Enhanced recovery under constrained conditions
Energy Technology Data Exchange (ETDEWEB)
Mungan, N. (AEC Oil and Gas Co. (US))
1990-08-01
This article discusses conditions favorable for the application of enhanced recovery activities in the energy industry. The author focuses on the enhanced recovery of oil. The estimated worldwide in-place gas and oil volumes by geographic areas are estimated.
Constraining dike emplacement conditions from virtual outcrop modelling
Jørgen Kjøll, Hans; Andersen, Torgeir; Tegner, Christian
2017-04-01
In the Late Neoproterozoic, the paleocontinents of Baltica and Laurentia rifted apart and sea-floor spreading into the Ordovician formed the Iapetus Ocean. The Iapetus later closed and the two continents collided forming the Caledonian orogen. Rocks related to the break-up and subsequent opening of the Iapetus, now reside as partly well-preserved tectonic lenses in thrust nappes within the Scandinavian Caledonides. The break-up architecture can be separated in two distinct domains, one hyperextended magma-poor segment in the SW, and one magma-rich part that comprise the Baltoscandian Dike Swarm (BDS), the main subject of this study. The magma-rich segment is exposed from c. Røros in the south, through Sweden and into Northern Norway, a distance of more than 900 kilometers. The magmatism of the BDS has been dated to c. 580-610 Ma and is now interpreted to represent a break-up related large igneous province (LIP). The BDS is generally well exposed in freshly glaciated outcrops and mountain cliffs. It intrudes proximal to distal marine, argillaceous, meta-sandstones and carbonates that locally display well-preserved extensional features, such as normal faults at both high and low angle. Partial melting of host rocks is observed at several localities, indicating relatively high temperatures during dike emplacement. Temperature estimates by previous workers indicate high-T (850°C) conditions during the break-up from the northernmost part of the dike swarm. Emplacement depths have not yet been accurately constrained, although some anomalous high pressure for an extensional environment (≈9Kbar) is indicated in the Corrovarre area. The spectacular exposure of the dike swarm provides the opportunity to evaluate the conditions during emplacement from dike geometries and morphologies. The several hundred meters high vertical cliff walls give excellent opportunities to assess the dike geometries over a range of host lithologies and across several km of stratigraphy (up to
Directory of Open Access Journals (Sweden)
David T Godsiff, Shelly Coe, Charlotte Elsworth-Edelsten, Johnny Collett, Ken Howells, Martyn Morris, Helen Dawes
2018-03-01
Full Text Available Mechanisms underpinning self-selected walking speed (SSWS are poorly understood. The present study investigated the extent to which SSWS is related to metabolism, energy cost, and/or perceptual parameters during both normal and artificially constrained walking. Fourteen participants with no pathology affecting gait were tested under standard conditions. Subjects walked on a motorized treadmill at speeds derived from their SSWS as a continuous protocol. RPE scores (CR10 and expired air to calculate energy cost (J.kg-1.m-1 and carbohydrate (CHO oxidation rate (J.kg-1.min-1 were collected during minutes 3-4 at each speed. Eight individuals were re-tested under the same conditions within one week with a hip and knee-brace to immobilize their right leg. Deflection in RPE scores (CR10 and CHO oxidation rate (J.kg-1.min-1 were not related to SSWS (five and three people had deflections in the defined range of SSWS in constrained and unconstrained conditions, respectively (p > 0.05. Constrained walking elicited a higher energy cost (J.kg-1.m-1 and slower SSWS (p 0.05. SSWS did not occur at a minimum energy cost (J.kg-1.m-1 in either condition, however, the size of the minimum energy cost to SSWS disparity was the same (Froude {Fr} = 0.09 in both conditions (p = 0.36. Perceptions of exertion can modify walking patterns and therefore SSWS and metabolism/ energy cost are not directly related. Strategies which minimize perceived exertion may enable faster walking in people with altered gait as our findings indicate they should self-optimize to the same extent under different conditions.
Maximum Entropy and Probability Kinematics Constrained by Conditionals
Directory of Open Access Journals (Sweden)
Stefan Lukits
2015-03-01
Full Text Available Two open questions of inductive reasoning are solved: (1 does the principle of maximum entropy (PME give a solution to the obverse Majerník problem; and (2 isWagner correct when he claims that Jeffrey’s updating principle (JUP contradicts PME? Majerník shows that PME provides unique and plausible marginal probabilities, given conditional probabilities. The obverse problem posed here is whether PME also provides such conditional probabilities, given certain marginal probabilities. The theorem developed to solve the obverse Majerník problem demonstrates that in the special case introduced by Wagner PME does not contradict JUP, but elegantly generalizes it and offers a more integrated approach to probability updating.
Modeling frictional melt injection to constrain coseismic physical conditions
Sawyer, William J.; Resor, Phillip G.
2017-07-01
Pseudotachylyte, a fault rock formed through coseismic frictional melting, provides an important record of coseismic mechanics. In particular, injection veins formed at a high angle to the fault surface have been used to estimate rupture directivity, velocity, pulse length, stress drop, as well as slip weakening distance and wall rock stiffness. These studies have generally treated injection vein formation as a purely elastic process and have assumed that processes of melt generation, transport, and solidification have little influence on the final vein geometry. Using a pressurized crack model, an analytical approximation of injection vein formation based on dike intrusion, we find that the timescales of quenching and flow propagation may be similar for a subset of injection veins compiled from the Asbestos Mountain Fault, USA, Gole Larghe Fault Zone, Italy, and the Fort Foster Brittle Zone, USA under minimum melt temperature conditions. 34% of the veins are found to be flow limited, with a final geometry that may reflect cooling of the vein before it reaches an elastic equilibrium with the wall rock. Formation of these veins is a dynamic process whose behavior is not fully captured by the analytical approach. To assess the applicability of simplifying assumptions of the pressurized crack we employ a time-dependent finite-element model of injection vein formation that couples elastic deformation of the wall rock with the fluid dynamics and heat transfer of the frictional melt. This finite element model reveals that two basic assumptions of the pressurized crack model, self-similar growth and a uniform pressure gradient, are false. The pressurized crack model thus underestimates flow propagation time by 2-3 orders of magnitude. Flow limiting may therefore occur under a wider range of conditions than previously thought. Flow-limited veins may be recognizable in the field where veins have tapered profiles or smaller aspect ratios than expected. The occurrence and
A Modified FCM Classifier Constrained by Conditional Random Field Model for Remote Sensing Imagery
Directory of Open Access Journals (Sweden)
WANG Shaoyu
2016-12-01
Full Text Available Remote sensing imagery has abundant spatial correlation information, but traditional pixel-based clustering algorithms don't take the spatial information into account, therefore the results are often not good. To this issue, a modified FCM classifier constrained by conditional random field model is proposed. Adjacent pixels' priori classified information will have a constraint on the classification of the center pixel, thus extracting spatial correlation information. Spectral information and spatial correlation information are considered at the same time when clustering based on second order conditional random field. What's more, the global optimal inference of pixel's classified posterior probability can be get using loopy belief propagation. The experiment shows that the proposed algorithm can effectively maintain the shape feature of the object, and the classification accuracy is higher than traditional algorithms.
A variant constrained genetic algorithm for solving conditional nonlinear optimal perturbations
Zheng, Qin; Sha, Jianxin; Shu, Hang; Lu, Xiaoqing
2014-01-01
A variant constrained genetic algorithm (VCGA) for effective tracking of conditional nonlinear optimal perturbations (CNOPs) is presented. Compared with traditional constraint handling methods, the treatment of the constraint condition in VCGA is relatively easy to implement. Moreover, it does not require adjustments to indefinite parameters. Using a hybrid crossover operator and the newly developed multi-ply mutation operator, VCGA improves the performance of GAs. To demonstrate the capability of VCGA to catch CNOPS in non-smooth cases, a partial differential equation, which has "onoff" switches in its forcing term, is employed as the nonlinear model. To search global CNOPs of the nonlinear model, numerical experiments using VCGA, the traditional gradient descent algorithm based on the adjoint method (ADJ), and a GA using tournament selection operation and the niching technique (GA-DEB) were performed. The results with various initial reference states showed that, in smooth cases, all three optimization methods are able to catch global CNOPs. Nevertheless, in non-smooth situations, a large proportion of CNOPs captured by the ADJ are local. Compared with ADJ, the performance of GA-DEB shows considerable improvement, but it is far below VCGA. Further, the impacts of population sizes on both VCGA and GA-DEB were investigated. The results were used to estimate the computation time of VCGA and GA-DEB in obtaining CNOPs. The computational costs for VCGA, GA-DEB and ADJ to catch CNOPs of the nonlinear model are also compared.
Rahmouni, A.; Beidouri, Z.; Benamar, R.
2013-09-01
The purpose of the present paper was the development of a physically discrete model for geometrically nonlinear free transverse constrained vibrations of beams, which may replace, if sufficient degrees of freedom are used, the previously developed continuous nonlinear beam constrained vibration models. The discrete model proposed is an N-Degrees of Freedom (N-dof) system made of N masses placed at the ends of solid bars connected by torsional springs, presenting the beam flexural rigidity. The large transverse displacements of the bar ends induce a variation in their lengths giving rise to axial forces modelled by longitudinal springs. The calculations made allowed application of the semi-analytical model developed previously for nonlinear structural vibration involving three tensors, namely the mass tensor mij, the linear rigidity tensor kij and the nonlinearity tensor bijkl. By application of Hamilton's principle and spectral analysis, the nonlinear vibration problem is reduced to a nonlinear algebraic system, examined for increasing numbers of dof. The results obtained by the physically discrete model showed a good agreement and a quick convergence to the equivalent continuous beam model, for various fixed boundary conditions, for both the linear frequencies and the nonlinear backbone curves, and also for the corresponding mode shapes. The model, validated here for the simply supported and clamped ends, may be used in further works to present the flexural linear and nonlinear constrained vibrations of beams with various types of discontinuities in the mass or in the elasticity distributions. The development of an adequate discrete model including the effect of the axial strains induced by large displacement amplitudes, which is predominant in geometrically nonlinear transverse constrained vibrations of beams [1]. The investigation of the results such a discrete model may lead to in the case of nonlinear free vibrations. The development of the analogy between the
Woo, Sui Chi
Quasars are known for generating luminosities of up to 1047 erg s--1 in volumes of scales smaller than 2 x 10 15 cm. The optical/UV continuum emission is generally believed to arise from a rotating accretion disk (AD) surrounding a supermassive black hole (SMBH) of ˜ 108 M⊙ . Such emission can be calculated by treating the AD as a multi-temperature blackbody. While the continuum emitting region is well defined, the properties, location and kinematics of the broad emission line regions (BELRs) and broad absorption line regions (BALRs) remain unclear. On one hand, the reverberation mapping technique can give constraints on the location of the BELRs, but not the kinematics. On the other hand, the line-of-sight kinematics of the BALRs is directly observable, but their locations are not well constrained, resulting in a large range of inferred distances, from 0.01 pc to tens of kpc. Therefore, I combined observational results to investigate the geometry, size, and physical conditions of the BELRs and BALRs. I verified that the Lyalpha and CIV BELRs are located at a similar distance. Using these findings, I was able to constrain the size of the Lyalpha BELR and place a lower limit on the size of the N V BALR. I built an empirical model with the optical/UV continuum emission from the AD, the BELR from the chromosphere of the AD, and the outflowing BALR. In the continuum region, I found that over 95 percent of the total flux comes from the region at ~ 125rg, where rg is the gravitational radius of the SMBH. For the BELRs, I computed a disk-wind model with relativistic effects to explain the often-observed single-peaked BEL profiles. However, I show that such a model cannot explain the observed blue asymmetries in the high-ionization BELs or their blueshifted peaks relative to low-ionization BELs. Using results on time variability of BALR gas, and assuming the variability is caused by the gas moving perpendicular across the line-of-sight over a time scale of about a year
EVELOPMENT OF EDUCATIONAL SPECIALIST’S CREATIVITY IN THE PROCESS OF CONFLICT RESOLUTION
Directory of Open Access Journals (Sweden)
Darya N. Sergeeva
2016-01-01
Full Text Available The aim of the article is to present creativity in the process of pedagogical conflict resolution. The results of psychological research conducted among secondary school teachers are given. The article summarizes the results of the study of personality and creativity highlighted its main components. Methods. The methods involve theoretical analysis of the problem and the subject of investigation, philosophical, psychological, pedagogical, sociological literature research; empirical methods (school teacher’s psychological testing by means of hand-picked procedures; methods stimulating educational specialists to take initiative in the process of conflict situations› constructive resolution (training methods group discussion, role-playing and business games, specific situations analysis; quantitative and qualitative analysis of empirical results (computer data processing, data design in the form of tables, schemes, illustrations, diagrams, bar charts, methods of mathematical statistics (The Spearman's Rank Correlation Coefficient, φ-Fisher. Data processing procedure is actualized by means of MS Excel package and statistical manipulation program «Statistica 8.0». Results and scientific novelty. The scientific belief of the following concepts content is concretized: «educational specialist’s creativity in the process of conflict resolution», «pedagogical conflict»; psycho-pedagogical conditions of creativity development in the process of conflict resolution are determined. Personal and behavioral features of various creativity level pedagogues are elicited. The correlation of educational specialist’s creativity with peculiarities of their behavior in conflict situations is revealed. It is stated that creativity appears to be one of the determinant of individual’s action, which is oriented on constructive conflict resolution. The program schemed by us promoted the extension of the teachers creative potential, which, in return
Directory of Open Access Journals (Sweden)
2007-04-01
Full Text Available The influence of adhesion to the mould wall on the released strain of a highly filled anhydride cured epoxy resin (EP, which was hardened in an aluminium mould under constrained and unconstrained condition, was investigated. The shrinkage-induced strain was measured by fibre optical sensing technique. Fibre Bragg Grating (FBG sensors were embedded into the curing EP placed in a cylindrical mould cavity. The cure-induced strain signals were detected in both, vertical and horizontal directions, during isothermal curing at 75 °C for 1000 minutes. A huge difference in the strain signal of both directions could be detected for the different adhesion conditions. Under non-adhering condition the horizontal and vertical strain-time traces were practically identical resulting in a compressive strain at the end of about 3200 ppm, which is a proof of free or isotropic shrinking. However, under constrained condition the horizontal shrinkage in the EP was prevented due to its adhesion to the mould wall. So, the curing material shrunk preferably in vertical direction. This resulted in much higher released compressive strain signals in vertical (10430 ppm than in horizontal (2230 ppm direction. The constrained cured EP resins are under inner stresses. Qualitative information on the residual stress state in the molding was deduced by exploiting the birefringence of the EP.
Jones, C. E.; Sigut, T. A. A.; Grzenia, B. J.; Tycner, C.; Zavala, R. T.
2017-07-01
We utilize a multi-step modeling process to produce synthetic interferometric and spectroscopic observables, which are then compared to their observed counterparts. Our extensive set of interferometric observations of the Be star 48 Per, totaling 291 data points, were obtained at the Navy Precision Optical Interferometer from 2006 November 07 to 23. Our models were further constrained by comparison with contemporaneous Hα line spectroscopy obtained at the John S. Hall Telescope at the Lowell Observatory on 2006 November 1. Theoretical spectral energy distributions, SEDs, for 48 Per were confirmed by comparison with observations over a wavelength regime of 0.4-60 μm from Touhami et al. and Vieira et al. Our best-fitting combined model from Hα spectroscopy, Hα interferometry, and SED fitting has a power-law density fall off, n, of 2.3 and an initial density at the stellar surface of {ρ }0=1.0× {10}-11 {{g}} {{cm}}-3 with an inclination constrained by Hα spectroscopy and interferometry of {45}^\\circ +/- 5^\\circ . The position angle for the system, measured east from north, is 114° ± 18°. Our best-fit model shows that the disk emission originates in a moderately large disk with a radius of 25 R *, which is consistent with a disk mass of approximately 5 × 1024 g or 3 × 10-10 M *. Finally, we compare our results with previous studies of 48 Per by Quirrenbach et al. and find agreement, whereas our disk size does not agree with Delaa et al., based on a much smaller visibility set.
Directory of Open Access Journals (Sweden)
YAN Li
2016-04-01
Full Text Available This paper proposes a rigorous registration method of multi-view point clouds constrained by closed-loop conditions for the problems of existing algorithms. In our approach, the point-to-tangent-plane iterative closest point algorithm is used firstly to calculate coordinate transformation parameters of all adjacent point clouds respectively. Then the single-site point cloud is regarded as registration unit and the transformation parameters are considered as random observations to construct conditional equations, and then the transformation parameters can be corrected by conditional adjustments to achieve global optimum. Two practical experiments of point clouds acquired by a terrestrial laser scanner are shown for demonstrating the feasibility and validity of our methods. Experimental results show that the registration accuracy and reliability of the point clouds with sampling interval of millimeter or centimeter level can be improved by increasing the scanning overlap.
Yurkov, Andrey M; Röhl, Oliver; Pontes, Ana; Carvalho, Cláudia; Maldonado, Cristina; Sampaio, José Paulo
2016-02-01
Soil yeasts represent a poorly known fraction of the soil microbiome due to limited ecological surveys. Here, we provide the first comprehensive inventory of cultivable soil yeasts in a Mediterranean ecosystem, which is the leading biodiversity hotspot for vascular plants and vertebrates in Europe. We isolated and identified soil yeasts from forested sites of Serra da Arrábida Natural Park (Portugal), representing the Mediterranean forests, woodlands and scrub biome. Both cultivation experiments and the subsequent species richness estimations suggest the highest species richness values reported to date, resulting in a total of 57 and 80 yeast taxa, respectively. These values far exceed those reported for other forest soils in Europe. Furthermore, we assessed the response of yeast diversity to microclimatic environmental factors in biotopes composed of the same plant species but showing a gradual change from humid broadleaf forests to dry maquis. We observed that forest properties constrained by precipitation level had strong impact on yeast diversity and on community structure and lower precipitation resulted in an increased number of rare species and decreased evenness values. In conclusion, the structure of soil yeast communities mirrors the environmental factors that affect aboveground phytocenoses, aboveground biomass and plant projective cover. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dill, Harald G.; Weber, Berthold; Gerdes, Axel
2010-09-01
Cavernous weathering such as tafoni, alveoles and honeycomb structures have been recorded from a great variety of bedrocks and landforms. In the present study cavernous weathering from late Variscan granites was discussed as to its physical-chemical regime of formation. U/Pb dating yielded a maximum age of 1.52 ± 0.03 Ma. Supergene U mineralization is accompanied by kaolinite, nontronite and Fe(III) phosphates. Based upon Eh-pH diagrams calculated for U-Fe-P mineralization the physical-chemical conditions may be described as oxidizing with pH values fluctuating around neutral at near-ambient temperatures of 25 °C. Alteration occurs in two stages: dissolution of rock-forming minerals and neoformation of hydrosilicates under mildly acidic conditions, followed by phosphate precipitation under near-neutral conditions.
Striebel, Maren; Schabhüttl, Stefanie; Hodapp, Dorothee; Hingsamer, Peter; Hillebrand, Helmut
2016-11-01
Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints.
Shivak, J. N.; Banerjee, N.; Flemming, R. L.
2013-12-01
We report the results of a comparative study of the crustal environmental conditions recorded by several Martian meteorites (Nakhla, Los Angeles, and Zagami). Though no samples have yet been returned from Mars, numerous meteorites are known and these provide the only samples of the Martian crust currently available for study. Terrestrial basalts and other mafic igneous rocks are analogous in many ways to much of the Martian crust, as evidenced by the composition of known Martian meteorites and measurements from planetary missions [1]. Microorganisms are known to thrive in the terrestrial geosphere and make use of many different substrates within rock in the subsurface of the Earth [2]. The action of aqueous solutions in the Martian crust has been well established through the study of alteration mineral assemblages present in many Martian meteorites, such as the nakhlites [3]. Aqueous activity in terrestrial chemolithoautotrophic habitats provides numerous energy and nutrient sources for microbes [4], suggesting the potential for habitable endolithic environments in Martian rocks. Fayalite in Nakhla has experienced extensive aqueous alteration to reddish-brown 'iddingsite' material within a pervasive fracture system. Textural imaging shows the replacement of primary olivine with various alteration phases and infiltration of this alteration front into host grains. Geochemical analysis of the alteration material shows the addition of iron and silica and removal of magnesium during alteration. Novel In situ Micro-XRD and Raman Spectroscopy of this material reveals a new assemblage consisting of iron oxides, smectite clays, carbonates, and a minor serpentine component. The alteration mineral assemblage here differs from several that have been previously reported [4] [5], allowing for a reevaluation of the environmental conditions during fluid action. Los Angeles and Zagami show no evidence of aqueous activity, though their primary basaltic mineralogies show many
Shanskiy, , Merrit; Vollmer, Elis; Penu, Priit
2015-04-01
restrictions on study sites by nature conversation on the maps data about nature protected objects and buffer zones or forming restricted areas around those objects. The results will indicate the utilization possibility and most sustainable scenarios for different land use cases. Moreover, the possible changes in soil functioning accordingly to site specific soil conditions will be discussed and presented.
Wood, Cameron; Cook, Peter G.; Harrington, Glenn A.; Knapton, Anthony
2017-01-01
Carbon-14 (14C) has been widely used to estimate groundwater recharge rates in arid regions, and is increasingly being used as a tool to assist numerical model calibration. However, lack of knowledge on 14C inputs to groundwater potentially limits its reliability for constraining spatial variability in recharge. In this study, we use direct measurements of 14C in the unsaturated zone to develop a 14C input map for a regional scale unconfined aquifer in the Ti Tree Basin in central Australia. The map is used as a boundary condition for a 3-D groundwater flow and solute transport model for the basin. The model is calibrated to both groundwater 14C activity and groundwater level, and calibration is achieved by varying recharge rates in 18 hydrogeological zones. We test the sensitivity of the calibration to both the 14C boundary condition, and the number or recharge zones used. The calibrated recharge rates help resolve the conceptual model for the basin, and demonstrate that spatially distributed discharge (through evapotranspiration) is an important part of the water balance. This approach demonstrates the importance of boundary conditions for 14C transport modeling (14C input activity), for improving estimates of spatial variability in recharge and discharge.
Gleeson, Matthew L. M.; Stock, Michael J.; Pyle, David M.; Mather, Tamsin A.; Hutchison, William; Yirgu, Gezahegn; Wade, Jon
2017-05-01
The Main Ethiopian Rift hosts a number of peralkaline volcanic centres, several of which show signs of recent unrest. Due to the low number of historical eruptions recorded in the region and lack of volcanic monitoring, conditions of magma storage in the Main Ethiopian Rift remain poorly constrained. Aluto is one of these restless volcanic centres and identifying magma storage conditions is vital for evaluating the significance of recent periods of unrest. Using Aluto as a case study, we explore magma storage conditions using Rhyolite-MELTS thermodynamic modelling software. We performed 150 fractional crystallisation models using a primitive basalt as the starting composition, and for a range of pressures (50-300 MPa), initial H2O contents (0.5-3 wt%) and oxygen fugacities (QFM - 2-QFM + 1). Predicted liquid lines of descent from these models are compared with published whole-rock data and, together with new observations of natural phase assemblages and erupted mineral compositions, provide constraints on magma storage conditions. Using a statistical approach to compare empirical data and thermodynamic model outputs, we find that compositions of evolved peralkaline rhyolites from Aluto are best reproduced by protracted (90%) isobaric fractional crystallisation from a rift-related basaltic composition, without the need for significant crustal assimilation. The required extent of fractional crystallisation suggests that much of the magmatic system may exist as a highly crystalline mush with only a small lens of rhyolitic melt. The best agreement between models and natural samples is at low pressures (150 MPa), low initial H2O concentrations (0.5 wt%) and an oxygen fugacity near the QFM buffer. The depth of magma storage derived from these results ( 5.6 ± 1 km) is consistent with the source depths modelled from measured ground deformation. Data from other peralkaline volcanic centres in the Main Ethiopian Rift (Boset and Gedemsa), and other locations globally (e
Silva, Pedro; Duarte, Ricardo; Sampaio, Jaime; Aguiar, Paulo; Davids, Keith; Araújo, Duarte; Garganta, Júlio
2014-12-01
Abstract This study analysed the influence of field dimension and players' skill level on collective tactical behaviours during small-sided and conditioned games (SSCGs). Positioning and displacement data were collected using global positioning systems (15 Hz) during SSCGs (Gk+4 v. 4+Gk) played by two groups of participants (NLP- national-level and RLP-regional-level players) on different field dimensions (small: 36.8 × 23.8 m; intermediate: 47.3 × 30.6 and large: 57.8 × 37.4 m). Team tactical performance was assessed through established dynamic team variables (effective playing space, playing length per width ratio and team separateness) and nonlinear signal processing techniques (sample entropy of distances to nearest opponents and the teams' centroids' mutual information). Results showed that the effective playing space and team separateness increased significantly with pitch size regardless of participant skill level (P small (P = 0.003) and intermediate fields (P = 0.01). Findings suggest that tactical behaviours in SSCGs are constrained by field size and skill level, which need to be considered by coaches when designing training practices.
Czech, Wiktoria; Radecki-Pawlik, Artur; Wyżga, Bartłomiej; Hajdukiewicz, Hanna
2016-11-01
The gravel-bed Biała River, Polish Carpathians, was heavily affected by channelization and channel incision in the twentieth century. Not only were these impacts detrimental to the ecological state of the river, but they also adversely modified the conditions of floodwater retention and flood wave passage. Therefore, a few years ago an erodible corridor was delimited in two sections of the Biała to enable restoration of the river. In these sections, short, channelized reaches located in the vicinity of bridges alternate with longer, unmanaged channel reaches, which either avoided channelization or in which the channel has widened after the channelization scheme ceased to be maintained. Effects of these alternating channel morphologies on the conditions for flood flows were investigated in a study of 10 pairs of neighbouring river cross sections with constrained and freely developed morphology. Discharges of particular recurrence intervals were determined for each cross section using an empirical formula. The morphology of the cross sections together with data about channel slope and roughness of particular parts of the cross sections were used as input data to the hydraulic modelling performed with the one-dimensional steady-flow HEC-RAS software. The results indicated that freely developed cross sections, usually with multithread morphology, are typified by significantly lower water depth but larger width and cross-sectional flow area at particular discharges than single-thread, channelized cross sections. They also exhibit significantly lower average flow velocity, unit stream power, and bed shear stress. The pattern of differences in the hydraulic parameters of flood flows apparent between the two types of river cross sections varies with the discharges of different frequency, and the contrasts in hydraulic parameters between unmanaged and channelized cross sections are most pronounced at low-frequency, high-magnitude floods. However, because of the deep
Stone, Jordan M.
In this thesis I discuss probes of small spatial scales around young stars and protostars and around the supermassive black hole at the galactic center. I begin by describing adaptive optics-fed infrared spectroscopic studies of nascent and newborn binary systems. Binary star formation is a significant mode of star formation that could be responsible for the production of a majority of the galactic stellar population. Better characterization of the binary formation mechanism is important for better understanding many facets of astronomy, from proper estimates of the content of unresolved populations, to stellar evolution and feedback, to planet formation. My work revealed episodic accretion onto the more massive component of the pre-main sequence binary system UY Aur. I also showed changes in the accretion onto the less massive component, revealing contradictory indications of the change in accretion rate when considering disk-based and shock-based tracers. I suggested two scenarios to explain the inconsistency. First, increased accretion should alter the disk structure, puffing it up. This change could obscure the accretion shock onto the central star if the disk is highly inclined. Second, if accretion through the disk is impeded before it makes it all the way onto the central star, then increased disk tracers of accretion would not be accompanied by increased shock tracers. In this case mass must be piling up at some radius in the disk, possibly supplying the material for planet formation or a future burst of accretion. My next project focused on characterizing the atmospheres of very low-mass companions to nearby young stars. Whether these objects form in an extension of the binary-star formation mechanism to very low masses or they form via a different process is an open question. Different accretion histories should result in different atmospheric composition, which can be constrained with spectroscopy. I showed that 3--4mum spectra of a sample of these
Female infidelity is constrained by El Niño conditions in a long-lived bird.
Kiere, Lynna Marie; Drummond, Hugh
2016-07-01
Explaining the remarkable variation in socially monogamous females' extrapair (EP) behaviour revealed by decades of molecular paternity testing remains an important challenge. One hypothesis proposes that restrictive environmental conditions (e.g. extreme weather, food scarcity) limit females' resources and increase EP behaviour costs, forcing females to reduce EP reproductive behaviours. For the first time, we tested this hypothesis by directly quantifying within-pair and EP behaviours rather than inferring behaviour from paternity. We evaluated whether warmer sea surface temperatures depress total pre-laying reproductive behaviours, and particularly EP behaviours, in socially paired female blue-footed boobies (Sula nebouxii). Warm waters in the Eastern Pacific are associated with El Niño Southern Oscillation and lead to decreased food availability and reproductive success in this and other marine predators. With warmer waters, females decreased their neighbourhood attendance, total copulation frequency and laying probability, suggesting that they contend with restricted resources by prioritizing self-maintenance and committing less to reproduction, sometimes abandoning the attempt altogether. Females were also less likely to participate in EP courtship and copulations, but when they did, rates of these behaviours were unaffected by water temperature. Females' neighbourhood attendance, total copulation frequency and EP courtship probability responded to temperature differences at the between-season scale, and neighbourhood attendance and EP copulation probability were affected by within-season fluctuations. Path analysis indicated that decreased EP participation was not attributable to reduced female time available for EP activities. Together, our results suggest that immediate time and energy constraints were not the main factors limiting females' infidelity. Our study shows that El Niño conditions depress female boobies' EP participation and total reproductive
Directory of Open Access Journals (Sweden)
Anastasia Ulicheva
2015-12-01
Full Text Available Background. A word whose body is pronounced in different ways in different words is body-inconsistent. When we take the unit that precedes the vowel into account for the calculation of body-consistency, the proportion of English words that are body-inconsistent is considerably reduced at the level of corpus analysis, prompting the question of whether humans actually use such head/onset-conditioning when they read.Methods. Four metrics for head/onset-constrained body-consistency were calculated: by the last grapheme of the head, by the last phoneme of the onset, by place and manner of articulation of the last phoneme of the onset, and by manner of articulation of the last phoneme of the onset. Since these were highly correlated, principal component analysis was performed on them.Results. Two out of four resulting principal components explained significant variance in the reading-aloud reaction times, beyond regularity and body-consistency.Discussion. Humans read head/onset-conditioned words faster than would be predicted based on their body-consistency and regularity only. We conclude that humans are sensitive to the dependency between word-beginnings and word-ends when they read aloud, and that this dependency is phonological in nature, rather than orthographic.
Wang, Yanping; Boyd, Eric; Crane, Sharron; Lu-Irving, Patricia; Krabbenhoft, David; King, Susan; Dighton, John; Geesey, Gill; Barkay, Tamar
2011-11-01
The distribution and phylogeny of extant protein-encoding genes recovered from geochemically diverse environments can provide insight into the physical and chemical parameters that led to the origin and which constrained the evolution of a functional process. Mercuric reductase (MerA) plays an integral role in mercury (Hg) biogeochemistry by catalyzing the transformation of Hg(II) to Hg(0). Putative merA sequences were amplified from DNA extracts of microbial communities associated with mats and sulfur precipitates from physicochemically diverse Hg-containing springs in Yellowstone National Park, Wyoming, using four PCR primer sets that were designed to capture the known diversity of merA. The recovery of novel and deeply rooted MerA lineages from these habitats supports previous evidence that indicates merA originated in a thermophilic environment. Generalized linear models indicate that the distribution of putative archaeal merA lineages was constrained by a combination of pH, dissolved organic carbon, dissolved total mercury and sulfide. The models failed to identify statistically well supported trends for the distribution of putative bacterial merA lineages as a function of these or other measured environmental variables, suggesting that these lineages were either influenced by environmental parameters not considered in the present study, or the bacterial primer sets were designed to target too broad of a class of genes which may have responded differently to environmental stimuli. The widespread occurrence of merA in the geothermal environments implies a prominent role for Hg detoxification in these environments. Moreover, the differences in the distribution of the merA genes amplified with the four merA primer sets suggests that the organisms putatively engaged in this activity have evolved to occupy different ecological niches within the geothermal gradient.
Wang, Y.; Boyd, E.; Crane, S.; Lu-Irving, P.; Krabbenhoft, D.; King, S.; Dighton, J.; Geesey, G.; Barkay, T.
2011-01-01
The distribution and phylogeny of extant protein-encoding genes recovered from geochemically diverse environments can provide insight into the physical and chemical parameters that led to the origin and which constrained the evolution of a functional process. Mercuric reductase (MerA) plays an integral role in mercury (Hg) biogeochemistry by catalyzing the transformation of Hg(II) to Hg(0). Putative merA sequences were amplified from DNA extracts of microbial communities associated with mats and sulfur precipitates from physicochemically diverse Hg-containing springs in Yellowstone National Park, Wyoming, using four PCR primer sets that were designed to capture the known diversity of merA. The recovery of novel and deeply rooted MerA lineages from these habitats supports previous evidence that indicates merA originated in a thermophilic environment. Generalized linear models indicate that the distribution of putative archaeal merA lineages was constrained by a combination of pH, dissolved organic carbon, dissolved total mercury and sulfide. The models failed to identify statistically well supported trends for the distribution of putative bacterial merA lineages as a function of these or other measured environmental variables, suggesting that these lineages were either influenced by environmental parameters not considered in the present study, or the bacterial primer sets were designed to target too broad of a class of genes which may have responded differently to environmental stimuli. The widespread occurrence of merA in the geothermal environments implies a prominent role for Hg detoxification in these environments. Moreover, the differences in the distribution of the merA genes amplified with the four merA primer sets suggests that the organisms putatively engaged in this activity have evolved to occupy different ecological niches within the geothermal gradient. ?? 2011 Springer Science+Business Media, LLC.
Evolutionary constrained optimization
Deb, Kalyanmoy
2015-01-01
This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...
Choosing health, constrained choices.
Chee Khoon Chan
2009-12-01
In parallel with the neo-liberal retrenchment of the welfarist state, an increasing emphasis on the responsibility of individuals in managing their own affairs and their well-being has been evident. In the health arena for instance, this was a major theme permeating the UK government's White Paper Choosing Health: Making Healthy Choices Easier (2004), which appealed to an ethos of autonomy and self-actualization through activity and consumption which merited esteem. As a counterpoint to this growing trend of informed responsibilization, constrained choices (constrained agency) provides a useful framework for a judicious balance and sense of proportion between an individual behavioural focus and a focus on societal, systemic, and structural determinants of health and well-being. Constrained choices is also a conceptual bridge between responsibilization and population health which could be further developed within an integrative biosocial perspective one might refer to as the social ecology of health and disease.
Minimal constrained supergravity
Energy Technology Data Exchange (ETDEWEB)
Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)
2017-01-10
We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.
Constrained superfields in supergravity
Energy Technology Data Exchange (ETDEWEB)
Dall’Agata, Gianguido; Farakos, Fotis [Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)
2016-02-16
We analyze constrained superfields in supergravity. We investigate the consistency and solve all known constraints, presenting a new class that may have interesting applications in the construction of inflationary models. We provide the superspace Lagrangians for minimal supergravity models based on them and write the corresponding theories in component form using a simplifying gauge for the goldstino couplings.
Minimal constrained supergravity
Directory of Open Access Journals (Sweden)
N. Cribiori
2017-01-01
Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.
Exploring Constrained Creative Communication
DEFF Research Database (Denmark)
Sørensen, Jannick Kirk
2017-01-01
between communicative constrains and participants’ perception of dialogue and creativity is examined. Four batches of students preparing for forming semester project groups were conducted and documented. Students were asked to create an unspecified object without any exchange of communication except......Creative collaboration via online tools offers a less ‘media rich’ exchange of information between participants than face-to-face collaboration. The participants’ freedom to communicate is restricted in means of communication, and rectified in terms of possibilities offered in the interface. How do...
Energy Technology Data Exchange (ETDEWEB)
Aller, M. F.; Hughes, P. A.; Aller, H. D.; Latimer, G. E. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1042 (United States); Hovatta, T., E-mail: mfa@umich.edu [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)
2014-08-10
To investigate parsec-scale jet flow conditions during GeV γ-ray flares detected by the Fermi Large Angle Telescope, we obtained centimeter-band total flux density and linear polarization monitoring observations from 2009.5 through 2012.5 with the 26 m Michigan radio telescope for a sample of core-dominated blazars. We use these data to constrain radiative transfer simulations incorporating propagating shocks oriented at an arbitrary angle to the flow direction in order to set limits on the jet flow and shock parameters during flares temporally associated with γ-ray flares in 0420–014, OJ 287, and 1156+295; these active galactic nuclei exhibited the expected signature of shocks in the linear polarization data. Both the number of shocks comprising an individual radio outburst (3 and 4) and the range of the compression ratios of the individual shocks (0.5-0.8) are similar in all three sources; the shocks are found to be forward-moving with respect to the flow. While simulations incorporating transverse shocks provide good fits for 0420–014 and 1156+295, oblique shocks are required for modeling the OJ 287 outburst, and an unusually low value of the low-energy cutoff of the radiating particles' energy distribution is also identified. Our derived viewing angles and shock speeds are consistent with independent Very Long Baseline Array results. While a random component dominates the jet magnetic field, as evidenced by the low fractional linear polarization, to reproduce the observed spectral character requires that a significant fraction of the magnetic field energy is in an ordered axial component. Both straight and low pitch angle helical field lines are viable scenarios.
Sharp spatially constrained inversion
DEFF Research Database (Denmark)
Vignoli, Giulio G.; Fiandaca, Gianluca G.; Christiansen, Anders Vest C A.V.C.
2013-01-01
We present sharp reconstruction of multi-layer models using a spatially constrained inversion with minimum gradient support regularization. In particular, its application to airborne electromagnetic data is discussed. Airborne surveys produce extremely large datasets, traditionally inverted...... by using smoothly varying 1D models. Smoothness is a result of the regularization constraints applied to address the inversion ill-posedness. The standard Occam-type regularized multi-layer inversion produces results where boundaries between layers are smeared. The sharp regularization overcomes...... inversions are compared against classical smooth results and available boreholes. With the focusing approach, the obtained blocky results agree with the underlying geology and allow for easier interpretation by the end-user....
Directory of Open Access Journals (Sweden)
M. Venkatesulu
1996-01-01
Full Text Available Solutions of initial value problems associated with a pair of ordinary differential systems (L1,L2 defined on two adjacent intervals I1 and I2 and satisfying certain interface-spatial conditions at the common end (interface point are studied.
Power-constrained supercomputing
Bailey, Peter E.
As we approach exascale systems, power is turning from an optimization goal to a critical operating constraint. With power bounds imposed by both stakeholders and the limitations of existing infrastructure, achieving practical exascale computing will therefore rely on optimizing performance subject to a power constraint. However, this requirement should not add to the burden of application developers; optimizing the runtime environment given restricted power will primarily be the job of high-performance system software. In this dissertation, we explore this area and develop new techniques that extract maximum performance subject to a particular power constraint. These techniques include a method to find theoretical optimal performance, a runtime system that shifts power in real time to improve performance, and a node-level prediction model for selecting power-efficient operating points. We use a linear programming (LP) formulation to optimize application schedules under various power constraints, where a schedule consists of a DVFS state and number of OpenMP threads for each section of computation between consecutive message passing events. We also provide a more flexible mixed integer-linear (ILP) formulation and show that the resulting schedules closely match schedules from the LP formulation. Across four applications, we use our LP-derived upper bounds to show that current approaches trail optimal, power-constrained performance by up to 41%. This demonstrates limitations of current systems, and our LP formulation provides future optimization approaches with a quantitative optimization target. We also introduce Conductor, a run-time system that intelligently distributes available power to nodes and cores to improve performance. The key techniques used are configuration space exploration and adaptive power balancing. Configuration exploration dynamically selects the optimal thread concurrency level and DVFS state subject to a hardware-enforced power bound
Blue moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics.
Ciccotti, Giovanni; Kapral, Raymond; Vanden-Eijnden, Eric
2005-09-05
We give a new formula expressing the components of the mean force in terms of a conditional expectation which can be computed by Blue Moon sampling. This generalizes to the vectorial case a formula first derived by Ruiz-Montero et al. for a scalar reaction coordinate. We also discuss how to compute this conditional average by means of constrained stochastic dynamics which, unlike the usual constrained molecular dynamics, introduces no bias. Finally, we give a new perspective on bias removal by using constrained molecular dynamics.
Order-constrained linear optimization.
Tidwell, Joe W; Dougherty, Michael R; Chrabaszcz, Jeffrey S; Thomas, Rick P
2017-11-01
Despite the fact that data and theories in the social, behavioural, and health sciences are often represented on an ordinal scale, there has been relatively little emphasis on modelling ordinal properties. The most common analytic framework used in psychological science is the general linear model, whose variants include ANOVA, MANOVA, and ordinary linear regression. While these methods are designed to provide the best fit to the metric properties of the data, they are not designed to maximally model ordinal properties. In this paper, we develop an order-constrained linear least-squares (OCLO) optimization algorithm that maximizes the linear least-squares fit to the data conditional on maximizing the ordinal fit based on Kendall's τ. The algorithm builds on the maximum rank correlation estimator (Han, 1987, Journal of Econometrics, 35, 303) and the general monotone model (Dougherty & Thomas, 2012, Psychological Review, 119, 321). Analyses of simulated data indicate that when modelling data that adhere to the assumptions of ordinary least squares, OCLO shows minimal bias, little increase in variance, and almost no loss in out-of-sample predictive accuracy. In contrast, under conditions in which data include a small number of extreme scores (fat-tailed distributions), OCLO shows less bias and variance, and substantially better out-of-sample predictive accuracy, even when the outliers are removed. We show that the advantages of OCLO over ordinary least squares in predicting new observations hold across a variety of scenarios in which researchers must decide to retain or eliminate extreme scores when fitting data. © 2017 The British Psychological Society.
Lightweight cryptography for constrained devices
DEFF Research Database (Denmark)
Alippi, Cesare; Bogdanov, Andrey; Regazzoni, Francesco
2014-01-01
Lightweight cryptography is a rapidly evolving research field that responds to the request for security in resource constrained devices. This need arises from crucial pervasive IT applications, such as those based on RFID tags where cost and energy constraints drastically limit the solution...... complexity, with the consequence that traditional cryptography solutions become too costly to be implemented. In this paper, we survey design strategies and techniques suitable for implementing security primitives in constrained devices....
How peer-review constrains cognition
DEFF Research Database (Denmark)
Cowley, Stephen
2015-01-01
as ‘cognition’ describes enabling conditions for flexible behavior, the practices of peer-review thus constrain knowledge-making. To pursue cognitive functions of peer-review, however, manuscripts must be seen as ‘symbolizations’, replicable patterns that use technologically enabled activity. On this bio......Peer-review is neither reliable, fair, nor a valid basis for predicting ‘impact’: as quality control, peer-review is not fit for purpose. Endorsing the consensus, I offer a reframing: while a normative social process, peer-review also shapes the writing of a scientific paper. In so far......-cognitive view, peer-review constrains knowledge-making by writers, editors, reviewers. Authors are prompted to recursively re-aggregate symbolizations to present what are deemed acceptable knowledge claims. How, then, can recursive re-embodiment be explored? In illustration, I sketch how the paper’s own content...
Phase-constrained parallel MR image reconstruction.
Willig-Onwuachi, Jacob D; Yeh, Ernest N; Grant, Aaron K; Ohliger, Michael A; McKenzie, Charles A; Sodickson, Daniel K
2005-10-01
A generalized method for phase-constrained parallel MR image reconstruction is presented that combines and extends the concepts of partial-Fourier reconstruction and parallel imaging. It provides a framework for reconstructing images employing either or both techniques and for comparing image quality achieved by varying k-space sampling schemes. The method can be used as a parallel image reconstruction with a partial-Fourier reconstruction built in. It can also be used with trajectories not readily handled by straightforward combinations of partial-Fourier and SENSE-like parallel reconstructions, including variable-density, and non-Cartesian trajectories. The phase constraint specifies a better-conditioned inverse problem compared to unconstrained parallel MR reconstruction alone. This phase-constrained parallel MRI reconstruction offers a one-step alternative to the standard combination of homodyne and SENSE reconstructions with the added benefit of flexibility of sampling trajectory. The theory of the phase-constrained approach is outlined, and its calibration requirements and limitations are discussed. Simulations, phantom experiments, and in vivo experiments are presented.
ADAPTIVE SUBOPTIMAL CONTROL OF INPUT CONSTRAINED PLANTS
Directory of Open Access Journals (Sweden)
Valerii Azarskov
2011-03-01
Full Text Available Abstract. This paper deals with adaptive regulation of a discrete-time linear time-invariant plant witharbitrary bounded disturbances whose control input is constrained to lie within certain limits. The adaptivecontrol algorithm exploits the one-step-ahead control strategy and the gradient projection type estimationprocedure using the modified dead zone. The convergence property of the estimation algorithm is shown tobe ensured. The sufficient conditions guaranteeing the global asymptotical stability and simultaneously thesuboptimality of the closed-loop systems are derived. Numerical examples and simulations are presented tosupport the theoretical results.
Trends in PDE constrained optimization
Benner, Peter; Engell, Sebastian; Griewank, Andreas; Harbrecht, Helmut; Hinze, Michael; Rannacher, Rolf; Ulbrich, Stefan
2014-01-01
Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on “Optimization with Partial Differential Equations” from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics. The book is divided into five sections on “Constrained Optimization, Identification and Control”...
Constraining spacetime torsion with LAGEOS
March, Riccardo; Bellettini, Giovanni; Tauraso, Roberto; Dell'Agnello, Simone
2011-11-01
We compute the corrections to the orbital Lense-Thirring effect (or frame-dragging) in the presence of spacetime torsion. We analyze the motion of a test body in the gravitational field of a rotating axisymmetric massive body, using the parametrized framework of Mao, Tegmark, Guth and Cabi. In the cases of autoparallel and extremal trajectories, we derive the specific approximate expression of the corresponding system of ordinary differential equations, which are then solved with methods of Celestial Mechanics. We calculate the secular variations of the longitudes of the node and of the pericenter. We also show how the LAser GEOdynamics Satellites (LAGEOS) can be used to constrain torsion parameters. We report the experimental constraints obtained using both the nodes and perigee measurements of the orbital Lense-Thirring effect. This makes LAGEOS and Gravity Probe B complementary frame-dragging and torsion experiments, since they constrain three different combinations of torsion parameters.
Constrained Multiobjective Biogeography Optimization Algorithm
Directory of Open Access Journals (Sweden)
Hongwei Mo
2014-01-01
Full Text Available Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA.
The additivity problem and constrained quantum channels
Holevo, A. S.
2005-06-01
We give formulations of the famous additivity conjecture for several important quantities characterizing quantum channel and prove their global equivalence to the additivity of the classical capacity of a channel under input constrains (like mean energy constrain).
Constrained ballistics and geometrical optics
Epstein, Marcelo
2014-01-01
The problem of constant-speed ballistics is studied under the umbrella of non-linear non-holonomic constrained systems. The Newtonian approach is shown to be equivalent to the use of Chetaev's rule to incorporate the constraint within the initially unconstrained formulation. Although the resulting equations are not, in principle, obtained from a variational statement, it is shown that the trajectories coincide with those of geometrical optics in a medium with a suitably chosen refractive index, as prescribed by Fermat's principle of least time. This fact gives rise to an intriguing mechano-optical analogy. The trajectories are further studied and discussed.
Constraining properties of disintegrating exoplanets
Veras, D.; Carter, P. J.; Leinhardt, Z. M.; Gänsicke, B. T.
2017-09-01
Evaporating and disintegrating planets provide unique insights into chemical makeup and physical constraints. The striking variability, depth (˜10 - 60%) and shape of the photometric transit curves due to the disintegrating minor planet orbiting white dwarf WD 1145+017 has galvanised the post-main- sequence exoplanetary science community. We have performed the first tidal disruption simulations of this planetary object, and have succeeded in constraining its mass, density, eccentricity and physical nature. We illustrate how our simulations can bound these properties, and be used in the future for other exoplanetary systems.
Constraining walking and custodial technicolor
DEFF Research Database (Denmark)
Foadi, Roshan; Frandsen, Mads Toudal; Sannino, Francesco
2008-01-01
We show how to constrain the physical spectrum of walking technicolor models via precision measurements and modified Weinberg sum rules. We also study models possessing a custodial symmetry for the S parameter at the effective Lagrangian level-custodial technicolor-and argue that these models...... cannot emerge from walking-type dynamics. We suggest that it is possible to have a very light spin-one axial (vector) boson. However, in the walking dynamics the associated vector boson is heavy while it is degenerate with the axial in custodial technicolor Udgivelsesdato: 19 May...
Circumstellar disc geometry constrained by infrared line fluxes
Jones, C.E.; Molak, A.; Sigut, T.A.A.; de Koter, A.; Lenorzer, A.; Popa, S.C.
2009-01-01
Lenorzer et al. introduce ratios of hydrogen infrared recombination lines as a diagnostic tool to constrain the spatial distribution and physical condition of circumstellar material around hot massive stars. They demonstrate that the observed line flux ratios Hu14/Brα and Hu14/Pfγ from different
Energy Technology Data Exchange (ETDEWEB)
Capella, Antonio [Instituto de Matematicas, Universidad Nacional Autonoma de Mexico (Mexico); Mueller, Stefan [Hausdorff Center for Mathematics and Institute for Applied Mathematics, Universitaet Bonn (Germany); Otto, Felix [Max Planck Institute for Mathematics in the Sciences, Leipzig (Germany)
2012-08-15
A mathematical description of transformation processes in magnetic shape memory alloys (MSMA) under applied stresses and external magnetic fields needs a combination of micromagnetics and continuum elasticity theory. In this note, we discuss the so-called constrained theories, i.e., models where the state described by the pair (linear strain, magnetization) is at every point of the sample constrained to assume one of only finitely many values (that reflect the material symmetries). Furthermore, we focus on large body limits, i.e., models that are formulated in terms of (local) averages of a microstructured state, as the one proposed by DeSimone and James. We argue that the effect of an interfacial energy associated with the twin boundaries survives on the level of the large body limit in form of a (local) rigidity of twins. This leads to an alternative (i.e., with respect to reference 1) large body limit. The new model has the advantage of qualitatively explaining the occurrence of a microstructure with charged magnetic walls, as observed in SPP experiments in reference 2. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
A proposal for constraining initial vacuum by cosmic microwave background
Chandra, Debabrata; Pal, Supratik
2018-01-01
We propose a theoretical framework that can possibly constrain the initial vacuum by observation of the cosmic microwave background (CMB). With a generic vacuum without any particular choice a priori, thereby keeping both the Bogolyubov coefficients in the analysis, we compute observable parameters from two- and three-point correlation functions. We are thus left with constraining four model parameters from the two complex Bogolyubov coefficients. We also demonstrate a method of finding out the constraint relations between the Bogolyubov coefficients using the theoretical normalization condition and observational data of power spectrum and bispectrum from CMB. Finally, we discuss the possible pros and cons of the analysis.
A Novel Neural Network for Generally Constrained Variational Inequalities.
Gao, Xingbao; Liao, Li-Zhi
2017-09-01
This paper presents a novel neural network for solving generally constrained variational inequality problems by constructing a system of double projection equations. By defining proper convex energy functions, the proposed neural network is proved to be stable in the sense of Lyapunov and converges to an exact solution of the original problem for any starting point under the weaker cocoercivity condition or the monotonicity condition of the gradient mapping on the linear equation set. Furthermore, two sufficient conditions are provided to ensure the stability of the proposed neural network for a special case. The proposed model overcomes some shortcomings of existing continuous-time neural networks for constrained variational inequality, and its stability only requires some monotonicity conditions of the underlying mapping and the concavity of nonlinear inequality constraints on the equation set. The validity and transient behavior of the proposed neural network are demonstrated by some simulation results.
A Globally Convergent Parallel SSLE Algorithm for Inequality Constrained Optimization
Directory of Open Access Journals (Sweden)
Zhijun Luo
2014-01-01
Full Text Available A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.
Enablers and constrainers to participation
DEFF Research Database (Denmark)
Desjardins, Richard; Milana, Marcella
2007-01-01
as to construct a tool for analyzing the targeting of adult learning policy, with regard to both its coverage and expected consequences. Our aim is to develop a means for a more in-depth analysis of the match-mismatch of public policy and persisting constraints to participation.......This paper briefly reviews some of evidence on participation patterns in Nordic countries and some of the defining parameters that may explain the observations. This is done in a comparative perspective by contrasting results from the 2003 Eurobarometer data between Nordic countries and a handful...... of non-Nordic countries. An emphasis is placed on the constraining and enabling elements to participation and how these may explain why certain groups participate more or less than others. A central question of interest to this paper is to what extent does (can) government intervention interact...
Constrained Allocation Flux Balance Analysis
Mori, Matteo; Martin, Olivier C; De Martino, Andrea; Marinari, Enzo
2016-01-01
New experimental results on bacterial growth inspire a novel top-down approach to study cell metabolism, combining mass balance and proteomic constraints to extend and complement Flux Balance Analysis. We introduce here Constrained Allocation Flux Balance Analysis, CAFBA, in which the biosynthetic costs associated to growth are accounted for in an effective way through a single additional genome-wide constraint. Its roots lie in the experimentally observed pattern of proteome allocation for metabolic functions, allowing to bridge regulation and metabolism in a transparent way under the principle of growth-rate maximization. We provide a simple method to solve CAFBA efficiently and propose an "ensemble averaging" procedure to account for unknown protein costs. Applying this approach to modeling E. coli metabolism, we find that, as the growth rate increases, CAFBA solutions cross over from respiratory, growth-yield maximizing states (preferred at slow growth) to fermentative states with carbon overflow (preferr...
