou@polytechnique.edu [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); III-V lab a joint laboratory between Alcatel-Lucent Bell Labs France, Thales Research and Technology and CEA-LETI, route de Nozay, 91460, Marcoussis, France. (France); Ruggeri, R. [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); CNR-IMM, strada VIII n°5, zona industriale, 95121, Catania (Italy); Tan, X.; Nassar, J.; Roca i Cabarrocas, P. [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); Mannino, Giovanni [CNR-IMM, strada VIII n°5, zona industriale, 95121, Catania (Italy)

    2014-07-15

    We report on unusual low temperature (175 °C) heteroepitaxial growth of germanium thin films using a standard radio-frequency plasma process. Spectroscopic ellipsometry and transmission electron microscopy (TEM) reveal a perfect crystalline quality of epitaxial germanium layers on (100) c-Ge wafers. In addition direct germanium crystal growth is achieved on (100) c-Si, despite 4.2% lattice mismatch. Defects rising from Ge/Si interface are mostly located within the first tens of nanometers, and threading dislocation density (TDD) values as low as 10{sup 6} cm{sup −2} are obtained. Misfit stress is released fast: residual strain of −0.4% is calculated from Moiré pattern analysis. Moreover we demonstrate a striking feature of low temperature plasma epitaxy, namely the fact that crystalline quality improves with thickness without epitaxy breakdown, as shown by TEM and depth profiling of surface TDD.

  19. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2013-11-01

    Full Text Available We report the crystallization of electrodeposited germanium (Ge thin films on n-silicon (Si (100 by rapid melting process. The electrodeposition was carried out in germanium (IV chloride: propylene glycol (GeCl4:C3H8O2 electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm−1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm−1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  20. In-beam measurement of the position resolution of a highly segmented coaxial germanium detector

    International Nuclear Information System (INIS)

    Descovich, M.; Lee, I.Y.; Fallon, P.; Cromaz, M.; Macchiavelli, A.O.; Radford, D.C.; Vetter, K.; Clark, R.M.; Deleplanque, M.A.; Stephens, F.S.; Ward, D.

    2005-01-01

    The position resolution of a highly segmented coaxial germanium detector was determined by analyzing the 2055keV γ-ray transition of Zr90 excited in a fusion-evaporation reaction. The high velocity of the Zr90 nuclei imparted large Doppler shifts. Digital analysis of the detector signals recovered the energy and position of individual γ-ray interactions. The location of the first interaction in the crystal was used to correct the Doppler energy shift. Comparison of the measured energy resolution with simulations implied a position resolution (root mean square) of 2mm in three-dimensions

  1. Determination of marble provenance: limits of isotopic analysis

    International Nuclear Information System (INIS)

    Germann, K.; Holzmann, G.; Winkler, F.J.

    1980-01-01

    Provenance determination of Thessalian stelae marbles using the C/O isotopic analysis proved to be misleading, as the isotopic composition even in very small quarrying areas is heterogeneous and isotopic coincidence of marbles from very distant sources occurs. Therefore additional geological features must be taken into consideration and preference should be given to combinations of both petrographical and geochemical properties. Geological field work to establish the range of possible marble sources and the variability within these sources is one of the prerequisites of provenance studies. (author)

  2. Seasonal isotope hydrology of a coffee agroforestry watershed in Costa Rica

    Science.gov (United States)

    Welsh Unwala, K.; Boll, J.; Roupsard, O.

    2014-12-01

    Improved information of seasonal variations in watershed hydrology in the tropics can strengthen models and understanding of hydrology of these areas. Seasonality in the tropics produces rainy seasons versus dry seasons, leading to different hydrologic and water quality processes throughout the year. We questioned whether stable isotopes in water can be used to trace the seasonality in this region, despite experiencing a "drier" season, such as in a Tropical Humid location. This study examines the fluctuations of stable isotope compositions (δ18O and δD) in water balance components in a small (deep groundwater system contributes significantly to baseflow, although a shallow, spring-driven system also contributes to stream water within the watershed. During storm events, precipitation contributes to stormflow in the short-term, confirming the role of superficial runoff. These results indicate that isotopes are helpful to partition the water balance even in a Tropical Humid situation where the rainfall seasonality is weak.

  3. Plutonium uptake by Scenedesmus obliquus as a function of isotope and oxidation state

    International Nuclear Information System (INIS)

    Tkacik, M.F.; Giesy, J.P.; Wilhite, E.L.; Corey, J.C.

    1979-01-01

    Uptake of 238 Pu 4+ , 238 Pu 6+ , 239 Pu 4+ and 239 Pu 6+ by the green alga Scenedesmus obliquus (Turp) Kutz was studied to determine whether isotope or oxidation state differences affect Pu uptake from aqueous medium by algal cells. At equivalent 238 Pu and 239 PU concentrations, even when initial oxidation states differed, accumulations of these isotopes by S.obliquus were not significantly (p>0.05) different. Plutonium accumulation by S.obliquus was log-linear. (author)

  4. Calibration curve for germanium spectrometers from solutions calibrated by liquid scintillation counting

    International Nuclear Information System (INIS)

    Grau, A.; Navarro, N.; Rodriguez, L.; Alvarez, A.; Salvador, S.; Diaz, C.

    1996-01-01

    The beta-gamma emitters ''60Co, ''137 Cs, ''131 I, ''210 Pb y ''129 Iare radionuclides for which the calibration by the CIEMAT/NIST method ispossible with uncertainties less than 1%. We prepared, from standardized solutions of these radionuclides, samples in vials of 20 ml. We obtained the calibration curves, efficiency as a function of energy, for two germanium detectors. (Author) 5 refs

  5. Irradiation induced defects containing oxygen atoms in germanium crystal as studied by deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Kambe, Yoshiyuki; Saito, Haruo; Matsuda, Koji.

    1984-05-01

    Deep level transient spectroscopy was applied to the electron trapping levels which are associated with the irradiation induced lattice defects in germanium crystals. The germanium crystals used in the study were doped with oxygen, antimony or arsenic and the defects were formed by electron irradiation of 1.5MeV or 10MeV. The nature of so called ''thermal defect'' formed by heat treatment at about 670K was also studied. The trapping levels at Esub(c)-0.13eV, Esub(c)-0.25eV and Esub(c)-0.29eV were found to be associated with defects containing oxygen atoms. From the experimental results the Esub(c)-0.25eV level was attributed to the germanium A-center (interstitial oxygen atom-vacancy pair). Another defect associated with the 715cm -1 infrared absorption band was found to have a trapping level at the same position at Esub(c)-0.25eV. The Esub(c)-0.23eV and Esub(c)-0.1eV levels were revealed to be associated with thermal donors formed by heat treatment at about 670K. Additional two peaks (levels) were observed in the DLTS spectrum. The annealing behavior of the levels suggests that the thermal donors originate from not a single type but several types of defects. (author)

  6. Coulomb Excitation of Neutron Deficient Sn-Isotopes using REX-ISOLDE

    CERN Multimedia

    Di julio, D D; Kownacki, J M; Marechal, F; Andreoiu, C; Siem, S; Perrot, F; Van duppen, P L E; Napiorkowski, P J; Iwanicki, J S

    2002-01-01

    It is proposed to study the evolution of the reduced transition probabilities, B(E2; 0$^{+} \\rightarrow$ 2$^{+}$), for neutron deficient Sn isotopes by Coulomb excitation in inverse kinematics using REX-ISOLDE and the MINIBALL detector array. Measurements of the reduced transition matrix element for the transition between the ground state and the first excited 2$^{+}$ state in light even-even Sn isotopes provide a means to study e.g. core polarization effects in the $^{100}$Sn core. Previous attempts to measure this quantity have been carried out using the decay of isomeric states populated in fusion evaporation reactions. We thus propose to utilize the unique opportunity provided by REX-ISOLDE, after the energy upgrade to 3.1 MeV/u, to use the more model-independent approach of Coulomb excitation to measure this quantity in a number of isotopes in this region.

