WorldWideScience

Sample records for evaporator tank system

  1. Out-of-tank evaporator demonstration: Tanks focus area

    International Nuclear Information System (INIS)

    1998-11-01

    Approximately 100 million gal of liquid waste is stored in underground storage tanks (UST)s at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Oak Ridge Reservation (ORR). This waste is radioactive with a high salt content. The US Department of Energy (DOE) wants to minimize the volume of radioactive liquid waste in USTs by removing the excess water. This procedure conserves tank space; lowers the cost of storage; and reduces the volume of wastes subsequently requiring separation, immobilization, and disposal. The Out-of-Tank Evaporator Demonstration (OTED) was initiated to test a modular, skid-mounted evaporator. A mobile evaporator system manufactured by Delta Thermal Inc. was selected. The evaporator design was routinely used in commercial applications such as concentrating metal-plating wastes for recycle and concentrating ethylene glycol solutions. In FY 1995, the skid-mounted evaporator system was procured and installed in an existing ORNL facility (Building 7877) with temporary shielding and remote controls. The evaporator system was operational in January 1996. The system operated 24 h/day and processed 22,000 gal of Melton Valley Storage Tank (MVST) supernatant. The distillate contained essentially no salts or radionuclides. Upon completion of the demonstration, the evaporator underwent decontamination testing to illustrate the feasibility of hands-on maintenance and potential transport to another DOE facility. This report describes the process and the evaporator, its performance at ORNL, future plans, applications of this technology, cost estimates, regulatory and policy considerations, and lessons learned

  2. 1998 interim 242-A Evaporator tank system integrity assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.E.

    1998-07-02

    This Integrity Assessment Report (IAR) is prepared by Fluor Daniel Northwest (FDNW) under contract to Lockheed-Martin Hanford Company (LMHC) for Waste Management Hanford (WMH), the 242-A Evaporator (facility) operations contractor for Fluor Daniel Hanford, and the US Department of Energy, the system owner. The contract specifies that FDNW perform an interim (5 year) integrity assessment of the facility and prepare a written IAR in accordance with Washington Administrative Code (WAC) 173-303-640. The WAC 173-303 defines a treatment, storage, or disposal (TSD) facility tank system as the ``dangerous waste storage or treatment tank and its ancillary equipment and containment.`` This integrity assessment evaluates the two tank systems at the facility: the evaporator vessel, C-A-1 (also called the vapor-liquid separator), and the condensate collection tank, TK-C-100. This IAR evaluates the 242-A facility tank systems up to, but not including, the last valve or flanged connection inside the facility perimeter. The initial integrity assessment performed on the facility evaluated certain subsystems not directly in contact with dangerous waste, such as the steam condensate and used raw water subsystems, to provide technical information. These subsystems were not evaluated in this IAR. The last major upgrade to the facility was project B-534. The facility modifications, as a result of project B-534, were evaluated in the 1993 facility interim integrity assessment. Since that time, the following upgrades have occurred in the facility: installation of a process condensate recycle system, and installation of a package steam boiler to provide steam for the facility. The package boiler is not within the scope of the facility TSD.

  3. 1998 interim 242-A Evaporator tank system integrity assessment report

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1998-01-01

    This Integrity Assessment Report (IAR) is prepared by Fluor Daniel Northwest (FDNW) under contract to Lockheed-Martin Hanford Company (LMHC) for Waste Management Hanford (WMH), the 242-A Evaporator (facility) operations contractor for Fluor Daniel Hanford, and the US Department of Energy, the system owner. The contract specifies that FDNW perform an interim (5 year) integrity assessment of the facility and prepare a written IAR in accordance with Washington Administrative Code (WAC) 173-303-640. The WAC 173-303 defines a treatment, storage, or disposal (TSD) facility tank system as the ''dangerous waste storage or treatment tank and its ancillary equipment and containment.'' This integrity assessment evaluates the two tank systems at the facility: the evaporator vessel, C-A-1 (also called the vapor-liquid separator), and the condensate collection tank, TK-C-100. This IAR evaluates the 242-A facility tank systems up to, but not including, the last valve or flanged connection inside the facility perimeter. The initial integrity assessment performed on the facility evaluated certain subsystems not directly in contact with dangerous waste, such as the steam condensate and used raw water subsystems, to provide technical information. These subsystems were not evaluated in this IAR. The last major upgrade to the facility was project B-534. The facility modifications, as a result of project B-534, were evaluated in the 1993 facility interim integrity assessment. Since that time, the following upgrades have occurred in the facility: installation of a process condensate recycle system, and installation of a package steam boiler to provide steam for the facility. The package boiler is not within the scope of the facility TSD

  4. Out-of-tank evaporator demonstration. Final report

    International Nuclear Information System (INIS)

    Lucero, A.J.; Jennings, H.L.; VanEssen, D.C.

    1998-02-01

    The project reported here was conducted to demonstrate a skid-mounted, subatmospheric evaporator to concentrate liquid low-level waste (LLLW) stored in underground tanks at Oak Ridge National Laboratory (ORNL). This waste is similar to wastes stored at Hanford and Savannah River. A single-stage subatmospheric evaporator rated to produce 90 gallons of distillate per hour was procured from Delta Thermal, Inc., of Pensacola, Florida, and installed in an existing building. During the 8-day demonstration, 22,000 gal of LLLW was concentrated by 25% with the evaporator system. Decontamination factors achieved averaged 5 x 10 6 (i.e., the distillate contained five million times less Cesium 137 than the feed). Evaporator performance substantially exceeded design requirements and expectations based on bench-scale surrogate test data. Out-of tank evaporator demonstration operations successfully addressed the feasibility of hands-on maintenance. Demonstration activities indicate that: (1) skid-mounted, mobile equipment is a viable alternative for the treatment of ORNL LLLW, and (2) hands-on maintenance and decontamination for movement to another site is achievable. Cost analysis show that 10% of the demonstration costs will be immediately recovered by elimination of solidification and disposal costs. The entire cost of the demonstration can be recovered by processing the inventory of Melton Valley Storage Tank waste and/or sluice water prior to solidifications. An additional savings of approximately $200,000 per year can be obtained by processing newly generated waste through the system. The results indicate that this type of evaporator system should be considered for application across the DOE complex. 25 refs., 11 figs., 2 tabs

  5. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Richard Doin; Lamb, Kenneth Mitchel; Matejka, Leon Anthony; Nenni, Joseph A

    2002-02-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  6. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    International Nuclear Information System (INIS)

    Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

    2002-01-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5

  7. Tank 241-A-105 evaporation estimate, 1970 through 1978

    International Nuclear Information System (INIS)

    Allen, G.K.

    1991-09-01

    Tank 241-A-105 was subjected to a severe steam explosion in January 1965 that caused the metal liner on the bottom to bulge upward approximately 8 feet above its concrete foundation. Shortly after this event, radiation was detected in drywells around the tank and it was declared a leaker. Sluicing operations to remove material from the tank began in August 1968 and continued through August 1970. After sluicing was completed, a significant amount of heat generating material still remained in the tank. To keep tank temperatures below operating limits, the water level in the tank was maintained at an approximate depth of 1.5 feet. This practice was continued until January 1979 when it was believed that the contents had decayed sufficiently to discontinue the water addition and put the tank on a portable exhauster system. Recent concern has focused on what portion of this cooling water added to Tank 241-A-105 actually evaporated and how much leaked into the soil during the nine year time period. This report presents the results of a study that estimates the amount of water evaporated from Tank 241-A-105 between 1970 and 1979. The problem was completed in two parts. The first part involved development of a three dimensional heat transfer model which was used to establish the tank heat load. The results of this model were validated against thermocouple data from Tank 241-A-105. The heat removed from the tank by the ventilation air was then used as input to a second computer code, which calculated the water evaporation. Based upon these two models, the amount of water evaporated from Tank 241-A-105, between 1970 and 1979, was between 378,000 and 410,000 gallons. 9 refs., 17 figs., 7 tabs

  8. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory; ANNUAL

    International Nuclear Information System (INIS)

    Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

    2002-01-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5

  9. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Koischwitz, Ingmar [Gesellschaft fuer Nuklear-Service mbH, 45127 Essen (Germany); Dinter, Andreas [E.ON Kernkraft GmbH, Kernkraftwerk Stade, 21657 Stade (Germany)

    2008-07-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m{sup 3} in total, equally distributed into four storage tanks with a capacity of max 3 m{sup 3} for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  10. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    International Nuclear Information System (INIS)

    Koischwitz, Ingmar; Dinter, Andreas

    2008-01-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m 3 in total, equally distributed into four storage tanks with a capacity of max 3 m 3 for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  11. Evaporation analysis for Tank SX-104

    International Nuclear Information System (INIS)

    Barrington, C.A.

    1994-10-01

    Decreases in historical interstitial liquid level measurements in tank SX-104 were compared to predictions of a numerical model based upon diffusion of water through a porous crust. The analysis showed that observed level decreases could be explained by evaporation

  12. 1998 242-A interim evaporator tank system integrity assessment plan

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.E.

    1998-03-31

    Portions of the 242-A Evaporator on the Hanford Site must be assessed to meet the requirements of the Washington State Department of Ecology`s Dangerous Waste Regulation, Washington Administrative Code (WAC) 173-303. The assessment is limited to the provisions of Section 173-303-640. This Integrity Assessment Plan (IAP) identifies tasks which will be performed during the assessment phase and describes the intended assessment techniques. The 242-A Evaporator facility processes waste solutions from most of the operating laboratories and plants of the Hanford Site. The waste solutions are concentrated in the evaporator to a slurry of liquid and crystallized salts. This concentrated slurry is returned to the Tank Farms at a significantly reduce volume. The water vapor from the evaporation process is condensed, filtered, and can be pumped through an ion exchange bed before transfer to a retention basin. The non-condensable portion of the vapor is filtered and continuously monitored before venting to the atmosphere. The 242-A Evaporator will be assessed as seven subsystems. Four of the subsystems store, transport or treat Washington State Dangerous wastes, the other three subsystems are integral parts of the process, however, they do not directly store, transfer, or treat listed dangerous wastes. The facility will be inspected, tested, and analyzed through this assessment. The seven subsystems, defined in detail in Appendix B, are: Evaporator Process and Slurry Subsystem; Vapor Condenser Subsystem; Vessel Vent Subsystem; Process Condensate Subsystem; Steam Condensate Subsystem; Raw Water Disposal Subsystem; and Building and Secondary Containment Subsystem.

  13. 1998 242-A interim evaporator tank system integrity assessment plan

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1998-01-01

    Portions of the 242-A Evaporator on the Hanford Site must be assessed to meet the requirements of the Washington State Department of Ecology's Dangerous Waste Regulation, Washington Administrative Code (WAC) 173-303. The assessment is limited to the provisions of Section 173-303-640. This Integrity Assessment Plan (IAP) identifies tasks which will be performed during the assessment phase and describes the intended assessment techniques. The 242-A Evaporator facility processes waste solutions from most of the operating laboratories and plants of the Hanford Site. The waste solutions are concentrated in the evaporator to a slurry of liquid and crystallized salts. This concentrated slurry is returned to the Tank Farms at a significantly reduce volume. The water vapor from the evaporation process is condensed, filtered, and can be pumped through an ion exchange bed before transfer to a retention basin. The non-condensable portion of the vapor is filtered and continuously monitored before venting to the atmosphere. The 242-A Evaporator will be assessed as seven subsystems. Four of the subsystems store, transport or treat Washington State Dangerous wastes, the other three subsystems are integral parts of the process, however, they do not directly store, transfer, or treat listed dangerous wastes. The facility will be inspected, tested, and analyzed through this assessment. The seven subsystems, defined in detail in Appendix B, are: Evaporator Process and Slurry Subsystem; Vapor Condenser Subsystem; Vessel Vent Subsystem; Process Condensate Subsystem; Steam Condensate Subsystem; Raw Water Disposal Subsystem; and Building and Secondary Containment Subsystem

  14. Configuration management plan for waste tank farms and the 242-A evaporator of tank waste remediation system

    International Nuclear Information System (INIS)

    Laney, T.

    1994-01-01

    The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ''Guide for Operational Configuration Management Program.'' The DOE Standard defines the configuration management program by the five basic program elements of ''program management,'' ''design requirements,'' ''document control,'' ''change control,'' and ''assessments,'' and the two adjunct recovery programs of ''design reconstitution,'' and ''material condition and aging management.'' The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System

  15. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  16. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    International Nuclear Information System (INIS)

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms

  17. EVALUATION OF MIXING IN THE SLURRY MIX EVAPORATOR AND MELTER FEED TANK

    International Nuclear Information System (INIS)

    MARINIK, ANDREW

    2004-01-01

    The Defense Waste Processing Facility (DWPF) vitrifies High Level radioactive Waste (HLW) currently stored in underground tanks at the Savannah River Site (SRS). The HLW currently being processed is a waste sludge composed primarily of metal hydroxides and oxides in caustic slurry. These slurries are typically characterized as Bingham Plastic fluids. The HLW undergoes a pretreatment process in the Chemical Process Cell (CPC) at DWPF. The processed HLW sludge is then transferred to the Sludge Receipt and Adjustment Tank (SRAT) where it is acidified with nitric and formic acid then evaporated to concentrate the solids. Reflux boiling is used to strip mercury from the waste and then the waste is transferred to the Slurry Mix Evaporator tank (SME). Glass formers are added as a frit slurry to the SME to prepare the waste for vitrification. This mixture is evaporated in the SME to the final concentration target. The frit slurry mixture is then transferred to the Melter Feed Tank (MFT) to be fed to the melter

  18. Double-shell tank system dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This Double-Shell Tank System Dangerous Waste Permit Application should be read in conjunction with the 242-A Evaporator Dangerous Waste Permit Application and the Liquid Effluent Retention Facility Dangerous Waste Permit Application, also submitted on June 28, 1991. Information contained in the Double-Shell Tank System permit application is referenced in the other two permit applications. The Double-Shell Tank System stores and treats mixed waste received from a variety of sources on the Hanford Site. The 242-A Evaporator treats liquid mixed waste received from the double-shell tanks. The 242-A Evaporator returns a mixed-waste slurry to the double-shell tanks and generates the dilute mixed-waste stream stored in the Liquid Effluent Retention Facility. This report contains information on the following topics: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report; Waste Minimization Plan; Closure and Postclosure Requirements; Reporting and Recordkeeping; other Relevant Laws; and Certification. 150 refs., 141 figs., 118 tabs

  19. Sampling and Analysis Plan for Tank 241-AP-108 Waste in Support of Evaporator Campaign 2000-1

    International Nuclear Information System (INIS)

    RASMUSSEN, J.H.

    2000-01-01

    This Tank Sampling and Analysis Plan (TSAP) identifies sample collection, laboratory analysis, quality assurance/quality control (QA/QC), and reporting objectives for the characterization of tank 241-AP-108 waste. Technical bases for these objectives are specified in the 242-A Evaporator Data Quality Objectives (Bowman 2000 and Von Bargen 1998) and 108-AP Tank Sampling Requirements in Support of Evaporator Campaign 2000-1 (Le 2000). Evaporator campaign 2000-1 will process waste from tank 241-AP-108 in addition to that from tank 241-AP-107. Characterization results will be used to support the evaporator campaign currently planned for early fiscal year 2000. No other needs (or issues) requiring data for this tank waste apply to this sampling event

  20. Sampling and Analysis for Tank 241-AW-104 Waste in Support of Evaporator Campaign 2001-1

    International Nuclear Information System (INIS)

    MCKINNEY, S.G.

    2000-01-01

    This Tank Sampling and Analysis Plan (TSAP) identifies sample collection, laboratory analysis, quality assurance/quality control (QA/QC), and reporting objectives for the characterization of tank 241-AW-104 waste. Technical bases for these objectives are specified in the 242-A Evaporator Data Quality Objectives (Bowman 2000a and Von Bargen 1998), 242-A Evaporator Quality Assurance Project Plan (Bowman 1998 and Bowman 2000b), Tank 241-AW-104 Sampling Requirements in Support of Evaporator Campaign 2000-1 (Le 2000). Characterization results will be used to support the evaporator campaign currently planned for early fiscal year 2001. No other needs (or issues) requiring data for this tank waste apply to this sampling event

  1. Tank 26F-2F Evaporator Study

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K.

    2012-12-19

    Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.

  2. Application Of A Thin Film Evaporator System For Management Of Liquid High-Level Wastes At Hanford

    International Nuclear Information System (INIS)

    Tedeschi, A.R.; Wilson, R.A.

    2010-01-01

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  3. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR; WILSON RA

    2010-01-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  4. Concentration of Melton Valley Storage Tank surrogates with a wiped film evaporator

    International Nuclear Information System (INIS)

    Boring, M.D.; Farr, L.L.; Fowler, V.L.; Hewitt, J.D.

    1994-08-01

    This report describes experiments to determine whether a wiped film evaporator (WFE) might be used to concentrate low-level liquid radioactive waste (LLLW). Solutions used in these studies were surrogates that contain no radionuclides. The compositions of the surrogates were based on one of Oak Ridge National Laboratory's (ORNL's) Melton Valley Storage Tanks (MVSTs). It was found that a WFE could be used to concentrate LLLW to varying degrees by manipulating various parameters. The parameters studied were rotor speed, process fluid feed temperature and feed rate, and evaporator temperature. Product consistency varied from an unsaturated liquid to a dry powder. Volume reductions up to 68% were achieved. System decontamination factors were consistently in the range of 10 4

  5. Characterization of Samples from the Effluent Treatment Facility Evaporator Waste Concentrate Tank

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, W.R. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1998-01-31

    During October 1997, the ETF Evaporator Waste Concentrate Tank No. 2 was discovered to contain a significant accumulation of solid deposits. SRTC performed destructive and nondestructive examination of solid samples from the tank. The results of these tests indicate that the solids contain mixtures of sodium oxalate (65 percent), the sulfide enclathrated sodium aluminosilicate (30 percent), and iron oxide (5 percent).

  6. Characterization of Samples from the Effluent Treatment Facility Evaporator Waste Concentrate Tank

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    1998-01-01

    During October 1997, the ETF Evaporator Waste Concentrate Tank No. 2 was discovered to contain a significant accumulation of solid deposits. SRTC performed destructive and nondestructive examination of solid samples from the tank. The results of these tests indicate that the solids contain mixtures of sodium oxalate (65 percent), the sulfide enclathrated sodium aluminosilicate (30 percent), and iron oxide (5 percent)

  7. Design of one evaporation system for uranyl nitrate solution

    International Nuclear Information System (INIS)

    Mancilla Romero, R.J.

    1975-01-01

    The authors propose an instant evaporation system with recirculation of the concentrated solution to raise the concentration from 50 to 1500 g of uranium per litre of solution. The capacity of the plant is to be 14.1 kg of uranium per hour. The main equipment used in the system is as follows: 1. Ring-type heat exchanger, for increasing the temperature of the mixture of fresh and recirculated solution from 80 to 115 0 C; 2. Separation tank, in which instant evaporation is carried out. The absolute pressure inside the tank will be 500 mmHg, with steam separation from a concentrated (78.5 wt.%) uranyl nitrate solution; 3. Desuperheater-condenser of horizontal tubular type for condensing water vapour and recovering any uranyl nitrate that may have been entrained; 4. Storage tank for the concentrate, with a capacity for one day's normal operation, and a heating coil to prevent crystallization of the concentrated solution; 5. Two storage tanks for feed and condensate with capacity for one day's normal operation; 6. Supporting structure for the above components. Virtually all equipment in contact with the uranyl nitrate solution will be made of 304 stainless steel. Saturated steam at 143.3 0 C will be required. The cost of the proposed system is $543 030.00. (author)

  8. Mathematical model of the Savannah River Site waste tank farm

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1991-01-01

    A mathematical model has been developed to simulate operation of the waste tank farm and the associated evaporator systems at the Savannah River Site. The model solves material balance equations to predict the volumes of liquid waste, salt, and sludge for all of the tanks within each of the evaporator systems. Additional logic is included to model the behavior of waste tanks not directly associated with the evaporators. Input parameters include the Material Management Plan forecast of canyon operations, specification of other waste sources for the evaporator systems, evaporator operating characteristics, and salt and sludge removal schedules. The model determines how the evaporators will operate, when waste transfers can be made, and waste accumulation rates. Output from the model includes waste tank contents, summaries of systems operations, and reports of space gain and the remaining capacity to store waste materials within the tank farm. Model simulations can be made to predict waste tank capacities on a daily basis for up to 20 years. The model is coded as a set of three computer programs designed to run on either IBM compatible or Apple Macintosh II personal computers

  9. Thermodynamic Modeling of the SRS Evaporators: Part II. The 3H System

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.M.

    2001-10-02

    Accumulations of two solid phases have formed scale deposits in the Savannah River Site 2H Evaporator system since late 1996. The aluminosilicate scale deposits caused the evaporator pot to become inoperable in October 1999. Accumulations of the diuranate phase have caused criticality concerns in the SRS 2H Evaporator. In order to ensure that similar deposits are not and will not form in the SRS 3H Evaporator, thermodynamically derived activity diagrams specific to the feeds processed from Tanks 30 and 32 are evaluated in this report.

  10. Pilot-Scale Test Results Of A Thin Film Evaporator System For Management Of Liquid High-Level Wastes At The Hanford Site Washington USA -11364

    International Nuclear Information System (INIS)

    Corbett, J.E.; Tedesch, A.R.; Wilson, R.A.; Beck, T.H.; Larkin, J.

    2011-01-01

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  11. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    Energy Technology Data Exchange (ETDEWEB)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  12. Evaporation

    International Nuclear Information System (INIS)

    Delaney, B.T.; Turner, R.J.

    1989-01-01

    Evaporation has long been used as a unit operation in the manufacture of various products in the chemical-process industries. In addition, it is currently being used for the treatment of hazardous wastes such as radioactive liquids and sludges, metal-plating wastes, and other organic and inorganic wastes. Design choice is dependent on the liquid to be evaporated. The three most common types of evaporation equipment are the rising-film, falling-film, and forced-circulation evaporators. The first two rely on boiling heat transfer and the latter relies on flash vaporization. Heat exchangers, flash tanks, and ejectors are common auxiliary equipment items incorporated with evaporator bodies to complete an evaporator system. Properties of the liquid to be evaporated are critical in final selection of an appropriate evaporator system. Since operating costs are a significant factor in overall cost, heat-transfer characteristics and energy requirements are important considerations. Properties of liquids which are critical to the determination of final design include: heat capacity, heat of vaporization, density, thermal conductivity, boiling point rise, and heat-transfer coefficient. Evaporation is an expensive technology, both in terms of capital costs and operating costs. Additionally, mechanical evaporation produces a condensate and a bottoms stream, one or both of which may require further processing or disposal. 3 figs

  13. Results of sampling the contents of the liquid low-level waste evaporator feed tank W-22 at ORNL

    International Nuclear Information System (INIS)

    Sears, M.B.

    1996-09-01

    This report summarizes the results of the fall 1994 sampling of the contents of the liquid low- level waste (LLLW) tank W-22 at the Oak Ridge National Laboratory (ORNL). Tank W-22 is the central collection and holding tank for LLLW at ORNL before the waste is transferred to the evaporators. Samples of the tank liquid and sludge were analyzed to determine (1) the major chemical constituents, (2) the principal radionuclides, (3) the metals listed on the U.S. Environmental Protection Agency (EPA) Contract Laboratory Program Inorganic Target Analyte List, (4) organic compounds, and (5) some physical properties. The organic chemical characterization consisted of the determinations of the EPA Contract Laboratory Program Target Compound List semivolatile compounds, pesticides, and polychlorinated biphenyls (PCBs). Water-soluble volatile organic compounds were also determined. Information provided in this report forms part of the technical basis in support of (1) waste management for the active LLLW system and (2) planning for the treatment and disposal of the waste

  14. Feasibility test of the concept of long-term passive cooling system of emergency cooldown tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Lee, Hee Joon

    2015-01-01

    Highlights: • The concept of long-term passive cooling system of emergency cooldown tank (ECT). • Existing natural circulation of steam from ECT and measurement of its condensing flow. • Evaluation of cooling capacity and heat transfer of air-cooled condensing heat exchanger. - Abstract: When a passive cooling system is activated in the accident of a nuclear reactor, the water in the emergency cooldown tank of that system will eventually be fully depleted by evaporation. If, however, the evaporating water could be returned to the tank through an air-cooled condensing heat exchanger mounted on top of the tank, the passive cooling system could provide cooling for an extended period. This feasibility of new concept of long-term passive cooling with an emergency cooldown tank was tested by performing an energy balance test with a scaled-down experimental setup. As a result, it was determined that a naturally circulating steam flow can be used to refill the tank. For an air-cooled heat exchanger, the cooling capacity and air-side natural convective heat transfer coefficient were obtained to be 37% of the heat load and between 9 and 10.2 W/m 2 /K depending on the heat load, respectively. Moreover, it was clearly verified that the water level in the emergency cooldown tank could be maintained over the long-term operation of the passive cooling system

  15. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID)

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 3) presents the standards and requirements for the following sections: Safeguards and Security, Engineering Design, and Maintenance.

  16. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID)

    International Nuclear Information System (INIS)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 3) presents the standards and requirements for the following sections: Safeguards and Security, Engineering Design, and Maintenance

  17. 242-A Evaporator quality assurance plan. Revision 2

    International Nuclear Information System (INIS)

    Basra, T.S.

    1995-01-01

    The purpose of this quality assurance project plan (Plan) is to provide requirements for activities pertaining to sampling, shipping, and analyses associated with candidate feed tank samples for the 242-A Evaporator project. The purpose of the 242-A Evaporator project is to reduce the volume of aqueous waste in the Double Shell Tank (DST) System and will result in considerable savings to the disposal of mixed waste. The 242-A Evaporator feed stream originates from DSTs identified as candidate feed tanks. The 242-A Evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending the condensate (called process condensate) to the Liquid Effluent Retention Facility (LEPF) storage basin where it is stored prior to treatment in the Effluent Treatment Facility (ETF). The objective of this quality assurance project plan is to provide the planning, implementation, and assessment of sample collection and analysis, data issuance, and validation activities for the candidate feed tanks

  18. Results from evaporation tests to support the MWTF heat removal system design

    International Nuclear Information System (INIS)

    Crea, B.A.

    1994-01-01

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system

  19. Behaviour of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    International Nuclear Information System (INIS)

    Philippe, M.; Gue, J.P.; Mercier, J.P.

    1990-12-01

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30.000 MW day ·t -1 . A distillation apparatus was designed to operate with small-volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: - ruthenium is only volatilized in the final phase of evaporation, just before desiccation, - for a final temperature limited to 160 deg. C, the total fraction of volatilized ruthenium reaches 12%, - in the presence of H 2 O, HNO 3 , NO x and O 2 , the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide (probably RuO 2 ) on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source. It is probable that, in an industrial storage tank, the heat losses from the tank and the offgas discharge ducts will cause recondensation and internal reflux, which will commensurately delay

  20. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at a Liquid/Vapor Interface

    Science.gov (United States)

    Stewart, Mark E. M.

    2017-01-01

    This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.

  1. Position paper -- Tank ventilation system design air flow rates

    International Nuclear Information System (INIS)

    Goolsby, G.K.

    1995-01-01

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems

  2. Behavior of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    International Nuclear Information System (INIS)

    Philippe, M.; Mercier, J.P.; Gue, J.P.

    1990-01-01

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30,000 MWday.t -1 . A distillation apparatus was designed to operate with small volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: - ruthenium is only volatilized in the final phase of evaporation, just before desiccation, - for a final temperature limited to 160 0 C, the total fraction of volatilized ruthenium reaches 12%, in the presence of H 2 0, HN0 3 , N0 x and 0 2 , the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source

  3. Behavior of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    International Nuclear Information System (INIS)

    Philippe, M.; Mercier, J.P.; Gue, J.P.

    1991-01-01

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30,000 MW day·t -1 . A distillation apparatus was designed to operate with small-volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: ruthenium is only volatilized in the final phase of evaporation, just before desiccation; for a final temperature limited to 160 degree C, the total fraction of volatilized ruthenium reaches 12%; in the presence of H 2 O, HNO 3 , NO x and O 2 , the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide (probably RuO 2 ) on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source

  4. Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102

    Energy Technology Data Exchange (ETDEWEB)

    BRIGGS, S.R.

    2000-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS.

  5. Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102

    International Nuclear Information System (INIS)

    BRIGGS, S.R.

    2000-01-01

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS

  6. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

  7. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    International Nuclear Information System (INIS)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations

  8. Determining the amount of anhydrous alcohol evaporated in vertical cylindrical tanks; Determinacao da quantidade de alcool etilico anidro evaporado em tanques cilindricos verticais

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elcio Cruz de [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    In order to assess the anhydrous alcohol evaporated amount in vertical cylindrical tanks was developed a calculation methodology based on the rate of mass transfer of the product, the Reynolds number and the mass transfer coefficient. An Excel spreadsheet was prepared with data entry of the tank and physical and chemical properties of the product (temperature and density). For a temperature of 50 deg C, the volume evaporated reaches values of 0.8% by day. (author)

  9. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 5

    International Nuclear Information System (INIS)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 5) outlines the standards and requirements for the Fire Protection and Packaging and Transportation sections

  10. 242-A evaporator hazards assessment

    International Nuclear Information System (INIS)

    Johnson, T.L.

    1998-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the 242-A Evaporator, on the Hanford Site. Through this document the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated. The evaporator sues a conventional, forced-circulation, vacuum evaporation system to concentrate radioactive waste solutions. This concentration results in the reduction in waste volume and reduces the number of double-shelled tanks required to store the waste

  11. Final Report on the Analytical Results for Tank Farm Samples in Support of Salt Dissolution Evaluation

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1996-01-01

    Recent processing of dilute solutions through the 2H-Evaporator system caused dissolution of salt in Tank 38H, the concentrate receipt tank. This report documents analytical results for samples taken from this evaporator system

  12. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2

    International Nuclear Information System (INIS)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction

  13. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction.

  14. Decontamination and decommissioning of TAN radioactive liquid-waste-evaporator system (PM-2A). Final report

    International Nuclear Information System (INIS)

    Smith, D.L.

    1983-03-01

    This report describes the decontamination and decommissioning of the Test Area North (TAN) liquid waste evaporator (PM-2A). The PM-2A facility included the aboveground evaporator system, two underground holding tanks and feedlines, an electrical distribution subsystem, and one above ground concrete tank. Much surface soil of the PM-2A area was also radioactively contaminated. Stabilization of the liquid and sludge in the holding tanks, a major task, was achieved by pumping most of the liquid into 55-gal drums and mixing it with cement. The drums were buried in the Radioactive Waste Management Complex (RWMC). The remaining liquid and sludge were dried in place by layers of diatomaceous earth. The most contaminated surface soil was removed, and the area backfilled with clean topsoil and graded, reducing the surface radiation field to background. A 6-ft-high chain link fence now surrounds the area. Most of the area was seeded to crested wheatgrass. 46 figures, 9 tables

  15. Process control plan for 242-A Evaporator Campaign 95-1

    Energy Technology Data Exchange (ETDEWEB)

    Le, E.Q.; Guthrie, M.D.

    1995-05-18

    The wastes from tanks 106-AP, 107-AP, and 106-AW have been selected to be candidate feed wastes for Evaporator Campaign 95-1. The wastes in tank 106-AP and 107-AP are primarily from B-Plant strontium processing and PUREX neutralized cladding removal, respectively. The waste in tank 106-AW originated primarily from the partially concentrated product from 242-A Evaporator Campaign 94-2. Approximately 8.67 million liters of waste from these tanks will be transferred to tank 102-AW during the campaign. Tank 102-AW is the dedicated waste feed tank for the evaporator and currently contains 647,000 liters of processable waste. The purpose of the 242-A Evaporator Campaign 95-1 Process Control Plan (hereafter referred to as PCP) is to certify that the wastes in tanks 106-AP, 107-AP, 102-AW, and 106-AW are acceptable for processing through evaporator and provide a general description of process strategies and activities which will take place during Campaign 95-1. The PCP also summarizes and presents a comprehensive characterization of the wastes in these tanks.

  16. Process control plan for 242-A Evaporator Campaign 95-1

    International Nuclear Information System (INIS)

    Le, E.Q.; Guthrie, M.D.

    1995-01-01

    The wastes from tanks 106-AP, 107-AP, and 106-AW have been selected to be candidate feed wastes for Evaporator Campaign 95-1. The wastes in tank 106-AP and 107-AP are primarily from B-Plant strontium processing and PUREX neutralized cladding removal, respectively. The waste in tank 106-AW originated primarily from the partially concentrated product from 242-A Evaporator Campaign 94-2. Approximately 8.67 million liters of waste from these tanks will be transferred to tank 102-AW during the campaign. Tank 102-AW is the dedicated waste feed tank for the evaporator and currently contains 647,000 liters of processable waste. The purpose of the 242-A Evaporator Campaign 95-1 Process Control Plan (hereafter referred to as PCP) is to certify that the wastes in tanks 106-AP, 107-AP, 102-AW, and 106-AW are acceptable for processing through evaporator and provide a general description of process strategies and activities which will take place during Campaign 95-1. The PCP also summarizes and presents a comprehensive characterization of the wastes in these tanks

  17. Final characterization and safety screen report of double shell tank 241-AP-105 for evaporator campaign 97-1

    International Nuclear Information System (INIS)

    Miller, G.L.