Formal language constrained path problems
Energy Technology Data Exchange (ETDEWEB)
Barrett, C.; Jacob, R.; Marathe, M.
1997-07-08
In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvable efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.
Power Absorption by Closely Spaced Point Absorbers in Constrained Conditions
DEFF Research Database (Denmark)
De Backer, G.; Vantorre, M.; Beels, C.
2010-01-01
The performance of an array of closely spaced point absorbers is numerically assessed in a frequency domain model Each point absorber is restricted to the heave mode and is assumed to have its own linear power take-off (PTO) system Unidirectional irregular incident waves are considered, represent......The performance of an array of closely spaced point absorbers is numerically assessed in a frequency domain model Each point absorber is restricted to the heave mode and is assumed to have its own linear power take-off (PTO) system Unidirectional irregular incident waves are considered......, representing the wave climate at Westhinder on the Belgian Continental Shelf The impact of slamming, stroke and force restrictions on the power absorption is evaluated and optimal PTO parameters are determined For multiple bodies optimal control parameters (CP) are not only dependent on the incoming waves...
Constrained Laboratory vs. Unconstrained Steering-Induced Rollover Crash Tests.
Kerrigan, Jason R; Toczyski, Jacek; Roberts, Carolyn; Zhang, Qi; Clauser, Mark
2015-01-01
The goal of this study was to evaluate how well an in-laboratory rollover crash test methodology that constrains vehicle motion can reproduce the dynamics of unconstrained full-scale steering-induced rollover crash tests in sand. Data from previously-published unconstrained steering-induced rollover crash tests using a full-size pickup and mid-sized sedan were analyzed to determine vehicle-to-ground impact conditions and kinematic response of the vehicles throughout the tests. Then, a pair of replicate vehicles were prepared to match the inertial properties of the steering-induced test vehicles and configured to record dynamic roof structure deformations and kinematic response. Both vehicles experienced greater increases in roll-axis angular velocities in the unconstrained tests than in the constrained tests; however, the increases that occurred during the trailing side roof interaction were nearly identical between tests for both vehicles. Both vehicles experienced linear accelerations in the constrained tests that were similar to those in the unconstrained tests, but the pickup, in particular, had accelerations that were matched in magnitude, timing, and duration very closely between the two test types. Deformations in the truck test were higher in the constrained than the unconstrained, and deformations in the sedan were greater in the unconstrained than the constrained as a result of constraints of the test fixture, and differences in impact velocity for the trailing side. The results of the current study suggest that in-laboratory rollover tests can be used to simulate the injury-causing portions of unconstrained rollover crashes. To date, such a demonstration has not yet been published in the open literature. This study did, however, show that road surface can affect vehicle response in a way that may not be able to be mimicked in the laboratory. Lastly, this study showed that configuring the in-laboratory tests to match the leading-side touchdown conditions
Wavelet library for constrained devices
Ehlers, Johan Hendrik; Jassim, Sabah A.
2007-04-01
The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.
Constrained Peptides as Miniature Protein Structures
Yin, Hang
2012-01-01
This paper discusses the recent developments of protein engineering using both covalent and noncovalent bonds to constrain peptides, forcing them into designed protein secondary structures. These constrained peptides subsequently can be used as peptidomimetics for biological functions such as regulations of protein-protein interactions. PMID:25969758
Modeling the microstructural evolution during constrained sintering
DEFF Research Database (Denmark)
Bjørk, Rasmus; Frandsen, Henrik Lund; Pryds, Nini
A mesoscale numerical model able to simulate solid state constrained sintering is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element method for calculating stresses. The sintering behavior of a sample constrained by a rigid substrate...
Model Predictive Control Based on Kalman Filter for Constrained Hammerstein-Wiener Systems
National Research Council Canada - National Science Library
Hong, Man; Cheng, Shao
2013-01-01
To precisely track the reactor temperature in the entire working condition, the constrained Hammerstein-Wiener model describing nonlinear chemical processes such as in the continuous stirred tank reactor (CSTR) is proposed...
Hydrolysis of Al3+ from constrained molecular dynamics.
Ikeda, Takashi; Hirata, Masaru; Kimura, Takaumi
2006-02-21
We investigated the hydrolysis reactions of Al(3+) in AlCl(3) aqueous solution using the constrained molecular dynamics based on the Car-Parrinello molecular-dynamics method. By employing the proton-aluminum coordination number as a reaction coordinate in the constrained molecular dynamics the deprotonation as well as dehydration processes are successfully realized. From our free-energy difference of DeltaG(0) approximately 8.0 kcal mol(-1) the hydrolysis constant pK(a1) is roughly estimated as 5.8, comparable to the literature value of 5.07. We show that the free-energy difference for the hydrolysis of Al(3+) in acidic conditions is at least 4 kcal mol(-1) higher than that in neutral condition, indicating that the hydrolysis reaction is inhibited by the presence of excess protons located around the hydrated ion, in agreement with the change of the predominant species by pH.
Dynamical spacetimes and gravitational radiation in a Fully Constrained Formulation
Cordero-Carrión, Isabel; Ibáñez, José María
2010-01-01
This contribution summarizes the recent work carried out to analyze the behavior of the hyperbolic sector of the Fully Constrained Formulation (FCF) derived in Bonazzola et al. 2004. The numerical experiments presented here allows one to be confident in the performances of the upgraded version of CoCoNuT's code by replacing the Conformally Flat Condition (CFC) approximation of the Einstein equations by the FCF.
How peer-review constrains cognition
DEFF Research Database (Denmark)
Cowley, Stephen
2015-01-01
Peer-review is neither reliable, fair, nor a valid basis for predicting ‘impact’: as quality control, peer-review is not fit for purpose. Endorsing the consensus, I offer a reframing: while a normative social process, peer-review also shapes the writing of a scientific paper. In so far as ‘cognit......Peer-review is neither reliable, fair, nor a valid basis for predicting ‘impact’: as quality control, peer-review is not fit for purpose. Endorsing the consensus, I offer a reframing: while a normative social process, peer-review also shapes the writing of a scientific paper. In so far...... as ‘cognition’ describes enabling conditions for flexible behavior, the practices of peer-review thus constrain knowledge-making. To pursue cognitive functions of peer-review, however, manuscripts must be seen as ‘symbolizations’, replicable patterns that use technologically enabled activity. On this bio-cognitive...... came to be re-aggregated: agonistic review drove reformatting of argument structure, changes in rhetorical ploys and careful choice of wordings. For this reason, the paper’s knowledge-claims can be traced to human activity that occurs in distributed cognitive systems. Peer-review is on the frontline...
On Shor's Channel Extension and Constrained Channels
Holevo, A. S.; Shirokov, M. E.
Several equivalent formulations of the additivity conjecture for constrained channels, which formally is substantially stronger than the unconstrained additivity, are given. To this end a characteristic property of the optimal ensemble for such a channel is derived, generalizing the maximal distance property. It is shown that the additivity conjecture for constrained channels holds true for certain nontrivial classes of channels. After giving an algebraic formulation for Shor's channel extension, its main asymptotic property is proved. It is then used to show that additivity for two constrained channels can be reduced to the same problem for unconstrained channels, and hence, ``global'' additivity for channels with arbitrary constraints is equivalent to additivity without constraints.
Constrained vertebrate evolution by pleiotropic genes
DEFF Research Database (Denmark)
Hu, Haiyang; Uesaka, Masahiro; Guo, Song
2017-01-01
Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages...
A Dynamic Programming Approach to Constrained Portfolios
DEFF Research Database (Denmark)
Kraft, Holger; Steffensen, Mogens
2013-01-01
This paper studies constrained portfolio problems that may involve constraints on the probability or the expected size of a shortfall of wealth or consumption. Our first contribution is that we solve the problems by dynamic programming, which is in contrast to the existing literature that applies...... the martingale method. More precisely, we construct the non-separable value function by formalizing the optimal constrained terminal wealth to be a (conjectured) contingent claim on the optimal non-constrained terminal wealth. This is relevant by itself, but also opens up the opportunity to derive new solutions...... to constrained problems. As a second contribution, we thus derive new results for non-strict constraints on the shortfall of intermediate wealth and/or consumption....
Mathematical Modeling of Constrained Hamiltonian Systems
Schaft, A.J. van der; Maschke, B.M.
1995-01-01
Network modelling of unconstrained energy conserving physical systems leads to an intrinsic generalized Hamiltonian formulation of the dynamics. Constrained energy conserving physical systems are directly modelled as implicit Hamiltonian systems with regard to a generalized Dirac structure on the
On the origin of constrained superfields
Energy Technology Data Exchange (ETDEWEB)
Dall’Agata, G. [Dipartimento di Fisica “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Dudas, E. [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Farakos, F. [Dipartimento di Fisica “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)
2016-05-06
In this work we analyze constrained superfields in supersymmetry and supergravity. We propose a constraint that, in combination with the constrained goldstino multiplet, consistently removes any selected component from a generic superfield. We also describe its origin, providing the operators whose equations of motion lead to the decoupling of such components. We illustrate our proposal by means of various examples and show how known constraints can be reproduced by our method.
Robust Tracking Control for Constrained Robots
Mehdi, Haifa; Boubaker, Olfa
2014-01-01
In this paper, a novel robust tracking control law is proposed for constrained robots under unknown stiffness environment. The stability and the robustness of the controller are proved using a Lyapunov-based approach where the relationship between the error dynamics of the robotic system and its energy is investigated. Finally, a 3DOF constrained robotic arm is used to prove the stability, the robustness and the safety of the proposed approach.
A Projection Neural Network for Constrained Quadratic Minimax Optimization.
Liu, Qingshan; Wang, Jun
2015-11-01
This paper presents a projection neural network described by a dynamic system for solving constrained quadratic minimax programming problems. Sufficient conditions based on a linear matrix inequality are provided for global convergence of the proposed neural network. Compared with some of the existing neural networks for quadratic minimax optimization, the proposed neural network in this paper is capable of solving more general constrained quadratic minimax optimization problems, and the designed neural network does not include any parameter. Moreover, the neural network has lower model complexities, the number of state variables of which is equal to that of the dimension of the optimization problems. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.
Constrained next-to-minimal supersymmetric standard model.
Djouadi, A; Ellwanger, U; Teixeira, A M
2008-09-05
We consider the fully constrained version of the next-to-minimal supersymmetric extension of the standard model (cNMSSM) in which a singlet Higgs superfield is added to the two doublets that are present in the minimal extension (MSSM). Assuming universal boundary conditions at a high scale for the soft supersymmetry-breaking mass parameters as well as for the trilinear interactions, we find that the model is more constrained than the celebrated minimal supergravity model. The phenomenologically viable region in the parameter space of the cNMSSM corresponds to a small value for the universal scalar mass m_{0}: in this case, one single input parameter is sufficient to describe the model's phenomenology once constraints from collider data and cosmology are imposed.
Optimal Power Constrained Distributed Detection over a Noisy Multiaccess Channel
Directory of Open Access Journals (Sweden)
Zhiwen Hu
2015-01-01
Full Text Available The problem of optimal power constrained distributed detection over a noisy multiaccess channel (MAC is addressed. Under local power constraints, we define the transformation function for sensor to realize the mapping from local decision to transmitted waveform. The deflection coefficient maximization (DCM is used to optimize the performance of power constrained fusion system. Using optimality conditions, we derive the closed-form solution to the considered problem. Monte Carlo simulations are carried out to evaluate the performance of the proposed new method. Simulation results show that the proposed method could significantly improve the detection performance of the fusion system with low signal-to-noise ratio (SNR. We also show that the proposed new method has a robust detection performance for broad SNR region.
Constraining the Solubility of Aerosol Fe using US GEOTRACES Data
Aguilar-Islas, A. M.; Buck, C. S.; Rember, R.; Landing, W. M.
2016-02-01
Atmospheric deposition represents an important input of micronutrients to surface waters, and is of particular interest as an input for the limiting micronutrient iron. The solubility of aerosol iron after deposition is not well constrained, and it has been shown to vary principally with aerosol composition, although dissolution methodologies also contribute to the observed variability. To address procedural artifacts and arrive at a better constrained estimate of aerosol iron fractional solubility, a flow-through on-board protocol designed to minimize experimental artifacts and to simulate conditions experienced by deposited aerosols was used during the US Atlantic GEOTRACES cruises and compared to laboratory leaching methods. Here we present results of the fractional solubility of aerosol iron obtained during the US GEOTRACES Atlantic and Pacific cruises, and suggest revising estimates for this parameter. Our data provides a more constrained upwardly adjusted estimate in the range of 8% to 14% solubility for iron in aerosols dominated by lithogenic sources, and a fractional solubility of 15% to 25% for iron in aerosols from air masses impacted by anthropogenic sources. Greater variability (6% to 55%) was observed in the solubility of iron in aerosols from maritime air masses.
Spherical Hamiltonian Monte Carlo for Constrained Target Distributions.
Lan, Shiwei; Zhou, Bo; Shahbaba, Babak
2014-06-18
Statistical models with constrained probability distributions are abundant in machine learning. Some examples include regression models with norm constraints (e.g., Lasso), probit models, many copula models, and Latent Dirichlet Allocation (LDA) models. Bayesian inference involving probability distributions confined to constrained domains could be quite challenging for commonly used sampling algorithms. For such problems, we propose a novel Markov Chain Monte Carlo (MCMC) method that provides a general and computationally efficient framework for handling boundary conditions. Our method first maps the D-dimensional constrained domain of parameters to the unit ball [Formula: see text], then augments it to a D-dimensional sphere SD such that the original boundary corresponds to the equator of SD . This way, our method handles the constraints implicitly by moving freely on the sphere generating proposals that remain within boundaries when mapped back to the original space. To improve the computational efficiency of our algorithm, we divide the dynamics into several parts such that the resulting split dynamics has a partial analytical solution as a geodesic flow on the sphere. We apply our method to several examples including truncated Gaussian, Bayesian Lasso, Bayesian bridge regression, and a copula model for identifying synchrony among multiple neurons. Our results show that the proposed method can provide a natural and efficient framework for handling several types of constraints on target distributions.
Towards weakly constrained double field theory
Directory of Open Access Journals (Sweden)
Kanghoon Lee
2016-08-01
Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Continuation of Sets of Constrained Orbit Segments
DEFF Research Database (Denmark)
Schilder, Frank; Brøns, Morten; Chamoun, George Chaouki
Sets of constrained orbit segments of time continuous flows are collections of trajectories that represent a whole or parts of an invariant set. A non-trivial but simple example is a homoclinic orbit. A typical representation of this set consists of an equilibrium point of the flow and a trajectory...... that starts close and returns close to this fixed point within finite time. More complicated examples are hybrid periodic orbits of piecewise smooth systems or quasi-periodic invariant tori. Even though it is possible to define generalised two-point boundary value problems for computing sets of constrained...... orbit segments, this is very disadvantageous in practice. In this talk we will present an algorithm that allows the efficient continuation of sets of constrained orbit segments together with the solution of the full variational problem....
Domain decomposition in time for PDE-constrained optimization
Barker, Andrew T.; Stoll, Martin
2015-12-01
PDE-constrained optimization problems have a wide range of applications, but they lead to very large and ill-conditioned linear systems, especially if the problems are time dependent. In this paper we outline an approach for dealing with such problems by decomposing them in time and applying an additive Schwarz preconditioner in time, so that we can take advantage of parallel computers to deal with the very large linear systems. We then illustrate the performance of our method on a variety of problems.
A Simple SQP Algorithm for Constrained Finite Minimax Problems
2014-01-01
A simple sequential quadratic programming method is proposed to solve the constrained minimax problem. At each iteration, through introducing an auxiliary variable, the descent direction is given by solving only one quadratic programming. By solving a corresponding quadratic programming, a high-order revised direction is obtained, which can avoid the Maratos effect. Furthermore, under some mild conditions, the global and superlinear convergence of the algorithm is achieved. Finally, some numerical results reported show that the algorithm in this paper is successful. PMID:24683318
Robust stability in constrained predictive control through the Youla parameterisations
DEFF Research Database (Denmark)
Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad
2011-01-01
In this article we take advantage of the primary and dual Youla parameterisations to set up a soft constrained model predictive control (MPC) scheme. In this framework it is possible to guarantee stability in face of norm-bounded uncertainties. Under special conditions guarantees are also given f...... arguments on the loop consisting of the primary and dual Youla parameter. This is included in the MPC optimisation as a constraint on the induced gain of the optimisation variable. We illustrate the method with a numerical simulation example....
Neutron Powder Diffraction and Constrained Refinement
DEFF Research Database (Denmark)
Pawley, G. S.; Mackenzie, Gordon A.; Dietrich, O. W.
1977-01-01
The first use of a new program, EDINP, is reported. This program allows the constrained refinement of molecules in a crystal structure with neutron diffraction powder data. The structures of p-C6F4Br2 and p-C6F4I2 are determined by packing considerations and then refined with EDINP. Refinement...
Semantic Web in a Constrained Environment
Rietveld, L.J.; Schlobach, K.S.
2012-01-01
The semantic web is intrinsically constrained by its environment. These constraints act as a bottlenecks and limit the performance of applications in various ways. Examples of such constraints are the limited availability of memory, disk space, or a limited network bandwidth. But how do these bounds
Constrained superfields from inflation to reheating
Directory of Open Access Journals (Sweden)
Ioannis Dalianis
2017-10-01
Full Text Available We construct effective supergravity theories from customized constrained superfields which provide a setup consistent both for the description of inflation and the subsequent reheating processes. These theories contain the minimum degrees of freedom in the bosonic sector required for single-field inflation.
Constrained Optimization in Simulation : A Novel Approach
Kleijnen, J.P.C.; van Beers, W.C.M.; van Nieuwenhuyse, I.
2008-01-01
This paper presents a novel heuristic for constrained optimization of random computer simulation models, in which one of the simulation outputs is selected as the objective to be minimized while the other outputs need to satisfy prespeci¯ed target values. Besides the simulation outputs, the
Integrating job scheduling and constrained network routing
DEFF Research Database (Denmark)
Gamst, Mette
2010-01-01
This paper examines the NP-hard problem of scheduling jobs on resources such that the overall profit of executed jobs is maximized. Job demand must be sent through a constrained network to the resource before execution can begin. The problem has application in grid computing, where a number...
A model for optimal constrained adaptive testing
van der Linden, Willem J.; Reese, Lynda M.
2001-01-01
A model for constrained computerized adaptive testing is proposed in which the information on the test at the ability estimate is maximized subject to a large variety of possible constraints on the contents of the test. At each item-selection step, a full test is first assembled to have maximum
Constrained Registration of the Wrist Joint
Van de Giessen, M.; Streekstra, G.J.; Strackee, S.D.; Maas, M.; Grimbergen, K.A.; Van Vliet, L.J.; Vos, F.M.
2009-01-01
Comparing wrist shapes of different individuals requires alignment of these wrists into the same pose. Unconstrained registration of the carpal bones results in anatomically nonfeasible wrists. In this paper, we propose to constrain the registration using the shapes of adjacent bones, by keeping the
Constrained registration of the wrist joint
van de Giessen, M.; Streekstra, G.J.; Strackee, S.D.; Maas, M.; Grimbergen, K.A.; van Vliet, L.J.; Vos, F.M.
2009-01-01
Comparing wrist shapes of different individuals requires alignment of these wrists into the same pose. Unconstrained registration of the carpal bones results in anatomically nonfeasible wrists. In this paper, we propose to constrain the registration using the shapes of adjacent bones, by keeping the
Factors Constraining Farmers Use of Improved Cowpea ...
African Journals Online (AJOL)
The results show that land and labour problems, marketing problems, poor technical information, cultural incompatibility, high cost of farm inputs and unavailability of necessary inputs were the major factors constraining the use of improved cowpea technologies in the area. These findings suggest that there is an urgent ...
Can Neutron stars constrain Dark Matter?
DEFF Research Database (Denmark)
Kouvaris, Christoforos; Tinyakov, Peter
2010-01-01
temperature that could in principle be detected. Due to their compactness, neutron stars can acrete WIMPs efficiently even if the WIMP-to-nucleon cross section obeys the current limits from direct dark matter searches, and therefore they could constrain a wide range of dark matter candidates....
Client's constraining factors to construction project management ...
African Journals Online (AJOL)
This study analyzed client's related factors that constrain project management success of public and private sector construction in Nigeria. Issues that concern clients in any project can not be undermined as they are the owners and the initiators of project proposals. It is assumed that success, failure or abandonment of ...
A Constrained Vision of the Writing Classroom.
Phelps, Louise Wetherbee
1992-01-01
Proposes that writing teachers and administrators think, first, in terms of the truly political realities--the situated interconnections of interests, accidents, luck, and consequences--that constrain our abilities to realize utopian goals and, second, in terms of ethical constraints to which they are willing to be bound by. (RS)
Algorithm Solves Constrained and Unconstrained Optimization Problems
Denson, M. A.
1985-01-01
Is quasi-Newton iteration utilizing Broyden/Fletcher/Goldfarb/Shanno update on inverse Hessian matrix. Capable of solving constrained optimization unconstrained optimization and constraints only problems with one to five independent variables from one to five constraint functions and one dependent function optimized.
Modeling the microstructural evolution during constrained sintering
DEFF Research Database (Denmark)
Bjørk, Rasmus; Frandsen, Henrik Lund; Pryds, Nini
2014-01-01
A numerical model able to simulate solid state constrained sintering is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress...
Modeling the Microstructural Evolution During Constrained Sintering
DEFF Research Database (Denmark)
Bjørk, Rasmus; Frandsen, Henrik Lund; Pryds, Nini
2015-01-01
A numerical model able to simulate solid-state constrained sintering is presented. The model couples an existing kinetic Monte Carlo model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress...
Modeling the microstructural evolution during constrained sintering
DEFF Research Database (Denmark)
Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.
A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural response...
Entanglement-assisted capacity of constrained channels
Holevo, A. S.
2003-07-01
In this paper we fil a gap in previous work by proving the conjectured formula for the antanglement-assisted capacity of quantum channel with additive input constraint (such as Bosonic Gaussian channel). The main tools are the coding theorem for classical-quantum constrained channels and a finite dimensional approximation of the input density operators for the entanglement-assisted capacity.
A new approach to nonlinear constrained Tikhonov regularization
Ito, Kazufumi
2011-09-16
We present a novel approach to nonlinear constrained Tikhonov regularization from the viewpoint of optimization theory. A second-order sufficient optimality condition is suggested as a nonlinearity condition to handle the nonlinearity of the forward operator. The approach is exploited to derive convergence rate results for a priori as well as a posteriori choice rules, e.g., discrepancy principle and balancing principle, for selecting the regularization parameter. The idea is further illustrated on a general class of parameter identification problems, for which (new) source and nonlinearity conditions are derived and the structural property of the nonlinearity term is revealed. A number of examples including identifying distributed parameters in elliptic differential equations are presented. © 2011 IOP Publishing Ltd.
Computational strategies in the dynamic simulation of constrained flexible MBS
Amirouche, F. M. L.; Xie, M.
1993-01-01
This research focuses on the computational dynamics of flexible constrained multibody systems. At first a recursive mapping formulation of the kinematical expressions in a minimum dimension as well as the matrix representation of the equations of motion are presented. The method employs Kane's equation, FEM, and concepts of continuum mechanics. The generalized active forces are extended to include the effects of high temperature conditions, such as creep, thermal stress, and elastic-plastic deformation. The time variant constraint relations for rolling/contact conditions between two flexible bodies are also studied. The constraints for validation of MBS simulation of gear meshing contact using a modified Timoshenko beam theory are also presented. The last part deals with minimization of vibration/deformation of the elastic beam in multibody systems making use of time variant boundary conditions. The above methodologies and computational procedures developed are being implemented in a program called DYAMUS.
Constrained target controllability of complex networks
Guo, Wei-Feng; Zhang, Shao-Wu; Wei, Ze-Gang; Zeng, Tao; Liu, Fei; Zhang, Jingsong; Wu, Fang-Xiang; Chen, Luonan
2017-06-01
It is of great theoretical interest and practical significance to study how to control a system by applying perturbations to only a few driver nodes. Recently, a hot topic of modern network researches is how to determine driver nodes that allow the control of an entire network. However, in practice, to control a complex network, especially a biological network, one may know not only the set of nodes which need to be controlled (i.e. target nodes), but also the set of nodes to which only control signals can be applied (i.e. constrained control nodes). Compared to the general concept of controllability, we introduce the concept of constrained target controllability (CTC) of complex networks, which concerns the ability to drive any state of target nodes to their desirable state by applying control signals to the driver nodes from the set of constrained control nodes. To efficiently investigate the CTC of complex networks, we further design a novel graph-theoretic algorithm called CTCA to estimate the ability of a given network to control targets by choosing driver nodes from the set of constrained control nodes. We extensively evaluate the CTC of numerous real complex networks. The results indicate that biological networks with a higher average degree are easier to control than biological networks with a lower average degree, while electronic networks with a lower average degree are easier to control than web networks with a higher average degree. We also show that our CTCA can more efficiently produce driver nodes for target-controlling the networks than existing state-of-the-art methods. Moreover, we use our CTCA to analyze two expert-curated bio-molecular networks and compare to other state-of-the-art methods. The results illustrate that our CTCA can efficiently identify proven drug targets and new potentials, according to the constrained controllability of those biological networks.
Cosmogenic photons strongly constrain UHECR source models
Directory of Open Access Journals (Sweden)
van Vliet Arjen
2017-01-01
Full Text Available With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT’s IGRB, as long as their number density is not strongly peaked at recent times.
A constrained supersymmetric left-right model
Energy Technology Data Exchange (ETDEWEB)
Hirsch, Martin [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, Apartado 22085, E-46071 València (Spain); Krauss, Manuel E. [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany); Institut für Theoretische Physik und Astronomie, Universität Würzburg,Emil-Hilb-Weg 22, 97074 Wuerzburg (Germany); Opferkuch, Toby [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany); Porod, Werner [Institut für Theoretische Physik und Astronomie, Universität Würzburg,Emil-Hilb-Weg 22, 97074 Wuerzburg (Germany); Staub, Florian [Theory Division, CERN,1211 Geneva 23 (Switzerland)
2016-03-02
We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model’s capability to explain current anomalies observed at the LHC.
Doubly Constrained Robust Blind Beamforming Algorithm
Directory of Open Access Journals (Sweden)
Xin Song
2013-01-01
Full Text Available We propose doubly constrained robust least-squares constant modulus algorithm (LSCMA to solve the problem of signal steering vector mismatches via the Bayesian method and worst-case performance optimization, which is based on the mismatches between the actual and presumed steering vectors. The weight vector is iteratively updated with penalty for the worst-case signal steering vector by the partial Taylor-series expansion and Lagrange multiplier method, in which the Lagrange multipliers can be optimally derived and incorporated at each step. A theoretical analysis for our proposed algorithm in terms of complexity cost, convergence performance, and SINR performance is presented in this paper. In contrast to the linearly constrained LSCMA, the proposed algorithm provides better robustness against the signal steering vector mismatches, yields higher signal captive performance, improves greater array output SINR, and has a lower computational cost. The simulation results confirm the superiority of the proposed algorithm on beampattern control and output SINR enhancement.
Constraining RRc candidates using SDSS colours
Bányai, E.; Plachy, E.; Molnár, L.; Dobos, L.; Szabó, R.
2016-01-01
The light variations of first-overtone RR Lyrae stars and contact eclipsing binaries can be difficult to distinguish. The Catalina Periodic Variable Star catalog contains several misclassified objects, despite the classification efforts by Drake et al. (2014). They used metallicity and surface gravity derived from spectroscopic data (from the SDSS database) to rule out binaries. Our aim is to further constrain the catalog using SDSS colours to estimate physical parameters for stars that did n...
Analysing Cinematography with Embedded Constrained Patterns
Wu, Hui-Yin; Christie, Marc
2016-01-01
International audience; Cinematography carries messages on the plot, emotion, or more general feeling of the film. Yet cinematographic devices are often overlooked in existing approaches to film analysis. In this paper, we present Embedded Constrained Patterns (ECPs), a dedicated query language to search annotated film clips for sequences that fulfill complex stylistic constraints. ECPs are groups of framing and sequencing constraints defined using vocabulary in film textbooks. Using a set al...
Constraining neutron star matter with Quantum Chromodynamics
Kurkela, Aleksi; Schaffner-Bielich, Jurgen; Vuorinen, Aleksi
2014-01-01
In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount --- or even presence --- of quark matter inside the stars.
Capacity constrained assignment in spatial databases
DEFF Research Database (Denmark)
U, Leong Hou; Yiu, Man Lung; Mouratidis, Kyriakos
2008-01-01
Given a point set P of customers (e.g., WiFi receivers) and a point set Q of service providers (e.g., wireless access points), where each q 2 Q has a capacity q.k, the capacity constrained assignment (CCA) is a matching M Q × P such that (i) each point q 2 Q (p 2 P) appears at most k times (at most...
Constraining fundamental plasma physics processes using doped capsule implosions
Garbett, W. J.; James, S.; Kyrala, G. A.; Wilson, D. C.; Benage, J.; Wysocki, F. J.; Gunderson, M.; Frenje, J.; Petrasso, R.; Glebov, V. Y.; Yaakobi, B.
2008-05-01
A standard technique in inertial confinement fusion research is the use of low levels of spectroscopic dopants as a passive diagnostic of fuel conditions. Using higher dopant levels it becomes possible to modify the plasma conditions. Doped capsule experiments may thus provide a way to control and study fundamental plasma physics processes in the inertial fusion regime. As a precursor to eventual experiments on the National Ignition Facility (NIF) we have performed a series of capsule implosions using the Omega laser. These are intended to guide the modelling of high-Z dopants and explore the feasibility of using such capsule implosions for quantitative physics experiments. We have fielded thin glass shells filled with D-He3 fuel and varying levels of Ar, Kr and Xe dopants. X-ray emission spectroscopy is combined with simultaneous measurements of primary neutron and proton yields and energy spectra in an attempt to fully constrain capsule behaviour.
The expanded Lagrangian system for constrained optimization problems
Poore, A. B.; Al-Hassan, Q.
1988-01-01
Smooth penalty functions can be combined with numerical continuation/bifurcation techniques to produce a class of robust and fast algorithms for constrained optimization problems. The key to the development of these algorithms is the Expanded Lagrangian System which is derived and analyzed in this work. This parameterized system of nonlinear equations contains the penalty path as a solution, provides a smooth homotopy into the first-order necessary conditions, and yields a global optimization technique. Furthermore, the inevitable ill-conditioning present in a sequential optimization algorithm is removed for three penalty methods: the quadratic penalty function for equality constraints, and the logarithmic barrier function (an interior method) and the quadratic loss function (an interior method) for inequality constraints. Although these techniques apply to optimization in general and to linear and nonlinear programming, calculus of variations, optimal control and parameter identification in particular, the development is primarily within the context of nonlinear programming.
Constrained Multi-View Video Face Clustering.
Cao, Xiaochun; Zhang, Changqing; Zhou, Chengju; Fu, Huazhu; Foroosh, Hassan
2015-11-01
In this paper, we focus on face clustering in videos. To promote the performance of video clustering by multiple intrinsic cues, i.e., pairwise constraints and multiple views, we propose a constrained multi-view video face clustering method under a unified graph-based model. First, unlike most existing video face clustering methods which only employ these constraints in the clustering step, we strengthen the pairwise constraints through the whole video face clustering framework, both in sparse subspace representation and spectral clustering. In the constrained sparse subspace representation, the sparse representation is forced to explore unknown relationships. In the constrained spectral clustering, the constraints are used to guide for learning more reasonable new representations. Second, our method considers both the video face pairwise constraints as well as the multi-view consistence simultaneously. In particular, the graph regularization enforces the pairwise constraints to be respected and the co-regularization penalizes the disagreement among different graphs of multiple views. Experiments on three real-world video benchmark data sets demonstrate the significant improvements of our method over the state-of-the-art methods.
An English language interface for constrained domains
Page, Brenda J.
1989-01-01
The Multi-Satellite Operations Control Center (MSOCC) Jargon Interpreter (MJI) demonstrates an English language interface for a constrained domain. A constrained domain is defined as one with a small and well delineated set of actions and objects. The set of actions chosen for the MJI is from the domain of MSOCC Applications Executive (MAE) Systems Test and Operations Language (STOL) directives and contains directives for signing a cathode ray tube (CRT) on or off, calling up or clearing a display page, starting or stopping a procedure, and controlling history recording. The set of objects chosen consists of CRTs, display pages, STOL procedures, and history files. Translation from English sentences to STOL directives is done in two phases. In the first phase, an augmented transition net (ATN) parser and dictionary are used for determining grammatically correct parsings of input sentences. In the second phase, grammatically typed sentences are submitted to a forward-chaining rule-based system for interpretation and translation into equivalent MAE STOL directives. Tests of the MJI show that it is able to translate individual clearly stated sentences into the subset of directives selected for the prototype. This approach to an English language interface may be used for similarly constrained situations by modifying the MJI's dictionary and rules to reflect the change of domain.
Directory of Open Access Journals (Sweden)
Zhenggang Du
2015-03-01
Full Text Available To improve models for accurate projections, data assimilation, an emerging statistical approach to combine models with data, have recently been developed to probe initial conditions, parameters, data content, response functions and model uncertainties. Quantifying how many information contents are contained in different data streams is essential to predict future states of ecosystems and the climate. This study uses a data assimilation approach to examine the information contents contained in flux- and biometric-based data to constrain parameters in a terrestrial carbon (C model, which includes canopy photosynthesis and vegetation–soil C transfer submodels. Three assimilation experiments were constructed with either net ecosystem exchange (NEE data only or biometric data only [including foliage and woody biomass, litterfall, soil organic C (SOC and soil respiration], or both NEE and biometric data to constrain model parameters by a probabilistic inversion application. The results showed that NEE data mainly constrained parameters associated with gross primary production (GPP and ecosystem respiration (RE but were almost invalid for C transfer coefficients, while biometric data were more effective in constraining C transfer coefficients than other parameters. NEE and biometric data constrained about 26% (6 and 30% (7 of a total of 23 parameters, respectively, but their combined application constrained about 61% (14 of all parameters. The complementarity of NEE and biometric data was obvious in constraining most of parameters. The poor constraint by only NEE or biometric data was probably attributable to either the lack of long-term C dynamic data or errors from measurements. Overall, our results suggest that flux- and biometric-based data, containing different processes in ecosystem C dynamics, have different capacities to constrain parameters related to photosynthesis and C transfer coefficients, respectively. Multiple data sources could also
Fast alternating projection methods for constrained tomographic reconstruction.
Liu, Li; Han, Yongxin; Jin, Mingwu
2017-01-01
The alternating projection algorithms are easy to implement and effective for large-scale complex optimization problems, such as constrained reconstruction of X-ray computed tomography (CT). A typical method is to use projection onto convex sets (POCS) for data fidelity, nonnegative constraints combined with total variation (TV) minimization (so called TV-POCS) for sparse-view CT reconstruction. However, this type of method relies on empirically selected parameters for satisfactory reconstruction and is generally slow and lack of convergence analysis. In this work, we use a convex feasibility set approach to address the problems associated with TV-POCS and propose a framework using full sequential alternating projections or POCS (FS-POCS) to find the solution in the intersection of convex constraints of bounded TV function, bounded data fidelity error and non-negativity. The rationale behind FS-POCS is that the mathematically optimal solution of the constrained objective function may not be the physically optimal solution. The breakdown of constrained reconstruction into an intersection of several feasible sets can lead to faster convergence and better quantification of reconstruction parameters in a physical meaningful way than that in an empirical way of trial-and-error. In addition, for large-scale optimization problems, first order methods are usually used. Not only is the condition for convergence of gradient-based methods derived, but also a primal-dual hybrid gradient (PDHG) method is used for fast convergence of bounded TV. The newly proposed FS-POCS is evaluated and compared with TV-POCS and another convex feasibility projection method (CPTV) using both digital phantom and pseudo-real CT data to show its superior performance on reconstruction speed, image quality and quantification.
Constrained Task Assignment and Scheduling On Networks of Arbitrary Topology
Jackson, Justin Patrick
This dissertation develops a framework to address centralized and distributed constrained task assignment and task scheduling problems. This framework is used to prove properties of these problems that can be exploited, develop effective solution algorithms, and to prove important properties such as correctness, completeness and optimality. The centralized task assignment and task scheduling problem treated here is expressed as a vehicle routing problem with the goal of optimizing mission time subject to mission constraints on task precedence and agent capability. The algorithm developed to solve this problem is able to coordinate vehicle (agent) timing for task completion. This class of problems is NP-hard and analytical guarantees on solution quality are often unavailable. This dissertation develops a technique for determining solution quality that can be used on a large class of problems and does not rely on traditional analytical guarantees. For distributed problems several agents must communicate to collectively solve a distributed task assignment and task scheduling problem. The distributed task assignment and task scheduling algorithms developed here allow for the optimization of constrained military missions in situations where the communication network may be incomplete and only locally known. Two problems are developed. The distributed task assignment problem incorporates communication constraints that must be satisfied; this is the Communication-Constrained Distributed Assignment Problem. A novel distributed assignment algorithm, the Stochastic Bidding Algorithm, solves this problem. The algorithm is correct, probabilistically complete, and has linear average-case time complexity. The distributed task scheduling problem addressed here is to minimize mission time subject to arbitrary predicate mission constraints; this is the Minimum-time Arbitrarily-constrained Distributed Scheduling Problem. The Optimal Distributed Non-sequential Backtracking Algorithm
Integrated radar-photometry sensor based on constrained optical flow
Fablet, Youenn; Agam, Gady; Cohen, Paul
2000-06-01
Robotic teleoperation is a major research area with numerous applications. Efficient teleoperation, however, greatly depends on the provided sensory information. In this paper, an integrated radar- photometry sensor is presented. The developed sensor relies on the strengths of the two main modalties: robust radar-based range data, and high resolution dynamic photometric imaging. While radar data has low resolution and depth from motion in photometric images is susceptible to poor visibility conditions, the integrated sensor compensates for the flaws of the individual components. The integration of the two modalities is achieved by us ing the radar based range data in order to constrain the optical flow estimation, and fusing the resulting depth maps. The optical flow computation is constrained by a model flow field based upon the radar data, by using a rigidity constraint, and by incorporating edge information into the optical flow estimation. The data fusion is based upon a confidence estimation of the image based depth computation. Results with simulated data demonstrate the good potential of the approach.
Cascading Constrained 2-D Arrays using Periodic Merging Arrays
DEFF Research Database (Denmark)
Forchhammer, Søren; Laursen, Torben Vaarby
2003-01-01
We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...
21 CFR 888.3780 - Wrist joint polymer constrained prosthesis.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wrist joint polymer constrained prosthesis. 888... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3780 Wrist joint polymer constrained prosthesis. (a) Identification. A wrist joint polymer constrained prosthesis is a device made of...
Charged particles constrained to a curved surface
Müller, Thomas
2012-01-01
We study the motion of charged particles constrained to arbitrary two-dimensional curved surfaces but interacting in three-dimensional space via the Coulomb potential. To speed-up the interaction calculations, we use the parallel compute capability of the Compute Unified Device Architecture (CUDA) of todays graphics boards. The particles and the curved surfaces are shown using the Open Graphics Library (OpenGL). The paper is intended to give graduate students, who have basic experiences with electrostatics and differential geometry, a deeper understanding in charged particle interactions and a short introduction how to handle a many particle system using parallel computing on a single home computer
Musthofa, M.W.; Salmah, S.; Suparwanto, A.; Engwerda, J.C.
2013-01-01
In this paper the feedback saddle point equilibria of soft-constrained zero-sum linear quadratic differential games for descriptor systems that have index one will be studied for a finite and infinite planning horizon. Both necessary and sufficient conditions for the existence of a feedback saddle
Directory of Open Access Journals (Sweden)
San-Yang Liu
2014-01-01
Full Text Available Two unified frameworks of some sufficient descent conjugate gradient methods are considered. Combined with the hyperplane projection method of Solodov and Svaiter, they are extended to solve convex constrained nonlinear monotone equations. Their global convergence is proven under some mild conditions. Numerical results illustrate that these methods are efficient and can be applied to solve large-scale nonsmooth equations.
Directory of Open Access Journals (Sweden)
Aysha Rajeev
2016-01-01
Conclusion: We describe a new method of treatment of this difficult condition with a cemented constrained acetabular captive cup and cement to cement revision using a CDH femoral stem. This method prevents further dislocations and will give good functional outcomes thus reducing the high morbidity and mortality.
Changes in epistemic frameworks: Random or constrained?
Directory of Open Access Journals (Sweden)
Ananka Loubser
2012-11-01
Full Text Available Since the emergence of a solid anti-positivist approach in the philosophy of science, an important question has been to understand how and why epistemic frameworks change in time, are modified or even substituted. In contemporary philosophy of science three main approaches to framework-change were detected in the humanist tradition:1. In both the pre-theoretical and theoretical domains changes occur according to a rather constrained, predictable or even pre-determined pattern (e.g. Holton.2. Changes occur in a way that is more random or unpredictable and free from constraints (e.g. Kuhn, Feyerabend, Rorty, Lyotard.3. Between these approaches, a middle position can be found, attempting some kind of synthesis (e.g. Popper, Lakatos.Because this situation calls for clarification and systematisation, this article in fact tried to achieve more clarity on how changes in pre-scientific frameworks occur, as well as provided transcendental criticism of the above positions. This article suggested that the above-mentioned positions are not fully satisfactory, as change and constancy are not sufficiently integrated. An alternative model was suggested in which changes in epistemic frameworks occur according to a pattern, neither completely random nor rigidly constrained, which results in change being dynamic but not arbitrary. This alternative model is integral, rather than dialectical and therefore does not correspond to position three.
Multiple Manifold Clustering Using Curvature Constrained Path.
Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba
2015-01-01
The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering.
Multiple Manifold Clustering Using Curvature Constrained Path.
Directory of Open Access Journals (Sweden)
Amir Babaeian
Full Text Available The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering.
Constrained Metric Learning by Permutation Inducing Isometries.
Bosveld, Joel; Mahmood, Arif; Huynh, Du Q; Noakes, Lyle
2016-01-01
The choice of metric critically affects the performance of classification and clustering algorithms. Metric learning algorithms attempt to improve performance, by learning a more appropriate metric. Unfortunately, most of the current algorithms learn a distance function which is not invariant to rigid transformations of images. Therefore, the distances between two images and their rigidly transformed pair may differ, leading to inconsistent classification or clustering results. We propose to constrain the learned metric to be invariant to the geometry preserving transformations of images that induce permutations in the feature space. The constraint that these transformations are isometries of the metric ensures consistent results and improves accuracy. Our second contribution is a dimension reduction technique that is consistent with the isometry constraints. Our third contribution is the formulation of the isometry constrained logistic discriminant metric learning (IC-LDML) algorithm, by incorporating the isometry constraints within the objective function of the LDML algorithm. The proposed algorithm is compared with the existing techniques on the publicly available labeled faces in the wild, viewpoint-invariant pedestrian recognition, and Toy Cars data sets. The IC-LDML algorithm has outperformed existing techniques for the tasks of face recognition, person identification, and object classification by a significant margin.
Simplex ACE: a constrained subspace detector
Ziemann, Amanda; Theiler, James
2017-08-01
In hyperspectral target detection, one must contend with variability in both target materials and background clutter. While most algorithms focus on the background clutter, there are some materials for which there is substantial variability in the signatures of the target. When multiple signatures can be used to describe a target material, subspace detectors are often the detection algorithm of choice. However, as the number of variable target spectra increases, so does the size of the target subspace spanned by these spectra, which in turn increases the number of false alarms. Here, we propose a modification to this approach, wherein the target subspace is instead a constrained subspace, or a simplex without the sum-to-one constraint. We derive the simplex adaptive matched filter (simplex AMF) and the simplex adaptive cosine estimator (simplex ACE), which are constrained basis adaptations of the traditional subspace AMF and subspace ACE detectors. We present results using simplex AMF and simplex ACE for variable targets, and compare their performances against their subspace counterparts. Our primary interest is in the simplex ACE detector, and as such, the experiments herein seek to evaluate the robustness of simplex ACE, with simplex AMF included for comparison. Results are shown on hyperspectral images using both implanted and ground-truthed targets, and demonstrate the robustness of simplex ACE to target variability.
A constrained backpropagation approach for the adaptive solution of partial differential equations.
Rudd, Keith; Di Muro, Gianluca; Ferrari, Silvia
2014-03-01
This paper presents a constrained backpropagation (CPROP) methodology for solving nonlinear elliptic and parabolic partial differential equations (PDEs) adaptively, subject to changes in the PDE parameters or external forcing. Unlike existing methods based on penalty functions or Lagrange multipliers, CPROP solves the constrained optimization problem associated with training a neural network to approximate the PDE solution by means of direct elimination. As a result, CPROP reduces the dimensionality of the optimization problem, while satisfying the equality constraints associated with the boundary and initial conditions exactly, at every iteration of the algorithm. The effectiveness of this method is demonstrated through several examples, including nonlinear elliptic and parabolic PDEs with changing parameters and nonhomogeneous terms.
Constrained regulator problem for linear uncertain systems: control of a pH process
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available The regulator problem for linear uncertain continuous-time systems having control constraints is considered. Necessary and sufficient conditions of positive invariance of polyhedral domains are extended to the case of continuous-time uncertain systems. Robust constrained regulators are then derived. An application to the control of pH in a stirred tank is then presented. First, the uncertainty in the pH process is evaluated from first-principle models, then the design of a robust constrained regulator is presented. Simulation results show that this control law is easy to implement and that robust asymptotic stability and control admissibility are guaranteed.
Constraining the Milky Way potential using the dynamical kinematic substructures
Directory of Open Access Journals (Sweden)
Antoja T.
2012-02-01
Full Text Available We present a method to constrain the potential of the non-axisymmetric components of the Galaxy using the kinematics of stars in the solar neighborhood. The basic premise is that dynamical substructures in phase-space (i.e. due to the bar and/or spiral arms are associated with families of periodic or irregular orbits, which may be easily identified in orbital frequency space. We use the “observed” positions and velocities of stars as initial conditions for orbital integrations in a variety of gravitational potentials. We then compute their characteristic frequencies, and study the structure present in the frequency maps. We find that the distribution of dynamical substructures in velocity- and frequency-space is best preserved when the integrations are performed in the “true” gravitational potential.
Environment determines evolutionary trajectory in a constrained phenotypic space.
Fraebel, David T; Mickalide, Harry; Schnitkey, Diane; Merritt, Jason; Kuhlman, Thomas E; Kuehn, Seppe
2017-03-27
Constraints on phenotypic variation limit the capacity of organisms to adapt to the multiple selection pressures encountered in natural environments. To better understand evolutionary dynamics in this context, we select Escherichia coli for faster migration through a porous environment, a process which depends on both motility and growth. We find that a trade-off between swimming speed and growth rate constrains the evolution of faster migration. Evolving faster migration in rich medium results in slow growth and fast swimming, while evolution in minimal medium results in fast growth and slow swimming. In each condition parallel genomic evolution drives adaptation through different mutations. We show that the trade-off is mediated by antagonistic pleiotropy through mutations that affect negative regulation. A model of the evolutionary process shows that the genetic capacity of an organism to vary traits can qualitatively depend on its environment, which in turn alters its evolutionary trajectory.
Traversable geometric dark energy wormholes constrained by astrophysical observations
Energy Technology Data Exchange (ETDEWEB)
Wang, Deng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Meng, Xin-he [Nankai University, Department of Physics, Tianjin (China); Institute of Theoretical Physics, CAS, State Key Lab of Theoretical Physics, Beijing (China)
2016-09-15
In this paper, we introduce the astrophysical observations into the wormhole research. We investigate the evolution behavior of the dark energy equation of state parameter ω by constraining the dark energy model, so that we can determine in which stage of the universe wormholes can exist by using the condition ω < -1. As a concrete instance, we study the Ricci dark energy (RDE) traversable wormholes constrained by astrophysical observations. Particularly, we find from Fig. 5 of this work, when the effective equation of state parameter ω{sub X} < -1 (or z < 0.109), i.e., the null energy condition (NEC) is violated clearly, the wormholes will exist (open). Subsequently, six specific solutions of statically and spherically symmetric traversable wormhole supported by the RDE fluids are obtained. Except for the case of a constant redshift function, where the solution is not only asymptotically flat but also traversable, the five remaining solutions are all non-asymptotically flat, therefore, the exotic matter from the RDE fluids is spatially distributed in the vicinity of the throat. Furthermore, we analyze the physical characteristics and properties of the RDE traversable wormholes. It is worth noting that, using the astrophysical observations, we obtain the constraints on the parameters of the RDE model, explore the types of exotic RDE fluids in different stages of the universe, limit the number of available models for wormhole research, reduce theoretically the number of the wormholes corresponding to different parameters for the RDE model, and provide a clearer picture for wormhole investigations from the new perspective of observational cosmology. (orig.)
A Globally Convergent Matrix-Free Method for Constrained Equations and Its Linear Convergence Rate
Directory of Open Access Journals (Sweden)
Min Sun
2014-01-01
Full Text Available A matrix-free method for constrained equations is proposed, which is a combination of the well-known PRP (Polak-Ribière-Polyak conjugate gradient method and the famous hyperplane projection method. The new method is not only derivative-free, but also completely matrix-free, and consequently, it can be applied to solve large-scale constrained equations. We obtain global convergence of the new method without any differentiability requirement on the constrained equations. Compared with the existing gradient methods for solving such problem, the new method possesses linear convergence rate under standard conditions, and a relax factor γ is attached in the update step to accelerate convergence. Preliminary numerical results show that it is promising in practice.
Scheduling of resource-constrained projects
Klein, Robert
2000-01-01
Project management has become a widespread instrument enabling organizations to efficiently master the challenges of steadily shortening product life cycles, global markets and decreasing profit margins. With projects increasing in size and complexity, their planning and control represents one of the most crucial management tasks. This is especially true for scheduling, which is concerned with establishing execution dates for the sub-activities to be performed in order to complete the project. The ability to manage projects where resources must be allocated between concurrent projects or even sub-activities of a single project requires the use of commercial project management software packages. However, the results yielded by the solution procedures included are often rather unsatisfactory. Scheduling of Resource-Constrained Projects develops more efficient procedures, which can easily be integrated into software packages by incorporated programming languages, and thus should be of great interest for practiti...
Constrained Delaunay Triangulation for Ad Hoc Networks
Directory of Open Access Journals (Sweden)
D. Satyanarayana
2008-01-01
Full Text Available Geometric spanners can be used for efficient routing in wireless ad hoc networks. Computation of existing spanners for ad hoc networks primarily focused on geometric properties without considering network requirements. In this paper, we propose a new spanner called constrained Delaunay triangulation (CDT which considers both geometric properties and network requirements. The CDT is formed by introducing a small set of constraint edges into local Delaunay triangulation (LDel to reduce the number of hops between nodes in the network graph. We have simulated the CDT using network simulator (ns-2.28 and compared with Gabriel graph (GG, relative neighborhood graph (RNG, local Delaunay triangulation (LDel, and planarized local Delaunay triangulation (PLDel. The simulation results show that the minimum number of hops from source to destination is less than other spanners. We also observed the decrease in delay, jitter, and improvement in throughput.
Spatially constrained propulsion in jumping archer fish
Mendelson, Leah; Techet, Alexandra
2016-11-01
Archer fish jump multiple body lengths out of the water for prey capture with impressive accuracy. Their remarkable aim is facilitated by jumping from a stationary position directly below the free surface. As a result of this starting position, rapid acceleration to a velocity sufficient for reaching the target occurs with only a body length to travel before the fish leaves the water. Three-dimensional measurements of jumping kinematics and volumetric velocimetry using Synthetic Aperture PIV highlight multiple strategies for such spatially constrained acceleration. Archer fish rapidly extend fins at jump onset to increase added mass forces and modulate their swimming kinematics to minimize wasted energy when the body is partially out of the water. Volumetric measurements also enable assessment of efficiency during a jump, which is crucial to understanding jumping's role as an energetically viable hunting strategy for the fish.
Shape space exploration of constrained meshes
Yang, Yongliang
2011-12-12
We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.
Mixed-Strategy Chance Constrained Optimal Control
Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J.
2013-01-01
This paper presents a novel chance constrained optimal control (CCOC) algorithm that chooses a control action probabilistically. A CCOC problem is to find a control input that minimizes the expected cost while guaranteeing that the probability of violating a set of constraints is below a user-specified threshold. We show that a probabilistic control approach, which we refer to as a mixed control strategy, enables us to obtain a cost that is better than what deterministic control strategies can achieve when the CCOC problem is nonconvex. The resulting mixed-strategy CCOC problem turns out to be a convexification of the original nonconvex CCOC problem. Furthermore, we also show that a mixed control strategy only needs to "mix" up to two deterministic control actions in order to achieve optimality. Building upon an iterative dual optimization, the proposed algorithm quickly converges to the optimal mixed control strategy with a user-specified tolerance.
Constrained multibody system dynamics: An automated approach
Kamman, J. W.; Huston, R. L.
1982-01-01
The governing equations for constrained multibody systems are formulated in a manner suitable for their automated, numerical development and solution. The closed loop problem of multibody chain systems is addressed. The governing equations are developed by modifying dynamical equations obtained from Lagrange's form of d'Alembert's principle. The modifications is based upon a solution of the constraint equations obtained through a zero eigenvalues theorem, is a contraction of the dynamical equations. For a system with n-generalized coordinates and m-constraint equations, the coefficients in the constraint equations may be viewed as constraint vectors in n-dimensional space. In this setting the system itself is free to move in the n-m directions which are orthogonal to the constraint vectors.