  7. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared

    Science.gov (United States)

    Fischer, Marco P.; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J.; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-01

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  8. Cosmogenically-produced isotopes in natural and enriched high-purity germanium detectors for the MAJORANA DEMONSTRATOR

    Science.gov (United States)

    Gilliss, Thomas; MAJORANA DEMONSTRATOR Collaboration

    2017-01-01

    The MAJORANA DEMONSTRATOR advances toward measurements of the neutrinoless double-beta decay of 76Ge. Detectors employed in the DEMONSTRATOR are subject to cosmogenic spallation during production and processing, resulting in activation of certain long-lived radioisotopes. Activation of these cosmogenic isotopes is mitigated by shielded storage of detectors and through underground operation of the DEMONSTRATOR at the 4850 ft level of the Sanford Underground Research Facility. In this work, we explore the appearance and reduction of cosmogenic contributions to the DEMONSTRATOR background spectrum. This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  9. STRENGTH DISTRIBUTIONS IN NEODYMIUM ISOTOPES - A TEST OF COLLECTIVE NUCLEAR-MODELS

    NARCIS (Netherlands)

    PIGNANELLI, M; BLASI, N; BORDEWIJK, JA; DELEO, R; HARAKEH, MN; HOFSTEE, MA; MICHELETTI, S; PERRINO, R; PONOMAREV, VY; SOLOVIEV, VG; SUSHKOV, AV; VANDERWERF, SY

    1993-01-01

    Excite states n even N isotopes, up to excitation energies of 3-4 MeV, were investigate in proton- and deuteron-scattering experiments performed with high-energy resolution. More than 300 transitions were studied. For several new excited states spin and parity assignments have been suggested.

  10. Bioavailable concentrations of germanium and rare earth elements in soil as affected by low molecular weight organic acids and root exudates

    Science.gov (United States)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann

    2014-05-01

    Availability of elements in soil to plant is generally dependent on the solubility and mobility of elements in soil solution which is controlled by soil, elemental properties and plant-soil interactions. Low molecular organic acids or other root exudates may increase mobility and availability of certain elements for plants as an effect of lowering pH in the rhizosphere and complexation. However, these processes take place in a larger volume in soil, therefore to understand their nature, it is also important to know in which layers of the soil what factors modify these processes. In this work the influence of citric acid and root exudates of white lupin (Lupinus albus L.) on bioavailable concentrations of germanium, lanthan, neodymium, gadolinium and erbium in soil solution and uptake in root and shoot of rape (Brassica napus L.), comfrey (Symphytum officinale L.), common millet (Panicum milliaceum L.) and oat (Avena sativa L.) was investigated. Two different pot experiments were conducted: (1) the mentioned plant species were treated with nutrient solutions containing various amount of citric acid; (2) white lupin was cultivated in mixed culture (0 % lupin, 33 % lupin) with oat (Avena sativa L.) and soil solution was obtained by plastic suction cups placed at various depths. As a result, addition of citric acid significantly increased germanium concentrations in plant tissue of comfrey and rape and increased translocation of germanium, lanthan, neodymium, gadolinium and erbium from root to shoot. The cultivation of white lupin in mixed culture with oat led to significantly higher concentrations of germanium and increasing concentrations of lanthan, neodymium, gadolinium and erbium in soil solution and aboveground plant tissue. In these pots concentrations of citric acid in soil solution were significantly higher than in the control. The results show, that low molecular organic acids exuded by plant roots are of great importance for the mobilization of germanium

  11. Microgamma Scan System for analyzing radial isotopic profiles of irradiated transmutation fuels

    International Nuclear Information System (INIS)

    Hilton, Bruce A.; McGrath, Christopher A.

    2008-01-01

    The U. S. Global Nuclear Energy Partnership / Advanced Fuel Cycle Initiative (GNEP/AFCI) is developing metallic transmutation alloys as a fuel form to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. A micro-gamma scan system is being developed to analyze the radial distribution of fission products, such as Cs-137, Cs-134, Ru-106, and Zr-95, in irradiated fuel cross-sections. The micro-gamma scan system consists of a precision linear stage with integrated sample holder and a tungsten alloy collimator, which interfaces with the Idaho National Laboratory (INL) Analytical Laboratory Hot Cell (ALHC) Gamma Scan System high purity germanium detector, multichannel analyzer, and removable collimators. A simplified model of the micro-gamma scan system was developed in MCNP (Monte-Carlo N-Particle Transport Code) and used to investigate the system performance and to interpret data from the scoping studies. Preliminary measurements of the micro-gamma scan system are discussed. (authors)

  12. Quantitative spectrographic determination of traces of germanium in lignite; Determinacion Espectrografica Cuantitativa de trazas de Germanio en Lignitos

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M; Roca, M

    1972-07-01

    A burning technique in a d.c. arc at 10 amp has been employed. The standards have been prepared from a natural lignite with a low germanium content. In order to enhance sensitivity, AgCl, K{sub 2}SO{sub 4}, CuF{sub 2}, Sb{sub 2}S{sub 3} and Bi{sub 2}S{sub 3} have been tested as sweeping materials. Using 2% CuF{sub 2} a detection limit of 1 ppm germanium is attainable. Bi, Cu, Sb and Sn have been studied as internal standards: the former leads to the, highest precision (1 6%). Results show good agreement with those obtained by the addition method. (Author) 6 refs.

  13. Fabrication and research of high purity germanium detectors with abrupt and thin diffusion layer

    International Nuclear Information System (INIS)

    Rodriguez Cabal, A. E.; Diaz Garcia, A.

    1997-01-01

    A different high purity germanium detector's fabrication method is described. A very thin diffusion film with an abrupt change of the type of conductivity is obtained. The fine diffusion layer thickness makes possibly their utilization in experimental systems in which all the data are elaborated directly on the computer. (author) [es

  14. Grafting of Oligo(ethylene glycol) Functionalized Calix[4]arene-tetra-diazonium Salts for Antifouling Germanium and Gold Surfaces.

    Science.gov (United States)

    Blond, Pascale; Mattiuzzi, Alice; Valkenier, Hennie; Troian-Gautier, Ludovic; Bergamini, Jean-François; Doneux, Thomas; Goormaghtigh, Erik; Raussens, Vincent; Jabin, Ivan

    2018-05-03

    Biosensors that can determine protein concentration and structure are highly desired for biomedical applications. For the development of such biosensors, the use of Fourier transformed infra-red (FTIR) spectroscopy with the attenuated internal total reflection (ATR) configuration is particularly attractive but it requires appropriate surface functionalization of the ATR optical element. Indeed, the surface has to specifically interact with a target protein in close contact with the optical element and must display antifouling properties to prevent nonspecific adsorption of other proteins. We here report robust monolayers of calix[4]arenes bearing oEGs chains, which were grafted on germanium and gold surfaces via their tetra-diazonium salts. The formation of monolayers of oEGylated calix[4]arenes was confirmed by AFM, IR and contact angle measurements. The antifouling properties of these modified surfaces were studied by ATR-FTIR spectroscopy and fluorescence microscopy and the non-specific absorption of BSA was found to be reduced by 85% compared to non-modified germanium. In other words, the organic coating by oEGylated calix[4]arenes provides remarkable antifouling properties, opening the way to the design of germanium- and gold-based biosensors.