    1997-01-01

    Evaporator candidate feed from tank 241-AP-105 (hereafter referred to as AP-105) was characterized for physical, inorganic, organic and radiochemical parameters by the 222-S Laboratory as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4, and Engineering Change Notice, number 635332, Reference 5. This data package satisfies the requirement for a format IV, final report as described in Reference 1. This data package is also a follow-up to the 45-Day safety screen results for tank AP-105, Reference 8, which was issued on November 5, 1996, and is attached as Section II to this report. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report to enable early estimation of evaporator operational parameters, using the Predict modeling program. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory's Quality Assurance P1an, References 6 and 7. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation

  18. High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

  19. High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6

    International Nuclear Information System (INIS)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety

  20. Analyses and characterization of double shell tank

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-04

    Evaporator candidate feed from tank 241-AP-108 (108-AP) was sampled under prescribed protocol. Physical, inorganic, and radiochemical analyses were performed on tank 108-AP. Characterization of evaporator feed tank waste is needed primarily for an evaluation of its suitability to be safely processed through the evaporator. Such analyses should provide sufficient information regarding the waste composition to confidently determine whether constituent concentrations are within not only safe operating limits, but should also be relevant to functional limits for operation of the evaporator. Characterization of tank constituent concentrations should provide data which enable a prediction of where the types and amounts of environmentally hazardous waste are likely to occur in the evaporator product streams.

  1. Analyses and characterization of double shell tank

    International Nuclear Information System (INIS)

    1994-01-01

    Evaporator candidate feed from tank 241-AP-108 (108-AP) was sampled under prescribed protocol. Physical, inorganic, and radiochemical analyses were performed on tank 108-AP. Characterization of evaporator feed tank waste is needed primarily for an evaluation of its suitability to be safely processed through the evaporator. Such analyses should provide sufficient information regarding the waste composition to confidently determine whether constituent concentrations are within not only safe operating limits, but should also be relevant to functional limits for operation of the evaporator. Characterization of tank constituent concentrations should provide data which enable a prediction of where the types and amounts of environmentally hazardous waste are likely to occur in the evaporator product streams

  2. Tank Waste Remediation System fiscal year 1996 multi-year program plan WBS 1.1. Revision 1, Appendix A

    International Nuclear Information System (INIS)

    1995-09-01

    This document is a compilation of data relating to the Tank Waste Remediation System Multi-Year Program. Topics discussed include: management systems; waste volume, transfer and evaporation management; transition of 200 East and West areas; ferricyanide, volatile organic vapor, and flammable gas management; waste characterization; retrieval from SSTs and DSTs; heat management; interim storage; low-level and high-level radioactive waste management; and tank farm closure

  3. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  4. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    International Nuclear Information System (INIS)

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection

  5. Vacuum evaporator-crystallizer process development for Hanford defense waste

    International Nuclear Information System (INIS)

    Tanaka, K.H.

    1978-04-01

    One of the major programs in the Department of Energy (DOE) waste management operations at Hanford is the volume reduction and solidification of Hanford Defense Residual Liquor (HDRL) wastes. These wastes are neutralized radioactive wastes that have been concentrated and stored in single-shell underground tanks. Two production vacuum evaporator-crystallizers were built and are operating to reduce the liquid volume and solidify these wastes. The process involves evaporating water under vacuum and thus concentrating and crystallizing the salt waste. The high caustic residual liquor is composed primarily of nitrate, nitrite, aluminate, and carbonate salts. Past evaporator-crystallizer operation was limited to crystallizing nitrate, nitrite, and carbonate salts. These salts formed a drainable salt cake that was acceptable for storage in the original single-shell tanks. The need for additional volume reduction and further concentration necessitated this process development work. Further concentration forms aluminate salts which pose unique processing problems. The aluminate salts are very fine crystals, non-drainable, and suitable only for storage in new double-shell tanks where the fluid waste can be continuously monitored. A pilot scale vacuum evaporator-crystallizer system was built and operated by Rockwell Hanford Operations to support flowsheet development for the production evaporator-crystallizers. The process developed was the concentration of residual liquor to form aluminate salts. The pilot plant tests demonstrated that residual liquors with high aluminum concentrations could be concentrated and handled in a vacuum evaporator-crystallizer system. The dense slurry with high solids content and concentrated liquor was successfully pumped in the insulated heated piping system. The most frequent problem encountered in the pilot plant was the failure of mechanical pump seals due to the abrasive slurry

  6. Characterization Results for the January 2017 H-Tank Farm 2H Evaporator Overhead Sample

    Energy Technology Data Exchange (ETDEWEB)

    Truong, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nicholson, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-04-11

    This report contains the radioanalytical results of the 2H evaporator overhead sample received at SRNL on January 19, 2017. Specifically, concentrations of 137Cs, 90Sr, and 129I are reported and compared to the corresponding Waste Acceptance Criteria (WAC) limits of the Effluent Treatment Project (ETP) Waste Water Collection Tank (WWCT) (rev. 6). All of the radionuclide concentrations in the sample were found to be in compliance with the ETP WAC limits.

  7. Defense Waste Processing Facility Recycle Stream Evaporation

    International Nuclear Information System (INIS)

    STONE, MICHAEL

    2006-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) stabilizes high level radioactive waste (HLW) by vitrification of the waste slurries. DWPF currently produces approximately five gallons of dilute recycle for each gallon of waste vitrified. This recycle stream is currently sent to the HLW tank farm at SRS where it is processed through the HLW evaporators with the concentrate eventually sent back to the DWPF for stabilization. Limitations of the HLW evaporators and storage space constraints in the tank farm have the potential to impact the operation of the DWPF and could limit the rate that HLW is stabilized. After an evaluation of various alternatives, installation of a dedicated evaporator for the DWPF recycle stream was selected for further evaluation. The recycle stream consists primarily of process condensates from the pretreatment and vitrification processes. Other recycle streams consist of process samples, sample line flushes, sump flushes, and cleaning solutions from the decontamination and filter dissolution processes. The condensate from the vitrification process contains some species, such as sulfate, that are not appreciably volatile at low temperature and could accumulate in the system if 100% of the evaporator concentrate was returned to DWPF. These species are currently removed as required by solids washing in the tank farm. The cleaning solutions are much higher in solids content than the other streams and are generated 5-6 times per year. The proposed evaporator would be required to concentrate the recycle stream by a factor of 30 to allow the concentrate to be recycled directly to the DWPF process, with a purge stream sent to the tank farm as required to prevent buildup of sulfate and similar species in the process. The overheads are required to meet stringent constraints to allow the condensate to be sent directly to an effluent treatment plant. The proposed evaporator would nearly de-couple the DWPF process from the

  8. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger.

  9. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin

    2014-01-01

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger

  10. Evaporator Cleaning Studies

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    1999-01-01

    Operation of the 242-16H High Level Waste Evaporator proves crucial to liquid waste management in the H-Area Tank Farm. Recent operational history of the Evaporator showed significant solid formation in secondary lines and in the evaporator pot. Additional samples remain necessary to ensure material identity in the evaporator pot. Analysis of these future samples will provide actinide partitioning information and dissolution characteristics of the solid material from the pot to ensure safe chemical cleaning

  11. Full-Scale Testing Technology Maturation Of A Thin Film Evaporator For High-Level Liquid Waste Management At Hanford - 12125

    International Nuclear Information System (INIS)

    Tedeschi, A.R.; Corbett, J.E.; Wilson, R.A.; Larkin, J.

    2012-01-01

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m 2 (50 ft 2 ) heated transfer area Rototherm(reg s ign) evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  12. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  13. Project W-211, initial tank retrieval systems, description of operations for 241-AP-102 and 241-AP-104

    Energy Technology Data Exchange (ETDEWEB)

    RIECK, C.A.

    1999-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTS) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operations (DOO) defines the control philosophy for the waste retrieval system for tanks 241-AP-102 (AP-102) and 241-AP-104 (AP-104). This DOO will provide a basis for the detailed design of the Retrieval Control System (RCS) for AP-102 and AP-104 and establishes test criteria for the RCS. The test criteria will be used during qualification testing and acceptance testing to verify operability.

  14. Project W-211, initial tank retrieval systems, description of operations for 241-AP-102 and 241-AP-104

    International Nuclear Information System (INIS)

    RIECK, C.A.

    1999-01-01

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTS) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operations (DOO) defines the control philosophy for the waste retrieval system for tanks 241-AP-102 (AP-102) and 241-AP-104 (AP-104). This DOO will provide a basis for the detailed design of the Retrieval Control System (RCS) for AP-102 and AP-104 and establishes test criteria for the RCS. The test criteria will be used during qualification testing and acceptance testing to verify operability

  15. Development of a computer code to predict a ventilation requirement for an underground radioactive waste storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.J.; Dalpiaz, E.L. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1997-08-01

    Computer code, WTVFE (Waste Tank Ventilation Flow Evaluation), has been developed to evaluate the ventilation requirement for an underground storage tank for radioactive waste. Heat generated by the radioactive waste and mixing pumps in the tank is removed mainly through the ventilation system. The heat removal process by the ventilation system includes the evaporation of water from the waste and the heat transfer by natural convection from the waste surface. Also, a portion of the heat will be removed through the soil and the air circulating through the gap between the primary and secondary tanks. The heat loss caused by evaporation is modeled based on recent evaporation test results by the Westinghouse Hanford Company using a simulated small scale waste tank. Other heat transfer phenomena are evaluated based on well established conduction and convection heat transfer relationships. 10 refs., 3 tabs.

  16. Solubility of plutonium and waste evaporation

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1993-01-01

    Chemical processing of irradiated reactor elements at the Savannah River Site separates uranium, plutonium and fission products; fission products and process-added chemicals are mixed with an excess of NaOH and discharged as a basic slurry into large underground tanks for temporary storage. The slurry is composed of base-insoluble solids that settle to the bottom of the tank; the liquid supemate contains a mixture of base-soluble chemicals--nitrates, nitrites aluminate, sulfate, etc. To conserve space in the waste tanks, the supemate is concentrated by evaporation. As the evaporation proceeds, the solubilities of some components are exceeded, and these species crystallize from solution. Normally, these components are soluble in the hot solution discharged from the waste tank evaporator and do not crystallize until the solution cools. However, concern was aroused at West Valley over the possibility that plutonium would precipitate and accumulate in the evaporator, conceivably to the point that a nuclear accident was possible. There is also a concern at SRS from evaporation of sludge washes, which arise from washing the base-insoluble solids (open-quote sludge close-quote) with ca. 1M NaOH to reduce the Al and S0 4 -2 content. The sludge washes of necessity extract a low level of Pu from the sludge and are evaporated to reduce their volume, presenting the possibility of precipitating Pu. Measurements of the solubility of Pu in synthetic solutions of similar composition to waste supernate and sludge washes are described in this report

  17. Estimation of evaporative losses during storage of crude oil and petroleum products

    Directory of Open Access Journals (Sweden)

    Mihajlović Marina A.

    2013-01-01

    Full Text Available Storage of crude oil and petroleum products inevitably leads to evaporative losses. Those losses are important for the industrial plants mass balances, as well as for the environmental protection. In this paper, estimation of evaporative losses was performed using software program TANKS 409d which was developed by the Agency for Environmental Protection of the United States - US EPA. Emissions were estimated for the following types of storage tanks: fixed conical roof tank, fixed dome roof tank, external floating roof tank, internal floating roof tank and domed external floating roof tank. Obtained results show quantities of evaporated losses per tone of stored liquid. Crude oil fixed roof storage tank losses are cca 0.5 kg per tone of crude oil. For floating roof, crude oil losses are 0.001 kg/t. Fuel oil (diesel fuel and heating oil have the smallest evaporation losses, which are in order of magnitude 10-3 kg/tone. Liquids with higher Reid Vapour Pressure have very high evaporative losses for tanks with fixed roof, up to 2.07 kg/tone. In case of external floating roof tank, losses are 0.32 kg/tone. The smallest losses are for internal floating roof tank and domed external floating roof tank: 0.072 and 0.044, respectively. Finally, it can be concluded that the liquid with low volatility of low BTEX amount can be stored in tanks with fixed roof. In this case, the prevailing economic aspect, because the total amount of evaporative loss does not significantly affect the environment. On the other hand, storage of volatile derivatives with high levels of BTEX is not justified from the economic point of view or from the standpoint of the environment protection.

  18. Evaluation of tank waste transfers at 241-AW tank farm

    International Nuclear Information System (INIS)

    Willis, W.L.

    1998-01-01

    A number of waste transfers are needed to process and feed waste to the private contractors in support of Phase 1 Privatization. Other waste transfers are needed to support the 242-A Evaporator, saltwell pumping, and other ongoing Tank Waste Remediation System (TWRS) operations. The purpose of this evaluation is to determine if existing or planned equipment and systems are capable of supporting the Privatization Mission of the Tank Farms and continuing operations through the end of Phase 1B Privatization Mission. Projects W-211 and W-314 have been established and will support the privatization effort. Equipment and system upgrades provided by these projects (W-211 and W-314) will also support other ongoing operations in the tank farms. It is recognized that these projects do not support the entire transfer schedule represented in the Tank Waste Remediation system Operation and Utilization Plan. Additionally, transfers surrounding the 241-AW farm must be considered. This evaluation is provided as information, which will help to define transfer paths required to complete the Waste Feed Delivery (WFD) mission. This document is not focused on changing a particular project, but it is realized that new project work in the 241-AW Tank Farm is required

  19. Process Control Plan for 242-A Evaporator Campaign January 2001

    International Nuclear Information System (INIS)

    LE, E.Q.

    2001-01-01

    Wastewater stored in 104-AW that was generated during the terminal cleanout of the PUREX facility is the primary feed to be processed during the 242-A Evaporator Campaign 01-01, Approximately 801,600 gallons of 104-AW waste was transferred to feed tank 102-AW at the end of January 2001, in preparation for the campaign. The total feed volume that will be processed during Campaign 01-01 is 8 15,200 gallons, which includes the waste from 104-AW and residual waste from the previous evaporator campaign, 00-01, Additional feed will be generated during the pre-campaign cold run and processed during campaign 01-01. Based on characterization data from 104-AW feed waste 'and the evaluation of waste processability presented in Section 5 of this PCP, Campaign 01-01 does not pose any unacceptable risks to the facility, safety, environmental, human health offsite, or onsite personnel. Evaporator Campaign 01-01 is essential in supporting the River Protection Project (RPP) to maintaining its critical mission schedule and regulator commitments for tank waste systems. Several of RPP critical activities requiring completion of Campaign 01-01 by April 1, 2001 are highlighted below. Availability of DST space: Additional tank space that will be made available by this campaign is needed to support the continued interim stabilization of Single-Shell Tanks (SSTs). This additional space will also be used to move waste among Double-Shell Tanks (DSTs) to support the demonstrations of SST waste retrieval. DST life extension: An electrical outage in the AW Tank Farm is scheduled to begin following completion of the Campaign 01-01. This outage is a critical step in identifying and completing life extension upgrades to the DST systems. DST upgrades: Project W-314 plans significant upgrades to the AW Tank Farm to retrieve and supply waste feed to the Waste Treatment (Vitrification) Plant using a system that complies with current environmental requirements. These upgrades will commence on

  20. Recycle Waste Collection Tank (RWCT) simulant testing in the PVTD feed preparation system

    International Nuclear Information System (INIS)

    Abrigo, G.P.; Daume, J.T.; Halstead, S.D.; Myers, R.L.; Beckette, M.R.; Freeman, C.J.; Hatchell, B.K.

    1996-03-01

    (This is part of the radwaste vitrification program at Hanford.) RWCT was to routinely receive final canister decontamination sand blast frit and rinse water, Decontamination Waste Treatment Tank bottoms, and melter off-gas Submerged Bed Scrubber filter cake. In order to address the design needs of the RWCT system to meet performance levels, the PNL Vitrification Technology (PVTD) program used the Feed Preparation Test System (FPTS) to evaluate its equipment and performance for a simulant of RWCT slurry. (FPTS is an adaptation of the Defense Waste Processing Facility feed preparation system and represents the initially proposed Hanford Waste Vitrification Plant feed preparation system designed by Fluor-Daniel, Inc.) The following were determined: mixing performance, pump priming, pump performance, simulant flow characterization, evaporator and condenser performance, and ammonia dispersion. The RWCT test had two runs, one with and one without tank baffles

  1. Final characterization and safety screen report of double shell tank 241-AP-104 for 242-A evaporator, campaign 96-1

    International Nuclear Information System (INIS)

    Miller, G.L.

    1996-01-01

    This data package satisfies the requirement for a format IV, final report. It is a follow-up to the 45-day safety screen report for tank AP-104. Evaporator candidate feed from tank 241-AP-104 (hereafter referred to as AP-104) was characterized for physical, inorganic, organic and radiochemical parameters by the Westinghouse Hanford Company, 222-S Laboratory, and by the Battelle Pacific Northwest National Laboratory (PNNL), Analytical Chemistry Laboratory (ACL) as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report to enable early estimation of evaporator operational parameters, using the Predict modeling program. Laboratory analyses at ACL Laboratory was performed according to the TSAP. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory's Quality Assurance Plan, References 5 and 6. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation. SAMPLING The TSAP, section 2, provided sampling information for waste samples collected from tank AP-104. The bottle-on-a-string method was used to collect liquid grab samples from the tank. Each glass sample bottle was amber, precleaned, and contained approximately 100 milliliters. Each bottle was closed with a teflon seal cap (or teflon septum for volatile organic analysis samples). Field blank samples were prepared by placing deionized water into sampling bottles, lowering the unclosed bottles into the riser for a period of time, retrieving them from the riser, and then closing the bottles with the same types of caps used for the tank samples. None of the samples were preserved by acidification. Upon receipt, the sample bottles destined for organic analyses were placed in a refrigerator. No attempt was made during sampling to assure the complete

  2. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  3. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    Science.gov (United States)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  4. Heat pipe cooling system for underground, radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Cooper, K.C.; Prenger, F.C.

    1980-02-01

    An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70 0 F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle

  5. Characterization of selected waste tanks from the active LLLW system

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Griest, W.H.

    1996-08-01

    From September 1989 through January of 1990, there was a major effort to sample and analyze the Active Liquid-Low Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The purpose of this report is to summarize additional analytical data collected from some of the active waste tanks from November 1993 through February 1996. The analytical data for this report was collected for several unrelated projects which had different data requirements. The overall analyte list was similar for these projects and the level of quality assurance was the same for all work reported. the new data includes isotopic ratios for uranium and plutonium and an evaluation of the denature ratios to address criticality concerns. Also, radionuclides not previously measured in these waste tanks, including 99Tc and 237Np, are provided in this report

  6. ATR/OTR-SY Tank Camera Purge System and in Tank Color Video Imaging System

    International Nuclear Information System (INIS)

    Werry, S.M.

    1995-01-01

    This procedure will document the satisfactory operation of the 101-SY tank Camera Purge System (CPS) and 101-SY in tank Color Camera Video Imaging System (CCVIS). Included in the CPRS is the nitrogen purging system safety interlock which shuts down all the color video imaging system electronics within the 101-SY tank vapor space during loss of nitrogen purge pressure

  7. Tank characterization report for single-shell tank 241-B-104

    International Nuclear Information System (INIS)

    Field, J.G.

    1996-01-01

    This document summarizes information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-104. Sampling and analyses meet safety screening and historical data quality objectives. This report supports the requirements of Tri-party Agreement Milestone M-44-09. his characterization report summoned the available information on the historical uses and the current status of single-shell tank 241-B-104, and presents the analytical results of the June 1995 sampling and analysis effort. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-44-09 (Ecology et al. 1994). Tank 241-B-104 is a single-shell underground waste storage tank located in the 200 East Area B Tank Farm on the Hanford Site. It is the first tank in a three-tank cascade series. The tank went into service in August 1946 with a transfer of second-cycle decontamination waste generated from the bismuth phosphate process. The tank continued to receive this waste type until the third quarter of 1950, when it began receiving first-cycle decontamination waste also produced during the bismuth phosphate process. Following this, the tank received evaporator bottoms sludge from the 242-B Evaporator and waste generated from the flushing of transfer lines. A description and the status of tank 241-B-104 are sum in Table ES-1 and Figure ES-1. The tank has an operating capacity of 2,010 kL (530 kgal), and presently contains 1,400 kL (371 kgal) of waste. The total amount is composed of 4 kL (1 kgal) of supernatant, 260 kL (69 kgal) of saltcake, and 1,140 kL (301 kgal) of sludge (Hanlon 1995). Current surveillance data and observations appear to support these results

  8. Determination of the crystalline structure of scale solids from the 16H evaporator gravity drain line to tank 38H

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-01

    August 2015, scale solids from the 16H Evaporator Gravity Drain Line (GDL) to the Tank 38H were delivered to SRNL for analysis. The desired analytical goal was to identify and confirm the crystalline structure of the scale material and determine if the form of the aluminosilicate mineral was consistent with previous analysis of the scale material from the GDL.

  9. An assessment of underground and aboveground steam system failures in the SRS waste tank farms

    International Nuclear Information System (INIS)

    Hsu, T.C.; Shurrab, M.S.; Wiersma, B.J.

    1997-01-01

    Underground steam system failures in waste tank farms at the Savannah River Site (SRS) increased significantly in the 3--4 year period prior to 1995. The primary safety issues created by the failures were the formation of sub-surface voids in soil and the loss of steam jet transfer and waste evaporation capability, and the loss of heating and ventilation to the tanks. The average annual cost for excavation and repair of the underground steam system was estimated to be several million dollars. These factors prompted engineering personnel to re-consider long-term solutions to the problem. The primary cause of these failures was the inadequate thermal insulation utilized for steam lines associated with older tanks. The failure mechanisms were either pitting or localized general corrosion on the exterior of the pipe beneath the thermal insulation. The most realistic and practical solution is to replace the underground lines by installing aboveground steam systems, although this option will incur significant initial capital costs. Steam system components, installed aboveground in other areas of the tank farms have experienced few failures, while in continuous use. As a result, piecewise installation of temporary aboveground steam systems have been implemented in F-area whenever opportunities, i.e., failures, present themselves

  10. Tank characterization report for double-shell tank 241-AP-101. Revision 1

    International Nuclear Information System (INIS)

    Conner, J.M.

    1997-01-01

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes m support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for double-shell tank 241-AP-101. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AP-101 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 provides the best-basis inventory estimate, and Section 4.0 makes recommendations about safety status and additional sampling needs. The appendixes contain supporting data and information. This report supported the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-05. The characterization information in this report originated from sample analyses and known historical sources. Appendix A provides historical information for tank 241-AP-101 including surveillance, information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a model based upon process knowledge. Appendix B summarizes recent sampling events and historical sampling information. Tank 241-AP-101 was grab sampled in November 1995, when the tank contained 2,790 kL (737 kgal) of waste. An addition1034al 1,438 kL (380 kgal) of waste was received from tank 241-AW-106 in transfers on March 1996 and January 1997. This waste was the product of the 242-A Evaporator Campaign 95-1. Characterization information for the additional 1,438 kL (380 kgal) was obtained using grab sampling data from tank 241-AW-106 and a slurry sample from the evaporator. Appendix C reports on the statistical analysis and numerical manipulation of data used in

  11. Tank waste remediation system fiscal year 1998 multi-year work plan WBS 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Lenseigne, D. L.

    1997-09-15

    The TWRS Project Mission is to manage and immobilize for disposal the Hanford Site radioactive tank waste and cesium (Cs)/strontium (Sr) capsules in a safe, environmentally sound, and cost-effective manner. The scope includes all activities needed to (1) resolve safety issues; (2) operate, maintain, and upgrade the tank farms and supporting infrastructure; (3) characterize, retrieve, pretreat, and immobilize the waste for disposal and tank farm closure; and (4) use waste minimization and evaporation to manage tank waste volumes to ensure that the tank capacities of existing DSTs are not exceeded. The TWRS Project is responsible for closure of assigned operable units and D&D of TWRS facilities.

  12. Evaporation studies on Oak Ridge National Laboratory liquid low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, V.L. [PAI Corp., Oak Ridge, TN (United States); Perona, J.J. [Oak Ridge National Lab., TN (United States)

    1993-03-01

    Evaporation studies were performed with Melton Valley storage tank liquid low-level radioactive waste concentrate and with surrogates (nonradioactive) to determine the feasibility of a proposed out-of-tank-evaporation project. Bench-scale tests indicated that volume reductions ranging from 30 to 55% could be attained. Vendor-site tests were conducted (with surrogate waste forms) using a bench-scale single-stage, low-pressure (subatmospheric), low-temperature (120 to 173{degree}F) evaporator similar to units in operation at several nuclear facilities. Vendor tests were successful; a 30% volume reduction was attained with no crystallization of solids and no foaming, as would be expected from a high pH solution. No fouling of the heat exchanger surfaces occurred during these tests. It is projected that 52,000 to 120,000 gal of water could be evaporated from the supernate stored in the Melton and Bethel Valley liquid low-level radioactive waste (LLLW) storage tanks with this type of evaporator.

  13. Tank characterization report for double-shell tank 241-AP-105

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    Double-Shell Tank 241-AP-105 is a radioactive waste tank most recently sampled in March of 1993. Sampling and characterization of the waste in Tank 241-AP-105 contributes toward the fulfillment of Milestone M-44-05 of the Hanford Federal Facility Agreement and Consent Order (Ecology, EPA, and DOE, 1993). Characterization is also needed tot evaluate the waste's fitness for safe processing through an evaporator as part of an overall waste volume reduction program. Tank 241-AP-105, located in the 200 East Area AP Tank Farm, was constructed and went into service in 1986 as a dilute waste receiver tank; Tank 241AP-1 05 was considered as a candidate tank for the Grout Treatment Facility. With the cancellation of the Grout Program, the final disposal of the waste in will be as high- and low-level glass fractions. The tank has an operational capacity of 1,140,000 gallons, and currently contains 821,000 gallons of double-shell slurry feed. The waste is heterogeneous, although distinct layers do not exist. Waste has been removed periodically for processing and concentration through the 242-A Evaporator. The tank is not classified as a Watch List tank and is considered to be sound. There are no Unreviewed Safety Questions associated with Tank 241-AP-105 at this time. The waste in Tank 241-AP-105 exists as an aqueous solution of metallic salts and radionuclides, with limited amounts of organic complexants. The most prevalent soluble analytes include aluminum, potassium, sodium, hydroxide, carbonate, nitrate, and nitrite. The calculated pH is greater than the Resource Conservation and Recovery Act established limit of 12.5 for corrosivity. In addition, cadmium, chromium, and lead concentrations were found at levels greater than their regulatory thresholds. The major radionuclide constituent is 137 Cs, while the few organic complexants present include glycolate and oxalate. Approximately 60% of the waste by weight is water

  14. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  15. Process Control Plan for 242-A Evaporator Campaign

    International Nuclear Information System (INIS)

    LE, E.Q.

    2000-01-01

    The wastes in tanks 107-AP and 108-AP are designated as feed for 242-A Evaporator Campaign 2000-1, which is currently scheduled for the week of April 17, 2000. Waste in tanks 107-AP and 108-AP is predominantly comprised of saltwell liquor from 200 West Tank Farms

  16. Portable brine evaporator unit, process, and system

    Science.gov (United States)

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  17. 242-A evaporator vacuum condenser system

    International Nuclear Information System (INIS)

    Smith, V.A.

    1994-01-01

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation

  18. THE USE OF POROUS CERAMICS FOR EVAPORATIVE AND EVAPORATIVE – VAPOR –COMPRESSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cheban D.N.

    2013-04-01

    Full Text Available The use of natural evaporative cooling is one of technical solutions of problem of energy efficiency in air conditioning systems. The use of evaporative cooling in the first combined cooling stage allows reducing the load on the condenser of the cooling machine due to reducing of the condensing temperature. This combination allows the use of this type of system in any climatic conditions, including regions with small water resources. Multi-porous ceramic structure is used in evaporative air coolers and water coolers in this case. The objective of this paper is to show advantages of the using of porous ceramic as a working attachment, and to show advantages of the proposed scheme of compression-evaporation systems in comparison with standard vapor compression systems. Experimental research proved the fact, that in the film mode cooling efficiency of air flow is between EA=0,6÷0,7 and is slightly dependent of water flow. For countries with hot and dry climate where reserves of water are limited, it is recommended to use cyclical regime with EA≈0,65 value, or to use channel regime with a value of EA≈0,55. This leads to considerable energy savings. It has been determined, that combined air conditioning system is completely closed on the consumption of water at the parameters of the outside air equal to tA =32ºC and XA>13g/kg (in system with direct evaporative cooling machine, and tA=32ºC and XA>12g/kg (in system with indirect evaporative cooling machine. With these parameters, the cost of water in evaporative cooling stage can be fully compensated by condensate from the evaporator chiller.

  19. 242-A evaporator dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    The 242-A Evaporator is a waste management unit within the Hanford Facility that consists of process vessels and support systems for heating, evaporating, and condensing double-shell tank (DST) waste generated by Hanford Site operations. Operation of the 242-A Evaporator serves to reduce the volume of waste solutions within the DSTs that do not self-boil, while separating inorganic and radionuclide constituents from organic constituents. This operation reduces the number of underground DSTs required for waste storage and also makes the mixed waste more suitable for future treatment and disposal (i.e., grouting and vitrification). The 242-A Evaporator receives mixed-waste streams from the DSTs that contain organic and inorganic constituents and radionuclides. The waste is a dangerous waste (DW) because of corrosivity, reactivity, and toxicity characteristics, and is an extremely hazardous waste (EHW) as a result of toxicity (state criteria only), carcinogenicity, and persistence under the state mixture rule. The waste also contains spent nonhalogenated solvents

  20. Environmental Projects. Volume 8: Modifications of wastewater evaporation ponds

    Science.gov (United States)

    1989-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 45 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of NASA's Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. The Goldstone Complex is managed, technically directed, and operated for NASA by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology in Pasadena, California. Activities at the GDSCC are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards: use of hazardous chemicals, asbestos, and underground storage tanks as well as the generation of hazardous wastes and the disposal of wastewater. Federal, state, and local laws governing the management of hazardous substances, asbestos, underground storage tanks and wastewater disposal have become so complex there is a need to devise specific programs to comply with the many regulations that implement these laws. In support of the national goal of the preservation of the environment and the protection of human health and safety, NASA, JPL, and the GDSCC have adopted a position that their operating installations shall maintain a high level of compliance with these laws. One of the environmental problems at the GDSCC involved four active, operational, wastewater evaporation ponds designed to receive and evaporate sewage effluent from upstream septic tank systems. One pair of active wastewater evaporation ponds is located at Echo Site, while another operational pair is at Mars Site.

  1. Tank 241-C-106 in-tank imaging system operational test report

    International Nuclear Information System (INIS)

    Pedersen, L.T.

    1998-01-01

    This document presents the results of operational testing of the 241-C-106 In-Tank Video Camera Imaging System. This imaging system was installed as a component of Project W-320 to monitor sluicing and waste retrieval activities in Tank 241-C-106

  2. Nuclear safety of extended sludge processing on tank 42 and 51 sludge (DWPF sludge feed batch one)

    International Nuclear Information System (INIS)

    Clemons, J.S.

    1993-01-01

    The sludge in tanks 42 and 51 is to be washed with inhibited water to remove soluble salts and combined in tank 51 in preparation for feed to DWPF. Since these tanks contain uranium and plutonium, the process of washing must be evaluated to ensure subcriticality is maintained. When the sludge is washed, inhibited water is added, the tank contents are slurried and allowed to settle. The sludge wash water is then decanted to the evaporator feed tank where it is fed to the evaporator to reduce the volume. The resulting evaporator concentrate is sent to a salt tank where it cools and forms crystallized salt cake. This salt cake will later be dissolved, processed in ITP and sent to Z-Area. This report evaluates the supernate and sludge during washing, the impact on the evaporator during concentration of decanted wash water, and the salt tank where the concentrated supernate is deposited. The conclusions generated in this report are specific to the sludge currently contained in tanks 42 and 51

  3. Analytical results from Tank 38H criticality Sample HTF-093

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    2000-01-01

    Resumption of processing in the 242-16H Evaporator could cause salt dissolution in the Waste Concentration Receipt Tank (Tank 38H). Therefore, High Level Waste personnel sampled the tank at the salt surface. Results of elemental analysis of the dried sludge solids from this sample (HTF-093) show significant quantities of neutron poisons (i.e., sodium, iron, and manganese) present to mitigate the potential for nuclear criticality. Comparison of this sample with the previous chemical and radiometric analyses of H-Area Evaporator samples show high poison to actinide ratios

  4. 33 CFR 183.520 - Fuel tank vent systems.