Shape space exploration of constrained meshes
Yang, Yongliang
2011-01-01
We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc.
evelopment and Use of an Environment for Building/Using Ontologies “Hozo”
Kozaki, Kouji; Kitamura, Yoshinobu; Sano, Toshinobu; Motomatsu, Shin'ichiro; Ishikawa, Seiichi; Mizoguchi, Riichiro
Ontological engineering is a successor of knowledge engineering which has been considered as a technology for building knowledge-intensive systems. Although knowledge engineering has contributed to eliciting expertise, organizing it into a computational structure, and building knowledge bases, AI researchers have noticed the necessity of a more robust and theoretically sound engineering which enables knowledge sharing/reuse and formulation of the problem solving process itself. Knowledge engineering has thus developed into “ontological engineering” where “ontology” is the key concept to investigate. Although the necessity of an ontology and ontological engineering is well-understood, there has been few success stories about ontology construction and its deployment to date. The reason for this is that the principles of ontology design is not clear enough. Therefore, a methodology of ontology design and a computer system supporting ontology design are needed. Our research goals include a methodology of ontology design, and development of an environment for building and using ontologies. This article outlines an environment for building and using ontologies “Hozo” which is under development. Hozo is designed based on a fundamental consideration of an ontological theory. And it has been extensively used in many projects to develop various ontologies. As an example, this paper presents an activity of ontology construction and its deployment in an interface system for an oil-refinery plant operation which has been done under the umbrella of Human-Media Project for five years. And we demonstrate the ability of Hozo through the ontology building/using process.
EVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION
Energy Technology Data Exchange (ETDEWEB)
Bill W. Bogan; Wendy R. Sullivan; Kristine M. H. Cruz; Kristine L. Lowe; John J. Kilbane II
2004-04-30
The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing of pepper extracts resulted in preliminary data indicating that some pepper extracts inhibit the growth of some corrosion-associated microorganisms. This quarter additional tests were performed to more specifically investigate the ability of three pepper extracts to inhibit the growth, and to influence the metal corrosion caused by two microbial species: Desulfovibrio vulgaris, and Comomonas denitrificans. All three pepper extracts rapidly killed Desulfovibrio vulgaris, but did not appear to inhibit Comomonas denitrificans. While corrosion rates were at control levels in experiments with Desulfovibrio vulgaris that received pepper extract, corrosion rates were increased in the presence of Comomonas denitrificans plus pepper extract. Further testing with a wider range of pure bacterial cultures, and more importantly, with mixed bacterial cultures should be performed to determine the potential effectiveness of pepper extracts to inhibit MIC.
The properties of retrieval cues constrain the picture superiority effect.
Weldon, M S; Roediger, H L; Challis, B H
1989-01-01
In three experiments, we examined why pictures are remembered better than words on explicit memory tests like recall and recognition, whereas words produce more priming than pictures on some implicit tests, such as word-fragment and word-stem completion (e.g., completing -l-ph-nt or ele----- as elephant). One possibility is that pictures are always more accessible than words if subjects are given explicit retrieval instructions. An alternative possibility is that the properties of the retrieval cues themselves constrain the retrieval processes engaged; word fragments might induce data-driven (perceptually based) retrieval, which favors words regardless of the retrieval instructions. Experiment 1 demonstrated that words were remembered better than pictures on both the word-fragment and word-stem completion tasks under both implicit and explicit retrieval conditions. In Experiment 2, pictures were recalled better than words with semantically related extralist cues. In Experiment 3, when semantic cues were combined with word fragments, pictures and words were recalled equally well under explicit retrieval conditions, but words were superior to pictures under implicit instructions. Thus, the inherently data-limited properties of fragmented words limit their use in accessing conceptual codes. Overall, the results indicate that retrieval operations are largely determined by properties of the retrieval cues under both implicit and explicit retrieval conditions.
A Tightly Constrained Composition Model of Earth's Core
Badro, J.; Fiquet, G.; Guyot, F.
2007-12-01
We measure compressional sound velocities in light-element alloys of iron (FeO, FeSi, FeS, and FeS2) at high pressure in the diamond anvil cell. Combining this data set with pressure-density (equation of state) systematics, and constraining them with radial seismic models, we propose an average composition model of Earth's inner core that matches both the seismically observed densities and compressional sound speeds. We show that sulphur cannot be the only light alloying element in the core, because it cannot satisfy all at once the needed density, sound velocity, and abundance (from cosmochemical models). On the other hand, the incorporation of silicon or oxygen is compatible with geophysical observations and geochemical abundances. We therefore propose a preferred model, where the inner core contains 2.3 wt% silicon and traces of oxygen, whereas the outer core contains 5.3 wt% oxygen and 2.8 wt% silicon. Our model is in excellent agreement with recent high-pressure silicon solubility data in molten iron. Our model's oxygen-content in the outer core is constrained by high-pressure oxygen solubility data in molten iron. Our compositional model is constrained by seismology, petrology, and mineral physics. Using existing solubility data, we can infer a range of equilibration parameters that provide as many constraints to the pressure- temperature conditions as well as the depth at the base of the magma ocean during core formation. References N. Takafuji, K. Hirose, M. Mitome, Y. Bando, Solubilities of O and Si in liquid iron in equilibrium with (Mg,Fe)SiO3 perovskite and the light elements in the core, Geophys. Res. Lett. 32 (2005). T. Sakai, T. Kondo, E. Ohtani, H. Terasaki, N. Endo, T. Kuba, T. Suzuki, T. Kikegawa, Interaction between iron and post- perovskite at core-mantle boundary and core signature in plume source region, Geophys. Res. Lett. 33 (2006). J. Badro, G. Fiquet, F. Guyot, E. Gregoryanz, F. Occelli, D. Antonangeli, M. d'Astuto, Effect of light
Hard Instances of the Constrained Discrete Logarithm Problem
Mironov, Ilya; Mityagin, Anton; Nissim, Kobbi
2006-01-01
The discrete logarithm problem (DLP) generalizes to the constrained DLP, where the secret exponent $x$ belongs to a set known to the attacker. The complexity of generic algorithms for solving the constrained DLP depends on the choice of the set. Motivated by cryptographic applications, we study sets with succinct representation for which the constrained DLP is hard. We draw on earlier results due to Erd\\"os et al. and Schnorr, develop geometric tools such as generalized Menelaus' theorem for ...
Directory of Open Access Journals (Sweden)
Wen-Jer Chang
2013-01-01
Full Text Available The variance and passivity constrained fuzzy control problem for the nonlinear ship steering systems with state multiplicative noises is investigated. The continuous-time Takagi-Sugeno fuzzy model is used to represent the nonlinear ship steering systems with state multiplicative noises. In order to simultaneously achieve variance, passivity, and stability performances, some sufficient conditions are derived based on the Lyapunov theory. Employing the matrix transformation technique, these sufficient conditions can be expressed in terms of linear matrix inequalities. By solving the corresponding linear matrix inequality conditions, a parallel distributed compensation based fuzzy controller can be obtained to guarantee the stability of the closed-loop nonlinear ship steering systems subject to variance and passivity performance constraints. Finally, a numerical simulation example is provided to illustrate the usefulness and applicability of the proposed multiple performance constrained fuzzy control method.
Christen, Markus; Christ, Clara D; van Gunsteren, Wilfred F
2007-07-16
A comparison of different treatments of bond-stretching interactions in molecular dynamics simulation is presented. Relative free energies from simulations using rigid bonds maintained with the SHAKE algorithm, using partially rigid bonds maintained with a recently introduced flexible constraints algorithm, and using fully flexible bonds are compared in a multi-configurational thermodynamic integration calculation of changing liquid water into liquid methanol. The formula for the free energy change due to a changing flexible constraint in a flexible constraint simulation is derived. To allow for a more direct comparison between these three methods, three different pairs of models for water and methanol were used: a flexible model (simulated without constraints and with flexible constraints), a rigid model (simulated with standard hard constraints), and an alternative flexible model (simulated with flexible constraints and standard hard constraints) in which the ideal or constrained bond lengths correspond to the average bond lengths obtained from a short simulation of the unconstrained flexible model. The particular treatment of the bonds induces differences of up to 2 % in the liquid densities, whereas (excess) free energy differences of up to 5.7 (4.3) kJ mol(-1) are observed. These values are smaller than the differences observed between the three different pairs of methanol/water models: up to 5 % in density and up to 8.5 kJ mol(-1) in (excess) free energy.
ODE constrained mixture modelling: a method for unraveling subpopulation structures and dynamics.
Hasenauer, Jan; Hasenauer, Christine; Hucho, Tim; Theis, Fabian J
2014-07-01
Functional cell-to-cell variability is ubiquitous in multicellular organisms as well as bacterial populations. Even genetically identical cells of the same cell type can respond differently to identical stimuli. Methods have been developed to analyse heterogeneous populations, e.g., mixture models and stochastic population models. The available methods are, however, either incapable of simultaneously analysing different experimental conditions or are computationally demanding and difficult to apply. Furthermore, they do not account for biological information available in the literature. To overcome disadvantages of existing methods, we combine mixture models and ordinary differential equation (ODE) models. The ODE models provide a mechanistic description of the underlying processes while mixture models provide an easy way to capture variability. In a simulation study, we show that the class of ODE constrained mixture models can unravel the subpopulation structure and determine the sources of cell-to-cell variability. In addition, the method provides reliable estimates for kinetic rates and subpopulation characteristics. We use ODE constrained mixture modelling to study NGF-induced Erk1/2 phosphorylation in primary sensory neurones, a process relevant in inflammatory and neuropathic pain. We propose a mechanistic pathway model for this process and reconstructed static and dynamical subpopulation characteristics across experimental conditions. We validate the model predictions experimentally, which verifies the capabilities of ODE constrained mixture models. These results illustrate that ODE constrained mixture models can reveal novel mechanistic insights and possess a high sensitivity.
Reflected stochastic differential equation models for constrained animal movement
Hanks, Ephraim M.; Hooten, Mevin B.; Johnson, Devin S.
2017-01-01
Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.
Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection
National Research Council Canada - National Science Library
Wenfen Liu; Mao Ye; Jianghong Wei; Xuexian Hu
2017-01-01
Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely...
Resource Management in Constrained Dynamic Situations
Seok, Jinwoo
Resource management is considered in this dissertation for systems with limited resources, possibly combined with other system constraints, in unpredictably dynamic environments. Resources may represent fuel, power, capabilities, energy, and so on. Resource management is important for many practical systems; usually, resources are limited, and their use must be optimized. Furthermore, systems are often constrained, and constraints must be satisfied for safe operation. Simplistic resource management can result in poor use of resources and failure of the system. Furthermore, many real-world situations involve dynamic environments. Many traditional problems are formulated based on the assumptions of given probabilities or perfect knowledge of future events. However, in many cases, the future is completely unknown, and information on or probabilities about future events are not available. In other words, we operate in unpredictably dynamic situations. Thus, a method is needed to handle dynamic situations without knowledge of the future, but few formal methods have been developed to address them. Thus, the goal is to design resource management methods for constrained systems, with limited resources, in unpredictably dynamic environments. To this end, resource management is organized hierarchically into two levels: 1) planning, and 2) control. In the planning level, the set of tasks to be performed is scheduled based on limited resources to maximize resource usage in unpredictably dynamic environments. In the control level, the system controller is designed to follow the schedule by considering all the system constraints for safe and efficient operation. Consequently, this dissertation is mainly divided into two parts: 1) planning level design, based on finite state machines, and 2) control level methods, based on model predictive control. We define a recomposable restricted finite state machine to handle limited resource situations and unpredictably dynamic environments
Constrained sampling experiments reveal principles of detection in natural scenes.
Sebastian, Stephen; Abrams, Jared; Geisler, Wilson S
2017-07-11
A fundamental everyday visual task is to detect target objects within a background scene. Using relatively simple stimuli, vision science has identified several major factors that affect detection thresholds, including the luminance of the background, the contrast of the background, the spatial similarity of the background to the target, and uncertainty due to random variations in the properties of the background and in the amplitude of the target. Here we use an experimental approach based on constrained sampling from multidimensional histograms of natural stimuli, together with a theoretical analysis based on signal detection theory, to discover how these factors affect detection in natural scenes. We sorted a large collection of natural image backgrounds into multidimensional histograms, where each bin corresponds to a particular luminance, contrast, and similarity. Detection thresholds were measured for a subset of bins spanning the space, where a natural background was randomly sampled from a bin on each trial. In low-uncertainty conditions, both the background bin and the amplitude of the target were fixed, and, in high-uncertainty conditions, they varied randomly on each trial. We found that thresholds increase approximately linearly along all three dimensions and that detection accuracy is unaffected by background bin and target amplitude uncertainty. The results are predicted from first principles by a normalized matched-template detector, where the dynamic normalizing gain factor follows directly from the statistical properties of the natural backgrounds. The results provide an explanation for classic laws of psychophysics and their underlying neural mechanisms.
Joint Chance-Constrained Dynamic Programming
Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J. Bob
2012-01-01
This paper presents a novel dynamic programming algorithm with a joint chance constraint, which explicitly bounds the risk of failure in order to maintain the state within a specified feasible region. A joint chance constraint cannot be handled by existing constrained dynamic programming approaches since their application is limited to constraints in the same form as the cost function, that is, an expectation over a sum of one-stage costs. We overcome this challenge by reformulating the joint chance constraint into a constraint on an expectation over a sum of indicator functions, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the primal variables can be optimized by a standard dynamic programming, while the dual variable is optimized by a root-finding algorithm that converges exponentially. Error bounds on the primal and dual objective values are rigorously derived. We demonstrate the algorithm on a path planning problem, as well as an optimal control problem for Mars entry, descent and landing. The simulations are conducted using a real terrain data of Mars, with four million discrete states at each time step.
Stochastic optimal control of state constrained systems
van den Broek, Bart; Wiegerinck, Wim; Kappen, Bert
2011-03-01
In this article we consider the problem of stochastic optimal control in continuous-time and state-action space of systems with state constraints. These systems typically appear in the area of robotics, where hard obstacles constrain the state space of the robot. A common approach is to solve the problem locally using a linear-quadratic Gaussian (LQG) method. We take a different approach and apply path integral control as introduced by Kappen (Kappen, H.J. (2005a), 'Path Integrals and Symmetry Breaking for Optimal Control Theory', Journal of Statistical Mechanics: Theory and Experiment, 2005, P11011; Kappen, H.J. (2005b), 'Linear Theory for Control of Nonlinear Stochastic Systems', Physical Review Letters, 95, 200201). We use hybrid Monte Carlo sampling to infer the control. We introduce an adaptive time discretisation scheme for the simulation of the controlled dynamics. We demonstrate our approach on two examples, a simple particle in a halfspace and a more complex two-joint manipulator, and we show that in a high noise regime our approach outperforms the iterative LQG method.
Constrained Sypersymmetric Flipped SU (5) GUT Phenomenology
Energy Technology Data Exchange (ETDEWEB)
Ellis, John; /CERN /King' s Coll. London; Mustafayev, Azar; /Minnesota U., Theor. Phys. Inst.; Olive, Keith A.; /Minnesota U., Theor. Phys. Inst. /Minnesota U. /Stanford U., Phys. Dept. /SLAC
2011-08-12
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, Min, above the GUT scale, M{sub GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino {chi} and the lighter stau {tilde {tau}}{sub 1} is sensitive to M{sub in}, as is the relationship between m{sub {chi}} and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m{sub 1/2}, m{sub 0}) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to Min, as we illustrate for several cases with tan {beta} = 10 and 55. However, these features do not necessarily disappear at large Min, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses.
Constraining the roughness degree of slip heterogeneity
Causse, Mathieu
2010-05-07
This article investigates different approaches for assessing the degree of roughness of the slip distribution of future earthquakes. First, we analyze a database of slip images extracted from a suite of 152 finite-source rupture models from 80 events (Mw = 4.1–8.9). This results in an empirical model defining the distribution of the slip spectrum corner wave numbers (kc) as a function of moment magnitude. To reduce the “epistemic” uncertainty, we select a single slip model per event and screen out poorly resolved models. The number of remaining models (30) is thus rather small. In addition, the robustness of the empirical model rests on a reliable estimation of kc by kinematic inversion methods. We address this issue by performing tests on synthetic data with a frequency domain inversion method. These tests reveal that due to smoothing constraints used to stabilize the inversion process, kc tends to be underestimated. We then develop an alternative approach: (1) we establish a proportionality relationship between kc and the peak ground acceleration (PGA), using a k−2 kinematic source model, and (2) we analyze the PGA distribution, which is believed to be better constrained than slip images. These two methods reveal that kc follows a lognormal distribution, with similar standard deviations for both methods.
Constraining New Physics with D meson decays
Energy Technology Data Exchange (ETDEWEB)
Barranco, J.; Delepine, D.; Gonzalez Macias, V. [Departamento de Física, División de Ciencias e Ingeniería, Universidad de Guanajuato, Campus León, León 37150 (Mexico); Lopez-Lozano, L. [Departamento de Física, División de Ciencias e Ingeniería, Universidad de Guanajuato, Campus León, León 37150 (Mexico); Área Académica de Matemáticas y Física, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42184, Pachuca, HGO (Mexico)
2014-04-04
Latest Lattice results on D form factors evaluation from first principles show that the Standard Model (SM) branching ratios prediction for the leptonic D{sub s}→ℓν{sub ℓ} decays and the semileptonic SM branching ratios of the D{sup 0} and D{sup +} meson decays are in good agreement with the world average experimental measurements. It is possible to disprove New Physics hypothesis or find bounds over several models beyond the SM. Using the observed leptonic and semileptonic branching ratios for the D meson decays, we performed a combined analysis to constrain non-standard interactions which mediate the cs{sup ¯}→lν{sup ¯} transition. This is done either by a model-independent way through the corresponding Wilson coefficients or in a model-dependent way by finding the respective bounds over the relevant parameters for some models beyond the Standard Model. In particular, we obtain bounds for the Two Higgs Doublet Model Type-II and Type III, the Left–Right model, the Minimal Supersymmetric Standard Model with explicit R-parity violation and Leptoquarks. Finally, we estimate the transverse polarization of the lepton in the D{sup 0} decay and we found it can be as high as P{sub T}=0.23.
Constrained Graph Optimization: Interdiction and Preservation Problems
Energy Technology Data Exchange (ETDEWEB)
Schild, Aaron V [Los Alamos National Laboratory
2012-07-30
The maximum flow, shortest path, and maximum matching problems are a set of basic graph problems that are critical in theoretical computer science and applications. Constrained graph optimization, a variation of these basic graph problems involving modification of the underlying graph, is equally important but sometimes significantly harder. In particular, one can explore these optimization problems with additional cost constraints. In the preservation case, the optimizer has a budget to preserve vertices or edges of a graph, preventing them from being deleted. The optimizer wants to find the best set of preserved edges/vertices in which the cost constraints are satisfied and the basic graph problems are optimized. For example, in shortest path preservation, the optimizer wants to find a set of edges/vertices within which the shortest path between two predetermined points is smallest. In interdiction problems, one deletes vertices or edges from the graph with a particular cost in order to impede the basic graph problems as much as possible (for example, delete edges/vertices to maximize the shortest path between two predetermined vertices). Applications of preservation problems include optimal road maintenance, power grid maintenance, and job scheduling, while interdiction problems are related to drug trafficking prevention, network stability assessment, and counterterrorism. Computational hardness results are presented, along with heuristic methods for approximating solutions to the matching interdiction problem. Also, efficient algorithms are presented for special cases of graphs, including on planar graphs. The graphs in many of the listed applications are planar, so these algorithms have important practical implications.
Flexible constrained de Finetti reductions and applications
Lancien, Cécilia; Winter, Andreas
2017-09-01
De Finetti theorems show how sufficiently exchangeable states are well-approximated by convex combinations of independent identically distributed states. Recently, it was shown that in many quantum information applications, a more relaxed de Finetti reduction (i.e., only a matrix inequality between the symmetric state and one of the de Finetti forms) is enough and that it leads to more concise and elegant arguments. Here we show several uses and general flexible applicability of a constrained de Finetti reduction in quantum information theory, which was recently discovered by Duan, Severini, and Winter. In particular, we show that the technique can accommodate other symmetries commuting with the permutation action and permutation-invariant linear constraints. We then demonstrate that, in some cases, it is also fruitful with convex constraints, in particular separability in a bipartite setting. This is a constraint particularly interesting in the context of the complexity class QMA(2) of interactive quantum Merlin-Arthur games with unentangled provers, and our results relate to the soundness gap amplification of QMA(2) protocols by parallel repetition. It is also relevant for the regularization of certain entropic channel parameters. As an aside, we present an alternative way of attacking this problem, relying on an entanglement measure theory rather than the de Finetti approach. Finally, we explore an extension to infinite-dimensional systems, which usually pose inherent problems to de Finetti techniques in the quantum case.
Electropore Formation in Mechanically Constrained Phospholipid Bilayers.
Fernández, M Laura; Risk, Marcelo Raúl; Vernier, P Thomas
2017-11-23
Molecular dynamics simulations of lipid bilayers in aqueous systems reveal how an applied electric field stabilizes the reorganization of the water-membrane interface into water-filled, membrane-spanning, conductive pores with a symmetric, toroidal geometry. The pore formation process and the resulting symmetric structures are consistent with other mathematical approaches such as continuum models formulated to describe the electroporation process. Some experimental data suggest, however, that the shape of lipid electropores in living cell membranes may be asymmetric. We describe here the axially asymmetric pores that form when mechanical constraints are applied to selected phospholipid atoms. Electropore formation proceeds even with severe constraints in place, but pore shape and pore formation time are affected. Since lateral and transverse movement of phospholipids may be restricted in cell membranes by covalent attachments to or non-covalent associations with other components of the membrane or to membrane-proximate intracellular or extracellular biomolecular assemblies, these lipid-constrained molecular models point the way to more realistic representations of cell membranes in electric fields.
I/O-Efficient Construction of Constrained Delaunay Triangulations
DEFF Research Database (Denmark)
Agarwal, Pankaj Kumar; Arge, Lars; Yi, Ke
2005-01-01
In this paper, we designed and implemented an I/O-efficient algorithm for constructing constrained Delaunay triangulations. If the number of constraining segments is smaller than the memory size, our algorithm runs in expected O( N B logM/B NB ) I/Os for triangulating N points in the plane, where M...
Balance of payments constrained economic growth in Nigeria ...
African Journals Online (AJOL)
With Nigeria adopting the import substitution industrialization policy in 1960, we apply cointegration test on time series data to estimate the long-run ... BOP constrained model as a suitable framework to explain Nigeria's long term growth and reinforces the opinion that external factors constrain Nigeria's economic growth.
Initial conditions for cosmological perturbations
Ashtekar, Abhay; Gupt, Brajesh
2017-02-01
Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations.
Initial conditions for cosmological perturbations
Ashtekar, Abhay
2016-01-01
Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose's hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose's hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime \\emph{as permitted by the Heisenberg uncertainty relations}.
Venus Surface Composition Constrained by Observation and Experiment
Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne
2017-11-01
New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to
Venus Surface Composition Constrained by Observation and Experiment
Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne
2017-08-01
New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to
Reference: 448 [Arabidopsis Phenome Database[Archive
Lifescience Database Archive (English)
Full Text Available evelopment, and adaptation to various stress conditions. Plants have to adjust ABA levels constantly to respond to changing physiolog...ical and environmental conditions. To date, the mechanis
Constraining blazar physics with polarization signatures
Zhang, Haocheng; Boettcher, Markus; Li, Hui
2016-01-01
Blazars are active galactic nuclei whose jets are directed very close to our line of sight. They emit nonthermal-dominated emission from radio to gamma-rays, with the radio to optical emissions known to be polarized. Both radiation and polarization signatures can be strongly variable. Observations have shown that sometimes strong multiwavelength flares are accompanied by drastic polarization variations, indicating active participation of the magnetic field during flares. We have developed a 3D multi-zone time-dependent polarization-dependent radiation transfer code, which enables us to study the spectral and polarization signatures of blazar flares simultaneously. By combining this code with a Fokker-Planck nonthermal particle evolution scheme, we are able to derive simultaneous fits to time-dependent spectra, multiwavelength light curves, and time-dependent optical polarization signatures of a well-known multiwavelength flare with 180 degree polarization angle swing of the blazar 3C279. Our work shows that with detailed consideration of light travel time effects, the apparently symmetric time-dependent radiation and polarization signatures can be naturally explained by a straight, helically symmetric jet pervaded by a helical magnetic field, without the need of any asymmetric structures. Also our model suggests that the excess in the nonthermal particles during flares can originate from magnetic reconnection events, initiated by a shock propagating through the emission region. Additionally, the magnetic field should generally revert to its initial topology after the flare. We conclude that such shock-initiated magnetic reconnection event in an emission environment with relatively strong magnetic energy can be the driver of multiwavelength flares with polarization angle swings. Future statistics on such observations will constrain general features of such events, while magneto-hydrodynamic simulations will provide physical scenarios for the magnetic field evolution
Constraining Cosmic Evolution of Type Ia Supernovae
Energy Technology Data Exchange (ETDEWEB)
Foley, Ryan J.; Filippenko, Alexei V.; Aguilera, C.; Becker, A.C.; Blondin, S.; Challis, P.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Garnavich, P.M.; Jha, S.; Kirshner, R.P.; Krisciunas, K.; Leibundgut, B.; Li, W.; Matheson, T.; Miceli, A.; Miknaitis, G.; Pignata, G.; Rest, A.; Riess, A.G.; /UC, Berkeley, Astron. Dept. /Cerro-Tololo InterAmerican Obs. /Washington U., Seattle, Astron. Dept. /Harvard-Smithsonian Ctr. Astrophys. /Chile U., Catolica /Bohr Inst. /Notre Dame U. /KIPAC, Menlo Park /Texas A-M /European Southern Observ. /NOAO, Tucson /Fermilab /Chile U., Santiago /Harvard U., Phys. Dept. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Res. Sch. Astron. Astrophys., Weston Creek /Stockholm U. /Hawaii U. /Illinois U., Urbana, Astron. Dept.
2008-02-13
We present the first large-scale effort of creating composite spectra of high-redshift type Ia supernovae (SNe Ia) and comparing them to low-redshift counterparts. Through the ESSENCE project, we have obtained 107 spectra of 88 high-redshift SNe Ia with excellent light-curve information. In addition, we have obtained 397 spectra of low-redshift SNe through a multiple-decade effort at Lick and Keck Observatories, and we have used 45 ultraviolet spectra obtained by HST/IUE. The low-redshift spectra act as a control sample when comparing to the ESSENCE spectra. In all instances, the ESSENCE and Lick composite spectra appear very similar. The addition of galaxy light to the Lick composite spectra allows a nearly perfect match of the overall spectral-energy distribution with the ESSENCE composite spectra, indicating that the high-redshift SNe are more contaminated with host-galaxy light than their low-redshift counterparts. This is caused by observing objects at all redshifts with similar slit widths, which corresponds to different projected distances. After correcting for the galaxy-light contamination, subtle differences in the spectra remain. We have estimated the systematic errors when using current spectral templates for K-corrections to be {approx}0.02 mag. The variance in the composite spectra give an estimate of the intrinsic variance in low-redshift maximum-light SN spectra of {approx}3% in the optical and growing toward the ultraviolet. The difference between the maximum-light low and high-redshift spectra constrain SN evolution between our samples to be < 10% in the rest-frame optical.
Carbon-constrained health care enterprise.
Gell, Michael
2010-02-01
The health economy is a significant part of a national economy accounting typically for about 8% of GDP spent. As national economies respond to the dual challenges of severe economic turbulence on the global scale and climate change mitigation, the health economy is coming under increasing pressure to respond. Indications for sharp reductions in budgets and reductions in greenhouse gas emissions, such as carbon dioxide, are widespread. In this paper an analysis is undertaken of the diverse forces acting on a typical health care enterprise. The forces, both economic and carbon related, are investigated in terms of their effects through the enterprise and across its boundaries on the supply, demand and waste sides. The overall aim is to show how the enterprise and whole supply chains may flip synchronously into a low-carbon evolutionary pathway. By illustrating how different elements of the health care enterprise may respond to these developments, diverse opportunities for cost reduction, carbon reduction and product (goods and services) development are identified. These opportunities involve a variety of waste reduction and energy and materials conservation measures as well as new ways of collaborating with other enterprises going through similar transformations. The overall objective is to show that the carbon-constrained health care enterprise and the low-carbon health economy in which it sits may broaden its role in the coming decades to include a degree of responsibility for the health of the environment. This broader role is likely to supplement and entangle with the traditional role of the health economy, currently focused narrowly on human health, and lead to extensive organisational transformation, and infrastructure and product developments.
A constrained approach to multiscale stochastic simulation of chemically reacting systems
Cotter, Simon L.
2011-01-01
Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper, we introduce a multiscale methodology suitable to address this problem, assuming that the evolution of the slow species in the system is well approximated by a Langevin process. It is based on the conditional stochastic simulation algorithm (CSSA) which samples from the conditional distribution of the suitably defined fast variables, given values for the slow variables. In the constrained multiscale algorithm (CMA) a single realization of the CSSA is then used for each value of the slow variable to approximate the effective drift and diffusion terms, in a similar manner to the constrained mean-force computations in other applications such as molecular dynamics. We then show how using the ensuing Fokker-Planck equation approximation, we can in turn approximate average switching times in stochastic chemical systems. © 2011 American Institute of Physics.
A differential game with constrained dynamics and viscosity solutions of a related HJB equation
Atar, Rami; Dupuis, Paul
1999-01-01
This paper considers a formulation of a differential game with constrained dynamics, where one player selects the dynamics and the other selects the applicable cost. When the game is considered on a finite time horizon, its value satisfies an HJB equation with oblique Neumann boundary conditions. The first main result is uniqueness for viscosity solutions to this equation. This uniqueness is applied to obtain the second main result,i which is a unique characterization of the value function fo...
Tracking T and B cells from two-photon microscopy imaging using constrained SMC clusters
Olivieri, David; Faro, José; Gómez-Conde, Iván; Tadokoro, Carlos E.
2011-01-01
This paper describes a novel software algorithm, called constrained Sequential Monte Carlo (SMC) clusters, for tracking a large collection of individual cells from intra-vital two-photon microscopy image sequences. We show how our method and software tool, implemented in python, is useful for quantifying the motility of T and B lymphocytes involved in an immune response vs lymphocytes under non immune conditions. We describe the theory behind our algorithm and briefly discuss the architecture...
Tsui-Er Lee
2014-01-01
The effects of cooperative learning and traditional learning on the effectiveness and constraining factors of physical fitness teaching under various teaching conditions were studied. Sixty female students in Grades 7–8 were sampled to evaluate their learning of health and physical education (PE) according to the curriculum for Grades 1–9 in Taiwan. The data were quantitatively and qualitatively collected and analyzed. The overall physical fitness of the cooperative learning group exhibited s...
On the constrained classical capacity of infinite-dimensional covariant quantum channels
Holevo, A. S.
2014-01-01
The additivity of the minimal output entropy and that of the $\\chi$-capacity are known to be equivalent for finite-dimensional irreducibly covariant channels. In this paper we formulate a list of conditions allowing to establish similar equivalence for infinite-dimensional covariant channels with constrained input. This is then applied to Bosonic Gaussian channels with quadratic input constraint to extend the classical capacity results of the recent paper \\cite{ghg} to the case where the comp...
Detection of arc fault based on frequency constrained independent component analysis
Yang, Kai; Zhang, Rencheng; Xu, Renhao; Chen, Yongzhi; Yang, Jianhong; Chen, Shouhong
2015-02-01
Arc fault is one of the main reasons of electrical fires. As a result of weakness, randomness and cross talk of arc faults, very few of methods have been successfully used to protect loads from all arc faults in low-voltage circuits. Therefore, a novel detection method is developed for detection of arc faults. The method is based on frequency constrained independent component analysis. In the process of the method derivation, a band-pass filter was introduced as a constraint condition to separate independent components of mixed signals. In the process of the independent component separations, although the fault mixed signals were under the conditions of the strong background noise and the frequency aliasing, the effective high frequency components of arc faults could be separated by frequency constrained independent component analysis. Based on the separated components, the power spectrums of them were calculated to classify the normal and the arc fault conditions. The validity of the developed method was verified by using an arc fault experimental platform set up. The results show that arc faults of nine typical electrical loads are successfully detected based on frequency constrained independent component analysis.
Sampling from stochastic reservoir models constrained by production data
Energy Technology Data Exchange (ETDEWEB)
Hegstad, Bjoern Kaare
1997-12-31
When a petroleum reservoir is evaluated, it is important to forecast future production of oil and gas and to assess forecast uncertainty. This is done by defining a stochastic model for the reservoir characteristics, generating realizations from this model and applying a fluid flow simulator to the realizations. The reservoir characteristics define the geometry of the reservoir, initial saturation, petrophysical properties etc. This thesis discusses how to generate realizations constrained by production data, that is to say, the realizations should reproduce the observed production history of the petroleum reservoir within the uncertainty of these data. The topics discussed are: (1) Theoretical framework, (2) History matching, forecasting and forecasting uncertainty, (3) A three-dimensional test case, (4) Modelling transmissibility multipliers by Markov random fields, (5) Up scaling, (6) The link between model parameters, well observations and production history in a simple test case, (7) Sampling the posterior using optimization in a hierarchical model, (8) A comparison of Rejection Sampling and Metropolis-Hastings algorithm, (9) Stochastic simulation and conditioning by annealing in reservoir description, and (10) Uncertainty assessment in history matching and forecasting. 139 refs., 85 figs., 1 tab.
Finite plateau in spectral gap of polychromatic constrained random networks
Avetisov, V.; Gorsky, A.; Nechaev, S.; Valba, O.
2017-12-01
We consider critical behavior in the ensemble of polychromatic Erdős-Rényi networks and regular random graphs, where network vertices are painted in different colors. The links can be randomly removed and added to the network subject to the condition of the vertex degree conservation. In these constrained graphs we run the Metropolis procedure, which favors the connected unicolor triads of nodes. Changing the chemical potential, μ , of such triads, for some wide region of μ , we find the formation of a finite plateau in the number of intercolor links, which exactly matches the finite plateau in the network algebraic connectivity (the value of the first nonvanishing eigenvalue of the Laplacian matrix, λ2). We claim that at the plateau the spontaneously broken Z2 symmetry is restored by the mechanism of modes collectivization in clusters of different colors. The phenomena of a finite plateau formation holds also for polychromatic networks with M ≥2 colors. The behavior of polychromatic networks is analyzed via the spectral properties of their adjacency and Laplacian matrices.
Distributed Stochastic Approximation for Constrained and Unconstrained Optimization
Bianchi, Pascal
2011-01-01
In this paper, we analyze the convergence of a distributed Robbins-Monro algorithm for both constrained and unconstrained optimization in multi-agent systems. The algorithm searches local minima of a (nonconvex) objective function which is supposed to coincide with a sum of local utility functions of the agents. The algorithm under study consists of two steps: a local stochastic gradient descent at each agent and a gossip step that drives the network of agents to a consensus. It is proved that i) an agreement is achieved between agents on the value of the estimate, ii) the algorithm converges to the set of Kuhn-Tucker points of the optimization problem. The proof relies on recent results about differential inclusions. In the context of unconstrained optimization, intelligible sufficient conditions are provided in order to ensure the stability of the algorithm. In the latter case, we also provide a central limit theorem which governs the asymptotic fluctuations of the estimate. We illustrate our results in the...
Robust integrated autopilot/autothrottle design using constrained parameter optimization
Ly, Uy-Loi; Voth, Christopher; Sanjay, Swamy
1990-01-01
A multivariable control design method based on constrained parameter optimization was applied to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the following: (1) direct synthesis of a multivariable 'inner-loop' feedback control system based on total energy control principles; (2) synthesis of speed/altitude-hold designs as 'outer-loop' feedback/feedforward control systems around the above inner loop; and (3) direct synthesis of a combined 'inner-loop' and 'outer-loop' multivariable control system. The design procedure offers a direct and structured approach for the determination of a set of controller gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The presented approach may be applied to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by this method following careful problem formulation of the design objectives and constraints. Performance characteristics of the optimization design were improved over the current autopilot design on the B737-100 Transport Research Vehicle (TSRV) at the landing approach and cruise flight conditions; particularly in the areas of closed-loop damping, command responses, and control activity in the presence of turbulence.
Constrained Unfolding of a Helical Peptide: Implicit versus Explicit Solvents.
Directory of Open Access Journals (Sweden)
Hailey R Bureau
Full Text Available Steered Molecular Dynamics (SMD has been seen to provide the potential of mean force (PMF along a peptide unfolding pathway effectively but at significant computational cost, particularly in all-atom solvents. Adaptive steered molecular dynamics (ASMD has been seen to provide a significant computational advantage by limiting the spread of the trajectories in a staged approach. The contraction of the trajectories at the end of each stage can be performed by taking a structure whose nonequilibrium work is closest to the Jarzynski average (in naive ASMD or by relaxing the trajectories under a no-work condition (in full-relaxation ASMD--namely, FR-ASMD. Both approaches have been used to determine the energetics and hydrogen-bonding structure along the pathway for unfolding of a benchmark peptide initially constrained as an α-helix in a water environment. The energetics are quite different to those in vacuum, but are found to be similar between implicit and explicit solvents. Surprisingly, the hydrogen-bonding pathways are also similar in the implicit and explicit solvents despite the fact that the solvent contact plays an important role in opening the helix.
Folding of small proteins using constrained molecular dynamics.
Balaraman, Gouthaman S; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan
2011-06-16
The focus of this paper is to examine whether conformational search using constrained molecular dynamics (MD) method is more enhanced and enriched toward "native-like" structures compared to all-atom MD for the protein folding as a model problem. Constrained MD methods provide an alternate MD tool for protein structure prediction and structure refinement. It is computationally expensive to perform all-atom simulations of protein folding because the processes occur on a time scale of microseconds. Compared to the all-atom MD simulation, constrained MD methods have the advantage that stable dynamics can be achieved for larger time steps and the number of degrees of freedom is an order of magnitude smaller, leading to a decrease in computational cost. We have developed a generalized constrained MD method that allows the user to "freeze and thaw" torsional degrees of freedom as fit for the problem studied. We have used this method to perform all-torsion constrained MD in implicit solvent coupled with the replica exchange method to study folding of small proteins with various secondary structural motifs such as, α-helix (polyalanine, WALP16), β-turn (1E0Q), and a mixed motif protein (Trp-cage). We demonstrate that constrained MD replica exchange method exhibits a wider conformational search than all-atom MD with increased enrichment of near-native structures. "Hierarchical" constrained MD simulations, where the partially formed helical regions in the initial stretch of the all-torsion folding simulation trajectory of Trp-cage were frozen, showed a better sampling of near-native structures than all-torsion constrained MD simulations. This is in agreement with the zipping-and-assembly folding model put forth by Dill and co-workers for folding proteins. The use of hierarchical "freeze and thaw" clustering schemes in constrained MD simulation can be used to sample conformations that contribute significantly to folding of proteins. © 2011 American Chemical Society
Onomatopoeia characters extraction from comic images using constrained Delaunay triangulation
Liu, Xiangping; Shoji, Kenji; Mori, Hiroshi; Toyama, Fubito
2014-02-01
A method for extracting onomatopoeia characters from comic images was developed based on stroke width feature of characters, since they nearly have a constant stroke width in a number of cases. An image was segmented with a constrained Delaunay triangulation. Connected component grouping was performed based on the triangles generated by the constrained Delaunay triangulation. Stroke width calculation of the connected components was conducted based on the altitude of the triangles generated with the constrained Delaunay triangulation. The experimental results proved the effectiveness of the proposed method.
Piasečná, Karin; Pončová, Alena; Tejedo, Miguel; Gvoždík, Lumír
2015-08-01
Many ectotherms employ diverse behavioral adjustments to effectively buffer the spatio-temporal variation in environmental temperatures, whereas others remain passive to thermal heterogeneity. Thermoregulatory studies are frequently performed on species living in thermally benign habitats, which complicate understanding of the thermoregulation-thermoconformity continuum. The need for new empirical data from ectotherms exposed to thermally challenging conditions requires the evaluation of available methods for quantifying thermoregulatory strategies. We evaluated the applicability of various thermoregulatory indices using fire salamander larvae, Salamandra salamandra, in two aquatic habitats, a forest pool and well, as examples of disparate thermally-constrained environments. Water temperatures in the well were lower and less variable than in the pool. Thermal conditions prevented larvae from reaching their preferred body temperature range in both water bodies. In contrast to their thermoregulatory abilities examined in a laboratory thermal gradient, field body temperatures only matched the mean and range of operative temperatures, showing thermal passivity of larvae in both habitats. Despite apparent thermoconformity, thermoregulatory indices indicated various strategies from active thermoregulation, to thermoconformity, and even thermal evasion, which revealed their limited applicability under thermally-constrained conditions. Salamander larvae abandoned behavioral thermoregulation despite varying opportunities to increase their body temperature above average water temperatures. Thermoconformity represents a favored strategy in these ectotherms living in more thermally-constrained environments than those examined in previous thermoregulatory studies. To understand thermal ecology and its impact on population dynamics, the quantification of thermoregulatory strategies of ectotherms in thermally-constrained habitats requires the careful choice of an appropriate
York, William S; Yi, Xiaobing
2004-08-01
A computer program CONDORR (CONstrained Dynamics of Rigid Residues) was developed for molecular dynamics simulations of large and/or constrained molecular systems, particularly carbohydrates. CONDORR efficiently calculates molecular trajectories on the basis of 2D or 3D potential energy maps, and can generate such maps based on a simple force field. The simulations involve three translational and three rotational degrees of freedom for each rigid, asymmetrical residue in the model. Total energy and angular momentum are conserved when no stochastic or external forces are applied to the model, if the time step is kept sufficiently short. Application of Langevin dynamics allows longer time steps, providing efficient exploration of conformational space. The utility of CONDORR was demonstrated by application to a constrained polysaccharide model and to the calculation of residual dipolar couplings for a disaccharide. [Figure: see text]. Molecular models (bottom) are created by cloning rigid residue archetypes (top) and joining them together. As defined here, the archetypes AX, HM and BG respectively correspond to an alpha-D-Xyl p residue, a hydroxymethyl group, and a beta-D-Glc p residue lacking O6, H6a and H6b. Each archetype contains atoms (indicated by boxes) that can be shared with other archetypes to form a linked structure. For example, the glycosidic link between the two D-Glc p residues is established by specifying that O1 of the nonreducing beta-D-Glc p (BG) residue (2) is identical to O4 of the reducing Glc p (BG) residue (1). The coordinates of the two residues are adjusted so as to superimpose these two (nominally distinct) atoms. Flexible hydroxymethyl (HM) groups (3 and 4) are treated as separate residues, and the torsional angles (normally indicated by the symbol omega) that define their geometric relationships to the pyranosyl rings of the BG residues are specified as psi3 and psi4, respectively. The torsional angles phi3 and phi4, defined solely to
Coding for Two Dimensional Constrained Fields
DEFF Research Database (Denmark)
Laursen, Torben Vaarbye
2006-01-01
a first order model to model higher order constraints by the use of an alphabet extension. We present an iterative method that based on a set of conditional probabilities can help in choosing the large numbers of parameters of the model in order to obtain a stationary model. Explicit results are given...
Routing Military Aircraft with a Constrained Shortest-Path Algorithm
National Research Council Canada - National Science Library
Carlyle, W. M; Royset, Johannes O; Wood, R. K
2007-01-01
.... We use a constrained-shortest path (CSP) model that discretizes the relevant airspace into a grid of vertices representing potential waypoints, and connects vertices with directed edges to represent potential flight segments...
Ensemble image registration by a spatially constrained clustering approach
Directory of Open Access Journals (Sweden)
Hao Zhu
2016-09-01
Full Text Available In this article, a novel spatially constrained clustering approach is proposed for ensemble image registration. We use a spatially constrained Gaussian mixture model, which is based on a joint Gaussian mixture model and Markov random field, to model the joint intensity scatter plot of the unregistered images. The spatially constrained Gaussian mixture model has the capability of performing the correlation among neighboring observations. A cost function of reducing the dispersion in the joint intensity scatter plot is proposed using the spatially constrained Gaussian mixture model to simultaneously register a group of images. We derive an expectation maximization algorithm for the proposed model. Computer simulations demonstrate the effectiveness of the proposed method.
Thin-shell wormholes constrained by cosmological observations
Wang, Deng; Meng, Xin-He
2017-09-01
We investigate the thin-shell wormholes constrained by cosmological observations for the first time in the literature. Without loss of generality, we study the thin-shell wormholes in ωCDM model and analyze their stability under perturbations preserving the symmetry. Firstly, we constrain the ωCDM model using a combination of Union 2.1 SNe Ia data, the latest H(z) data and CMB data. Secondly, we use the constrained dark energy equation of state (EoS) ω which lies in [ - 1 . 05 , - 0 . 89 ] to investigate thin-shell wormholes generated by various black hole spacetimes. We find that the stable Schwarzschild and Reinssner-Nordström thin-shell wormholes constrained by cosmological observations do not exist. In addition, the method we developed can be applied in exploring the stable thin-shell wormholes from any black hole spacetime in the framework of any cosmological theory.
Is oil consumption constrained by industrial structure? Evidence from China
Jia, Y. Q.; Duan, H. M.
2017-08-01
This paper examines whether oil consumption is constrained by output value, applying a cointegration test and an ECM to the primary, secondary, and tertiary sectors in China during 1985-2013. The empirical results indicate that oil consumption in China is constrained by the industrial structure both in the short run and in the long run. Regardless of the time horizon considered, the oil consumption constraint is the lowest for the primary sector as well as the highest for the tertiary sector. This is because the long-term industrial structure formation and the technological level of each sector underlines the existence of long run equilibrium and short run fluctuations of output value and oil consumption, with the latter being constrained by adjustments in industrial structure. In order to decrease the constraining effect of output value on oil consumption, the government should take some measures to improve the utilization rate, reducing the intensity of oil consumption, and secure the supply of oil.
Ionospheric radio occultation inversion constrained with the data assimillation
Wu, X.; Hu, X.; Zhang, Y.
2015-12-01
Ionospheric radio occultation inversion constrained with the data assimillation Wu Xiaocheng, Hu Xiong, Zhang Yanan National Space Science Center, Chinese Academy of Sciences The assumption that electron density distribution is spherically symmetric, is usually used in the traditional ionospheric radio occultation (IRO) inversion, and it is the main error source of IRO inversion. In order to improve the IRO inversion, many methods were studied. One of them uses known ionosphere background to constrain the inversion of IRO, but it has not been used in the routine processing of observation data, due to that it is difficult to get the proper ionosphere background. Data assimilation can provide accurate electron density on the three dimensional grid, which may be used to constrain the IRO inversion and improve the inversion result. This article assimilates the TEC of ground GPS and IRO observation, and the constrains the IRO inversion. The inversion result is greatly improved. Key Words: Ionospheric radio occultation, Data assimilation, Inversion, GPS
In vitro transcription of a torsionally constrained template
DEFF Research Database (Denmark)
Bentin, Thomas; Nielsen, Peter E
2002-01-01
of torsionally constrained DNA by free RNAP. We asked whether or not a newly synthesized RNA chain would limit transcription elongation. For this purpose we developed a method to immobilize covalently closed circular DNA to streptavidin-coated beads via a peptide nucleic acid (PNA)-biotin conjugate in principle...... mimicking a SAR/MAR attachment. We used this construct as a torsionally constrained template for transcription of the beta-lactamase gene by Escherichia coli RNAP and found that RNA synthesis displays similar characteristics in terms of rate of elongation whether or not the template is torsionally...... constrained. We conclude that transcription of a natural bacterial gene may proceed with high efficiency despite the fact that newly synthesized RNA is entangled around the template in the narrow confines of torsionally constrained supercoiled DNA....
Constrained multi-degree reduction with respect to Jacobi norms
Ait-Haddou, Rachid
2015-12-31
We show that a weighted least squares approximation of Bézier coefficients with factored Hahn weights provides the best constrained polynomial degree reduction with respect to the Jacobi L2L2-norm. This result affords generalizations to many previous findings in the field of polynomial degree reduction. A solution method to the constrained multi-degree reduction with respect to the Jacobi L2L2-norm is presented.
Generalized bracket formulation of constrained dynamics in phase space.
Sergi, Alessandro
2004-02-01
A generalized bracket formalism is used to define the phase space flow of constrained systems. The generalized bracket naturally subsumes the approach to constrained dynamics given by Dirac some time ago. The dynamical invariant measure and the linear response of systems subjected to holonomic constraints are explicitly derived. In light of previous results, it is shown that generalized brackets provide a simple and unified view of the statistical mechanics of non-Hamiltonian phase space flows with a conserved energy.
A MultiScale Gibbs-Helmholtz Constrained Cubic Equation of State
Directory of Open Access Journals (Sweden)
Angelo Lucia
2010-01-01
Full Text Available This paper presents a radically new approach to cubic equations of state (EOS in which the Gibbs-Helmholtz equation is used to constrain the attraction or energy parameter, a. The resulting expressions for (, for pure components and (,, for mixtures contain internal energy departure functions and completely avoid the need to use empirical expressions like the Soave alpha function. Our approach also provides a novel and thermodynamically rigorous mixing rule for (,,. When the internal energy departure function is computed using Monte Carlo or molecular dynamics simulations as a function of current bulk phase conditions, the resulting EOS is a multiscale equation of state. The proposed new Gibbs-Helmholtz constrained (GHC cubic equation of state is used to predict liquid densities at high pressure and validated using experimental data from literature. Numerical results clearly show that the GHC EOS provides fast and accurate computation of liquid densities at high pressure, which are needed in the determination of gas hydrate equilibria.
Energy losses in thermally cycled optical fibers constrained in small bend radii
Energy Technology Data Exchange (ETDEWEB)
Guild, Eric; Morelli, Gregg
2012-09-23
High energy laser pulses were fired into a 365μm diameter fiber optic cable constrained in small radii of curvature bends, resulting in a catastrophic failure. Q-switched laser pulses from a flashlamp pumped, Nd:YAG laser were injected into the cables, and the spatial intensity profile at the exit face of the fiber was observed using an infrared camera. The transmission of the radiation through the tight radii resulted in an asymmetric intensity profile with one half of the fiber core having a higher peak-to-average energy distribution. Prior to testing, the cables were thermally conditioned while constrained in the small radii of curvature bends. Single-bend, double-bend, and U-shaped eometries were tested to characterize various cable routing scenarios.
Li, Chaojie; Yu, Xinghuo; Huang, Tingwen; Chen, Guo; He, Xing
2016-02-01
This paper proposes a generalized Hopfield network for solving general constrained convex optimization problems. First, the existence and the uniqueness of solutions to the generalized Hopfield network in the Filippov sense are proved. Then, the Lie derivative is introduced to analyze the stability of the network using a differential inclusion. The optimality of the solution to the nonsmooth constrained optimization problems is shown to be guaranteed by the enhanced Fritz John conditions. The convergence rate of the generalized Hopfield network can be estimated by the second-order derivative of the energy function. The effectiveness of the proposed network is evaluated on several typical nonsmooth optimization problems and used to solve the hierarchical and distributed model predictive control four-tank benchmark.
Lee, Cheng-Ling; Lee, Ray-Kuang; Kao, Yee-Mou
2006-11-13
We present the synthesis of multi-channel fiber Bragg grating (MCFBG) filters for dense wavelength-division-multiplexing (DWDM) application by using a simple optimization approach based on a Lagrange multiplier optimization (LMO) method. We demonstrate for the first time that the LMO method can be used to constrain various parameters of the designed MCFBG filters for practical application demands and fabrication requirements. The designed filters have a number of merits, i.e., flat-top and low dispersion spectral response as well as single stage. Above all, the maximum amplitude of the index modulation profiles of the designed MCFBGs can be substantially reduced under the applied constrained condition. The simulation results demonstrate that the LMO algorithm can provide a potential alternative for complex fiber grating filter design problems.
Model Predictive Control Based on Kalman Filter for Constrained Hammerstein-Wiener Systems
Directory of Open Access Journals (Sweden)
Man Hong
2013-01-01
Full Text Available To precisely track the reactor temperature in the entire working condition, the constrained Hammerstein-Wiener model describing nonlinear chemical processes such as in the continuous stirred tank reactor (CSTR is proposed. A predictive control algorithm based on the Kalman filter for constrained Hammerstein-Wiener systems is designed. An output feedback control law regarding the linear subsystem is derived by state observation. The size of reaction heat produced and its influence on the output are evaluated by the Kalman filter. The observation and evaluation results are calculated by the multistep predictive approach. Actual control variables are computed while considering the constraints of the optimal control problem in a finite horizon through the receding horizon. The simulation example of the CSTR tester shows the effectiveness and feasibility of the proposed algorithm.
Directory of Open Access Journals (Sweden)
Qiuyu Wang
2014-01-01
descent method at first finite number of steps and then by conjugate gradient method subsequently. Under some appropriate conditions, we show that the algorithm converges globally. Numerical experiments and comparisons by using some box-constrained problems from CUTEr library are reported. Numerical comparisons illustrate that the proposed method is promising and competitive with the well-known method—L-BFGS-B.
Data-Driven Security-Constrained OPF
DEFF Research Database (Denmark)
Thams, Florian; Halilbasic, Lejla; Pinson, Pierre
2017-01-01
, both from measurements and simulations, in order to determine stable and unstable operating regions. With the help of decision trees, we transform this information to linear decision rules for line flow constraints. We propose conditional line transfer limits, which can accurately capture security......In this paper we unify electricity market operations with power system security considerations. Using data-driven techniques, we address both small signal stability and steady-state security, derive tractable decision rules in the form of line flow limits, and incorporate the resulting constraints...