  15. Deciphering the iron isotope message of the human body

    Science.gov (United States)

    Walczyk, Thomas; von Blanckenburg, Friedhelm

    2005-04-01

    Mass-dependent variations in isotopic composition are known since decades for the light elements such as hydrogen, carbon or oxygen. Multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) and double-spike thermal ionization mass spectrometry (TIMS) permit us now to resolve small variations in isotopic composition even for the heavier elements such as iron. Recent studies on the iron isotopic composition of human blood and dietary iron sources have shown that lighter iron isotopes are enriched along the food chain and that each individual bears a certain iron isotopic signature in blood. To make use of this finding in biomedical research, underlying mechanisms of isotope fractionation by the human body need to be understood. In this paper available iron isotope data for biological samples are discussed within the context of isotope fractionation concepts and fundamental aspects of human iron metabolism. This includes evaluation of new data for body tissues which show that blood and muscle tissue have a similar iron isotopic composition while heavier iron isotopes are concentrated in the liver. This new observation is in agreement with our earlier hypothesis of a preferential absorption of lighter iron isotopes by the human body. Possible mechanisms for inducing an iron isotope effect at the cellular and molecular level during iron uptake are presented and the potential of iron isotope effects in human blood as a long-term measure of dietary iron absorption is discussed.

  16. Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition.

    Science.gov (United States)

    Leem, Jung Woo; Yu, Jae Su

    2012-08-27

    We fabricated the distributed Bragg reflectors (DBRs) with amorphous germanium (a-Ge) films consisted of the same materials at a center wavelength (λc) of 1.33 μm by the glancing angle deposition. Their optical reflectance properties were investigated in the infrared wavelength region of 1-1.9 μm at incident light angles (θ inc) of 8-70°, together with the theoretical analysis using a rigorous coupled-wave analysis simulation. The two alternating a-Ge films at the incident vapor flux angles of 0 and 75° were formed as the high and low refractive index materials, respectively. The a-Ge DBR with only 5 periods exhibited a normalized stop bandwidth (∆λ/λ c) of ~24.1%, maintaining high reflectance (R) values of > 99%. Even at a high θ inc of 70°, the ∆λ/λ c was ~21.9%, maintaining R values of > 85%. The a-Ge DBR with good uniformity was obtained over the area of a 2 inch Si wafer. The calculated reflectance results showed a similar tendency to the measured data.

  17. Influence of reductant and germanium concentration on the growth and stress development of germanium nanocrystals in silicon oxide matrix

    International Nuclear Information System (INIS)

    Chew, H G; Zheng, F; Choi, W K; Chim, W K; Foo, Y L; Fitzgerald, E A

    2007-01-01

    Germanium (Ge) nanocrystals have been synthesized by annealing co-sputtered SiO 2 -Ge samples in N 2 or forming gas (90% N 2 +10% H 2 ) at temperatures ranging from 700 to 1000 deg. C. We concluded that the annealing ambient, temperature and Ge concentration have a significant influence on the formation and evolution of the nanocrystals. We showed that a careful selective etching of the annealed samples in hydrofluoric acid solution enabled the embedded Ge nanocrystals to be liberated from the SiO 2 matrix. From the Raman results of the as-grown and the liberated nanocrystals, we established that the nanocrystals generally experienced compressive stress in the oxide matrix and the evolution of these stress states was intimately linked to the distribution, density, size and quality of the Ge nanocrystals

  18. Analysis of the dead layer of a detector of germanium with code ultrapure Monte Carlo SWORD-GEANT; Analisis del dead layer de un detector de germanio ultrapuro con el codigo de Monte Carlo SWORDS-GEANT

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, S.; Querol, A.; Ortiz, J.; Rodenas, J.; Verdu, G.

    2014-07-01

    In this paper the use of Monte Carlo code SWORD-GEANT is proposed to simulate an ultra pure germanium detector High Purity Germanium detector (HPGe) detector ORTEC specifically GMX40P4, coaxial geometry. (Author)

  19. Germanium detectors for nuclear spectroscopy: Current research and development activity at LNL

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, D. R., E-mail: daniel.r.napoli@lnl.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Maggioni, G., E-mail: maggioni@lnl.infn.it; Carturan, S.; Gelain, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Department of Physics and Astronomy “G. Galilei”, University of Padova, Via Marzolo 8, 35121 Padova (Italy); Eberth, J. [Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln (Germany); Grimaldi, M. G.; Tatí, S. [Department of Physics and Astronomy, University of Catania (Italy); Riccetto, S. [University of Camerino and INFN of Perugia (Italy); Mea, G. Della [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); University of Trento (Italy)

    2016-07-07

    High-purity Germanium (HPGe) detectors have reached an unprecedented level of sophistication and are still the best solution for high-resolution gamma spectroscopy. In the present work, we will show the results of the characterization of new surface treatments for the production of these detectors, studied in the framework of our multidisciplinary research program in HPGe detector technologies.

  20. Ca isotopes in refractory inclusions

    International Nuclear Information System (INIS)

    Niederer, F.R.; Papanastassiou, D.A.

    1984-01-01

    We report measurements of the absolute isotope abundance of Ca in Ca-Al-rich inclusions from the Allende and Leoville meteorites. Improved high precision measurements are reported also for 46 Ca. We find that nonlinear isotope effects in Ca are extremely rare in these inclusions. The absence of nonlinear effects in Ca, except for the effects in FUN inclusions, is in sharp contrast to the endemic effects in Ti. One fine-grained inclusion shows an excess of 46 Ca of (7 +- 1) per mille, which is consistent with addition of only 46 Ca or of an exotic (*) component with 46 Ca* approx. 48 Ca*. FUN inclusion EK-1-4-1 shows a small 46 Ca excess of (3.3 +- 1.0) per mille; this confirms that the exotic Ca components in EK-1-4-1 were even more deficient in 46 Ca relative to 48 Ca than is the case for normal Ca. The Ca in the Ca-Al-rich inclusions shows mass dependent isotope fractionation effects which have a range from -3.8 to +6.7 per mille per mass unit difference. This range is a factor of 20 wider than the range previously established for bulk meteorites and for terrestrial and lunar samples. Ca and Mg isotope fractionation effects in the Ca-Al-rich inclusions are common and attributed to kinetic isotope effects. (author)

  1. The distribution of gallium, germanium and indium in conventional and non-conventional resources. Implications for global availability

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, Max

    2016-10-25

    Over the past 10 years, increased interest in the supply security of metal and mineral raw materials has resulted in the compilation of many lists of materials of particular concern. These materials are generally referred to as 'critical'. They are perceived to be both of high economic importance, as well as subject to high supply risks. Of particular relevance with respect to supply risk is the assessment of geological risk factors. However, this aspect is not considered in sufficient detail in most studies. In particular, the specific features of elements won as by-products are not adequately represented in any assessment. Yet many of these elements are often classified as critical, mostly due to their apparent importance in high-tech applications, the intransparency of their respective markets and resulting price volatility, and the concentration of their production in China. Gallium, germanium and indium are all good examples of such elements. All three are similar in many respects, and commonly have a similar rating in both the economic importance and supply risk dimensions. The aim of this work was to use these three elements as examples, and investigate whether they are truly as similar as current assessments suggest, or whether there are large underlying differences in their specific supply situations. In particular, the focus was on physical supply limitations: Since by-products can only be extracted with other main-product raw materials, their rate of extraction is limited by the extraction rate of these main products. This means that the relevant quantities for an assessment of their physical supply limitations are not reserves and/or resources, but supply potentials. The supply potential is the quantity of a given by-product which could theoretically be extracted under current market conditions (price, technology) per year if all suitable raw materials were processed accordingly. To assess the supply potentials of gallium, germanium and indium

  2. Noncovalent Hydrogen Isotope Effects

    Science.gov (United States)

    Buchachenko, A. L.; Breslavskaya, N. N.