    Science.gov (United States)

    2010-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding 80... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank vent systems. 183.520...

  5. Evaluation of waste temperatures in AWF tanks for bypass mode operation of the 702-AZ ventilation system (Project W-030)

    International Nuclear Information System (INIS)

    Sathyanarayana, K.

    1997-01-01

    This report describes the results of thermal hydraulic analysis performed to provide data in support of Project W-030 to startup new 702-AZ Primary Ventilation System. During the startup of W-030 system, the ventilation system will be operating in bypass mode. In bypass made of operation, the system is capable of supplying 1000 cfm total flow for all four AWF doubleshell tanks. The design of the W-030 system is based on the assumption that both the recirculation loop of the primary ventilation system and the secondary ventilation which provides cooling would be operating. However, during the startup neither the recirculation system nor the secondary ventilation system will be operating. A minimum flow of 100 cfm is required to prevent any flammable gas associated risk. The remaining 600 cfm flow can be divided among the four tanks as necessary to keep the peak sludge temperatures below the operating temperature limit. For the purpose of determining the minimum flow required for cooling each tank, the thermal hydraulic analysis is performed to predict the peak sludge temperatures in AY/AZ tanks under different ventilation flows. The heat load for AZ farm tanks is taken from characterization reports and for the AY farm tanks, the heat load was estimated by thermal analysis using the measured waste temperatures and the waste liquid evaporation rates. The tank 241-AZ-101 and the tank 241-AZ-102 have heat loads of 241,600 and 199,500 Btu/hr respectively. The tank 241-AY-101 and tank 241-AY-102 have heat loads of 41,000 and 33,000 Btu/hr respectively. Using the ambient meteorological conditions of temperature and relative humidity for the air and tank, some soil surface and the sludge levels reported in recent documents, the peak sludge and supernatant temperatures were predicted for various primary ventilation flows ranging from 100 to 400 cfm for AZ tanks and 100 and 150 cfm for AY tanks. The results of these thermal hydraulic analyses are presented. Based on the

  6. Computational Fluid Dynamics Analysis of an Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Kapilan N.

    2016-11-01

    Full Text Available The use of chlorofluorocarbon based refrigerants in the air-conditioning system increases the global warming and causes the climate change. The climate change is expected to present a number of challenges for the built environment and an evaporative cooling system is one of the simplest and environmentally friendly cooling system. The evaporative cooling system is most widely used in summer and in rural and urban areas of India for human comfort. In evaporative cooling system, the addition of water into air reduces the temperature of the air as the energy needed to evaporate the water is taken from the air. Computational fluid dynamics is a numerical analysis and was used to analyse the evaporative cooling system. The CFD results are matches with the experimental results.

  7. Grout and glass performance in support of stabilization/solidification of ORNL tank sludges

    International Nuclear Information System (INIS)

    Spence, R.D.; Mattus, C.H.; Mattus, A.J.

    1998-09-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) and Bethel Valley Evaporator Storage Tanks (BVEST) pending treatment for disposal. In addition, some sludges and supernatants also requiring treatment remain in two inactive tank systems: the gunite and associated tanks (GAAT) and the old hydrofracture (OHF) tank. The waste consists of two phases: sludge and supernatant. The sludges contain a high amount of radioactivity, and some are classified as TRU sludges. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough to be defined as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste. Grouting and vitrification are currently two likely stabilization/solidification alternatives for mixed wastes. Grouting has been used to stabilize/solidify hazardous and low-level radioactive waste for decades. Vitrification has been developed as a high-level radioactive alternative for decades and has been under development recently as an alternative disposal technology for mixed waste. The objective of this project is to define an envelope, or operating window, for grout and glass formulations for ORNL tank sludges. Formulations will be defined for the average composition of each of the major tank farms (BVEST/MVST, GAAT, and OHF) and for an overall average composition of all tank farms. This objective is to be accomplished using surrogates of the tank sludges with hot testing of actual tank sludges to check the efficacy of the surrogates

  8. Tank Waste Remediation System Inactive Miscellaneous Underground Storage Tanks Program Plan

    International Nuclear Information System (INIS)

    Gustavson, R.D.

    1995-12-01

    The Program Management Plan (PMP) describes the approach that will be used to manage the Tank Waste Remediation System (TWRS) Inactive Miscellaneous Underground Storage Tank (IMUST) Program. The plan describes management, technical, and administrative control systems that will be used to plan and control the IMUSTs Program performance. The technical data to determine the IMUSTs status for inclusion in the Single Shell Tank Farm Controlled Clean and Stable (CCS) Program. The second is to identify and implement surveillance, characterization, stabilization, and modifications to support CCS prior to final closure

  9. Washing water treatment process for UF_6 cylinder by adjusting evaporation technology in a low temperature and low pressure

    International Nuclear Information System (INIS)

    Kim, Ki-tae; Ju, Young-jong; Cho, Nam-chan; Kim, Yun-kwan; Jin, Chang-suk

    2016-01-01

    The liquid waste is treated in this procedure; 1) Add NaOH to the liquid waste and filter the mixture with a screen. 2) Screened residue is dried and then stored in a uranium storage. 3) liquid part is moved to a storage tank and radioactivity is measured in the liquid. 5) If the concentration of radioactivity is lower than corresponding regulation limit, the liquid moved to a reaction tank and evaporated with additional low concentration HF in 105℃. 6) Radioactivity of distillate is measured and the value is lower than regulation, it is treated with a thermal decomposition process and discharged to the atmosphere in gas state. 7) Solid waste produced in the evaporation step is managed as solid nuclear waste. The treatment procedure mentioned above has disadvantageous points, producing large amount of solid waste as well as, high energy and chemical consumption. In this study, liquid waste from a real scaled cylinder wash process is applied to evaporation system to confirm feasibility of the application of evaporation and, to reduce waste production and energy consumption. Liquid radioactive wastewater from a real scaled UF6 cylinder wash process was applied to evaporation treatment system. Radioactive concentration in gross alpha was removed 99.9% in the evaporation system. And the concentration in distillate was lower than the discharge regulation. Removal of U-235 was 99.9% in the process. And 15 other kinds of radionuclides in the raw wastewater were removed completely. Secondary waste production of the evaporation system is 15g/L

  10. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  11. Sludge mobilization with submerged nozzles in horizontal cylindrical tanks

    International Nuclear Information System (INIS)

    Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.

    1995-10-01

    The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code

  12. 40 CFR 280.43 - Methods of release detection for tanks.

    Science.gov (United States)

    2010-07-01

    ... or contraction of the product, vapor pockets, tank deformation, evaporation or condensation, and the... inoperative by the ground water, rainfall, or soil moisture or other known interferences so that a release... protection system; (iv) The ground water, soil moisture, or rainfall will not render the testing or sampling...

  13. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    International Nuclear Information System (INIS)

    Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-03-01

    Hanford's underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report

  14. Leader completes installation of process water evaporation system

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-11-01

    The installation of a patent-pending evaporation system at a facility in northeast British Columbia was discussed. The system captures excess waste exhaust heat from natural gas-fired compressor engines and is used to evaporate process water. The disposal of process water is a major cost in the production of natural gas and is usually hauled and disposed at water disposal wells located off-site. The cost to truck and dispose of the water at the facility was estimated at between $30 to $40 per cubic metre. The evaporation system can evaporate 4 to 8 cubic metres of process water every 24 hours and has an estimated useful life of 20 years. The evaporator relies on heat that would otherwise be expelled directly into the atmosphere, and the systems are expected to provide substantial savings. A wide-ranging manufacturing and marketing strategy was expected to commence by the end of 2005. With rising energy prices, operators of facilities are seeking more efficient ways of managing energy needs. The system was created by Leader Energy Services Ltd., a company that provides essential field services for oil and gas well stimulation in Alberta.

  15. The sustainability of LNG evaporation

    NARCIS (Netherlands)

    Stougie, L.; Van der Kooi, H.J.

    2011-01-01

    Numerous LNG (Liquefied Natural Gas) import terminals are under construction to fulfil the growing demand for energy carriers. After storage in tanks, the LNG needs to be heated and evaporated, also called ‘regasified’, to the natural gas needed in households and industry. Several options exist for

  16. Engineering work plan for implementing the Process Condensate Recycle Project at the 242-A evaporator

    International Nuclear Information System (INIS)

    Haring, D.S.

    1995-01-01

    The 242-A Evaporator facility is used to reduce the volume of waste stored in the Hanford double shell tanks. This facility uses filtered raw water for cooling, de-entrainment pad sprays, pump seal water, and chemical tank make-up. Some of these uses result in the introduction of filtered raw water into the process, thus increasing the volume of waste requiring evaporation and subsequent treatment by the 200 East Effluent Treatment Facility. The pump seal water and the de-entrainment pad spray systems were identified as candidates for a waste minimization upgrade. This work plan describes the activities associated with the design, installation, testing and initial operation of the process condensate recycle system. Implementation of the process condensate recycle system will permit the use of process condensate in place of raw water for the de-entrainment pad sprays and pump seals. This will reduce the amount of low-level liquid waste and generated during facility operation through source reduction and recycling

  17. Washing water treatment process for UF{sub 6} cylinder by adjusting evaporation technology in a low temperature and low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-tae; Ju, Young-jong; Cho, Nam-chan [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of); Kim, Yun-kwan; Jin, Chang-suk [Jeontech CO., Suwon (Korea, Republic of)

    2016-10-15

    The liquid waste is treated in this procedure; 1) Add NaOH to the liquid waste and filter the mixture with a screen. 2) Screened residue is dried and then stored in a uranium storage. 3) liquid part is moved to a storage tank and radioactivity is measured in the liquid. 5) If the concentration of radioactivity is lower than corresponding regulation limit, the liquid moved to a reaction tank and evaporated with additional low concentration HF in 105℃. 6) Radioactivity of distillate is measured and the value is lower than regulation, it is treated with a thermal decomposition process and discharged to the atmosphere in gas state. 7) Solid waste produced in the evaporation step is managed as solid nuclear waste. The treatment procedure mentioned above has disadvantageous points, producing large amount of solid waste as well as, high energy and chemical consumption. In this study, liquid waste from a real scaled cylinder wash process is applied to evaporation system to confirm feasibility of the application of evaporation and, to reduce waste production and energy consumption. Liquid radioactive wastewater from a real scaled UF6 cylinder wash process was applied to evaporation treatment system. Radioactive concentration in gross alpha was removed 99.9% in the evaporation system. And the concentration in distillate was lower than the discharge regulation. Removal of U-235 was 99.9% in the process. And 15 other kinds of radionuclides in the raw wastewater were removed completely. Secondary waste production of the evaporation system is 15g/L.

  18. Quantifying Evaporation in a Permeable Pavement System

    Science.gov (United States)

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  19. Basis for Selection of a Residual Waste Retrieval System for Gunite and Associated Tank W-9 at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.E

    2000-10-23

    Waste retrieval and transfer operations at the Gunite{trademark} and Associated Tanks (GAATs) Remediation Project have been successfully accomplished using the Tank Waste Retrieval System. This system is composed of the Modified Light-Duty Utility Arm, Houdini Vehicle, Waste Dislodging and Conveyance System, Hose Management Arm, and Sludge Conditioning System. GAAT W-9 has been used as a waste-consolidation and batch-transfer tank during the retrieval of sludges and supernatants from the seven Gunite tanks in the North and South tank farms at Oak Ridge National Laboratory. Tank W-9 was used as a staging tank for the transfers to the Melton Valley Storage Tanks (MVSTs). A total of 18 waste transfers from W-9 occurred between May 25, 1999, and March 30, 2000. Most of these transfers were accomplished using the PulsAir Mixer to mobilize and mix the slurry and a submersible retrieval-transfer pump to transfer the slurry through the Sludge Conditioning System and the {approx}1-mile long, 2-in.-diam waste-transfer line to the MVSTs. The transfers from W-9 have consisted of low-solids-content slurries with solids contents ranging from {approx}2.8 to 6.8 mg/L. Of the initial {approx}88,000 gal of wet sludge estimated in the GAATs, a total of {approx}60,451 gal have been transferred to the MVSTs via tank W-9 as of March 30, 2000. Once the waste-consolidation operations and transfers from W-9 to the MVSTs are completed, the remaining material in W-9 will be mobilized and transferred to the active waste system, Bethel Valley Evaporator Service Tank W-23. Tank W-23 will serve as a batch tank for the final waste transfers from tank W-9 to the MVSTs. This report provides a summary of the requirements and recommendations for the final waste retrieval system for tank W-9, a compilation of the sample analysis data for the sludge in W-9, and brief descriptions of the various waste-retrieval system concepts that were considered for this task. The recommended residual waste retrieval

  20. Performance analysis of a refrigeration system with parallel control of evaporation pressure

    International Nuclear Information System (INIS)

    Lee, Jong Suk

    2008-01-01

    The conventional refrigeration system is composed of a compressor, condenser, receiver, expansion valve or capillary tube, and an evaporator. The refrigeration system used in this study has additional expansion valve and evaporator along with an Evaporation Pressure Regulator(EPR) at the exit side of the evaporator. The two evaporators can be operated at different temperatures according to the opening of the EPR. The experimental results obtained using the refrigeration system with parallel control of evaporation pressure are presented and the performance analysis of the refrigeration system with two evaporators is conducted

  1. Specialized video systems for use in waste tanks

    International Nuclear Information System (INIS)

    Anderson, E.K.; Robinson, C.W.; Heckendorn, F.M.

    1992-01-01

    The Robotics Development Group at the Savannah River Site is developing a remote video system for use in underground radioactive waste storage tanks at the Savannah River Site, as a portion of its site support role. Viewing of the tank interiors and their associated annular spaces is an extremely valuable tool in assessing their condition and controlling their operation. Several specialized video systems have been built that provide remote viewing and lighting, including remotely controlled tank entry and exit. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. The SRS waste tanks are nominal 4.5 million liter (1.3 million gallon) underground tanks used to store liquid high level radioactive waste generated by the site, awaiting final disposal. The typical waste tank (Figure 1) is of flattened shape (i.e. wider than high). The tanks sit in a dry secondary containment pan. The annular space between the tank wall and the secondary containment wall is continuously monitored for liquid intrusion and periodically inspected and documented. The latter was historically accomplished with remote still photography. The video systems includes camera, zoom lens, camera positioner, and vertical deployment. The assembly enters through a 125 mm (5 in) diameter opening. A special attribute of the systems is they never get larger than the entry hole during camera aiming etc. and can always be retrieved. The latest systems are easily deployable to a remote setup point and can extend down vertically 15 meters (50ft). The systems are expected to be a valuable asset to tank operations

  2. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  3. Anti-foam System design description

    International Nuclear Information System (INIS)

    White, M.A.

    1994-01-01

    The Anti-foam System is a sub-system of the 242-A Evaporator facility. The Anti-foam is used within the C-A-1 Vapor-Liquid Separator, to reduce the effect of foaming and reduce fluid bumping while the vapor and liquid are separated within the C-A-1 Vapor-Liquid Separator. Excessive foaming within the vessel may possibly cause the liquid slurry mixture in the evaporator vessel to foul the de-entrainment pads and cause plant shutdown. The Anti-foam System consists of the following primary elements: the Anti-foam Tank and the Metering Pump. The upgrades to Anti-foam System include the following: installation of a new pump, instruments, and valves; and connection of the instruments, pump and agitator associated with the Anti-foam System to the Monitoring and Control System (MCS). The 242-A Evaporator is a waste treatment facility designed to reduce liquid waste volumes currently stored in the Hanford Area double shell Waste Storage Tanks. The evaporator uses evaporative concentration to achieve this volume reduction, returning the concentrated slurry to the double-shell tanks for storage and, at the same time, releasing the process effluent to a retention facilities for eventual treatment and release to the environment

  4. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Science.gov (United States)

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  5. Thermodynamic Modeling of Savannah River Evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.

    2001-08-02

    A thermodynamic model based on the code SOLGASMIX is developed to calculate phase equilibrium in evaporators and related tank wastes at the Savannah River Site (SRS). This model uses the Pitzer method to calculate activity coefficients, and many of the required Pitzer parameters have been determined in the course of this work. Principal chemical species in standard SRS simulant solutions are included, and the temperature range for most parameters has been extended above 100 C. The SOLGASMIX model and calculations using the code Geochemists Workbench are compared to actual solubility data including silicate, aluminate, and aluminosilicate solutions. In addition, SOLGASMIX model calculations are also compared to transient solubility data involving SRS simulant solutions. These comparisons indicate that the SOLGASMIX predictions closely match reliable data over the range of temperature and solution composition expected in the SRS evaporator and related tanks. Predictions using the Geochemists Workbench may be unreliable, due primarily to the use of an inaccurate activity coefficient model.

  6. 242-A evaporator quality assurance project plan: Revision 1

    International Nuclear Information System (INIS)

    Tucker, B.J.

    1994-01-01

    The scope of this quality assurance project plan (Plan) is sampling and analytical services including, but not limited to, sample receipt, handling and storage, analytical measurements, submittal of data deliverables, archiving selected portions of samples, returning unneeded sample material to Westinghouse Hanford Company (WHC), and/or sample disposal associated with candidate feed samples and process condensate compliance samples. Sampling and shipping activities are also included within the scope. The purpose of this project is to provide planning, implementation, and assessment guidance for achieving established data quality objectives measurement parameters. This Plan requires onsite and offsite laboratories to conform to that guidance. Laboratory conformance will help ensure that quality data are being generated and therefore, that the 242-A evaporator is operating in a safe and compliant manner. The 242-A evaporator feed stream originates from double-shell tanks (DSTs) identified as candidate feed tanks. The 242-A evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending it to the Liquid Effluent Retention Facility (LERF) storage basin before further treatment. The slurry product is returned to DSTs. Evaporation results in considerable savings by reducing the volume of mixed waste for disposal

  7. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  8. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    International Nuclear Information System (INIS)

    ROMERO, S.G.

    2000-01-01

    The proposed activity provides the description of the Data Acquisition System for Tank 241-AZ-101. This description is documented in HNF-5572, Tank 241-AZ-101 Waste Retrieval Data Acquisition System (DAS). This activity supports the planned mixer pump tests for Tank 241-AZ-101. Tank 241-AZ-101 has been selected for the first full-scale demonstration of a mixer pump system. The tank currently holds over 960,000 gallons of neutralized current acid waste, including approximately 12.7 inches of settling solids (sludge) at the bottom of the tank. As described in Addendum 4 of the FSAR (LMHC 2000a), two 300 HP mixer pumps with associated measurement and monitoring equipment have been installed in Tank 241-AZ-101. The purpose of the Tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste and eventual disposal as glass via the Hanford Waste Vitrification Plant. HNF-5572 provides a basic description of the Tank 241-AZ-101 retrieval system DAS, including the field instrumentation and application software. The DAS is provided to fulfill requirements for data collection and monitoring. This document is not an operations procedure or is it intended to describe the mixing operation. This USQ screening provides evaluation of HNF-5572 (Revision 1) including the changes as documented on ECN 654001. The changes include (1) add information on historical trending and data backup, (2) modify DAS I/O list in Appendix E to reflect actual conditions in the field, and (3) delete IP address in Appendix F per Lockheed Martin Services, Inc. request

  9. History of waste tank 22, 1965--1974

    International Nuclear Information System (INIS)

    McNatt, F.G.

    1979-04-01

    Tank 22 (a 1,300,000-gallon Type IV tank) was placed in service June 6, 1965, receiving HW from tank 21. The HW was transferred back into tank 21 in September 1965 and fed to the Building 242-H evaporator. This recycled concentrate and concentrate from other waste was then received in tank 22 until the tank was filled. The HW concentrate and salt remained in the tank until November 1971 when removal was begun. The concentrated supernate was transferred from the tank followed by dissolution and removal of salt from the tank walls and bottom. The salt removal was completed in May 1974 and since that time tank 22 has served as a receiver of LW from Building 221-H. Inspections of the tank interior were made using a 40-ft optical periscope and the steel thickness of the tank bottom was measured ultrasonically. Samples of the tank vapors and liquid collected in the sidewall and bottom sumps were analyzed. Temperature and specific gravity measurements were made of waste stored in the tank. Several equipment modifications and repairs were made

  10. Effect of evaporator temperature on vapor compression refrigeration system

    Directory of Open Access Journals (Sweden)

    Abdullah A.A.A. Al-Rashed

    2011-12-01

    Full Text Available This paper presents a comparable evaluation of R600a (isobutane, R290 (propane, R134a, R22, for R410A, and R32 an optimized finned-tube evaporator, and analyzes the evaporator effect on the system coefficient of performance (COP. Results concerning the response of a refrigeration system simulation software to an increase in the amount of oil flowing with the refrigerant are presented. It is shown that there is optima of the apparent overheat value, for which either the exchanged heat or the refrigeration coefficient of performance (COP is maximized: consequently, it is not possible to optimize both the refrigeration COP and the evaporator effect. The obtained evaporator optimization results were incorporated in a conventional analysis of the vapor compression system. For a theoretical cycle analysis without accounting for evaporator effects, the COP spread for the studied refrigerants was as high as 11.7%. For cycle simulations including evaporator effects, the COP of R290 was better than that of R22 by up to 3.5%, while the remaining refrigerants performed approximately within a 2% COP band of the R22 baseline for the two condensing temperatures considered.

  11. Tank waste remediation system baseline tank waste inventory estimates for fiscal year 1995

    International Nuclear Information System (INIS)

    Shelton, L.W.

    1996-01-01

    A set of tank-by-tank waste inventories is derived from historical waste models, flowsheet records, and analytical data to support the Tank Waste Remediation System flowsheet and retrieval sequence studies. Enabling assumptions and methodologies used to develop the inventories are discussed. These provisional inventories conform to previously established baseline inventories and are meant to serve as an interim basis until standardized inventory estimates are made available

  12. Double-shell tank waste system assessment status and schedule

    International Nuclear Information System (INIS)

    Walter, E.J.

    1995-01-01

    The integrated program for completing the integrity assessments of the dangerous waste tank systems managed by the Tank Waste Remediation System (TWRS) Division of Westinghouse Hanford Company is presented in the Tank Waste Remediation System Tank System Integrity Assessments Program Plan, WHC-SD-AP017, Rev. 1. The program plan identified the assessment requirements and the general scope to which these requirements applied. Some of these assessment requirements have been met and others are either in process of completion or scheduled to be worked. To define the boundary of the double-shell tank (DST) system and the boundaries of the DST system components (or system parts) for the purpose of performing integrity assessment activities; To identify the planned activities to meet the assessment requirements for each component; Provide the status of the assessment activities; and Project a five year assessment activity schedule

  13. Study on low pressure evaporation of fresh water generation system model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Han Shik; Wibowo, Supriyanto; Shin, Yong Han; Jeong, Hyo Min [Gyeongsang National University, Tongyeong (Korea, Republic of); Fajar, Berkah [University of Diponegoro, Semarang (Indonesia)

    2012-02-15

    A low pressure evaporation fresh water generation system is designed for converting brackish water or seawater into fresh water by distillation in low pressure and temperature. Distillation through evaporation of feed water and subsequent vapor condensation as evaporation produced fresh water were studied; tap water was employed as feed water. The system uses the ejector as a vacuum creator of the evaporator, which is one of the most important parts in the distillation process. Hence liquid can be evaporated at a lower temperature than at normal or atmospheric conditions. Various operating conditions, i.e. temperature of feed water and different orifice diameters, were applied in the experiment to investigate the characteristics of the system. It was found that these parameters have a significant effect on the performance of fresh water generation systems with low pressure evaporation.

  14. Tank waste remediation system: An update

    International Nuclear Information System (INIS)

    Alumkal, W.T.; Babad, H.; Dunford, G.L.; Honeyman, J.O.; Wodrich, D.D.

    1995-02-01

    The US Department of Energy's Hanford Site, located in southeastern Washington State, contains the largest amount and the most diverse collection of highly radioactive waste in the US. High-level radioactive waste has been stored at the Hanford Site in large, underground tanks since 1944. Approximately 217,000 M 3 (57 Mgal) of caustic liquids, slurries, saltcakes, and sludges have accumulated in 177 tanks. In addition, significant amounts of 90 Sr and 137 Cs were removed from the tank waste, converted to salts, doubly encapsulated in metal containers, and stored in water basins. The Tank Waste Remediation System Program was established by the US Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, significant progress has been made in resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal

  15. Evaporative and Convective Instabilities for the Evaporation of a Binary Mixture in a Bilayer System

    Science.gov (United States)

    Guo, Weidong; Narayanan, Ranga

    2006-11-01

    Evaporative convection in binary mixtures arises in a variety of industrial processes, such as drying of paint and coating technology. There have been theories devoted to this problem either by assuming a passive vapor layer or by isolating the vapor fluid dynamics. Previous work on evaporative and convective instabilities in a single component bilayer system suggests that active vapor layers play a major role in determining the instability of the interface. We have investigated the evaporation convection in binary mixtures taking into account the fluid dynamics of both phases. The liquid mixture and its vapor are assumed to be confined between two horizontal plates with a base state of zero evaporation but with linear vertical temperature profile. When the vertical temperature gradient reaches a critical value, the evaporative instability, Rayleigh and Marangoni convection set in. The effects of vapor and liquid depth, various wave numbers and initial composition of the mixture on the evaporative and convective instability are determined. The physics of the instability are explained and detailed comparison is made between the Rayleigh, Marangoni and evaporative convection in pure component and those in binary mixtures.

  16. History of waste tank 13, 1956 through 1974

    International Nuclear Information System (INIS)

    Davis, T.L.; Tharin, D.W.; Lohr, D.R.

    1978-06-01

    Tank 13 was placed in service as a receiver of LW from the Building 221-H Purex process in December 1956. Five years later, the supernate was decanted to evaporator feed tank 21. It has since served as a transfer tank for HW supernate being sent to tank 21 and has received sludge removed from other tanks four times. The tank annulus has been inspected with an optical periscope and a lead-shielded camera. No indication of tank leakage had been seen through December 1974. However, subsequent to this report (on April 14, 1977), an arrested leak was discovered, making tank 13 the last of the four type II tanks to leak. Analytical samples of supernate and sludge have been taken. Tank 13 has had no cooling coil failures. Primary tank wall thicknesses, sludge level determinations, and temperature profiles have been obtained. Tank 13 has been included in various tests. Equipment modifications and various equipment repairs were made. 11 figures, 2 tables

  17. Development of a remote tank inspection robotic system

    International Nuclear Information System (INIS)

    Knape, B.P.; Bares, L.C.

    1990-01-01

    RedZone Robotics is currently developing a remote tank inspection (RTI) robotic system for Westinghouse Idaho Nuclear Company (WINCO). WINCO intends to use the RTI robotic system at the Idaho Chemical Processing Plant, a facility that contains a tank farm of several 1,135,500-ell (300,000-gal), 15.2-m (50-ft)-diam, high-level liquid waste storage tanks. The primary purpose of the RTI robotic system is to inspect the interior of these tanks for corrosion that may have been caused by the combined effects of radiation, high temperature, and caustic by the combined effects of radiation, high temperature, and caustic chemicals present inside the tanks. The RTI robotic system features a vertical deployment unit, a robotic arm, and a remote control console and computer [located up to 30.5 m (100 ft) away from the tank site]. All actuators are high torque, electric dc brush motors that are servocontrolled with absolute position feedback. The control system uses RedZone's standardized intelligent controller for enhanced telerobotics, which provides a high speed, multitasking environment on a VME bus. Currently, the robot is controlled in a manual, job-button, control mode; however, control capability is available to develop preprogrammed, automated modes of operation

  18. Tank Farm Contractor Waste Remediation System and Utilization Plan

    International Nuclear Information System (INIS)

    KIRKBRIDE, R.A.

    1999-01-01

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy

  19. Sodium Aluminosilicate Formation in Tank 43H Simulants

    International Nuclear Information System (INIS)

    Wilmarth, W.R.; Walker, D.D.; Fink, S.D.

    1997-11-01

    This work studied the formation of a sodium aluminosilicate, Na 8 Al 6 Si 6 O 24 (NO 3 ) 2?4 H 2 O, at 40 degree 110 degree C in simulated waste solutions with varied amounts of silicon and aluminum. The data agree well with literature solubility data for sodalite, the analogous chloride salt. The following conclusions result from this work: (1) The study shows, by calculation and experiments, that evaporation of the September 1997 Tank 43H inventory will only form minor quantities of the aluminosilicate. (2) The data indicate that the rate of formation of the nitrate enclathrated sodalite solid at these temperatures falls within the residence time (<; 4 h) of liquid in the evaporator. (3) The silicon in entrained Frit 200 transferred to the evaporator with the Tank 43H salt solution will quantitatively convert to the sodium aluminosilicate. One kilogram of Frit 200 produces 2.1 kg of the sodium aluminosilicate

  20. Viewing Systems for Large Underground Storage Tanks

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1996-01-01

    Specialized remote video systems have been successfully developed and deployed in a number of large radiological Underground Storage Tanks (USTs)that tolerate the hostile tank interior, while providing high resolution video to a remotely located operator. The deployment is through 100 mm (4 in) tank openings, while incorporating full video functions of the camera, lights, and zoom lens. The usage of remote video minimizes the potential for personnel exposure to radiological and hazardous conditions, and maximizes the quality of the visual data used to assess the interior conditions of both tank and contents. The robustness of this type of remote system has a direct effect on the potential for radiological exposure that personnel may encounter. The USTs typical of the Savannah River and Hanford Department Of Energy - (DOE) sites are typically 4.5 million liter (1.2 million gal) units under earth. or concrete overburden with limited openings to the surface. The interior is both highly contaminated and radioactive with a wide variety of nuclear processing waste material. Some of the tanks are -flammable rated -to Class 1, Division 1,and personnel presence at or near the openings should be minimized. The interior of these USTs must be assessed periodically as part of the ongoing management of the tanks and as a step towards tank remediation. The systems are unique in their deployment technology, which virtually eliminates the potential for entrapment in a tank, and their ability to withstand flammable environments. A multiplicity of components used within a common packaging allow for cost effective and appropriate levels of technology, with radiation hardened components on some units and lesser requirements on other units. All units are completely self contained for video, zoom lens, lighting, deployment,as well as being self purging, and modular in construction

  1. 14 CFR 129.113 - Fuel tank system maintenance program.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel tank system maintenance program. 129... Continued Airworthiness and Safety Improvements § 129.113 Fuel tank system maintenance program. (a) Except... on which an auxiliary fuel tank is installed under a field approval, before June 16, 2008, the...

  2. Preliminary characterization of abandoned septic tank systems. Volume 1

    International Nuclear Information System (INIS)

    1995-12-01

    This report documents the activities and findings of the Phase I Preliminary Characterization of Abandoned Septic Tank Systems. The purpose of the preliminary characterization activity was to investigate the Tiger Team abandoned septic systems (tanks and associated leachfields) for the purpose of identifying waste streams for closure at a later date. The work performed was not to fully characterize or remediate the sites. The abandoned systems potentially received wastes or effluent from buildings which could have discharged non-domestic, petroleum hydrocarbons, hazardous, radioactive and/or mixed wastes. A total of 20 sites were investigated for the preliminary characterization of identified abandoned septic systems. Of the 20 sites, 19 were located and characterized through samples collected from each tank(s) and, where applicable, associated leachfields. The abandoned septic tank systems are located in Areas 5, 12, 15, 25, and 26 on the Nevada Test Site

  3. Performance requirements for the double-shell tank system: Phase 1

    International Nuclear Information System (INIS)

    Claghorn, R.D.

    1998-01-01

    This document establishes performance requirements for the double-shell tank system. These requirements, in turn, will be incorporated in the System Specification for the Double-Shell Tank System (Grenard and Claghorn 1998). This version of the document establishes requirements that are applicable to the first phase (Phase 1) of the Tank Waste Remediation System (TWRS) mission described in the TWRS Mission Analysis Report (Acree 1998). It does not specify requirements for either the Phase 2 mission or the double-shell tank system closure period

  4. Acceptance test report for the Tank 241-C-106 in-tank imaging system

    International Nuclear Information System (INIS)

    Pedersen, L.T.

    1998-01-01

    This document presents the results of Acceptance Testing of the 241-C-106 in-tank video camera imaging system. The purpose of this imaging system is to monitor the Project W-320 sluicing of Tank 241-C-106. The objective of acceptance testing of the 241-C-106 video camera system was to verify that all equipment and components function in accordance with procurement specification requirements and original equipment manufacturer's (OEM) specifications. This document reports the results of the testing

  5. Solar combi system based on a mantle tank

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2007-01-01

    A solar combisystem based on a mantle tank is investigated numerically and experimentally. Three different houses with four different radiator systems are considered for the simulations. The needed temperature for the auxiliary heater is determined for different houses and radiator systems....... The thermal performance of the solar combisystem is compared to the thermal performance of a solar domestic hot water system based on a mantle tank. In the experimental study, tank temperatures and the heat transfer coefficient for the top mantle for a discharge test is determined. The investigations showed...