Time constrained liner shipping network design
DEFF Research Database (Denmark)
Karsten, Christian Vad; Brouer, Berit Dangaard; Desaulniers, Guy
2017-01-01
We present a mathematical model and a solution method for the liner shipping network design problem. The model takes into account coordination between vessels and transit time restrictions on the cargo flow. The solution method is an improvement heuristic, where an integer program is solved...... iteratively to perform moves in a large neighborhood search. Our improvement heuristic is applicable as a real-time decision support tool for a liner shipping company. It can be used to find improvements to the network when evaluating changes in operating conditions or testing different scenarios...
Constraining the SIF - GPP relationship via estimation of NPQ
Silva, C. E.; Yang, X.; Tang, J.; Lee, J. E.; Cushman, K.; Toh Yuan Kun, L.; Kellner, J. R.
2016-12-01
Airborne and satellite measurements of solar-induced fluorescence (SIF) have the potential to improve estimates of gross primary production (GPP). Plants dissipate absorbed photosynthetically active radiation (APAR) among three de-excitation pathways: SIF, photochemical quenching (PQ), which results in electron transport and the production of ATP and NADPH consumed during carbon fixation (i.e., GPP), and heat dissipation via conversion of xanthophyll pigments (non-photochemical quenching: NPQ). As a result, the relationship between SIF and GPP is a function of NPQ and may vary temporally and spatially with environmental conditions (e.g., light and water availability) and plant traits (e.g., leaf N content). Accurate estimates of any one of the de-excitation pathways require measurement of the other two. Here we combine half-hourly measurements of canopy APAR and SIF with eddy covariance estimates of GPP at Harvard Forest to close the canopy radiation budget and infer canopy NPQ throughout the 2013 growing season. We use molecular-level photosynthesis equations to compute PQ (umol photons m-2s-1) from GPP (umol CO2 m-2s-1) and invert an integrated canopy radiative transfer and leaf-level photosynthesis/fluorescence model (SCOPE) to quantify hemispherically and spectrally-integrated SIF emission (umol photons m-2s-1) from single band (760 nm) top-of-canopy SIF measurements. We estimate half-hourly NPQ as the residual required to close the radiation budget (NPQ = APAR - SIF - PQ). Our future work will test estimated NPQ against simultaneously acquired measurements of the photochemical reflectance index (PRI), a spectral index sensitive to xanthopyll pigments. By constraining two of the three de-excitation pathways, simultaneous SIF and PRI measurements are likely to improve GPP estimates, which are crucial to the study of climate - carbon cycle interactions.
Constrained Gauge Fields from Spontaneous Lorentz Violation
Chkareuli, J L; Jejelava, J G; Nielsen, H B
2008-01-01
Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type $A_{\\mu}^{2}=M^{2}$ ($M$ is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and $CPT$) violating couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical ...
Constrained gauge fields from spontaneous Lorentz violation
DEFF Research Database (Denmark)
Chkareuli, J. L.; Froggatt, C. D.; Jejelava, J. G.
2008-01-01
Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type AµAµ=M2 (M is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant...... theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory...... proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and CPT) violating...
Outcomes of Constrained Prostheses in Primary and Revision TKR
Parkinson, Ben; Lorimer, Michelle; Lewis, Peter
2017-01-01
Introduction: The decision to use varus/valgus constrained or hinge knee prostheses in complex Total Knee Replacement (TKR) cases is difficult. There are few publications that compare survival rates, to aid this decision-making. This study compares the survival rates of unlinked fully constrained and hinge constrained prostheses in the primary and revision settings. Methods: Data from the AOANJRR to 31st of December 2013 was analysed to determine the survival rate of unlinked and hinge constrained TKR in the primary and revision settings (excluding the diagnosis of tumour and infection). Only first-time revisions of a known primary TKR were included in the revision analysis. Kaplan-Meier estimates of survivorship were calculated for the two categories of constraint and were matched for age and diagnosis in both primary and revision TKR situations. Hazard ratios using the Cox proportional-hazards model were used. The survivorship of individual prosthesis models was determined. Results: There were 3237 prostheses implanted during the study period that met the inclusion criteria. Of these, 1896 were for primary TKR and 1341 for revision TKR. There were 1349 unlinked fully constrained and 547 hinge prostheses for primary TKR and 991 unlinked fully constrained and 350 hinge prostheses for revision TKR. In both the primary and revision settings when matched by age, there was no difference in rates of revision for either level of constraint. When matched by indication in the primary setting, there was no difference in the rates of revision for either level of constraint. The rate of revision for both categories of constrained prosthesis was significantly higher in younger patients <55 years of age (p < 0.05). There were no differences in survival rates of individual models of constrained TKR. Conclusions: The survival rates of unlinked constrained and hinge knee prostheses are similar when matched by age or diagnosis. In complex TKR instability cases, surgeons should feel
The added value of remote sensing products in constraining hydrological models
Nijzink, Remko C.; Almeida, Susana; Pechlivanidis, Ilias; Capell, René; Gustafsson, David; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; Sleziak, Patrik; Parajka, Juraj; Savenije, Hubert; Hrachowitz, Markus
2017-04-01
The calibration of a hydrological model still depends on the availability of streamflow data, even though more additional sources of information (i.e. remote sensed data products) have become more widely available. In this research, the model parameters of four different conceptual hydrological models (HYPE, HYMOD, TUW, FLEX) were constrained with remotely sensed products. The models were applied over 27 catchments across Europe to cover a wide range of climates, vegetation and landscapes. The fluxes and states of the models were correlated with the relevant products (e.g. MOD10A snow with modelled snow states), after which new a-posteriori parameter distributions were determined based on a weighting procedure using conditional probabilities. Briefly, each parameter was weighted with the coefficient of determination of the relevant regression between modelled states/fluxes and products. In this way, final feasible parameter sets were derived without the use of discharge time series. Initial results show that improvements in model performance, with regard to streamflow simulations, are obtained when the models are constrained with a set of remotely sensed products simultaneously. In addition, we present a more extensive analysis to assess a model's ability to reproduce a set of hydrological signatures, such as rising limb density or peak distribution. Eventually, this research will enhance our understanding and recommendations in the use of remotely sensed products for constraining conceptual hydrological modelling and improving predictive capability, especially for data sparse regions.
Optimization of constrained layer damping for strain energy minimization of vibrating pads
Directory of Open Access Journals (Sweden)
Supachai Lakkam1
2012-04-01
Full Text Available An optimization study for brake squeals aims to minimize the strain energy of vibrating pads with constrained layerdamping. To achieve this, using finite element method and experiments were operated and assumed-coupling mode methodwas used to solve it. The integrated global strain energy of the pad over a frequency range of interesting mode was calculated.Parametric studies were then performed to identify those dominant parameters on the vibration response of the damped pad.Moreover, the proposed methodology was employed to search for the optimum of the position/geometry of the constrainedlayer damping patch. Optimal solutions are given and discussed for different cases where the strain energy of the pad over afrequency range is covering the first bending mode and with the inclusion of the restriction of minimum damping materialutilization. As a result, the integrated strain energy is then performed to identify and optimize the position and geometry of thedamping shim. The optimization of the constrained layer damping for strain energy minimization of vibrating pads depend onthe position of the shape of the damping patch. These data can guide to specify the position of the constrained layer dampingpatch under pressure conditions.
Constraining Emission Models of Luminous Blazar Sources
Energy Technology Data Exchange (ETDEWEB)
Sikora, Marek; /Warsaw, Copernicus Astron. Ctr.; Stawarz, Lukasz; /Kipac, Menlo Park /Jagiellonian U., Astron. Observ. /SLAC; Moderski, Rafal; Nalewajko, Krzysztof; /Warsaw, Copernicus Astron. Ctr.; Madejski, Greg; /KIPAC, Menlo Park /SLAC
2009-10-30
Many luminous blazars which are associated with quasar-type active galactic nuclei display broad-band spectra characterized by a large luminosity ratio of their high-energy ({gamma}-ray) and low-energy (synchrotron) spectral components. This large ratio, reaching values up to 100, challenges the standard synchrotron self-Compton models by means of substantial departures from the minimum power condition. Luminous blazars have also typically very hard X-ray spectra, and those in turn seem to challenge hadronic scenarios for the high energy blazar emission. As shown in this paper, no such problems are faced by the models which involve Comptonization of radiation provided by a broad-line-region, or dusty molecular torus. The lack or weakness of bulk Compton and Klein-Nishina features indicated by the presently available data favors production of {gamma}-rays via up-scattering of infrared photons from hot dust. This implies that the blazar emission zone is located at parsec-scale distances from the nucleus, and as such is possibly associated with the extended, quasi-stationary reconfinement shocks formed in relativistic outflows. This scenario predicts characteristic timescales for flux changes in luminous blazars to be days/weeks, consistent with the variability patterns observed in such systems at infrared, optical and {gamma}-ray frequencies. We also propose that the parsec-scale blazar activity can be occasionally accompanied by dissipative events taking place at sub-parsec distances and powered by internal shocks and/or reconnection of magnetic fields. These could account for the multiwavelength intra-day flares occasionally observed in powerful blazars sources.
Phrasal prosody constrains syntactic analysis in toddlers.
de Carvalho, Alex; Dautriche, Isabelle; Lin, Isabelle; Christophe, Anne
2017-06-01
This study examined whether phrasal prosody can impact toddlers' syntactic analysis. French noun-verb homophones were used to create locally ambiguous test sentences (e.g., using the homophone as a noun: [le bébésouris] [a bien mangé] - [the baby mouse] [ate well] or using it as a verb: [le bébé] [sourità sa maman] - [the baby] [smiles to his mother], where brackets indicate prosodic phrase boundaries). Although both sentences start with the same words (le-bebe-/suʁi/), they can be disambiguated by the prosodic boundary that either directly precedes the critical word /suʁi/ when it is a verb, or directly follows it when it is a noun. Across two experiments using an intermodal preferential looking procedure, 28-month-olds (Exp. 1 and 2) and 20-month-olds (Exp. 2) listened to the beginnings of these test sentences while watching two images displayed side-by-side on a TV-screen: one associated with the noun interpretation of the ambiguous word (e.g., a mouse) and the other with the verb interpretation (e.g., a baby smiling). The results show that upon hearing the first words of these sentences, toddlers were able to correctly exploit prosodic information to access the syntactic structure of sentences, which in turn helped them to determine the syntactic category of the ambiguous word and to correctly identify its intended meaning: participants switched their eye-gaze toward the correct image based on the prosodic condition in which they heard the ambiguous target word. This provides evidence that during the first steps of language acquisition, toddlers are already able to exploit the prosodic structure of sentences to recover their syntactic structure and predict the syntactic category of upcoming words, an ability which would be extremely useful to discover the meaning of novel words. Copyright © 2017 Elsevier B.V. All rights reserved.
Residual flexibility test method for verification of constrained structural models
Admire, John R.; Tinker, Michael L.; Ivey, Edward W.
1994-01-01
A method is described for deriving constrained modes and frequencies from a reduced model based on a subset of the free-free modes plus the residual effects of neglected modes. The method involves a simple modification of the MacNeal and Rubin component mode representation to allow development of a verified constrained (fixed-base) structural model. Results for two spaceflight structures having translational boundary degrees of freedom show quick convergence of constrained modes using a measureable number of free-free modes plus the boundary partition of the residual flexibility matrix. This paper presents the free-free residual flexibility approach as an alternative test/analysis method when fixed-base testing proves impractical.
Exact methods for time constrained routing and related scheduling problems
DEFF Research Database (Denmark)
Kohl, Niklas
1995-01-01
This dissertation presents a number of optimization methods for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW is a generalization of the well known capacity constrained Vehicle Routing Problem (VRP), where a fleet of vehicles based at a central depot must service a set of custo......This dissertation presents a number of optimization methods for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW is a generalization of the well known capacity constrained Vehicle Routing Problem (VRP), where a fleet of vehicles based at a central depot must service a set...
Constrained caloric curves and phase transition for hot nuclei
Energy Technology Data Exchange (ETDEWEB)
Borderie, B., E-mail: borderie@ipno.in2p3.fr [Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud 11, F-91406 Orsay Cedex (France); Piantelli, S. [INFN Sezione di Firenze, 50019 Sesto Fiorentino (Italy); Rivet, M.F. [Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud 11, F-91406 Orsay Cedex (France); Raduta, Ad.R. [National Institute for Physics and Nuclear Engineering, RO-76900 Bucharest-Magurele (Romania); Ademard, G. [Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud 11, F-91406 Orsay Cedex (France); Bonnet, E. [GANIL, (DSM-CEA/CNRS-IN2P3), F-14076 Caen Cedex (France); Bougault, R. [LPC Caen, ENSICAEN, Université de Caen, CNRS-IN2P3, F-14050 Caen Cedex (France); Chbihi, A.; Frankland, J.D. [GANIL, (DSM-CEA/CNRS-IN2P3), F-14076 Caen Cedex (France); Galichet, E. [Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud 11, F-91406 Orsay Cedex (France); Conservatoire National des Arts et Métiers, F-75141 Paris Cedex 03 (France); Gruyer, D. [GANIL, (DSM-CEA/CNRS-IN2P3), F-14076 Caen Cedex (France); Guinet, D.; Lautesse, P. [Université Claude Bernard Lyon 1, Institut de Physique Nucléaire, CNRS-IN2P3, F-69622 Villeurbanne Cedex (France); Le Neindre, N.; Lopez, O. [LPC Caen, ENSICAEN, Université de Caen, CNRS-IN2P3, F-14050 Caen Cedex (France); Marini, P. [GANIL, (DSM-CEA/CNRS-IN2P3), F-14076 Caen Cedex (France); and others
2013-06-10
Simulations based on experimental data obtained from multifragmenting quasi-fused nuclei produced in central {sup 129}Xe+{sup nat}Sn collisions have been used to deduce event by event freeze-out properties in the thermal excitation energy range 4–12 AMeV [S. Piantelli, et al., INDRA Collaboration, Nucl. Phys. A 809 (2008) 111]. From these properties and the temperatures deduced from proton transverse momentum fluctuations, constrained caloric curves have been built. At constant average volumes caloric curves exhibit a monotonic behaviour whereas for constrained pressures a backbending is observed. Such results support the existence of a first order phase transition for hot nuclei.
Hamiltonian Monte Carlo with Constrained Molecular Dynamics as Gibbs Sampling.
Spiridon, Laurentiu; Minh, David D L
2017-10-10
Compared to fully flexible molecular dynamics, simulations of constrained systems can use larger time steps and focus kinetic energy on soft degrees of freedom. Achieving ergodic sampling from the Boltzmann distribution, however, has proven challenging. Using recent generalizations of the equipartition principle and Fixman potential, here we implement Hamiltonian Monte Carlo based on constrained molecular dynamics as a Gibbs sampling move. By mixing Hamiltonian Monte Carlo based on fully flexible and torsional dynamics, we are able to reproduce free energy landscapes of simple model systems and enhance sampling of macrocycles.
21 CFR 888.3210 - Finger joint metal/metal constrained cemented prosthesis.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Finger joint metal/metal constrained cemented... metal/metal constrained cemented prosthesis. (a) Identification. A finger joint metal/metal constrained..., 1996 for any finger joint metal/metal constrained cemented prosthesis that was in commercial...
Richter, Jonas N; Hochner, Binyamin; Kuba, Michael J
2015-04-01
The motor control of the eight highly flexible arms of the common octopus (Octopus vulgaris) has been the focus of several recent studies. Our study is the first to manage to introduce a physical constraint to an octopus arm and investigate the adaptability of stereotypical bend propagation in reaching movements and the pseudo-limb articulation during fetching. Subjects (N=6) were placed inside a transparent Perspex box with a hole at the center that allowed the insertion of a single arm. Animals had to reach out through the hole toward a target, to retrieve a food reward and fetch it. All subjects successfully adjusted their movements to the constraint without an adaptation phase. During reaching tasks, the animals showed two movement strategies: stereotypical bend propagation reachings, which were established at the hole of the Perspex box and variant waving-like movements that showed no bend propagations. During fetching movements, no complete pseudo-joint fetching was observed outside the box and subjects pulled their arms through the hole in a pull-in like movement. Our findings show that there is some flexibility in the octopus motor system to adapt to a novel situation. However, at present, it seems that these changes are more an effect of random choices between different alternative motor programs, without showing clear learning effects in the choice between the alternatives. Interestingly, animals were able to adapt the fetching movements to the physical constraint, or as an alternative explanation, they could switch the motor primitive fetching to a different motor primitive 'arm pulling'. © 2015. Published by The Company of Biologists Ltd.
Moutinho, Rui; Tereso, Anabela
2014-01-01
Project Management (PM) has emerged as a crucial factor that determines the success of an organization. In this sense, there is a growing concern for organizations to assess their PM maturity. This paper presents the PM maturity results for 19 organizations, using Organizational Project Management Maturity Model (OPM3®) emerging from OPM3® Portugal Project research, that is presently in progress. All aspects of OPM3® Portugal Project are explained in detail, and a brief descriptiv...
Enabling and Constraining Conditions of Professional Teacher Agency: The South African Context
Long, Caroline; Graven, Mellony; Sayed, Yusuf; Lampen, Erna
2017-01-01
The South African people have a history of resistance to domination, injustice and inequality. It is therefore surprising that there has been an increase in social inequality, since the start of political democracy in 1994. Recently, the five teachers' unions refused to administer the Annual National Assessments. This action indicates some…
Constrained control of a once-through boiler with recirculation
DEFF Research Database (Denmark)
Trangbæk, K
2008-01-01
There is an increasing need to operate power plants at low load for longer periods of time. When a once-through boiler operates at a sufficiently low load, recirculation is introduced, significantly altering the control structure. This paper illustrates the possibilities for using constrained con...
A spatially constrained ecological classification: rationale, methodology and implementation
Franz Mora; Louis Iverson; Louis Iverson
2002-01-01
The theory, methodology and implementation for an ecological and spatially constrained classification are presented. Ecological and spatial relationships among several landscape variables are analyzed in order to define a new approach for a landscape classification. Using ecological and geostatistical analyses, several ecological and spatial weights are derived to...
Effect of modified constrained induced movement therapy on ...
African Journals Online (AJOL)
Ehab M. Abdel-Kafy
2012-12-21
Dec 21, 2012 ... Effect of modified constrained induced movement therapy on improving arm function in children with obstetric brachial plexus injury. Ehab M. Abdel-Kafy, Hebatallah M. Kamal *, Samah A. Elshemy. Department of Physical Therapy for Disturbances of Growth and Developmental Disorders in Children and its ...
Balance of Payments Constrained Economic Growth in Nigeria ...
African Journals Online (AJOL)
Abstract. This paper applies the adjusted balance of payment (BOP) constrained growth framework modified by Thirwall and Hussain (1982) on Nigeria's economic growth to estimate the determinants of the long run rate of growth in Nigeria. With Nigeria adopting the import substitution industrialization policy in 1960, we ...
Reserve-constrained economic dispatch: Cost and payment allocations
Energy Technology Data Exchange (ETDEWEB)
Misraji, Jaime [Sistema Electrico Nacional Interconectado de la Republica Dominicana, Calle 3, No. 3, Arroyo Hondo 1, Santo Domingo, Distrito Nacional (Dominican Republic); Conejo, Antonio J.; Morales, Juan M. [Department of Electrical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real (Spain)
2008-05-15
This paper extends basic economic dispatch analytical results to the reserve-constrained case. For this extended problem, a cost and payment allocation analysis is carried out and a detailed economic interpretation of the results is provided. Sensitivity values (Lagrange multipliers) are also analyzed. A case study is considered to illustrate the proposed analysis. Conclusions are duly drawn. (author)
Adaptive double chain quantum genetic algorithm for constrained optimization problems
Directory of Open Access Journals (Sweden)
Haipeng Kong
2015-02-01
Full Text Available Optimization problems are often highly constrained and evolutionary algorithms (EAs are effective methods to tackle this kind of problems. To further improve search efficiency and convergence rate of EAs, this paper presents an adaptive double chain quantum genetic algorithm (ADCQGA for solving constrained optimization problems. ADCQGA makes use of double-individuals to represent solutions that are classified as feasible and infeasible solutions. Fitness (or evaluation functions are defined for both types of solutions. Based on the fitness function, three types of step evolution (SE are defined and utilized for judging evolutionary individuals. An adaptive rotation is proposed and used to facilitate updating individuals in different solutions. To further improve the search capability and convergence rate, ADCQGA utilizes an adaptive evolution process (AEP, adaptive mutation and replacement techniques. ADCQGA was first tested on a widely used benchmark function to illustrate the relationship between initial parameter values and the convergence rate/search capability. Then the proposed ADCQGA is successfully applied to solve other twelve benchmark functions and five well-known constrained engineering design problems. Multi-aircraft cooperative target allocation problem is a typical constrained optimization problem and requires efficient methods to tackle. Finally, ADCQGA is successfully applied to solving the target allocation problem.
The balance of payment-constrained economic growth in Ethiopia ...
African Journals Online (AJOL)
The objective of this paper is to empirically test the validity of the simplified version of the balance of payment-constrained economic growth model for Ethiopia during the period 1971-20082. According to the model, economies only grow at a pace allowed by the constraints imposed by the requirement of balance of payment ...
Dark matter, constrained minimal supersymmetric standard model, and lattice QCD.
Giedt, Joel; Thomas, Anthony W; Young, Ross D
2009-11-13
Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches.
Constrained relationship agency as the risk factor for intimate ...
African Journals Online (AJOL)
Constrained relationship agency as the risk factor for intimate partner violence in .... sexual violence before the age of 18 (Reza et al., 2009). In addition 11% of .... modified as necessary to ensure that the intent and translation of each item was clear. A young bilingual female Swazi RA who was familiar with the research.
Constrained Geocast to Support Cooperative Adaptive Cruise Control (CACC) Merging
Klein Wolterink, W.; Heijenk, Geert; Karagiannis, Georgios
2010-01-01
In this paper we introduce a new geocasting concept to target vehicles based on where they will be in the direct future, in stead of their current position. We refer to this concept as constrained geocast. This may be useful in situations where vehicles have interdependencies based on (future)
Revenue Prediction in Budget-constrained Sequential Auctions with Complementarities
S. Verwer (Sicco); Y. Zhang (Yingqian)
2011-01-01
textabstractWhen multiple items are auctioned sequentially, the ordering of auctions plays an important role in the total revenue collected by the auctioneer. This is true especially with budget constrained bidders and the presence of complementarities among items. In such sequential auction
Modeling constrained sintering of bi-layered tubular structures
DEFF Research Database (Denmark)
Tadesse Molla, Tesfaye; Kothanda Ramachandran, Dhavanesan; Ni, De Wei
2015-01-01
Constrained sintering of tubular bi-layered structures is being used in the development of various technologies. Densification mismatch between the layers making the tubular bi-layer can generate stresses, which may create processing defects. An analytical model is presented to describe the densi...
Trauma death in a resource constrained setting: Mechanisms and ...
African Journals Online (AJOL)
2013-11-20
Nov 20, 2013 ... experienced personnel, the utilization of high technology. Trauma death in a resource constrained setting: ... staff includes orderlies, cleaners, security personnel and drivers. The ambulance service is for 24 h daily .... pressure<70 mmHg) 20 (13.6). Exploratory laparotomy 9 (6.1%). External fixation 8 (5.4%).
21 CFR 888.3230 - Finger joint polymer constrained prosthesis.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Finger joint polymer constrained prosthesis. 888.3230 Section 888.3230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... made from either a silicone elastomer or a combination pf polypropylene and polyester material. The...
Using Diagnostic Text Information to Constrain Situation Models
Dutke, S.; Baadte, C.; Hähnel, A.; Hecker, U. von; Rinck, M.
2010-01-01
During reading, the model of the situation described by the text is continuously accommodated to new text input. The hypothesis was tested that readers are particularly sensitive to diagnostic text information that can be used to constrain their existing situation model. In 3 experiments, adult
Constrained relationship agency as the risk factor for intimate ...
African Journals Online (AJOL)
We used structural equation modelling to identify and measure constrained relationship agency (CRA) as a latent variable, and then tested the hypothesis that CRA plays a significant role in the pathway between IPV and transactional sex. After controlling for CRA, receiving more material goods from a sexual partner was ...
Improved Differential Evolution with Shrinking Space Technique for Constrained Optimization
Fu, Chunming; Xu, Yadong; Jiang, Chao; Han, Xu; Huang, Zhiliang
2017-05-01
Most of the current evolutionary algorithms for constrained optimization algorithm are low computational efficiency. In order to improve efficiency, an improved differential evolution with shrinking space technique and adaptive trade-off model, named ATMDE, is proposed to solve constrained optimization problems. The proposed ATMDE algorithm employs an improved differential evolution as the search optimizer to generate new offspring individuals into evolutionary population. For the constraints, the adaptive trade-off model as one of the most important constraint-handling techniques is employed to select better individuals to retain into the next population, which could effectively handle multiple constraints. Then the shrinking space technique is designed to shrink the search region according to feedback information in order to improve computational efficiency without losing accuracy. The improved DE algorithm introduces three different mutant strategies to generate different offspring into evolutionary population. Moreover, a new mutant strategy called "DE/rand/best/1" is constructed to generate new individuals according to the feasibility proportion of current population. Finally, the effectiveness of the proposed method is verified by a suite of benchmark functions and practical engineering problems. This research presents a constrained evolutionary algorithm with high efficiency and accuracy for constrained optimization problems.
3D facial geometric features for constrained local model
Cheng, Shiyang; Zafeiriou, Stefanos; Asthana, Ashish; Asthana, Akshay; Pantic, Maja
2014-01-01
We propose a 3D Constrained Local Model framework for deformable face alignment in depth image. Our framework exploits the intrinsic 3D geometric information in depth data by utilizing robust histogram-based 3D geometric features that are based on normal vectors. In addition, we demonstrate the
Inferring meaningful communities from topology-constrained correlation networks.
Hleap, Jose Sergio; Blouin, Christian
2014-01-01
Community structure detection is an important tool in graph analysis. This can be done, among other ways, by solving for the partition set which optimizes the modularity scores [Formula: see text]. Here it is shown that topological constraints in correlation graphs induce over-fragmentation of community structures. A refinement step to this optimization based on Linear Discriminant Analysis (LDA) and a statistical test for significance is proposed. In structured simulation constrained by topology, this novel approach performs better than the optimization of modularity alone. This method was also tested with two empirical datasets: the Roll-Call voting in the 110th US Senate constrained by geographic adjacency, and a biological dataset of 135 protein structures constrained by inter-residue contacts. The former dataset showed sub-structures in the communities that revealed a regional bias in the votes which transcend party affiliations. This is an interesting pattern given that the 110th Legislature was assumed to be a highly polarized government. The [Formula: see text]-amylase catalytic domain dataset (biological dataset) was analyzed with and without topological constraints (inter-residue contacts). The results without topological constraints showed differences with the topology constrained one, but the LDA filtering did not change the outcome of the latter. This suggests that the LDA filtering is a robust way to solve the possible over-fragmentation when present, and that this method will not affect the results where there is no evidence of over-fragmentation.
Identification of different geologic units using fuzzy constrained resistivity tomography
Singh, Anand; Sharma, S. P.
2018-01-01
Different geophysical inversion strategies are utilized as a component of an interpretation process that tries to separate geologic units based on the resistivity distribution. In the present study, we present the results of separating different geologic units using fuzzy constrained resistivity tomography. This was accomplished using fuzzy c means, a clustering procedure to improve the 2D resistivity image and geologic separation within the iterative minimization through inversion. First, we developed a Matlab-based inversion technique to obtain a reliable resistivity image using different geophysical data sets (electrical resistivity and electromagnetic data). Following this, the recovered resistivity model was converted into a fuzzy constrained resistivity model by assigning the highest probability value of each model cell to the cluster utilizing fuzzy c means clustering procedure during the iterative process. The efficacy of the algorithm is demonstrated using three synthetic plane wave electromagnetic data sets and one electrical resistivity field dataset. The presented approach shows improvement on the conventional inversion approach to differentiate between different geologic units if the correct number of geologic units will be identified. Further, fuzzy constrained resistivity tomography was performed to examine the augmentation of uranium mineralization in the Beldih open cast mine as a case study. We also compared geologic units identified by fuzzy constrained resistivity tomography with geologic units interpreted from the borehole information.
Node Discovery and Interpretation in Unstructured Resource-Constrained Environments
DEFF Research Database (Denmark)
Gechev, Miroslav; Kasabova, Slavyana; Mihovska, Albena D.
2014-01-01
A main characteristic of the Internet of Things networks is the large number of resource-constrained nodes, which, however, are required to perform reliable and fast data exchange; often of critical nature; over highly unpredictable and dynamic connections and network topologies. Reducing the num...
Testing a Constrained MPC Controller in a Process Control Laboratory
Ricardez-Sandoval, Luis A.; Blankespoor, Wesley; Budman, Hector M.
2010-01-01
This paper describes an experiment performed by the fourth year chemical engineering students in the process control laboratory at the University of Waterloo. The objective of this experiment is to test the capabilities of a constrained Model Predictive Controller (MPC) to control the operation of a Double Pipe Heat Exchanger (DPHE) in real time.…
Total Knee Replacement in A Resource Constrained Environment: A ...
African Journals Online (AJOL)
2017-03-06
Mar 6, 2017 ... knee replacement in a resource constrained environment: A preliminary report. Niger J Clin Pract 2017;20:369-75. This is an open access article distributed under the terms of the Creative Commons. Attribution-Non Commercial-Share Alike 3.0 License, which allows others to remix, tweak, and build upon ...
Constrained variational calculus for higher order classical field theories
Energy Technology Data Exchange (ETDEWEB)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn, E-mail: cedricmc@icmat.e, E-mail: mdeleon@icmat.e, E-mail: david.martin@icmat.e [Instituto de Ciencias Matematicas, CSIC-UAM-UC3M-UCM, Serrano 123, 28006 Madrid (Spain)
2010-11-12
We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.
Constrained relationship agency as the risk factor for intimate ...
African Journals Online (AJOL)
masculinity (Maganja, Maman, Groves, & Mbwambo, 2007). Similarly, bystanders may be less likely to intervene in an impending sexual assault if they believe that a man has. Constrained relationship agency as the risk factor for intimate partner violence in different models of transactional sex. Rebecca Fielding-Miller1, 2* ...
Convergence profile of a discretized scheme for constrained ...
African Journals Online (AJOL)
profile of a quadratic control problem constrained by evolution equation with real coefficients. With an unconstrained formulation of the problem via the penaltymultiplier method, the discretization of the time interval and differential constraint is carried out. An operator, to circumvent the cumbersome calculation inherent in ...
Effective Teaching of Economics: A Constrained Optimization Problem?
Hultberg, Patrik T.; Calonge, David Santandreu
2017-01-01
One of the fundamental tenets of economics is that decisions are often the result of optimization problems subject to resource constraints. Consumers optimize utility, subject to constraints imposed by prices and income. As economics faculty, instructors attempt to maximize student learning while being constrained by their own and students'…
Inferring meaningful communities from topology-constrained correlation networks.
Directory of Open Access Journals (Sweden)
Jose Sergio Hleap
Full Text Available Community structure detection is an important tool in graph analysis. This can be done, among other ways, by solving for the partition set which optimizes the modularity scores [Formula: see text]. Here it is shown that topological constraints in correlation graphs induce over-fragmentation of community structures. A refinement step to this optimization based on Linear Discriminant Analysis (LDA and a statistical test for significance is proposed. In structured simulation constrained by topology, this novel approach performs better than the optimization of modularity alone. This method was also tested with two empirical datasets: the Roll-Call voting in the 110th US Senate constrained by geographic adjacency, and a biological dataset of 135 protein structures constrained by inter-residue contacts. The former dataset showed sub-structures in the communities that revealed a regional bias in the votes which transcend party affiliations. This is an interesting pattern given that the 110th Legislature was assumed to be a highly polarized government. The [Formula: see text]-amylase catalytic domain dataset (biological dataset was analyzed with and without topological constraints (inter-residue contacts. The results without topological constraints showed differences with the topology constrained one, but the LDA filtering did not change the outcome of the latter. This suggests that the LDA filtering is a robust way to solve the possible over-fragmentation when present, and that this method will not affect the results where there is no evidence of over-fragmentation.
Dirac's Constrained Hamiltonian Dynamics from an Unconstrained Dynamics
Rothe, Heinz J.
2003-01-01
We derive the Hamilton equations of motion for a constrained system in the form given by Dirac, by a limiting procedure, starting from the Lagrangean for an unconstrained system. We thereby ellucidate the role played by the primary constraints and their persistance in time.
Factors constraining accessibility and usage of information among ...
African Journals Online (AJOL)
Challenges faced by farmers in using poultry management information were mostly related to poverty, ignorance, and limited literacy. An understanding of the factors that constrain access and use of poultry management information can guide the planners and information providers in setting up appropriate standards for ...
The Balance of Payment-Constrained Economic Growth in Ethiopia ...
African Journals Online (AJOL)
Administrator
Lopez and Cruz (1986) applied the balance of payment constrained model to four Latin American countries, namely, Argentina, Brazil,. Colombia, and Mexico. They estimate the model using co-integration analysis and a Vector Auto Regression (VAR) specification. In addition, they showed a co-integration between export ...
Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics
Cox, Jordan A.
The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface
An Automated Translator for Model Checking Time Constrained Workflow Systems
Mashiyat, Ahmed Shah; Rabbi, Fazle; Wang, Hao; Maccaull, Wendy
Workflows have proven to be a useful conceptualization for the automation of business processes. While formal verification methods (e.g., model checking) can help ensure the reliability of workflow systems, the industrial uptake of such methods has been slow largely due to the effort involved in modeling and the memory required to verify complex systems. Incorporation of time constraints in such systems exacerbates the latter problem. We present an automated translator, YAWL2DVE-t, which takes as input a time constrained workflow model built with the graphical modeling tool YAWL, and outputs the model in DVE, the system specification language for the distributed LTL model checker DiVinE. The automated translator, together with the graphical editor and the distributed model checker, provides a method for rapid design, verification and refactoring of time constrained workflow systems. We present a realistic case study developed through collaboration with the local health authority.
Morphological transitions of elastic domain structures in constrained layers
Slutsker, J.; Artemev, A.; Roytburd, A. L.
2002-06-01
The phase transformation in a constrained layer is the subject of this article. The formation and evolution of polydomain microstructure under external stress in the constrained layer are investigated by phase-field simulation and analytically using homogeneous approximation. As a result of simulation, it has been shown that the three-domain hierarchical structure can be formed in the epitaxial films. Under external stress there are two types of morphological transitions: from the three-domain structure to the two-domain one and from the hierarchical three-domain structure to the cellular three-domain structure. The results of phase-field simulation are compared with conclusions of homogenous theory and with available experimental data.
Colorimetric characterization of LCD based on constrained least squares
LI, Tong; Xie, Kai; Wang, Qiaojie; Yao, Luyang
2017-01-01
In order to improve the accuracy of colorimetric characterization of liquid crystal display, tone matrix model in color management modeling of display characterization is established by using constrained least squares for quadratic polynomial fitting, and find the relationship between the RGB color space to CIEXYZ color space; 51 sets of training samples were collected to solve the parameters, and the accuracy of color space mapping model was verified by 100 groups of random verification samples. The experimental results showed that, with the constrained least square method, the accuracy of color mapping was high, the maximum color difference of this model is 3.8895, the average color difference is 1.6689, which prove that the method has better optimization effect on the colorimetric characterization of liquid crystal display.
Multi-constrained inverse kinematics for the human hand.
Samadani, Ali-Akbar; Kulić, Dana; Gorbet, Rob
2012-01-01
Measuring the spatial and temporal characteristics of hand movement is a challenging task due to the large number of degrees of freedom (DOF) in the hand. This paper presents a multi-constrained inverse kinematics (IK) approach for hand motion estimation from motion capture data. The IK approach satisfies a set of prioritized motion and postural constraints for each hand joint and link. The high-priority constraint is fully satisfied, while the fulfillment of the low-priority constraints is achieved as long as no conflict with the high-priority constraint exists. The proposed approach can aid marker-based motion capture technologies in accurately reconstructing discontinuities or erroneous marker trajectory segments resulting from occluded, missing, or flipped markers. The performance of the multi-constrained IK approach for the hand is tested for a full range of continuous hand motion.
Deep Learning of Constrained Autoencoders for Enhanced Understanding of Data.
Ayinde, Babajide O; Zurada, Jacek M
2017-09-26
Unsupervised feature extractors are known to perform an efficient and discriminative representation of data. Insight into the mappings they perform and human ability to understand them, however, remain very limited. This is especially prominent when multilayer deep learning architectures are used. This paper demonstrates how to remove these bottlenecks within the architecture of non-negativity constrained autoencoder. It is shown that using both L1 and L2 regularizations that induce non-negativity of weights, most of the weights in the network become constrained to be non-negative, thereby resulting into a more understandable structure with minute deterioration in classification accuracy. Also, this proposed approach extracts features that are more sparse and produces additional output layer sparsification. The method is analyzed for accuracy and feature interpretation on the MNIST data, the NORB normalized uniform object data, and the Reuters text categorization data set.
Constraining new physics models with isotope shift spectroscopy
Frugiuele, Claudia; Fuchs, Elina; Perez, Gilad; Schlaffer, Matthias
2017-07-01
Isotope shifts of transition frequencies in atoms constrain generic long- and intermediate-range interactions. We focus on new physics scenarios that can be most strongly constrained by King linearity violation such as models with B -L vector bosons, the Higgs portal, and chameleon models. With the anticipated precision, King linearity violation has the potential to set the strongest laboratory bounds on these models in some regions of parameter space. Furthermore, we show that this method can probe the couplings relevant for the protophobic interpretation of the recently reported Be anomaly. We extend the formalism to include an arbitrary number of transitions and isotope pairs and fit the new physics coupling to the currently available isotope shift measurements.
Functional coupling constrains craniofacial diversification in Lake Tanganyika cichlids
Tsuboi, Masahito; Gonzalez-Voyer, Alejandro; Kolm, Niclas
2015-01-01
Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution. PMID:25948565
Regularized Primal-Dual Subgradient Method for Distributed Constrained Optimization.
Yuan, Deming; Ho, Daniel W C; Xu, Shengyuan
2016-09-01
In this paper, we study the distributed constrained optimization problem where the objective function is the sum of local convex cost functions of distributed nodes in a network, subject to a global inequality constraint. To solve this problem, we propose a consensus-based distributed regularized primal-dual subgradient method. In contrast to the existing methods, most of which require projecting the estimates onto the constraint set at every iteration, only one projection at the last iteration is needed for our proposed method. We establish the convergence of the method by showing that it achieves an O ( K (-1/4) ) convergence rate for general distributed constrained optimization, where K is the iteration counter. Finally, a numerical example is provided to validate the convergence of the propose method.
THE DUBINS TRAVELING SALESMAN PROBLEM WITH CONSTRAINED COLLECTING MANEUVERS
Directory of Open Access Journals (Sweden)
Petr Váňa
2016-11-01
Full Text Available In this paper, we introduce a variant of the Dubins traveling salesman problem (DTSP that is called the Dubins traveling salesman problem with constrained collecting maneuvers (DTSP-CM. In contrast to the ordinary formulation of the DTSP, in the proposed DTSP-CM, the vehicle is requested to visit each target by specified collecting maneuver to accomplish the mission. The proposed problem formulation is motivated by scenarios with unmanned aerial vehicles where particular maneuvers are necessary for accomplishing the mission, such as object dropping or data collection with sensor sensitive to changes in vehicle heading. We consider existing methods for the DTSP and propose its modifications to use these methods to address a variant of the introduced DTSP-CM, where the collecting maneuvers are constrained to straight line segments.
Lilith: a tool for constraining new physics from Higgs measurements
Bernon, Jérémy; Dumont, Béranger
2015-09-01
The properties of the observed Higgs boson with mass around 125 GeV can be affected in a variety of ways by new physics beyond the Standard Model (SM). The wealth of experimental results, targeting the different combinations for the production and decay of a Higgs boson, makes it a non-trivial task to assess the patibility of a non-SM-like Higgs boson with all available results. In this paper we present Lilith, a new public tool for constraining new physics from signal strength measurements performed at the LHC and the Tevatron. Lilith is a Python library that can also be used in C and C++/ ROOT programs. The Higgs likelihood is based on experimental results stored in an easily extensible XML database, and is evaluated from the user input, given in XML format in terms of reduced couplings or signal strengths.The results of Lilith can be used to constrain a wide class of new physics scenarios.
Constraining the noncommutative spectral action via astrophysical observations.
Nelson, William; Ochoa, Joseph; Sakellariadou, Mairi
2010-09-03
The noncommutative spectral action extends our familiar notion of commutative spaces, using the data encoded in a spectral triple on an almost commutative space. Varying a rather simple action, one can derive all of the standard model of particle physics in this setting, in addition to a modified version of Einstein-Hilbert gravity. In this Letter we use observations of pulsar timings, assuming that no deviation from general relativity has been observed, to constrain the gravitational sector of this theory. While the bounds on the coupling constants remain rather weak, they are comparable to existing bounds on deviations from general relativity in other settings and are likely to be further constrained by future observations.
Applications of a constrained mechanics methodology in economics
Janová, Jitka
2011-01-01
The paper presents instructive interdisciplinary applications of constrained mechanics calculus in economics on a level appropriate for the undergraduate physics education. The aim of the paper is: 1. to meet the demand for illustrative examples suitable for presenting the background of the highly expanding research field of econophysics even on the undergraduate level and 2. to enable the students to understand deeper the principles and methods routinely used in mechanics by looking at the well known methodology from the different perspective of economics. Two constrained dynamic economic problems are presented using the economic terminology in an intuitive way. First, the Phillips model of business cycle is presented as a system of forced oscillations and the general problem of two interacting economies is solved by the nonholonomic dynamics approach. Second, the Cass-Koopmans-Ramsey model of economical growth is solved as a variational problem with a velocity dependent constraint using the vakonomic approa...
Dark matter scenarios in a constrained model with Dirac gauginos
Goodsell, Mark D.; Müller, Tobias; Porod, Werner; Staub, Florian
2015-01-01
We perform the first analysis of Dark Matter scenarios in a constrained model with Dirac Gauginos. The model under investigation is the Constrained Minimal Dirac Gaugino Supersymmetric Standard model (CMDGSSM) where the Majorana mass terms of gauginos vanish. However, $R$-symmetry is broken in the Higgs sector by an explicit and/or effective $B_\\mu$-term. This causes a mass splitting between Dirac states in the fermion sector and the neutralinos, which provide the dark matter candidate, become pseudo-Dirac states. We discuss two scenarios: the universal case with all scalar masses unified at the GUT scale, and the case with non-universal Higgs soft-terms. We identify different regions in the parameter space which fullfil all constraints from the dark matter abundance, the limits from SUSY and direct dark matter searches and the Higgs mass. Most of these points can be tested with the next generation of direct dark matter detection experiments.
Hadroproduction experiments to constrain accelerator-based neutrino fluxes
Zambelli, Laura
2017-09-01
The precise knowledge of (anti-)neutrino fluxes is one of the largest limitation in accelerator-based neutrino experiments. The main limitations arise from the poorly known production properties of neutrino parents in hadron-nucleus interactions. Strategies used by neutrino experiment to constrain their fluxes using external hadroproduction data will be described and illustrated with an example of a tight collaboration between T2K and NA61/SHINE experiments. This enabled a reduction of the T2K neutrino flux uncertainty from ∼25% (without external constraints) down to ∼10%. On-going developments to further constrain the T2K (anti-)neutrino flux are discussed and recent results from NA61/SHINE are reviewed. As the next-generation long baseline experiments aim for a neutrino flux uncertainty at a level of a few percent, the future data-taking plans of NA61/SHINE are discussed.
Completing constrained flavor violation: lepton masses, neutrinos and leptogenesis
Cline, James M.; Diaz-Furlong, Alfonso; Ren, Jing
2015-01-01
Constrained flavor violation is a recent proposal for predicting the down-quark Yukawa matrix in terms of those for up quarks and charged leptons. We study the viability of CFV with respect to its predictions for the lepton mass ratios, showing that this remains a challenge, and suggest some possible means for improving this shortcoming. We then extend CFV to include neutrinos, and show that it leads to interesting predictions for hierachical heavy neutrinos, and leptogenesis dominated by dec...
Critical transition in the constrained traveling salesman problem.
Andrecut, M; Ali, M K
2001-04-01
We investigate the finite size scaling of the mean optimal tour length as a function of density of obstacles in a constrained variant of the traveling salesman problem (TSP). The computational experience pointed out a critical transition (at rho(c) approximately 85%) in the dependence between the excess of the mean optimal tour length over the Held-Karp lower bound and the density of obstacles.
Distributionally Robust Joint Chance Constrained Problem under Moment Uncertainty
Directory of Open Access Journals (Sweden)
Ke-wei Ding
2014-01-01
Full Text Available We discuss and develop the convex approximation for robust joint chance constraints under uncertainty of first- and second-order moments. Robust chance constraints are approximated by Worst-Case CVaR constraints which can be reformulated by a semidefinite programming. Then the chance constrained problem can be presented as semidefinite programming. We also find that the approximation for robust joint chance constraints has an equivalent individual quadratic approximation form.
Singular divergence instability thresholds of kinematically constrained circulatory systems
Energy Technology Data Exchange (ETDEWEB)
Kirillov, O.N., E-mail: o.kirillov@hzdr.de [Magnetohydrodynamics Division, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Challamel, N. [University of South Brittany, LIMATB, Lorient (France); Darve, F. [Laboratoire Sols Solides Structures, UJF-INPG-CNRS, Grenoble (France); Lerbet, J. [IBISC, Universite d' Evry Val d' Essone, 40 Rue Pelvoux, CE 1455 Courcouronnes, 91020 Evry Cedex (France); Nicot, F. [Cemagref, Unite de Recherche Erosion Torrentielle Neige et Avalanches, Grenoble (France)
2014-01-10
Static instability or divergence threshold of both potential and circulatory systems with kinematic constraints depends singularly on the constraints' coefficients. Particularly, the critical buckling load of the kinematically constrained Ziegler's pendulum as a function of two coefficients of the constraint is given by the Plücker conoid of degree n=2. This simple mechanical model exhibits a structural instability similar to that responsible for the Velikhov–Chandrasekhar paradox in the theory of magnetorotational instability.
Homework and performance for time-constrained students
William Neilson
2005-01-01
Most studies of homework effectiveness relate time spent on homework to test performance, and find a nonmonotonic relationship. A theoretical model shows that this can occur even when additional homework helps all students because of the way in which variables are defined. However, some students are time-constrained, limiting the amount of homework they can complete. In the presence of time constraints, additional homework can increase the spread between the performance of the best and worst ...
Asynchronous parallel generating set search for linearly-constrained optimization.
Energy Technology Data Exchange (ETDEWEB)
Kolda, Tamara G.; Griffin, Joshua; Lewis, Robert Michael
2007-04-01
We describe an asynchronous parallel derivative-free algorithm for linearly-constrained optimization. Generating set search (GSS) is the basis of ourmethod. At each iteration, a GSS algorithm computes a set of search directionsand corresponding trial points and then evaluates the objective function valueat each trial point. Asynchronous versions of the algorithm have been developedin the unconstrained and bound-constrained cases which allow the iterations tocontinue (and new trial points to be generated and evaluated) as soon as anyother trial point completes. This enables better utilization of parallel resourcesand a reduction in overall runtime, especially for problems where the objec-tive function takes minutes or hours to compute. For linearly-constrained GSS,the convergence theory requires that the set of search directions conform to the3 nearby boundary. The complexity of developing the asynchronous algorithm forthe linearly-constrained case has to do with maintaining a suitable set of searchdirections as the search progresses and is the focus of this research. We describeour implementation in detail, including how to avoid function evaluations bycaching function values and using approximate look-ups. We test our imple-mentation on every CUTEr test problem with general linear constraints and upto 1000 variables. Without tuning to individual problems, our implementationwas able to solve 95% of the test problems with 10 or fewer variables, 75%of the problems with 11-100 variables, and nearly half of the problems with100-1000 variables. To the best of our knowledge, these are the best resultsthat have ever been achieved with a derivative-free method. Our asynchronousparallel implementation is freely available as part of the APPSPACK software.4
Search for passing-through-walls neutrons constrains hidden braneworlds
Directory of Open Access Journals (Sweden)
Michaël Sarrazin
2016-07-01
Full Text Available In many theoretical frameworks our visible world is a 3-brane, embedded in a multidimensional bulk, possibly coexisting with hidden braneworlds. Some works have also shown that matter swapping between braneworlds can occur. Here we report the results of an experiment – at the Institut Laue-Langevin (Grenoble, France – designed to detect thermal neutron swapping to and from another braneworld, thus constraining the probability p2 of such an event. The limit, p87 in Planck length units.
A Fractional Trust Region Method for Linear Equality Constrained Optimization
Directory of Open Access Journals (Sweden)
Honglan Zhu
2016-01-01
Full Text Available A quasi-Newton trust region method with a new fractional model for linearly constrained optimization problems is proposed. We delete linear equality constraints by using null space technique. The fractional trust region subproblem is solved by a simple dogleg method. The global convergence of the proposed algorithm is established and proved. Numerical results for test problems show the efficiency of the trust region method with new fractional model. These results give the base of further research on nonlinear optimization.
Reliable Event Detectors for Constrained Resources Wireless Sensor Node Hardware
López Trinidad MarcoAntonio; Valle Maurizio
2009-01-01
Abstract A novel event detector algorithm, which points out in-door acoustic human activities, for constrained wireless sensor node hardware is proposed in the present paper. In our approach, event detections are computed from the signal energy statistics change rate at two instants separated by an samples interval. The experimentation is run in two phases: (i) the detector characterisation and tuning seek detector configurations that enable event detections from three acoustic human activi...
Evaluating potentialities and constrains of Problem Based Learning curriculum
DEFF Research Database (Denmark)
Guerra, Aida
2013-01-01
encloses three methodological approaches to investigate three interrelated research questions. Phase one, a literature review; aims develop a theoretical and analytical framework. The second phase aims to investigate examples of practices that combine PBL and Education for Sustainable Development (ESD......This paper presents a research design to evaluate Problem Based Learning (PBL) curriculum potentialities and constrains for future changes. PBL literature lacks examples of how to evaluate and analyse established PBL learning environments to address new challenges posed. The research design...
Weighted Constrained Hue-Plane Preserving Camera Characterization.
Find Andersen, Casper; Connah, David
2016-07-11
Color correction relates device dependent sensor responses (RGB) to device independent color values (XYZ). Here we present a new approach to Hue-plane Preserving Color Correction (HPPCC) using weighted constrained 3 × 3 matrices. Hue-plane preservation was introduced in [1] in conjunction with an HPPCC method. That method maps using a finite number of local white point preserving 3 × 3 matrices, each of which operates in a hue-angle delimited subregion of device space defined by the white and two adjacent chromatic training set colors. However, that formulation does not leave room for optimization or continuity beyond C0 in the transitions between the subregions. To remedy that our new method uses hue-angle specific weighted matrixing: given a device RGB from which a device hue-angle is derived, a corresponding transformation matrix is found as the normalized weighted sum of all precalculated constrained white point and training color preserving matrices. Each weight is calculated as a power function of the minimum difference between the device and the training color hue-angle. The weighting function provides local influence to the matrices that are in close hue-angle proximity to the device color. The power of the function is optimized for global accuracy. We call this Hue-plane Preserving Color Correction by Weighted Constrained Matrixing HPPCC-WCM 1 1. Experiments performed using different input spectra show that our method consistently improves on both stability and accuracy compared to state of the art methods.
Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization
Directory of Open Access Journals (Sweden)
Weishang Gao
2013-01-01
Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.
VIRTUAL MASS EFFECT ON CONSTRAINED OSCILLATION OF OPEN SHELLS
Directory of Open Access Journals (Sweden)
Mr. Oleg Ye. Sysoyev Doctor of Engineering, Professor, the Civil construction and Architecture Department, Dean of the Cadastre and Civil construction faculty, Komsomolsk-on-Amur State Technical University (Russia, Komsomolsk-on-Amur. E-mail: fks@knastu.ru.
2016-09-01
Full Text Available In the laboratory of constructions of Komsomolsk-on-Amur State Technical University (KnAGTU an experiment has been carried on. The aim of the experiment was to identify patterns of influence of magnitude of fluctuations in the virtual mass on constrained oscillation of open shells. Constrained oscillation of curved and open-shell carrying the virtual mass was measured with the help of induction accelerometers. Steel shell is pin supported along the edges, rectangular in the plan. Pin supported open shells along both sides, as the most frequently used in the construction have not yet been investigated. The calculation was made based on the general equation of oscillation of a shell, as well as Donnell - Mushtari - Vlasov equations. In the theoretical calculation, assumptions about the flatness were not taken into account. But it seemed that the magnitude of the stresses from bending moments are comparable in magnitude to the stress of the effort. In consequence, substantial increase in the differentiation was obtained. As a result, values of theoretical constrained oscillation of a shell were obtained. We compared the theoretical and analytical data.