    2018-02-01

    Zero-point energies (ZPE) and isotope effects, induced by intermolecular, noncovalent vibrations, are computed and tested by experimental data. The ZPE differences of H- and D-complexes of water with hydrogen, methane, and water molecules are about 100-300 cal/mol; they result to isotope effects IE of 1.20-1.70. Semi-ionic bonds between metal ions and water ligands in M(H2O) 6 2+ complexes are much stronger; their ZPEs are about 12-14 kcal/mol per molecule and result to IE of 1.9-2.1 at 300 K. Protonated (deuterated) water and biwater exhibit the largest ZPE differences and isotope effects; the latter are 25-28 and 12-13 for water and biwater, respectively. Noncovalent IEs contribute markedly into the experimentally measured effects and explain many anomalous and even magic properties of the effects, such as the dependence of IE on the solvents and on the presence of the third substances, enormously large isotope effects at the mild conditions, the difference between IEs measured in the reactions of individual protiated and deuterated compounds and those measured in their mixture. Noncovalent IEs are not negligible and should be taken into account to make correct and substantiated conclusions on the reaction mechanisms. The kinetic equations are derived for the total isotope effects, which include noncovalent IEs as additive factors.

  3. Photoconductivity of Germanium Nanowire Arrays Incorporated in Anodic Aluminum Oxide

    International Nuclear Information System (INIS)

    Polyakov, B; Prikulis, J; Grigorjeva, L; Millers, D; Daly, B; Holmes, J D; Erts, D

    2007-01-01

    Photoconductivity of germanium nanowire arrays of 50 and 100 nm diameter incorporated into Anodic Aluminum Oxide (AAO) membranes illuminated with visible light is investigated. Photocurrent response to excitation radiation with time constants faster than 10 -4 s were governed by absorption of incident light by nanowires, while photokinetics with time constants of the order of 10 -3 s originates from the photoluminescence of the AAO matrix. Possible applications of nanowire arrays inside AAO as photoresistors are discussed

  4. Radiation defects produced by neutron irradiation in germanium single crystals

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Honda, Makoto; Atobe, Kozo; Yamaji, Hiromichi; Ide, Mutsutoshi; Okada, Moritami.

    1992-01-01

    The nature of defects produced in germanium single crystals by neutron irradiation at 25 K was studied by measuring the electrical resistivity. It was found that two levels located at E c -0.06 eV and E c -0.13 eV were introduced in an arsenic-doped sample. Electron traps at E c -0.10eV were observed in an indium-doped sample. The change in electrical resistivity during irradiation was also studied. (author)

  5. Assessment of Stable Isotope Distribution in Complex Systems

    Science.gov (United States)

    He, Y.; Cao, X.; Wang, J.; Bao, H.

    2017-12-01

    Biomolecules in living organisms have the potential to approach chemical steady state and even apparent isotope equilibrium because enzymatic reactions are intrinsically reversible. If an apparent local equilibrium can be identified, enzymatic reversibility and its controlling factors may be quantified, which helps to understand complex biochemical processes. Earlier research on isotope fractionation tends to focus on specific process and compare mostly two different chemical species. Using linear regression, "Thermodynamic order", which refers to correlated δ13C and 13β values, has been proposed to be present among many biomolecules by Galimov et al. However, the concept "thermodynamic order" they proposed and the approach they used has been questioned. Here, we propose that the deviation of a complex system from its equilibrium state can be rigorously described as a graph problem as is applied in discrete mathematics. The deviation of isotope distribution from equilibrium state and apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference matrix (|Δα|). Applying the |Δα| matrix analysis to earlier published data of amino acids, we show the existence of apparent local equilibrium among different amino acids in potato and a kind of green alga. The existence of apparent local equilibrium is in turn consistent with the notion that enzymatic reactions can be reversible even in living systems. The result also implies that previous emphasis on external carbon source intake may be misplaced when studying isotope distribution in physiology. In addition to the identification of local equilibrium among biomolecules, the difference matrix approach has the potential to explore chemical or isotope equilibrium state in extraterrestrial bodies, to distinguish living from non-living systems, and to classify living species. This approach will benefit from large numbers of systematic data and advanced pattern

  6. The performance of the γ-ray tracking array GRETINA for γ-ray spectroscopy with fast beams of rare isotopes

    International Nuclear Information System (INIS)

    Weisshaar, D.; Bazin, D.; Bender, P.C.; Campbell, C.M.; Recchia, F.; Bader, V.; Baugher, T.; Belarge, J.; Carpenter, M.P.; Crawford, H.L.; Cromaz, M.; Elman, B.; Fallon, P.; Forney, A.; Gade, A.

    2017-01-01

    The γ-ray tracking array GRETINA was coupled to the S800 magnetic spectrometer for spectroscopy with fast beams of rare isotopes at the National Superconducting Cyclotron Laboratory on the campus of Michigan State University. We describe the technical details of this powerful setup and report on GRETINA's performance achieved with source and in-beam measurements. The γ-ray multiplicity encountered in experiments with fast beams is usually low, allowing for a simplified and efficient treatment of the data in the γ-ray analysis in terms of Doppler reconstruction and spectral quality. The results reported in this work were obtained from GRETINA consisting of 8 detector modules hosting four high-purity germanium crystals each. Currently, GRETINA consists of 10 detector modules.

  7. The performance of the γ-ray tracking array GRETINA for γ-ray spectroscopy with fast beams of rare isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Weisshaar, D., E-mail: weisshaar@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Bazin, D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Bender, P.C. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Campbell, C.M. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Recchia, F. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Bader, V.; Baugher, T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Belarge, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Carpenter, M.P. [Argonne National Laboratory, Argonne, IL 60439 (United States); Crawford, H.L.; Cromaz, M. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Elman, B. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Fallon, P. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Forney, A. [Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (United States); Gade, A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); and others

    2017-03-01

    The γ-ray tracking array GRETINA was coupled to the S800 magnetic spectrometer for spectroscopy with fast beams of rare isotopes at the National Superconducting Cyclotron Laboratory on the campus of Michigan State University. We describe the technical details of this powerful setup and report on GRETINA's performance achieved with source and in-beam measurements. The γ-ray multiplicity encountered in experiments with fast beams is usually low, allowing for a simplified and efficient treatment of the data in the γ-ray analysis in terms of Doppler reconstruction and spectral quality. The results reported in this work were obtained from GRETINA consisting of 8 detector modules hosting four high-purity germanium crystals each. Currently, GRETINA consists of 10 detector modules.