  6. 14 CFR 125.507 - Fuel tank system inspection program.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel tank system inspection program. 125... Airworthiness and Safety Improvements § 125.507 Fuel tank system inspection program. (a) Except as provided in... fuel tank is installed under a field approval, before June 16, 2008, the certificate holder must submit...

  7. 14 CFR 91.1507 - Fuel tank system inspection program.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Fuel tank system inspection program. 91... Airworthiness and Safety Improvements § 91.1507 Fuel tank system inspection program. (a) Except as provided in... fuel tank is installed under a field approval, before June 16, 2008, the operator must submit to the...

  8. 46 CFR 105.25-7 - Ventilation systems for cargo tank or pumping system compartment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation systems for cargo tank or pumping system... Requirements-When Cargo Tanks Are Installed Below Decks § 105.25-7 Ventilation systems for cargo tank or pumping system compartment. (a) Each compartment shall be provided with a mechanical exhaust system...

  9. 14 CFR 121.1113 - Fuel tank system maintenance program.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel tank system maintenance program. 121... Improvements § 121.1113 Fuel tank system maintenance program. (a) Except as provided in paragraph (g) of this... capacity of 7500 pounds or more. (b) For each airplane on which an auxiliary fuel tank is installed under a...

  10. 33 CFR 183.564 - Fuel tank fill system.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank fill system. (a) Each fuel fill opening must be located so that a gasoline overflow of up to five...

  11. History of Tank 23, 1962 through 1974

    International Nuclear Information System (INIS)

    McNatt, F.G.

    1979-04-01

    Tank 23 was placed in service in April 1964 receiving contaminated water from Buildings 244-H, the Receiving Basin for Off-Site Fuel (RBOF), and 245-H, the Resin Regeneration Facility (RRF). Tank 23 also provided emergency storage space for 500,000 gallons in the event of a severe contamination incident in Building 244-H. The tank has remained in this service since that time. The Tank 23 waste was processed initially by the 242-H evaporator, but since mid-1966 the waste has been processed through a zeolite bed to remove 137 C and other radioisotopes by ion exchange, and discarded to seepage basins. Inspections of the tank interior were made by using a 40-ft optical periscope and the thickness of the steel bottom of the tank was measured ultrasonically. Samples of the waste in the tank and liquid collected in the side wall and bottom sumps were analyzed. Several equipment modifications and repairs were made

  12. Performance Improvement of a Radioactive Forced Circulation Evaporator System

    International Nuclear Information System (INIS)

    Zaki, A.A.; Hala, A.A.; Othman, E.A.

    2016-01-01

    Evaporation is a proven method for treatment of liquid radioactive wastes providing both good decontamination and high concentration. In a radioactive waste treatment plant a forced circulation evaporator is used to reduce the volume of radioactive liquid wastes arising from different applications of nuclear industries. The safe operation, limiting the composition of the liquid radioactive waste at a prescribed value, with high performance efficiency, requires good control for the evaporator operating pressure and the level of liquid waste inside the separator part of the evaporator. The aim of this work was to improve the safety and performance of a forced-circulation evaporator used in a liquid radioactive wastes treatment plant. In this respect, a level controller system for this type of evaporator was designed, where proportional (P), proportional Integral (PI) and deadbeat response controllers for the separator level system were suggested. More over, an ideal 2×2(2 inputs and 2 outputs )de coupler controller for controlling the operating pressure and the product composition was developed. Computer results demonstrated that the deadbeat response has been success fully obtained from the developed separator control system. The maximum over shoot in the unit-step response curve was reduce d to 25 % and the settling time also was reduced to more than the half; about 26 minutes using Ziegler-Nichols tuning technique.The designed de coupling controller has been found effective in achieving a good trade-off between stability and performance

  13. Tank waste remediation system dangerous waste training plan

    International Nuclear Information System (INIS)

    POHTO, R.E.

    1999-01-01

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench

  14. Data-driven analysis of the effectiveness of evaporative emissions control systems of passenger cars in real world use condition: Time and spatial mapping

    Science.gov (United States)

    De Gennaro, Michele; Paffumi, Elena; Martini, Giorgio

    2016-03-01

    This paper assesses the effectiveness of the evaporative emissions control systems of European passenger cars on the basis of real-world activity data. The study relies on two large datasets of driving patterns from conventional fuel vehicles collected by means of on-board GPS systems, consisting of 4.5 million trips and parking events recorded by monitoring 28,000 vehicles over one month. Real world evaporative emissions are estimated using a model that associates a carbon canister desorption event to each trip and a fuel vapour generation event to each parking. The mass of volatile organic compounds released into the air is calculated taking into account the hot-soak, permeation and breathing emission mechanisms. The analysis is based on 36 scenarios, defined by varying the climate conditions, the fuel vapour pressure, the tank material, the tank headspace volume, the purging volume flow rate and the mass of the activated carbon contained in the canister. The results show that in May 4 out of the 18 scenarios considered for Modena and 6 out of the 18 scenarios considered for Firenze lead to evaporative emissions values above the current type approval limit (i.e. 2 [g/day] per vehicle). In July, these numbers increase to 10 out of the 18 scenarios for Modena and to 12 out of the 18 scenarios for Firenze. Looking at the fleet distribution a share of approximately 20% of the fleet is characterised by evaporative emissions higher than the limit in May, increasing to 48% in July, with a peak value of 98%. The emission peak value is estimated to be approximately 4 [g/day] in May and 8 [g/day] in July, while the time-dependent results show emission rates up to nearly 15 [g/s] in Modena and 30 [g/s] in Firenze, with a respective cumulative value in July up to 0.4 and 0.8 tons of VOCs per day. The space-dependent results show a value of the emissions in July of approximately 4-to-8 [kg/km2/day] in the city areas. These results confirm previous findings from the authors

  15. Designing a new highly active liquid evaporator - 16075

    International Nuclear Information System (INIS)

    Robson, Paul; Candy, Emma

    2009-01-01

    The Highly Active Liquid Effluent Storage (HALES) plant stores, concentrates and conditions Highly Active Liquor (HAL) in evaporators for buffer storage in Highly Active Storage Tanks (HAST). Highly Active (HA) evaporators play a pivotal role in the delivery of reprocessing, historic clean up and hazard reduction missions across the Sellafield site. In addition to the engineering projects implemented to extend the life expectation of the current evaporator fleet, the UK Nuclear Decommissioning Agency (NDA) is sponsoring the construction of a new HA evaporator (Evaporator D) on the Sellafield site. The design and operation of the new HA evaporator is based on existing/recent HA evaporator technology but learning from past operational experience. Operational experience has been a key area where the existing plant operators have influenced both the new design itself and the requirements for commissioning and training. Many of the learning experiences require relatively simple engineering design modifications such as a new internal washing provision and transfer line blockage recovery systems, they are never-the-less expected to significantly improve the flexibility and operational capability of the new evaporator. Issues that the project delivery team has addressed as part of the development of the design and construction have included: - Minimising interruptions and/or changes to the normal operations of interfacing plants during construction, commissioning and operation of the new facility. - Modularization of the plant, enabling fabrication of the majority of the plant equipment off-site within a workshop (as opposed to on-site) environment improving Quality Assurance and reducing on-Site testing needs. - Drawing out the balance between operational and corrosion resistance improvements with actual design and delivery needs. - Provision of a new facility reliant on the infrastructure of an existing and ageing facility and the competing demands of the related safety

  16. Mode switching control of dual-evaporator air-conditioning systems

    International Nuclear Information System (INIS)

    Lin, J.-L.; Yeh, T.-J.

    2009-01-01

    Modern air-conditioners incorporate variable-speed compressors and variable-opening expansion valves as the actuators for improving cooling performance and energy efficiency. These actuators have to be properly feedback-controlled; otherwise the systems may exhibit even poorer performance than the conventional machines which use fixed-speed compressors and mechanical expansion valves. Particularly for an air-conditioner with multiple evaporators, there are occasions that the machine is operated in a mode that only selected evaporator(s) is(are) turned on, and switching(s) between modes occurs(occur) during the control process. In this case, one needs to have more carefully designed control and switching strategies to ensure the system performance. In this paper, a framework for mode switching control of the dual-evaporator air-conditioning (DEAC) system is proposed. The framework is basically an integration of a controller and a dynamic compensator. The controller, which possesses the flow-distribution capability and assumes both evaporators are on throughout the control process, is intended to provide nominal performance. While mode switching is achieved by varying the reference settings in the controller, the dynamic compensator is used to improve the transient responses immediately after the switching. Experiments indicate that the proposed framework can achieve satisfactory indoor temperature regulation and provide bumpless switching between different modes of operation.

  17. Evaporative cooling enhanced cold storage system

    Science.gov (United States)

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  18. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  19. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    International Nuclear Information System (INIS)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  20. Insulation systems for liquid methane fuel tanks for supersonic cruise aircraft

    Science.gov (United States)

    Brady, H. F.; Delduca, D.

    1972-01-01

    Two insulation systems for tanks containing liquid methane in supersonic cruise-type aircraft were designed and tested after an extensive materials investigation. One system is an external insulation and the other is an internal wet-type insulation system. Tank volume was maximized by making the tank shape approach a rectangular parallelopiped. One tank was designed to use the external insulation and the other tank to use the internal insulation. Performance of the external insulation system was evaluated on a full-scale tank under the temperature environment of -320 F to 700 F and ambient pressures of ground-level atmospheric to 1 psia. Problems with installing the internal insulation on the test tank prevented full-scale evaluation of performance; however, small-scale testing verified thermal conductivity, temperature capability, and installed density.

  1. Numerical study of a novel dew point evaporative cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Riangvilaikul, B.; Kumar, S. [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120 (Thailand)

    2010-11-15

    Dew point evaporative cooling system is an alternative to vapor compression air conditioning system for sensible cooling of ventilation air. This paper presents the theoretical performance of a novel dew point evaporative cooling system operating under various inlet air conditions (covering dry, moderate and humid climate) and influence of major operating parameters (namely, velocity, system dimension and the ratio of working air to intake air). A model of the dew point evaporative cooling system has been developed to simulate the heat and mass transfer processes. The outlet air conditions and system effectiveness predicted by the model using numerical method for known inlet parameters have been validated with experimental findings and with recent literature. The model was used to optimize the system parameters and to investigate the system effectiveness operating under various inlet air conditions. (author)

  2. An automated tunnel evaporation measurement system for confined spaces

    Science.gov (United States)

    Salve, Rohit

    2002-04-01

    An automated tunnel evaporation-rate measurement system (TEMS) has been designed to measure automatically the evaporation from a cylinder 0·30 m in diameter and 0·10 m tall. This cylinder continuously maintains a constant height of water, with losses to evaporation replenished from a stilling cylinder connected to a water reservoir. The evaporation rate is measured by a transducer located at the bottom of the stilling well. The TEMS was tested over a period of 3 months in an underground research facility with relatively strong wind effects, changing temperature, and changing humidity. During this period, the TEMS continued to function uninterrupted, automatically measuring the evaporation amounts along a tunnel and an enclosed niche. These observations suggest that this tool can be useful for investigations of evaporation processes both in enclosed and ventilated environments. Published in 2002 by John Wiley & Sons, Ltd.

  3. Flammable gas tank waste level reconciliation tank 241-SX-105

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddie, L.A.

    1997-01-01

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980

  4. Evaporation of petroleum products from contaminated soils

    International Nuclear Information System (INIS)

    Kang, S.H.

    1996-01-01

    Bioremediation can remove petroleum products from soil that has been contaminated by leaking underground storage tanks, but abiotic processes such as evaporation can contribute significantly to the overall removal process. The mathematical model described in this paper was developed to predict the evaporation rate of volatile liquids from petroleum-contaminated sand. The model is based on simple concepts relating to molecular diffusion embodied in the theory underlying the estimation of binary diffusivities using measurements made with an Arnold diffusion cell. The model in its simplified form indicates that the rate of evaporation for a particular volatile liquid is proportional to the square root of the product of diffusivity and partial pressure divided by the molecular weight of the liquid. This in part explains why evaporative losses from sand are so much higher for gasoline than for diesel fuel. The model also shows that the time for evaporation is directly proportional to the square of the depth dried out and inversely proportional to the vapor pressure of the volatile liquid. The model was tested using gravimetric measurements of the evaporation of n-heptane, unleaded gasoline, and diesel fuel from sand under laboratory conditions

  5. Functional design criteria for the 242-A evaporator and PUREX [Plutonium-Uranium Extraction] Plant condensate interim retention basin

    International Nuclear Information System (INIS)

    Cejka, C.C.

    1990-01-01

    This document contains the functional design criteria for a 26- million-gallon retention basin and 10 million gallons of temporary storage tanks. The basin and tanks will be used to store 242-A Evaporator process condensate, the Plutonium-Uranium Extraction (PUREX) Plant process distillate discharge stream, and the PUREX Plant ammonia scrubber distillate stream. Completion of the project will allow both the 242-A Evaporator and the PUREX Plant to restart. 4 refs

  6. Initial Single-Shell Tank Retrieval System mission analysis report

    International Nuclear Information System (INIS)

    Hertzel, J.S.

    1996-03-01

    This document provides the mission analysis for the Initial Single-Shell Tank Retrieval System task, which supports the Single-Shell Tank Waste Retrieval Program in its commitment to remove waste from single-shell tanks for treatment and final closure

  7. Tank waste concentration mechanism study

    International Nuclear Information System (INIS)

    Pan, L.C.; Johnson, L.J.

    1994-09-01

    This study determines whether the existing 242-A Evaporator should continue to be used to concentrate the Hanford Site radioactive liquid tank wastes or be replaced by an alternative waste concentration process. Using the same philosophy, the study also determines what the waste concentration mechanism should be for the future TWRS program. Excess water from liquid DST waste should be removed to reduce the volume of waste feed for pretreatment, immobilization, and to free up storage capacity in existing tanks to support interim stabilization of SSTS, terminal cleanout of excess facilities, and other site remediation activities

  8. Project Management Plan for Initial Tank Retrieval Systems, Project W-211

    International Nuclear Information System (INIS)

    VAN BEEK, J.E.

    1999-01-01

    Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AP-108, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the Privatized waste processing plant and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump based retrieval system for any DST. This Project Management Plan (PMP) documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering

  9. Engineer/constructor description of work for Tank 241-SY-102 retrieval system, project W-211, initial tank retrieval systems

    International Nuclear Information System (INIS)

    Rieck, C.A.

    1996-02-01

    This document provides a description of work for the design and construction of a waste retrieval system for Tank 241-SY-102. The description of work includes a working estimate and schedule, as well as a narrative description and sketches of the waste retrieval system. The working estimate and schedule are within the established baselines for the Tank 241-SY-102 retrieval system. The technical baseline is provided in Functional Design Criteria, WHC-SD-W211-FDC-001, Revision 2

  10. Removal of Sulfate Ion From AN-107 by Evaporation

    International Nuclear Information System (INIS)

    GJ Lumetta; GS Klinger; DE Kurath; RL Sell; LP Darnell; LR Greenwood; CZ Soderquist; MJ Steele; MW Urie; JJ Wagner

    2000-01-01

    Hanford low-activity waste solutions contain sulfate, which can cause accelerated corrosion of the vitrification melter and unacceptable operating conditions. A method is needed to selectively separate sulfate from the waste. An experiment was conducted to evaluate evaporation for removing sulfate ion from Tank AN-107 low-activity waste. Two evaporation steps were performed. In the first step, the volume was reduced by 55% while in the second step, the liquid volume was reduced another 22%. Analysis of the solids precipitated during these evaporations revealed that large amounts of sodium nitrate and nitrite co-precipitated with sodium sulfate. Many other waste components precipitated as well. It can be concluded that sulfate removal by precipitation is not selective, and thus, evaporation is not a viable option for removing sulfate from the AN-107 liquid

  11. Complex Protection of Vertical Stainless Steel Tanks

    Directory of Open Access Journals (Sweden)

    Fakhrislamov Radik Zakievich

    2014-03-01

    Full Text Available The authors consider the problem of fail-safe oil and oil products storage in stainless steel tanks and present the patented tank inner side protection technology. The latter provides process, ecological and fire safety and reducing soil evaporation of oil products, which is a specific problem. The above-mentioned technology includes corrosion protection and heat insulation protection providing increase of cover durability and RVS service life in general. The offered technological protection scheme is a collaboration of the author, Steel Paint GmbH firm and JSC “Koksokhimmontazhproyekt”. PU foam unicomponent materials of Steel Paint GmbH firm provide the protection of tank inner side and cover.

  12. ICPP Tank Farm planning through 2012

    International Nuclear Information System (INIS)

    Palmer, W.B.; Millet, C.B.; Staiger, M.D.; Ward, F.S.

    1998-01-01

    Historically, liquid high-level waste (HLW) generated at the Idaho Chemical Processing Plant has been stored in the Tank Farm after which it is calcined with the calcine being stored in stainless steel bins. Following the curtailment of spent nuclear fuel reprocessing in 1992, the HLW treatment methods were re-evaluated to establish a path forward for producing a final waste form from the liquid sodium bearing wastes (SBW) and the HLW calcine. Projections for significant improvements in waste generation, waste blending and evaporation, and calcination were incorporated into the Tank Farm modeling. This optimized modeling shows that all of the SBW can be calcined by the end of 2012 as required by the Idaho Settlement Agreement. This Tank Farm plan discusses the use of each of the eleven HLW tanks and shows that two tanks can be emptied, allowing them to be Resource Conservation and Recovery Act closed by 2006. In addition, it describes the construction of each tank and vault, gives the chemical concentrations of the contents of each tank, based on historical input and some sampling, and discusses the regulatory drivers important to Tank Farm operation. It also discusses new waste generation, the computer model used for the Tank Farm planning, the operating schedule for each tank, and the schedule for when each tank will be empty and closed

  13. Control of stress corrosion cracking in storage tanks containing radioactive waste

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Rideout, S.P.; Donovan, J.A.

    1978-01-01

    Stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste, at the Savannah River Plant is controlled by specification of limits on waste composition and temperature. Cases of cracking have been observed in the primary steel shell of tanks designed and built before 1960 that were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh waste, concentrations of the inhibitor ions are maintained within specified ranges to protect against nitrate cracking. Tanks designed and built since 1960 have been made of steels with greater resistance to stress corrosion; these tanks have also been heat treated after fabrication to relieve residual stresses from construction operations. Temperature limits are also specified to protect against stress corrosion at elevated temperatures

  14. Light Duty Utility Arm System applications for tank waste remediation

    International Nuclear Information System (INIS)

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy's (DOE's) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE's underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE's environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE's environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design

  15. New and conventional evaporative systems in concentrating nitrogen samples prior to isotope-ratio analysis

    International Nuclear Information System (INIS)

    Lober, R.W.; Reeder, J.D.; Porter, L.K.

    1987-01-01

    Studies were conducted to quantify and compare the efficiencies of various evaporative systems used in evaporating 15 N samples prior to mass spectrometric analysis. Two new forced-air systems were designed and compared with a conventional forced-air system and with an open-air dry bath technique for effectiveness in preventing atmospheric contamination of evaporating samples. The forced-air evaporative systems significantly reduced the time needed to evaporate samples as compared to the open-air dry bath technique; samples were evaporated to dryness in 2.5 h with the forced-air systems as compared to 8 to 10 h on the open-air dry bath. The effectiveness of a given forced-air system to prevent atmospheric contamination of evaporating samples was significantly affected by the flow rate of the air stream flowing over the samples. The average atmospheric contaminant N found in samples evaporated on the open-air dry bath was 0.3 μ N, indicating very low concentrations of atmospheric NH 3 during this study. However, in previous studies the authors have experienced significant contamination of 15 N samples evaporated on an open-air dry bath because the level of contaminant N in the laboratory atmosphere varied and could not be adequately controlled. Average cross-contaminant levels of 0.28, 0.20, and 1.01 μ of N were measured between samples evaporated on the open-air dry bath, the newly-designed forced-air system, and the conventional forced-air system, respectively. The cross-contamination level is significantly higher on the conventional forced-air system than on the other two systems, and could significantly alter the atom % 15 N of high-enriched, low [N] evaporating samples

  16. GLOBAL INSTABILITY OF THE EXO-MOON SYSTEM TRIGGERED BY PHOTO-EVAPORATION

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Xie, Ji-Wei; Zhou, Ji-Lin; Liu, Hui-Gen; Zhang, Hui, E-mail: jwxie@nju.edu.cn, E-mail: zhoujl@nju.edu.cn [School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, 210093 (China)

    2016-12-10

    Many exoplanets have been found in orbits close to their host stars and thus they are subject to the effects of photo-evaporation. Previous studies have shown that a large portion of exoplanets detected by the Kepler mission have been significantly eroded by photo-evaporation. In this paper, we numerically study the effects of photo-evaporation on the orbital evolution of a hypothesized moon system around a planet. We find that photo-evaporation is crucial to the stability of the moon system. Photo-evaporation can erode the atmosphere of the planet thus leading to significant mass loss. As the planet loses mass, its Hill radius shrinks and its moons increase their orbital semimajor axes and eccentricities. When some moons approach their critical semimajor axes, global instability of the moon system would be triggered, which usually ends up with two, one or even zero surviving moons. Some lost moons could escape from the moon system to become a new planet orbiting the star or run away further to become a free-floating object in the Galaxy. Given the destructive role of photo-evaporation, we speculate that exomoons are less common for close-in planets (<0.1 au), especially those around M-type stars, because they are more X-ray luminous and thus enhancing photo-evaporation. The lessons we learn in this study may be helpful for the target selection of on-going/future exomoon searching programs.

  17. Developing a model for moisture in saltcake waste tanks: Progress report

    International Nuclear Information System (INIS)

    Simmons, C.S.; Aimo, N.; Fayer, M.J.; White, M.D.

    1997-07-01

    This report describes a modeling effort to provide a computer simulation capability for estimating the distribution and movement of moisture in the saltcake-type waste contained in Hanford's single-shell radioactive waste storage tanks. This moisture model goes beyond an earlier version because it describes water vapor movement as well as the interstitial liquid held in a saltcake waste. The work was performed by Pacific Northwest National Laboratory to assist Duke Engineering and Services Hanford with the Organic Tank Safety Program. The Organic Tank Safety Program is concerned whether saltcake waste, when stabilized by jet pumping, will retain sufficient moisture near the surface to preclude any possibility of an accidental ignition and propagation of burning. The nitrate/nitrite saltcake, which might also potentially include combustible organic chemicals might not always retain enough moisture near the surface to preclude any such accident. Draining liquid from a tank by pumping, coupled with moisture evaporating into a tank's head space, may cause a dry waste surface that is not inherently safe. The moisture model was devised to help examine this safety question. The model accounts for water being continually cycled by evaporation into the head space and returned to the waste by condensation or partly lost through venting to the external atmosphere. Water evaporation occurs even in a closed tank, because it is driven by the transfer to the outside of the heat load generated by radioactivity within the waste. How dry a waste may become over time depends on the particular hydraulic properties of a saltcake, and the model uses those properties to describe the capillary flow of interstitial liquid as well as the water vapor flow caused by thermal differences within the porous waste

  18. Design and development of a split-evaporator heat-pump system

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, M.H.; Penoncello, S.G.

    1981-12-01

    The designs and experimental results of three types of multiple source heat pumps are presented. The three designs are the parallel evaporator, the series evaporator, and the parallel evaporator with active subcooling, with the parallel evaporator with the active subcooling showing the most promise for solving the problem of defrosting of air evaporators. Three design procedures for multiple source heat pumps were developed. One of these is a hand calculational procedure, the others are computer based. The models are based upon the refrigerant flow rate, rather than the refrigeration effect of the evaporator. The technical results of a detailed analytical and experimental model of the heat transfer rates on a flat plate ice maker are presented. It is shown, both analytically and experimentally, that the temperature of the air surrounding the flat plate ice maker can play a dominant role in the rate of ice formation. A detailed weather analysis for forty cities located throughout the nation was completed. These data were processed to allow easy computation of thermal storage requirements for full, partial, or minimum ACES systems, or upon other design requirements, such as off-peak air conditioning. The results of an innovative ice storage system that is thermally coupled to the earth are described. This system has the potential for meeting both the off-peak air conditioning needs and the thermal storage requirements for the heating cycle. An economic and energy comparison of multiple source heat pumps with ACES, and air-to-air heat pump systems is presented.

  19. Foaming/antifoaming in WTP Tanks Equipped with Pulse Jet Mixer and Air Spargers

    International Nuclear Information System (INIS)

    HASSAN, NEGUIB

    2004-01-01

    The River Protection Project-Waste Treatment Plant (RPP-WTP) requested Savannah River National Laboratory (SRNL) to conduct small-scale foaming and antifoam testing using actual Hanford waste and simulants subjected to air sparging. The foaminess of Hanford tank waste solutions was previously demonstrated in SRNL during WTP evaporator foaming and ultrafiltration studies and commercial antifoam DOW Q2-3183A was recommended to mitigate the foam in the evaporators. Currently, WTP is planning to use air spargers in the HLW Lag Storage Vessels, HLW Concentrate Receipt Vessel, and the Ultrafiltration Vessels to assist the performance of the Jet Pulse Mixers (JPM). Sparging of air into WTP tanks will induce a foam layer within the process vessels. The air dispersion in the waste slurries and generated foams could present problems during plant operation. Foam in the tanks could also adversely impact hydrogen removal and mitigation. Antifoam (DOW Q2-3183A) will be used to control foaming in Hanford sparged waste processing tanks. These tanks will be mixed by a combination of pulse-jet mixers and air spargers. The percent allowable foaminess or freeboard in WTP tanks are shown in tables

  20. Prevention of stress corrosion cracking in nuclear waste storage tanks

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.

    1983-01-01

    At the Savannah River Plant, stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste is prevented by stress relief and specification of limits on waste composition and temperature. Actual cases of cracking have occurred in the primary steel shell of tanks designed and built before 1960 and were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also, as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh wastes, concentrations of the inhibitor ions are maintained within specific ranges to protect against nitrate cracking. The concentration and temperature range limits to prevent cracking were determined by a series of statistically designed experiments

  1. The analysis of loading losses from tank trucks

    Directory of Open Access Journals (Sweden)

    Jovanović Ana P.

    2006-01-01

    Full Text Available The quantity of loading losses, which are the primary source of evaporative emissions from tank cars and trucks was analyzed in this paper. Loading losses occur as organic vapors in "empty" cargo tanks are displaced to the atmosphere by the liquid being loaded into the tanks. Emissions from loading petroleum liquid were estimated using three methods: the API (American Petroleum Institute method, the VDI (Verein Deutscher Ingenieure -Association of German Engineers method and the Yugoslav Standard JUS B.HO.531 method. The mass of evaporative losses from loading operations is a function of the following parameters: the method of loading the cargo, the physical and chemical characteristics of the cargo and the ambient temperature during loading. Evaporation losses from the loading of motor gasoline (MB-95, BMB-95, MB-98 and MB-86 and diesel fuels (D-2, Euro D-2 were calculated. Losses on a monthly and annual basis were presented for an assumed amount of loaded cargo. It was estimated that the highest loading losses occur in the summer period because of high ambient daily temperatures and in the period of higher transporting levels. It should be pointed out that the loading losses of diesel fuel calculated using an empirical coefficient according to JUS B.HO.531 are significantly higher in comparison with the loading losses calculated using emission factors from the EPA and the VDI method. The gasoline loading losses calculated using emission factors derived from the three methods are similar.

  2. Energy and water management in evaporative cooling systems in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, Abdel-wahab S. (Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Hassa (Saudi Arabia))

    1994-11-01

    A mathematical model was developed to estimate water evaporation rate, airflow rate and cooling effect in an evaporative cooling system for farm structures. The model was only applied to evaporative cooling systems for greenhouses. The effect of ambient air temperature, solar radiation and system efficiency on water evaporation rate, airflow rate and the resulting cooling effect were studied. Generally, water flow rate and air flow rate are adjusted based on daily maximum temperature. However, a substantial saving in energy and water consumption in the cooling system would be achieved by regulating water flow rate and air flow rate to follow the diurnal variation on temperature. Improving the cooling efficiency and covering the roof of the greenhouse with an external shading would save an appreciable amount of energy and water consumption. The model could also be applied to other farm structures such as animal shelters

  3. The use of air flow through water for water evaporation

    International Nuclear Information System (INIS)

    Lashin, A.A.

    1996-01-01

    In water desalination system the productivity rate is improved by increasing the rate of eater evaporation either by heating the water or by forcing air to carry more vapor before condensation. This paper describe an experimental investigation into the effect of forcing the air to flow through a hot water contained in a closed tank through a perforated end of inlet tube. When the air bubbles pass through the water, it increases the rate of vaporization. The effect of some operating parameters are investigated and the results are presented and discussed. 6 figs

  4. Study on performance prediction and energy saving of indirect evaporative cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Yeon; Kim, Tae Ho; Kim, Myung Ho [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-15

    The purpose of this study is to predict the performance of an indirect evaporative cooling system, and to evaluate its energy saving effect when applied to the exhaust heat recovery system of an air-handling unit. We derive the performance correlation of the indirect evaporative cooling system using a plastic heat exchanger based on experimental data obtained in various conditions. We predict the variations in the performance of the system for various return and outdoor air conditioning systems using the obtained correlation. We also analyze the energy saving of the system realized by the exhaust heat recovery using the typical meteorological data for several cities in Korea. The average utilization rate of the sensible cooling system for the exhaust heat recovery is 44.3% during summer, while that of the evaporative cooling system is 96.7%. The energy saving of the evaporative cooling system is much higher compared to the sensible cooling system, and was about 3.89 times the value obtained in Seoul.

  5. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Safeguards and Security (S&S) Functional Area address the programmatic and technical requirements, controls, and standards which assure compliance with applicable S&S laws and regulations. Numerous S&S responsibilities are performed on behalf of the Tank Farm Facility by site level organizations. Certain other responsibilities are shared, and the remainder are the sole responsibility of the Tank Farm Facility. This Requirements Identification Document describes a complete functional Safeguards and Security Program that is presumed to be the responsibility of the Tank Farm Facility. The following list identifies the programmatic elements in the S&S Functional Area: Program Management, Protection Program Scope and Evaluation, Personnel Security, Physical Security Systems, Protection Program Operations, Material Control and Accountability, Information Security, and Key Program Interfaces.

  6. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 3

    International Nuclear Information System (INIS)

    1994-04-01

    The Safeguards and Security (S ampersand S) Functional Area address the programmatic and technical requirements, controls, and standards which assure compliance with applicable S ampersand S laws and regulations. Numerous S ampersand S responsibilities are performed on behalf of the Tank Farm Facility by site level organizations. Certain other responsibilities are shared, and the remainder are the sole responsibility of the Tank Farm Facility. This Requirements Identification Document describes a complete functional Safeguards and Security Program that is presumed to be the responsibility of the Tank Farm Facility. The following list identifies the programmatic elements in the S ampersand S Functional Area: Program Management, Protection Program Scope and Evaluation, Personnel Security, Physical Security Systems, Protection Program Operations, Material Control and Accountability, Information Security, and Key Program Interfaces

  7. Design of second generation Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    Edgemon, G.L.

    1998-01-01

    The Hanford Site has 177 underground waste tanks that store approximately 253 million liters of radioactive waste from 50 years of plutonium production. Twenty-eight tanks have a double shell and are constructed of welded ASTM A537-Class 1 (UNS K02400), ASTM A515-Grade 60 (UNS K02401), or ASTM A516-Grade 60 (UNS K02100) material. The inner tanks of the double-shell tanks (DSTS) were stress relieved following fabrication. One hundred and forty-nine tanks have a single shell, also constructed of welded mild steel, but not stress relieved following fabrication. Tank waste is in liquid, solid, and sludge forms. Tanks also contain a vapor space above the solid and liquid waste regions. The composition of the waste varies from tank to tank but generally has a high pH (>12) and contains sodium nitrate, sodium hydroxide, sodium nitrite, and other minor radioactive constituents resulting from plutonium separation processes. Leaks began to appear in the single-shell tanks shortly after the introduction of nitrate-based wastes in the 1950s. Leaks are now confirmed or suspected to be present in a significant number of single-shell tanks. The probable modes of corrosion failures are reported as nitrate stress corrosion cracking (SCC) and pitting. Previous efforts to monitor internal corrosion of waste tank systems have included linear polarization resistance (LPR) and electrical resistance techniques. These techniques are most effective for monitoring uniform corrosion, but are not well suited for detection of localized corrosion (pitting and SCC). The Savannah River Site (SRS) investigated the characterization of electrochemical noise (EN) for monitoring waste tank corrosion in 1993, but the tests were not conclusive. The SRS effort has recently been revived and additional testing is underway. For many years, EN has been observed during corrosion and other electrochemical reactions, and the phenomenon is well established. Typically, EN consists of low frequency (< 1 Hz) and

  8. Using evaporation to control capillary instabilities in micro-systems.

    Science.gov (United States)

    Ledesma-Aguilar, Rodrigo; Laghezza, Gianluca; Yeomans, Julia M; Vella, Dominic

    2017-12-06

    The instabilities of fluid interfaces represent both a limitation and an opportunity for the fabrication of small-scale devices. Just as non-uniform capillary pressures can destroy micro-electrical mechanical systems (MEMS), so they can guide the assembly of novel solid and fluid structures. In many such applications the interface appears during an evaporation process and is therefore only present temporarily. It is commonly assumed that this evaporation simply guides the interface through a sequence of equilibrium configurations, and that the rate of evaporation only sets the timescale of this sequence. Here, we use Lattice-Boltzmann simulations and a theoretical analysis to show that, in fact, the rate of evaporation can be a factor in determining the onset and form of dynamical capillary instabilities. Our results shed light on the role of evaporation in previous experiments, and open the possibility of exploiting diffusive mass transfer to directly control capillary flows in MEMS applications.