A TV-constrained decomposition method for spectral CT
Guo, Xiaoyue; Zhang, Li; Xing, Yuxiang
2017-03-01
Spectral CT is attracting more and more attention in medicine, industrial nondestructive testing and security inspection field. Material decomposition is an important issue to a spectral CT to discriminate materials. Because of the spectrum overlap of energy channels, as well as the correlation of basis functions, it is well acknowledged that decomposition step in spectral CT imaging causes noise amplification and artifacts in component coefficient images. In this work, we propose materials decomposition via an optimization method to improve the quality of decomposed coefficient images. On the basis of general optimization problem, total variance minimization is constrained on coefficient images in our overall objective function with adjustable weights. We solve this constrained optimization problem under the framework of ADMM. Validation on both a numerical dental phantom in simulation and a real phantom of pig leg on a practical CT system using dual-energy imaging is executed. Both numerical and physical experiments give visually obvious better reconstructions than a general direct inverse method. SNR and SSIM are adopted to quantitatively evaluate the image quality of decomposed component coefficients. All results demonstrate that the TV-constrained decomposition method performs well in reducing noise without losing spatial resolution so that improving the image quality. The method can be easily incorporated into different types of spectral imaging modalities, as well as for cases with energy channels more than two.
'Constrained collaboration': Patient empowerment discourse as resource for countervailing power.
Vinson, Alexandra H
2016-11-01
Countervailing powers constrain the authority and autonomy of the medical profession. One countervailing power is patient consumerism, a movement with roots in health social movements. Patient empowerment discourses that emerge from health social movements suggest that active patienthood is a normative good, and that patients should inform themselves, claim their expertise, and participate in their care. Yet, little is known about how patient empowerment is understood by physicians. Drawing on ethnographic fieldwork in an American medical school, this article examines how physicians teach medical students to carry out patient encounters while adhering to American cultural expectations of a collaborative physician-patient relationship. Overt medical paternalism is characterised by professors as 'here's the orders' paternalism, and shown to be counterproductive to 'closing the deal' - achieving patient agreement to a course of treatment. To explain how physicians accomplish their therapeutic goals without violating cultural mandates of patient empowerment I develop the concept of 'constrained collaboration'. This analysis of constrained collaboration contrasts with structural-level narratives of diminishing professional authority and contributes to a theory of the micro-level reproduction of medical authority as a set of interactional practices. © 2016 Foundation for the Sociology of Health & Illness.
Groundwater availability as constrained by hydrogeology and environmental flows.
Watson, Katelyn A; Mayer, Alex S; Reeves, Howard W
2014-01-01
Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications. © 2013, National Ground Water Association.
Applications of a constrained mechanics methodology in economics
Janová, Jitka
2011-11-01
This paper presents instructive interdisciplinary applications of constrained mechanics calculus in economics on a level appropriate for undergraduate physics education. The aim of the paper is (i) to meet the demand for illustrative examples suitable for presenting the background of the highly expanding research field of econophysics even at the undergraduate level and (ii) to enable the students to gain a deeper understanding of the principles and methods routinely used in mechanics by looking at the well-known methodology from the different perspective of economics. Two constrained dynamic economic problems are presented using the economic terminology in an intuitive way. First, the Phillips model of the business cycle is presented as a system of forced oscillations and the general problem of two interacting economies is solved by the nonholonomic dynamics approach. Second, the Cass-Koopmans-Ramsey model of economical growth is solved as a variational problem with a velocity-dependent constraint using the vakonomic approach. The specifics of the solution interpretation in economics compared to mechanics is discussed in detail, a discussion of the nonholonomic and vakonomic approaches to constrained problems in mechanics and economics is provided and an economic interpretation of the Lagrange multipliers (possibly surprising for the students of physics) is carefully explained. This paper can be used by the undergraduate students of physics interested in interdisciplinary physics applications to gain an understanding of the current scientific approach to economics based on a physical background, or by university teachers as an attractive supplement to classical mechanics lessons.
Interpreting single turnover catalysis measurements with constrained mean dwell times.
Ochoa, Maicol A; Zhou, Xiaochun; Chen, Peng; Loring, Roger F
2011-11-07
Observation of a chemical transformation at the single-molecule level yields a detailed view of kinetic pathways contributing to the averaged results obtained in a bulk measurement. Studies of a fluorogenic reaction catalyzed by gold nanoparticles have revealed heterogeneous reaction dynamics for these catalysts. Measurements on single nanoparticles yield binary trajectories with stochastic transitions between a dark state in which no product molecules are adsorbed and a fluorescent state in which one product molecule is present. The mean dwell time in either state gives information corresponding to a bulk measurement. Quantifying fluctuations from mean kinetics requires identifying properties of the fluorescence trajectory that are selective in emphasizing certain dynamic processes according to their time scales. We propose the use of constrained mean dwell times, defined as the mean dwell time in a state with the constraint that the immediately preceding dwell time in the other state is, for example, less than a variable time. Calculations of constrained mean dwell times for a kinetic model with dynamic disorder demonstrate that these quantities reveal correlations among dynamic fluctuations at different active sites on a multisite catalyst. Constrained mean dwell times are determined from measurements of single nanoparticle catalysis. The results indicate that dynamical fluctuations at different active sites are correlated, and that especially rapid reaction events produce particularly slowly desorbing product molecules.
Applications of a constrained mechanics methodology in economics
Energy Technology Data Exchange (ETDEWEB)
Janova, Jitka, E-mail: janova@mendelu.cz [Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Department of Statistics and Operation Analysis, Faculty of Business and Economics, Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)
2011-11-15
This paper presents instructive interdisciplinary applications of constrained mechanics calculus in economics on a level appropriate for undergraduate physics education. The aim of the paper is (i) to meet the demand for illustrative examples suitable for presenting the background of the highly expanding research field of econophysics even at the undergraduate level and (ii) to enable the students to gain a deeper understanding of the principles and methods routinely used in mechanics by looking at the well-known methodology from the different perspective of economics. Two constrained dynamic economic problems are presented using the economic terminology in an intuitive way. First, the Phillips model of the business cycle is presented as a system of forced oscillations and the general problem of two interacting economies is solved by the nonholonomic dynamics approach. Second, the Cass-Koopmans-Ramsey model of economical growth is solved as a variational problem with a velocity-dependent constraint using the vakonomic approach. The specifics of the solution interpretation in economics compared to mechanics is discussed in detail, a discussion of the nonholonomic and vakonomic approaches to constrained problems in mechanics and economics is provided and an economic interpretation of the Lagrange multipliers (possibly surprising for the students of physics) is carefully explained. This paper can be used by the undergraduate students of physics interested in interdisciplinary physics applications to gain an understanding of the current scientific approach to economics based on a physical background, or by university teachers as an attractive supplement to classical mechanics lessons.
Dynamic Constrained Economic/Emission Dispatch Scheduling Using Neural Network
Directory of Open Access Journals (Sweden)
Farid Benhamida
2013-01-01
Full Text Available In this paper, a Dynamic Economic/Emission Dispatch (DEED problem is obtained by considering both the economy and emission objectives with required constraints dynamically. This paper presents an optimization algorithm for solving constrained combined economic emission dispatch (EED problem and DEED, through the application of neural network, which is a flexible Hopfield neural network (FHNN. The constrained DEED must not only satisfy the system load demand and the spinning reserve capacity, but some practical operation constraints of generators, such as ramp rate limits and prohibited operating zone, are also considered in practical generator operation. The feasibility of the proposed FHNN using to solve DEED is demonstrated using three power systems, and it is compared with the other methods in terms of solution quality and computation efficiency. The simulation results showed that the proposed FHNN method was indeed capable of obtaining higher quality solutions efficiently in constrained DEED and EED problems with a much shorter computation time compared to other methods.
A quantum constrained kinematic model for elementary chemical reactions
McCaffery, Anthony J.; Truhins, Kaspars; Whiteley, Thomas W. J.
1998-05-01
The model we have termed quantum constrained kinematics and found to give an accurate account of atom-diatom inelastic scattering is tested by application to elementary atom-molecule reactive collisions. The approach emphasizes the disposal of initial relative momentum into rotational angular momentum of the product diatomic via vector relations that are constrained by the internal quantum structure of the product diatomic. We introduce the concept of vibrational momentum of the atoms in a diatomic molecule in order to treat vibrational and rotational excitation of the product species. This representation is valuable in providing a realistic picture of the motion in a heteronuclear diatomic and also indicates how the enthalpy of a reaction may be disposed in momentum terms. It may also provide criteria for assessing the likelihood of particular reaction mechanisms. Comparison of results calculated using the quantum constrained kinematic model with experimental data indicates a number of simple, transferable rule-of-thumb guides to the outcome of reactive collisions. Most probable j values and distributions are accurately predicted using readily available data in parameter-free calculations. It is found that in reactive collisions, initial velocity distributions are mapped onto those of product rotational states via an effective impact parameter distribution that is sharply peaked around the half bond length of the product diatomic molecule.
Constrained droplets for high resolution microscopy of protein fibrillization
Posada, David; Tessier, Peter; Hirsa, Amir
2011-11-01
The use of constrained droplets (droplets with pinned contact lines on solid surfaces) is proposed here as a method for sample support in optical microscopy studies. Capillarity acts to contain the liquid sample, allowing access for observations in the bulk and at the gas/liquid interface. At the capillary length scale, surface tension forms stable interfaces, virtually immune to gravity and with curvatures that can be adjusted. This is particularly useful when studying the gas/liquid interface and its vicinity under high resolution optical microscopy. Such observations are normally performed using oil immersion objectives which must be positioned within distances only tens of microns from the region of interest. Constrained droplets can also be used at small scales, requiring minute volumes of analyte. The use of the constrained droplet method is demonstrated by studying the aggregation of insulin into amyloid fibrils in the solution and at the gas/liquid interface, where proteins are prone to denaturation and subsequent fibrillization. Such an aggregation process is associated with many neurodegenerative diseases, including Alzhemier's.
The dynamics of folding instability in a constrained Cosserat medium.
Gourgiotis, Panos A; Bigoni, Davide
2017-05-13
Different from Cauchy elastic materials, generalized continua, and in particular constrained Cosserat materials, can be designed to possess extreme (near a failure of ellipticity) orthotropy properties and in this way to model folding in a three-dimensional solid. Following this approach, folding, which is a narrow zone of highly localized bending, spontaneously emerges as a deformation pattern occurring in a strongly anisotropic solid. How this peculiar pattern interacts with wave propagation in the time-harmonic domain is revealed through the derivation of an antiplane, infinite-body Green's function, which opens the way to integral techniques for anisotropic constrained Cosserat continua. Viewed as a perturbing agent, the Green's function shows that folding, emerging near a steadily pulsating source in the limit of failure of ellipticity, is transformed into a disturbance with wavefronts parallel to the folding itself. The results of the presented study introduce the possibility of exploiting constrained Cosserat solids for propagating waves in materials displaying origami patterns of deformation.This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.' © 2017 The Authors.
Prior image constrained image reconstruction in emerging computed tomography applications
Brunner, Stephen T.
Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation
Crustal evolution at mantle depths constrained from Pamir xenoliths
Kooijman, E.; Hacker, B. R.; Smit, M. A.; Kylander-Clark, A. R.; Ratschbacher, L.
2012-12-01
Lower crustal xenoliths erupted in the Pamir at ~11 Ma provide an exclusive opportunity to study the evolution of crust at mantle depths during a continent-continent collision. To investigate, and constrain the timing of, the petrologic processes that occurred during burial to the peak conditions (2.5-2.8 GPa, 1000-1100 °C; [1]), we performed chemical- and isotope analyses of accessory minerals in 10 xenoliths, ranging from eclogites to grt-ky-qtz granulites. In situ laser ablation split-stream ICPMS yielded 1) U-Pb ages, Ti concentrations and REE in zircon, 2) U/Th-Pb ages and REE in monazite, and 3) U-Pb ages and trace elements in rutile. In addition, garnet, and biotite and K-feldspar were dated using Lu-Hf and 40Ar/39Ar geochronology, respectively. Zircon and monazite U-(Th-)Pb ages are 101.9±1.8, 53.7±1.0, 39.1±0.8, 21.7±0.4, 18.2±0.5, 16.9±0.8, 15.1±0.3 (2σ) and 12.5-11.1 Ma; most samples showed several or all of these populations. The 53.7 Ma and older ages are xenocrystic or detrital. For younger ages, zircon and monazite in individual samples recorded different ages-although zircon in one rock and monazite in another can be the same age. The 39.1 Ma zircon and monazite mostly occur as inclusions in minerals of the garnet-bearing assemblage that represents the early, low-P stages of burial. Garnet Lu-Hf ages of 37.8±0.3 Ma support garnet growth at this time. Spinifex-like textures containing 21.7-11.1 Ma zircon and monazite record short-lived partial melting events during burial. Aligned kyanite near these patches indicates associated deformation. Zircons yielding ≤12.5 Ma exhibit increased Eu/Eu* and markedly decreased HREE concentrations, interpreted to record feldspar breakdown and omphacite growth during increasing pressure. Rutile U-Pb cooling ages are 10.8±0.3 Ma in all samples. This agrees with the weighted mean 40Ar/39Ar age of eight biotite, K-feldspar and whole rock separates of 11.00+0.16/-0.09 Ma. Rutile in eclogites provides Zr
Secure Fusion Estimation for Bandwidth Constrained Cyber-Physical Systems Under Replay Attacks.
Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li
2017-07-03
State estimation plays an essential role in the monitoring and supervision of cyber-physical systems (CPSs), and its importance has made the security and estimation performance a major concern. In this case, multisensor information fusion estimation (MIFE) provides an attractive alternative to study secure estimation problems because MIFE can potentially improve estimation accuracy and enhance reliability and robustness against attacks. From the perspective of the defender, the secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels. A new mathematical model with compensation strategy is proposed to characterize the replay attacks and bandwidth constrains, and then a recursive distributed Kalman fusion estimator (DKFE) is designed in the linear minimum variance sense. According to different communication frameworks, two classes of data compression and compensation algorithms are developed such that the DKFEs can achieve the desired performance. Several attack-dependent and bandwidth-dependent conditions are derived such that the DKFEs are secure under replay attacks. An illustrative example is given to demonstrate the effectiveness of the proposed methods.
How peer-review constrains cognition: on the frontline in the knowledge sector.
Cowley, Stephen J
2015-01-01
Peer-review is neither reliable, fair, nor a valid basis for predicting 'impact': as quality control, peer-review is not fit for purpose. Endorsing the consensus, I offer a reframing: while a normative social process, peer-review also shapes the writing of a scientific paper. In so far as 'cognition' describes enabling conditions for flexible behavior, the practices of peer-review thus constrain knowledge-making. To pursue cognitive functions of peer-review, however, manuscripts must be seen as 'symbolizations', replicable patterns that use technologically enabled activity. On this bio-cognitive view, peer-review constrains knowledge-making by writers, editors, reviewers. Authors are prompted to recursively re-aggregate symbolizations to present what are deemed acceptable knowledge claims. How, then, can recursive re-embodiment be explored? In illustration, I sketch how the paper's own content came to be re-aggregated: agonistic review drove reformatting of argument structure, changes in rhetorical ploys and careful choice of wordings. For this reason, the paper's knowledge-claims can be traced to human activity that occurs in distributed cognitive systems. Peer-review is on the frontline in the knowledge sector in that it delimits what can count as knowing. Its systemic nature is therefore crucial to not only discipline-centered 'real' science but also its 'post-academic' counterparts.
Color constrains depth in da Vinci stereopsis for camouflage but not occlusion.
Wardle, Susan G; Gillam, Barbara J
2013-12-01
Monocular regions that occur with binocular viewing of natural scenes can produce a strong perception of depth--"da Vinci stereopsis." They occur either when part of the background is occluded in one eye, or when a nearer object is camouflaged against a background surface in one eye's view. There has been some controversy over whether da Vinci depth is constrained by geometric or ecological factors. Here we show that the color of the monocular region constrains the depth perceived from camouflage, but not occlusion, as predicted by ecological considerations. Quantitative depth was found in both cases, but for camouflage only when the color of the monocular region matched the binocular background. Unlike previous reports, depth failed even when nonmatching colors satisfied conditions for perceptual transparency. We show that placing a colored line at the boundary between the binocular and monocular regions is sufficient to eliminate depth from camouflage. When both the background and the monocular region contained vertical contours that could be fused, some observers appeared to use fusion, and others da Vinci constraints, supporting the existence of a separate da Vinci mechanism. The results show that da Vinci stereopsis incorporates color constraints and is more complex than previously assumed.
How peer review constrains cognition: on the frontline in the knowledge sector
Directory of Open Access Journals (Sweden)
Stephen John Cowley
2015-11-01
Full Text Available Peer-review is neither reliable, fair, nor a valid basis for predicting ‘impact’: as quality control, peer-review is not fit for purpose. Given this consensus, I propose another framing: while a normative social process, peer-review also shapes the flexible behavior called ‘writing’ a scientific paper. In so far as ‘cognition’ describes the enabling conditions for flexible behaviour, the practices of peer-review thus constrain knowledge-making. To pursue cognitive functions of peer-review, however, manuscripts must be seen as ‘symbolizations’, replicable patterns that use technologically enabled activity. On this bio-cognitive view, peer-review constrains knowledge-making by writers, editors, reviewers. Authors are prompted to recursively re-aggregate symbolizations to present what are deemed acceptable knowledge claims. How, then, can recursive re-embodiment be explored? In illustration, I sketch how the paper’s own content came to be re-aggregated: agonistic review drove reformatting of argument structure, changes in rhetorical ploys and careful choice of wordings. For this reason, the paper’s knowledge-claims can be traced to human activity that occurs in distributed cognitive systems. Peer-review is on the frontline in the knowledge sector in that it delimits what can count as knowing. Its systemic nature is therefore crucial to not only discipline-centered ‘real’ science but also its ‘post-academic’ counterparts.
CPMC-Lab: A MATLAB package for Constrained Path Monte Carlo calculations
Nguyen, Huy; Shi, Hao; Xu, Jie; Zhang, Shiwei
2014-12-01
We describe CPMC-Lab, a MATLAB program for the constrained-path and phaseless auxiliary-field Monte Carlo methods. These methods have allowed applications ranging from the study of strongly correlated models, such as the Hubbard model, to ab initio calculations in molecules and solids. The present package implements the full ground-state constrained-path Monte Carlo (CPMC) method in MATLAB with a graphical interface, using the Hubbard model as an example. The package can perform calculations in finite supercells in any dimensions, under periodic or twist boundary conditions. Importance sampling and all other algorithmic details of a total energy calculation are included and illustrated. This open-source tool allows users to experiment with various model and run parameters and visualize the results. It provides a direct and interactive environment to learn the method and study the code with minimal overhead for setup. Furthermore, the package can be easily generalized for auxiliary-field quantum Monte Carlo (AFQMC) calculations in many other models for correlated electron systems, and can serve as a template for developing a production code for AFQMC total energy calculations in real materials. Several illustrative studies are carried out in one- and two-dimensional lattices on total energy, kinetic energy, potential energy, and charge- and spin-gaps.
Directory of Open Access Journals (Sweden)
Tsui-Er Lee
2014-01-01
Full Text Available The effects of cooperative learning and traditional learning on the effectiveness and constraining factors of physical fitness teaching under various teaching conditions were studied. Sixty female students in Grades 7–8 were sampled to evaluate their learning of health and physical education (PE according to the curriculum for Grades 1–9 in Taiwan. The data were quantitatively and qualitatively collected and analyzed. The overall physical fitness of the cooperative learning group exhibited substantial progress between the pretest and posttest, in which the differences in the sit-and-reach and bent-knee sit-up exercises achieved statistical significance. The performance of the cooperative learning group in the bent-knee sit-up and 800 m running exercises far exceeded that of the traditional learning group. Our qualitative data indicated that the number of people grouped before a cooperative learning session, effective administrative support, comprehensive teaching preparation, media reinforcement, constant feedback and introspection regarding cooperative learning strategies, and heterogeneous grouping are constraining factors for teaching PE by using cooperative learning strategies. Cooperative learning is considered an effective route for attaining physical fitness among students. PE teachers should consider providing extrinsic motivation for developing learning effectiveness.
Non-Markovian Monte Carlo Algorithm for the Constrained Markovian Evolution in QCD
Jadach, Stanislaw
2005-01-01
We revisit the challenging problem of finding an efficient Monte Carlo (MC) algorithm solving the constrained evolution equations for the initial-state QCD radiation. The type of the parton (quark, gluon) and the energy fraction x of the parton exiting emission chain (entering hard process) are predefined, i.e. constrained throughout the evolution. Such a constraint is mandatory for any realistic MC for the initial state QCD parton shower. We add one important condition: the MC algorithm must not require the a priori knowledge of the full numerical exact solutions of the evolution equations, as is the case in the popular ``Markovian MC for backward evolution''. Our aim is to find at least one solution of this problem that would function in practice. Finding such a solution seems to be definitely within the reach of the currently available computer CPUs and the sophistication of the modern MC techniques. We describe in this work the first example of an efficient solution of this kind. Its numerical implementat...
Dynamically constrained ensemble perturbations – application to tides on the West Florida Shelf
Directory of Open Access Journals (Sweden)
F. Lenartz
2009-07-01
Full Text Available A method is presented to create an ensemble of perturbations that satisfies linear dynamical constraints. A cost function is formulated defining the probability of each perturbation. It is shown that the perturbations created with this approach take the land-sea mask into account in a similar way as variational analysis techniques. The impact of the land-sea mask is illustrated with an idealized configuration of a barrier island. Perturbations with a spatially variable correlation length can be also created by this approach. The method is applied to a realistic configuration of the West Florida Shelf to create perturbations of the M2 tidal parameters for elevation and depth-averaged currents. The perturbations are weakly constrained to satisfy the linear shallow-water equations. Despite that the constraint is derived from an idealized assumption, it is shown that this approach is applicable to a non-linear and baroclinic model. The amplitude of spurious transient motions created by constrained perturbations of initial and boundary conditions is significantly lower compared to perturbing the variables independently or to using only the momentum equation to compute the velocity perturbations from the elevation.
Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries.
Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn
2015-12-22
Evaluation of the tensile/compression limit of a solid under conditions of tension or compression is often performed to provide mechanical properties that are critical for structure design and assessment. Algara-Siller et al. recently demonstrated that when water is constrained between two sheets of graphene, it becomes a two-dimensional (2D) liquid and then is turned into an intriguing monolayer solid with a square pattern under high lateral pressure [ Nature , 2015 , 519 , 443 - 445 ]. From a mechanics point of view, this liquid-to-solid transformation characterizes the compression limit (or metastability limit) of the 2D monolayer water. Here, we perform a simulation study of the compression limit of 2D monolayer, bilayer, and trilayer water constrained in graphene nanocapillaries. At 300 K, a myriad of 2D ice polymorphs (both crystalline-like and amorphous) are formed from the liquid water at different widths of the nanocapillaries, ranging from 6.0 to11.6 Å. For monolayer water, the compression limit is typically a few hundred MPa, while for the bilayer and trilayer water, the compression limit is 1.5 GPa or higher, reflecting the ultrahigh van der Waals pressure within the graphene nanocapillaries. The compression-limit (phase) diagram is obtained at the nanocapillary width versus pressure (h-P) plane, based on the comprehensive molecular dynamics simulations at numerous thermodynamic states as well as on the Clapeyron equation. Interestingly, the compression-limit curves exhibit multiple local minima.
A distance constrained synaptic plasticity model of C. elegans neuronal network
Badhwar, Rahul; Bagler, Ganesh
2017-03-01
Brain research has been driven by enquiry for principles of brain structure organization and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome available till date, presents an incredible opportunity to learn basic governing principles that drive structure and function of its neuronal architecture. Despite its apparently simple nervous system, C. elegans is known to possess complex functions. The nervous system forms an important underlying framework which specifies phenotypic features associated to sensation, movement, conditioning and memory. In this study, with the help of graph theoretical models, we investigated the C. elegans neuronal network to identify network features that are critical for its control. The 'driver neurons' are associated with important biological functions such as reproduction, signalling processes and anatomical structural development. We created 1D and 2D network models of C. elegans neuronal system to probe the role of features that confer controllability and small world nature. The simple 1D ring model is critically poised for the number of feed forward motifs, neuronal clustering and characteristic path-length in response to synaptic rewiring, indicating optimal rewiring. Using empirically observed distance constraint in the neuronal network as a guiding principle, we created a distance constrained synaptic plasticity model that simultaneously explains small world nature, saturation of feed forward motifs as well as observed number of driver neurons. The distance constrained model suggests optimum long distance synaptic connections as a key feature specifying control of the network.
Directory of Open Access Journals (Sweden)
Petr Georgievich Nikitenko
2014-05-01
Full Text Available The article is devoted to nano- and femtotechnology as the basis for sustainable noosphere development of the global socio-economic mega system “nature–man–society” in its relation with the Universe (cosmos in Belarus, Kazakhstan, Russia, Ukraine and other CIS nations. Such factors as the formation of a new (noospheric political and economic outlook and the changes in scientific and technological structure of economy are gaining paramount importance under the action of the law of time and the adequate need to change the logic of socio-economic behavior of the population of planet Earth. Singular technology can become a strategic priority in finding practical solutions to these issues. When creating new productive forces and relations of production, these technologies act as a synergetic and bifurcation (unpredictable interaction of the three system technologies: artificial intelligence, molecular nanotechnology and molecular biotechnology. As soon as man grasps the essence of singular technology, it will be possible to create a new structure of matter at the nano- and femtotechnology levels, and to exercise control over this process. The new structure of matter is the basis for the creation of new productive forces and relations of production in the noosphere economy. Technological singularity originated in the mapping of the human genome, creation of a self-replicating organism, and a self-replicating machine. The nearest strategic objective (2020–2030s of singular technology is to create an artificial brain – a “digital man” on the basis of nano-and femtotechnology. This research area and practice will open the way to new forms of energy, productive forces, industrial relations and socio-economic noosphere systems in general. The wide application of singular technology in the economy will contribute to the conservation and civilizational development of the planetary megasystem “cosmos–nature–man–society”
21 CFR 888.3200 - Finger joint metal/metal constrained uncemented prosthesis.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Finger joint metal/metal constrained uncemented... metal/metal constrained uncemented prosthesis. (a) Identification. A finger joint metal/metal... Administration on or before December 26, 1996 for any finger joint metal/metal constrained uncemented prosthesis...
21 CFR 888.3220 - Finger joint metal/polymer constrained cemented prosthesis.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Finger joint metal/polymer constrained cemented... metal/polymer constrained cemented prosthesis. (a) Identification. A finger joint metal/polymer..., 1996 for any finger joint metal/polymer constrained cemented prosthesis that was in commercial...
Wrist kinematic coupling and performance during functional tasks: effects of constrained motion.
Garg, Rohit; Kraszewski, Andrew P; Stoecklein, Holbrook H; Syrkin, Grisha; Hillstrom, Howard J; Backus, Sherry; Lenhoff, Mark L; Wolff, Aviva L; Crisco, Joseph J; Wolfe, Scott W
2014-04-01
To quantify the coupled motion of the wrist during selected functional tasks and to determine the effects of constraining this coupled motion using a radial-ulnar deviation blocking splint on performance of these tasks. Ten healthy, right-handed men performed 15 trials during selected functional tasks with and without a splint, blocking radial and ulnar deviation. The following tasks were performed: dart throwing, hammering, basketball free-throw, overhand baseball and football throwing, clubbing, and pouring. Kinematic coupling parameters (coupling, kinematic path length, flexion-extension range of motion, radial-ulnar deviation range of motion, flexion-extension offset, and radial-ulnar deviation offset) and performance were determined for each functional task. A generalized estimation equation model was used to determine whether each kinematic coupling parameter was significantly different across tasks. A repeated-measures generalized estimation equation model was used to test for differences in performance and kinematic coupling parameters between the free and splinted conditions. Wrist motion exhibited linear coupling between flexion-extension and radial-ulnar deviation, demonstrated by R(2) values from 0.70 to 0.99. Average wrist coupling and kinematic path lengths were significantly different among tasks. Coupling means and kinematic path lengths were different between free and splinted conditions across all tasks other than pouring. Performance was different between wrist conditions for dart throwing, hammering, basketball shooting, and pouring. Wrist kinematic coupling parameters are task specific in healthy individuals. Functional performance is decreased when wrist coupling is constrained by an external splint. Surgical procedures that restrict wrist coupling may have a detrimental effect on functional performance as defined in the study. Patients may benefit from surgical reconstructive procedures and wrist rehabilitation protocols designed to restore
On the constrained classical capacity of infinite-dimensional covariant quantum channels
Holevo, A. S.
2016-01-01
The additivity of the minimal output entropy and that of the χ-capacity are known to be equivalent for finite-dimensional irreducibly covariant quantum channels. In this paper, we formulate a list of conditions allowing to establish similar equivalence for infinite-dimensional covariant channels with constrained input. This is then applied to bosonic Gaussian channels with quadratic input constraint to extend the classical capacity results of the recent paper [Giovannetti et al., Commun. Math. Phys. 334(3), 1553-1571 (2015)] to the case where the complex structures associated with the channel and with the constraint operator need not commute. In particular, this implies a multimode generalization of the "threshold condition," obtained for single mode in Schäfer et al. [Phys. Rev. Lett. 111, 030503 (2013)], and the proof of the fact that under this condition the classical "Gaussian capacity" resulting from optimization over only Gaussian inputs is equal to the full classical capacity. Complex structures correspond to different squeezings, each with its own normal modes, vacuum and coherent states, and the gauge. Thus our results apply, e.g., to multimode channels with a squeezed Gaussian noise under the standard input energy constraint, provided the squeezing is not too large as to violate the generalized threshold condition. We also investigate the restrictiveness of the gauge-covariance condition for single- and multimode bosonic Gaussian channels.
On the constrained classical capacity of infinite-dimensional covariant quantum channels
Energy Technology Data Exchange (ETDEWEB)
Holevo, A. S. [Steklov Mathematical Institute, 119991 Moscow (Russian Federation)
2016-01-15
The additivity of the minimal output entropy and that of the χ-capacity are known to be equivalent for finite-dimensional irreducibly covariant quantum channels. In this paper, we formulate a list of conditions allowing to establish similar equivalence for infinite-dimensional covariant channels with constrained input. This is then applied to bosonic Gaussian channels with quadratic input constraint to extend the classical capacity results of the recent paper [Giovannetti et al., Commun. Math. Phys. 334(3), 1553-1571 (2015)] to the case where the complex structures associated with the channel and with the constraint operator need not commute. In particular, this implies a multimode generalization of the “threshold condition,” obtained for single mode in Schäfer et al. [Phys. Rev. Lett. 111, 030503 (2013)], and the proof of the fact that under this condition the classical “Gaussian capacity” resulting from optimization over only Gaussian inputs is equal to the full classical capacity. Complex structures correspond to different squeezings, each with its own normal modes, vacuum and coherent states, and the gauge. Thus our results apply, e.g., to multimode channels with a squeezed Gaussian noise under the standard input energy constraint, provided the squeezing is not too large as to violate the generalized threshold condition. We also investigate the restrictiveness of the gauge-covariance condition for single- and multimode bosonic Gaussian channels.
Constrained dynamics approach for motion synchronization and consensus
Bhatia, Divya
In this research we propose to develop constrained dynamical systems based stable attitude synchronization, consensus and tracking (SCT) control laws for the formation of rigid bodies. The generalized constrained dynamics Equations of Motion (EOM) are developed utilizing constraint potential energy functions that enforce communication constraints. Euler-Lagrange equations are employed to develop the non-linear constrained dynamics of multiple vehicle systems. The constraint potential energy is synthesized based on a graph theoretic formulation of the vehicle-vehicle communication. Constraint stabilization is achieved via Baumgarte's method. The performance of these constrained dynamics based formations is evaluated for bounded control authority. The above method has been applied to various cases and the results have been obtained using MATLAB simulations showing stability, synchronization, consensus and tracking of formations. The first case corresponds to an N-pendulum formation without external disturbances, in which the springs and the dampers connected between the pendulums act as the communication constraints. The damper helps in stabilizing the system by damping the motion whereas the spring acts as a communication link relaying relative position information between two connected pendulums. Lyapunov stabilization (energy based stabilization) technique is employed to depict the attitude stabilization and boundedness. Various scenarios involving different values of springs and dampers are simulated and studied. Motivated by the first case study, we study the formation of N 2-link robotic manipulators. The governing EOM for this system is derived using Euler-Lagrange equations. A generalized set of communication constraints are developed for this system using graph theory. The constraints are stabilized using Baumgarte's techniques. The attitude SCT is established for this system and the results are shown for the special case of three 2-link robotic manipulators
Radiogenic isotopes of arc lavas constrain uplift of the Andes
Scott, Erin; Allen, Mark B.; Macpherson, Colin; McCaffrey, Ken; Davidson, Jon; Saville, Christopher
2017-04-01
Orogenic plateaux are an ultimate expression of continental tectonics, but the timings and mechanisms of their formation are far from understood. The elevation history of the Andes is of particular importance for climatic reconstructions, as they pose the only barrier to atmospheric circulation in the Southern Hemisphere. Many varied techniques have been utilized over the last two decades to constrain Andean Plateau (AP) surface uplift. Two conflicting schools of thought are prominent: (1) recent, rapid rise since 10-6 Ma (Late Miocene), and (2) slow, continued uplift from 40 Ma. We propose a new, independent, approach to constrain AP surface uplift through time. By comparing isotopic compositions of Andean Quaternary arc lavas to present day crustal thickness and topography, we show that Sr and Nd isotopes are effective discriminants for the modern extent of the AP. As previously described, these isotopic systems are sensitive to crustal contamination, which in turn relates to crustal thickness, and, via isostasy, to regional surface elevation. We apply this relationship to a new compilation of published, age corrected, isotopic compositions of arc lavas, to constrain the surface uplift history of the Andes from the Jurassic to present day. Our results are consistent with significant AP surface uplift beginning in the Mid to Late Paleogene. We show that by 23 Ma, the AP was established at close to its modern elevations between at least 16-28 deg. S, thereby predating models for Late Miocene surface uplift. Between 23-10 Ma, surface uplift propagated south of 28 deg. S by a further 400 km. Our model has implications for understanding magma plumbing systems in regions of thick, wide crust, especially other orogenic plateaux.
Constrained motion control on a hemispherical surface: path planning.
Berman, Sigal; Liebermann, Dario G; McIntyre, Joseph
2014-03-01
Surface-constrained motion, i.e., motion constraint by a rigid surface, is commonly found in daily activities. The current work investigates the choice of hand paths constrained to a concave hemispherical surface. To gain insight regarding paths and their relationship with task dynamics, we simulated various control policies. The simulations demonstrated that following a geodesic path (the shortest path between 2 points on a sphere) is advantageous not only in terms of path length but also in terms of motor planning and sensitivity to motor command errors. These stem from the fact that the applied forces lie in a single plane (that of the geodesic path). To test whether human subjects indeed follow the geodesic, and to see how such motion compares to other paths, we recorded movements in a virtual haptic-visual environment from 11 healthy subjects. The task comprised point-to-point motion between targets at two elevations (30° and 60°). Three typical choices of paths were observed from a frontal plane projection of the paths: circular arcs, straight lines, and arcs close to the geodesic path for each elevation. Based on the measured hand paths, we applied k-means blind separation to divide the subjects into three groups and compared performance indicators. The analysis confirmed that subjects who followed paths closest to the geodesic produced faster and smoother movements compared with the others. The "better" performance reflects the dynamical advantages of following the geodesic path and may also reflect invariant features of control policies used to produce such a surface-constrained motion.
Constraining axion dark matter with Big Bang Nucleosynthesis
Directory of Open Access Journals (Sweden)
Kfir Blum
2014-10-01
Full Text Available We show that Big Bang Nucleosynthesis (BBN significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of He4 during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN.
Constrained optimal duct shapes for conjugate laminar forced convection
Energy Technology Data Exchange (ETDEWEB)
Fisher, T.S.; Torrance, K.E. [Cornell Univ., Sibley School of Mechanical and Aerospace Engineering, Ithaca, NY (United States)
2000-01-01
The complex variable boundary element method (CVBEM) is used to analyse conjugate heat transfer in solids with cooling passages of general, convex cross section. The method is well-suited to duct cross sections with high curvature and high aspect ratios because the whole-domain boundary integrals are path independent and analytic. The effects of channel boundary curvature on overall heat transfer are quantified for the first time. Shape-constrained optimal solutions involving fixed pressure drop and fixed pump work are presented. Increased channel boundary curvature is shown to decrease the optimal distance between parallel channels by increasing fin efficiency. (Author)
Free and constrained expansion of fire ant aggregations
Fernandez-Nieves, Alberto; Anderson, Caleb
We revisit the classical free and constrained expansion of ideal gases with fire ant aggregations. We use rectangular parallel plates to confine fire ants to two-dimensions and watch how these expand when the plates are horizontal or when these are vertical. In the first case, the ants expand in a rather disorganized fashion, while in the second case, when there is work involved, the expansion is rather organized. The behavior is reminiscent of what is expected from the so called reversible process theorems of classical thermodynamics despite the ant aggregation is intrinsically out of equilibrium. This talk will focus on these results and in related observations in the same experimental setting.
Frequency Constrained ShiftCP Modeling of Neuroimaging Data
DEFF Research Database (Denmark)
Mørup, Morten; Hansen, Lars Kai; Madsen, Kristoffer H.
2011-01-01
The shift invariant multi-linear model based on the CandeComp/PARAFAC (CP) model denoted ShiftCP has proven useful for the modeling of latency changes in trial based neuroimaging data[17]. In order to facilitate component interpretation we presently extend the shiftCP model such that the extracted...... components can be constrained to pertain to predefined frequency ranges such as alpha, beta and gamma activity. To infer the number of components in the model we propose to apply automatic relevance determination by imposing priors that define the range of variation of each component of the shiftCP model...
On the Integrated Job Scheduling and Constrained Network Routing Problem
DEFF Research Database (Denmark)
Gamst, Mette
This paper examines the NP-hard problem of scheduling a number of jobs on a finite set of machines such that the overall profit of executed jobs is maximized. Each job demands a number of resources, which must be sent to the executing machine via constrained paths. Furthermore, two resource demand...... transmissions cannot use the same edge in the same time period. An exact solution approach based on Dantzig-Wolfe decomposition is proposed along with several heuristics. The methods are computationally evaluated on test instances arising from telecommunications with up to 500 jobs and 500 machines. Results...
Constrained Optimization and Optimal Control for Partial Differential Equations
Leugering, Günter; Griewank, Andreas
2012-01-01
This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The cont
Developing e-course Robust Constrained PID Control
Directory of Open Access Journals (Sweden)
Peter Ťapák
2011-04-01
Full Text Available This paper informs about the latest development of the blended learning course Robust Constrained PID Control and describes in details problems faced in evaluating independent work of students with real time experiments that represent the main element of the applied “learning by doing” and “learning by experimenting” approach. Basic features of the developed system that evaluates consistency of student’s results with the measured experimental data and possibilities of further system expansion to automation of offering to student constructive feedback are discussed. Simultaneously, by comparing all data of the Matlab workspace the developed system serves although as an excellent anti-plagiarism tool.
Computational Data Modeling for Network-Constrained Moving Objects
DEFF Research Database (Denmark)
Jensen, Christian Søndergaard; Speicys, L.; Kligys, A.
2003-01-01
Advances in wireless communications, positioning technology, and other hardware technologies combine to enable a range of applications that use a mobile users geo-spatial data to deliver online, location-enhanced services, often referred to as location-based services. Assuming that the service...... users are constrained to a transportation network, this paper develops data structures that model road networks, the mobile users, and stationary objects of interest. The proposed framework encompasses two supplementary road network representations, namely a two-dimensional representation and a graph...
Constrained liners for recurrent dislocations in total hip arthroplasty
DEFF Research Database (Denmark)
Knudsen, R; Ovesen, O; Kjaersgaard-Andersen, P
2009-01-01
This study reports the results and complications from treating recurrent hip dislocations with a constrained liner (CL) after total hip arthroplasty (THA). Forty patients who had a CL inserted as a secondary prophylactic treatment were retrospectively reviewed after a median observation period...... of 27 months (range 7-77 months). During the observation period five patients had to be revised: one for deep infection and four on account of re-dislocations. Our results indicate that patients with recurrent THA dislocations can be treated with a CL and has a satisfactory low complication rate...... and a relatively low risk of re-dislocation....
Multiple utility constrained multi-objective programs using Bayesian theory
Abbasian, Pooneh; Mahdavi-Amiri, Nezam; Fazlollahtabar, Hamed
2017-06-01
A utility function is an important tool for representing a DM's preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utility functions. We induce the probability of the utilities for each objective function using Bayesian theory. Illustrative examples considering dependence and independence of variables are worked through to demonstrate the usefulness of the proposed model.
Toward Cognitively Constrained Models of Language Processing: A Review
Directory of Open Access Journals (Sweden)
Margreet Vogelzang
2017-09-01
Full Text Available Language processing is not an isolated capacity, but is embedded in other aspects of our cognition. However, it is still largely unexplored to what extent and how language processing interacts with general cognitive resources. This question can be investigated with cognitively constrained computational models, which simulate the cognitive processes involved in language processing. The theoretical claims implemented in cognitive models interact with general architectural constraints such as memory limitations. This way, it generates new predictions that can be tested in experiments, thus generating new data that can give rise to new theoretical insights. This theory-model-experiment cycle is a promising method for investigating aspects of language processing that are difficult to investigate with more traditional experimental techniques. This review specifically examines the language processing models of Lewis and Vasishth (2005, Reitter et al. (2011, and Van Rij et al. (2010, all implemented in the cognitive architecture Adaptive Control of Thought—Rational (Anderson et al., 2004. These models are all limited by the assumptions about cognitive capacities provided by the cognitive architecture, but use different linguistic approaches. Because of this, their comparison provides insight into the extent to which assumptions about general cognitive resources influence concretely implemented models of linguistic competence. For example, the sheer speed and accuracy of human language processing is a current challenge in the field of cognitive modeling, as it does not seem to adhere to the same memory and processing capacities that have been found in other cognitive processes. Architecture-based cognitive models of language processing may be able to make explicit which language-specific resources are needed to acquire and process natural language. The review sheds light on cognitively constrained models of language processing from two angles: we
Stress-constrained topology optimization for compliant mechanism design
DEFF Research Database (Denmark)
de Leon, Daniel M.; Alexandersen, Joe; Jun, Jun S.
2015-01-01
This article presents an application of stress-constrained topology optimization to compliant mechanism design. An output displacement maximization formulation is used, together with the SIMP approach and a projection method to ensure convergence to nearly discrete designs. The maximum stress...... is approximated using a normalized version of the commonly-used p-norm of the effective von Mises stresses. The usual problems associated with topology optimization for compliant mechanism design: one-node and/or intermediate density hinges are alleviated by the stress constraint. However, it is also shown...
Constraining Light-Quark Yukawa Couplings from Higgs Distributions
Bishara, Fady
2017-03-20
We propose a novel strategy to constrain the bottom and charm Yukawa couplings by exploiting LHC measurements of transverse momentum distributions in Higgs production. Our method does not rely on the reconstruction of exclusive final states or heavy-flavour tagging. Compared to other proposals it leads to an enhanced sensitivity to the Yukawa couplings due to distortions of the differential Higgs spectra from emissions which either probe quark loops or are associated to quark-initiated production. We derive constraints using data from LHC Run I, and we explore the prospects of our method at future LHC runs. Finally, we comment on the possibility of bounding the strange Yukawa coupling.
Balance of payments constrained growth models: history and overview
Directory of Open Access Journals (Sweden)
Anthony P. Thirlwall
2011-12-01
Full Text Available Thirlwall’s 1979 balance of payments constrained growth model predicts that a country’s long run growth of GDP can be approximated by the ratio of the growth of real exports to the income elasticity of demand for imports assuming negligible effects from real exchange rate movements. The paper surveys developments of the model since then, allowing for capital flows, interest payments on debt, terms of trade movements, and disaggregation of the model by commodities and trading partners. Various tests of the model are discussed, and an extensive list of papers that have examined the model is presented.
Steepest-Ascent Constrained Simultaneous Perturbation for Multiobjective Optimization
DEFF Research Database (Denmark)
McClary, Dan; Syrotiuk, Violet; Kulahci, Murat
2011-01-01
The simultaneous optimization of multiple responses in a dynamic system is challenging. When a response has a known gradient, it is often easily improved along the path of steepest ascent. On the contrary, a stochastic approximation technique may be used when the gradient is unknown or costly...... that leverages information about the known gradient to constrain the perturbations used to approximate the others. We apply SP(SA)(2) to the cross-layer optimization of throughput, packet loss, and end-to-end delay in a mobile ad hoc network (MANET), a self-organizing wireless network. The results show that SP...
Simulation of Constrained Musculoskeletal Systems in Task Space.
Stanev, Dimitar; Moustakas, Konstantinos
2017-10-18
This work proposes an operational task space formalization of constrained musculoskeletal systems, motivated by its promising results in the field of robotics. The change of representation requires different algorithms for solving the inverse and forward dynamics simulation in the task space domain. We propose an extension to the Direct Marker Control and an adaptation of the Computed Muscle Control algorithms for solving the inverse kinematics and muscle redundancy problems respectively. Experimental evaluation demonstrates that this framework is not only successful in dealing with the inverse dynamics problem, but also provides an intuitive way of studying and designing simulations, facilitating assessment prior to any experimental data collection. The incorporation of constraints in the derivation unveils an important extension of this framework towards addressing systems that use absolute coordinates and topologies that contain closed kinematic chains. Task space projection reveals a more intuitive encoding of the motion planning problem, allows for better correspondence between observable and estimated variables, provides the means to effectively study the role of kinematic and dynamic redundancy and, most importantly, offers an abstract point of view and control, which can be advantageous towards further integration with high level models of the precommand level. Task-based approaches could be adopted in the design of simulation related to the study of constrained musculoskeletal systems. This work proposes an operational task space formalization of constrained musculoskeletal systems, motivated by its promising results in the field of robotics. The change of representation requires different algorithms for solving the inverse and forward dynamics simulation in the task space domain. We propose an extension to the Direct Marker Control and an adaptation of the Computed Muscle Control algorithms for solving the inverse kinematics and muscle redundancy problems
McDonough, Kevin K.
these sets for aircraft longitudinal and lateral aircraft dynamics are reported, and it is shown that these sets can be larger in size compared to the more commonly used safe sets. An approach to constrained maneuver planning based on chaining recoverable sets or integral safe sets is described and illustrated with a simulation example. To facilitate the application of this maneuver planning approach in aircraft loss of control (LOC) situations when the model is only identified at the current trim condition but when these sets need to be predicted at other flight conditions, the dependence trends of the safe and recoverable sets on aircraft flight conditions are characterized. The scaling procedure to estimate subsets of safe and recoverable sets at one trim condition based on their knowledge at another trim condition is defined. Finally, two control schemes that exploit integral safe sets are proposed. The first scheme, referred to as the controller state governor (CSG), resets the controller state (typically an integrator) to enforce the constraints and enlarge the set of plant states that can be recovered without constraint violation. The second scheme, referred to as the controller state and reference governor (CSRG), combines the controller state governor with the reference governor control architecture and provides the capability of simultaneously modifying the reference command and the controller state to enforce the constraints. Theoretical results that characterize the response properties of both schemes are presented. Examples are reported that illustrate the operation of these schemes on aircraft flight dynamics models and gas turbine engine dynamic models.
Autonomous Navigation with Constrained Consistency for C-Ranger
Directory of Open Access Journals (Sweden)
Shujing Zhang
2014-06-01
Full Text Available Autonomous underwater vehicles (AUVs have become the most widely used tools for undertaking complex exploration tasks in marine environments. Their synthetic ability to carry out localization autonomously and build an environmental map concurrently, in other words, simultaneous localization and mapping (SLAM, are considered to be pivotal requirements for AUVs to have truly autonomous navigation. However, the consistency problem of the SLAM system has been greatly ignored during the past decades. In this paper, a consistency constrained extended Kalman filter (EKF SLAM algorithm, applying the idea of local consistency, is proposed and applied to the autonomous navigation of the C-Ranger AUV, which is developed as our experimental platform. The concept of local consistency (LC is introduced after an explicit theoretical derivation of the EKF-SLAM system. Then, we present a locally consistency-constrained EKF-SLAM design, LC-EKF, in which the landmark estimates used for linearization are fixed at the beginning of each local time period, rather than evaluated at the latest landmark estimates. Finally, our proposed LC-EKF algorithm is experimentally verified, both in simulations and sea trials. The experimental results show that the LC-EKF performs well with regard to consistency, accuracy and computational efficiency.
Lilith: a tool for constraining new physics from Higgs measurements
Energy Technology Data Exchange (ETDEWEB)
Bernon, Jeremy [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Dumont, Beranger [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Institute for Basic Science (IBS), Center for Theoretical Physics of the Universe, Daejeon (Korea, Republic of)
2015-09-15
The properties of the observed Higgs boson with mass around 125 GeV can be affected in a variety of ways by new physics beyond the Standard Model (SM). The wealth of experimental results, targeting the different combinations for the production and decay of a Higgs boson, makes it a non-trivial task to assess the compatibility of a non-SM-like Higgs boson with all available results. In this paper we present Lilith, a new public tool for constraining new physics from signal strength measurements performed at the LHC and the Tevatron. Lilith is a Python library that can also be used in C and C++/ROOT programs. The Higgs likelihood is based on experimental results stored in an easily extensible XML database, and is evaluated from the user input, given in XML format in terms of reduced couplings or signal strengths.The results of Lilith can be used to constrain a wide class of new physics scenarios. (orig.)
Hummingbird: Ultra-Lightweight Cryptography for Resource-Constrained Devices
Engels, Daniel; Fan, Xinxin; Gong, Guang; Hu, Honggang; Smith, Eric M.
Due to the tight cost and constrained resources of high-volume consumer devices such as RFID tags, smart cards and wireless sensor nodes, it is desirable to employ lightweight and specialized cryptographic primitives for many security applications. Motivated by the design of the well-known Enigma machine, we present a novel ultra-lightweight cryptographic algorithm, referred to as Hummingbird, for resource-constrained devices in this paper. Hummingbird can provide the designed security with small block size and is resistant to the most common attacks such as linear and differential cryptanalysis. Furthermore, we also present efficient software implementation of Hummingbird on the 8-bit microcontroller ATmega128L from Atmel and the 16-bit microcontroller MSP430 from Texas Instruments, respectively. Our experimental results show that after a system initialization phase Hummingbird can achieve up to 147 and 4.7 times faster throughput for a size-optimized and a speed-optimized implementations, respectively, when compared to the state-of-the-art ultra-lightweight block cipher PRESENT[10] on the similar platforms.
Maximum Constrained Directivity of Oversteered End-Fire Sensor Arrays
Directory of Open Access Journals (Sweden)
Andrea Trucco
2015-06-01
Full Text Available For linear arrays with fixed steering and an inter-element spacing smaller than one half of the wavelength, end-fire steering of a data-independent beamformer offers better directivity than broadside steering. The introduction of a lower bound on the white noise gain ensures the necessary robustness against random array errors and sensor mismatches. However, the optimum broadside performance can be obtained using a simple processing architecture, whereas the optimum end-fire performance requires a more complicated system (because complex weight coefficients are needed. In this paper, we reconsider the oversteering technique as a possible way to simplify the processing architecture of equally spaced end-fire arrays. We propose a method for computing the amount of oversteering and the related real-valued weight vector that allows the constrained directivity to be maximized for a given inter-element spacing. Moreover, we verify that the maximized oversteering performance is very close to the optimum end-fire performance. We conclude that optimized oversteering is a viable method for designing end-fire arrays that have better constrained directivity than broadside arrays but with a similar implementation complexity. A numerical simulation is used to perform a statistical analysis, which confirms that the maximized oversteering performance is robust against sensor mismatches.
Constraining Factors in Hungarian Carp Farming: An Econometric Perspective
Directory of Open Access Journals (Sweden)
Gergő Gyalog
2017-11-01
Full Text Available Although carp farming had a key role in the Blue Revolution at a global level, European carp aquaculture has stagnated over the past 25 years without achieving any productivity gains. The objective of this study was to identify the factors and mechanisms constraining production and productivity growth in pond-based carp farming in Hungary, as the country is a good representative of the EU pond-based farming sector. By using data from 44 carp farms, different specifications of the Cobb-Douglas production function were parameterized to investigate the determinants of yields and to assess the extent of economies of scale. Descriptive statistics show that large differences exist in productivity between individual farms, meaning that it is hard to implement technical standards and to ensure repeatability in extensive carp farming technology. Econometric analysis demonstrates that economies of scale do not prevail in pond-based farming in Hungary, so a concentration of farms would not stimulate a growth in carp farming. This may explain the stagnation of carp aquaculture, as the only European aquaculture segments which can grow are those that can exploit economies of scale. Further analysis demonstrates that labour is an important factor of production, and a decreasing workforce may constrain the intensification process of production. On the other hand, mechanisation did not prove to be a significant contributing factor to yields, indicating that large investment in equipment has a limited role in carp farming.
Multiplicative algorithms for constrained non-negative matrix factorization
Peng, Chengbin
2012-12-01
Non-negative matrix factorization (NMF) provides the advantage of parts-based data representation through additive only combinations. It has been widely adopted in areas like item recommending, text mining, data clustering, speech denoising, etc. In this paper, we provide an algorithm that allows the factorization to have linear or approximatly linear constraints with respect to each factor. We prove that if the constraint function is linear, algorithms within our multiplicative framework will converge. This theory supports a large variety of equality and inequality constraints, and can facilitate application of NMF to a much larger domain. Taking the recommender system as an example, we demonstrate how a specialized weighted and constrained NMF algorithm can be developed to fit exactly for the problem, and the tests justify that our constraints improve the performance for both weighted and unweighted NMF algorithms under several different metrics. In particular, on the Movielens data with 94% of items, the Constrained NMF improves recall rate 3% compared to SVD50 and 45% compared to SVD150, which were reported as the best two in the top-N metric. © 2012 IEEE.