  8. Synthesis, Structure and Investigation of Germanium(IV and Copper(II Complexes with Malic Acid and 1,10ʹ-phenanthroline

    Directory of Open Access Journals (Sweden)

    Inna Seifullina

    2017-12-01

    Full Text Available Two crystalline compounds of germanium(IV with malic acid (HMal and 1,10ʹ-phenanthroline (phen - [Ge(HMal2(phen]•pheh•2H2O (I and [CuCl(phen2][Ge(OH(HMal2] (II were synthesized for the first time and characterized by elemental analysis, IR-spectroscopy and thermogravimetric analysis. There was elucidated from single-crystal X-ray diffraction that two different forms of Germanium are implemented: Ge4+ (I and hydrolyzed GeOH3+ (II to form distorted octahedron and pyramid respectively.

  9. Spectra of germanium and selenium in the 50-350 A region from the PLT tokamak plasma

    International Nuclear Information System (INIS)

    Stratton, B.C.; Hodge, W.L.; Moos, H.W.; Schwob, J.L.; Suckewer, S.; Finkenthal, M.; Cohen, S.

    1983-03-01

    Spectra of germanium and selenium injected into the PLT tokamak plasma were observed in the 50 to 350 A region for GeXIV-XXV (KI to OI-like) and SeXVI-XXIV (KI to NaI-like). A number of 3p/sup k/-3p/sup k-1/3d transitions predicted by isoelectronic sequence extrapolation have been identified. Also, previously identified lines from ions in the AlI to OI-like and KI-like isoelectronic sequences have been observed in the tokamak plasma

  10. Inferring foliar water uptake using stable isotopes of water.

    Science.gov (United States)

    Goldsmith, Gregory R; Lehmann, Marco M; Cernusak, Lucas A; Arend, Matthias; Siegwolf, Rolf T W

    2017-08-01

    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.

  11. Isotope shift studies in gadolinium spectra

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Saksena, G.D.; Venugopalan, A.

    1975-01-01

    Isotope shift studies have been carried out in the gadolinium spectrum using a recording Fabry-Perot spectrometer and gadolinium samples enriched in 156 Gd and 160 Gd isotopes. The source used is a liquid-nitrogen-cooled hollow cathode with Ne as the carrier gas and operating at about 30 mA. Isotope shifts Δsigma (156-160) have been recorded in 350 transitions of Gd I and Gd II. In the case of the Gd I spectrum, the transitions studied presently involve almost all the reported configurations assigned to the energy levels of Gd I. The odd configurations are 4f 7 5d6s 2 , 4f 7 5d 2 6s, 4f 7 5d 3 , 4f 8 6s6p, 4f 7 5d6s7s and 4f 7 6s 2 6p, and the even ones are 4f 8 6s 2 , 4f 7 5d6s6p, 4f 7 6s 2 6p, 4f 8 5d6s and 4f 7 5d 2 6p. In the case of the Gd II spectrum isotope shifts in the lines of the newly classified transition 4f 8 6s - 4f 8 6p have been studied and isotope shift ΔT (156-160) 87 mK has been obtained for the 4f 8 6s configuration. The other transitions of Gd II involve the odd configurations 4f 7 5d6s, 4f 7 6s 2 , 4f 7 5d 2 and 4f 8 6p and the even ones 4f 7 6s6p, 4f 8 5d, 4f 7 5d6p and 4f 8 6p. The ΔT (156-160) of a large number of odd and even levels of Gd I and Gd II have been evaluated. Electronic configurations have been suggested for a number of energy levels and configuration mixing has been pointed out in certain cases. A number of hitherto unreported transitions have been found and using a monoisotopic sample of Gd, that is 160 Gd, their separations from the closest listed transitions have been measured. (author)

  12. A Moessbauer study of the germanium two-electron donor centers in PbSe

    International Nuclear Information System (INIS)

    Terukov, E.I.; Khuzhakulov, Eh.S.

    2005-01-01

    The 73 As( 73 Ge) Moessbauer emission spectroscopy is used for identification of neutral and ionized two-electron germanium centers in PbSe. It is shown that the charge state of antistructural defect 73 Ge, generating in the anion sublattice after 73 As radioactive decay, does not depend on the Fermi level position. In contrast to this, the 73 Ge center in the cation PbSe sublattice represents the electrically active substitution impurity. The emission spectra correspond to the neutral state of the ( 73 Ge 2+ ) donor center in n-type conductors and to the double ionized state of this ( 73 Ge 4+ ) center in p-type conductors [ru

  13. Isotopic dependence of GCR fluence behind shielding

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Hu, Xiaodong; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (±100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (∼170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past; however, less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies

  14. Lead isotope ratios of galenas from the Hida area

    International Nuclear Information System (INIS)

    Sato, Kazuo; Sasaki, Akira; Akiyama, Shin-ichi; Konagai, Kenji.

    1978-01-01

    Ore lead isotope data of the Kamioka and nearby lead-zinc mineralizations in the Hida metamorphic terrain are variable. Small but distinct isotopic variation is observed even in a single ore deposit. The present site of the Hida metamorphic terrain once was occupied by a Precambrian continent. The leads from the metamorphic, plutonic and sedimentary rocks indicate such continental nature of this terrain, as they have more complex isotopic patterns than those observed in the leads from igneous rocks and ores in younger terrains in Japan. The variability of ore lead isotopes in the Hida area could also be related to the presence of the old basement structure, implying that the leads in the Kamioka and nearby ore deposits came from more than a source of material. (mori, K.)

  15. Lithium effects on the mechanical and electronic properties of germanium nanowires

    Science.gov (United States)

    González-Macías, A.; Salazar, F.; Miranda, A.; Trejo-Baños, A.; Pérez, L. A.; Carvajal, E.; Cruz-Irisson, M.

    2018-04-01

    Semiconductor nanowire arrays promise rapid development of a new generation of lithium (Li) batteries because they can store more Li atoms than conventional crystals due to their large surface areas. During the charge-discharge process, the electrodes experience internal stresses that fatigue the material and limit the useful life of the battery. The theoretical study of electronic and mechanical properties of lithiated nanowire arrays allows the designing of electrode materials that could improve battery performance. In this work, we present a density functional theory study of the electronic band structure, formation energy, binding energy, and Young’s modulus (Y) of hydrogen passivated germanium nanowires (H-GeNWs) grown along the [111] and [001] crystallographic directions with surface and interstitial Li atoms. The results show that the germanium nanowires (GeNWs) with surface Li atoms maintain their semiconducting behavior but their energy gap size decreases when the Li concentration grows. In contrast, the GeNWs can have semiconductor or metallic behavior depending on the concentration of the interstitial Li atoms. On the other hand, Y is an indicator of the structural changes that GeNWs suffer due to the concentration of Li atoms. For surface Li atoms, Y stays almost constant, whereas for interstitial Li atoms, the Y values indicate important structural changes in the GeNWs.

  16. Isotope incorporation in broad-snouted caimans (crocodilians

    Directory of Open Access Journals (Sweden)

    Stephane Caut

    2013-05-01

    The trophic ecology and migration of vertebrate species have been increasingly studied using stable isotope analysis. However, this approach requires knowledge on how dietary isotopic values are reflected in consumers' tissues. To date, this information has only been obtained for a handful of ectotherms; in particular, little is known about crocodilians. In this study, diet-tissue discrimination factors (DTDFs and carbon and nitrogen stable isotope turnover rates were estimated for plasma, red blood cells (RBCs, and muscle obtained from broad-snouted caimans (Caiman latirostris. Individuals were fed two different control diets for 189 days. DTDFs for δ15N (Δ15N and δ13C (Δ13C ranged from −2.24‰ to 0.39‰ and from −0.52‰ to 1.06‰, respectively. Isotope turnover rates in tissues, expressed as half-lives, ranged from 11 to 71 days, with plasmaeven when compared to values found for other ectotherms, a result that may be linked to the unique excretion physiology of crocodilians. These stable isotope incorporation data should help inform future interpretations of isotopic values obtained in the field for this taxon.