  9. The evaporative vector: Homogeneous systems

    International Nuclear Information System (INIS)

    Klots, C.E.

    1987-05-01

    Molecular beams of van der Waals molecules are the subject of much current research. Among the methods used to form these beams, three-sputtering, laser ablation, and the sonic nozzle expansion of neat gases - yield what are now recognized to be ''warm clusters.'' They contain enough internal energy to undergo a number of first-order processes, in particular that of evaporation. Because of this evaporation and its attendant cooling, the properties of such clusters are time-dependent. The states of matter which can be arrived at via an evaporative vector on a typical laboratory time-scale are discussed. Topics include the (1) temperatures, (2) metastability, (3) phase transitions, (4) kinetic energies of fragmentation, and (5) the expression of magical properties, all for evaporating homogeneous clusters

  10. 242-A Evaporator/Liquid Effluent Retention Facility data quality objectives

    International Nuclear Information System (INIS)

    Von Bargen, B.H.

    1994-01-01

    The purpose of data quality objectives (DQO) is to determine the most cost effective methods of gathering the essential data necessary to make decisions to support successful operation of the facility. The essential data is defined by such information as sample amount, sample location, required analyses, and how sampling and analyses are performed. Successful operation is defined as meeting the campaign objectives while operating within established requirements. This DQO document addresses that portion of the system from 242-A Evaporator candidate feed tanks through discharge of process condensate to the Liquid Effluent Retention of Facility (LERF). Later revisions will incorporate and integrate the entire system, including the Effluent Treatment Facility (ETF)

  11. 242-A Evaporator/Liquid Effluent Retention Facility data quality objectives

    Energy Technology Data Exchange (ETDEWEB)

    Von Bargen, B.H.

    1994-09-29

    The purpose of data quality objectives (DQO) is to determine the most cost effective methods of gathering the essential data necessary to make decisions to support successful operation of the facility. The essential data is defined by such information as sample amount, sample location, required analyses, and how sampling and analyses are performed. Successful operation is defined as meeting the campaign objectives while operating within established requirements. This DQO document addresses that portion of the system from 242-A Evaporator candidate feed tanks through discharge of process condensate to the Liquid Effluent Retention of Facility (LERF). Later revisions will incorporate and integrate the entire system, including the Effluent Treatment Facility (ETF).

  12. The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project

    International Nuclear Information System (INIS)

    Brock Presgrove, S.

    1992-01-01

    The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste currently stored at the DOE Savannah River Site Tank Farm. Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on the project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review: Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator; The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. (author)

  13. Temperature Stratification in a Cryogenic Fuel Tank

    Science.gov (United States)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  14. Quantifying Evaporation and Evaluating Runoff Estimation Methods in a Permeable Pavement System - abstract

    Science.gov (United States)

    Studies on quantifying evaporation in permeable pavement systems are limited to few laboratory studies that used a scale to weigh evaporative losses and a field application with a tunnel-evaporation gauge. A primary objective of this research was to quantify evaporation for a la...

  15. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    International Nuclear Information System (INIS)

    Himes, D.A.

    1998-01-01

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated

  16. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Himes, D.A.

    1998-08-11

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated

  17. The impact of surface chemistry on the performance of localized solar-driven evaporation system.

    Science.gov (United States)

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-09-04

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.

  18. Decontamination system study for the Tank Waste Retrieval System

    International Nuclear Information System (INIS)

    Reutzel, T.; Manhardt, J.

    1994-05-01

    This report summarizes the findings of the Idaho National Engineering Laboratory's decontamination study in support of the Tank Waste Retrieval System (TWRS) development program. Problems associated with waste stored in existing single shell tanks are discussed as well as the justification for the TWRS program. The TWRS requires a decontamination system. The subsystems of the TWRS are discussed, and a list of assumptions pertinent to the TWRS decontamination system were developed. This information was used to develop the functional and operational requirements of the TWRS decontamination system. The requirements were combined with a comprehensive review of currently available decontamination techniques to produced a set of evaluation criteria. The cleaning technologies and techniques were evaluated, and the CO 2 blasting decontamination technique was chosen as the best technology for the TWRS

  19. South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Hoesen, S.D. van

    1997-07-01

    During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite trademark that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE's waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention

  20. Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    International Nuclear Information System (INIS)

    VAN BEEK, J.E.

    2000-01-01

    This Project Execution Plan documents the methodology for managing Project W-211. Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for the future waste treatment plant, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AN-102, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the River Protection Project (RF'P) Waste Treatment Facility and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump-based retrieval system for any DST. This Project Execution Plan (PEP), derived from the predecessor Project Management Plan, documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering

  1. Frequency of deflagration in the in-tank precipitation process tanks due to loss of nitrogen purge system

    International Nuclear Information System (INIS)

    Jansen, J.M.; Mason, C.L.; Olsen, L.M.; Shapiro, B.J.; Gupta, M.K.; Britt, T.E.

    1994-01-01

    High-level liquid wastes (HLLW) from the processing of nuclear material at the Savannah River Site (SRS) are stored in large tanks in the F- and H-Area tank farms. The In-Tank Precipitation (ITP) process is one step in the processing and disposal of HLLW. The process hazards review for the ITP identified the need to implement provisions that minimize deflagration/explosion hazards associated with the process. The objective of this analysis is to determine the frequency of a deflagration in Tank 48 and/or 49 due to nitrogen purge system failures (including external events) and coincident ignition source. A fault tree of the nitrogen purge system coupled with ignition source probability is used to identify dominant system failures that contribute to the frequency of deflagration. These system failures are then used in the recovery analysis. Several human actions, recovery actions, and repair activities are identified that reduce total frequency. The actions are analyzed and quantified as part of a Human Reliability Analysis (HRA). The probabilities of failure of these actions are applied to the fault tree cutsets and the event trees

  2. Dynamic Response of a 50 kW Organic Rankine Cycle System in Association with Evaporators

    Directory of Open Access Journals (Sweden)

    Yuh-Ren Lee

    2014-04-01

    Full Text Available The influences of various evaporators on the system responses of a 50 kW ORC system using R-245fa are investigated in this study. First the effect of the supplied hot water flowrate into the evaporator is examined and the exit superheat on the system performance between plate and shell-and-tube evaporator is also reported. Test results show that the effect of hot water flowrate on the evaporator imposes a negligible effect on the transient response of the ORC system. These results prevail even for a 3.5-fold increase of the hot water flowrate and the system shows barely any change subject to this drastic hot water flowrate change. The effect of exit superheat on the ORC system depends on the type of the evaporator. For the plate evaporator, an exit superheat less than 10 °C may cause ORC system instability due to considerable liquid entrainment. To maintain a stable operation, the corresponding Jakob number of the plate heat evaporator must be above 0.07. On the other hand, by employing a shell and tube heat evaporator connected to the ORC system, no unstable oscillation of the ORC system is observed for exit superheats ranging from 0 to 17 °C.

  3. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Fault Tolerance Evaluation..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation... certificates that may affect the airplane fuel tank system, for turbine-powered transport category airplanes...

  4. High quality flux control system for electron gun evaporation

    International Nuclear Information System (INIS)

    Appelbloom, A.M.; Hadley, P.; van der Marel, D.; Mooij, J.E.

    1991-01-01

    This paper reports on a high quality flux control system for electron gun evaporation developed and tested for the MBE growth of high temperature superconductors. The system can be applied to any electron gun without altering the electron gun itself. Essential elements of the system are a high bandwidth mass spectrometer, control electronics and a high voltage modulator to sweep the electron beam over the melt at high frequencies. the sweep amplitude of the electron beam is used to control the evaporation flux at high frequencies. The feedback loop of the system has a bandwidth of over 100 Hz, which makes it possible to grow superlattices and layered structures in a fast and precisely controlled manner

  5. Engineering Assessment and Certification of Integrity of the 490-Q1 tank system

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, W.W. [Lawrence Livermore National Lab., CA (United States); Gee, C.W.; Graser, D.A. [Science Applications International Corp., San Diego, CA (US)

    1993-07-01

    This Engineering Assessment and Certification of Integrity of used freon storage tanks 490-Q1A1 and 490-Q1A2 has been prepared in response to 40 CFR 265.192(a) and 22 CCR 66265.192(a) for new tank systems that store hazardous waste and have secondary containment. The regulations require that this assessment be completed and certified by an independent, qualified, California-registered professional engineer before the tank system is placed in use as a hazardous waste storage tank system. The technical assessments for the 490-Q1A1 and 490-Q1A2 tank systems have been reviewed by an independent, qualified, California-registered professional engineer, who has certified that the tank systems have sufficient structural integrity, are acceptable for transferring and storing hazardous waste, are compatible with the stored waste, and the tanks and containment system are suitably designed to achieve the requirements of the applicable regulations so they will not collapse, rupture, or fail.

  6. History of waste tank 1, 1954 through 1974

    International Nuclear Information System (INIS)

    McNatt, F.G.; Stevens, W.E.

    1978-10-01

    Tank 1 was placed in service as a receiver of high heat waste (HW) in October 1954. The supernate was removed from the tank in October 1961 and the tank began receiving low heat waste (LW) in January 1962. The LW supernate was decanted in October 1962 and prior to beginning a second HW filling in April 1963. The supernate from this HW filling was decanted twice in 1969. Sludge removal operations were conducted in May and August 1969 in order to use tank 1 for salt storage. The first evaporator concentrate receipt was in September 1969 and tank 1 has only been used as a salt storage tank since. Leakage from the tank into the annulus was discovered in February 1969. Deposits less than 1/4 inch deep of leaked waste were found on the pan floor. However, no leak sites have been found. Inspections of the tank interior and annulus were made by direct observation and by using a 40-ft optical periscope. Samples of sludge, supernate, tank vapors, and leaked material into the annulus were analyzed and tank temperature profiles were taken. Deflection measurements were made of the primary tank bottom knuckle plate while filling the tank with salt. Two vertical cooling coils have failed. Several equipment modifications and various equipment repairs were made. 18 figures, 2 tables

  7. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, P.K.

    1995-01-31

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  8. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    International Nuclear Information System (INIS)

    Bhatia, P.K.

    1995-01-01

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm's tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers

  9. Jet mixing long horizontal storage tanks

    International Nuclear Information System (INIS)

    Perona, J.J.; Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1994-12-01

    Large storage tanks may require mixing to achieve homogeneity of contents for several reasons: prior to sampling for mass balance purposes, for blending in reagents, for suspending settled solids for removal, or for use as a feed tank to a process. At ORNL, mixed waste evaporator concentrates are stored in 50,000-gal tanks, about 12 ft in diameter and 60 ft long. This tank configuration has the advantage of permitting transport by truck and therefore fabrication in the shop rather than in the field. Jet mixing experiments were carried out on two model tanks: a 230-gal (1/6-linear-scale) Plexiglas tank and a 25,000-gal tank (about 2/3 linear scale). Mixing times were measured using sodium chloride tracer and several conductivity probes distributed through the tanks. Several jet sizes and configurations were tested. One-directional and two-directional jets were tested in both tanks. Mixing times for each tank were correlated with the jet Reynolds number. Mixing times were correlated for the two tank sizes using the recirculation time for the developed jet. When the recirculation times were calculated using the distance from the nozzle to the end of the tank as the length of the developed jet, the correlation was only marginally successful. Data for the two tank sizes were correlated empirically using a modified effective jet length expressed as a function of the Reynolds number raised to the 1/3 power. Mixing experiments were simulated using the TEMTEST computer program. The simulations predicted trends correctly and were within the scatter of the experimental data with the lower jet Reynolds numbers. Agreement was not as good at high Reynolds numbers except for single nozzles in the 25,000-gal tank, where agreement was excellent over the entire range

  10. Theoretical comparison between solar combisystems based on bikini tanks and tank-in-tank solar combisystems

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon; Bales, Chris

    2008-01-01

    Theoretical investigations have shown that solar combisystems based on bikini tanks for low energy houses perform better than solar domestic hot water systems based on mantle tanks. Tank-in-tank solar combisystems are also attractive from a thermal performance point of view. In this paper......, theoretical comparisons between solar combisystems based on bikini tanks and tank-in-tank solar combisystems are presented....

  11. Experimental Study of an On-board Fuel Tank Inerting System

    Science.gov (United States)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  12. Radioactive waste spill and cleanup on storage tank at the Savannah River Plant

    International Nuclear Information System (INIS)

    Boore, W.G.; McNatt, F.G.; Ryland, R.K.; Scaggs, R.A.; Strother, E.D.; Wilson, R.W.

    1986-03-01

    This report was prepared for historical purpose to document events associated with a radioactive spill and subsequent cleanup efforts at the Savannah River Plant. On December 29, 1983, approximately 100 gallons of liquid radioactive waste, containing an estimated 200-600 curies of cesium-137, leaked from a flushwater line onto the top of the Savannah River Plant's Tank 13 in H-area. The highest measured radiation rate was 100 R/hr at 12 inches from the evaporator feed pump riser. The leak was caused by a series of events involving inadequate heat tracing on a flushwater line, failure of a gasket in 7 0 F weather, failure of personnel to follow a procedure, and leakage across a gate valve seat. Some of the leaked solution migrated into storm water ditches during rain, and a total of 237 millicuries migrated to a nearby stream over several months. However, no significant increase in the cesium-137 concentration occurred in the Savannah River or in the groundwater under the impacted area. Cleanup, costing 3.7 million dollars, took place over the following eighteen months. Cleanup involved water flushing, chemical flushing and mechanical removal of a portion of the concrete tank-top surface, followed by excavation of 1383 cubic yards of soil surrounding the tank. Stringent and effective radiological controls, including development of remote decontamination methods, allowed the cleanup to be accomplished with a total radiation dose to personnel of 58 rems. New safeguards were built into the system to protect against spills and to provide greater assurance of spill containment. Lead sheeting and a 4- to 6-inch-thick concrete overpour were bonded over the remaining contaminated concrete to reduce the radiation levels to less than 20 mR/hr at 3 feet. The Tank 13 evaporator feed system resumed operation in June 1985. 3 refs., 42 figs., 2 tabs

  13. Design demonstrations for category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or replacement tank systems with secondary containment; Category B -- Existing tank systems with secondary containment; Category C -- Existing tank systems without secondary containment; Category D -- Existing tank systems without secondary containment that are removed from service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented.

  14. Design demonstrations for category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-11-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or replacement tank systems with secondary containment; Category B -- Existing tank systems with secondary containment; Category C -- Existing tank systems without secondary containment; Category D -- Existing tank systems without secondary containment that are removed from service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented

  15. Multi-Function Waste Tank Facility thermal hydraulic analysis for Title II design

    International Nuclear Information System (INIS)

    Cramer, E.R.

    1994-01-01

    The purpose of this work was to provide the thermal hydraulic analysis for the Multi-Function Waste Tank Facility (MWTF) Title II design. Temperature distributions throughout the tank structure were calculated for subsequent use in the structural analysis and in the safety evaluation. Calculated temperatures of critical areas were compared to design allowables. Expected operating parameters were calculated for use in the ventilation system design and in the environmental impact documentation. The design requirements were obtained from the MWTF Functional Design Criteria (FDC). The most restrictive temperature limit given in the FDC is the 200 limit for the haunch and dome steel and concrete. The temperature limit for the rest of the primary and secondary tanks and concrete base mat and supporting pad is 250 F. Also, the waste should not be allowed to boil. The tank geometry was taken from ICF Kaiser Engineers Hanford drawing ES-W236A-Z1, Revision 1, included here in Appendix B. Heat removal rates by evaporation from the waste surface were obtained from experimental data. It is concluded that the MWTF tank cooling system will meet the design temperature limits for the design heat load of 700,000 Btu/h, even if cooling flow is lost to the annulus region, and temperatures change very slowly during transients due to the high heat capacity of the tank structure and the waste. Accordingly, transients will not be a significant operational problem from the viewpoint of meeting the specified temperature limits

  16. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Flammability Reduction... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements. (a) The Fleet Average Flammability Exposure of each fuel tank, as determined in accordance with...

  17. Tank 244A tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The Double-Shell Tank (DST) System currently receives waste from the Single-Shell Tank (SST) System in support of SST stabilization efforts or from other on-site facilities which generate or store waste. Waste is also transferred between individual DSTs. The mixing or commingling of potentially incompatible waste types at the Hanford Site must be addressed prior to any waste transfers into the DSTs. The primary goal of the Waste Compatibility Program is to prevent the formation of an Unreviewed Safety Question (USQ) as a result of improper waste management. Tank 244A is a Double Contained Receiver Tank (DCRT) which serves as any overflow tank for the East Area Farms. Waste material is able to flow freely between the underground storage tanks and tank 244A. Therefore, it is necessary to test the waste in tank 244A for compatibility purposes. Two issues related to the overall problem of waste compatibility must be evaluated: Assurance of continued operability during waste transfer and waste concentration and Assurance that safety problems are not created as a result of commingling wastes under interim storage. The results of the grab sampling activity prescribed by this Tank Characterization Plan shall help determine the potential for four kinds of safety problems: criticality, flammable gas accumulation, energetics, and corrosion and leakage

  18. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  19. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    Science.gov (United States)

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  20. Remotely Operated Vehicle (ROV) System for Horizontal Tanks. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The U.S. Department of Energy (DOE) is responsible for cleaning and closing over 300 small and large underground tanks across the DOE complex that are used for storing over 1-million gal of high- and low-level radioactive and mixed waste (HLW, LLW, and MLLW). The contents of these aging tanks must be sampled to analyze for contaminants to determine final disposition of the tank and its contents. Access to these tanks is limited to small-diameter risers that allow for sample collection at only one discrete point below this opening. To collect a more representative sample without exposing workers to tank interiors, a remote-controlled retrieval method must be used. Many of the storage tanks have access penetrations that are 18 in. in diameter and, therefore, are not suitable for deployment of large vehicle systems like the Houdini (DOE/EM-0363). Often, the tanks offer minimal headspace and are so cluttered with pipes and other vertical obstructions that deployment of long-reach manipulators becomes an impractical option. A smaller vehicle system is needed that can deploy waste retrieval, sampling, and inspection tools into these tanks. The Oak Ridge National Laboratory (ORNL), along with ROV Technologies, Inc., and The Providence Group, Inc., (Providence) has developed the Scarab III remotely operated vehicle system to meet this need. The system also includes a containment and deployment structure and a jet pump-based, waste-dislodging and conveyance system to use in these limited-access tanks. The Scarab III robot addresses the need for a vehicle-based, rugged, remote-controlled system for collection of representative samples of tank contents. This document contains information on the above-mentioned technology, including description, applicability, cost, and performance data

  1. Innovative tank emptying system for the retrieval of salt, sludge and IX resins from storage tanks of NPPs

    International Nuclear Information System (INIS)

    Karl Froschauer; Holger Witing; Bernhard Christ

    2006-01-01

    RWE NUKEM recently developed a new Tank Emptying System (TESY) for the extraction of stored radioactive boric acid/borate salt blocks, sludge and IX resin from NPP stainless steel tanks of several hundred cubic meters content in Russia. RWE NUKEM has chosen the emptying concept consisting of a tracked submersible vehicle ('Crawler'), with jet nozzles for solution, agitation and fluidization, and a suction head to pick up the generated solution or suspension respectively. With the employment of RWE NUKEM's TESY system, spent radioactive salt deposits, ion-exchange resins and sludge, can be emptied and transferred out of the tank. The sediment, crystallized and settled during storage, will be agitated with increased temperature and suitable pH value and then picked up in form of a suspension or solution directly at the point of mobilization. This new Tank Emptying System concept enables efficiently to retrieve stored salt and other sediment waste, reduces operating time, safes cost for spare parts, increases the safety of operation and minimizes radiation exposure to personnel. All emptying tasks are performed remotely from a panel board and TV monitor located in a central control room. The TESY system consists of the following main components: glove box, crawler, submersible pump, heater, TV camera and spot light, control panel and monitor, water separation and feed unit, sodium hydroxide dosing unit. The system is specially requested for the removal of more than 2,500 cubic meter salt solution generated from the dissolution of some 300 cubic meter crystallized salt deposit per tank and per year. The TESY system is able to dissolve efficiently the salts and retrieve solutions and other liquefied suspensions. TESY is adaptable to all liquid waste storage facilities and especially deployable for tanks with limited access openings (<550 mm)

  2. Remotely controlled reagent feed system for mixed waste treatment Tank Farm

    International Nuclear Information System (INIS)

    Dennison, D.K.; Bowers, J.S.; Reed, R.K.

    1995-02-01

    LLNL has developed and installed a large-scale. remotely controlled, reagent feed system for use at its existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). LLNL's Tank Farm is used to treat aqueous low-level and mixed wastes prior to vacuum filtration and to remove the hazardous and radioactive components before it is discharged to the City of Livermore Water Reclamation Plant (LWRP) via the sanitary sewer in accordance with established limits. This reagent feed system was installed to improve operational safety and process efficiency by eliminating the need for manual handling of various reagents used in the aqueous waste treatment processes. This was done by installing a delivery system that is controlled either remotely or locally via a programmable logic controller (PLC). The system consists of a pumping station, four sets of piping to each of six 6,800-L (1,800-gal) treatment tanks, air-actuated discharge valves at each tank, a pH/temperature probe at each tank, and the PLC-based control and monitoring system. During operation, the reagents are slowly added to the tanks in a preprogrammed and controlled manner while the pH, temperature, and liquid level are continuously monitored by the PLC. This paper presents the purpose of this reagent feed system, provides background related to LLNL's low-level/mixed waste treatment processes, describes the major system components, outlines system operation, and discusses current status and plans

  3. Double-shell tank system dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This appendix contains the engineering design drawings for the double-shell tank system. Included are drawings of the electrical systems, structural members, piping systems, instrumentation and the many auxiliary systems. (JL)

  4. THE GROWTH OF PATIN Pangasiodon hypophthalmus IN A CLOSE SYSTEM TANK

    Directory of Open Access Journals (Sweden)

    Taufik Ahmad

    2007-06-01

    Full Text Available This experiment aimed to evaluate the possibility of using integrated recirculation production system for patin grow-out. Each of twelve concrete 2.5 m x 4.0 m x 1.0 m tanks filled to 0.73 m depth was stocked with 100 juvenile patin, 9-10g body weight. Six tanks were equipped with sand and palm (Arenga pinata fibre filters planted with vegetables, lettuce and kangkoong. A submersible pump was installed in each tank to assure continuous water recirculation at the rate of 0.4 L sec-1. The filtered water flowed into the tank at the surface (SC treatment, or at the bottom (BC treatment. In the other 6 tanks, the water flowed continuously from a concrete canal in an open culture system at a similar rate and with similar water entrance positions (SO and BO treatments. The experiment was arranged in a completely randomized design with three replicates. The fish were fed dry pelleted feed to satiation and sampled every other week for growth observation. After 90 days, the average individual weight of the fish attained the range of 80-100 g. The fish grew significantly faster (P0.05 among treatment, ranging from 99% to 100%. In terms of water usage, the closed system tanks produced fish weighing 202.38–220.05 g m-3, much more efficiently than did the open system tanks, 1.87–1.89 g/m3. The vegetables, either lettuce or water spinach, grew well on the filter. These results suggest that the integrated recirculation tank system is suitable for patin culture.

  5. Low-pressure hydraulic technique for slurrying radioactive sludges in waste tanks

    International Nuclear Information System (INIS)

    Bradley, R.F.; Parsons, F.A.; Goodlett, C.B.; Mobley, R.M.

    1977-11-01

    Present technology for the removal of sludges from radioactive liquid waste storage tanks at the Savannah River Plant (SRP) requires large volumes of fresh water added through high-pressure (approx.3000 psig) nozzles positioned to resuspend and slurry the sludge. To eliminate the cost of storing and evaporating these large volumes of water (several hundred thousand gallons per tank cleaned), a technique was developed at the Savannah River Laboratory (SRL) to use recirculating, radioactive, supernate solution to resuspend the sludge. The system consists in part of a single-stage centrifugal pump operating in the sludge at approx.100 psia. Recirculating supernate is drawn into the bottom of the pump and forced out through two oppositely directed nozzles to give liquid jets with a sludge-slurrying capability equal to that obtained with the present high-pressure system. In addition to eliminating the addition of large quantities of water to the tanks, the low-pressure recirculating technique requires only approximately one-sixth of the power required by the high-pressure system. Test results with clay (as a simulant for sludge) in a waste tank mockup confirmed theoretical predictions that jets with the same momentum gave essentially the same sludge-slurrying patterns. The effective cleaning radius of the recirculating jet was directly proportional to the product of the nozzle velocity and the nozzle diameter (U 0 D). At the maximum U 0 D developed by the pump (approx.14 ft 2 /s), the effective cleaning radius in the tank mockup was approx.20 feet

  6. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spent zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte

  7. Tank SY-102 waste retrieval assessment: Rheological measurements and pump jet mixing simulations

    International Nuclear Information System (INIS)

    Onishi, Y.; Shekarriz, R.; Recknagle, K.P.

    1996-09-01

    Wastes stored in Hanford Tank 241-SY-102 are planned to be retrieved from that tank and transferred to 200 East Area through the new pipeline Replacement Cross Site Transfer System (RCSTS). Because the planned transfer of this waste will use the RCSTS, the slurry that results from the mobilization and retrieval operations must meet the applicable waste acceptance criteria for this system. This report describes results of the second phase (the detailed assessment) of the SY-102 waste retrieval study, which is a part of the efforts to establish a technical basis for mobilization of the slurry, waste retrieval, and slurry transport. Hanford Tank 241-SY-102 is located in the SY Tank Farm in the Hanford Site's 200 West Area. It was built in 1977 to serve as a feed tank for 242-S Evaporator/Crystallizer, receiving supernatant liquid from S, SX, T, and U tank farms. Since 1981, the primary sources of waste have been from 200 West Area facilities, e.g., T-Plant decontamination operations, Plutonium Finishing Plant operations, and the 222-S Laboratory. It is the only active-service double-shell tank (DST) in the 200 West Area and is used as the staging tank for cross-site transfers to 200 East Area DSTs. The tank currently stores approximately 470 kL (125 kgal) of sludge wastes from a variety of sources including the Plutonium Finishing Plant, T-Plant, and the 222-S Laboratory. In addition to the sludge, approximately twice this amount (about 930 kL) of dilute, noncomplexed waste forms a supernatant liquid layer above the sludge

  8. An evaporation source pellet or slug feeding system

    International Nuclear Information System (INIS)

    Cross, K.B.; O'Donnell, J.

    1979-01-01

    The development of two material feeding systems for resistive evaporation sources for an ion plating system is reported. A vertical magazine system is used for films up to 15 μm in thickness and a carousel type for films up to 25 μm. Both feed systems are compact and may be used in 12 in. ion plating systems. The vertical magazine system is easily automated. (UK)

  9. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  10. Evaluation Of The Impact Of The Defense Waste Processing Facility (DWPF) Laboratory Germanium Oxide Use On Recycle Transfers To The H-Tank Farm

    International Nuclear Information System (INIS)

    Jantzen, C.; Laurinat, J.

    2011-01-01

    When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plus adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO 3 ), germanium (IV) oxide (GeO 2 ) and cesium carbonate (Cs 2 CO 3 ) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to ∼12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO 2 /year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO 2 may increase to 4 kg/yr when improvements are implemented to attain an annual canister production

  11. Load Distribution of Semi-Central Evaporative Cooling Air-Conditioning System Based on the TRNSYS Platform

    Directory of Open Access Journals (Sweden)

    Ji Li

    2018-05-01

    Full Text Available Evaporative cooling is a green, energy-efficient cooling technology adopted in hot and dry regions, which has wider application in the field of air-conditioning systems. Outdoor meteorological parameters have a great influence on the operation mode and control strategy of evaporative cooling air-conditioning systems, and the system load distribution and system configuration will be affected. This paper aims at investigating the load distribution of semi-central evaporative cooling air-conditioning systems under the condition of hourly outdoor meteorological parameters. Firstly, this paper introduced the design partition, operation mode, controlling strategy and load distribution method on semi-central evaporative cooling air-conditioning system. Then, taking an office building in Lanzhou (China as an example, the evaporative cooling air-conditioning system was divided into five regions and the load distribution was simulated by TRNSYS (The Transient Energy System Simulation Tool under the condition of hourly outdoor meteorological parameters. Finally, the results have shown that the evaporative cooling air-conditioning system can provide 25.46% of the building loads, which was of great significance to reduce the energy consumption of air-conditioning system.

  12. Thermal analysis of a direct evaporative cooling system enhancement with desiccant dehumidification for vehicular air conditioning

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2016-01-01

    Highlights: • Thermal analysis was conducted to design a desiccant evaporative cooling system for vehicular air conditioning. • EC is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter. • Drawbacks of evaporative cooler of increased weight and reduced COP. • A rotary desiccant dehumidifier with generation was combined with evaporative cooling to be more efficient. - Abstract: This manuscript analyzes the sub-systems of evaporative cooler (EC) combined with desiccant dehumidification and regeneration for automotive air conditioning purpose. The thermodynamic and psychometric analysis was conducted to design all evaporative cooling system components in terms of desiccant selection, regeneration process, compact heat exchanger and evaporative cooler. Moreover, the effect of the desiccant, heat exchanger and evaporative performances on the mass flow rate and water sprayed required for evaporative cooling system was investigated. The results show that the theoretical evaporative cooling design will achieve two main objectives: lower fuel consumption and less environmental pollutants. However, it has the two drawbacks in terms of increased weight and reduces the coefficient of performance (COP). The main remark is that evaporating cooling system is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter.

  13. Tank waste remediation system characterization project quality policies. Revision 1

    International Nuclear Information System (INIS)

    Trimble, D.J.

    1995-01-01

    These Quality Policies (QPs) describe the Quality Management System of the Tank Waste Characterization Project (hereafter referred to as the Characterization Project), Tank Waste Remediation System (TWRS), Westinghouse Hanford Company (WHC). The Quality Policies and quality requirements described herein are binding on all Characterization Project organizations. To achieve quality, the Characterization Project management team shall implement this Characterization Project Quality Management System

  14. The Hanford Site Tank Waste Remediation System: An update

    International Nuclear Information System (INIS)

    Alumkal, W.T.; Babad, H.; Harmon, H.D.; Wodrich, D.D.

    1994-01-01

    The U.S. Department of Energy's Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of highly radioactive waste in the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m 3 (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have 137 Cs accumulated in 177 tanks. In addition, significant amounts of 90 Sr and were removed from the tank waste, converted to salts, doubly encapsulated in metal containers., and stored in water basins. A Tank Waste Remediation System Program was established by the U.S. Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, progress has been made resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal

  15. Tank waste remediation system mission analysis report

    International Nuclear Information System (INIS)

    Acree, C.D.

    1998-01-01

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces

  16. C-106 tank sluicer control system

    International Nuclear Information System (INIS)

    Bellomy, J.R.

    1997-01-01

    Acceptance Test Report for the Sluicer Control System, Project W-320 This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the C-Farm tank C-106 sluicer functions as required by the design criteria

  17. Tank Focus Area Pretreatment Program. FY 1995 Program Management Plan

    International Nuclear Information System (INIS)

    Morrison, M.I.; McGinnis, C.P.; Wilkenson, W.T.; Hunt, R.D.

    1995-02-01

    This program management plan (PMP) describes the FY 1995 project plans for the Pretreatment Program of the Tank Focus Area. The Tank Focus Area is one of five areas of environmental concerns originally identified by the Deputy Assistant Secretary for Technology Development (EM-50). Projects in the Tank Focus Area relate to the remediation of liquid waste stored in underground storage tanks at various US Department of Energy sites. The Pretreatment Program is an organizational unit performing work within the Tank Focus Area. The function of the Pretreatment Program is to develop, test, evaluate, and demonstrate new technologies, with emphasis on separations. The 11 Pretreatment Program projects for FY 1995 are (1) Cesium Extraction Testing, (2) Comprehensive Supernate Treatment, (3) Hot Cell Studies, (4) Cesium Removal Demonstration, (5) Out-of-Tank Evaporator Demonstration, (6) Crossflow Filtration, (7) Technical Interchange with CEA, (8) TRUEX Applications, (9) NAC/NAG Process Studies (conducted at Oak Ridge National Laboratory), (10) NAC/NAG Process and Waste Form Studies (conducted at Florida International University), and (11) Program Management. Section 2 of this PMP contains a separate subsection for each FY 1995 project. A brief description of the project, a schedule of major milestones, and a breakdown of costs are provided for each project. The PMP also contains sections that describe the project controls that are in place. Quality assurance, document control, the project management system, and the management organization are described in these sections

  18. Engineering Assessment and Certification of Integrity of the 177-R2 tank system

    International Nuclear Information System (INIS)

    Graser, D.A.; Schwartz, W.W.