Mixed-Integer Constrained Optimization Based on Memetic Algorithm
Directory of Open Access Journals (Sweden)
Y. C. Lin
2013-03-01
Full Text Available Evolutionary algorithms (EAs are population-based global search methods. They have been successfully applied tomany complex optimization problems. However, EAs are frequently incapable of finding a convergence solution indefault of local search mechanisms. Memetic Algorithms (MAs are hybrid EAs that combine genetic operators withlocal search methods. With global exploration and local exploitation in search space, MAs are capable of obtainingmore high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE, as an EA-basedsearch algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, amemetic algorithm based on MIHDE is developed for solving mixed-integer optimization problems. However, most ofreal-world mixed-integer optimization problems frequently consist of equality and/or inequality constraints. In order toeffectively handle constraints, an evolutionary Lagrange method based on memetic algorithm is developed to solvethe mixed-integer constrained optimization problems. The proposed algorithm is implemented and tested on twobenchmark mixed-integer constrained optimization problems. Experimental results show that the proposed algorithmcan find better optimal solutions compared with some other search algorithms. Therefore, it implies that the proposedmemetic algorithm is a good approach to mixed-integer optimization problems.
Mixed-Integer Constrained Optimization Based on Memetic Algorithm
Directory of Open Access Journals (Sweden)
Y.C. Lin
2013-04-01
Full Text Available Evolutionary algorithms (EAs are population-based global search methods. They have been successfully applied to many complex optimization problems. However, EAs are frequently incapable of finding a convergence solution in default of local search mechanisms. Memetic Algorithms (MAs are hybrid EAs that combine genetic operators with local search methods. With global exploration and local exploitation in search space, MAs are capable of obtaining more high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE, as an EA-based search algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, a memetic algorithm based on MIHDE is developed for solving mixed-integer optimization problems. However, most of real-world mixed-integer optimization problems frequently consist of equality and/or inequality constraints. In order to effectively handle constraints, an evolutionary Lagrange method based on memetic algorithm is developed to solve the mixed-integer constrained optimization problems. The proposed algorithm is implemented and tested on two benchmark mixed-integer constrained optimization problems. Experimental results show that the proposed algorithm can find better optimal solutions compared with some other search algorithms. Therefore, it implies that the proposed memetic algorithm is a good approach to mixed-integer optimization problems.
Constraining cosmological ultralarge scale structure using numerical relativity
Braden, Jonathan; Johnson, Matthew C.; Peiris, Hiranya V.; Aguirre, Anthony
2017-07-01
Cosmic inflation, a period of accelerated expansion in the early universe, can give rise to large amplitude ultralarge scale inhomogeneities on distance scales comparable to or larger than the observable universe. The cosmic microwave background (CMB) anisotropy on the largest angular scales is sensitive to such inhomogeneities and can be used to constrain the presence of ultralarge scale structure (ULSS). We numerically evolve nonlinear inhomogeneities present at the beginning of inflation in full general relativity to assess the CMB quadrupole constraint on the amplitude of the initial fluctuations and the size of the observable universe relative to a length scale characterizing the ULSS. To obtain a statistically meaningful ensemble of simulations, we adopt a toy model in which inhomogeneities are injected along a preferred direction. We compute the likelihood function for the CMB quadrupole including both ULSS and the standard quantum fluctuations produced during inflation. We compute the posterior given the observed CMB quadrupole, finding that when including gravitational nonlinearities, ULSS curvature perturbations of order unity are allowed by the data, even on length scales not too much larger than the size of the observable universe. To demonstrate the robustness of our conclusions, we also explore a semianalytic model for the ULSS which reproduces our numerical results for the case of planar symmetry, and which can be extended to ULSS with a three-dimensional inhomogeneity structure. Our results illustrate the utility and importance of numerical relativity for constraining early universe cosmology.
Multiple Sclerosis Lesion Detection Using Constrained GMM and Curve Evolution
Directory of Open Access Journals (Sweden)
Oren Freifeld
2009-01-01
Full Text Available This paper focuses on the detection and segmentation of Multiple Sclerosis (MS lesions in magnetic resonance (MRI brain images. To capture the complex tissue spatial layout, a probabilistic model termed Constrained Gaussian Mixture Model (CGMM is proposed based on a mixture of multiple spatially oriented Gaussians per tissue. The intensity of a tissue is considered a global parameter and is constrained, by a parameter-tying scheme, to be the same value for the entire set of Gaussians that are related to the same tissue. MS lesions are identified as outlier Gaussian components and are grouped to form a new class in addition to the healthy tissue classes. A probability-based curve evolution technique is used to refine the delineation of lesion boundaries. The proposed CGMM-CE algorithm is used to segment 3D MRI brain images with an arbitrary number of channels. The CGMM-CE algorithm is automated and does not require an atlas for initialization or parameter learning. Experimental results on both standard brain MRI simulation data and real data indicate that the proposed method outperforms previously suggested approaches, especially for highly noisy data.
Chance constrained compromise mixed allocation in multivariate stratified sampling
Directory of Open Access Journals (Sweden)
Ummatul Fatima
2016-03-01
Full Text Available Consider a multivariate stratified population with strata and characteristics. Let the estimation of the population means be of interest. In such cases the traditional individual optimum allocations may differ widely from characteristic to characteristic and there will be no obvious compromise between them unless they are highly correlated. As a result there does not exist a single set of allocations that can be practically implemented on all characteristics. Assuming the characteristics independent many authors worked out allocations based on different compromise criterion such allocations are called compromise allocation. These allocations are optimum for all characteristics in some sense. Ahsan et al. (2005 introduced the concept of ‘Mixed allocation’ in univariate stratified sampling. Later on Varshney et al. (2011 extended it for multivariate case and called it a ‘Compromise Mixed Allocation’. Ahsan et al. (2013 worked on mixed allocation in stratified sampling by using the ‘Chance Constrained Programming Technique’, that allows the cost constraint to be violated by a specified small probability. This paper presents a more realistic approach to the compromise mixed allocation by formulating the problem as a Chance Constrained Nonlinear Programming Problem in which the per unit measurement costs in various strata are random variables. The application of this approach is exhibited through a numerical example assuming normal distributions of the random parameters.
Characterizing constraining forces in the alignment phase of orthodontic treatment.
Gibson, Christopher G; Lin, Feng-Chang; Phillips, Ceib; Edelman, Alex; Ko, Ching-Chang
2018-01-01
To describe the frictional forces (FF) that constrain wire sliding in the initial alignment phase of treatment using a new term, the "constraining force" (CF), and to hypothesize that CF is dependent on two factors: the hyperelastic behavior of archwires and the specific type of tooth geometric malalignment present. A laboratory device that simulates the four distinct malalignment types (in-out, rotation, tipping, and vertical step) was used to couple with an Instron testing apparatus. Incremental CF data for the four types of malalignment were recorded. Each type had five trials per increment of severity, from which the CF was averaged using 0.016-inch copper-nickel-titanium (CuNiTi) archwires. Two types of friction curves were obtained: a traditional step function response and a power regression response. For all malalignment types, increasing degrees of irregularity increased power regression responses and CF. A severity turning point, displayed as a sudden increase in CF, occurred for each malalignment. The rotation type of malalignment yielded the lowest CF, while the vertical step type resulted in the highest CF. The data infer a hypothesis that malrotation type having weak CF might act as a limiting factor in the alignment phase to unravel the neighboring teeth. Future investigations to compare clinical and bench data can help explain more fully the constraints impeding alignment resolution and the factors governing the ability to bring malaligned teeth into alignment.
Constraining annihilating dark matter by x-ray data
Chan, Man Ho
2017-09-01
In the past decade, gamma-ray observations and radio observations put strong constraints on the parameters of dark matter annihilation. In this article, we suggest another robust way to constrain the parameters of dark matter annihilation. We expect that the electrons and positrons produced from dark matter annihilation would scatter with the cosmic microwave background photons and boost the photon energy to ˜ keV order. Based on the x-ray data from the Draco dwarf galaxy, the new constraints for some of the annihilation channels are generally tighter than the constraints obtained from 6 years of Fermi Large Area Telescope (Fermi-LAT) gamma-ray observations of the Milky Way dwarf spheroidal satellite galaxies. The lower limits of dark matter mass annihilating via e+e-, μ+μ-, τ+τ-, gg, u\\bar{u} and b\\bar{b} channels are 40 GeV, 28 GeV, 30 GeV, 57 GeV, 58 GeV and 66 GeV respectively with the canonical thermal relic cross section. This method is particularly useful to constrain dark matter annihilating via e+e-, μ+μ-, gg, u\\bar{u} and b\\bar{b} channels.
Applying Atmospheric Measurements to Constrain Parameters of Terrestrial Source Models
Hyer, E. J.; Kasischke, E. S.; Allen, D. J.
2004-12-01
Quantitative inversions of atmospheric measurements have been widely applied to constrain atmospheric budgets of a range of trace gases. Experiments of this type have revealed persistent discrepancies between 'bottom-up' and 'top-down' estimates of source magnitudes. The most common atmospheric inversion uses the absolute magnitude as the sole parameter for each source, and returns the optimal value of that parameter. In order for atmospheric measurements to be useful for improving 'bottom-up' models of terrestrial sources, information about other properties of the sources must be extracted. As the density and quality of atmospheric trace gas measurements improve, examination of higher-order properties of trace gas sources should become possible. Our model of boreal forest fire emissions is parameterized to permit flexible examination of the key uncertainties in this source. Using output from this model together with the UM CTM, we examined the sensitivity of CO concentration measurements made by the MOPITT instrument to various uncertainties in the boreal source: geographic distribution of burned area, fire type (crown fires vs. surface fires), and fuel consumption in above-ground and ground-layer fuels. Our results indicate that carefully designed inversion experiments have the potential to help constrain not only the absolute magnitudes of terrestrial sources, but also the key uncertainties associated with 'bottom-up' estimates of those sources.
Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.
Sampangi, Raghav V; Sampalli, Srinivas
2015-09-15
Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.
Butterfly Encryption Scheme for Resource-Constrained Wireless Networks
Directory of Open Access Journals (Sweden)
Raghav V. Sampangi
2015-09-01
Full Text Available Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID and Wireless Body Area Networks (WBAN that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG, and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.
A Collective Neurodynamic Approach to Constrained Global Optimization.
Yan, Zheng; Fan, Jianchao; Wang, Jun
2017-05-01
Global optimization is a long-lasting research topic in the field of optimization, posting many challenging theoretic and computational issues. This paper presents a novel collective neurodynamic method for solving constrained global optimization problems. At first, a one-layer recurrent neural network (RNN) is presented for searching the Karush-Kuhn-Tucker points of the optimization problem under study. Next, a collective neuroydnamic optimization approach is developed by emulating the paradigm of brainstorming. Multiple RNNs are exploited cooperatively to search for the global optimal solutions in a framework of particle swarm optimization. Each RNN carries out a precise local search and converges to a candidate solution according to its own neurodynamics. The neuronal state of each neural network is repetitively reset by exchanging historical information of each individual network and the entire group. Wavelet mutation is performed to avoid prematurity, add diversity, and promote global convergence. It is proved in the framework of stochastic optimization that the proposed collective neurodynamic approach is capable of computing the global optimal solutions with probability one provided that a sufficiently large number of neural networks are utilized. The essence of the collective neurodynamic optimization approach lies in its potential to solve constrained global optimization problems in real time. The effectiveness and characteristics of the proposed approach are illustrated by using benchmark optimization problems.
Hybrid Biogeography Based Optimization for Constrained Numerical and Engineering Optimization
Directory of Open Access Journals (Sweden)
Zengqiang Mi
2015-01-01
Full Text Available Biogeography based optimization (BBO is a new competitive population-based algorithm inspired by biogeography. It simulates the migration of species in nature to share information. A new hybrid BBO (HBBO is presented in the paper for constrained optimization. By combining differential evolution (DE mutation operator with simulated binary crosser (SBX of genetic algorithms (GAs reasonably, a new mutation operator is proposed to generate promising solution instead of the random mutation in basic BBO. In addition, DE mutation is still integrated to update one half of population to further lead the evolution towards the global optimum and the chaotic search is introduced to improve the diversity of population. HBBO is tested on twelve benchmark functions and four engineering optimization problems. Experimental results demonstrate that HBBO is effective and efficient for constrained optimization and in contrast with other state-of-the-art evolutionary algorithms (EAs, the performance of HBBO is better, or at least comparable in terms of the quality of the final solutions and computational cost. Furthermore, the influence of the maximum mutation rate is also investigated.
Constrained low-rank gamut completion for robust illumination estimation
Zhou, Jianshen; Yuan, Jiazheng; Liu, Hongzhe
2017-02-01
Illumination estimation is an important component of color constancy and automatic white balancing. According to recent survey and evaluation work, the supervised methods with a learning phase are competitive for illumination estimation. However, the robustness and performance of any supervised algorithm suffer from an incomplete gamut in training image sets because of limited reflectance surfaces in a scene. In order to address this problem, we present a constrained low-rank gamut completion algorithm, which can replenish gamut from limited surfaces in an image, for robust illumination estimation. In the proposed algorithm, we first discuss why the gamut completion is actually a low-rank matrix completion problem. Then a constrained low-rank matrix completion framework is proposed by adding illumination similarities among the training images as an additional constraint. An optimization algorithm is also given out by extending the augmented Lagrange multipliers. Finally, the completed gamut based on the proposed algorithm is fed into the support vector regression (SVR)-based illumination estimation method to evaluate the effect of gamut completion. The experimental results on both synthetic and real-world image sets show that the proposed gamut completion model not only can effectively improve the performance of the original SVR method but is also robust to the surface insufficiency in training samples.
Tracking T and B cells from two-photon microscopy imaging using constrained SMC clusters.
Olivieri, D; Faro, J; Gomez-Conde, I; Tadokoro, C E
2011-09-16
This paper describes a novel software algorithm, called constrained Sequential Monte Carlo (SMC) clusters, for tracking a large collection of individual cells from intra-vital two-photon microscopy image sequences. We show how our method and software tool, implemented in python, is useful for quantifying the motility of T and B lymphocytes involved in an immune response vs lymphocytes under non immune conditions. We describe the theory behind our algorithm and briefly discuss the architecture of our software. Finally, we demonstrate both the functionality and utility of software by applying it to two practical examples from videos displaying lymphocyte motility in B cell zones (follicles) and T cell zones of lymph nodes. Copyright 2011 The Author(s). Published by Journal of Integrative Bioinformatics.
De Martino, Daniele
2017-12-01
In this work maximum entropy distributions in the space of steady states of metabolic networks are considered upon constraining the first and second moments of the growth rate. Coexistence of fast and slow phenotypes, with bimodal flux distributions, emerges upon considering control on the average growth (optimization) and its fluctuations (heterogeneity). This is applied to the carbon catabolic core of Escherichia coli where it quantifies the metabolic activity of slow growing phenotypes and it provides a quantitative map with metabolic fluxes, opening the possibility to detect coexistence from flux data. A preliminary analysis on data for E. coli cultures in standard conditions shows degeneracy for the inferred parameters that extend in the coexistence region.
Gravitational waves in dynamical spacetimes with matter content in the Fully Constrained Formulation
Cordero-Carrión, Isabel; Ibáñez, José María
2011-01-01
The Fully Constrained Formulation (FCF) of General Relativity is a novel framework introduced as an alternative to the hyperbolic formulations traditionally used in numerical relativity. The FCF equations form a hybrid elliptic-hyperbolic system of equations including explicitly the constraints. We present an implicit-explicit numerical algorithm to solve the hyperbolic part, whereas the elliptic sector shares the form and properties with the well known Conformally Flat Condition (CFC) approximation. We show the stability andconvergence properties of the numerical scheme with numerical simulations of vacuum solutions. We have performed the first numerical evolutions of the coupled system of hydrodynamics and Einstein equations within FCF. As a proof of principle of the viability of the formalism, we present 2D axisymmetric simulations of an oscillating neutron star. In order to simplify the analysis we have neglected the back-reaction of the gravitational waves into the dynamics, which is small (<2 %) for ...
A comparison of optical architectures for constrained long-range imaging
Olson, S. Craig; Goodman, Timothy D.; Sparks, Andrew W.; Wheeler, Craig S.
2017-05-01
Long-range airborne full-motion-video systems require large apertures to maximize multiple aspects of system performance, including spatial resolution and sensitivity. As systems push to larger apertures for increased resolution and standoff range, both mounting constraints and atmospheric effects limit their effectiveness. This paper considers two questions: first, under what atmospheric and spectral conditions does it make sense to have a larger aperture; second, what types of optical systems can best exploit movement-constrained mounting? We briefly explore high-level atmospheric considerations in determining sensor aperture size for various spectral bands, following with a comparison of the swept-volume-to-aperture ratio of Ritchey-Chrétien and three-mirror-anastigmat optical systems.
Energy Technology Data Exchange (ETDEWEB)
Wang Le; Yang Zhichun [School of Aeronautics, Northwestern Polytechnical University, Xi' an 710072 (China); Waters, T P, E-mail: le.wang@nwpu.edu.cn, E-mail: tpw@isvr.soton.ac.uk [Institute of Sound and Vibration Research, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)
2011-07-19
The integrity and safety of beam-like structures are dependent in part on their boundary conditions which can vary with time due to damage or aging. Structural health monitoring of such structures should therefore include attention to boundary conditions. Where the boundary conditions can be represented by a lumped spring then the identification of associated stiffness parameter values may be a means to quantifying the integrity of the support. This paper investigates such a method for identifying the equivalent translational and rotational stiffness of a constrained tapered beam-like structure. An analytical model of a beam of tapered width and thickness is adopted as a simplified representation of a tower-like structure. The model is used to explore in what scenarios natural frequencies and/or nodal points might be sufficiently sensitive to changes in support conditions to be measurable indicators of damage. The method is evaluated by Monte Carlo simulations for a numerical example where the severity of noise can be controlled.
Walvoord, Michelle A.; Stonestrom, David A.; Andraski, Brian J.; Striegl, Robert G.
2004-01-01
Natural flow regimes in deep unsaturated zones of arid interfluvial environments are rarely in hydraulic equilibrium with near-surface boundary conditions imposed by present-day plant–soil–atmosphere dynamics. Nevertheless, assessments of water resources and contaminant transport require realistic estimates of gas, water, and solute fluxes under past, present, and projected conditions. Multimillennial transients that are captured in current hydraulic, chemical, and isotopic profiles can be interpreted to constrain alternative scenarios of paleohydrologic evolution following climatic and vegetational shifts from pluvial to arid conditions. However, interpreting profile data with numerical models presents formidable challenges in that boundary conditions must be prescribed throughout the entire Holocene, when we have at most a few decades of actual records. Models of profile development at the Amargosa Desert Research Site include substantial uncertainties from imperfectly known initial and boundary conditions when simulating flow and solute transport over millennial timescales. We show how multiple types of profile data, including matric potentials and porewater concentrations of Cl−, δD, δ18O, can be used in multiphase heat, flow, and transport models to expose and reduce uncertainty in paleohydrologic reconstructions. Results indicate that a dramatic shift in the near-surface water balance occurred approximately 16000 yr ago, but that transitions in precipitation, temperature, and vegetation were not necessarily synchronous. The timing of the hydraulic transition imparts the largest uncertainty to model-predicted contemporary fluxes. In contrast, the uncertainties associated with initial (late Pleistocene) conditions and boundary conditions during the Holocene impart only small uncertainties to model-predicted contemporaneous fluxes.
Fitz-Diaz, Elisa; van der Pluijm, Ben
2013-09-01
We propose a deformation dating method that combines XRD quantification and Ar chronology of submicroscopic illite to determine the absolute ages of folds that contain clay-bearing layers. Two folds in the frontal segment of the Mexican Fold-Thrust Belt (MFTB), which was deformed from Late Cretaceous to Eocene, are used to illustrate the method and its future potential. Variations in mineral composition, illite-polytype, crystallite-size (CS) and Ar total gas ages were analyzed in the limbs and hinge of two mesoscopic folds. This analysis examines potential effects of strain variation on illitization and the Ar isotopic system along folded layers, versus possible regional thermal overprints. The Ar total-gas ages for 9 samples in Fold 1 vary between 48.4 and 43.9 Ma. The % of 2M1 (detrital) illite vs. Ar total-gas ages tightly constrains the age of folding at 43.5 ± 0.3 Ma. Nine ages from three samples in Fold 2 range from 76.2 to 62.7 Ma, which results in a folding age of 63.9 ± 2.2 Ma. Both ages are in excellent agreement with more broadly constrained stratigraphic timing. The method offers a novel approach to radiometric dating of clay-bearing folds formed at very low-grade metamorphic conditions, and has the potential to constrain dates and rates of regional and local deformation along and across foreland orogenic belts.
How examples may (and may not) constrain creativity.
Marsh, R L; Landau, J D; Hicks, J L
1996-09-01
Three experiments were performed to test Smith, Ward, and Schumacher's (1993) conformity hypothesis-that people's ideas will conform to examples they are shown in a creative generation task. Conformity was observed in all three experiments; participants tended to incorporate critical features of experimenter-provided examples. However, examination of total output, elaborateness of design, and the noncritical features did not confirm that the conformity effect constrained creative output in any of the three experiments. Increasing the number of examples increased the conformity effect (Experiment 1). Examples that covaried features that are naturally uncorrelated in the real world led to a greater subjective rating of creativity (Experiment 2). A delay between presentation and test increased conformity (Experiment 3), just as models of inadvertent plagiarism would predict. The explanatory power of theoretical accounts such as activation, retrieval blocking, structured imagination, and category abstraction are evaluated.
Formation of current singularity in a topologically constrained plasma
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yao [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Huang, Yi-Min [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Qin, Hong [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.; Bhattacharjee, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences
2016-02-01
Recently a variational integrator for ideal magnetohydrodynamics in Lagrangian labeling has been developed. Its built-in frozen-in equation makes it optimal for studying current sheet formation. We use this scheme to study the Hahm-Kulsrud-Taylor problem, which considers the response of a 2D plasma magnetized by a sheared field under sinusoidal boundary forcing. We obtain an equilibrium solution that preserves the magnetic topology of the initial field exactly, with a fluid mapping that is non-differentiable. Unlike previous studies that examine the current density output, we identify a singular current sheet from the fluid mapping. These results are benchmarked with a constrained Grad-Shafranov solver. The same signature of current singularity can be found in other cases with more complex magnetic topologies.
Maximizing entropy of image models for 2-D constrained coding
DEFF Research Database (Denmark)
Forchhammer, Søren; Danieli, Matteo; Burini, Nino
2010-01-01
This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square constraint given by forbidding neighboring 1s and provide novel results for the constraint that no uniform 2...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...
Fuzzy Constrained Probabilistic Inventory Models Depending on Trapezoidal Fuzzy Numbers
Directory of Open Access Journals (Sweden)
Mona F. El-Wakeel
2016-01-01
Full Text Available We discussed two different cases of the probabilistic continuous review mixture shortage inventory model with varying and constrained expected order cost, when the lead time demand follows some different continuous distributions. The first case is when the total cost components are considered to be crisp values, and the other case is when the costs are considered as trapezoidal fuzzy number. Also, some special cases are deduced. To investigate the proposed model in the crisp case and the fuzzy case, illustrative numerical example is added. From the numerical results we will conclude that Uniform distribution is the best distribution to get the exact solutions, and the exact solutions for fuzzy models are considered more practical and close to the reality of life and get minimum expected total cost less than the crisp models.
High resolution image reconstruction with constrained, total-variation minimization
Sidky, Emil Y; Duchin, Yuval; Ullberg, Christer; Pan, Xiaochuan
2011-01-01
This work is concerned with applying iterative image reconstruction, based on constrained total-variation minimization, to low-intensity X-ray CT systems that have a high sampling rate. Such systems pose a challenge for iterative image reconstruction, because a very fine image grid is needed to realize the resolution inherent in such scanners. These image arrays lead to under-determined imaging models whose inversion is unstable and can result in undesirable artifacts and noise patterns. There are many possibilities to stabilize the imaging model, and this work proposes a method which may have an advantage in terms of algorithm efficiency. The proposed method introduces additional constraints in the optimization problem; these constraints set to zero high spatial frequency components which are beyond the sensing capability of the detector. The method is demonstrated with an actual CT data set and compared with another method based on projection up-sampling.
Reinforcement Learning for Constrained Energy Trading Games With Incomplete Information.
Wang, Huiwei; Huang, Tingwen; Liao, Xiaofeng; Abu-Rub, Haitham; Chen, Guo
2017-10-01
This paper considers the problem of designing adaptive learning algorithms to seek the Nash equilibrium (NE) of the constrained energy trading game among individually strategic players with incomplete information. In this game, each player uses the learning automaton scheme to generate the action probability distribution based on his/her private information for maximizing his own averaged utility. It is shown that if one of admissible mixed-strategies converges to the NE with probability one, then the averaged utility and trading quantity almost surely converge to their expected ones, respectively. For the given discontinuous pricing function, the utility function has already been proved to be upper semicontinuous and payoff secure which guarantee the existence of the mixed-strategy NE. By the strict diagonal concavity of the regularized Lagrange function, the uniqueness of NE is also guaranteed. Finally, an adaptive learning algorithm is provided to generate the strategy probability distribution for seeking the mixed-strategy NE.
Constraining cyclic peptides to mimic protein structure motifs
DEFF Research Database (Denmark)
Hill, Timothy A.; Shepherd, Nicholas E.; Diness, Frederik
2014-01-01
Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well-defined three-dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable...... protein-like structures in water. However, short peptides can be induced to fold into protein-like bioactive conformations (strands, helices, turns) by cyclization, in conjunction with the use of other molecular constraints, that helps to fine-tune three-dimensional structure. Such constrained cyclic...... peptides can have protein-like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three-dimensional structures of strand, turn or helical segments of peptides...
Position and locality constrained soft coding for human action recognition
Wang, Bin; Liu, Yu; Xiao, Wenhua; Xu, Wei; Zhang, Maojun
2013-10-01
Although the traditional bag-of-words model has shown promising results for human action recognition, in the feature coding phase, the ambiguous features from different body parts are still difficult to distinguish. Furthermore, it also suffers from serious representation error. We propose an innovative coding strategy called position and locality constrained soft coding (PLSC) to overcome these limitations. PLSC uses the feature position in a human oriented region of interest (ROI) to distinguish the ambiguous features. We first construct a subdictionary for each feature by selecting the bases from their spatial neighbor in human ROI. Then, a modified soft coding with locality constraint is adopted to alleviate the quantization error and preserve the manifold structure of features. This novel coding algorithm increases both the representation accuracy and discriminative power with low computational cost. The human action recognition experimental results on KTH, Weizmann, and UCF sports datasets show that PLSC can achieve a better performance than previous competing feature coding methods.
Nucleosome breathing and remodeling constrain CRISPR-Cas9 function.
Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo
2016-04-28
The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo.
The evolutionary value of recombination is constrained by genome modularity.
Directory of Open Access Journals (Sweden)
Darren P Martin
2005-10-01
Full Text Available Genetic recombination is a fundamental evolutionary mechanism promoting biological adaptation. Using engineered recombinants of the small single-stranded DNA plant virus, Maize streak virus (MSV, we experimentally demonstrate that fragments of genetic material only function optimally if they reside within genomes similar to those in which they evolved. The degree of similarity necessary for optimal functionality is correlated with the complexity of intragenomic interaction networks within which genome fragments must function. There is a striking correlation between our experimental results and the types of MSV recombinants that are detectable in nature, indicating that obligatory maintenance of intragenome interaction networks strongly constrains the evolutionary value of recombination for this virus and probably for genomes in general.
Constrained choices: adolescents speak on sexuality in Peru.
Bayer, Angela M; Tsui, Amy O; Hindin, Michelle J
2010-10-01
While numerous studies have explored young people's sexual behaviour in Peru, to date few have explored how adolescents situate sexuality within the context of their broader lives. This information is needed to inform policies and programmes. Life history interviews were conducted with 20 12-17-year-old young women and men from a low-income settlement near Lima, Peru. Data were analysed using holistic content analysis and grounded theory. Sexuality had a strong presence in respondents' lives. However, interviewees viewed the full expression of their sexuality as a constrained choice. Particular constraints derive from the belief that sexual intercourse always results in pregnancy; the nature of sex education; the provision of proscriptive advice; and the family tensions, economic problems, racism and violence present in young people's lives. The results of this study can inform policies and programmes to support young people as they make sexuality-related decisions.
Reversible patterning of spherical shells through constrained buckling
Marthelot, J.; Brun, P.-T.; Jiménez, F. López; Reis, P. M.
2017-07-01
Recent advances in active soft structures envision the large deformations resulting from mechanical instabilities as routes for functional shape morphing. Numerous such examples exist for filamentary and plate systems. However, examples with double-curved shells are rarer, with progress hampered by challenges in fabrication and the complexities involved in analyzing their underlying geometrical nonlinearities. We show that on-demand patterning of hemispherical shells can be achieved through constrained buckling. Their postbuckling response is stabilized by an inner rigid mandrel. Through a combination of experiments, simulations, and scaling analyses, our investigation focuses on the nucleation and evolution of the buckling patterns into a reticulated network of sharp ridges. The geometry of the system, namely, the shell radius and the gap between the shell and the mandrel, is found to be the primary ingredient to set the surface morphology. This prominence of geometry suggests a robust, scalable, and tunable mechanism for reversible shape morphing of elastic shells.
Block-triangular preconditioners for PDE-constrained optimization
Rees, Tyrone
2010-11-26
In this paper we investigate the possibility of using a block-triangular preconditioner for saddle point problems arising in PDE-constrained optimization. In particular, we focus on a conjugate gradient-type method introduced by Bramble and Pasciak that uses self-adjointness of the preconditioned system in a non-standard inner product. We show when the Chebyshev semi-iteration is used as a preconditioner for the relevant matrix blocks involving the finite element mass matrix that the main drawback of the Bramble-Pasciak method-the appropriate scaling of the preconditioners-is easily overcome. We present an eigenvalue analysis for the block-triangular preconditioners that gives convergence bounds in the non-standard inner product and illustrates their competitiveness on a number of computed examples. Copyright © 2010 John Wiley & Sons, Ltd.
Transmission-constrained oligopoly in the Japanese electricity market
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Makoto [National Graduate Institute for Policy Studies (GRIPS), 7-22-1 Roppongi, Minato-ku, Tokyo 106-8677 (Japan)
2009-09-15
We simulate the Japanese wholesale electricity market as a transmission-constrained Cournot market using a linear complementarity approach. First, we investigate the effects of upgrading the bottleneck transmission line between the eastern and western regions, focusing on the mitigation of transmission congestion. Although increasing the bottleneck capacity would lead to welfare gains, they might not be substantial particularly when transmission capacity costs are taken into account. Second, we examine the effects of splitting the largest electric power company, which is located in the eastern region, focusing on the mitigation of market power. Splitting the largest company into two companies would lead to a 25% reduction in the eastern price, and a 50% reduction in deadweight loss. The divestiture of the largest company would have a significant effect of mitigating market power in the Japanese electricity market. (author)
Convex Relaxations of Chance Constrained AC Optimal Power Flow
DEFF Research Database (Denmark)
Venzke, Andreas; Halilbasic, Lejla; Markovic, Uros
2017-01-01
High penetration of renewable energy sources and the increasing share of stochastic loads require the explicit representation of uncertainty in tools such as the optimal power ﬂow (OPF).Current approaches follow either a linearized approach or an iterative approximation of non-linearities. This p......High penetration of renewable energy sources and the increasing share of stochastic loads require the explicit representation of uncertainty in tools such as the optimal power ﬂow (OPF).Current approaches follow either a linearized approach or an iterative approximation of non......-linearities. This paper proposes a semideﬁnite relaxation of a chance constrained AC-OPF which is able to provide guarantees for global optimality. Using a piecewise afﬁne policy, we can ensure tractability, accurately model large power deviations, and determine suitable corrective control policies for active power......-global optimality guarantees....
A Collective Neurodynamic Approach to Distributed Constrained Optimization.
Liu, Qingshan; Yang, Shaofu; Wang, Jun
2017-08-01
This paper presents a collective neurodynamic approach with multiple interconnected recurrent neural networks (RNNs) for distributed constrained optimization. The objective function of the distributed optimization problems to be solved is a sum of local convex objective functions, which may be nonsmooth. Subject to its local constraints, each local objective function is minimized individually by using an RNN, with consensus among others. In contrast to existing continuous-time distributed optimization methods, the proposed collective neurodynamic approach is capable of solving more general distributed optimization problems. Simulation results on three numerical examples are discussed to substantiate the effectiveness and characteristics of the proposed approach. In addition, an application to the optimal placement problem is delineated to demonstrate the viability of the approach.
Non-rigid registration by geometry-constrained diffusion
DEFF Research Database (Denmark)
Andresen, Per Rønsholt; Nielsen, Mads
1999-01-01
Assume that only partial knowledge about a non-rigid registration is given so that certain point, curves, or surfaces in one 3D image map to certain points, curves, or surfaces in another 3D image. We are facing the aperture problem because along the curves and surfaces, point correspondences...... are not given. We will advocate the viewpoint that the aperture and the 3D interpolation problem may be solved simultaneously by finding the simplest displacement field. This is obtained by a geometry-constrained diffusion which yields the simplest displacement field in a precise sense. The point registration...... obtained may be used for growth modelling, shape statistics, or kinematic interpolation. The algorithm applies to geometrical objects of any dimensionality. We may thus keep any number of fiducial points, curves, and/or surfaces fixed while finding the simplest registration. Examples of inferred point...
Constraining regional extreme temperature projections of the CMIP5 ensemble
Vogel, Martha Marie; Seneviratne, Sonia Isabelle
2017-04-01
Temperature extremes are expected to increase in frequency and intensity in the future under enhanced global warming. Associated with the future projections of hot extremes are large uncertainties in different regions such as Central Europe. Given the severe impacts it is important to understand physical mechanisms leading to the projected amplified warming of regional extremes. Soil moisture- temperature feedbacks are strongly relevant for these projections as they are a key contributor to the development of regional hot extremes. Since soil moisture itself and soil moisture-temperature feedbacks are subject to change in future they likely contribute to the uncertainties of extreme temperature projections. In this work we link projections of changes in extreme temperatures to changes in land-atmosphere interactions with a particular focus on Central Europe. For this purpose, we employ observational data sets to constrain the model ensemble in the current climate, and consequently the extreme temperature projections.
Flexible waveform-constrained optimization design method for cognitive radar
Zhang, Xiaowen; Wang, Kaizhi; Liu, Xingzhao
2017-07-01
The problem of waveform optimization design for cognitive radar (CR) in the presence of extended target with unknown target impulse response (TIR) is investigated. On the premise of ensuring the TIR estimation precision, a flexible waveform-constrained optimization design method taking both target detection and range resolution into account is proposed. In this method, both the estimate of TIR and transmitted waveform can be updated according to the environment information fed back by the receiver. Moreover, rather than optimizing waveforms for a single design criterion, the framework can synthesize waveforms that provide a trade-off between competing design criteria. The trade-off is determined by the parameter settings, which can be adjusted according to the requirement of radar performance in each cycle of CR. Simulation results demonstrate that CR with the proposed waveform performs better than a traditional radar system with a fixed waveform and offers more flexibility and practicability.
Dynamical Scaling and Phase Coexistence in Topologically Constrained DNA Melting
Fosado, Y. A. G.; Michieletto, D.; Marenduzzo, D.
2017-09-01
There is a long-standing experimental observation that the melting of topologically constrained DNA, such as circular closed plasmids, is less abrupt than that of linear molecules. This finding points to an important role of topology in the physics of DNA denaturation, which is, however, poorly understood. Here, we shed light on this issue by combining large-scale Brownian dynamics simulations with an analytically solvable phenomenological Landau mean field theory. We find that the competition between melting and supercoiling leads to phase coexistence of denatured and intact phases at the single-molecule level. This coexistence occurs in a wide temperature range, thereby accounting for the broadening of the transition. Finally, our simulations show an intriguing topology-dependent scaling law governing the growth of denaturation bubbles in supercoiled plasmids, which can be understood within the proposed mean field theory.
An improved partial bundle method for linearly constrained minimax problems
Directory of Open Access Journals (Sweden)
Chunming Tang
2016-02-01
Full Text Available In this paper, we propose an improved partial bundle method for solving linearly constrained minimax problems. In order to reduce the number of component function evaluations, we utilize a partial cutting-planes model to substitute for the traditional one. At each iteration, only one quadratic programming subproblem needs to be solved to obtain a new trial point. An improved descent test criterion is introduced to simplify the algorithm. The method produces a sequence of feasible trial points, and ensures that the objective function is monotonically decreasing on the sequence of stability centers. Global convergence of the algorithm is established. Moreover, we utilize the subgradient aggregation strategy to control the size of the bundle and therefore overcome the difficulty of computation and storage. Finally, some preliminary numerical results show that the proposed method is effective.
Total energy control system autopilot design with constrained parameter optimization
Ly, Uy-Loi; Voth, Christopher
1990-01-01
A description is given of the application of a multivariable control design method (SANDY) based on constrained parameter optimization to the design of a multiloop aircraft flight control system. Specifically, the design method is applied to the direct synthesis of a multiloop AFCS inner-loop feedback control system based on total energy control system (TECS) principles. The design procedure offers a structured approach for the determination of a set of stabilizing controller design gains that meet design specifications in closed-loop stability, command tracking performance, disturbance rejection, and limits on control activities. The approach can be extended to a broader class of multiloop flight control systems. Direct tradeoffs between many real design goals are rendered systematic by proper formulation of the design objectives and constraints. Satisfactory designs are usually obtained in few iterations. Performance characteristics of the optimized TECS design have been improved, particularly in the areas of closed-loop damping and control activity in the presence of turbulence.
SAR image segmentation using MPM and constrained stochastic relaxation
Zhao, Huiyan; Cao, Yongfeng; Yang, Wen
2005-10-01
A segmentation method using maximization of the Posterior marginals (MPM) and constrained stochastic relaxation (CSR) for SAR images is proposed. This method improves the regularity of MPM based segmentation result by introducing CSR. Multi-Level Logistic (MLL) model is used for the underlying label image to introduce regularity prior of segmentation. Gamma distribution is used for SAR intensity data. The hyper parameters of MLL model are supposed to be known a priori. This method is an iterative scheme consists of two alternating steps: to approximate the MPM estimation of the pixel class labels and to estimate gamma distribution parameters. The weight of the prior energy in goal energy function is increased slowly versus the increasing iteration times until certain number of iteration has finished. The segmentation results for synthetic and real SAR images show that the proposed method has a good performance.
Constrained basin stability for studying transient phenomena in dynamical systems
van Kan, Adrian; Jegminat, Jannes; Donges, Jonathan F.; Kurths, Jürgen
2016-04-01
Transient dynamics are of large interest in many areas of science. Here, a generalization of basin stability (BS) is presented: constrained basin stability (CBS) that is sensitive to various different types of transients arising from finite size perturbations. CBS is applied to the paradigmatic Lorenz system for uncovering nonlinear precursory phenomena of a boundary crisis bifurcation. Further, CBS is used in a model of the Earth's carbon cycle as a return time-dependent stability measure of the system's global attractor. Both case studies illustrate how CBS's sensitivity to transients complements BS in its function as an early warning signal and as a stability measure. CBS is broadly applicable in systems where transients matter, from physics and engineering to sustainability science. Thus CBS complements stability analysis with BS as well as classical linear stability analysis and will be a useful tool for many applications.
Interpolation techniques in robust constrained model predictive control
Kheawhom, Soorathep; Bumroongsri, Pornchai
2017-05-01
This work investigates interpolation techniques that can be employed on off-line robust constrained model predictive control for a discrete time-varying system. A sequence of feedback gains is determined by solving off-line a series of optimal control optimization problems. A sequence of nested corresponding robustly positive invariant set, which is either ellipsoidal or polyhedral set, is then constructed. At each sampling time, the smallest invariant set containing the current state is determined. If the current invariant set is the innermost set, the pre-computed gain associated with the innermost set is applied. If otherwise, a feedback gain is variable and determined by a linear interpolation of the pre-computed gains. The proposed algorithms are illustrated with case studies of a two-tank system. The simulation results showed that the proposed interpolation techniques significantly improve control performance of off-line robust model predictive control without much sacrificing on-line computational performance.
Diameter constrained reliability of ladders and Spanish fans
Directory of Open Access Journals (Sweden)
Cancela Héctor
2016-01-01
Full Text Available We are given a graph G = (V, E, terminal set K V and diameter d > 0. Links fail stochastically and independently with known probabilities. The diameter-constrained reliability (DCR for short, is the probability that the K-diameter is not greater than d in the subgraph induced by non-failed links. The contributions of this paper are two-fold. First, the computational complexity of DCR-subproblems is discussed in terms of the number of terminals k = jKj and diameter d. Here, we prove that when d > 2 the problem is NP-Hard when K = V. Second, we compute the DCR efficiently for Ladders and Spanish Fans. Open problems and trends for future work are discussed in the conclusions.
Late time CMB anisotropies constrain mini-charged particles
Energy Technology Data Exchange (ETDEWEB)
Burrage, C.; Redondo, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jaeckel, J. [Univ. of Durham, Inst. for Particle Physics Phenomenology (United Kingdom)
2009-09-15
Observations of the temperature anisotropies induced as light from the CMB passes through large scale structures in the late universe are a sensitive probe of the interactions of photons in such environments. In extensions of the Standard Model which give rise to mini-charged particles, photons propagating through transverse magnetic fields can be lost to pair production of such particles. Such a decrement in the photon flux would occur as photons from the CMB traverse the magnetic fields of galaxy clusters. Therefore late time CMB anisotropies can be used to constrain the properties of mini- charged particles. We outline how this test is constructed, and present new constraints on mini-charged particles from observations of the Sunyaev-Zel'dovich effect in the Coma cluster. (orig.)
Lifetime of the solar nebula constrained by meteorite paleomagnetism.
Wang, Huapei; Weiss, Benjamin P; Bai, Xue-Ning; Downey, Brynna G; Wang, Jun; Wang, Jiajun; Suavet, Clément; Fu, Roger R; Zucolotto, Maria E
2017-02-10
A key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation of chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. The core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation. Copyright © 2017, American Association for the Advancement of Science.
Before or After: Prepositions in Spatially Constrained Systems
Richter, Kai-Florian; Klippel, Alexander
Cognitive agents use different strategies to identify relevant spatial information in communication. The chosen strategy depends on the agents' conceptualization of the spatial situation at hand. This situation is determined by structural and functional aspects that are induced by the environment and the actions performed or intended therein. In this paper, we are interested in conceptualizations in the context of route directions. We focus on the meaning of prepositions used to characterize movements (actions) in spatially constrained systems such as street networks. We report on different strategies employed by people to disambiguate turning actions at intersections and demonstrate how these can be reflected in automatically generated route directions, again concentrating on the assignment of prepositions for anchoring movement. Including methods that focus on the most successful strategies people use in computational systems is a prerequisite for route directions that respect for human conceptualizations of spatial situations and that become, thus, cognitively ergonomic route directions.
A constraint consensus memetic algorithm for solving constrained optimization problems
Hamza, Noha M.; Sarker, Ruhul A.; Essam, Daryl L.; Deb, Kalyanmoy; Elsayed, Saber M.
2014-11-01
Constraint handling is an important aspect of evolutionary constrained optimization. Currently, the mechanism used for constraint handling with evolutionary algorithms mainly assists the selection process, but not the actual search process. In this article, first a genetic algorithm is combined with a class of search methods, known as constraint consensus methods, that assist infeasible individuals to move towards the feasible region. This approach is also integrated with a memetic algorithm. The proposed algorithm is tested and analysed by solving two sets of standard benchmark problems, and the results are compared with other state-of-the-art algorithms. The comparisons show that the proposed algorithm outperforms other similar algorithms. The algorithm has also been applied to solve a practical economic load dispatch problem, where it also shows superior performance over other algorithms.
The Compton-thick Growth of Supermassive Black Holes constrained
Buchner, Johannes; Georgakakis, Antonis; Nandra, Kirpal; Brightman, Murray; Menzel, Marie-Luise; Liu, Zhu; Hsu, Li-Ting; Salvato, Mara; Rangel, Cyprian; Aird, James
2017-08-01
A heavily obscured growth phase of supermassive black holes (SMBH) is thought to be important in the co-evolution with galaxies. X-rays provide a clean and efficient selection of unobscured and obscured AGN. Recent work with deeper observations and improved analysis methodology allowed us to extend constraints to Compton-thick number densities. We present the first luminosity function of Compton-thick AGN at z=0.5-4 and constrain the overall mass density locked into black holes over cosmic time, a fundamental constraint for cosmological simulations. Recent studies including ours find that the obscuration is redshift and luminosity-dependent in a complex way, which rules out entire sets of obscurer models. A new paradigm, the radiation-lifted torus model, is proposed, in which the obscurer is Eddington-rate dependent and accretion creates and displaces torus clouds. We place observational limits on the behaviour of this mechanism.
Reliable Event Detectors for Constrained Resources Wireless Sensor Node Hardware
Directory of Open Access Journals (Sweden)
López Trinidad MarcoAntonio
2009-01-01
Full Text Available Abstract A novel event detector algorithm, which points out in-door acoustic human activities, for constrained wireless sensor node hardware is proposed in the present paper. In our approach, event detections are computed from the signal energy statistics change rate at two instants separated by an samples interval. The experimentation is run in two phases: (i the detector characterisation and tuning seek detector configurations that enable event detections from three acoustic human activities: closing a door, dropping a plastic bottle, and clapping;(ii event detector validation tests measure the reliability to signal events from general acoustic activities, people talking particularly. The test results, which included emulated node hardware, actual sensor node, and a one-hop WSN, demonstrate the detector implementations signaled successfully events. And for the WSN, we found that event detections decay in a nonlinear fashion as the distance , between the acoustic signal source and the sensor, is increased.
Constrained recycling: a framework to reduce landfilling in developing countries.
Diaz, Ricardo; Otoma, Suehiro
2013-01-01
This article presents a model that integrates three branches of research: (i) economics of solid waste that assesses consumer's willingness to recycle and to pay for disposal; (ii) economics of solid waste that compares private and social costs of final disposal and recycling; and (iii) theories on personal attitudes and social influence. The model identifies two arenas where decisions are made: upstream arena, where residents are decision-makers, and downstream arena, where municipal authorities are decision-makers, and graphically proposes interactions between disposal and recycling, as well as the concept of 'constrained recycling' (an alternative to optimal recycling) to guide policy design. It finally concludes that formative instruments, such as environmental education and benchmarks, should be combined with economic instruments, such as subsidies, to move constraints on source separation and recycling in the context of developing countries.
Constraining Light-Quark Yukawa Couplings from Higgs Distributions.
Bishara, Fady; Haisch, Ulrich; Monni, Pier Francesco; Re, Emanuele
2017-03-24
We propose a novel strategy to constrain the bottom and charm Yukawa couplings by exploiting Large Hadron Collider (LHC) measurements of transverse momentum distributions in Higgs production. Our method does not rely on the reconstruction of exclusive final states or heavy-flavor tagging. Compared to other proposals, it leads to an enhanced sensitivity to the Yukawa couplings due to distortions of the differential Higgs spectra from emissions which either probe quark loops or are associated with quark-initiated production. We derive constraints using data from LHC run I, and we explore the prospects of our method at future LHC runs. Finally, we comment on the possibility of bounding the strange Yukawa coupling.
Constrain the SED Type of Unidentified Fermi Objects
Directory of Open Access Journals (Sweden)
An-Li Tsai
2013-09-01
Full Text Available 2FGL J1823.8+4312 and 2FGL J1304.1-2415 are two unidentified Fermi objects which are associated with cluster of galaxies. In order to exam the possibility of cluster of galaxies as gamma-ray emitters, we search for counterpart of these two unidentified Fermi objects in other wavebands. However, we find other candidate to be more likely the counterpart of the unidentified Fermi object for both sources. We compare their light curves and SEDs in order to identify their source types. However, data at millimeter and sub-millimeter wavebands, which is important for us to constrain the SED at synchrotron peak, is lacking of measurement. Therefore, we proposed to SMA observation for these two sources. We have got data and are doing further analysis.
Constraining the evolution of the Hubble Parameter using cosmic chronometers
Dickinson, Hugh
2017-08-01
Substantial investment is being made in space- and ground-based missions with the goal of revealing the nature of the observed cosmic acceleration. This is one of the most important unsolved problems in cosmology today.We propose here to constrain the evolution of the Hubble parameter [H(z)] between 1.3 grisms data obtained by the WISP, 3D-HST+AGHAST, FIGS, and CLEAR surveys will yield a sample of 140 suitable standard clocks, expanding existing samples by a factor of five. These additional data will enable us to improve existing constraints on the evolution of H at high redshift, and insodoing to better understand the fundamental nature of dark energy.
A weakly constrained $W'$ at the early LHC
Grojean, Christophe; Torre, Riccardo
2011-01-01
We study, within an effective approach, the phenomenology of a charged W' vector which transforms as an isosinglet under the Standard Model gauge group. We discuss bounds from present data, finding that these are quite weak for suitable choices of the right-handed quark mixing matrix. Then we study the resonant production at the early LHC of such a weakly constrained W'. We start discussing the reach in the dijet final state, which is one of the channels where the first W' signal would most likely appear, and then we analyse prospects for the more challenging discovery of W' decays into W{\\gamma} and WZ. We show in particular that the former can be used to gain insight on the possibly composite nature of the resonance.
Active flutter control using discrete optimal constrained dynamic compensators
Broussard, J. R.; Halyo, N.
1983-01-01
A method for synthesizing digital active flutter suppression controllers using the concept of optimal output feedback is presented. A recently developd convergent algorithm is employed to determine constrained control law parameters that minimize an infinite-time discrete quadratic performance index. Low-order compensator dynamics are included in the control law and the compensator parameters are computed along with the output feedback gain as part of the optimization process. An input noise adjustment procedure is used to improve the stability margins of the digital active flutter controller. Results from investigations into sample rate variation, prefilter pole variation, and effects of varying flight condtions are discussed. The study indicates that a digital control law which accommodates computation delay can stabilize the wing with reasonable rms performance and adequate stability margins.
Stochastic Dynamics with Correct Sampling for Constrained Systems.
Peters, E A J F; Goga, N; Berendsen, H J C
2014-10-14
In this paper we discuss thermostatting using stochastic methods for molecular simulations where constraints are present. For so-called impulsive thermostats, like the Andersen thermostat, the equilibrium temperature will differ significantly from the imposed temperature when a limited number of particles are picked and constraints are applied. We analyze this problem and give two rigorous solutions for it. A correct general treatment of impulsive stochastic thermostatting, including pairwise dissipative particle dynamics and stochastic forcing in the presence of constraints, is given and it is shown that the constrained canonical distribution is sampled rigorously. We discuss implementation issues such as second order Trotter expansions. The method is shown to rigorously maintain the correct temperature for the case of extended simple point charge (SPC/E) water simulations.
Constraining viscous dark energy models with the latest cosmological data
Energy Technology Data Exchange (ETDEWEB)
Wang, Deng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Yan, Yang-Jie; Meng, Xin-He [Nankai University, Department of Physics, Tianjin (China)
2017-10-15
Based on the assumption that the dark energy possessing bulk viscosity is homogeneously and isotropically permeated in the universe, we propose three new viscous dark energy (VDE) models to characterize the accelerating universe. By constraining these three models with the latest cosmological observations, we find that they just deviate very slightly from the standard cosmological model and can alleviate effectively the current H{sub 0} tension between the local observation by the Hubble Space Telescope and the global measurement by the Planck Satellite. Interestingly, we conclude that a spatially flat universe in our VDE model with cosmic curvature is still supported by current data, and the scale invariant primordial power spectrum is strongly excluded at least at the 5.5σ confidence level in the three VDE models as the Planck result. We also give the 95% upper limits of the typical bulk viscosity parameter η in the three VDE scenarios. (orig.)
Network-constrained forest for regularized classification of omics data.
Anděl, Michael; Kléma, Jiří; Krejčík, Zdeněk
2015-07-15
Contemporary molecular biology deals with wide and heterogeneous sets of measurements to model and understand underlying biological processes including complex diseases. Machine learning provides a frequent approach to build such models. However, the models built solely from measured data often suffer from overfitting, as the sample size is typically much smaller than the number of measured features. In this paper, we propose a random forest-based classifier that reduces this overfitting with the aid of prior knowledge in the form of a feature interaction network. We illustrate the proposed method in the task of disease classification based on measured mRNA and miRNA profiles complemented by the interaction network composed of the miRNA-mRNA target relations and mRNA-mRNA interactions corresponding to the interactions between their encoded proteins. We demonstrate that the proposed network-constrained forest employs prior knowledge to increase learning bias and consequently to improve classification accuracy, stability and comprehensibility of the resulting model. The experiments are carried out in the domain of myelodysplastic syndrome that we are concerned about in the long term. We validate our approach in the public domain of ovarian carcinoma, with the same data form. We believe that the idea of a network-constrained forest can straightforwardly be generalized towards arbitrary omics data with an available and non-trivial feature interaction network. The proposed method is publicly available in terms of miXGENE system (http://mixgene.felk.cvut.cz), the workflow that implements the myelodysplastic syndrome experiments is presented as a dedicated case study. Copyright © 2015 Elsevier Inc. All rights reserved.