  17. Isotope analytics for the evaluation of the feeding influence on the isotope ratio in beef samples; Isotopenanalytik zur Bestimmung des Einflusses der Ernaehrung auf die Isotopenzusammensetzung in Rinderproben

    Energy Technology Data Exchange (ETDEWEB)

    Herwig, Nadine

    2010-11-17

    Information about the origin of food and associated production systems has a high significance for food control. An extremely promising approach to obtain such information is the determination of isotope ratios of different elements. In this study the correlation of the isotope ratios C-13/C-12, N-15/N-14, Mg-25/Mg-24, and Sr-87/Sr-86 in bovine samples (milk and urine) and the corresponding isotope ratios in feed was investigated. It was shown that in the bovine samples all four isotope ratios correlate with the isotope composition of the feed. The isotope ratios of strontium and magnesium have the advantage that they directly reflect the isotope ratios of the ingested feed since there is no isotope fractionation in the bovine organism which is in contrast to the case of carbon and nitrogen isotope ratios. From the present feeding study it is evident, that a feed change leads to a significant change in the delta C-13 values in milk and urine within 10 days already. For the deltaN-15 values the feed change was only visible in the bovine urine after 49 days. Investigations of cows from two different regions (Berlin/Germany and Goestling/Austria) kept at different feeding regimes revealed no differences in the N-15/N-14 and Mg-26/Mg-24 isotope ratios. The strongest correlation between the isotope ratio of the bovine samples and the kind of ingested feed was observed for the carbon isotope ratio. With this ratio even smallest differences in the feed composition were traceable in the bovine samples. Since different regions usually coincide with different feeding regimes, carbon isotope ratios can be used to distinguish bovine samples from different regions if the delta C-13 values of the ingested feed are different. Furthermore, the determination of strontium isotope ratios revealed significant differences between bovine and feed samples of Berlin and Goestling due to the different geologic realities. Hence the carbon and strontium isotope ratios allow the best

  18. Alpha Decay of Even-Even Superheavy Nuclei

    International Nuclear Information System (INIS)

    Oudih, M.R.; Hamza, Y.; Fellah, M.; Allal, N.H.; Fellah, M.; Allal, N.H.

    2011-01-01

    Alpha decay properties of even-even superheavy nuclei with 112.Z.120 have been investigated using the Hartree-Fock-Bogoliubov approach. The method is based on the SkP Skyrme interaction and the Lipkin-Nogami prescription for treating the pairing correlations. The alpha decay energies are extracted from the binding energies and then used for the calculation of the decay half-lives using a formula similar to that of Viola-Seaborg. The parameters of the formula were obtained through a least square fit to even-even heavy nuclei taken from the tables of Audi- Wapstra and some more recent references. The results are compared with other theoretical evaluations.

  19. Study of the creep of germanium bi-crystals by X ray topography and electronic microscopy

    International Nuclear Information System (INIS)

    Gay, Marie-Odile

    1981-01-01

    This research thesis addresses the study of the microscopic as well as macroscopic aspect of the role of grain boundary during deformation, by studying the creep of Germanium bi-crystals. The objective was to observe interactions of network dislocations with the boundary as well as the evolution of dislocations in each grain. During the first stages of deformation, samples have been examined by X ray topography, a technique which suits well the observation of low deformed samples, provided their initial dislocation density is very low. At higher deformation, more conventional techniques of observation of sliding systems and electronic microscopy have been used. After some general recalls, the definition of twin boundaries and of their structure in terms of dislocation, a look at germanium deformation, and an overview of works performed on bi-crystals deformation, the author presents the experimental methods and apparatuses. He reports and discusses the obtained results at the beginning of deformation as well as during next phases

  20. Annealing effect on spin density of broken bonds and on the structure of amorphous germanium

    International Nuclear Information System (INIS)

    Bukhan'ko, F.N.; Okunev, V.D.; Samojlenko, Z.A.

    1989-01-01

    Dependence of volumetric spin density of broken bonds in a-Ge films, produced by cathode sputtering in argon, on the annealing temperature is investigated by ESR method. The film structure is controlled by the X-ray method. Two ESR lines with g=2.019 and g=2.003, their intensities changing non-monotonously with annealing temperature are observed. The line with g=2.019 is typical of only amorphous germanium state, and the line with g=2.003 is preserved after film crystallization. Under comparison of results with structural data a conclusion is made that the observed lines in ESR spectra are linked with broken bonds in peripheral regions of two types of clusters. The line with g=2.003 is conditioned by broken bonds in the peripheral cluster regions with standard cubic atom packing and the line with g=2.019 is linked with clusters of hexagonal type which is not typical of crystalline germanium standard structure

  1. Individual-specific transgenerational marking of fish populations based on a barium dual-isotope procedure.

    Science.gov (United States)

    Huelga-Suarez, Gonzalo; Moldovan, Mariella; Garcia-Valiente, America; Garcia-Vazquez, Eva; Alonso, J Ignacio Garcia

    2012-01-03

    The present study focuses on the development and evaluation of an individual-specific transgenerational marking procedure using two enriched barium isotopes, (135)Ba and (137)Ba, mixed at a given and selectable molar ratio. The method is based on the deconvolution of the isotope patterns found in the sample into four molar contribution factors: natural xenon (Xe nat), natural barium (Ba nat), Ba135, and Ba137. The ratio of molar contributions between Ba137 and Ba135 is constant and independent of the contribution of natural barium in the sample. This procedure was tested in brown trout ( Salmo trutta ) kept in captivity. Trout were injected with three different Ba137/Ba135 isotopic signatures ca. 7 months and 7 days before spawning to compare the efficiency of the marking procedure at long and short term, respectively. The barium isotopic profiles were measured in the offspring by means of inductively coupled plasma mass spectrometry. Each of the three different isotopic signatures was unequivocally identified in the offspring in both whole eggs and larvae. For 9 month old offspring, the characteristic barium isotope signatures could also be detected in the otoliths even in the presence of a high and variable amount of barium of natural isotope abundance. In conclusion, it can be stated that the proposed dual-isotope marking is inheritable and can be detected after both long-term and short-term marking. Furthermore, the dual-isotope marking can be made individual-specific, so that it allows identification of offspring from a single individual or a group of individuals within a given fish group. © 2011 American Chemical Society

  2. Coulomb excitation of neutron-rich odd-$A$ Cd isotopes

    CERN Multimedia

    Reiter, P; Kruecken, R; Gernhaeuser, R A; Kroell, T; Leske, J; Marginean, N M

    We propose to study excited states in the odd-${A}$ isotopes $^{123,125,127}$Cd by ${\\gamma}$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to determine the B(E2) values connecting excited states with the ground state as well as the long-lived (11/2$^{-}$) isomer. The proposed study profits from the unique capability of ISOLDE to produce beams containing Cd in the ground state or in the isomeric state. Our recent results on the neutron-rich even-A Cd nuclei appear to show that these nuclei may possess some collectivity beyond that calculated by modern shell-model predictions. Beyond-mean-field calculations also predict these nuclei to be weakly deformed. These facets are surprising considering their proximity to the doubly magic $^{132}$Sn. Coulomb-excitation studies of odd-${A}$ Cd isotopes may give a unique insight into the deformation-driving roles played by different orbits in this region. Such studies of the onset of collectivity become especially important in light of recent...