    1993-10-01

    This Engineering Assessment and Certification of Integrity of retention tanks 177-R2U1, 177-R2Al, and 177-R2A2 has been prepared in response to 40 CFR 265.192(a) and 22 CCR 66265.192(a) for new tank systems that store hazardous waste and have secondary containment. The regulations require that this assessment be completed and certified by an independent, qualified, California-registered professional engineer before the tank system is placed in use as a hazardous waste storage tank system. The technical assessments for the 177-R2Ul, 177-R2A1, and 177-R2A2 tank systems have been reviewed by an independent, qualified, California-registered professional engineer, who has certified that the tank systems have sufficient structural integrity, are acceptable for transferring and storing hazardous waste, are compatible with the stored waste, and the tanks and containment system are suitably designed to achieve the requirements of the applicable regulations so they will not collapse, rupture, or fail. This document will be kept on file by the Lawrence Livermore National Laboratory (LLNL) Environment Protection Department

  19. History of waste tank 16, 1959 through 1974

    International Nuclear Information System (INIS)

    Davis, T.L.; Tharin, D.W.; Jones, D.W.; Lohr, D.R.

    1977-07-01

    Tank 16 was placed in service as a receiver of fresh high heat waste (HW) on May 9, 1959, and was filled to capacity in May 1960. Approximately half the tank contents were transferred to tanks 14 and 15 during September and October 1960 because of leakage into the annulus. Use of tank 16 was resumed in October 1967 when authorization (TA 2-603) was obtained to receive LW, and the tank was filled to capacity by June 1968. Subsequently, supernate was removed from the tank, and a blend of fresh LW and evaporator bottoms was added. In March 1972, the supernate was transferred to tank 13 because leakage had resumed. The sludge was left in the tank bottom and the use of tank 16 for any additional waste storage was discontinued. In September 1960 liquid waste overflowed the annulus pan. Leakage essentially stopped after the tank liquid level was lowered below the middle horizontal weld. After exhaustive study, tank cracking and resultant leakage was concluded to have been caused by stress corrosion due to the action of NaOH or NaNO 3 on areas of high local stress in the steel plate such as welds. Samples of sludge, supernate, tank vapors, and leaked material in the annulus were analyzed, and tank temperature and radiation profiles were taken. Two disk samples were cut from the primary tank wall for metallurgical examination. Test coupons of various metals were exposed to tank 16 waste to aid new tank design and to study stress corrosion and hydrogen embrittlement. In addition, samples of SRP bedrock were placed in tank 16 to study reactions between bedrock and HW. 18 figures, 2 tables

  20. Reliability centered maintenance pilot system implementation 241-AP-tank farm primary ventilation system final report

    International Nuclear Information System (INIS)

    MOORE TL

    2001-01-01

    When the Hanford Site Tank Farms' mission was safe storage of radioactive waste in underground storage tanks, maintenance activities focused on time-based preventive maintenance. Tank Farms' new mission to deliver waste to a vitrification plant where the waste will be processed into a form suitable for permanent storage requires a more efficient and proactive approach to maintenance. Systems must be maintained to ensure that they are operational and available to support waste feed delivery on schedule with a minimum of unplanned outages. This report describes the Reliability Centered Maintenance (RCM) pilot system that was implemented in the 241-AP Tank Farm Primary Ventilation System under PI-ORP-009 of the contract between the U.S. Department of Energy, Office of River Protection and CH2M HILL Hanford Group Inc. (CHG). The RCM analytical techniques focus on monitoring the condition of operating systems to predict equipment failures so that maintenance activities can be completed in time to prevent or mitigate unplanned equipment outages. This approach allows maintenance activities to be managed with minimal impact on plant operations. The pilot demonstration provided an opportunity for CHG staff-training in RCM principles and tailoring of the RCM approach to the Hanford Tank Farms' unique needs. This report details the implementation of RCM on a pilot system in Tank Farms

  1. System Description for the Double Shell Tank (DST) Confinement System

    International Nuclear Information System (INIS)

    ROSSI, H.

    2000-01-01

    This document provides a description of the Double-Shell Tank (DST) Confinement System. This description will provide a basis for developing functional, performance and test requirements (i.e., subsystem specification), as necessary, for the DST Confinement System

  2. History of waste tank 24, 1962--1974

    International Nuclear Information System (INIS)

    McNatt, F.G.

    1979-04-01

    Tank 24 was placed in service in April 1963 receiving HW concentrate from the Building 242-H evaporator. The tank was filled by October 1965. In October 1966 the cooled concentrate supernate was decanted. The tank was again filled with concentrate by March 1967, then decanted in June 1967 and refilled by July 1967. Since that time the tank has remained in service storing LW and HW salt and receiving spent zeolite from the cesium removal column (CRC). In April 1973 an influx of slightly contaminated water in the bottom leak detection sump was observed. The tank was inspected with an optical periscope and numerous tests and investigations were conducted but the source of the contaminated water was not determined. However, subsequent to this report period a D 2 O tracer test in tank 21 which also experienced an influx of contaminated water into its bottom sump provided conclusive evidence of communication between the tank vapor space and the bottom leak detection sump. The D 2 O tracer test was documented in DPSPU 76-11-19. Inspections of the tank interior were performed by direct observation and photography using an optical periscope inserted through access risers in the roof. Samples of the vapor condensate and supernate in the tank, and liquid collected in the bottom leak detection sump were analyzed. Numerous temperature profiles were taken and several equipment modifications and repairs were made

  3. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    Science.gov (United States)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  4. CFM technologies for space transportation: Multipurpose hydrogen testbed system definition and tank procurement

    Science.gov (United States)

    Fox, E. C.; Kiefel, E. R.; Mcintosh, G. L.; Sharpe, J. B.; Sheahan, D. R.; Wakefield, M. E.

    1993-01-01

    The development of a test bed tank and system for evaluating cryogenic fluid management technologies in a simulated upper stage liquid hydrogen tank is covered. The tank is 10 ft long and is 10 ft in diameter, and is an ASME certified tank constructed of 5083 aluminum. The tank is insulated with a combination of sprayed on foam insulation, covered by 45 layers of double aluminized mylar separated by dacron net. The mylar is applied by a continuous wrap system adapted from commercial applications, and incorporates variable spacing between the mylar to provide more space between those layers having a high delta temperature, which minimizes heat leak. It also incorporates a unique venting system which uses fewer large holes in the mylar rather than the multitude of small holes used conventionally. This significantly reduces radiation heat transfer. The test bed consists of an existing vacuum chamber at MSFC, the test bed tank and its thermal control system, and a thermal shroud (which may be heated) surrounding the tank. Provisions are made in the tank and chamber for inclusion of a variety of cryogenic fluid management experiments.

  5. Tank waste remediation system configuration management plan

    International Nuclear Information System (INIS)

    Vann, J.M.

    1998-01-01

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents

  6. Experimental study on frosting control of mobile air conditioning system with microchannel evaporator

    International Nuclear Information System (INIS)

    Qu Xiaohua; Shi Junye; Qi Zhaogang; Chen Jiangping

    2011-01-01

    In this paper, a newly developed frost control system is proposed. System bench tests and vehicle test in wind tunnel have been carried out to explore the anti-frosting performance of automotive air conditioning system with microchannel evaporator. The experimental results are compared with the baseline conventional laminated evaporator system. The test results show that the installation position of temperature sensor can dramatically affect the anti-frosting performance. The clutch switching on/off temperature range of the microchannel evaporator is also experimentally studied. The test results show that, with a proper installation position and on/off temperature range, the system COP can be improved, and meanwhile the panel vents' air off temperature can be reduced, and temperature swing can be reduced. - Highlights: → The frost control systems were tested with microchannel and laminated evaporators separately. → The installation position of temperature sensor affects the anti-frosting performance. → Temperature control range affects the anti-frosting performance. → The panel vents' air off temperature and swing can be reduced by proper control parameters. → The system COP can be improved by proper control parameters.

  7. Evaluation of the generation and release of flammable gases in tank 241-SY-101

    Energy Technology Data Exchange (ETDEWEB)

    Babad, H.; Johnson, G.D.; Lechelt, J.A.; Reynolds, D.A. (Westinghouse Hanford Co., Richland, WA (United States)); Pederson, L.R.; Strachan, D.M. (Pacific Northwest Lab., Richland, WA (United States)); Meisel, D.; Jonah, C. (Argonne National Lab., IL (United States)); Ashby, E.C. (Georgia Inst. of Tech., Atlanta, GA (United States))

    1991-11-01

    Tank 241-SY-101 is a double shell, high-level waste tank located in the 200 West Area of the Hanford Site. This tank contains about 1 million gallons of waste that was concentrated at the 242-S Evaporator. Shortly after the waste was put in the tank, the waste began to expand because the generation of gases. In 1990 this tank was declared to have an unreviewed safety question because of the periodic release of hydrogen and nitrous oxide. A safety program was established to conduct a characterization of the waste and vented gases and to determine an effective means to prevent the accumulation of flammable gases in the tank dome space and ventilation system. Results of the expanded characterization conducted in fiscal year 1991 are presented. The use of gas chromatographs, mass spectrometers, and hydrogen-specific monitors provided a greater understanding of the vented gases. Additional instrumentation placed in the tank also helped to provide more detailed information on tank temperatures, gas pressure, and gas flow rates. An extensive laboratory study involving the Westinghouse Hanford Company, Pacific Northwest Laboratory, Argonne National Laboratory, and the Georgia Institute of Technology was initiated for the purpose of determining the mechanisms responsible for the generation of various gases. These studies evaluate both radiolytic and thermochemical processes. Results of the first series of experiments are described.

  8. Smart Control of Multiple Evaporator Systems with Wireless Sensor and Actuator Networks

    Directory of Open Access Journals (Sweden)

    Apolinar González-Potes

    2016-02-01

    Full Text Available This paper describes the complete integration of a fuzzy control of multiple evaporator systems with the IEEE 802.15.4 standard, in which we study several important aspects for this kind of system, like a detailed analysis of the end-to-end real-time flows over wireless sensor and actuator networks (WSAN, a real-time kernel with an earliest deadline first (EDF scheduler, periodic and aperiodic tasking models for the nodes, lightweight and flexible compensation-based control algorithms for WSAN that exhibit packet dropouts, an event-triggered sampling scheme and design methodologies. We address the control problem of the multi-evaporators with the presence of uncertainties, which was tackled through a wireless fuzzy control approach, showing the advantages of this concept where it can easily perform the optimization for a set of multiple evaporators controlled by the same smart controller, which should have an intelligent and flexible architecture based on multi-agent systems (MAS that allows one to add or remove new evaporators online, without the need for reconfiguring, while maintaining temporal and functional restrictions in the system. We show clearly how we can get a greater scalability, the self-configuration of the network and the least overhead with a non-beacon or unslotted mode of the IEEE 802.15.4 protocol, as well as wireless communications and distributed architectures, which could be extremely helpful in the development process of networked control systems in large spatially-distributed plants, which involve many sensors and actuators. For this purpose, a fuzzy scheme is used to control a set of parallel evaporator air-conditioning systems, with temperature and relative humidity control as a multi-input and multi-output closed loop system; in addition, a general architecture is presented, which implements multiple control loops closed over a communication network, integrating the analysis and validation method for multi

  9. Experimental investigation of a novel configuration of desiccant based evaporative air conditioning system

    International Nuclear Information System (INIS)

    Uçkan, İrfan; Yılmaz, Tuncay; Hürdoğan, Ertaç; Büyükalaca, Orhan

    2013-01-01

    Highlights: ► A novel desiccant based evaporative cooling system is developed and tested. ► Cooling capacity, COP and energy consumption of the system are evaluated. ► Indoor air conditions are in the range of thermal comfort zone and expanded comfort zone. ► Designing of the system have considerable effect on the energy consumption. - Abstract: A novel configuration of desiccant based evaporative cooling system for air conditioning application is developed and tested. At the beginning of the design stage of the system, an analysis is carried out in order to maximize the performance of the system. It is found based on configuration that outdoor air must be used for regeneration to increase performance of the system and so three air channels are used. Experiments are carried out to investigate the total performance of the system and performance of the components used during summer season in a hot and humid climate. Effectiveness values for both heat exchangers and evaporative coolers are calculated through this work. In addition to the cooling capacity, coefficient of performance (COP) and energy consumption of the system are also evaluated. Results show that the effectiveness for the heat exchangers and evaporative coolers are very high under different outdoor conditions. It is also shown from the results that indoor air conditions are in the range of thermal comfort zone defined by ASHRAE and expanded comfort zone for evaporative air conditioning applications.

  10. Determination of the radionuclide release factor for an evaporator process using nondestructive assay

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1998-01-01

    The 242-A Evaporator is the primary waste evaporator for the Hanford Site radioactive liquid waste stored in underground double-shell tanks. Low pressure evaporation is used to remove water from the waste, thus reducing the amount of tank space required for storage. The process produces a concentrated slurry, a process condensate, and an offgas. The offgas exhausts through two stages of high-efficiency particulate air (HEPA) filters before being discharged to the atmosphere 40 CFR 61 Subpart H requires assessment of the unfiltered exhaust to determine if continuous compliant sampling is required. Because potential (unfiltered) emissions are not measured, methods have been developed to estimate these emissions. One of the methods accepted by the Environmental Protection Agency is the measurement of the accumulation of radionuclides on the HEPA filters. Nondestructive assay (NDA) was selected for determining the accumulation on the HEPA filters. NDA was performed on the HEPA filters before and after a campaign in 1997. NDA results indicate that 2.1 E+4 becquerels of cesium-137 were accumulated on the primary HEPA 1700 filter during the campaign. The feed material processed in the campaign contained a total of 1.4 E+l6 Bq of cesium-137. The release factor for the evaporator process is 1.5 E-12. Based on this release factor, continuous compliant sampling is not required

  11. Tank 241-BY-111 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQO's identify information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for Tank BY-111 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given

  12. OPTIMISATION OF MANTLE TANKS FOR LOW FLOW SOLAR HEATING SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1996-01-01

    A model, describing the heat transfer coefficients in the mantle of a mantle tank has been developed. The model is validated by means of measurements with varying operational conditions for different designed mantle tanks. The model has been implemented in an existing detailed mathematical...... with the programme and by means of tests of three SDHW systems with different designed mantle tanks. Based on the investigations design rules for mantle tanks are proposed. The model, describing the heat transfer coefficients in the mantle is approximate. In addition, the measurements have revealed...... that a temperature stratification in the hot water tank, above the mantle is built up. This phenomenon may be important, but it is not taken into calculation in the programme. Therefore, theoretical and practical work is continuing in order to make a more precise model for the whole mantle tank....

  13. Evaporation and condensation devices for passive heat removal systems in nuclear power engineering

    International Nuclear Information System (INIS)

    Gershuni, A.N.; Pis'mennyj, E.N.; Nishchik, A.P.

    2016-01-01

    The paper justifies advantages of evaporation and condensation heat transfer devices as means of passive heat removal and thermal shielding in nuclear power engineering. The main thermophysical factors that limit heat transfer capacity of evaporation and condensation systems have been examined in the research. The results of experimental studies of heat engineering properties of elongated (8-m) vertically oriented evaporation and condensation devices (two-phase thermosyphons), which showed a high enough heat transfer capacity, as well as stability and reliability both in steady state and in start-up modes, are provided. The paper presents the examples of schematic designs of evaporation and condensation systems for passive heat removal and thermal shielding in application to nuclear power equipment

  14. Engineering Assessment and Certification of Integrity of the Building 943 Tank System

    Energy Technology Data Exchange (ETDEWEB)

    Abri Environmental Engineering Inc.

    2015-01-01

    This Engineering Assessment and Certification of Integrity of Building 943 (B943) Tank System has been prepared using the guidelines of 40 CFR 265.192(a) and 22 CCR 66265.192(a) for tank systems* that manage hazardous waste and have secondary containment. The regulations require that this assessment be completed and certified by an independent, qualified, California-registered professional engineer. This technical assessment has been reviewed by an independent, qualified, California-registered professional engineer, who has certified the tank system for the following: • sufficient structural integrity, • acceptability for storing of hazardous waste, • compatibility with the waste, and • suitability of tank and containment system design to achieve the requirements of the applicable regulations so they will not collapse, rupture, or fail.

  15. Artificial neural network analysis of a refrigeration system with an evaporative condenser

    Energy Technology Data Exchange (ETDEWEB)

    Ertunc, H.M. [Department of Mechatronics Engineering, Kocaeli University, 41040 Kocaeli (Turkey); Hosoz, M. [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey)

    2006-04-01

    This paper describes an application of artificial neural networks (ANNs) to predict the performance of a refrigeration system with an evaporative condenser. In order to gather data for training and testing the proposed ANN, an experimental refrigeration system with an evaporative condenser was set up. Then, steady-state test runs were conducted varying the evaporator load, air and water flow rates passing through the condenser and both dry and wet bulb temperatures of the air stream entering the condenser. Utilizing some of the experimental data, an ANN model for the system based on standard backpropagation algorithm was developed. The ANN was used for predicting various performance parameters of the system, namely the condenser heat rejection rate, refrigerant mass flow rate, compressor power, electric power input to the compressor motor and the coefficient of performance. The ANN predictions usually agree well with the experimental values with correlation coefficients in the range of 0.933-1.000, mean relative errors in the range of 1.90-4.18% and very low root mean square errors. Results show that refrigeration systems, even complex ones involving concurrent heat and mass transfer such as systems with an evaporative condenser, can alternatively be modelled using ANNs within a high degree of accuracy. [Author].

  16. Specialized video systems for use in underground storage tanks

    International Nuclear Information System (INIS)

    Heckendom, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1994-01-01

    The Robotics Development Groups at the Savannah River Site and the Hanford site have developed remote video and photography systems for deployment in underground radioactive waste storage tanks at Department of Energy (DOE) sites as a part of the Office of Technology Development (OTD) program within DOE. Figure 1 shows the remote video/photography systems in a typical underground storage tank environment. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and from the tank, and all viewing functions are remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Overview video systems, both monaural and stereo versions, include a camera, zoom lens, camera positioner, vertical deployment system, and positional feedback. Each independent video package can be inserted through a 100 mm (4 in.) diameter opening. A special attribute of these packages is their design to never get larger than the entry hole during operation and to be fully retrievable. The End Effector systems will be deployed on the large robotic Light Duty Utility Arm (LDUA) being developed by other portions of the OTD-DOE programs. The systems implement a multi-functional ''over the coax'' design that uses a single coaxial cable for all data and control signals over the more than 900 foot cable (or fiber optic) link

  17. Mixed phase evaporation source

    International Nuclear Information System (INIS)

    1975-01-01

    Apparatus for reducing convection current heat loss in electron beam evaporator is described. A material to be evaporated (evaporant) is placed in the crucible of an electron beam evaporation source along with a porous mass formed of a powdered or finely divided solid to act as an impedance to convection currents. A feed system is employed to replenish the supply of evaporant as it is vaporized

  18. Precipitation of Aluminum Containing Species in Tank Wastes

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Hobbs, David; Parker, Kent E.; McCready, David E.

    2001-01-01

    Aluminisilicate deposit buildup experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down in October 1999. The Waste Processing Technology Section (WPTS) of Westinghouse Savannah River Company at SRS is now collaborating with team members from Pacific Northwest National Laboratory (PNNL) to verify the steady-state thermodynamic stability of aluminosilicate compounds under waste tank conditions in an attempt to eliminate the deposition and clogging problems. The data obtained at 40?C showed that formation and persistence of crystalline phases was dependent on the initial hydroxide concentrations. The formation and persistence of zeolite A occurred only at lower hydroxide concentrations, whereas increasing hydroxide concentrations appeared to promote the formation of sodalite and cancrinite. The data also showed that although zeolite A forms initially, it is a metastable phase that converts to more stable crystalline materials such as sodalite and cancrinite. Additionally, the rate of transformation of zeolite A appeared to increase with increasing hydroxide concentration. The data from tests conducted at 80?C revealed relatively rapid formation of sodalite and cancrinite. Although minor amounts of zeolite A were initially detected in some cases, the higher reaction temperatures seemed to promote very rapid transformation of this phase into more stable phases. Also, the higher temperature and hydroxide concentrations appeared to initiate kinetically fast crystallization of sodalite and cancrinite. More recent testing at SRS in support of the HLW evaporator plugging issue has shown similar trends in the formation of aluminosilicate phases. These tests were carried out under conditions more similar to those that occur in HLW tanks and evaporators. Comparison of our results with those reported above show very similar trends

  19. Analysis of an innovative solar water desalination system using gravity induced vacuum

    International Nuclear Information System (INIS)

    Ayhan, T.; Al-Madani, H.

    2007-01-01

    This study presents the theoretical analysis, design and appropriate models of a new desalination system using gravity induced vacuum. The system utilizes natural means (gravity and atmospheric pressure) to create a vacuum under which water can be rapidly evaporated at much lower temperatures with less energy than conventional techniques. This technique is developed to overcome water storage, in the areas where good solar radiation (or waste heat sources) and sea water (or waste water sources). The developed system consists of an evaporator connected to condenser by means of a vacuum tank. The vapour produced in the evaporator is driven to condenser through the vacuum tank, where it condenses and collected as a product. Vacuum equivalent to 7 kPa (abs) or less can be created depending on ambient temperature of Bahrain climatic conditions. The effect of various operating conditions, namely water levels in condensation and evaporating columns on the system performance were studied. The theoretical analysis and preliminary experimental results show that the performance of this system depends on the condensation temperature

  20. Tank-connected food waste disposer systems--current status and potential improvements.

    Science.gov (United States)

    Bernstad, A; Davidsson, A; Tsai, J; Persson, E; Bissmont, M; la Cour Jansen, J

    2013-01-01

    An unconventional system for separate collection of food waste was investigated through evaluation of three full-scale systems in the city of Malmö, Sweden. Ground food waste is led to a separate settling tank where food waste sludge is collected regularly with a tank-vehicle. These tank-connected systems can be seen as a promising method for separate collection of food waste from both households and restaurants. Ground food waste collected from these systems is rich in fat and has a high methane potential when compared to food waste collected in conventional bag systems. The content of heavy metals is low. The concentrations of N-tot and P-tot in sludge collected from sedimentation tanks were on average 46.2 and 3.9 g/kg TS, equalling an estimated 0.48 and 0.05 kg N-tot and P-tot respectively per year and household connected to the food waste disposer system. Detergents in low concentrations can result in increased degradation rates and biogas production, while higher concentrations can result in temporary inhibition of methane production. Concentrations of COD and fat in effluent from full-scale tanks reached an average of 1068 mg/l and 149 mg/l respectively over the five month long evaluation period. Hydrolysis of the ground material is initiated between sludge collection occasions (30 days). Older food waste sludge increases the degradation rate and the risks of fugitive emissions of methane from tanks between collection occasions. Increased particle size decreases hydrolysis rate and could thus decrease losses of carbon and nutrients in the sewerage system, but further studies in full-scale systems are needed to confirm this. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates

    International Nuclear Information System (INIS)

    Xu, J.; Li, Y.; Wang, R.Z.; Liu, W.; Zhou, P.

    2015-01-01

    Highlights: • Experimental performance of evaporative cooling in humid climate is investigated. • 5 working modes are studied in the greenhouse. • Vertical and horizontal temperature and relative humidity variations are analysed. • Indoor temperature can be kept in required level by proper working modes. - Abstract: To solve the overheating problem caused by the solar radiation and to keep the indoor temperature and humidity at a proper level for plants or crops, cooling technologies play vital role in greenhouse industry, and among which evaporative cooling is one of the most commonly-used methods. However, the main challenge of the evaporative cooling is its suitability to local climatic and agronomic condition. In this study, the performance of evaporative cooling pads was investigated experimentally in a 2304-m 2 glass multi-span greenhouse in Shanghai in the southeast of China. Temperature and humidity distributions were measured and reported for different working modes, including the use of evaporative cooling alone and the use of evaporative cooling with shading or ventilation. These experiments were conducted in humid subtropical climates where were considered unfavourable for evaporative cooling pad systems. Quantified analyses from the energy perspective are also made based on the experimental results and the evaporative cooling fan–pad system is demonstrated to be an effective option for greenhouse cooling even in the humid climate. Suggestions and possible solutions for further improving the performance of the system are proposed. The results of this work will be useful for the optimisation of the energy management of greenhouses in humid climates and for the validation of the mathematical model in future work

  2. Stabilization of In-Tank Residual Wastes and External-Tank Soil Contamination for the Hanford Tank Closure Program: Applications to the AX Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.L.; Dwyer, B.P.; Ho, C.; Krumhansl, J.L.; McKeen, G.; Molecke, M.A.; Westrich, H.R.; Zhang, P.

    1998-11-01

    Technical support for the Hanford Tank Closure Program focused on evaluation of concepts for immobilization of residual contaminants in the Hanford AX tanks and underlying soils, and identification of cost-effective approaches to improve long-term performance of AX tank farm cIosure systems. Project objectives are to develop materials or engineered systems that would significantly reduce the radionuclide transport to the groundwater from AX tanks containing residual waste. We pursued several studies that, if implemented, would help achieve these goals. They include: (1) tank fill design to reduce water inilltration and potential interaction with residual waste; (2) development of in-tank getter materials that would specifically sorb or sequester radionuclides; (3) evaluation of grout emplacement under and around the tanks to prevent waste leakage during waste retrieval or to minimize water infiltration beneath the tanks; (4) development of getters that will chemically fix specific radionuclides in soils under tanks; and (5) geochemical and hydrologic modeling of waste-water-soil-grout interactions. These studies differ in scope from the reducing grout tank fill employed at the Savannah River Site in that our strategy improves upon tank fill design by providing redundancy in the barriers to radionuclide migration and by modification the hydrogeochemistry external to the tanks.

  3. Effluent migration from septic tank systems in two different lithologies, Broward County, Florida

    Science.gov (United States)

    Waller, B.G.; Howie, Barbara; Causaras, C.R.

    1987-01-01

    Two septic tank test sites, one in sand and one in limestone, in Broward County, Florida, were analyzed for effluent migration. Groundwater from shallow wells, both in background areas and hydraulically down-gradient of the septic tank system, was sampled during a 16-month period from April 1983 through August 1984. Water quality indicators were used to determine the effluent affected zone near the septic tank systems. Specific conductance levels and concentrations of chloride, sulfate, ammonium, and nitrate indicated effluent movement primarily in a vertical direction with abrupt dilution as it moved down-gradient. Effluent was detected in the sand to a depth more than 20 ft below the septic tank outlet, but was diluted to near background conditions 50 ft down-gradient from the tank. Effluent in the limestone was detected in all three observation wells to depths exceeding 25 ft below the septic tank outlet and was diluted, but still detectable, 40 ft down-gradient. The primary controls on effluent movement from septic tank systems in Broward County are the lithology and layering of the geologic materials, hydraulic gradients, and the volume and type of use the system receives. (Author 's abstract)

  4. Tank 241-BY-108 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQOs identity information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for tank BY-108 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given. Single-shell tank BY-108 is classified as a Ferrocyanide Watch List tank. The tank was declared an assumed leaker and removed from service in 1972; interim stabilized was completed in February 1985. Although not officially an Organic Watch List tank, restrictions have been placed on intrusive operations by Standing Order number-sign 94-16 (dated 09/08/94) since the tank is suspected to contain or to have contained a floating organic layer

  5. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  6. TANK 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM PROJECT LESSONS LEARNED

    International Nuclear Information System (INIS)

    TAYLOR T; HAGENSEN A; KIRCH NW

    2008-01-01

    During 2007 and 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was designed and fabricated for use in double-shell tank 241-AN-102. The system was successfully installed in the tank on May 1, 2008. The 241-AN-102 MPCMS consists of one 'fixed' in-tank probe containing primary and secondary reference electrodes, tank material electrodes, Electrical Resistance (ER) sensors, and stressed and unstressed corrosion coupons. In addition to the fixed probe, the 241-AN-102 MPCMS also contains four standalone coupon racks, or 'removable' probes. Each rack contains stressed and unstressed coupons made of American Society of Testing and Materials A537 CL1 steel, heat-treated to closely match the chemical and mechanical characteristics of the 241-AN-102 tank wall. These coupon racks can be removed periodically to facilitate examination of the attached coupons for corrosion damage. Along the way to successful system deployment and operation, the system design, fabrication, and testing activities presented a number of challenges. This document discusses these challenges and lessons learned, which when applied to future efforts, should improve overall project efficiency

  7. Control system design for robotic underground storage tank inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1994-09-01

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission

  8. The relation of collector and storage tank size in solar heating systems

    International Nuclear Information System (INIS)

    Çomaklı, Kemal; Çakır, Uğur; Kaya, Mehmet; Bakirci, Kadir

    2012-01-01

    Highlights: ► A storage tank is used in many solar water heating systems for the storage of hot water. ► Using larger storage tanks decrease the efficiency and increases the cost of the system. ► The optimum tank size for the collector area is very important for economic solar heating systems. ► The optimum sizes of the collectors and the storage tank are determined. - Abstract: The most popular method to benefit from the solar energy is to use solar water heating systems since it is one of the cheapest way to benefit from the solar energy. The investment cost of a solar water heating system is very low, and the maintenance costs are nearly zero. Using the solar energy for solar water heating (SWH) technology has been greatly improved during the past century. A storage tank is used in many solar water heating systems for the conservation of heat energy or hot water for use when some need it. In addition, domestic hot water consumption is strongly variable in many buildings. It depends on the geographical situation, also on the country customs, and of course on the type of building usage. Above all, it depends on the inhabitants’ specific lifestyle. For that reason, to provide the hot water for consumption at the desirable temperature whenever inhabitants require it, there must be a good relevance between the collectors and storage tank. In this paper, the optimum sizes of the collectors and the storage tank are determined to design more economic and efficient solar water heating systems. A program has been developed and validated with the experimental study and environmental data. The environmental data were obtained through a whole year of operation for Erzurum, Turkey.

  9. A microwave evaporation system for the waste treatment of radioactive animals

    International Nuclear Information System (INIS)

    Saito, Tomoo; Nishiyama, Yumiko; Hikita, Akio; Takaoka, Ayako; Nakamura, Aiko.

    1979-01-01

    A microwave evaporation system was developed for the waste treatment of animal wastes contaminated with tritium or carbon-14. The apparatus composed of a 2450 MHz microwave range, a cooling unit, a receiver, a 3 H and 14 C sampler, an evacuating system and an automatic controller unit gave satisfactory results. The extent of evaporation can be optionally controlled in the range of 80% to 100%. The maximum rate of evaporation under reduced pressure reaches 10 g of water per minute at 480 W high frequency power level and 12.5 g per minute at 600 W. The evaporation of water in the carcass weighing 1 kg is generally completed in about 1 hour, and the weight is reduced by approximately 70%. The distribution in the apparatus of tritium or carbon-14 released from carcass by the microwave evaporation was studied using such labelled compounds as [ 3 H] water, [6- 3 H] thymidine, [methyl- 3 H] thymidine, [2- 14 C] thymidine, [U- 14 C] glutamic acid, [U- 14 C] fructose and [U- 14 C] glucose. The difference in activity trapped by the cooler and sampler was observed between the case of aqueous solutions of labelled compounds and that of animals administered with the same labelled compounds. The reason for this difference probably lies in metabolism of labelled compounds or exchange of tritium atoms within the animal body. (author)

  10. Design demonstrations for Category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-07-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). ORNL has conducted research in energy related fields since 1943. The facilities used to conduct the research include nuclear reactors, chemical pilot plants, research laboratories, radioisotope production laboratories, and support facilities. These facilities have produced a variety of radioactive and/or hazardous wastes. These wastes have been stored and transported through an extensive network of piping and tankage. Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA) - Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or Replacement Tank Systems with Secondary Containment; Category B -- Existing Tank Systems with Secondary Containment; Category C -- Existing Tank Systems without Secondary Containment; and Category D -- Existing Tank Systems without Secondary Containment that are; Removed from Service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category ''B.'' The design demonstration for each tank is presented in Section 2. The design demonstrations were developed using information obtained from the design drawings (as-built when available), construction specifications, and interviews with facility operators. The assessments assume that each tank system was constructed in accordance with the design drawings and construction specifications for that system unless specified otherwise. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Subsection C)

  11. Precipitation and Deposition of Aluminum-Containing Species in Tank Wastes

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Hobbs, David T.; Wang, Li-Qiong; Dabbs, Daniel M.; Aksay, Ilhan A.