Constraining interacting dark energy with CMB and BAO future surveys
Santos, Larissa; Zhao, Wen; Ferreira, Elisa G. M.; Quintin, Jerome
2017-11-01
In this paper, we perform a forecast analysis to test the capacity of future baryon acoustic oscillation (BAO) and cosmic microwave background (CMB) experiments to constrain phenomenological interacting dark energy models using the Fisher matrix formalism. We consider a Euclid-like experiment, in which BAO measurements are one of the main goals, to constrain the cosmological parameters of alternative cosmological models. Moreover, additional experimental probes can more efficiently provide information on the parameters forecast, justifying also the inclusion in the analysis of a future ground-based CMB experiment mainly designed to measure the polarization signal with high precision. In the interacting dark energy scenario, a coupling between dark matter and dark energy modifies the conservation equations such that the fluid equations for both constituents are conserved as the total energy density of the dark sector. In this context, we consider three phenomenological models that have been deeply investigated in literature over the past years. We find that the combination of both CMB and BAO information can break degeneracies among the dark sector parameters for all three models, although to different extents. We find powerful constraints on, for example, the coupling constant when comparing it with present limits for two of the models, and their future statistical 3 σ bounds could potentially exclude the null interaction for the combination of probes that is considered. However, for one of the models, the constraint on the coupling parameter does not improve the present result (achieved using a large combination of surveys), and a larger combination of probes appears to be necessary to eventually claim whether or not interaction is favored in that context.
Detecting Community Structure by Using a Constrained Label Propagation Algorithm.
Directory of Open Access Journals (Sweden)
Jia Hou Chin
Full Text Available Community structure is considered one of the most interesting features in complex networks. Many real-world complex systems exhibit community structure, where individuals with similar properties form a community. The identification of communities in a network is important for understanding the structure of said network, in a specific perspective. Thus, community detection in complex networks gained immense interest over the last decade. A lot of community detection methods were proposed, and one of them is the label propagation algorithm (LPA. The simplicity and time efficiency of the LPA make it a popular community detection method. However, the LPA suffers from instability detection due to randomness that is induced in the algorithm. The focus of this paper is to improve the stability and accuracy of the LPA, while retaining its simplicity. Our proposed algorithm will first detect the main communities in a network by using the number of mutual neighbouring nodes. Subsequently, nodes are added into communities by using a constrained LPA. Those constraints are then gradually relaxed until all nodes are assigned into groups. In order to refine the quality of the detected communities, nodes in communities can be switched to another community or removed from their current communities at various stages of the algorithm. We evaluated our algorithm on three types of benchmark networks, namely the Lancichinetti-Fortunato-Radicchi (LFR, Relaxed Caveman (RC and Girvan-Newman (GN benchmarks. We also apply the present algorithm to some real-world networks of various sizes. The current results show some promising potential, of the proposed algorithm, in terms of detecting communities accurately. Furthermore, our constrained LPA has a robustness and stability that are significantly better than the simple LPA as it is able to yield deterministic results.
Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics
Directory of Open Access Journals (Sweden)
Gijs Koopmanschap
2014-03-01
Full Text Available In the recent past, the design and synthesis of peptide mimics (peptidomimetics has received much attention. This because they have shown in many cases enhanced pharmacological properties over their natural peptide analogues. In particular, the incorporation of cyclic constructs into peptides is of high interest as they reduce the flexibility of the peptide enhancing often affinity for a certain receptor. Moreover, these cyclic mimics force the molecule into a well-defined secondary structure. Constraint structural and conformational features are often found in biological active peptides. For the synthesis of cyclic constrained peptidomimetics usually a sequence of multiple reactions has been applied, which makes it difficult to easily introduce structural diversity necessary for fine tuning the biological activity. A promising approach to tackle this problem is the use of multicomponent reactions (MCRs, because they can introduce both structural diversity and molecular complexity in only one step. Among the MCRs, the isocyanide-based multicomponent reactions (IMCRs are most relevant for the synthesis of peptidomimetics because they provide peptide-like products. However, these IMCRs usually give linear products and in order to obtain cyclic constrained peptidomimetics, the acyclic products have to be cyclized via additional cyclization strategies. This is possible via incorporation of bifunctional substrates into the initial IMCR. Examples of such bifunctional groups are N-protected amino acids, convertible isocyanides or MCR-components that bear an additional alkene, alkyne or azide moiety and can be cyclized via either a deprotection–cyclization strategy, a ring-closing metathesis, a 1,3-dipolar cycloaddition or even via a sequence of multiple multicomponent reactions. The sequential IMCR-cyclization reactions can afford small cyclic peptide mimics (ranging from four- to seven-membered rings, medium-sized cyclic constructs or peptidic
Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics.
Koopmanschap, Gijs; Ruijter, Eelco; Orru, Romano Va
2014-01-01
In the recent past, the design and synthesis of peptide mimics (peptidomimetics) has received much attention. This because they have shown in many cases enhanced pharmacological properties over their natural peptide analogues. In particular, the incorporation of cyclic constructs into peptides is of high interest as they reduce the flexibility of the peptide enhancing often affinity for a certain receptor. Moreover, these cyclic mimics force the molecule into a well-defined secondary structure. Constraint structural and conformational features are often found in biological active peptides. For the synthesis of cyclic constrained peptidomimetics usually a sequence of multiple reactions has been applied, which makes it difficult to easily introduce structural diversity necessary for fine tuning the biological activity. A promising approach to tackle this problem is the use of multicomponent reactions (MCRs), because they can introduce both structural diversity and molecular complexity in only one step. Among the MCRs, the isocyanide-based multicomponent reactions (IMCRs) are most relevant for the synthesis of peptidomimetics because they provide peptide-like products. However, these IMCRs usually give linear products and in order to obtain cyclic constrained peptidomimetics, the acyclic products have to be cyclized via additional cyclization strategies. This is possible via incorporation of bifunctional substrates into the initial IMCR. Examples of such bifunctional groups are N-protected amino acids, convertible isocyanides or MCR-components that bear an additional alkene, alkyne or azide moiety and can be cyclized via either a deprotection-cyclization strategy, a ring-closing metathesis, a 1,3-dipolar cycloaddition or even via a sequence of multiple multicomponent reactions. The sequential IMCR-cyclization reactions can afford small cyclic peptide mimics (ranging from four- to seven-membered rings), medium-sized cyclic constructs or peptidic macrocycles (>12
Constraining the cosmology of the phantom brane using distance measures
Alam, Ujjaini; Bag, Satadru; Sahni, Varun
2017-01-01
The phantom brane has several important distinctive features: (i) Its equation of state is phantomlike, but there is no future "big rip" singularity, and (ii) the effective cosmological constant on the brane is dynamically screened, because of which the expansion rate is smaller than that in Λ CDM at high redshifts. In this paper, we constrain the Phantom braneworld using distance measures such as type-Ia supernovae (SNeIa), baryon acoustic oscillations (BAO), and the compressed cosmic microwave background (CMB) data. We find that the simplest braneworld models provide a good fit to the data. For instance, BAO +SNeIa data can be accommodated by the braneworld for a large region in parameter space 0 ≤Ωℓ≲0.3 at 1 σ . The Hubble parameter can be as high as H0≲78 km s-1 Mpc-1 , and the effective equation of state at present can show phantomlike behavior with w0≲-1.2 at 1 σ . We note a correlation between H0 and w0, with higher values of H0 leading to a lower, and more phantomlike, value of w0. Inclusion of CMB data provides tighter constraints Ωℓ≲0.1 . (Here Ωℓ encodes the ratio of the five- and four-dimensional Planck mass.) The Hubble parameter in this case is more tightly constrained to H0≲71 km s-1 Mpc-1 , and the effective equation of state to w0≲-1.1 . Interestingly, we find that the Universe is allowed to be closed or open, with -0.5 ≲Ωκ≲0.5 , even on including the compressed CMB data. There appears to be some tension in the low and high-z BAO data which may either be resolved by future data, or act as a pointer to interesting new cosmology.
Modeling Atmospheric CO2 Processes to Constrain the Missing Sink
Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.
2005-01-01
We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.
The power of evolutionary rescue is constrained by genetic load.
Stewart, Gavin S; Morris, Madeline R; Genis, Allison B; Szűcs, Marianna; Melbourne, Brett A; Tavener, Simon J; Hufbauer, Ruth A
2017-08-01
The risk of extinction faced by small isolated populations in changing environments can be reduced by rapid adaptation and subsequent growth to larger, less vulnerable sizes. Whether this process, called evolutionary rescue, is able to reduce extinction risk and sustain population growth over multiple generations is largely unknown. To understand the consequences of adaptive evolution as well as maladaptive processes in small isolated populations, we subjected experimental Tribolium castaneum populations founded with 10 or 40 individuals to novel environments, one more favorable, and one resource poor, and either allowed evolution, or constrained it by replacing individuals one-for-one each generation with those from a large population maintained in the natal environment. Replacement individuals spent one generation in the target novel environment before use to standardize effects due to the parental environment. After eight generations we mixed a subset of surviving populations to facilitate admixture, allowing us to estimate drift load by comparing performance of mixed to unmixed groups. Evolving populations had reduced extinction rates, and increased population sizes in the first four to five generations compared to populations where evolution was constrained. Performance of evolving populations subsequently declined. Admixture restored their performance, indicating high drift load that may have overwhelmed the beneficial effects of adaptation in evolving populations. Our results indicate that evolution may quickly reduce extinction risk and increase population sizes, but suggest that relying solely on adaptation from standing genetic variation may not provide long-term benefits to small isolated populations of diploid sexual species, and that active management facilitating gene flow may be necessary for longer term persistence.
Advanced techniques for constrained internal coordinate molecular dynamics.
Wagner, Jeffrey R; Balaraman, Gouthaman S; Niesen, Michiel J M; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan
2013-04-30
Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle, and torsional coordinates instead of a Cartesian coordinate representation. Freezing high-frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed to make the CICMD method robust and widely usable. In this article, we have designed a new framework for (1) initializing velocities for nonindependent CICMD coordinates, (2) efficient computation of center of mass velocity during CICMD simulations, (3) using advanced integrators such as Runge-Kutta, Lobatto, and adaptive CVODE for CICMD simulations, and (4) cancelling out the "flying ice cube effect" that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this article, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse-graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided "freezing and thawing" of degrees of freedom in the molecule on the fly during molecular dynamics simulations and is shown to fold four proteins to their native topologies. With these advancements, we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion. Copyright © 2013 Wiley Periodicals, Inc.
Constraining the Rate of Water-Releasing Metamorphic Reactions in Subduction Zones
Mehl, L. Y.; Barkman, J. E.; Baxter, E. F.
2006-12-01
Metamorphic reactions in subduction zones have implications for the timing and depth over which water is released from subducting lithologies. Water release is related to the densification of the slab, the fluxing of arc magmatism, and seismogenesis. Garnet-forming reactions frequently involve the release of water. In order to quantify the rate at which water is produced during the P-T-t interval represented by garnet growth, we seek to constrain the rate and duration of garnet formation. Garnets in blueschists were collected from Sifnos, Greece. This island is in an accretionary wedge setting where the Apulian microplate subducted beneath the Eurasia plate from late Cretaceous to Eocene times. Peak metamorphic conditions were certainly less than 600 C and 2.0 GPa [1]. Blueschists from this subduction zone are preserved in the northern part of Sifnos; we collected most of our samples from Vroulidia Bay. This locality was chosen because large garnets (5-10mm) are preserved in many lithologies. Also, the peak temperatures determined by previous workers indicates that the garnet has remained closed to diffusive re-equilibration of Nd permitting the use of Sm/Nd geochronology to constrain prograde reaction history. Samples taken from Vroulidia Bay are fresh, with compositions that likely include mafic oceanic protoliths. Common assemblages include glaucophane, epidote, garnet, zoisite, quartz, phengite, partially replaced titanite, and rutile, as well as patches of carbonate and rare chlorite. The garnets sampled are dominantly almandine but also include a grossular component. Possible garnet-forming reactions in the Sifnos rocks may include: Chlorite + quartz = Almandine + H2O where the consumption of Fe-rich chlorite forms the almandine and releases water. The break down of Ca-rich clinozoisite, lawsonite, and/or titanite could contribute to the grossular component. Using the Sm/Nd isochron method, microsampled cores and rims of garnets may be directly dated. The
Directory of Open Access Journals (Sweden)
Itamar Francez
2015-01-01
Full Text Available This paper introduces and analyzes chimerical conditionals, a class of conditionals that are puzzling vis-à-vis the distinction between so-called 'biscuit' and hypothetical conditionals. An analysis of this distinction is developed which draws on the pragmatic account of Franke 2009. Building on this analysis, chimericity is then shown to derive from a systematic ambiguity of a definite and often implicit argument in the consequent of chimerical conditionals, between a rigid designator and an individual concept reading. This ambiguity is argued to arise from different ways in which context can resolve familiarity presuppositions. One consequence of the inquiry is that the notion of (independence employed in much work on conditionals cannot be viewed as a relation between propositions, but must be made sensitive to the dynamics of information flow. http://dx.doi.org/10.3765/sp.8.2 BibTeX info
Dynamic optimization and its relation to classical and quantum constrained systems
Contreras, Mauricio; Pellicer, Rely; Villena, Marcelo
2017-08-01
We study the structure of a simple dynamic optimization problem consisting of one state and one control variable, from a physicist's point of view. By using an analogy to a physical model, we study this system in the classical and quantum frameworks. Classically, the dynamic optimization problem is equivalent to a classical mechanics constrained system, so we must use the Dirac method to analyze it in a correct way. We find that there are two second-class constraints in the model: one fix the momenta associated with the control variables, and the other is a reminder of the optimal control law. The dynamic evolution of this constrained system is given by the Dirac's bracket of the canonical variables with the Hamiltonian. This dynamic results to be identical to the unconstrained one given by the Pontryagin equations, which are the correct classical equations of motion for our physical optimization problem. In the same Pontryagin scheme, by imposing a closed-loop λ-strategy, the optimality condition for the action gives a consistency relation, which is associated to the Hamilton-Jacobi-Bellman equation of the dynamic programming method. A similar result is achieved by quantizing the classical model. By setting the wave function Ψ(x , t) =e iS(x , t) in the quantum Schrödinger equation, a non-linear partial equation is obtained for the S function. For the right-hand side quantization, this is the Hamilton-Jacobi-Bellman equation, when S(x , t) is identified with the optimal value function. Thus, the Hamilton-Jacobi-Bellman equation in Bellman's maximum principle, can be interpreted as the quantum approach of the optimization problem.
Suliman, Mohamed
2016-01-01
In this supplementary appendix we provide proofs and additional simulation results that complement the paper (constrained perturbation regularization approach for signal estimation using random matrix theory).
An introduction to nonlinear programming. IV - Numerical methods for constrained minimization
Sorenson, H. W.; Koble, H. M.
1976-01-01
An overview is presented of the numerical solution of constrained minimization problems. Attention is given to both primal and indirect (linear programs and unconstrained minimizations) methods of solution.
Using Simple Shapes to Constrain Asteroid Thermal Inertia
MacLennan, Eric M.; Emery, Joshua P.
2015-11-01
With the use of remote thermal infrared observations and a thermophysical model (TPM), the thermal inertia of an asteroid surface can be determined. The thermal inertia, in turn, can be used to infer physical properties of the surface, specifically to estimate the average regolith grain size. Since asteroids are often non-spherical techniques for incorporating modeled (non-spherical) shapes into calculating thermal inertia have been established. However, using a sphere as input for TPM is beneficial in reducing running time and shape models are not generally available for all (or most) objects that are observed in the thermal-IR. This is particularly true, as the pace of infrared observations has recently dramatically increased, notably due to the WISE mission, while the time to acquire sufficient light curves for accurate shape inversion remains relatively long. Here, we investigate the accuracy of using both a spherical and ellipsoidal TPM, with infrared observations obtained at pre- and post-opposition (hereafter multi-epoch) geometries to constrain the thermal inertias of a large number of asteroids.We test whether using multi-epoch observations combined with a spherical and ellipsoidal shape TPM can constrain the thermal inertia of an object without a priori knowledge of its shape or spin state. The effectiveness of this technique is tested for 16 objects with shape models from DAMIT and WISE multi-epoch observations. For each object, the shape model is used as input for the TPM to generate synthetic fluxes for different values of thermal inertia. The input spherical and ellipsoidal shapes are then stepped through different spin vectors as the TPM is used to generate best-fit thermal inertia and diameter to the synthetically generated fluxes, allowing for a direct test of the approach’s effectiveness. We will discuss whether the precision of the thermal inertia constraints from the spherical TPM analysis of multi- epoch observations is comparable to works
Numerical Estimation of Balanced and Falling States for Constrained Legged Systems
Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H.
2017-08-01
Instability and risk of fall during standing and walking are common challenges for biped robots. While existing criteria from state-space dynamical systems approach or ground reference points are useful in some applications, complete system models and constraints have not been taken into account for prediction and indication of fall for general legged robots. In this study, a general numerical framework that estimates the balanced and falling states of legged systems is introduced. The overall approach is based on the integration of joint-space and Cartesian-space dynamics of a legged system model. The full-body constrained joint-space dynamics includes the contact forces and moments term due to current foot (or feet) support and another term due to altered contact configuration. According to the refined notions of balanced, falling, and fallen, the system parameters, physical constraints, and initial/final/boundary conditions for balancing are incorporated into constrained nonlinear optimization problems to solve for the velocity extrema (representing the maximum perturbation allowed to maintain balance without changing contacts) in the Cartesian space at each center-of-mass (COM) position within its workspace. The iterative algorithm constructs the stability boundary as a COM state-space partition between balanced and falling states. Inclusion in the resulting six-dimensional manifold is a necessary condition for a state of the given system to be balanced under the given contact configuration, while exclusion is a sufficient condition for falling. The framework is used to analyze the balance stability of example systems with various degrees of complexities. The manifold for a 1-degree-of-freedom (DOF) legged system is consistent with the experimental and simulation results in the existing studies for specific controller designs. The results for a 2-DOF system demonstrate the dependency of the COM state-space partition upon joint-space configuration (elbow-up vs
Sampling conditions for gradient-magnitude sparsity based image reconstruction algorithms
DEFF Research Database (Denmark)
Sidky, Emil Y.; Jørgensen, Jakob Heide; Pan, Xiaochuan
2012-01-01
We seek to characterize the sampling conditions for iterative image reconstruction exploiting gradient-magnitude sparsity. We seek the number of views necessary for accurate image reconstruction by constrained, total variation (TV) minimization, which is the optimization problem suggested...
Fudge, C.; Hu, J.; Sharp, T. G.
2015-07-01
We report on the coexistence of wadsleyite and ringwoodite in transformed clasts within three ordinary chondrites: Sahara 98222, 00293 and 00350. High-pressure mineralogy is used to constrain conditions of the impact event on the parent body.
Slingerland, M.A.; Schut, M.
2014-01-01
This article investigates the transition dynamics related to Jatropha developments in Mozambique. The analysis focuses on how structural conditions (infrastructure, institutions, interaction and collaboration and capabilities and resources) enable or constrain interactions between niche-level
Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field
Das, Praloy; Pramanik, Souvik; Ghosh, Subir
2016-11-01
Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac's Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torus knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein-Brillouin-Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr-Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.
Smoothing neural network for constrained non-Lipschitz optimization with applications.
Bian, Wei; Chen, Xiaojun
2012-03-01
In this paper, a smoothing neural network (SNN) is proposed for a class of constrained non-Lipschitz optimization problems, where the objective function is the sum of a nonsmooth, nonconvex function, and a non-Lipschitz function, and the feasible set is a closed convex subset of . Using the smoothing approximate techniques, the proposed neural network is modeled by a differential equation, which can be implemented easily. Under the level bounded condition on the objective function in the feasible set, we prove the global existence and uniform boundedness of the solutions of the SNN with any initial point in the feasible set. The uniqueness of the solution of the SNN is provided under the Lipschitz property of smoothing functions. We show that any accumulation point of the solutions of the SNN is a stationary point of the optimization problem. Numerical results including image restoration, blind source separation, variable selection, and minimizing condition number are presented to illustrate the theoretical results and show the efficiency of the SNN. Comparisons with some existing algorithms show the advantages of the SNN.
A 17-My-old whale constrains onset of uplift and climate change in east Africa.
Wichura, Henry; Jacobs, Louis L; Lin, Andrew; Polcyn, Michael J; Manthi, Fredrick K; Winkler, Dale A; Strecker, Manfred R; Clemens, Matthew
2015-03-31
Timing and magnitude of surface uplift are key to understanding the impact of crustal deformation and topographic growth on atmospheric circulation, environmental conditions, and surface processes. Uplift of the East African Plateau is linked to mantle processes, but paleoaltimetry data are too scarce to constrain plateau evolution and subsequent vertical motions associated with rifting. Here, we assess the paleotopographic implications of a beaked whale fossil (Ziphiidae) from the Turkana region of Kenya found 740 km inland from the present-day coastline of the Indian Ocean at an elevation of 620 m. The specimen is ∼ 17 My old and represents the oldest derived beaked whale known, consistent with molecular estimates of the emergence of modern strap-toothed whales (Mesoplodon). The whale traveled from the Indian Ocean inland along an eastward-directed drainage system controlled by the Cretaceous Anza Graben and was stranded slightly above sea level. Surface uplift from near sea level coincides with paleoclimatic change from a humid environment to highly variable and much drier conditions, which altered biotic communities and drove evolution in east Africa, including that of primates.
Iron supply constrains producer communities in stream ecosystems.
Larson, Chad A; Liu, Hongsheng; Passy, Sophia I
2015-05-01
The current paradigm that stream producers are under exclusive macronutrient control was recently challenged by continental studies, demonstrating that iron supply constrained diatom biodiversity and energy flows. Using algal abundance and water chemistry data from the National Water-Quality Assessment Program, we determined for the first time community thresholds along iron gradients in non-acidic running waters, i.e. 30-79.5 μg L(-1) and 70-120 μg L(-1) in oligotrophic and eutrophic streams, respectively. Given that Fe concentrations fell below both thresholds in 50% of US streams, and below the eutrophic threshold in 75% of US streams, we suggest that Fe limitation is potentially widespread and attribute it to the restricted distribution of wetlands. We also report results from the first laboratory experiments on algal-iron interactions in streams, revealing that iron supplementation leads to significant biovolume and biodiversity increase in both nitrogen fixing and non-nitrogen fixing algae. Therefore, the progressive brownification of freshwaters due to rising dissolved organic carbon and iron levels can have a stimulating influence on microbial producers with cascading effects along the trophic hierarchy. Future research in running waters should focus on the role of iron in algal physiology and biofilm functions, including accumulation of biomass, fixing atmospheric nitrogen and improving water quality. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Less favourable climates constrain demographic strategies in plants.
Csergő, Anna M; Salguero-Gómez, Roberto; Broennimann, Olivier; Coutts, Shaun R; Guisan, Antoine; Angert, Amy L; Welk, Erik; Stott, Iain; Enquist, Brian J; McGill, Brian; Svenning, Jens-Christian; Violle, Cyrille; Buckley, Yvonne M
2017-08-01
Correlative species distribution models are based on the observed relationship between species' occurrence and macroclimate or other environmental variables. In climates predicted less favourable populations are expected to decline, and in favourable climates they are expected to persist. However, little comparative empirical support exists for a relationship between predicted climate suitability and population performance. We found that the performance of 93 populations of 34 plant species worldwide - as measured by in situ population growth rate, its temporal variation and extinction risk - was not correlated with climate suitability. However, correlations of demographic processes underpinning population performance with climate suitability indicated both resistance and vulnerability pathways of population responses to climate: in less suitable climates, plants experienced greater retrogression (resistance pathway) and greater variability in some demographic rates (vulnerability pathway). While a range of demographic strategies occur within species' climatic niches, demographic strategies are more constrained in climates predicted to be less suitable. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Large-scale stabilization control of input-constrained quadrotor
Directory of Open Access Journals (Sweden)
Jun Jiang
2016-10-01
Full Text Available The quadrotor has been the most popular aircraft in the last decade due to its excellent dynamics and continues to attract ever-increasing research interest. Delivering a quadrotor from a large fixed-wing aircraft is a promising application of quadrotors. In such an application, the quadrotor needs to switch from a highly unstable status, featured as large initial states, to a safe and stable flight status. This is the so-called large-scale stability control problem. In such an extreme scenario, the quadrotor is at risk of actuator saturation. This can cause the controller to update incorrectly and lead the quadrotor to spiral and crash. In this article, to safely control the quadrotor in such scenarios, the control input constraint is analyzed. The key states of a quadrotor dynamic model are selected, and a two-dimensional dynamic model is extracted based on a symmetrical body configuration. A generalized point-wise min-norm nonlinear control method is proposed based on the Lyapunov function, and large-scale stability control is hence achieved. An enhanced point-wise, min-norm control is further provided to improve the attitude control performance, with altitude performance degenerating slightly. Simulation results showed that the proposed control methods can stabilize the input-constrained quadrotor and the enhanced method can improve the performance of the quadrotor in critical states.
Constrained Multistate Sequence Design for Nucleic Acid Reaction Pathway Engineering.
Wolfe, Brian R; Porubsky, Nicholas J; Zadeh, Joseph N; Dirks, Robert M; Pierce, Niles A
2017-03-01
We describe a framework for designing the sequences of multiple nucleic acid strands intended to hybridize in solution via a prescribed reaction pathway. Sequence design is formulated as a multistate optimization problem using a set of target test tubes to represent reactant, intermediate, and product states of the system, as well as to model crosstalk between components. Each target test tube contains a set of desired "on-target" complexes, each with a target secondary structure and target concentration, and a set of undesired "off-target" complexes, each with vanishing target concentration. Optimization of the equilibrium ensemble properties of the target test tubes implements both a positive design paradigm, explicitly designing for on-pathway elementary steps, and a negative design paradigm, explicitly designing against off-pathway crosstalk. Sequence design is performed subject to diverse user-specified sequence constraints including composition constraints, complementarity constraints, pattern prevention constraints, and biological constraints. Constrained multistate sequence design facilitates nucleic acid reaction pathway engineering for diverse applications in molecular programming and synthetic biology. Design jobs can be run online via the NUPACK web application.
Computing 2D constrained delaunay triangulation using the GPU.
Qi, Meng; Cao, Thanh-Tung; Tan, Tiow-Seng
2013-05-01
We propose the first graphics processing unit (GPU) solution to compute the 2D constrained Delaunay triangulation (CDT) of a planar straight line graph (PSLG) consisting of points and edges. There are many existing CPU algorithms to solve the CDT problem in computational geometry, yet there has been no prior approach to solve this problem efficiently using the parallel computing power of the GPU. For the special case of the CDT problem where the PSLG consists of just points, which is simply the normal Delaunay triangulation (DT) problem, a hybrid approach using the GPU together with the CPU to partially speed up the computation has already been presented in the literature. Our work, on the other hand, accelerates the entire computation on the GPU. Our implementation using the CUDA programming model on NVIDIA GPUs is numerically robust, and runs up to an order of magnitude faster than the best sequential implementations on the CPU. This result is reflected in our experiment with both randomly generated PSLGs and real-world GIS data having millions of points and edges.
Abdominal wall extraction using constrained deformable model and abdominal context.
Huang, Weimin; Quan, Lijie; Lin, Zhiping; Duan, Yuping; Zhou, Jiayin; Yang, Yongzhong; Xiong, Wei
2014-01-01
Information about abdominal wall can be used for many applications from organ segmentation, registration, and surgical simulation. The challenges exist in abdominal wall extraction due to its varieties in shapes, connection to the internal organs and anterior layer edge formed between the muscle and fascia/fatty layer, which may distract the shape model. In this paper we present an approach to the posterior abdominal wall extraction using the shape model and other abdominal context, particularly with the rib-spine bone information and the wall image features. The shape model is constructed based on the training abdominal walls that are delineated manually. After bone information being extracted, the wall shape deforms from the prior shape model using the snake, which is constrained by the bone context and guided by the processed image energy map with the aim of removing distracted image features of anterior abdominal wall and the outer region from the original map. Meanwhile, an overall convex shape is maintained by limiting the angles of the contour points. The proposed approach is tested on abdominal CT data which provides encouraging results.
A New Interpolation Approach for Linearly Constrained Convex Optimization
Espinoza, Francisco
2012-08-01
In this thesis we propose a new class of Linearly Constrained Convex Optimization methods based on the use of a generalization of Shepard\\'s interpolation formula. We prove the properties of the surface such as the interpolation property at the boundary of the feasible region and the convergence of the gradient to the null space of the constraints at the boundary. We explore several descent techniques such as steepest descent, two quasi-Newton methods and the Newton\\'s method. Moreover, we implement in the Matlab language several versions of the method, particularly for the case of Quadratic Programming with bounded variables. Finally, we carry out performance tests against Matab Optimization Toolbox methods for convex optimization and implementations of the standard log-barrier and active-set methods. We conclude that the steepest descent technique seems to be the best choice so far for our method and that it is competitive with other standard methods both in performance and empirical growth order.
Two-dimensional topological order of kinetically constrained quantum particles
Kourtis, Stefanos
2015-03-01
Motivated by recent experimental and theoretical work on driven optical lattices, we investigate how imposing kinetic restrictions on quantum particles that would otherwise hop freely on a two-dimensional lattice can lead to topologically ordered states. The kinetically constrained models introduced here are derived as an approximate generalization of strongly interacting particles hopping on Haldane and equivalent lattices and are pertinent to systems irradiated by circularly polarized light. After introducing a broad class of models, we focus on particular realizations and show numerically that they exhibit topological order, by observing topological ground-state degeneracies and the quantization of corresponding invariants. Apart from potentially being crucial for the interpretation of forthcoming cold-atom experiments, our results also hint at unexplored possibilities for the realization of topologically ordered matter. A further implication, relevant to fractional quantum Hall (FQH) physics, is that the correlations responsible for FQH-like states can arise from processes other than density-density interactions. Financial support from EPSRC (Grant No. EP/K028960/1) and ICAM Branch Contributions.
Tongue Images Classification Based on Constrained High Dispersal Network
Directory of Open Access Journals (Sweden)
Dan Meng
2017-01-01
Full Text Available Computer aided tongue diagnosis has a great potential to play important roles in traditional Chinese medicine (TCM. However, the majority of the existing tongue image analyses and classification methods are based on the low-level features, which may not provide a holistic view of the tongue. Inspired by deep convolutional neural network (CNN, we propose a novel feature extraction framework called constrained high dispersal neural networks (CHDNet to extract unbiased features and reduce human labor for tongue diagnosis in TCM. Previous CNN models have mostly focused on learning convolutional filters and adapting weights between them, but these models have two major issues: redundancy and insufficient capability in handling unbalanced sample distribution. We introduce high dispersal and local response normalization operation to address the issue of redundancy. We also add multiscale feature analysis to avoid the problem of sensitivity to deformation. Our proposed CHDNet learns high-level features and provides more classification information during training time, which may result in higher accuracy when predicting testing samples. We tested the proposed method on a set of 267 gastritis patients and a control group of 48 healthy volunteers. Test results show that CHDNet is a promising method in tongue image classification for the TCM study.
Using GRACE to constrain precipitation amount over cold mountainous basins
Behrangi, Ali; Gardner, Alex S.; Reager, John T.; Fisher, Joshua B.
2017-01-01
Despite the importance for hydrology and climate-change studies, current quantitative knowledge on the amount and distribution of precipitation in mountainous and high-elevation regions is limited due to instrumental and retrieval shortcomings. Here by focusing on two large endorheic basins in High Mountain Asia, we show that satellite gravimetry (Gravity Recovery and Climate Experiment (GRACE)) can be used to provide an independent estimate of monthly accumulated precipitation using mass balance equation. Results showed that the GRACE-based precipitation estimate has the highest agreement with most of the commonly used precipitation products in summer, but it deviates from them in cold months, when the other products are expected to have larger errors. It was found that most of the products capture about or less than 50% of the total precipitation estimated using GRACE in winter. Overall, Global Precipitation Climatology Project (GPCP) showed better agreement with GRACE estimate than other products. Yet on average GRACE showed 30% more annual precipitation than GPCP in the study basins. In basins of appropriate size with an absence of dense ground measurements, as is a typical case in cold mountainous regions, we find GRACE can be a viable alternative to constrain monthly and seasonal precipitation estimates from other remotely sensed precipitation products that show large bias.
Tidal tomography constrains Earth’s deep-mantle buoyancy
Lau, Harriet C. P.; Mitrovica, Jerry X.; Davis, James L.; Tromp, Jeroen; Yang, Hsin-Ying; Al-Attar, David
2017-11-01
Earth’s body tide—also known as the solid Earth tide, the displacement of the solid Earth’s surface caused by gravitational forces from the Moon and the Sun—is sensitive to the density of the two Large Low Shear Velocity Provinces (LLSVPs) beneath Africa and the Pacific. These massive regions extend approximately 1,000 kilometres upward from the base of the mantle and their buoyancy remains actively debated within the geophysical community. Here we use tidal tomography to constrain Earth’s deep-mantle buoyancy derived from Global Positioning System (GPS)-based measurements of semi-diurnal body tide deformation. Using a probabilistic approach, we show that across the bottom two-thirds of the two LLSVPs the mean density is about 0.5 per cent higher than the average mantle density across this depth range (that is, its mean buoyancy is minus 0.5 per cent), although this anomaly may be concentrated towards the very base of the mantle. We conclude that the buoyancy of these structures is dominated by the enrichment of high-density chemical components, probably related to subducted oceanic plates or primordial material associated with Earth’s formation. Because the dynamics of the mantle is driven by density variations, our result has important dynamical implications for the stability of the LLSVPs and the long-term evolution of the Earth system.
Vocal learning is constrained by the statistics of sensorimotor experience.
Sober, Samuel J; Brainard, Michael S
2012-12-18
The brain uses sensory feedback to correct behavioral errors. Larger errors by definition require greater corrections, and many models of learning assume that larger sensory feedback errors drive larger motor changes. However, an alternative perspective is that larger errors drive learning less effectively because such errors fall outside the range of errors normally experienced and are therefore unlikely to reflect accurate feedback. This is especially crucial in vocal control because auditory feedback can be contaminated by environmental noise or sensory processing errors. A successful control strategy must therefore rely on feedback to correct errors while disregarding aberrant auditory signals that would lead to maladaptive vocal corrections. We hypothesized that these constraints result in compensation that is greatest for smaller imposed errors and least for larger errors. To test this hypothesis, we manipulated the pitch of auditory feedback in singing Bengalese finches. We found that learning driven by larger sensory errors was both slower than that resulting from smaller errors and showed less complete compensation for the imposed error. Additionally, we found that a simple principle could account for these data: the amount of compensation was proportional to the overlap between the baseline distribution of pitch production and the distribution experienced during the shift. Correspondingly, the fraction of compensation approached zero when pitch was shifted outside of the song's baseline pitch distribution. Our data demonstrate that sensory errors drive learning best when they fall within the range of production variability, suggesting that learning is constrained by the statistics of sensorimotor experience.
CCTOP: a Consensus Constrained TOPology prediction web server.
Dobson, László; Reményi, István; Tusnády, Gábor E
2015-07-01
The Consensus Constrained TOPology prediction (CCTOP; http://cctop.enzim.ttk.mta.hu) server is a web-based application providing transmembrane topology prediction. In addition to utilizing 10 different state-of-the-art topology prediction methods, the CCTOP server incorporates topology information from existing experimental and computational sources available in the PDBTM, TOPDB and TOPDOM databases using the probabilistic framework of hidden Markov model. The server provides the option to precede the topology prediction with signal peptide prediction and transmembrane-globular protein discrimination. The initial result can be recalculated by (de)selecting any of the prediction methods or mapped experiments or by adding user specified constraints. CCTOP showed superior performance to existing approaches. The reliability of each prediction is also calculated, which correlates with the accuracy of the per protein topology prediction. The prediction results and the collected experimental information are visualized on the CCTOP home page and can be downloaded in XML format. Programmable access of the CCTOP server is also available, and an example of client-side script is provided. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Quasi-Newton Exploration of Implicitly Constrained Manifolds
Tang, Chengcheng
2011-08-01
A family of methods for the efficient update of second order approximations of a constraint manifold is proposed in this thesis. The concept of such a constraint manifold corresponds to an abstract space prescribed by implicit nonlinear constraints, which can be a set of objects satisfying certain desired properties. This concept has a variety of applications, and it has been successfully introduced to fabrication-aware architectural design as a shape space consisting of all the implementable designs. The local approximation of such a manifold can be first order, in the tangent space, or second order, in the osculating surface, with higher precision. For a nonlinearly constrained manifold with rather high dimension and codimension, the computation of second order approximants (osculants) is time consuming. In this thesis, a type of so-called quasi-Newton manifold exploration methods which approximate the new osculants by updating the ones of a neighbor point by 1st-order information is introduced. The procedures are discussed in detail and the examples implemented to visually verify the methods are illustrated.
Segmentation in cohesive systems constrained by elastic environments
Novak, I.; Truskinovsky, L.
2017-04-01
The complexity of fracture-induced segmentation in elastically constrained cohesive (fragile) systems originates from the presence of competing interactions. The role of discreteness in such phenomena is of interest in a variety of fields, from hierarchical self-assembly to developmental morphogenesis. In this paper, we study the analytically solvable example of segmentation in a breakable mass-spring chain elastically linked to a deformable lattice structure. We explicitly construct the complete set of local minima of the energy in this prototypical problem and identify among them the states corresponding to the global energy minima. We show that, even in the continuum limit, the dependence of the segmentation topology on the stretching/pre-stress parameter in this problem takes the form of a devil's type staircase. The peculiar nature of this staircase, characterized by locking in rational microstructures, is of particular importance for biological applications, where its structure may serve as an explanation of the robustness of stress-driven segmentation. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'
Siberian Arctic black carbon sources constrained by model and observation
Winiger, Patrik; Andersson, August; Eckhardt, Sabine; Stohl, Andreas; Semiletov, Igor P.; Dudarev, Oleg V.; Charkin, Alexander; Shakhova, Natalia; Klimont, Zbigniew; Heyes, Chris; Gustafsson, Örjan
2017-02-01
Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ngṡm-3 to 302 ngṡm-3) and dual-isotope-constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth.
A constrained conjugate gradient algorithm for computed tomography
Energy Technology Data Exchange (ETDEWEB)
Azevedo, S.G.; Goodman, D.M. [Lawrence Livermore National Lab., CA (United States)
1994-11-15
Image reconstruction from projections of x-ray, gamma-ray, protons and other penetrating radiation is a well-known problem in a variety of fields, and is commonly referred to as computed tomography (CT). Various analytical and series expansion methods of reconstruction and been used in the past to provide three-dimensional (3D) views of some interior quantity. The difficulties of these approaches lie in the cases where (a) the number of views attainable is limited, (b) the Poisson (or other) uncertainties are significant, (c) quantifiable knowledge of the object is available, but not implementable, or (d) other limitations of the data exist. We have adapted a novel nonlinear optimization procedure developed at LLNL to address limited-data image reconstruction problems. The technique, known as nonlinear least squares with general constraints or constrained conjugate gradients (CCG), has been successfully applied to a number of signal and image processing problems, and is now of great interest to the image reconstruction community. Previous applications of this algorithm to deconvolution problems and x-ray diffraction images for crystallography have shown the great promise.
Phylogenetic constrains on mycorrhizal specificity in eight Dendrobium (Orchidaceae) species.
Xing, Xiaoke; Ma, Xueting; Men, Jinxin; Chen, Yanhong; Guo, Shunxing
2017-05-01
Plant phylogeny constrains orchid mycorrhizal (OrM) fungal community composition in some orchids. Here, we investigated the structures of the OrM fungal communities of eight Dendrobium species in one niche to determine whether similarities in the OrM fungal communities correlated with the phylogeny of the host plants and whether the Dendrobium-OrM fungal interactions are phylogenetically conserved. A phylogeny based on DNA data was constructed for the eight coexisting Dendrobium species, and the OrM fungal communities were characterized by their roots. There were 31 different fungal lineages associated with the eight Dendrobium species. In total, 82.98% of the identified associations belonging to Tulasnellaceae, and a smaller proportion involved members of the unknown Basidiomycota (9.67%). Community analyses revealed that phylogenetically related Dendrobium tended to interact with a similar set of Tulasnellaceae fungi. The interactions between Dendrobium and Tulasnellaceae fungi were significantly influenced by the phylogenetic relationships among the Dendrobium species. Our results provide evidence that the mycorrhizal specificity in the eight coexisting Dendrobium species was phylogenetically conserved.
Rank-Constrained Beamforming for MIMO Cognitive Interference Channel
Directory of Open Access Journals (Sweden)
Duoying Zhang
2016-01-01
Full Text Available This paper considers the spectrum sharing multiple-input multiple-output (MIMO cognitive interference channel, in which multiple primary users (PUs coexist with multiple secondary users (SUs. Interference alignment (IA approach is introduced that guarantees that secondary users access the licensed spectrum without causing harmful interference to the PUs. A rank-constrained beamforming design is proposed where the rank of the interferences and the desired signals is concerned. The standard interferences metric for the primary link, that is, interference temperature, is investigated and redesigned. The work provides a further improvement that optimizes the dimension of the interferences in the cognitive interference channel, instead of the power of the interference leakage. Due to the nonconvexity of the rank, the developed optimization problems are further approximated as convex form and are solved via choosing the transmitter precoder and receiver subspace iteratively. Numerical results show that the proposed designs can improve the achievable degree of freedom (DoF of the primary links and provide the considerable sum rate for both secondary and primary transmissions under the rank constraints.
Ultraconservation identifies a small subset of extremely constrained developmental enhancers
Energy Technology Data Exchange (ETDEWEB)
Pennacchio, Len A.; Visel, Axel; Prabhakar, Shyam; Akiyama, Jennifer A.; Shoukry, Malak; Lewis, Keith D.; Holt, Amy; Plajzer-Frick, Ingrid; Afzal, Veena; Rubin, Edward M.; Pennacchio, Len A.
2007-10-01
While experimental studies have suggested that non-coding ultraconserved DNA elements are central nodes in the regulatory circuitry that specifies mammalian embryonic development, the possible functional relevance of their>200bp of perfect sequence conservation between human-mouse-rat remains obscure 1,2. Here we have compared the in vivo enhancer activity of a genome-wide set of 231 non-exonic sequences with ultraconserved cores to that of 206 sequences that are under equivalently severe human-rodent constraint (ultra-like), but lack perfect sequence conservation. In transgenic mouse assays, 50percent of the ultraconserved and 50percent of the ultra-like conserved elements reproducibly functioned as tissue-specific enhancers at embryonic day 11.5. In this in vivo assay, we observed that ultraconserved enhancers and constrained non-ultraconserved enhancers targeted expression to a similar spectrum of tissues with a particular enrichment in the developing central nervous system. A human genome-wide comparative screen uncovered ~;;2,600 non-coding elements that evolved under ultra-like human-rodent constraint and are similarly enriched near transcriptional regulators and developmental genes as the much smaller number of ultraconserved elements. These data indicate that ultraconserved elements possessing absolute human-rodent sequence conservation are not distinct from other non-coding elements that are under comparable purifying selection in mammals and suggest they are principal constituents of the cis-regulatory framework of mammalian development.
Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection
Directory of Open Access Journals (Sweden)
Wenfen Liu
2017-01-01
Full Text Available Constrained spectral clustering (CSC method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight.
Sparsity constrained deconvolution approaches for acoustic source mapping.
Yardibi, Tarik; Li, Jian; Stoica, Petre; Cattafesta, Louis N
2008-05-01
Using microphone arrays for estimating source locations and strengths has become common practice in aeroacoustic applications. The classical delay-and-sum approach suffers from low resolution and high sidelobes and the resulting beamforming maps are difficult to interpret. The deconvolution approach for the mapping of acoustic sources (DAMAS) deconvolution algorithm recovers the actual source levels from the contaminated delay-and-sum results by defining an inverse problem that can be represented as a linear system of equations. In this paper, the deconvolution problem is carried onto the sparse signal representation area and a sparsity constrained deconvolution approach (SC-DAMAS) is presented for solving the DAMAS inverse problem. A sparsity preserving covariance matrix fitting approach (CMF) is also presented to overcome the drawbacks of the DAMAS inverse problem. The proposed algorithms are convex optimization problems. Our simulations show that CMF and SC-DAMAS outperform DAMAS and as the noise in the measurements increases, CMF works better than both DAMAS and SC-DAMAS. It is observed that the proposed algorithms converge faster than DAMAS. A modification to SC-DAMAS is also provided which makes it significantly faster than DAMAS and CMF. For the correlated source case, the CMF-C algorithm is proposed and compared with DAMAS-C. Improvements in performance are obtained similar to the uncorrelated case.
Constrained Choices: Adolescents Speak on Sexuality in Peru
Bayer, Angela M.; Tsui, Amy O.; Hindin, Michelle J.
2011-01-01
While numerous studies have explored adolescent sexual behavior in Peru, to date, none have explored how adolescents situate sexuality within the context of their broader lives. This information is needed to inform policies and programs. Life history interviews were conducted with 20 12–17 year-old females and males from a low-income settlement near Lima, Peru. Data were analyzed using holistic content analysis and grounded theory. Sexuality had a strong presence in adolescents’ lives. However, adolescents viewed the complete expression of their sexuality as a constrained choice. Constraints are due to the belief that sexual intercourse always results in pregnancy; the nature of sex education; the provision of proscriptive advice; and the family tensions, economic problems, racism and violence present in adolescents’ lives. Social and cultural factors seem to surpass and often suppress the physical and psychological dimensions of adolescents’ sexuality. The results of this study can inform policies and programs to support adolescents as they construct their sexuality and make sexuality-related decisions. PMID:20526920
Enhanced Security-Constrained OPF With Distributed Battery Energy Storage
Energy Technology Data Exchange (ETDEWEB)
Wen, YF; Guo, CX; Kirschen, DS; Dong, SF
2015-01-01
This paper discusses how fast-response distributed battery energy storage could be used to implement post-contingency corrective control actions. Immediately after a contingency, the injections of distributed batteries could be adjusted to alleviate overloads and reduce flows below their short-term emergency rating. This ensures that the post-contingency system remains stable until the operator has redispatched the generation. Implementing this form of corrective control would allow operators to take advantage of the difference between the short-and long-term ratings of the lines and would therefore increase the available transmission capacity. This problem is formulated as a two-stage, enhanced security-constrained OPF problem, in which the first-stage optimizes the pre-contingency generation dispatch, while the second-stage minimizes the corrective actions for each contingency. Case studies based on a six-bus test system and on the RTS 96 demonstrate that the proposed method provides effective corrective actions and can guarantee operational reliability and economy.
Fast optimization of statistical potentials for structurally constrained phylogenetic models
Directory of Open Access Journals (Sweden)
Rodrigue Nicolas
2009-09-01
Full Text Available Abstract Background Statistical approaches for protein design are relevant in the field of molecular evolutionary studies. In recent years, new, so-called structurally constrained (SC models of protein-coding sequence evolution have been proposed, which use statistical potentials to assess sequence-structure compatibility. In a previous work, we defined a statistical framework for optimizing knowledge-based potentials especially suited to SC models. Our method used the maximum likelihood principle and provided what we call the joint potentials. However, the method required numerical estimations by the use of computationally heavy Markov Chain Monte Carlo sampling algorithms. Results Here, we develop an alternative optimization procedure, based on a leave-one-out argument coupled to fast gradient descent algorithms. We assess that the leave-one-out potential yields very similar results to the joint approach developed previously, both in terms of the resulting potential parameters, and by Bayes factor evaluation in a phylogenetic context. On the other hand, the leave-one-out approach results in a considerable computational benefit (up to a 1,000 fold decrease in computational time for the optimization procedure. Conclusion Due to its computational speed, the optimization method we propose offers an attractive alternative for the design and empirical evaluation of alternative forms of potentials, using large data sets and high-dimensional parameterizations.
Applications of Satellite Fluorescence to Constrain Global Photosynthesis
Parazoo, Nicholas
2016-07-01
Terrestrial gross primary production (GPP) by plant photosynthesis is the largest flux component of the global carbon budget and primary conduit for biological sequestration of atmospheric carbon dioxide. While much is known about the functioning of photosynthesis at the leave-level, gross photosynthetic fluxes are still only loosely constrained at ecosystem, regional, and global scales. Uncertainty in the response of photosynthesis to the environment at these scales is a major source of uncertainty in prediction of biosphere-atmosphere feedbacks under climate change, and thus novel methods are needed to push the boundaries of carbon cycle science beyond leaf-level. Chlorophyll fluorescence has been a major tool for basic research in photosynthesis for nearly a century. It was recently discovered that solar induced fluorescence (SIF) can be accurately retrieved from space using high spectral resolution radiances, providing a new way to study photosynthesis at scales ranging from the ecosystem to the globe. Over the last 5-10 years, satellite based measurements of SIF have provided key new insights into the global distribution and functioning of plant photosynthesis, providing new ways to quantify global GPP, detect regional-scale changes in plant productivity in relation to light use efficiency and environmental controls, disentangle biological contributions to atmospheric carbon dioxide mole fractions, and refine process understanding in terrestrial biosphere models. Here, we highlight some of the key research advances emerging from satellite SIF.
Adaptive Multi-Agent Systems for Constrained Optimization
Macready, William; Bieniawski, Stefan; Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is a new framework for analyzing and controlling distributed systems. Here we demonstrate its use for distributed stochastic optimization. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. The updating of the Lagrange parameters in the Lagrangian can be viewed as a form of automated annealing, that focuses the MAS more and more on the optimal pure strategy. This provides a simple way to map the solution of any constrained optimization problem onto the equilibrium of a Multi-Agent System (MAS). We present computer experiments involving both the Queen s problem and K-SAT validating the predictions of PD theory and its use for off-the-shelf distributed adaptive optimization.
Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares
Orr, Jeb S.
2012-01-01
A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed
Software architecture for time-constrained machine vision applications
Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.
2013-01-01
Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility, because they are normally oriented toward particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse, and inefficient execution on multicore processors. We present a novel software architecture for time-constrained machine vision applications that addresses these issues. The architecture is divided into three layers. The platform abstraction layer provides a high-level application programming interface for the rest of the architecture. The messaging layer provides a message-passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of message. The application layer provides a repository for reusable application modules designed for machine vision applications. These modules, which include acquisition, visualization, communication, user interface, and data processing, take advantage of the power of well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, the proposed architecture is applied to a real machine vision application: a jam detector for steel pickling lines.
Quaternion Locality-Constrained Coding for Color Face Hallucination.
Liu, Licheng; Li, Shutao; Chen, C L Philip
2017-05-23
Recently, the locality linear coding (LLC) has attracted more and more attentions in the areas of image processing and computer vision. However, the conventional LLC with real setting is just designed for the grayscale image. For the color image, it usually treats each color channel individually or encodes the monochrome image by concatenating all the color channels, which ignores the correlations among different channels. In this paper, we propose a quaternion-based locality-constrained coding (QLC) model for color face hallucination in the quaternion space. In QLC, the face images are represented as quaternion matrices. By transforming the channel images into an orthogonal feature space and encoding the coefficients in the quaternion domain, the proposed QLC is expected to learn the advantages of both quaternion algebra and locality coding scheme. Hence, the QLC cannot only expose the true topology of image patch manifold but also preserve the inherent correlations among different color channels. Experimental results demonstrated that our proposed QLC method achieved superior performance in color face hallucination compared with other state-of-the-art methods.
CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts.
Carreira, João; Sminchisescu, Cristian
2012-07-01
We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a sequence of Constrained Parametric Min-Cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the corresponding segments by training a continuous model to predict how likely they are to exhibit real-world regularities (expressed as putative overlap with ground truth) based on their mid-level region properties, then diversify the estimated overlap score using maximum marginal relevance measures. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC 2009 and 2010 data sets. In our companion papers [1], [2], we show that the algorithm can be used, successfully, in a segmentation-based visual object category recognition pipeline. This architecture ranked first in the VOC2009 and VOC2010 image segmentation and labeling challenges.
Generalizing the majority voting scheme to spatially constrained voting.
Hajdu, András; Hajdu, Lajos; Jónás, Ágnes; Kovács, László; Tomán, Henrietta
2013-11-01
Generating ensembles from multiple individual classifiers is a popular approach to raise the accuracy of the decision. As a rule for decision making, majority voting is a usually applied model. In this paper, we generalize classical majority voting by incorporating probability terms pn,k to constrain the basic framework. These terms control whether a correct or false decision is made if k correct votes are present among the total number of n. This generalization is motivated by object detection problems, where the members of the ensemble are image processing algorithms giving their votes as pixels in the image domain. In this scenario, the terms pn,k can be specialized by a geometric constraint. Namely, the votes should fall inside a region matching the size and shape of the object to vote together. We give several theoretical results in this new model for both dependent and independent classifiers, whose individual accuracies may also differ. As a real world example, we present our ensemble-based system developed for the detection of the optic disc in retinal images. For this problem, experimental results are shown to demonstrate the characterization capability of this system. We also investigate how the generalized model can help us to improve an ensemble with extending it by adding a new algorithm.
Source-constrained retrieval influences the encoding of new information.
Danckert, Stacey L; MacLeod, Colin M; Fernandes, Myra A
2011-11-01
Jacoby, Shimizu, Daniels, and Rhodes (Psychonomic Bulletin & Review, 12, 852-857, 2005) showed that new words presented as foils among a list of old words that had been deeply encoded were themselves subsequently better recognized than new words presented as foils among a list of old words that had been shallowly encoded. In Experiment 1, by substituting a deep-versus-shallow imagery manipulation for the levels-of-processing manipulation, we demonstrated that the effect is robust and that it generalizes, also occurring with a different type of encoding. In Experiment 2, we provided more direct evidence for context-related encoding during tests of deeply encoded words, showing enhanced priming for foils presented among deeply encoded targets when participants made the same deep-encoding judgments on those items as had been made on the targets during study. In Experiment 3, we established that the findings from Experiment 2 are restricted to this specific deep judgment task and are not a general consequence of these foils being associated with deeply encoded items. These findings provide support for the source-constrained retrieval hypothesis of Jacoby, Shimizu, Daniels, and Rhodes: New information can be influenced by how surrounding items are encoded and retrieved, as long as the surrounding items recruit a coherent mode of processing.