  3. Ultralow background germanium gamma-ray spectrometer using superclean materials and cosmic-ray anticoincidence

    International Nuclear Information System (INIS)

    Reeves, J.H.; Hensley, W.K.; Brodzinski, R.L.; Ryge, P.

    1983-10-01

    Efforts to measure the double beta decay of 76 Ge as predicted by Grand Unified Theories have resulted in the development of a high resolution germanium diode gamma-ray spectrometer with an exceptionally low background. This paper describes the development of this system and how these techniques can be utilized to significantly reduce the background in high resolution photon spectrometers at only a moderate cost

  4. Isotopic and noble gas geochemistry in geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B.M.; DePaolo, D.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    The objective of this program is to provide, through isotopic analyses of fluids, fluid inclusions, and rocks and minerals coupled with improved methods for geochemical data analysis, needed information regarding sources of geothermal heat and fluids, the spatial distribution of fluid types, subsurface flow, water-rock reaction paths and rates, and the temporal evolution of geothermal systems. Isotopic studies of geothermal fluids have previously been limited to the light stable isotopes of H, C, and O. However, other isotopic systems such as the noble gases (He, Ne, Ar, Kr and Xe) and reactive elements (e.g. B, N, S, Sr and Pb) are complementary and may even be more important in some geothermal systems. The chemistry and isotopic composition of a fluid moving through the crust will change in space and time in response to varying chemical and physical parameters or by mixing with additional fluids. The chemically inert noble gases often see through these variations, making them excellent tracers for heat and fluid sources. Whereas, the isotopic compositions of reactive elements are useful tools in characterizing water-rock interaction and modeling the movement of fluids through a geothermal reservoir.

  5. Molybdenum blue reaction and determination of phosphorus in waters containing arsenic, silicon, and germanium

    Science.gov (United States)

    Levine, H.; Rowe, J.J.; Grimaldi, F.S.

    1955-01-01

    Microgram amounts of phosphate are usually determined by the molybdenum blue reaction, but this reaction is not specific for phosphorus. The research established the range of conditions under which phosphate, arsenate, silicate, and germanate give the molybdenum blue reaction for differentiating these elements, and developed a method for the determination of phosphate in waters containing up to 10 p.p.m. of the oxides of germanium, arsenic(V), and silicon. With stannous chloride or 1-amino-2-naphthol-4-sulfonic acid as the reducing agent no conditions were found for distinguishing silicate from germanate and phosphate from arsenate. In the recommended procedure the phosphate is concentrated by coprecipitation on aluminum hydroxide, and coprecipitated arsenic, germanium, and silicon are volatilized by a mixture of hydrofluoric, hydrochloric, and hydrobromic acids prior to the determination of phosphate. The authors are able to report that the total phosphorus content of several samples of sea water from the Gulf of Mexico ranged from 0.018 to 0.059 mg. of phosphorus pentoxide per liter of water.

  6. Multiple pulse traveling wave excitation of neon-like germanium

    International Nuclear Information System (INIS)

    Moreno, J. C.; Nilsen, J.; Silva, L. B. da

    1995-01-01

    Traveling wave excitation has been shown to significantly increase the output intensity of the neon-like germanium x-ray laser. The driving laser pulse consisted of three 100 ps Gaussian laser pulses separated by 400 ps. Traveling wave excitation was employed by tilting the wave front of the driving laser by 45 degrees to match the propagation speed of the x-ray laser photons along the length of the target. We show results of experiments with the traveling wave, with no traveling wave, and against the traveling wave and comparisons to a numerical model. Gain was inferred from line intensity measurements at two lengths

  7. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Tengku Kamarul Bahri, T.N.H., E-mail: tnhidayah2@gmail.com [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Wagiran, H.; Hussin, R.; Saeed, M.A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Hossain, I. [Department of Physics, College of Science and Arts, King Abdul Aziz University, 21911 Rabigh (Saudi Arabia); Ali, H. [Department of Radiotherapy and Oncology, Hospital Sultan Ismail, 81100 Johor Bahru (Malaysia)

    2014-10-01

    Highlights: •The TL properties of 29.9CaO–70B{sub 2}O{sub 3}: 0.1GeO{sub 2} glass has been investigated. •We exposed glass samples to 6 MV and 10 MV in a dose range of 0.5–4.0 Gy. •This glass has a potential material to be used for application in radiotherapy. -- Abstract: Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5–4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy.

  8. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    International Nuclear Information System (INIS)

    Tengku Kamarul Bahri, T.N.H.; Wagiran, H.; Hussin, R.; Saeed, M.A.; Hossain, I.; Ali, H.

    2014-01-01

    Highlights: •The TL properties of 29.9CaO–70B 2 O 3 : 0.1GeO 2 glass has been investigated. •We exposed glass samples to 6 MV and 10 MV in a dose range of 0.5–4.0 Gy. •This glass has a potential material to be used for application in radiotherapy. -- Abstract: Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5–4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy

  9. Long-wavelength germanium photodetectors by ion implantation

    International Nuclear Information System (INIS)

    Wu, I.C.; Beeman, J.W.; Luke, P.N.; Hansen, W.L.; Haller, E.E.

    1990-11-01

    Extrinsic far-infrared photoconductivity in thin high-purity germanium wafers implanted with multiple-energy boron ions has been investigated. Initial results from Fourier transform spectrometer(FTS) measurements have demonstrated that photodetectors fabricated from this material have an extended long-wavelength threshold near 192μm. Due to the high-purity substrate, the ability to block the hopping conduction in the implanted IR-active layer yields dark currents of less than 100 electrons/sec at temperatures below 1.3 K under an operating bias of up to 70 mV. Optimum peak responsivity and noise equivalent power (NEP) for these sensitive detectors are 0.9 A/W and 5 x 10 -16 W/Hz 1/2 at 99 μm, respectively. The dependence of the performance of devices on the residual donor concentration in the implanted layer will be discussed. 12 refs., 4 figs

  10. Interactions of germanium atoms with silica surfaces

    International Nuclear Information System (INIS)

    Stanley, Scott K.; Coffee, Shawn S.; Ekerdt, John G.

    2005-01-01

    GeH 4 is thermally cracked over a hot filament depositing 0.7-15 ML Ge onto 2-7 nm SiO 2 /Si(1 0 0) at substrate temperatures of 300-970 K. Ge bonding changes are analyzed during annealing with X-ray photoelectron spectroscopy. Ge, GeH x , GeO, and GeO 2 desorption is monitored through temperature programmed desorption in the temperature range 300-1000 K. Low temperature desorption features are attributed to GeO and GeH 4 . No GeO 2 desorption is observed, but GeO 2 decomposition to Ge through high temperature pathways is seen above 750 K. Germanium oxidization results from Ge etching of the oxide substrate. With these results, explanations for the failure of conventional chemical vapor deposition to produce Ge nanocrystals on SiO 2 surfaces are proposed

  11. Nitrogen Isotope Evidence for a Shift in Eastern Beringian Nitrogen Cycle after the Terminal Pleistocene

    Science.gov (United States)

    Tahmasebi, F.; Longstaffe, F. J.; Zazula, G.