    2002-01-01

    Aluminum-containing phases represent the most prevalent solids that can appear or disappear during the processing of radioactive tank wastes. Processes such as sludge washing and leaching are designed to dissolve Al-containing phases and thereby minimize the volume of high-level waste glass required to encapsulate radioactive sludges. Unfortunately, waste-processing steps that include evaporation can involve solutions that are supersaturated with respect to cementitious aluminosilicates that result in unwanted precipitation and scale formation. Of all the constituents of tank waste, limited solubility cementitious aluminosilicates have the greatest potential for clogging pipes and transfer lines, fouling highly radioactive components such as ion exchangers, and completely shutting down processing operations. For instance, deposit buildup and clogged drain lines experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down in October 1999. The Waste Processing Technology Section of Westinghouse Savannah River Company at SRS now is collaborating with team members from Pacific Northwest National Laboratory (PNNL) to verify the thermodynamic stability of aluminosilicate compounds under waste tank conditions in an attempt to solve the deposition and clogging problems. The primary objectives of this study are (1) to understand the major factors controlling precipitation, heterogeneous nucleation, and growth phenomena of relatively insoluble aluminosilicates; (2) to determine the role of organics for inhibiting aluminosilicate formation, and (3) to develop a predictive tool to control precipitation, scale formation, and cementation under tank waste processing conditions. The results of this work will provide crucial information for (1) avoiding problematical sludge processing steps and (2) identifying and developing effective technologies to process retrieved sludges and supernatants before ultimate

  12. Project management plan double-shell tank system specification development

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    The Project Hanford Management Contract (PHMC) members have been tasked by the US Department of Energy (DOE) to support removal of wastes from the Hanford Site 200 Area tanks in two phases. The schedule for these phases allows focusing on requirements for the first phase of providing feed to the privatized vitrification plants. The Tank Waste Retrieval Division near-term goal is to focus on the activities to support Phase 1. These include developing an integrated (technical, schedule, and cost) baseline and, with regard to private contractors, establishing interface agreements, constructing infrastructure systems, retrieving and delivering waste feed, and accepting immobilized waste products for interim onsite storage. This document describes the process for developing an approach to designing a system for retrieving waste from double-shell tanks. It includes a schedule and cost account for the work breakdown structure task

  13. Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2015-12-01

    Full Text Available The evaporator is an important component in the Organic Rankine Cycle (ORC-based Waste Heat Recovery (WHR system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.

  14. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation AGENCY: Nuclear Regulatory Commission... Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation.'' This LR... related to internal surface aging effects, fire water systems, atmospheric storage tanks, and corrosion...

  15. Experimental study of an aircraft fuel tank inerting system

    Directory of Open Access Journals (Sweden)

    Cai Yan

    2015-04-01

    Full Text Available In this work, a simulated aircraft fuel tank inerting system has been successfully established based on a model tank. Experiments were conducted to investigate the influences of different operating parameters on the inerting effectiveness of the system, including flow rate of the inert gas (nitrogen-enriched air, inert gas concentration, fuel load of the tank and different inerting approaches. The experimental results show that under the same operating conditions, the time span of a complete inerting process decreased as the flow rate of inert gas was increased; the time span using the inert gas with 5% oxygen concentration was much longer than that using pure nitrogen; when the fuel tank was inerted using the ullage washing approach, the time span increased as the fuel load was decreased; the ullage washing approach showed the best inerting performance when the time span of a complete inerting process was the evaluation criterion, but when the decrease of dissolved oxygen concentration in the fuel was also considered to characterize the inerting effectiveness, the approach of ullage washing and fuel scrubbing at the same time was the most effective.

  16. Tank waste remediation system program plan

    International Nuclear Information System (INIS)

    Powell, R.W.

    1998-01-01

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization

  17. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  18. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    International Nuclear Information System (INIS)

    Haller, C.S.; Dove, T.H.

    1994-01-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement

  19. Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington

    International Nuclear Information System (INIS)

    Murthy, K.S.; Stout, L.A.; Napier, B.A.; Reisenauer, A.E.; Landstrom, D.K.

    1983-06-01

    This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removal level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented

  20. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    International Nuclear Information System (INIS)

    Swita, W.R.

    1998-01-01

    This document provides a summary of the proposed Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost) developed to demonstrate the Tank Waste Remediation System contractor's Readiness-to-Proceed in support of the Phase 1B mission

  1. Project W-340 tank 241-C-106 manipulator system closeout summary

    International Nuclear Information System (INIS)

    McDaniel, L.B.

    1995-02-01

    This document summarizes the work that was ongoing when Project W-340 was put on hold. Project W-340: Tank 241-C-106 Manipulator Retrieval System, was a candidate FY98 Major System Acquisition. The project was to develop, procure and deploy a Long Reach Manipulator (LRM) waste retrieval system to provide an alternate method to completing the in-tank demonstration of Single Shell Tank waste retrieval technology. The need for enhanced capabilities derives from (1) the inability of the baseline technology to retrieve certain hard waste forms; (2) uncertainty in the quantity of leakage which will be allowed. Numerous studies over the years have identified an arm architecture as a promising retrieval technology to overcome these concerns. The W340 project was intended to further develop and demonstrate this alternative, as part of selecting the best approach for all tanks. Prior to completing the effort, it was determined that an LRM system was too architecture specific and was envisioned to be too expensive for a one time demonstration of retrieval technology. At the time the work was stopped, an effort was underway to broaden the project scope to allow alternatives to an arm-based system

  2. Regulatory off-gas analysis from the evaporation of Hanford simulated waste spiked with organic compounds.

    Science.gov (United States)

    Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A

    2004-10-01

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.

  3. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    Science.gov (United States)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  4. Operation Performance of Central Solar Heating System with Seasonal Storage Water Tank in Harbin

    Institute of Scientific and Technical Information of China (English)

    YE Ling; JIANG Yi-qiang; YAO Yang; ZHANG Shi-cong

    2009-01-01

    This paper presented a preliminary research on the central solar heating system with seasonal stor-age(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was fol-lowed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which de-creases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition-the relationship between the solar collector efficiency and storage wa-ter temperature is also obtained,it decreases quickly with increasing storing water temperature,and then in-creases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.

  5. TESTING OF ENHANCED CHEMICAL CLEANING OF SRS ACTUAL WASTE TANK 5F AND TANK 12H SLUDGES

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; King, W.

    2011-08-22

    Forty three of the High Level Waste (HLW) tanks at the Savannah River Site (SRS) have internal structures that hinder removal of the last approximately five thousand gallons of waste sludge solely by mechanical means. Chemical cleaning can be utilized to dissolve the sludge heel with oxalic acid (OA) and pump the material to a separate waste tank in preparation for final disposition. This dissolved sludge material is pH adjusted downstream of the dissolution process, precipitating the sludge components along with sodium oxalate solids. The large quantities of sodium oxalate and other metal oxalates formed impact downstream processes by requiring additional washing during sludge batch preparation and increase the amount of material that must be processed in the tank farm evaporator systems and the Saltstone Processing Facility. Enhanced Chemical Cleaning (ECC) was identified as a potential method for greatly reducing the impact of oxalate additions to the SRS Tank Farms without adding additional components to the waste that would extend processing or increase waste form volumes. In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate an alternative to the baseline 8 wt. % OA chemical cleaning technology for tank sludge heel removal. The baseline OA technology results in the addition of significant volumes of oxalate salts to the SRS tank farm and there is insufficient space to accommodate the neutralized streams resulting from the treatment of the multiple remaining waste tanks requiring closure. ECC is a promising alternative to bulk OA cleaning, which utilizes a more dilute OA (nominally 2 wt. % at a pH of around 2) and an oxalate destruction technology. The technology is being adapted by AREVA from their decontamination technology for Nuclear Power Plant secondary side scale removal. This report contains results from the SRNL small scale testing of the ECC process

  6. Mathematical Model for Direct Evaporative Space Cooling Systems ...

    African Journals Online (AJOL)

    This paper deals with the development of a simple mathematical model for experimental validation of the performance of a small evaporative cooling system in a tropical climate. It also presents the coefficient of convective heat transfer of wide range of temperatures based on existing model. Extensive experiments have ...

  7. DECOUPLER DESIGN FOR AN INTERACTING TANKS SYSTEM

    Directory of Open Access Journals (Sweden)

    Duraid F. Ahmed

    2013-05-01

    Full Text Available The mathematical model forthe two interacting tanks system was derived and the dynamic behavior of thissystem was studied by introducing a step change in inlet flow rate. In thispaper, the analysis of the interaction loops between the controlled variable(liquid level and manipulated variable (inlet flow rate was carried out usingthe relative gain array. Also decoupling technique is applied to eliminate theeffect this interaction by design suitable decouplers for the system. Theresults show that the gain of each loop is cut in half when the opposite loopis closed and the gain of other loop changes sign when the opposite loop isclosed. The decoupling method show that the liquid level of tank one isconstant when the second inlet flow changes and to keep the liquid level oftank two constant the first inlet flow must be changed.

  8. RHEOLOGICAL AND ELEMENTAL ANALYSES OF SIMULANT SB5 SLURRY MIX EVAPORATOR-MELTER FEED TANK SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.

    2010-02-08

    The Defense Waste Processing Facility (DWPF) will complete Sludge Batch 5 (SB5) processing in fiscal year 2010. DWPF has experienced multiple feed stoppages for the SB5 Melter Feed Tank (MFT) due to clogs. Melter throughput is decreased not only due to the feed stoppage, but also because dilution of the feed by addition of prime water (about 60 gallons), which is required to restart the MFT pump. SB5 conditions are different from previous batches in one respect: pH of the Slurry Mix Evaporator (SME) product (9 for SB5 vs. 7 for SB4). Since a higher pH could cause gel formation, due in part to greater leaching from the glass frit into the supernate, SRNL studies were undertaken to check this hypothesis. The clogging issue is addressed by this simulant work, requested via a technical task request from DWPF. The experiments were conducted at Aiken County Technology Laboratory (ACTL) wherein a non-radioactive simulant consisting of SB5 Sludge Receipt and Adjustment Tank (SRAT) product simulant and frit was subjected to a 30 hour SME cycle at two different pH levels, 7.5 and 10; the boiling was completed over a period of six days. Rheology and supernate elemental composition measurements were conducted. The caustic run exhibited foaming once, after 30 minutes of boiling. It was expected that caustic boiling would exhibit a greater leaching rate, which could cause formation of sodium aluminosilicate and would allow gel formation to increase the thickness of the simulant. Xray Diffraction (XRD) measurements of the simulant did not detect crystalline sodium aluminosilicate, a possible gel formation species. Instead, it was observed that caustic conditions, but not necessarily boiling time, induced greater thickness, but lowered the leach rate. Leaching consists of the formation of metal hydroxides from the oxides, formation of boric acid from the boron oxide, and dissolution of SiO{sub 2}, the major frit component. It is likely that the observed precipitation of Mg

  9. Modernization of tank floor scanning system (TAFLOSS) software

    International Nuclear Information System (INIS)

    Mohd Fitri Abdul Rahman; Jaafar Abdullah; Susan Maria Sipaun

    2002-01-01

    Tank Floor Scanning System (TAFLOSS) is a portable nucleonic device based on the scattering and moderation phenomena of neutrons. TAFLOSS, which was developed by MINT, can precisely and non-destructively measure the gap and hydrogen content in the foundation of a gigantic industrial tank in a practical and cost-effective manner. In recording and analysing measured data, three different computer software were used. In analysing the initial data, a Disk Operating System (DOS) based software called MesTank 3.0 have been developed. The system also used commercial software such as Table Curve 2D and SURFER for graphics purposes. Table Curve 2D was used to plot and evaluate curve fitting, whereas SURFER software used to draw contours. It is not user friendly and time consuming to switch from a software to another software for different tasks of this system. Therefore, the main objective of the project is to develop new user-friendly software that combined the old and commercial software into a single package. The computer programming language that was used to develop the software is Microsoft Visual C++ ver. 6.0. The process of developing this software involved complex mathematical calculation, curve fitting and contour plot. This paper describes the initial development of a computer programme for analysing the initial data and plotting exponential curve fitting. (Author)

  10. Design demonstrations for the remaining 19 Category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)--Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tank systems: Category A--New or Replacement Tank Systems with Secondary Containment; Category B--Existing Tank Systems with Secondary Containment; Category C--Existing Tank Systems Without Secondary Containment; and Category D--Existing Tank Systems Without Secondary Containment That are Removed from Service. This document provides a design demonstration of the secondary containment and ancillary equipment of 19 tank systems listed in the FFA as Category B. Three tank systems originally designated as Category B have been redesignated as Category C and one tank system originally designated as Category B has been redesignated as Category D. The design demonstration for each tank is presented in Section 2. The design demonstrations were developed using information obtained from the design drawings (as-built when available), construction specifications, and interviews with facility operators. The assessments assume that each tank system was constructed in accordance with the design drawings and construction specifications for that system unless specified otherwise. Each design demonstration addresses system conformance to the requirements of the FFA

  11. Tank waste remediation system integrated technology plan. Revision 2

    International Nuclear Information System (INIS)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P.

    1995-01-01

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m 3 (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program

  12. Tank waste remediation system integrated technology plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  13. Tank Waste Remediation System optimized processing strategy

    International Nuclear Information System (INIS)

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility

  14. Replacement inhibitors for tank farm cooling coil systems

    International Nuclear Information System (INIS)

    Hsu, T.C.

    1995-01-01

    Sodium chromate has been an effective corrosion inhibitor for the cooling coil systems in Savannah River Site (SRS) waste tanks for over 40 years. Due to their age and operating history, cooling coils occasionally fail allowing chromate water to leak into the environment. When the leaks spill 10 lbs. or more of sodium chromate over a 24-hr period, the leak incidents are classified as Unusual Occurrences (UO) per CERCLA (Comprehensive Environmental Response, Compensation and Liability Act). The cost of reporting and cleaning up chromate spills prompted High Level Waste Engineering (HLWE) to initiate a study to investigate alternative tank cooling water inhibitor systems and the associated cost of replacement. Several inhibitor systems were investigated as potential alternatives to sodium chromate. All would have a lesser regulatory impact, if a spill occurred. However, the conversion cost is estimated to be $8.5 million over a period of 8 to 12 months to convert all 5 cooling systems. Although each of the alternative inhibitors examined is effective in preventing corrosion, there is no inhibitor identified that is as effective as chromate. Assuming 3 major leaks a year (the average over the past several years), the cost of maintaining the existing inhibitor was estimated at $0.5 million per year. Since there is no economic or regulatory incentive to replace the sodium chromate with an alternate inhibitor, HLWE recommends that sodium chromate continue to be used as the inhibitor for the waste tank cooling systems

  15. Tank 241-C-106 waste retrieval sluicing system process control plan

    Energy Technology Data Exchange (ETDEWEB)

    Carothers, K.G.

    1998-07-25

    Project W-320 has installed the Waste Retrieval Sluicing System at the 200 East Area on the Hanford Site to retrieve the sludge from single-shell tank 241-C-106 and transfer it into double-shell tank 241-AY-102. Operation of the WRSS process will resolve the high-heat safety issue for tank 241-C-106 and demonstrate a technology for the retrieval of single-shell tank wastes. This process control plan coordinates the technical operating requirements (primarily mass transfer, temperature, and flammable gas) for the sluicing operation and provides overall technical guidance for the retrieval activity.

  16. Tank 241-C-106 waste retrieval sluicing system process control plan

    International Nuclear Information System (INIS)

    Carothers, K.G.

    1998-01-01

    Project W-320 has installed the Waste Retrieval Sluicing System at the 200 East Area on the Hanford Site to retrieve the sludge from single-shell tank 241-C-106 and transfer it into double-shell tank 241-AY-102. Operation of the WRSS process will resolve the high-heat safety issue for tank 241-C-106 and demonstrate a technology for the retrieval of single-shell tank wastes. This process control plan coordinates the technical operating requirements (primarily mass transfer, temperature, and flammable gas) for the sluicing operation and provides overall technical guidance for the retrieval activity

  17. MODELLING MANTLE TANKS FOR SDHW SYSTEMS USING PIV AND CFD

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, Masud

    1999-01-01

    Characteristics of vertical mantle heat exchanger tanks for SDHW systems have been investigated experimentally and theoretically using particle image velocimetry (PIV) and CFD modelling. A glass model of a mantle heat exchanger tank was constructed so that the flow distribution in the mantle could...... be studied using the PIV test facility. Two transient three-dimensional CFD-models of the glass model mantle tank were developed using the CFD-programmes CFX and FLUENT.The experimental results illustrate that the mantle flow structure in the mantle is complicated and the distribution of flow in the mantle...

  18. Evaporating firewalls

    Science.gov (United States)

    Van Raamsdonk, Mark

    2014-11-01

    In this note, we begin by presenting an argument suggesting that large AdS black holes dual to typical high-energy pure states of a single holographic CFT must have some structure at the horizon, i.e. a fuzzball/firewall, unless the procedure to probe physics behind the horizon is state-dependent. By weakly coupling the CFT to an auxiliary system, such a black hole can be made to evaporate. In a case where the auxiliary system is a second identical CFT, it is possible (for specific initial states) that the system evolves to precisely the thermofield double state as the original black hole evaporates. In this case, the dual geometry should include the "late-time" part of the eternal AdS black hole spacetime which includes smooth spacetime behind the horizon of the original black hole. Thus, if a firewall is present initially, it evaporates. This provides a specific realization of the recent ideas of Maldacena and Susskind that the existence of smooth spacetime behind the horizon of an evaporating black hole can be enabled by maximal entanglement with a Hawking radiation system (in our case the second CFT) rather than prevented by it. For initial states which are not finely-tuned to produce the thermofield double state, the question of whether a late-time infalling observer experiences a firewall translates to a question about the gravity dual of a typical high-energy state of a two-CFT system.

  19. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 2

    International Nuclear Information System (INIS)

    1994-04-01

    The Quality Assurance Functional Area Requirements Identification Document (RID), addresses the programmatic requirements that ensure risks and environmental impacts are minimized, ensure safety, reliability, and performance are maximized through the application of effective management systems commensurate with the risks posed by the Tank Farm Facility and its operation. This RID incorporates guidance intended to provide Tank Farms management with the necessary requirements information to develop, upgrade, or assess the effectiveness of a Quality Assurance Program in the performance of organizational and functional activities. Quality Assurance is defined as all those planned and systematic actions necessary to provide adequate confidence that a facility, structure, system, or component will perform satisfactorily and safely in service. This document will provide the specific requirements to meet DNFSB recommendations and the guidance provided in DOE Order 5700.6C, utilizing industry codes, standards, regulatory guidelines, and industry good practices that have proven to be essential elements for an effective and efficient Quality Assurance Program as the nuclear industry has matured over the last thirty years

  20. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Quality Assurance Functional Area Requirements Identification Document (RID), addresses the programmatic requirements that ensure risks and environmental impacts are minimized, ensure safety, reliability, and performance are maximized through the application of effective management systems commensurate with the risks posed by the Tank Farm Facility and its operation. This RID incorporates guidance intended to provide Tank Farms management with the necessary requirements information to develop, upgrade, or assess the effectiveness of a Quality Assurance Program in the performance of organizational and functional activities. Quality Assurance is defined as all those planned and systematic actions necessary to provide adequate confidence that a facility, structure, system, or component will perform satisfactorily and safely in service. This document will provide the specific requirements to meet DNFSB recommendations and the guidance provided in DOE Order 5700.6C, utilizing industry codes, standards, regulatory guidelines, and industry good practices that have proven to be essential elements for an effective and efficient Quality Assurance Program as the nuclear industry has matured over the last thirty years.

  1. Tank Waste Remediation System decisions and risk assessment

    International Nuclear Information System (INIS)

    Johnson, M.E.

    1994-09-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize the highly radioactive Hanford Site tank wastes and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost effective manner. Additionally, the TWRS conducts, as part of this mission, resolution of safety issues associated with the wastes within the 177 underground radioactive waste tanks. Systems engineering principles are being applied to determine the functions and establish requirements necessary for accomplishing the TWRS mission (DOE 1994 draft). This systematic evaluation of the TWRS program has identified key decisions that must be executed to establish mission scope, determine requirements, or select a technical solution for accomplishing identified functions and requirements. Key decisions identified through the systematic evaluation of the TWRS mission are presented in this document. Potential alternative solutions to each decision are discussed. After-discussion and evaluation of each decision with effected stakeholder groups, the US Department of Energy (DOE) will select a solution from the identified alternatives for implementation. In order to proceed with the development and execution of the tank waste remediation program, the DOE has adopted a planning basis for several of these decisions, until a formal basis is established. The planning bases adopted by the DOE is continuing to be discussed with stakeholder groups to establish consensus for proceeding with proposed actions. Technical and programmatic risks associated with the planning basis adopted by the DOE are discussed

  2. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  3. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Science.gov (United States)

    Ley, Morten B.; Meggouh, Mariem; Moury, Romain; Peinecke, Kateryna; Felderhoff, Michael

    2015-01-01

    This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability. PMID:28793541

  4. On the link between potential evaporation and regional evaporation from a CBL perspective

    Science.gov (United States)

    Lhomme, J. P.; Guilioni, L.

    2010-07-01

    The relationship between potential evaporation and actual evaporation was first examined by Bouchet (Proc Berkeley Calif Symp IAHS Publ, 62:134-142, 1963) who considered potential evaporation as the consequence of regional evaporation due to atmospheric feedbacks. Using a heuristic approach, he derived a complementary relationship which, despite no real theoretical background, has proven to be very useful in interpreting many experimental data under various climatic conditions. Here, the relationship between actual and potential evaporation is reinterpreted in the context of the development of the convective boundary layer (CBL): first, with a closed-box approach, where the CBL has an impermeable lid; and then with an open system, where air is exchanged between the CBL and its external environment. By applying steady forcing to these systems, it is shown that an equilibrium state is reached, where potential evaporation has a specific equilibrium formulation as a function of two parameters: one representing large-scale advection and the other the feedback effect of regional evaporation on potential evaporation, i.e. a kind of “medium-scale advection”. It is also shown that the original form of Bouchet’s complementary relationship is not verified in the equilibrium state. This analysis leads us to propose a new and more rational approach of the relationship between potential and actual evaporation through the effective surface resistance of the region.

  5. Characterization of the C1 and C2 waste tanks located in the BVEST system at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.

    1998-02-01

    There was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks C-1 and C-2. The isotopic data presented in this report supports the position that fissile isotopes of uranium ( 233 U and 235 U) and plutonium ( 239 Pu and 241 Pu) were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the sludge in tanks C1 and C2 was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. Additional characteristics of the C1 and C2 sludge inventory relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP

  6. Remote systems for waste retrieval from the Oak Ridge National Laboratory gunite tanks

    International Nuclear Information System (INIS)

    Falter, D.D.; Babcock, S.M.; Burks, B.L.; Lloyd, P.D.; Randolph, J.D.; Rutenber, J.E.; Van Hoesen, S.D.

    1995-01-01

    As part of a Comprehensive Environmental Response, Compensation, and Liability Act Treatability Study funded by the Department of Energy, the Oak Ridge National Laboratory (ORNL) is preparing to demonstrate and evaluate two approaches for the remote retrieval of wastes in underground storage tanks. This work is being performed to identify the most cost-effective and efficient method of waste removal before full-scale remediation efforts begin in 1998. System requirements are based on the need to dislodge and remove sludge wastes ranging in consistency from broth to compacted clay from Gunite (Shotcrete) tanks that are approaching fifty years in age. Systems to be deployed must enter and exit through the existing 0.6 m (23.5 in.) risers and conduct retrieval operations without damaging the layered concrete walls of the tanks. Goals of this project include evaluation of confined sluicing techniques and successful demonstration of a telerobotic arm-based system for deployment of the sluicing system. As part of a sister project formed on the Old Hydrofracture Facility tanks at ORNL, vehicle-based tank remediation will also be evaluated

  7. PSO-tuned PID controller for coupled tank system via priority-based fitness scheme

    Science.gov (United States)

    Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal

    2015-05-01

    The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.

  8. Preoperational test report, raw water system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  9. Preoperational test report, raw water system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  10. 300 area solvent evaporator interim status closure plan: Revision 2

    International Nuclear Information System (INIS)

    1989-02-01

    This document describes activities for the closure of a hazardous waste tank treatment facility operated by the US Department of Energy-Richland Operations Office (DOE-RL) and co-operated by the Westinghouse Hanford Company (WHC). This treatment facility was a solvent evaporator located in the 300 Area of the Hanford Site, from 1975 to 1985 on behalf of DOE-RL. The 300 Area Solvent Evaporator (300 ASE) was a modified load lugger (dumpster) in which solvent wastes were evaporated. Some of the solvents were radioactively contaminated because they came from a degreaser which processed bare uranium metal billets from the N Reactor Fuel Manufacturing Facility. The waste was composed of perchloroethylene, trichloroethylene, 1,1,1-trichloroethane, ethyl acetate/bromine solution, paint shop solvents and possibly some used oil. Also, small amounts of uranium, copper, zirconium and possibly beryllium were present in the degreaser solvents as particulates. Radioactive and non-radioactive solvents were not segregated in the 300 ASE, and the entire mixture was regarded as mixed waste

  11. Solar Storage Tank Insulation Influence on the Solar Systems Efficiency

    Directory of Open Access Journals (Sweden)

    Negoitescu Arina

    2012-09-01

    Full Text Available For the storage tank of a solar system for domestic hot water production was analyzed the insulation thickness and material influence. To this end, it was considered a private house, occupied by 3 persons, located in zone I of thermal radiation, for which has been simulated the domestic hot water production process. The tank outlet hot water temperature was considered of 45°C. For simulation purposes, as insulation materials for the storage tank were taking into account glass wool and polyurethane with various thicknesses. Finally, was carried out the comparative analysis of two types of tanks, in terms of the insulation thickness influence on the solar fraction, annual solar contribution and solar annual productivity. It resulted that polyurethane is the most advantageous from all points of view.

  12. Design of multi-function Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    A multi-fiction corrosion monitoring system has been designed for installation into DST 241-AN-105 at the Hanford Site in fiscal year 1999. The 241-AN-105 system is the third-generation corrosion monitoring system described by TTP RLO-8-WT-21. Improvements and upgrades from the second-generation system (installed in 241-AN-102) that have been incorporated into the third-generation system include: Gasket seating surfaces utilize O-rings instead of a washer type gasket for improved seal; Probe design contains an equally spaced array of 22 thermocouples; Probe design contains an adjustable verification thermocouple; Probe design contains three ports for pressure/gas sampling; Probe design contains one set of strain gauges to monitor probe flexure if flexure occurs; Probe utilizes an adjustable collar to allow depth adjustment of probe during installation; System is capable of periodically conducting LPR scans; System is housed in a climate controlled enclosure adjacent to the riser containing the probe; System uses wireless Ethernet links to send data to Hanford Local Area Network; System uses commercial remote access software to allow remote command and control; and Above ground wiring uses driven shields to reduce external electrostatic noise in the data. These new design features have transformed what was primarily a second-generation corrosion monitoring system into a multi-function tank monitoring system that adds a great deal of functionality to the probe, provides for a better understanding of the relationship between corrosion and other tank operating parameters, and optimizes the use of the riser that houses the probe in the tank

  13. Theoretical study of solar combisystems based on bikini tanks and tank-in-tank stores

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2012-01-01

    . Originality/value - Many different Solar Combisystem designs have been commercialized over the years. In the IEA-SHC Task 26, twenty one solar combisystems have been described and analyzed. Maybe the mantle tank approach also for solar combisystems can be used with advantage? This might be possible...... if the solar heating system is based on a so called bikini tank. Therefore the new developed solar combisystems based on bikini tanks is compared to the tank-in-tank solar combisystems to elucidate which one is suitable for three different houses with low energy heating demand, medium and high heating demand.......Purpose - Low flow bikini solar combisystems and high flow tank-in-tank solar combisystems have been studied theoretically. The aim of the paper is to study which of these two solar combisystem designs is suitable for different houses. The thermal performance of solar combisystems based on the two...

  14. Monitoring gas retention and slurry transport during the transfer of waste from Tank 241-C-106 to Tank 241-AY-102

    International Nuclear Information System (INIS)

    Stewart, C.W.; Erian, F.F.; Meyer, P.A.

    1997-07-01

    The retained gas volume can be estimated by several methods. All of these methods have significant uncertainties, but together they form a preponderance of evidence that describes the gas retention behavior of the tank. The methods are (1) an increase in nonconvective layer thickness; (2) a waste surface level rise (surface level effect [SLE] model); (3) the barometric pressure effect (BPE model); (4) direct void measurement; and (5) the consequences of the transfer process. The nonconvective layer thickness can be determined with sufficient accuracy to describe the overall waste configuration by means of temperature profiles or densitometer indications. However, the presence of a nonconvective layer does not necessarily indicate significant gas retention, and small changes in layer thickness that could quantify gas retention cannot be detected reliably with the methods available. The primary value of this measurement is in establishing the actual open-quotes fluffing factorclose quotes for thermal calculations. Surface level rise is not a useful measure of gas retention in Tank 241-C-106 (C-106) since the waste level fluctuates with regular makeup water additions. In Tank 241-AY-102 (AY-102) with the existing ventilation system it should be possible to determine the gas retention rate within 30-60% uncertainty from the surface level rise, should a significant rise be observed. The planned ventilation system upgrades in AY- 102 will greatly reduce the exhaust flow and the headspace humidity, and the evaporation rate should be significantly lower when transfers begin. This could reduce the uncertainty in gas retention rate estimates to around ± 10%

  15. Estimation model for evaporative emissions from gasoline vehicles based on thermodynamics.

    Science.gov (United States)

    Hata, Hiroo; Yamada, Hiroyuki; Kokuryo, Kazuo; Okada, Megumi; Funakubo, Chikage; Tonokura, Kenichi

    2018-03-15

    In this study, we conducted seven-day diurnal breathing loss (DBL) tests on gasoline vehicles. We propose a model based on the theory of thermodynamics that can represent the experimental results of the current and previous studies. The experiments were performed using 14 physical parameters to determine the dependence of total emissions on temperature, fuel tank fill, and fuel vapor pressure. In most cases, total emissions after an apparent breakthrough were proportional to the difference between minimum and maximum environmental temperatures during the day, fuel tank empty space, and fuel vapor pressure. Volatile organic compounds (VOCs) were measured using a Gas Chromatography Mass Spectrometer and Flame Ionization Detector (GC-MS/FID) to determine the Ozone Formation Potential (OFP) of after-breakthrough gas emitted to the atmosphere. Using the experimental results, we constructed a thermodynamic model for estimating the amount of evaporative emissions after a fully saturated canister breakthrough occurred, and a comparison between the thermodynamic model and previous models was made. Finally, the total annual evaporative emissions and OFP in Japan were determined and compared by each model. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. INITIAL SINGLE-SHELL TANK (SST) SYSTEM PERFORMANCE ASSESSMENT OF THE HANFORD SITE

    International Nuclear Information System (INIS)

    JARAYSI, M.N.

    2007-01-01

    The ''Initial Single-Shell Tank System Performance Assessment for the Hanford Site [1] (SST PA) presents the analysis of the long-term impacts of residual wastes assumed to remain after retrieval of tank waste and closure of the SST farms at the US Department of Energy (DOE) Hanford Site. The SST PA supports key elements of the closure process agreed upon in 2004 by DOE, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The SST PA element is defined in Appendix I of the ''Hanford Federal Facility Agreement and Consent Order'' (HFFACO) (Ecology et al. 1989) [2], the document that establishes the overall closure process for the SST and double-shell tank (DST) systems. The approach incorporated in the SST PA integrates substantive features of both hazardous and radioactive waste management regulations into a single analysis. The defense-in-depth approach used in this analysis defined two major engineering barriers (a surface barrier and the grouted tank structure) and one natural barrier (the vadose zone) that will be relied on to control waste release into the accessible environment and attain expected performance metrics. The analysis evaluates specific barrier characteristics and other site features that influence contaminant migration by the various pathways. A ''reference'' case and a suite of sensitivity/uncertainty cases are considered. The ''reference case'' evaluates environmental impacts assuming central tendency estimates of site conditions. ''Reference'' case analysis results show residual tank waste impacts on nearby groundwater, air resources; or inadvertent intruders to be well below most important performance objectives. Conversely, past releases to the soil, from previous tank farm operations, are shown to have groundwater impacts that re significantly above most performance objectives. Sensitivity/uncertainty cases examine single and multiple parameter variability along with plausible alternatives

  17. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system

    Science.gov (United States)

    Zhang, Ruifu; Weng, Dagen; Ren, Xiaosong

    2011-06-01

    The seismic response of an isolated vertical, cylindrical, extra-large liquefied natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is difficult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplified finite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.

  18. Demand-Based Optimal Design of Storage Tank with Inerter System

    Directory of Open Access Journals (Sweden)

    Shiming Zhang

    2017-01-01

    Full Text Available A parameter optimal design method for a tank with an inerter system is proposed in this study based on the requirements of tank vibration control to improve the effectiveness and efficiency of vibration control. Moreover, a response indicator and a cost control indicator are selected based on the control targets for liquid storage tanks for simultaneously minimizing the dynamic response and controlling costs. These indicators are reformulated through a random vibration analysis under virtual excitation. The problem is then transformed from a multiobjective optimization problem to a single-objective nonlinear problem using the ε-constraint method, which is consistent with the demand-based method. White noise excitation can be used to design the tank with the inerter system under seismic excitation to simplify the calculation. Subsequently, a MATLAB-based calculation program is compiled, and several optimization cases are examined under different excitation conditions. The effectiveness of the demand-based method is proven through a time history analysis. The results show that specific vibration control requirements can be met at the lowest cost with a simultaneous reduction in base shears and overturning base moments.