On energy efficient power allocation for power-constrained systems
Sboui, Lokman
2014-09-01
Recently, the energy efficiency (EE) has become an important factor when designing new wireless communication systems. Due to economic and environmental challenges, new trends and efforts are oriented toward “green” communication especially for energy-constrained applications such as wireless sensors network and cognitive radio. To this end, we analyze the power allocation scheme that maximizes the EE defined as rate over the total power including circuit power. We derive an explicit expression of the optimal power with instantaneous channel gain based on EE criterion. We show that the relation between the EE and the spectral efficiency (SE) when the optimal power is adopted is strictly increasing in contrast with the SE-EE trade-off discussed in the literature. We also solve a non-convex problem and compute explicitly the optimal power for ergodic EE under either a peak or an average power constraint. When the instantaneous channel is not available, we provide the optimal power equation and compute simple sub-optimal power. In the numerical results, we show that the sup-optimal solution is very close to the optimal solution. In addition, we show that the absence of the channel state information (CSI) only affects the EE and the SE performances at high power regime compared to the full CSI case.
Variable Cultural Acquisition Costs Constrain Cumulative Cultural Evolution
Mesoudi, Alex
2011-01-01
One of the hallmarks of the human species is our capacity for cumulative culture, in which beneficial knowledge and technology is accumulated over successive generations. Yet previous analyses of cumulative cultural change have failed to consider the possibility that as cultural complexity accumulates, it becomes increasingly costly for each new generation to acquire from the previous generation. In principle this may result in an upper limit on the cultural complexity that can be accumulated, at which point accumulated knowledge is so costly and time-consuming to acquire that further innovation is not possible. In this paper I first review existing empirical analyses of the history of science and technology that support the possibility that cultural acquisition costs may constrain cumulative cultural evolution. I then present macroscopic and individual-based models of cumulative cultural evolution that explore the consequences of this assumption of variable cultural acquisition costs, showing that making acquisition costs vary with cultural complexity causes the latter to reach an upper limit above which no further innovation can occur. These models further explore the consequences of different cultural transmission rules (directly biased, indirectly biased and unbiased transmission), population size, and cultural innovations that themselves reduce innovation or acquisition costs. PMID:21479170
Constraining the phantom braneworld model from cosmic structure sizes
Bhattacharya, Sourav; Kousvos, Stefanos R.
2017-11-01
We consider the phantom braneworld model in the context of the maximum turnaround radius, RTA ,max, of a stable, spherical cosmic structure with a given mass. The maximum turnaround radius is the point where the attraction due to the central inhomogeneity gets balanced with the repulsion of the ambient dark energy, beyond which a structure cannot hold any mass, thereby giving the maximum upper bound on the size of a stable structure. In this work we derive an analytical expression of RTA ,max for this model using cosmological scalar perturbation theory. Using this we numerically constrain the parameter space, including a bulk cosmological constant and the Weyl fluid, from the mass versus observed size data for some nearby, nonvirial cosmic structures. We use different values of the matter density parameter Ωm, both larger and smaller than that of the Λ cold dark matter, as the input in our analysis. We show in particular, that (a) with a vanishing bulk cosmological constant the predicted upper bound is always greater than what is actually observed; a similar conclusion holds if the bulk cosmological constant is negative (b) if it is positive, the predicted maximum size can go considerably below than what is actually observed and owing to the involved nature of the field equations, it leads to interesting constraints on not only the bulk cosmological constant itself but on the whole parameter space of the theory.
Observationally Constraining Gas Giant Composition via Their Host Star Abundances
Teske, Johanna; Thorngren, Daniel; Fortney, Jonathan
2018-01-01
While the photospheric abundances of the Sun match many rock-forming elemental abundances in the Earth to within 10 mol%, as well as in Mars, the Moon, and meteorites, the Solar System giant planets are of distinctly non-stellar composition — Jupiter's bulk metallicity (inferred from its bulk density, measured from spacecraft data) is ∼ x5-10 solar, and Saturn is ∼ x10-20 solar. This knowledge has led to dramatic advances in understanding models of core accretion, which now match the heavy element enrichment of each of the Solar System's giant planets. However, we have thus far lacked similar data for exoplanets to use as a check for formation and composition models over a much larger parameter space. Here we present a study of the host stars of a sample of cool transiting gas giants with measured bulk metal fractions (as in Thorngren et al. 2016) to better constrain the relation Zplanet/Zstar — giant exoplanet metal enrichment relative to the host star. We add a new dimension of chemical variation, measuring C, O, Mg, Si, Ni, and well as Fe (on which previous Zplanet/Zstar calculations were based). Our analysis provides the best constraints to date on giant exoplanet interior composition and how this relates to formation environment, and make testable predictions for JWST observations of exoplanet atmospheres.
Impact of constrained rewiring on network structure and node dynamics.
Rattana, P; Berthouze, L; Kiss, I Z
2014-11-01
In this paper, we study an adaptive spatial network. We consider a susceptible-infected-susceptible (SIS) epidemic on the network, with a link or contact rewiring process constrained by spatial proximity. In particular, we assume that susceptible nodes break links with infected nodes independently of distance and reconnect at random to susceptible nodes available within a given radius. By systematically manipulating this radius we investigate the impact of rewiring on the structure of the network and characteristics of the epidemic. We adopt a step-by-step approach whereby we first study the impact of rewiring on the network structure in the absence of an epidemic, then with nodes assigned a disease status but without disease dynamics, and finally running network and epidemic dynamics simultaneously. In the case of no labeling and no epidemic dynamics, we provide both analytic and semianalytic formulas for the value of clustering achieved in the network. Our results also show that the rewiring radius and the network's initial structure have a pronounced effect on the endemic equilibrium, with increasingly large rewiring radiuses yielding smaller disease prevalence.
Red nucleus connectivity as revealed by constrained spherical deconvolution tractography.
Milardi, Demetrio; Cacciola, Alberto; Cutroneo, Giuseppina; Marino, Silvia; Irrera, Mariangela; Cacciola, Giorgio; Santoro, Giuseppe; Ciolli, Pietro; Anastasi, Giuseppe; Calabrò, Rocco Salvatore; Quartarone, Angelo
2016-07-28
Previous Diffusion Tensor Imaging studies have demonstrated that the human red nucleus is widely interconnected with sensory-motor and prefrontal cortices. In this study, we assessed red nucleus connectivity by using a multi-tensor model called non- negative Constrained Spherical Deconvolution (CSD), which is able to resolve more than one fiber orientation per voxel. Connections of the red nuclei of fifteen volunteers were studied at 3T using CSD axonal tracking. We found significant connectivity between RN and the following cortical and subcortical areas: cerebellar cortex, thalamus, paracentral lobule, postcentral gyrus, precentral gyrus, superior frontal gyrus and dentate nucleus. We confirmed that red nucleus is tightly linked with the cerebral cortex and has dense subcortical connections with thalamus and cerebellar cortex. These findings may be useful in a clinical context considering that RN is involved in motor control and it is known to have potential to compensate for injury of the corticospinal tract. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The affine constrained GNSS attitude model and its multivariate integer least-squares solution
Teunissen, P.J.G.
2012-01-01
A new global navigation satellite system (GNSS) carrier-phase attitude model and its solution are introduced in this contribution. This affine-constrained GNSS attitude model has the advantage that it avoids the computational complexity of the orthonormality-constrained GNSS attitude model, while it
21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite semi... § 888.3500 Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite semi-constrained cemented prosthesis is a two-part...
21 CFR 888.3530 - Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer semi... § 888.3530 Knee joint femorotibial metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer semi-constrained cemented prosthesis is a device intended...
21 CFR 888.3540 - Knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemoral polymer/metal semi... § 888.3540 Knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis. (a) Identification. A knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis is a two-part...
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial polymer/metal/metal... § 888.3550 Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis is a device...
21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite non... § 888.3490 Knee joint femorotibial metal/composite non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite non-constrained cemented prosthesis is a device...
On the convergence of the dynamic series solution of a constrained ...
African Journals Online (AJOL)
The one dimensional problem of analysing the dynamic behaviour of an elevated water tower with elastic deflection–control device and subjected to a dynamic load was examined in [2]. The constrained elastic system was modeled as a column carrying a concentrated mass at its top and elastically constrained at a point ...
Wickramasuriya, R.C.; Bregt, A.K.; Delden, van H.; Hagen-Zanker, A.
2009-01-01
This paper presents an extension to the Constrained Cellular Automata (CCA) land use model of White et al. [White, R., Engelen, G., Uljee, I., 1997. The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics. Environment and Planning B: Planning and Design
Relativistic Disc Line: A Tool to Constrain Neutron Star Equation of ...
Indian Academy of Sciences (India)
Sudip Bhattacharyya
2017-09-07
Sep 7, 2017 ... surements of three independent stellar parameters are required to probe the EoS models. Here, we propose to use rinc2/GM as one of these three parameters. More specifically, our method involves constraining the. M versus rinc2/GM space and/or the Rc2/GM versus rinc2/GM space in order to constrain ...
... diseases; starting first with eczema, then followed by food allergy, asthma, and allergic rhinitis. Researchers don’t yet know whether the Atopic March conditions merely coexist in people with overactive immune systems, or ... with eczema and food allergy in early childhood. However, the diseases don’ ...
Contingency-Constrained Unit Commitmentin Meshed Isolated Power Systems
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Vinter, Peter; Bærentsen, Runi
2015-01-01
is kept above a predefined limit in the event of a contingency. The minimum frequency constraints are formulated using novel sufficient conditions that take into account the system inertia and the dynamics of the power generators. The proposed sufficient conditions are attractive from both a computational...
Infertility in resource-constrained settings: moving towards amelioration.
Hammarberg, Karin; Kirkman, Maggie
2013-02-01
It is often presumed that infertility is not a problem in resource-poor areas where fertility rates are high. This is challenged by consistent evidence that the consequences of childlessness are very severe in low-income countries, particularly for women. In these settings, childless women are frequently stigmatized, isolated, ostracized, disinherited and neglected by the family and local community. This may result in physical and psychological abuse, polygamy and even suicide. Attitudes among people in high-income countries towards provision of infertility care in low-income countries have mostly been either dismissive or indifferent as it is argued that scarce healthcare resources should be directed towards reducing fertility and restricting population growth. However, recognition of the plight of infertile couples in low-income settings is growing. One of the United Nation's Millennium Development Goals was for universal access to reproductive health care by 2015, and WHO has recommended that infertility be considered a global health problem and stated the need for adaptation of assisted reproductive technology in low-resource countries. This paper challenges the construct that infertility is not a serious problem in resource-constrained settings and argues that there is a need for infertility care, including affordable assisted reproduction treatment, in these settings. It is often presumed that infertility is not a problem in densely populated, resource-poor areas where fertility rates are high. This presumption is challenged by consistent evidence that the consequences of childlessness are very severe in low-income countries, particularly for women. In these settings, childless women are frequently stigmatized, isolated, ostracized, disinherited and neglected by the family and local community. This may result in physical and psychological abuse, polygamy and even suicide. Because many families in low-income countries depend on children for economic survival
Wave speed in excitable random networks with spatially constrained connections.
Directory of Open Access Journals (Sweden)
Nikita Vladimirov
Full Text Available Very fast oscillations (VFO in neocortex are widely observed before epileptic seizures, and there is growing evidence that they are caused by networks of pyramidal neurons connected by gap junctions between their axons. We are motivated by the spatio-temporal waves of activity recorded using electrocorticography (ECoG, and study the speed of activity propagation through a network of neurons axonally coupled by gap junctions. We simulate wave propagation by excitable cellular automata (CA on random (Erdös-Rényi networks of special type, with spatially constrained connections. From the cellular automaton model, we derive a mean field theory to predict wave propagation. The governing equation resolved by the Fisher-Kolmogorov PDE fails to describe wave speed. A new (hyperbolic PDE is suggested, which provides adequate wave speed v( that saturates with network degree , in agreement with intuitive expectations and CA simulations. We further show that the maximum length of connection is a much better predictor of the wave speed than the mean length. When tested in networks with various degree distributions, wave speeds are found to strongly depend on the ratio of network moments / rather than on mean degree , which is explained by general network theory. The wave speeds are strikingly similar in a diverse set of networks, including regular, Poisson, exponential and power law distributions, supporting our theory for various network topologies. Our results suggest practical predictions for networks of electrically coupled neurons, and our mean field method can be readily applied for a wide class of similar problems, such as spread of epidemics through spatial networks.
Constraining the neutrino magnetic dipole moment from white dwarf pulsations
Energy Technology Data Exchange (ETDEWEB)
Córsico, A.H.; Althaus, L.G. [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata (Argentina); Bertolami, M.M. Miller [Instituto de Astrofísica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (1900) La Plata (Argentina); Kepler, S.O. [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970, RS (Brazil); García-Berro, E., E-mail: acorsico@fcaglp.unlp.edu.ar, E-mail: althaus@fcaglp.unlp.edu.ar, E-mail: marcelo@MPA-Garching.MPG.DE, E-mail: kepler@if.ufrgs.br, E-mail: enrique.garcia-berro@upc.edu [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades 5, 08860, Castelldefels (Spain)
2014-08-01
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.
Analyzing and constraining signaling networks: parameter estimation for the user.
Geier, Florian; Fengos, Georgios; Felizzi, Federico; Iber, Dagmar
2012-01-01
The behavior of most dynamical models not only depends on the wiring but also on the kind and strength of interactions which are reflected in the parameter values of the model. The predictive value of mathematical models therefore critically hinges on the quality of the parameter estimates. Constraining a dynamical model by an appropriate parameterization follows a 3-step process. In an initial step, it is important to evaluate the sensitivity of the parameters of the model with respect to the model output of interest. This analysis points at the identifiability of model parameters and can guide the design of experiments. In the second step, the actual fitting needs to be carried out. This step requires special care as, on the one hand, noisy as well as partial observations can corrupt the identification of system parameters. On the other hand, the solution of the dynamical system usually depends in a highly nonlinear fashion on its parameters and, as a consequence, parameter estimation procedures get easily trapped in local optima. Therefore any useful parameter estimation procedure has to be robust and efficient with respect to both challenges. In the final step, it is important to access the validity of the optimized model. A number of reviews have been published on the subject. A good, nontechnical overview is provided by Jaqaman and Danuser (Nat Rev Mol Cell Biol 7(11):813-819, 2006) and a classical introduction, focussing on the algorithmic side, is given in Press (Numerical recipes: The art of scientific computing, Cambridge University Press, 3rd edn., 2007, Chapters 10 and 15). We will focus on the practical issues related to parameter estimation and use a model of the TGFβ-signaling pathway as an educative example. Corresponding parameter estimation software and models based on MATLAB code can be downloaded from the authors's web page ( http://www.bsse.ethz.ch/cobi ).
Constraining Substellar Magnetic Dynamos using Auroral Radio Emission
Kao, Melodie; Hallinan, Gregg; Pineda, J. Sebastian; Escala, Ivanna; Burgasser, Adam J.; Stevenson, David J.
2017-01-01
An important outstanding problem in dynamo theory is understanding how magnetic fields are generated and sustained in fully convective stellar objects. A number of models for possible dynamo mechanisms in this regime have been proposed but constraining data on magnetic field strengths and topologies across a wide range of mass, age, rotation rate, and temperature are sorely lacking, particularly in the brown dwarf regime. Detections of highly circularly polarized pulsed radio emission provide our only window into magnetic field measurements for objects in the ultracool brown dwarf regime. However, these detections are very rare; previous radio surveys encompassing ˜60 L6 or later targets have yielded only one detection. We have developed a selection strategy for biasing survey targets based on possible optical and infrared tracers of auroral activity. Using our selection strategy, we previously observed six late L and T dwarfs with the Jansky Very Large Array (VLA) and detected the presence of highly circularly polarized radio emission for five targets. Our initial detections at 4-8 GHz provided the most robust constraints on dynamo theory in this regime, confirming magnetic fields >2.5 kG. To further develop our understanding of magnetic fields in the ultracool brown dwarf mass regime bridging planets and stars, we present constraints on surface magnetic field strengths for two Y-dwarfs as well as higher frequency observations of the previously detected L/T dwarfs corresponding ~3.6 kG fields. By carefully comparing magnetic field measurements derived from auroral radio emission to measurements derived from Zeeman broadening and Zeeman Doppler imaging, we provide tentative evidence that the dynamo operating in this mass regime may be inconsistent with predicted values from currently in vogue models. This suggests that parameters beyond convective flux may influence magnetic field generation in brown dwarfs.
Which factors limit constraining ecosystem models with remote sensing observations?
Viskari, T.; Serbin, S.; Shiklomanov, A. N.; Dietze, M.
2016-12-01
Improving terrestrial biosphere models (TBMs) has become an important challenge within the global change research community. At the same time, the amount and diversity of observational data constraints available to inform modeling activities has rapidly grown. For canopy radiative transfer, which is crucial for several processes within TBMs, the growing amount of remote sensing data across spatial and temporal scales is an invaluable resource for constraining model parameters and understanding the internal dynamics. Within the context of data assimilation this remote sensing data can be used to update both parameters and model states. However, due to the model complexity, there could be several possible parameter sets that can result in the same end state. Thus it is important to assess how reliably multiple parameters can be simultaneously estimated from remote sensing data.Here we present the coupling of the PROSPECT leaf radiative transfer model, which can simulate leaf transmittance and reflectance over the shortwave spectrum (i.e. 300 to 2500 nm) using 4-6 parameters, with the Ecosystem Demography model v2 in order to dynamically simulate the canopy albedo. We employ a synthetic analysis to test how efficiently our MCMC parameter data assimilation approach can correctly estimate the true parameter values within this complex system and how the results are influenced by the number of free parameters. Our results show that the efficiency of the assimilation approach decreases with larger numbers of free parameters. In addition these issues may lead to improper parameter sets that do not match those that produced the synthetic observations. However, we also show that modifications to the assimilation scheme and improved prior estimates can yield better results.
Constraining the neutrino magnetic dipole moment from white dwarf pulsations
Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Kepler, S. O.; García-Berro, E.
2014-08-01
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pi dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pi dot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μν lesssim 10-11 μB. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.
Clinical nurse specialists as entrepreneurs: constrained or liberated.
Austin, Lynn; Luker, Karen; Roland, Martin; Ronald, Martin
2006-12-01
This qualitative study explored the experiences of two groups of clinical nurse specialists--continence advisors and tissue viability nurses--working in primary care in the UK. In particular, the study focused on how clinical nurse specialists' relationships with other health-care professionals had an impact on their role. Clinical nurse specialists are recognized worldwide as having expertise in a given field, which they use to develop the practice of others. Additionally, clinical nurse specialists share many of the characteristics of entrepreneurs, which they use to develop services related to their speciality. However, little research has been conducted in relation to clinical nurse specialists' experiences as they attempt to diversify nursing practice. An ethnographic approach was adopted comprising many elements of Glaserian grounded theory. Data were collected via participant observation and face-to-face interviews with 22 clinical nurse specialists. Services provided by clinical nurse specialists were not static, clinical nurse specialists being the main drivers for service developments. However, clinical nurse specialists encountered difficulties when introducing new ideas. Given their role as advisors, clinical nurse specialists lacked authority to bring about change and were dependent on a number of mechanisms to bring about change, including 'cultivating relationships' with more powerful others, most notably the speciality consultant. The UK government has pledged to 'liberate the talents of nurses' so that their skills can be used to progress patient services. This study highlights the fact that a lack of collaborative working practices between health-care professionals led to clinical nurse specialists being constrained. Health-care organizations need to provide an environment in which the entrepreneurial skills of clinical nurse specialists may be capitalized on. In the absence of an outlet for their ideas regarding service developments, clinical
Depletion mapping and constrained optimization to support managing groundwater extraction
Fienen, Michael N.; Bradbury, Kenneth R.; Kniffin, Maribeth; Barlow, Paul M.
2018-01-01
Groundwater models often serve as management tools to evaluate competing water uses including ecosystems, irrigated agriculture, industry, municipal supply, and others. Depletion potential mapping—showing the model-calculated potential impacts that wells have on stream baseflow—can form the basis for multiple potential management approaches in an oversubscribed basin. Specific management approaches can include scenarios proposed by stakeholders, systematic changes in well pumping based on depletion potential, and formal constrained optimization, which can be used to quantify the tradeoff between water use and stream baseflow. Variables such as the maximum amount of reduction allowed in each well and various groupings of wells using, for example, K-means clustering considering spatial proximity and depletion potential are considered. These approaches provide a potential starting point and guidance for resource managers and stakeholders to make decisions about groundwater management in a basin, spreading responsibility in different ways. We illustrate these approaches in the Little Plover River basin in central Wisconsin, United States—home to a rich agricultural tradition, with farmland and urban areas both in close proximity to a groundwater-dependent trout stream. Groundwater withdrawals have reduced baseflow supplying the Little Plover River below a legally established minimum. The techniques in this work were developed in response to engaged stakeholders with various interests and goals for the basin. They sought to develop a collaborative management plan at a watershed scale that restores the flow rate in the river in a manner that incorporates principles of shared governance and results in effective and minimally disruptive changes in groundwater extraction practices.
Major constrains of the pelagic food web efficiency in the Mediterranean Sea
Zoccarato, L.; Fonda Umani, S.
2015-03-01
Grazing pressure plays a key role on plankton communities affecting their biodiversity and shaping their structures. Predation exerted by 2-200 μm protists (i.e. microzooplankton and heterotrophic nanoplankton) influences the carbon fate in marine environments channeling new organic matter from the microbial loop toward the "classic" grazing food web. In this study, we analyzed more than 80 dilution experiments carried out in many Mediterranean sites at the surface and in the meso-bathypelagic layers. Our aims were to investigate prey-predator interactions and determine selectivity among energy sources (in terms of available biomass), efficiency in the exploitation and highlight likely constrains that can modulate carbon transfer processes within the pelagic food webs. Generally, microzooplankton shown higher impacts on prey stocks than heterotrophic nanoflagellates, expressing larger ingestion rates and efficiency. Through different trophic conditions characterized on the base of chlorophyll a concentration, microzooplankton diet has shown to change in prey compositions: nano- and picoplankton almost completely covered consumer needs in oligotrophy and mesotrophy, while microphytoplankton (mostly diatoms) represented more than 80% of the consumers' diet in eutrophy, where, nevertheless, picoplankton mortality remained relatively high. Ingestion rates of both consumers (nano- and microzooplankters) increased with the availability of prey biomasses and consequently with the trophic condition of the environment. Nevertheless, overall the heterotrophic fraction of picoplankton resulted the most exploited biomass by both classes of consumers. Ingestion efficiency (as the ratio between available biomass and ingestion rate) increased at low biomasses and therefore the highest efficiencies were recorded in oligotrophic conditions and in the bathypelagic layers.
Giessen, Tobias W; Silver, Pamela A
2016-12-16
Engineered biological systems are used extensively for the production of high value and commodity organics. On the other hand, most inorganic nanomaterials are still synthesized via chemical routes. By engineering cellular compartments, functional nanoarchitectures can be produced under environmentally sustainable conditions. Encapsulins are a new class of microbial nanocompartments with promising applications in nanobiotechnology. Here, we engineer the Thermotoga maritima encapsulin EncTm to yield a designed compartment for the size-constrained synthesis of silver nanoparticles (Ag NPs). These Ag NPs exhibit uniform shape and size distributions as well as long-term stability. Ambient aqueous conditions can be used for Ag NP synthesis, while no reducing agents or solvents need to be added. The antimicrobial activity of the synthesized protein-coated or shell-free Ag NPs is superior to that of silver nitrate and citrate-capped Ag NPs. This study establishes encapsulins as an engineerable platform for the synthesis of biogenic functional nanomaterials.
Constraining global methane emissions and uptake by ecosystems
Directory of Open Access Journals (Sweden)
R. Spahni
2011-06-01
Full Text Available Natural methane (CH_{4} emissions from wet ecosystems are an important part of today's global CH_{4} budget. Climate affects the exchange of CH_{4} between ecosystems and the atmosphere by influencing CH_{4} production, oxidation, and transport in the soil. The net CH_{4} exchange depends on ecosystem hydrology, soil and vegetation characteristics. Here, the LPJ-WHyMe global dynamical vegetation model is used to simulate global net CH_{4} emissions for different ecosystems: northern peatlands (45°–90° N, naturally inundated wetlands (60° S–45° N, rice agriculture and wet mineral soils. Mineral soils are a potential CH_{4} sink, but can also be a source with the direction of the net exchange depending on soil moisture content. The geographical and seasonal distributions are evaluated against multi-dimensional atmospheric inversions for 2003–2005, using two independent four-dimensional variational assimilation systems. The atmospheric inversions are constrained by the atmospheric CH_{4} observations of the SCIAMACHY satellite instrument and global surface networks. Compared to LPJ-WHyMe the inversions result in a~significant reduction in the emissions from northern peatlands and suggest that LPJ-WHyMe maximum annual emissions peak about one month late. The inversions do not put strong constraints on the division of sources between inundated wetlands and wet mineral soils in the tropics. Based on the inversion results we diagnose model parameters in LPJ-WHyMe and simulate the surface exchange of CH_{4} over the period 1990–2008. Over the whole period we infer an increase of global ecosystem CH_{4} emissions of +1.11 Tg CH_{4} yr^{−1}, not considering potential additional changes in wetland extent. The increase in simulated CH_{4} emissions is attributed to enhanced soil respiration resulting from the observed rise in land
Constraining South Atlantic growth with seafloor spreading data
Perez-Diaz, Lucia; Eagles, Graeme
2015-04-01
The opening of the South Atlantic ocean is one of the most extensively researched problems in plate kinematics. Models of it have proliferated since Bullard, Everett and Smith published the first-ever computer-assisted reconstruction in the 60s. General agreement exists about ocean opening being the result of the northward propagating mid-Atlantic ridge, which implies a degree of intracontinental deformation. In view of this, modern studies assign this deformation to narrow deformation belts between large plate-like continental blocks in order to achieve best fits of the blocks' extended continental margins. The geological record of intracontinental deformation constrains the magnitude, orientation, and timing of block motion at very low resolution only. Similarly, the ages and shapes of the extended margins are not unanimously interpretable at high resolution. Aiming to avoid the uncertainties inherent in this approach, we model plate divergence as depicted by seafloor spreading data, and use this model as a context within which to interpret intracontinental tectonic motions. Our results show that it is possible to explain nearly all available oceanic kinematic data relating to the opening of the South Atlantic in terms of the divergence of only two plates, with seafloor spreading starting at 138 Ma. The motions leading to the assembly of South America by 123 Ma and Africa by 106 Ma are illustrated by an animated tectonic reconstruction. Furthermore, our model puts features such as the Vema Channel, Malvinas plate, NE Georgia Rise and Agulhas Plateau into context, explaining their formation and evolution within the process of divergence of the South American and African plates. Lastly, we examine the implications of our model in terms of the accommodation of spreading-related stresses within the continental interiors. We challenge the view of narrow deformation belts as the sole sites of stress accommodation by showing that such features may only account for
Fast Emission Estimates in China Constrained by Satellite Observations (Invited)
Mijling, B.; van der A, R.
2013-12-01
Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. Unfortunately, bottom-up emission inventories, compiled from large quantities of statistical data, are easily outdated for an emerging economy such as China, where rapid economic growth changes emissions accordingly. Alternatively, top-down emission estimates from satellite observations of air constituents have important advantages of being spatial consistent, having high temporal resolution, and enabling emission updates shortly after the satellite data become available. Constraining emissions from concentration measurements is, however, computationally challenging. Within the GlobEmission project of the European Space Agency (ESA) a new algorithm has been developed, specifically designed for fast daily emission estimates of short-lived atmospheric species on a mesoscopic scale (0.25 × 0.25 degree) from satellite observations of column concentrations. The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates in East China, using the CHIMERE model together with tropospheric NO2 column retrievals of the OMI and GOME-2 satellite instruments. The observations are used to construct a monthly emission time series, which reveal important emission trends such as the emission reduction measures during the Beijing Olympic Games, and the impact and recovery from the global economic crisis. The algorithm is also able to detect emerging sources (e.g. new power plants) and improve emission information for areas where proxy data are not or badly known (e.g. shipping emissions). The new emission estimates result in a better
Ohde, A.; Otsuka, H.; Kioka, A.; Ashi, J.
2015-12-01
The Nankai Trough is a plate convergent boundary where earthquakes with a magnitude of 8 take place repeatedly. Thermal structure in subduction zones affects pore pressure and diagenesis such as consolidation, dewatering and cementation, and constrains physical properties of a fault-slip plane. In the Nankai subduction zone, existence of methane hydrate is confirmed from acoustic reflectors called the Bottom Simulating Reflectors (BSRs) which parallel the seafloor on seismic reflection images with high-amplitude and reverse-polarity waveforms. As a depth of BSR is theoretically constrained by subseafloor profiles of temperature and pressure, the BSR depths effectively produce subseafloor geothermal information over a wide area without heat flow probe penetration or in-situ borehole temperature measurement that is fragmentary. In this study, we aim at calculating precise two-dimensional shallow thermal structure. First, we investigate detailed distribution of the BSRs in the Nankai area ranging from offshore Tokai to Hyuga using two-dimensional multi-channel seismic reflection data. The BSR depths are then forwarded to estimate heat flow values. Second, we use a simple two-dimensional thermal modeling of Blackwell et al. [1980] that takes into account topographical effects of the seafloor roughness. We also employ additional boundary conditions constrained by seafloor temperature and the heat flow estimated from BSR depths. In order to confirm reliability of the modeled thermal structure, we additionally estimate the base of gas hydrate stability zone which is proved to almost equal to observational BSR depths. We find in the modeled thermal structure that the convex portions that are subject to cooling by cold bottom water, while depressions are less subject to the cooling from observational BSRs and theoretical calculation. The thermal structure gained here provides essential data for seismic simulations in subduction zones and for laboratory experiments as
IMU-based ambulatory walking speed estimation in constrained treadmill and overground walking.
Yang, Shuozhi; Li, Qingguo
2012-01-01
This study evaluated the performance of a walking speed estimation system based on using an inertial measurement unit (IMU), a combination of accelerometers and gyroscopes. The walking speed estimation algorithm segments the walking sequence into individual stride cycles (two steps) based on the inverted pendulum-like behaviour of the stance leg during walking and it integrates the angular velocity and linear accelerations of the shank to determine the displacement of each stride. The evaluation was performed in both treadmill and overground walking experiments with various constraints on walking speed, step length and step frequency to provide a relatively comprehensive assessment of the system. Promising results were obtained in providing accurate and consistent walking speed/step length estimation in different walking conditions. An overall percentage root mean squared error (%RMSE) of 4.2 and 4.0% was achieved in treadmill and overground walking experiments, respectively. With an increasing interest in understanding human walking biomechanics, the IMU-based ambulatory system could provide a useful walking speed/step length measurement/control tool for constrained walking studies.
Niche Limits of Symbiotic Gut Microbiota Constrain the Salinity Tolerance of Brine Shrimp.
Nougué, Odrade; Gallet, Romain; Chevin, Luis-Miguel; Lenormand, Thomas
2015-09-01
Symbiosis generally causes an expansion of the niche of each partner along the axis for which a service is mutually provided. However, for other axes, the niche can be restricted to the intersection of each partner's niche and can thus be constrained rather than expanded by mutualism. We explore this phenomenon using Artemia as a model system. This crustacean is able to survive at very high salinities but not at low salinities, although its hemolymph's salinity is close to freshwater. We hypothesized that this low-salinity paradox results from poor performance of its associated microbiota at low salinity. We showed that, in sterile conditions, Artemia had low survival at all salinities when algae were the only source of carbon. In contrast, survival was high at all salinities when fed with yeast. We also demonstrated that bacteria isolated from Artemia's gut reached higher densities at high salinities than at low salinities, including when grown on algae. Taken together, our results show that Artemia can survive at low salinities, but their gut microbiota, which are required for algae digestion, have reduced fitness. Widespread facultative symbiosis may thus be an important determinant of niche limits along axes not specific to the mutualistic interaction.
Melwani Daswani, M.; Kite, E. S.
2017-09-01
Chloride-bearing deposits on Mars record high-elevation lakes during the waning stages of Mars' wet era (mid-Noachian to late Hesperian). The water source pathways, seasonality, salinity, depth, lifetime, and paleoclimatic drivers of these widespread lakes are all unknown. Here we combine reaction-transport modeling, orbital spectroscopy, and new volume estimates from high-resolution digital terrain models, in order to constrain the hydrologic boundary conditions for forming the chlorides. Considering a T = 0°C system, we find that (1) individual lakes were >100 m deep and lasted decades or longer; (2) if volcanic degassing was the source of chlorine, then the water-to-rock ratio or the total water volume were probably low, consistent with brief excursions above the melting point and/or arid climate; (3) if the chlorine source was igneous chlorapatite, then Cl-leaching events would require a (cumulative) time of >10 years at the melting point; and (4) Cl masses, divided by catchment area, give column densities 0.1-50 kg Cl/m2, and these column densities bracket the expected chlorapatite-Cl content for a seasonally warm active layer. Deep groundwater was not required. Taken together, our results are consistent with Mars having a usually cold, horizontally segregated hydrosphere by the time chlorides formed.
Multichannel sparse deconvolution of seismic data with shearlet-Cauchy constrained inversion
Liu, Chengming; Wang, Deli; Wang, Tong; Feng, Fei; Wang, Yonggang
2017-10-01
Multiscale and multidirectional transforms were introduced to represent non-spiky reflectivity instead of assuming spiky reflectivity in the deconvolution problem. The study found that an alternative sparse shearlet coefficient can be used to accurately represent the non-spiky reflectivity and solve the problem in a multichannel way. Such non-spiky reflectivity can help in avoiding the loss of weak reflection events, which is likely to occur in conventional methods due to over sparse constraints on spiky reflectivity. Moreover, compared to single-trace deconvolution methods, the multichannel method can enhance the continuity of reflection events and suppress high-frequency noise in the deconvolved data. Seismic inversion is usually considered an ill-conditioned problem because even very low-level noise can cause large errors in results, and normally requires the regularization of deconvolution operators. In this study, we propose the multichannel sparse deconvolution of seismic data with shearlet-Cauchy constrained inversion. Firstly, a stable method enabling accurate reflectivity estimation was developed based on maximum a posteriori estimation in Bayesian statistics. Then sparse shearlet coefficients are used to represent non-spiky reflectivity. According to the different distributions of noise and signal in the shearlet domain, thresholding methods can be used to suppress noise and increase the noise resistance of the proposed method. A comparison of synthetic data with field seismic data demonstrated the validity of the proposed method.
A Cost-Constrained Sampling Strategy in Support of LAI Product Validation in Mountainous Areas
Directory of Open Access Journals (Sweden)
Gaofei Yin
2016-08-01
Full Text Available Increasing attention is being paid on leaf area index (LAI retrieval in mountainous areas. Mountainous areas present extreme topographic variability, and are characterized by more spatial heterogeneity and inaccessibility compared with flat terrain. It is difficult to collect representative ground-truth measurements, and the validation of LAI in mountainous areas is still problematic. A cost-constrained sampling strategy (CSS in support of LAI validation was presented in this study. To account for the influence of rugged terrain on implementation cost, a cost-objective function was incorporated to traditional conditioned Latin hypercube (CLH sampling strategy. A case study in Hailuogou, Sichuan province, China was used to assess the efficiency of CSS. Normalized difference vegetation index (NDVI, land cover type, and slope were selected as auxiliary variables to present the variability of LAI in the study area. Results show that CSS can satisfactorily capture the variability across the site extent, while minimizing field efforts. One appealing feature of CSS is that the compromise between representativeness and implementation cost can be regulated according to actual surface heterogeneity and budget constraints, and this makes CSS flexible. Although the proposed method was only validated for the auxiliary variables rather than the LAI measurements, it serves as a starting point for establishing the locations of field plots and facilitates the preparation of field campaigns in mountainous areas.
The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics
Directory of Open Access Journals (Sweden)
Hameed Metghalchi
2012-01-01
Full Text Available The Rate-Controlled Constrained-Equilibrium (RCCE method for the description of the time-dependent behavior of dynamical systems in non-equilibrium states is a general, effective, physically based method for model order reduction that was originally developed in the framework of thermodynamics and chemical kinetics. A generalized mathematical formulation is presented here that allows including nonlinear constraints in non-local equilibrium systems characterized by the existence of a non-increasing Lyapunov functional under the system’s internal dynamics. The generalized formulation of RCCE enables to clarify the essentials of the method and the built-in general feature of thermodynamic consistency in the chemical kinetics context. In this paper, we work out the details of the method in a generalized mathematical-physics framework, but for definiteness we detail its well-known implementation in the traditional chemical kinetics framework. We detail proofs and spell out explicit functional dependences so as to bring out and clarify each underlying assumption of the method. In the standard context of chemical kinetics of ideal gas mixtures, we discuss the relations between the validity of the detailed balance condition off-equilibrium and the thermodynamic consistency of the method. We also discuss two examples of RCCE gas-phase combustion calculations to emphasize the constraint-dependent performance of the RCCE method.
Cacciola, Alberto; Calabrò, Rocco Salvatore; Costa, Antonio; Naro, Antonino; Milardi, Demetrio; Bruschetta, Daniele
2017-10-23
Virchow-Robin spaces are mainly located along the path of the lenticulo-striate arteries in the basal ganglia through the anterior perforate substance, and can be found both in normal subjects, as a rare phenomenon, and in patients with different diseases. We report a case of a healthy young man with unilateral enlarged Virchow-Robin spaces in the left capsule-lenticulostriate area. Aim of this case report is to show the potential of probabilistic Constrained Spherical Deconvolution (CSD) tractography in showing abnormal diffusion tensor imaging and tractography of the anterior thalamic tracts caused by mass effect from adjacent enlarged Virchow-Robin spaces. The study was performed with a 3T magnetic resonance imaging (MRI) scanner (Achieva, Philips Healthcare, Best, Netherlands); equipped with a 32-channel SENSE head coil. Diffusion Weighted Images were analyzed by using CSD, a fast computation method that overcomes major limitations of Diffusion Tensor Imaging allowing reliable estimation of one or more fiber orientations in the presence of intravoxel orientational heterogeneity. Tractography showed increased Fractional Anisotropy and reduced Apparent Diffusion Coefficient values, a displacement and compression of the anterior thalamic projections by part of the enlarged VRS, and a decrease of white matter fibers in the left side in comparison to the right one. We report on a case of a healthy individual with unilateral dilated VRS in the capsulo-lenticulostriatal area, proving the utility of diffusion MRI and tractography in understanding the abnormal neuroanatomy of this particular condition.
Liu, Wei; Kulin, Merima; Kazaz, Tarik; Shahid, Adnan; Moerman, Ingrid; De Poorter, Eli
2017-09-12
Driven by the fast growth of wireless communication, the trend of sharing spectrum among heterogeneous technologies becomes increasingly dominant. Identifying concurrent technologies is an important step towards efficient spectrum sharing. However, due to the complexity of recognition algorithms and the strict condition of sampling speed, communication systems capable of recognizing signals other than their own type are extremely rare. This work proves that multi-model distribution of the received signal strength indicator (RSSI) is related to the signals' modulation schemes and medium access mechanisms, and RSSI from different technologies may exhibit highly distinctive features. A distinction is made between technologies with a streaming or a non-streaming property, and appropriate feature spaces can be established either by deriving parameters such as packet duration from RSSI or directly using RSSI's probability distribution. An experimental study shows that even RSSI acquired at a sub-Nyquist sampling rate is able to provide sufficient features to differentiate technologies such as Wi-Fi, Long Term Evolution (LTE), Digital Video Broadcasting-Terrestrial (DVB-T) and Bluetooth. The usage of the RSSI distribution-based feature space is illustrated via a sample algorithm. Experimental evaluation indicates that more than 92% accuracy is achieved with the appropriate configuration. As the analysis of RSSI distribution is straightforward and less demanding in terms of system requirements, we believe it is highly valuable for recognition of wideband technologies on constrained devices in the context of dynamic spectrum access.
Corsaro, Enrico; Lee, Yueh-Ning; García, Rafael A.; Hennebelle, Patrick; Mathur, Savita; Beck, Paul G.; Mathis, Stephane; Stello, Dennis; Bouvier, Jérôme
2017-10-01
Stars originate by the gravitational collapse of a turbulent molecular cloud of a diffuse medium, and are often observed to form clusters. Stellar clusters therefore play an important role in our understanding of star formation and of the dynamical processes at play. However, investigating the cluster formation is diffcult because the density of the molecular cloud undergoes a change of many orders of magnitude. Hierarchical-step approaches to decompose the problem into different stages are therefore required, as well as reliable assumptions on the initial conditions in the clouds. We report for the first time the use of the full potential of NASA Kepler asteroseismic observations coupled with 3D numerical simulations, to put strong constraints on the early formation stages of open clusters. Thanks to a Bayesian peak bagging analysis of about 50 red giant members of NGC 6791 and NGC 6819, the two most populated open clusters observed in the nominal Kepler mission, we derive a complete set of detailed oscillation mode properties for each star, with thousands of oscillation modes characterized. We therefore show how these asteroseismic properties lead us to a discovery about the rotation history of stellar clusters. Finally, our observational findings will be compared with hydrodynamical simulations for stellar cluster formation to constrain the physical processes of turbulence, rotation, and magnetic fields that are in action during the collapse of the progenitor cloud into a proto-cluster.
Constrained Simulations of the Magnetic Field in the Local Universe and the Propagation of UHECRs
Dolag, Klaus; Springel, Volker; Tkachev, Igor; Dolag, Klaus; Grasso, Dario; Springel, Volker; Tkachev, Igor
2005-01-01
We use simulations of LSS formation to study the build-up of magnetic fields (MFs) in the ICM. Our basic assumption is that cosmological MFs grow in a MHD amplification process driven by structure formation out of a seed MF present at high z. Our LCDM initial conditions for the density fluctuations have been statistically constrained by the observed galaxies, based on the IRAS 1.2-Jy all-sky redshift survey. As a result, prominent galaxy clusters in our simulation coincide closely with their real counterparts. We find excellent agreement between RMs of our simulated clusters and observational data. The improved resolution compared to previous work also allows us to study the MF in large-scale filaments, sheets and voids. By tracing the propagation of UHE protons in the simulated MF we construct full-sky maps of expected deflection angles of protons with arrival energies E=1e20eV and 4e19eV, respectively. Strong deflections are only produced if UHE protons cross clusters, however covering only a small area on ...
Dust deposition: the best way to constrain the simulated dust mass budget?
Bergametti, Gilles
2010-05-01
Dust deposition is a key process of the dust cycle. In term of mass, deposition is equal to emissions and dust deposition being a size dependent process, the evolution of the size distribution during transport is in a large part controlled by the intensity of the deposition pathways. Moreover, the dust material removed from the atmosphere is a key component of many biogeochemical cycles: far from the source regions, atmospheric dust deposition supplies surface seawater with soil-derived elements, many of them (Fe, P. . .) being suspected to be limiting nutrients for oceanic ecosystems while in the continental areas, deposition contributes to soil formation in many surrounding desert areas. Finally, dust archives from deep ocean sediments, ice cores, lakes or continental loess deposits are used as proxies of past environmental and climate conditions. Thus, dust deposition is of high environmental interest and a special attention should be given to properly assess its intensity and spatio-temporal fields. Despite the major role and the various impacts of dust deposition, little attention was given to both deposition measurements and modelling. However, a better knowledge of the spatial and temporal distribution of the deposition field would greatly help to better constrain the dust cycle. Indeed, even if recent progresses have been made in dust emission modelling, it could remain large uncertainties on the intensity of the simulated dust emissions. Having a good estimate of the deposition will contribute to better assess the relevance of simulated dust emissions.
Constrained structural dynamic model verification using free vehicle suspension testing methods
Blair, Mark A.; Vadlamudi, Nagarjuna
1988-01-01
Verification of the validity of a spacecraft's structural dynamic math model used in computing ascent (or in the case of the STS, ascent and landing) loads is mandatory. This verification process requires that tests be carried out on both the payload and the math model such that the ensuing correlation may validate the flight loads calculations. To properly achieve this goal, the tests should be performed with the payload in the launch constraint (i.e., held fixed at only the payload-booster interface DOFs). The practical achievement of this set of boundary conditions is quite difficult, especially with larger payloads, such as the 12-ton Hubble Space Telescope. The development of equations in the paper will show that by exciting the payload at its booster interface while it is suspended in the 'free-free' state, a set of transfer functions can be produced that will have minima that are directly related to the fundamental modes of the payload when it is constrained in its launch configuration.
Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.
2015-01-01
Mercury is known as an endmember planet as it is the most reduced terrestrial planet with the highest core/mantle ratio. MESSENGER spacecraft has shown that its surface is FeO-poor (2-4 wt%) and Srich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting important melting stages of the Mercurian mantle. This interpretation was confirmed by the high crustal thickness (up to 100 km) derived from Mercury's gravity field. This is also corroborated by a recent experimental result that showed that Mercurian partial melts are expected to be highly buoyant within the Mercurian mantle and could have risen from depths as high as the core-mantle boundary. In addition MESSENGER spacecraft provided relatively precise data on major elemental compositions of Mercury's surface. These results revealed important chemical and mineralogical heterogeneities that suggested several stages of differentiation and re-melting processes. However, the extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Therefore, in this study, we investigated the processes that lead to the various compositions of Mercury's surface. Melting experiments with bulk Mercury-analogue compositions were performed and compared to the compositions measured by MESSENGER.
Boyer, K. L.; Wuescher, D. M.; Sarkar, S.
1991-01-01
Dynamic edge warping (DEW), a technique for recovering reasonably accurate disparity maps from uncalibrated stereo image pairs, is presented. No precise knowledge of the epipolar camera geometry is assumed. The technique is embedded in a system including structural stereopsis on the front end and robust estimation in digital photogrammetry on the other for the purpose of self-calibrating stereo image pairs. Once the relative camera orientation is known, the epipolar geometry is computed and the system can use this information to refine its representation of the object space. Such a system will find application in the autonomous extraction of terrain maps from stereo aerial photographs, for which camera position and orientation are unknown a priori, and for online autonomous calibration maintenance for robotic vision applications, in which the cameras are subject to vibration and other physical disturbances after calibration. This work thus forms a component of an intelligent system that begins with a pair of images and, having only vague knowledge of the conditions under which they were acquired, produces an accurate, dense, relative depth map. The resulting disparity map can also be used directly in some high-level applications involving qualitative scene analysis, spatial reasoning, and perceptual organization of the object space. The system as a whole substitutes high-level information and constraints for precise geometric knowledge in driving and constraining the early correspondence process.
Gravitational waves in dynamical spacetimes with matter content in the fully constrained formulation
Cordero-Carrión, Isabel; Cerdá-Durán, Pablo; Ibáñez, José María
2012-02-01
The fully constrained formulation (FCF) of general relativity is a framework introduced as an alternative to the hyperbolic formulations traditionally used in numerical relativity. The FCF equations form a hybrid elliptic-hyperbolic system of equations including explicitly the constraints. We present an implicit-explicit numerical algorithm to solve the hyperbolic part, whereas the elliptic sector shares the form and properties with the well-known conformally flat condition approximation. We show the stability and convergence properties of the numerical scheme with numerical simulations of vacuum solutions. We have performed the first numerical evolutions of the coupled system of hydrodynamics and Einstein equations within FCF. As a proof of principle of the viability of the formalism, we present 2D axisymmetric simulations of an oscillating neutron star. In order to simplify the analysis we have neglected the backreaction of the gravitational waves into the dynamics, which is small (<2%) for the system considered in this work. We use spherical coordinates grids which are well adapted for simulations of stars and allow for extended grids that marginally reach the wave zone. We have extracted the gravitational wave signature and compared it to the Newtonian quadrupole and hexadecapole formulas. Both extraction methods show agreement within the numerical errors and the approximations used (˜30%).
Montesinos, D.; García-Fayos, P.; Verdú, M.
2010-01-01
Juniperus thurifera populations are scattered throughout the western Mediterranean basin and are relictual from its Tertiary distribution due to progressive climatic warming since the last glacial period. To disentangle the factors responsible for its extremely low fertility we combined a microscale experimental design with a macroscale study. At the microscale we experimentally alleviated environmental stress by watering and fertilizing during two years a set of trees in one population. At macroscale we selected 11 populations across a geographical range and sampled them for three years. Macroscale patterns evidenced that both plant fertility and leaf longevity diminished with increasing elevation. Both microscale and macroscale illustrated the importance of water and nutrient availability on leaf growth and plant fertility: On the microscale experiments, regular supply of water and nutrients increased fruit-set by 300%. Macroscale showed that increases in resource availability (precipitation) resulted in reductions of seed abortion, although paralleled by increases in seed predation. Altogether, our results indicate that fertility is constrained both by elevation and by resource limitation. Therefore any potential lift in the elevational distribution limits will result in synergistic fertility reductions due to harder physical conditions and lower water and nutrient availability. Both will compromise future regeneration of this relictual species, although population decline might be buffered temporary thanks to longevity of adult trees.
Constraining the Carbon Cycle through Tree Rings: A Case Study of the Valles Caldera, NM
Alexander, M. R.; Babst, F.; Moore, D. J.; Trouet, V.
2013-12-01
Terrestrial ecosystems take up approximately 120 Gt of carbon as Gross Primary Productivity (GPP) from the atmosphere annually, but it is challenging to track the allocation of that carbon throughout the biosphere. Here, we combine eddy covariance measurements of net carbon uptake with above ground biomass increments derived from tree-ring data to better understand the interannual variability associated with biomass accumulation. In the summer of 2012, we collected tree cores near two eddy covariance towers in the Jemez Mountains of northern New Mexico. One tower was located in an upper elevation mixed-conifer forest, and the other in a lower elevation Pinus ponderosa forest. Our analysis shows that the annual above ground biomass increment accounted for approximately 40% of the GPP at the lower elevation Pinus ponderosa site and approximately 70% of GPP at the upper elevation mixed-conifer site. We have also used the above ground biomass increment to constrain the Simple Photosynthesis EvapoTranspiration (SiPNET) model to gain a better understanding of allocation within the forest. Tree growth at both elevations was negatively influenced by spring (March-June) temperature and positively by cool season (October-April) precipitation and warm (May-September) and cool season PDSI. We also analyzed the six most extreme temperature and moisture (PDSI) years of the record to determine the response of productivity to climatic forcing. During the driest years, biomass production was reduced by 40% at the upper elevation site and 43% at the lower elevation site. During the hottest years of the record the biomass decreased 28% at the upper site and 45% at the lower site. Our results indicate that tree rings can be used to effectively constrain the above ground biomass component of a forest's carbon budget and to estimate allocation of carbon to woody biomass as a function of climate. However, many variables remain unknown. The combined results of the extreme year analyses
Directory of Open Access Journals (Sweden)
H. C. Winsemius
2008-12-01
Full Text Available In this study, land surface related parameter distributions of a conceptual semi-distributed hydrological model are constrained by employing time series of satellite-based evaporation estimates during the dry season as explanatory information. The approach has been applied to the ungauged Luangwa river basin (150 000 (km^{2} in Zambia. The information contained in these evaporation estimates imposes compliance of the model with the largest outgoing water balance term, evaporation, and a spatially and temporally realistic depletion of soil moisture within the dry season. The model results in turn provide a better understanding of the information density of remotely sensed evaporation. Model parameters to which evaporation is sensitive, have been spatially distributed on the basis of dominant land cover characteristics. Consequently, their values were conditioned by means of Monte-Carlo sampling and evaluation on satellite evaporation estimates. The results show that behavioural parameter sets for model units with similar land cover are indeed clustered. The clustering reveals hydrologically meaningful signatures in the parameter response surface: wetland-dominated areas (also called dambos show optimal parameter ranges that reflect vegetation with a relatively small unsaturated zone (due to the shallow rooting depth of the vegetation which is easily moisture stressed. The forested areas and highlands show parameter ranges that indicate a much deeper root zone which is more drought resistent. Clustering was consequently used to formulate fuzzy membership functions that can be used to constrain parameter realizations in further calibration. Unrealistic parameter ranges, found for instance in the high unsaturated soil zone values in the highlands may indicate either overestimation of satellite-based evaporation or model structural deficiencies. We believe that in these areas, groundwater uptake into the root zone and lateral movement of
Priority classes and weighted constrained equal awards rules for the claims problem
DEFF Research Database (Denmark)
Szwagrzak, Karol
2015-01-01
. They are priority-augmented versions of the standard weighted constrained equal awards rules, also known as weighted gains methods (Moulin, 2000): individuals are sorted into priority classes; the resource is distributed among the individuals in the first priority class using a weighted constrained equal awards...... rule; if some of the resource is left over, then it is distributed among the individuals in the second priority class, again using a weighted constrained equal awards rule; the distribution carries on in this way until the resource is exhausted. Our characterization extends to a generalized version...
Directory of Open Access Journals (Sweden)
V. I. Djigan
2007-12-01
Full Text Available This paper considers the application of the linear constraints and RLS inverse QR decomposition in adaptive arrays based on constant modulus criterion. The computational procedures of adaptive algorithms are presented. Linearly constrained least squares adaptive arrays, constant modulus adaptive arrays and linearly constrained constant modulus adaptive arrays are compared via simulation. It is demonstrated, that a constant phase shift in the array output signal, caused by desired signal orientation and array weights, is compensated in a simple way in linearly constrained constant modulus adaptive arrays.