    2016-12-01

    The loess deposits of eastern Beringia, a region in North America between 60° and 70°N latitude and bounded by Chukchi Sea to the west and the Mackenzie River to the east, are a magnificent repository of Late Pleistocene megafauna fossils. The stable carbon and nitrogen isotope compositions of these fossils are measured to determine the paleodiet of these animals, and hence the paleoenvironment of this ecosystem during the Quaternary. For this approach to be most successful, however, requires consideration of possible changes in nutrient cycling and hence the carbon and nitrogen isotopic compositions of vegetation in this ecosystem. To test for such a shift following the terminal Pleistocene, we analyzed the stable carbon and nitrogen isotope compositions of modern plants and bone collagen of Arctic ground squirrels from Yukon Territory, and fossil plants and bones recovered from Late Pleistocene fossil Arctic ground squirrel nests. The data for modern samples provided a measure of the isotopic fractionation between ground squirrel bone collagen and their diet. The over-wintering isotopic effect of decay on typical forage grasses was also measured to evaluate its role in determining fossil plant isotopic compositions. The grasses showed only a minor change ( 0-1 ‰) in carbon isotope composition, but a major change ( 2-10 ‰) in nitrogen isotope composition over the 317-day experiment. Based on the modern carbon isotope fractionation between ground squirrel bone collagen and their diet, the modern vegetation carbon isotopic baseline provides a suitable proxy for the Late Pleistocene of eastern Beringia, after accounting for the Suess effect. However, the predicted nitrogen isotope composition of vegetation comprising the diet of fossil ground squirrels remains 2.5 ‰ higher than modern grasslands in this area, even after accounting for possible N-15 enrichment during decay. This result suggests a change in N cycling in this region since the Late Pleistocene.

  12. Effect of germanium concentrations on tunnelling current calculation of Si/Si1-xGex/Si heterojunction bipolar transistor

    Science.gov (United States)

    Hasanah, L.; Suhendi, E.; Khairrurijal

    2018-05-01

    Tunelling current calculation on Si/Si1-xGex/Si heterojunction bipolar transistor was carried out by including the coupling between transversal and longitudinal components of electron motion. The calculation results indicated that the coupling between kinetic energy in parallel and perpendicular to S1-xGex barrier surface affected tunneling current significantly when electron velocity was faster than 1x105 m/s. This analytical tunneling current model was then used to study how the germanium concentration in base to Si/Si1-xGex/Si heterojunction bipolar transistor influenced the tunneling current. It is obtained that tunneling current increased as the germanium concentration given in base decreased.

  13. Method of eliminating gaseous hydrogen isotopes

    International Nuclear Information System (INIS)

    Nagakura, Masaaki; Imaizumi, Hideki; Suemori, Nobuo; Aizawa, Takashi; Naito, Taisei.

    1983-01-01

    Purpose: To prevent external diffusion of gaseous hydrogen isotopes such as tritium or the like upon occurrence of tritium leakage accident in a thermonuclear reactor by recovering to eliminate the isotopes rapidly and with safety. Method: Gases at the region of a reactor container where hydrogen isotopes might leak are sucked by a recycing pump, dehumidified in a dehumidifier and then recycled from a preheater through a catalytic oxidation reactor to a water absorption tower. In this structure, the dehumidifier is disposed at the upstream of the catalytic oxidation reactor to reduce the water content of the gases to be processed, whereby the eliminating efficiency for the gases to be processed can be maintained well even when the oxidation reactor is operated at a low temperature condition near the ambient temperature. This method is based on the fact that the oxidating reactivity of the catalyst can be improved significantly by eliminating the water content in the gases to be processed. (Yoshino, Y.)

  14. An isotope-enrichment unit and a process for isotope separation

    International Nuclear Information System (INIS)

    1981-01-01

    A process and equipment for isotope enrichment using gas-centrifuge cascades are described. The method is described as applied to the separation of uranium isotopes, using natural-abundance uranium hexafluoride as the gaseous-mixture feedstock. (U.K.)

  15. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    KAUST Repository

    Almuslem, A. S.

    2017-02-14

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  16. Salt effects on isotope partitioning and their geochemical implications: An overview

    International Nuclear Information System (INIS)

    Horita, J.; Cole, D.R.; Fortier, S.M.

    1996-01-01

    Essential to the use of stable isotopes as natural tracers and geothermometers is the knowledge of equilibrium isotope partitioning between different phases and species, which is usually a function of temperature only. The one exception known to date is oxygen and hydrogen isotope fractionation between liquid water and other phases (steam, gases, minerals), which changes upon the addition of salts to water, i.e., the isotope salt salt effect. Our knowledge of this effect, the difference between activity and composition (a-X) of isotopic water molecules in salt solutions, is very limited and controversial, especially at elevated temperatures. For the last several years, we have been conducting a detailed, systematic experimental study at Oak Ridge National Laboratory to determine the isotope salt effects from room temperature to elevated temperatures (currently to 500 degree C). From this effort, a simple, coherent picture of the isotope salt effect is emerging, that differs markedly from the complex results reported in the literature. In this communication, we present an overview on the isotope salt effect, obtained chiefly from our study. Observed isotope salt effects in salt solutions are significant even at elevated temperatures. The importance and implications of the isotope salt effect for isotopic studies of brine-dominated systems are also discussed in general terms

  17. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  18. Study of shape transition in the neutron-rich Os isotopes

    Directory of Open Access Journals (Sweden)

    John P.R.

    2014-03-01

    Full Text Available The neutron-rich isotopes of tungsten, osmium and platinum have different shapes in their ground states and present also shape transitions phenomena. Spectroscopic information for these nuclei is scarce and often limited to the gamma rays from the decay of isomeric states. For the neutron-rich even-even osmium isotopes 194Os and 198Os, a shape transition between a slightly prolate deformed to an oblate deformed ground state was deduced from the observed level schemes. For the even-even nucleus lying in between, 196Os, no gamma ray transition is known. In order to elucidate the shape transition and to test the nuclear models describing it, this region was investigated through gamma-ray spectroscopy using the AGATA demonstrator and the large acceptance heavy-ion spectrometer PRISMA at LNL, Italy. A two-nucleon transfer from a 198Pt target to a stable 82Se beam was utilized to populate medium-high spin states of 196Os. The analysis method and preliminary results, including the first life-time measurement of isomeric states with AGATA, are presented.

  19. Advances in isotopic analysis for food authenticity testing

    DEFF Research Database (Denmark)

    Laursen, Kristian Holst; Bontempo, L.; Camin, Federica

    2016-01-01

    Abstract Stable isotope analysis has been used for food authenticity testing for more than 30 years and is today being utilized on a routine basis for a wide variety of food commodities. During the past decade, major analytical method developments have been made and the fundamental understanding...... authenticity testing is currently developing even further. In this chapter, we aim to provide an overview of the latest developments in stable isotope analysis for food authenticity testing. As several review articles and book chapters have recently addressed this topic, we will primarily focus on relevant...... literature from the past 5 years. We will focus on well-established methods for food authenticity testing using stable isotopes but will also include recent methodological developments, new applications, and current and future challenges....

  20. Dark Matter Search with sub-keV Germanium Detectors at the China Jinping Underground Laboratory

    International Nuclear Information System (INIS)

    Yue Qian; Wong, Henry T

    2012-01-01

    Germanium detectors with sub-keV sensitivities open a window to search for low-mass WIMP dark matter. The CDEX-TEXONO Collaboration is conducting the first research program at the new China Jinping Underground Laboratory with this approach. The status and plans of the laboratory and the experiment are discussed.