  19. Test plan for evaluating the performance of the in-tank fluidic sampling system

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    The PHMC will provide Low Activity Wastes (LAW) tank wastes for final treatment by a privatization contractor from double-shell feed tanks, 241-AP-102 and 241-AP-104, Concerns about the inability of the baseline ''grab'' sampling to provide large volume samples within time constraints has led to the development of a conceptual sampling system that would be deployed in a feed tank riser, This sampling system will provide large volume, representative samples without the environmental, radiation exposure, and sample volume impacts of the current base-line ''grab'' sampling method. This test plan identifies ''proof-of-principle'' cold tests for the conceptual sampling system using simulant materials. The need for additional testing was identified as a result of completing tests described in the revision test plan document, Revision 1 outlines tests that will evaluate the performance and ability to provide samples that are representative of a tanks' content within a 95 percent confidence interval, to recovery from plugging, to sample supernatant wastes with over 25 wt% solids content, and to evaluate the impact of sampling at different heights within the feed tank. The test plan also identifies operating parameters that will optimize the performance of the sampling system

  20. Radioactive waste tank ventilation system incorporating tritium control

    Energy Technology Data Exchange (ETDEWEB)

    Rice, P.D. [ICF Kaiser Hanford Company, Richland, WA (United States)

    1997-08-01

    This paper describes the development of a ventilation system for radioactive waste tanks at the U.S. Department of Energy`s (DOE) Hanford Site in Richland, Washington. The unique design of the system is aimed at cost-effective control of tritiated water vapor. The system includes recirculation ventilation and cooling for each tank in the facility and a central exhaust air clean-up train that includes a low-temperature vapor condenser and high-efficiency mist eliminator (HEME). A one-seventh scale pilot plant was built and tested to verify predicted performance of the low-temperature tritium removal system. Tests were conducted to determine the effectiveness of the removal of condensable vapor and soluble and insoluble aerosols and to estimate the operating life of the mist eliminator. Definitive design of the ventilation system relied heavily on the test data. The unique design features of the ventilation system will result in far less release of tritium to the atmosphere than from conventional high-volume dilution systems and will greatly reduce operating costs. NESHAPs and TAPs NOC applications have been approved, and field construction is nearly complete. Start-up is scheduled for late 1996. 3 refs., 4 figs., 2 tabs.

  1. Robotic systems for the high level waste tank farm replacement project at INEL

    International Nuclear Information System (INIS)

    Berger, A.; White, D.; Thompson, B.; Christensen, M.

    1993-01-01

    Westinghouse Idaho Nuclear Company (WINCO) is specifying and designing a new high level waste tank farm at the Idaho National Engineering Laboratory (INEL). The farm consists of four underground storage tanks, which replace the existing tanks. The new facility includes provisions for remote operations. One of the planned remote operations is robotic inspection of the tank from the interior and exterior. This paper describes the process used to design the robotic system for the inspection tasks

  2. Tank Waste Remediation System Projects Document Control Plan

    International Nuclear Information System (INIS)

    Slater, G.D.; Halverson, T.G.

    1994-01-01

    The purpose of this Tank Waste Remediation System Projects Document Control Plan is to provide requirements and responsibilities for document control for the Hanford Waste Vitrification Plant (HWVP) Project and the Initial Pretreatment Module (IPM) Project

  3. Tank waste remediation system systems engineering management plan

    International Nuclear Information System (INIS)

    Peck, L.G.

    1998-01-01

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance

  4. Numerical Study on Radiation Effects to Evaporator in Natural Vacuum Solar Desalination System

    Science.gov (United States)

    Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.; Ambarita, H.

    2018-01-01

    The need for clean water is increasing day by day due to the increasing factor of living standard of mankind, hence designed natural vacuum solar desalination. The natural vacuum Solar desalination is studied experimentally. A small-scale natural vacuum desalination study consists of evaporator and condenser as the main components designed and manufactured. To transfer heat from the solar collector into the evaporator, the fluid transfer system uses a pump powered by a solar cell. Thus, solar collectors are called hybrid solar collectors. The main purpose of this exposure is to know the characteristics of the radiation effects on incoming energy on the evaporator during the process. This system is tested by exposing the unit to the solar radiation in the 4th floor building in Medan. The experiment was conducted from 8.00 to 16.00 local time. The results show that natural vacuum solar desalination with hybrid solar collectors can be operated perfectly. If the received radiation is high, then the incoming energy received by the evaporator will also be high. From measurements with HOBO microstation, obtained the highest radiation 695.6 W/m2, and the calculation result of incoming energy received evaporator obtained highest result 1807.293 W.

  5. Evaporator Superheat Control With One Temperature Sensor Using Qualitative System Knowledge

    DEFF Research Database (Denmark)

    Vinther, Kasper; Hillerup Lyhne, Casper; Baasch Sørensen, Erik

    2012-01-01

    This paper proposes a novel method for superheat control using only a single temperature sensor at the outlet of the evaporator, while eliminating the need for a pressure sensor. An inner loop controls the outlet temperature and an outer control loop provides a reference set point, which is based...... filling of the evaporator, with only one temperature sensor. No a priori model knowledge was used and it is anticipated that the method is applicable on a wide variety of refrigeration systems....

  6. Design demonstrations for the remaining 19 Category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-06-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). ORNL has conducted research in energy related fields since 1943. The facilities used to conduct the research include nuclear reactors, chemical pilot plants, research laboratories, radioisotope production laboratories, and support facilities. These facilities have produced a variety of radioactive and/or hazardous wastes that have been transported and stored through an extensive network of piping and tankage. Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the EPA (United States Environmental Protection Agency)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tank systems: Category A-New or Replacement Tank Systems with Secondary Containment; Category B-Existing Tank Systems with Secondary Containment; Category C-Existing Tank Systems Without Secondary Containment, and Category D-Existing Tank Systems Without Secondary Containment That are Removed from Service. This document provides a design demonstration of the secondary containment and ancillary equipment of 19 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented in Section 2. The assessments assume that each tank system was constructed in accordance with the design drawings and construction specifications for that system unless specified otherwise. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Section C)

  7. History of waste tank 9 , 1955--1974

    International Nuclear Information System (INIS)

    Tharin, D.W.; Lohr, D.R.

    1979-01-01

    Tank 9 was placed in service as a receiver for Purex HLW on July 19, 1955. Filling was essentially completed in December 1955, and this original complement of waste remained in the tank until December 1965, when most of the liquid was decanted to allow refilling. In July 1966, the remaining liquid and approximately 15 inches of sludge were removed using 3000 to 3500 psi water introduced through nozzles to mobilize the sludge. The tank was then used as a receiver and cooler for aged HLW solution concentrated by the tank farm evaporator; the resulting crystallized salt, covered with saturated solution, is now stored in this tank. Inspections have been made of the tank interior and annulus by direct observation and with a 40-ft optical periscope. Analytical samples have been taken of the sludge, supernate, vapor, and leaked material in the annulus. Top-to-bottom profiles of radiation and temperature have been obtained in the annulus and tank, respectively, and measurements have been made of roof deflection caused by salt adhering to roof-supported cooling coils. Leaked waste was discovered in the annulus pan in October 1957. During 1958-59, the annulus pan was flushed nine times with water in 2000-gallon batches, jetting the waste and flush water into the primary tank. However, waste leakage into the annulus continued. The maximum liquid depth reached in the annulus was about 12 inches. This was jetted out in 1961., but some leakage continued theeeafter as indicated by roddings. The roddings showed no standing liquid by August 1964, but some liquid may have been present undera salt crust. In March 1972, salt depth in the annulus was measured to be 8 to 10 in., and the bottom 3 in. was quite wet. The salt remains although most of the liquid has been removed

  8. 40 CFR 267.201 - What must I do when I stop operating the tank system?

    Science.gov (United States)

    2010-07-01

    ... OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.201 What must I do when I stop operating the tank... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What must I do when I stop operating the tank system? 267.201 Section 267.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  9. Draft Environmental Impact Statement for the tank waste remediation system. Volume 4

    International Nuclear Information System (INIS)

    1996-04-01

    This appendix describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS)

  10. A global optimization method for evaporative cooling systems based on the entransy theory

    International Nuclear Information System (INIS)

    Yuan, Fang; Chen, Qun

    2012-01-01

    Evaporative cooling technique, one of the most widely used methods, is essential to both energy conservation and environment protection. This contribution introduces a global optimization method for indirect evaporative cooling systems with coupled heat and mass transfer processes based on the entransy theory to improve their energy efficiency. First, we classify the irreversible processes in the system into the heat transfer process, the coupled heat and mass transfer process and the mixing process of waters in different branches, where the irreversibility is evaluated by the entransy dissipation. Then through the total system entransy dissipation, we establish the theoretical relationship of the user demands with both the geometrical structures of each heat exchanger and the operating parameters of each fluid, and derive two optimization equation groups focusing on two typical optimization problems. Finally, an indirect evaporative cooling system is taken as an example to illustrate the applications of the newly proposed optimization method. It is concluded that there exists an optimal circulating water flow rate with the minimum total thermal conductance of the system. Furthermore, with different user demands and moist air inlet conditions, it is the global optimization, other than parametric analysis, will obtain the optimal performance of the system. -- Highlights: ► Introduce a global optimization method for evaporative cooling systems. ► Establish the direct relation between user demands and the design parameters. ► Obtain two groups of optimization equations for two typical optimization objectives. ► Solving the equations offers the optimal design parameters for the system. ► Provide the instruction for the design of coupled heat and mass transfer systems.

  11. Analysis of a solid desiccant cooling system with indirect evaporative cooling

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo

    investigates the performance of a solid desiccant cooling system implementing in-direct evaporative cooling processes. The aim is to quantify the system thermal and electrical performance for varying component dimensions and operating conditions, and to identify its range of applicability. This information...... evaporative cooler. Detailed steady state numerical models are developed and implemented in MATLAB. The models need to be accurate and require low computational effort, for analysing the internal heat and mass transfer processes, as well as carrying out repetitive design and optimization simulations......-to-air heat exchanger for enhancing cooling capacity and thermal performance. The system perfor-mance is investigated considering regeneration temperatures between 50 ºC and 90 ºC, which enable low temperature heat sources, such as solar energy or waste heat, to be used. The effects of several geometrical...

  12. Effects of Sodium Hydroxide and Sodium Aluminate on the Precipitation of Aluminum Containing Species in Tank Wastes

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Hobbs, David T.; Parker, Kent E.; McCready, David E.; Wang, Li Q.

    2006-01-01

    Aluminisilicate deposit buildup experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down. Studies were conducted at 80 C to identify the insoluble aluminosilicate phase(s) and to determine the kinetics of their formation and transformation. These tests were carried out under conditions more similar to those that occur in HLW tanks and evaporators. Comparison of our results with those reported from the site show very similar trends. Initially, an amorphous phase precipitates followed by a zeolite phase that transforms to sodalite and which finally converts to cancrinite. Our results also show the expected trend of an increased rate of transformation into denser aluminosilicate phases (sodalite and cancrinite) with time and increasing hydroxide concentrations

  13. TNKVNT: A model of the Tank 48 purge/ventilation exhaust system. Revision 1

    International Nuclear Information System (INIS)

    Shadday, M.A. Jr.

    1996-04-01

    The waste tank purge ventilation system for Tank 48 is designed to prevent dangerous concentrations of hydrogen or benzene from accumulating in the gas space of the tank. Fans pull the gas/water vapor mixture from the tank gas space and pass it sequentially through a demister, a condenser, a reheater, and HEPA filters before discharging to the environment. Proper operation of the HEPA filters requires that the gas mixture passing through them has a low relative humidity. The ventilation system has been modified by increasing the capacity of the fans and changing the condenser from a two-pass heat exchanger to a single-pass heat exchanger. It is important to understand the impact of these modifications on the operation of the system. A hydraulic model of the ventilation exhaust system has been developed. This model predicts the properties of the air throughout the system and the flowrate through the system, as functions of the tank gas space and environmental conditions. This document serves as a Software Design Report, a Software Coding report, and a User's Manual. All of the information required for understanding and using this code is herein contained: the governing equations are fully developed, the numerical algorithms are described in detail, and an extensively commented code listing is included. This updated version of the code models the entire purge ventilation system, and is therefore more general in its potential applications

  14. 242-A Control System device logic software documentation. Revision 2

    International Nuclear Information System (INIS)

    Berger, J.F.

    1995-01-01

    A Distributive Process Control system was purchased by Project B-534. This computer-based control system, called the Monitor and Control System (MCS), was installed in the 242-A Evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and Monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment System Engineering Group of Westinghouse. This document describes the Device Logic for this system

  15. Testing and development strategy for the tank waste remediation system

    International Nuclear Information System (INIS)

    Reddick, G.W.

    1994-12-01

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities

  16. Testing and development strategy for the tank waste remediation system

    International Nuclear Information System (INIS)

    Reddick, G.W.

    1995-01-01

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities

  17. Tank waste remediation system risk management plan

    International Nuclear Information System (INIS)

    Zimmerman, B.D.

    1998-01-01

    The purpose of the Tank Waste Remediation System (TWRS) Risk Management Plan is to describe a consistent approach to risk management such that TWRS Project risks are identified and managed to achieve TWRS Project success. The Risk Management Plan implements the requirements of the Tank Waste Remediation System Systems Engineering Management Plan in the area of risk management. Figure ES-1 shows the relationship of the TWRS Risk Management Plan to other major TWRS Project documents. As the figure indicates, the Risk Management Plan is a tool used to develop and control TWRS Project work. It provides guidance on how TWRS Project risks will be assessed, analyzed, and handled, and it specifies format and content for the risk management lists, which are a primary product of the risk management process. In many instances, the Risk Management Plan references the TWRS Risk Management Procedure, which provides more detailed discussion of many risk management activities. The TWRS Risk Management Plan describes an ongoing program within the TWRS Project. The Risk Management Plan also provides guidance in support of the TWRS Readiness To-Proceed (RTP) assessment package

  18. WRPS Meeting The Challenge Of Tank Waste

    International Nuclear Information System (INIS)

    Britton, J.C.

    2012-01-01

    -and-a-half years to modernize the infrastructure in Hanford's tank farms. WRPS issued 850 subcontracts totaling more than $152 million with nearly 76 percent of that total awarded to small businesses. WRPS used the funding to upgrade tank farm infrastructure, develop technologies to retrieve and consolidate tank waste and extend the life of two critical operating facilities needed to feed waste to the WTP. The 222-S Laboratory analyzes waste to support waste retrievals and transfers. The laboratory was upgraded to support future WTP operations with a new computer system, new analytical equipment, a new office building and a new climate-controlled warehouse. The 242-A Evaporator was upgraded with a control-room simulator for operator training and several upgrades to aging equipment. The facility is used to remove liquid from the tank waste, creating additional storage space, necessary for continued waste retrievals and WTP operation. The One System Integrated Project Team is ajoint effort ofWRPS and Bechtel National to identify and resolve common issues associated with commissioning, feeding and operating the Waste Treatment Plant. Two new facilities are being designed to support WTP hot commlsslomng. The Interim Hanford Storage project is planned to store canisters of immobilized high-level radioactive waste glass produced by the vitrification plant. The facility will use open racks to store the 15-foot long, two-foot diameter canisters of waste, which require remote handling. The Secondary Liquid Waste Treatment Project is a major upgrade to the existing Effluent Treatment Facility at Hanford so it can treat about 10 million gallons of liquid radioactive and hazardous effluent a year from the vitrification plant. The One System approach brings the staff of both companies together to identify and resolve WTP safety issues. A questioning attitude is encouraged and an open forum is maintained for employees to raise issues. WRPS is completing its mission safely with record

  19. Comparison of desiccant air conditioning systems with different indirect evaporative air coolers

    International Nuclear Information System (INIS)

    Pandelidis, Demis; Anisimov, Sergey; Worek, William M.; Drąg, Paweł

    2016-01-01

    Highlights: • A numerical study of desiccant air conditioning systems is presented. • The ε-NTU model is used for the analysis. • Different arrangements of the desiccant systems were compared. • The systems were compared under different operating conditions. - Abstract: This paper presents a numerical analysis of three desiccant air-conditioning systems equipped with different indirect evaporative air coolers: (1) the cross-flow Maisotsenko cycle heat and mass exchanger (HMX), (2) the regenerative counter-flow Maisotsenko cycle heat and mass exchanger and (3) the standard cross-flow evaporative air cooler. To analyze the desiccant wheel and the indirect evaporative air coolers, the modified ε-NTU-model was used. The simulations were performed under assumption that the desiccant wheel is regenerated with air heated to relatively low temperature values (50–60 °C), which can be produced with solar panels in typical moderate climatic conditions. It was established that the main advantage of the presented solutions is that they can provide comfort conditions even with less effective dehumidification. The different systems were compared under variable selected operational factors (i.e. inlet air temperature, humidity and regeneration air temperature). The analysis allowed establishing the advantages and disadvantages of presented solutions and allowed estimating their application potential.

  20. Performance Requirements for the Double Shell Tank (DST) System

    International Nuclear Information System (INIS)

    SMITH, D.F.

    2001-01-01

    This document identifies the upper-level Double-Shell Tank (DST) System functions and bounds the associated performance requirements. The functions and requirements are provided along with supporting bases. These functions and requirements, in turn, will be incorporated into specifications for the DST System

  1. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume II

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 2, provides the inventory of waste addressed in this Final Environmental Impact Statement (EIS) for the Tank Waste Remediation System, Hanford Site, Richland, Washington. The inventories consist of waste from the following four groups: (1) Tank waste; (2) Cesium (Cs) and Strontium (Sr) capsules; (3) Inactive miscellaneous underground storage tanks (MUSTs); and (4) Anticipated future tank waste additions. The major component by volume of the overall waste is the tank waste inventory (including future tank waste additions). This component accounts for more than 99 percent of the total waste volume and approximately 70 percent of the radiological activity of the four waste groups identified previously. Tank waste data are available on a tank-by-tank basis, but the accuracy of these data is suspect because they primarily are based on historical records of transfers between tanks rather than statistically based sampling and analyses programs. However, while the inventory of any specific tank may be suspect, the overall inventory for all of the tanks combined is considered more accurate. The tank waste inventory data are provided as the estimated overall chemical masses and radioactivity levels for the single-shell tanks (SSTs) and double-shell tanks (DSTs). The tank waste inventory data are broken down into tank groupings or source areas that were developed for analyzing groundwater impacts

  2. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface.

    Science.gov (United States)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.

  3. Tank waste remediation system retrieval and disposal mission infrastructure plan

    International Nuclear Information System (INIS)

    Root, R.W.

    1998-01-01

    This system plan presents the objectives, organization, and management and technical approaches for the Infrastructure Program. This Infrastructure Plan focuses on the Tank Waste Remediation System (TWRS) Project's Retrieval and Disposal Mission

  4. Tank characterization report for double-shell Tank 241-AP-107

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    The purpose of this tank characterization report is to describe and characterize the waste in Double-Shell Tank 241-AP-107 based on information gathered from various sources. This report summarizes the available information regarding the waste in Tank 241-AP-107, and arranges it in a useful format for making management and technical decisions concerning this particular waste tank. In addition, conclusion and recommendations based on safety and further characterization needs are given. Specific objectives reached by the sampling and characterization of the waste in Tank 241-AP-107 are: Contribute toward the fulfillment of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05 concerning the characterization of Hanford Site high-level radioactive waste tanks; Complete safety screening of the contents of Tank 241-AP-107 to meet the characterization requirements of the Defense Nuclear Facilities Safety board (DNFSB) Recommendation 93-5; and Provide tank waste characterization to the Tank Waste Remediation System (TWRS) Program Elements in accordance with the TWRS Tank Waste Analysis Plan

  5. Draft Environmental Impact Statement for the tank waste remediation system. Volume 1

    International Nuclear Information System (INIS)

    1996-04-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, and Ex Situ/In Situ Combination. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. At this time, DOE and Ecology do not have a preferred alternative for the cesium and strontium capsules

  6. Tank Waste Remediation System Guide

    International Nuclear Information System (INIS)

    Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

    1995-06-01

    The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties

  7. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  8. Phase Behavior and Evaporation Profile of Tween 20 - Eugenol System. Effect of Different Alkane Chain Length and Solvent System

    International Nuclear Information System (INIS)

    Kassim, A.; Lim, W.H.; Kuangl, D.; Rusmawati, W.W.M.; Abdullah, A.H.; Teoh, S.P.

    2003-01-01

    The isotropic region of Tween 20/eugenol/n-alkane in aqueous systems was determined. The solubilisation trend of isotropic solution formed in the presence of eugenol was studied as a function of different alkyl chain length of n-alkane. The solubility of solvent in surfactant solution is dependent on their molecular polarity. An increase in n-alkane chain length (lower polarity) lead to smaller isotropic region which will affect the surfactant partitioning between the interface, the oil phase and the aqueous phase of the microemulsion as the oil chain length is varied. The changes of evaporation behaviour were affected strongly by the types of phases existed in the systems. The increment of n-alkane and water content led to higher evaporation rate. But the formation of w/o microemulsion would lower the evaporation rate because water molecules were trapped in the core of aggregates. In solubilisation system, evaporation rate is dependent on the solvent content and the interaction between Tween 20 and solvent molecules in the mixed composition. (author)

  9. Tank waste remediation system privatization infrastructure program requirements and document management process guide

    International Nuclear Information System (INIS)

    ROOT, R.W.

    1999-01-01

    This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems

  10. Water supply rates for recirculating evaporative cooling systems in poultry housing

    Science.gov (United States)

    Evaporative cooling (EC) is an important tool to reduce heat stress in animal housing systems. Expansion of ventilation capacity in tunnel ventilated poultry facilities has resulted in increased water demand for EC systems. As water resources become more limited and costly, proper planning and des...

  11. Tank drive : ZCL takes its composite tank technology worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-06-15

    Edmonton-based ZCL Composites Inc. is North America's largest manufacturer and supplier of fibreglass reinforced plastic (FRP) underground storage tanks. The company has aggressively pursued new markets in the oil sands, shale gas gas, and other upstream petroleum industries. The manufacturer also targets water and sewage applications, and provides customized corrosion solutions for a variety of industries. The company developed its double-walled FRP tanks in response to Canadian Environmental Protection Act rules requiring cathodic protection for steel tanks, leak detection, and secondary containment. ZCL supplies approximately 90 per cent of the new tanks installed by gasoline retailers in Canada. Future growth is expected to be strong, as many old tanks will soon need to be replaced. The company has also developed a method of transforming underground single wall tanks into secondarily contained systems without digging them out. The company has also recently signed licence agreements with tank manufacturers in China. 3 figs.

  12. Organic tanks safety program FY96 waste aging studies

    International Nuclear Information System (INIS)

    Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.; Clauss, S.A.; Sharma, A.K.; Wahl, K.L.; Campbell, J.A.

    1996-10-01

    Uranium and plutonium production at the Hanford Site produced large quantities of radioactive by-products and contaminated process chemicals, which are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of salt cakes, metal oxide sludges, and partially saturated aqueous brine solutions. The tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes may be at risk for fuel- nitrate combustion accidents. The purpose of the Waste Aging Task is to elucidate how chemical and radiological processes will have aged or degraded the organic compounds stored in the tanks. Ultimately, the task seeks to develop quantitative measures of how aging changes the energetic properties of the wastes. This information will directly support efforts to evaluate the hazard as well as to develop potential control and mitigation strategies

  13. Structural integrity assessments for the category C liquid low-level waste tank systems at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement (FFA) for the structural integrity certification of 14 Category C Liquid Low Level Waste (LLLW) Tank Systems on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. Within this document, each tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and ten of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily, and (3) leak testing program results. Design plans and specifications were reviewed for a general description of the tanks and associated pipelines. Information of primary significance included tank age, material of construction, tank design and construction specifications. Design plans were also reviewed for the layouts and materials of pipeline constructions, and ages of pipelines. Next, a generic corrosion assessment was conducted for each tank system. Information was gathered, when available, related to the historical use of the tank and the likely contents. The corrosion assessments included a qualitative evaluation of the walls of each tank and pipelines associated with each tank, as well as the welds and joints of the systems. A general discussion of the stainless steel types encountered is included in Section 4.0 of this report. The potential for soils to have caused corrosion is also evaluated within the sections on the individual tank systems.

  14. Experimental study of a novel capacity control algorithm for a multi-evaporator air conditioning system

    International Nuclear Information System (INIS)

    Xu Xiangguo; Pan Yan; Deng Shiming; Xia Liang; Chan Mingyin

    2013-01-01

    The use of a multi-evaporator air conditioning (MEAC) system is advantageous in terms of installation convenience, high design flexibility, being easy to maintain and commission, better indoor thermal comfort control and higher energy efficiency. While MEAC units worth billions of dollars are sold worldwide, the detailed accounts on compressor capacity control and refrigeration flow distribution amongst evaporators remain unavailable in public domain, mainly due to commercial confidentiality. Limited control algorithms for MEAC systems have been developed based on system simulation, and no experimental-based capacity controller developments and their controllability tests may be identified in open literature. In the study reported in this paper, a novel capacity control algorithm, which imitated On–Off control of a single evaporator air conditioning (A/C) system in each indoor unit of a MEAC system by using variable speed compressor and electronic expansion valves (EEVs), was developed. Controllability tests under various settings for experimentally validating the novel capacity control algorithm were carried out and the control algorithm was further improved based on the experimental results. - Highlights: ► A capacity control algorithm for a multi-evaporator air conditioning system was developed. ► Experimental controllability tests under various settings were carried out. ► The control algorithm was further improved based on the experimental results.

  15. Performance of evaporative condensers

    Energy Technology Data Exchange (ETDEWEB)

    Ettouney, Hisham M.; El-Dessouky, Hisham T.; Bouhamra, Walid; Al-Azmi, Bader

    2001-07-01

    Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data. (Author)

  16. Preliminary fire hazards analysis for W-211, Initial Tank Retrieval Systems

    International Nuclear Information System (INIS)

    Huckfeldt, R.A.

    1995-01-01

    A fire hazards analysis (FHA) was performed for Project W-211, Initial Tank Retrieval System (ITRS), at the Department of Energy (DOE) Hanford site. The objectives of this FHA was to determine (1) the fire hazards that expose the Initial Tank Retrieval System or are inherent in the process, (2) the adequacy of the fire-safety features planned, and (3) the degree of compliance of the project with specific fire safety provisions in DOE orders and related engineering codes and standards. The scope included the construction, the process hazards, building fire protection, and site wide fire protection. The results are presented in terms of the fire hazards present, the potential extent of fire damage, and the impact on employees and public safety. This study evaluated the ITRS with respect to its use at Tank 241-SY-101 only

  17. Engineering task plan for Tanks 241-AN-103, 104, 105 color video camera systems

    International Nuclear Information System (INIS)

    Kohlman, E.H.

    1994-01-01

    This Engineering Task Plan (ETP) describes the design, fabrication, assembly, and installation of the video camera systems into the vapor space within tanks 241-AN-103, 104, and 105. The one camera remotely operated color video systems will be used to observe and record the activities within the vapor space. Activities may include but are not limited to core sampling, auger activities, crust layer examination, monitoring of equipment installation/removal, and any other activities. The objective of this task is to provide a single camera system in each of the tanks for the Flammable Gas Tank Safety Program

  18. Melton Valley liquid low-level radioactive waste storage tanks evaluation

    International Nuclear Information System (INIS)

    1995-06-01

    The Melton Valley Liquid Low-Level Radioactive Waste Storage Tanks (MVSTs) store the evaporator concentrates from the Liquid Low-Level Radioactive Waste (LLLW) System at the Oak Ridge National Laboratory (ORNL). The eight stainless steel tanks contain approximately 375,000 gallons of liquid and sludge waste. These are some of the newer, better-designed tanks in the LLLW System. They have been evaluated and found by the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation to comply with all Federal Facility Agreement requirements for double containment. The operations and maintenance aspects of the tanks were also reviewed by the Defense Nuclear Facilities Safety Board (DNFSB) in September 1994. This document also contains an assessment of the risk to the public and ORNL workers from a leak in one of the MVSTs. Two primary scenarios were investigated: (1) exposure of the public to radiation from drinking Clinch River water contaminated by leaked LLLW, and (2) exposure of on-site workers to radiation by inhaling air contaminated by leaked LLLW. The estimated frequency of a leak from one of the MVSTs is about 8 x 10 -4 events per year, or about once in 1200 years (with a 95% confidence level). If a leak were to occur, the dose to a worker from inhalation would be about 2.3 x 10 -1 mrem (with a 95% confidence level). The dose to a member of the public through the drinking water pathway is estimated to be about 7 x 10 -1 mrem (with a 95% confidence level). By comparison with EPA Safe Drinking Water regulations, the allowable lifetime radiation dose is about 300 mrem. Thus, a postulated LLLW leak from the MVSTs would not add appreciably to an individual's lifetime radiation dose

  19. Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems

    International Nuclear Information System (INIS)

    Islam, M.R.; Jahangeer, K.A.; Chua, K.J.

    2015-01-01

    The performance of an air-conditioning unit with evaporately-cooled condenser coil is studied experimentally and numerically. An experimental setup is fabricated by retrofitting a commercially available air-conditioning unit and installing comprehensive measuring sensors and controllers. Experimental result shows that the COP (Coefficient of Performance) of the evaporately-cooled air-conditioning unit increases by about 28% compared to the conventional air cooled air-conditioning unit. To analyze the heat and mass transfer processes involved in the evaporately-cooled condenser, a detailed theoretical model has been developed based on the fluid flow characteristics of the falling film and the thermodynamic aspect of the evaporation process. Simulated results agree well with experimental data. The numerical model provides new insights into the intrinsic links between operating variables and heat transfer characteristics of water film in evaluating the performance of evaporatively-cooled condenser system. Two heat transfer coefficients, namely, wall to bulk and bulk to interface are introduced and computed from the simulation results under different operating conditions. Finally, the overall heat transfer coefficient for the water film is computed and presented as a function of dimensionless variables which can conveniently be employed by engineers to design and analyze high performance evaporatively-cooled heat exchangers. - Highlights: • Performance of evaporatively-cooled condenser is investigated. • Local convective heat transfer coefficients of water film are determined. • Thermal resistance of water film is negligible. • Heat transfer with evaporated vapor plays significant role on performance. • Better condenser performance translates to an improvement in COP

  20. A systematic look at Tank Waste Remediation System privatization

    International Nuclear Information System (INIS)

    Holbrook, J.H.; Duffy, M.A.; Vieth, D.L.; Sohn, C.L.

    1996-01-01

    The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, immobilize, and dispose, or prepare for disposal, the Hanford radioactive tank waste in an environmentally sound, safe, and cost effective manner. Highly radioactive Hanford waste includes current and future tank waste plus the cesium and strontium capsules. In the TWRS program, as in other Department of Energy (DOE) clean-up activities, there is an increasing gap between the estimated funding required to enable DOE to meet all of its clean-up commitments and level of funding that is perceived to be available. Privatization is one contracting/management approach being explored by DOE as a means to achieve cost reductions and as a means to achieve a more outcome-oriented program. Privatization introduces the element of competition, a proven means of establishing true cost as well as achieving significant cost reduction

  1. Hold-up monitoring system for plutonium process tanks

    International Nuclear Information System (INIS)

    Zhu Rongbao; Jin Huimin; Tan Yajun

    1994-01-01

    The development of hold-up monitoring system for plutonium process tanks and a calculation method for α activities deposited in containers and inner walls of pipe are described. The hardware of monitoring system consists of a portable HPGe detector, a φ50 mm x 60 mm NaI(Tl) detector, γ-ray tungsten collimators, ORTEC92X Spectrum Master and an AST-286 computer. The software of system includes Maestro Tm for Window3 and a PHOUP1 hold-up application software for user. The Monte-Carlo simulation calculation supported by MCNP software is performed for the probability calculation of all the unscattering γ-rays reaching to the detection positions from the source terms deposited in the complicated tanks. A measurement mean value for different positions is used to minimize the effect of heterogeneous distribution of source term. The sensitivity is better than 3.7 x 10 6 Bq/kg (steel) for a plutonium simulation source on a 3-8 mm thick steel plate surrounded by 0.8 x 10 -10 C/kg·s γ field from long-life fission products

  2. Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition

    International Nuclear Information System (INIS)

    Leach, C.E.; Galbraith, J.D.; Grant, P.R.; Francuz, D.J.; Schroeder, P.J.

    1995-11-01

    This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs

  3. Analysis of flow maldistribution in fin-and-tube evaporators for residential air-conditioning systems

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl

    superheat by distributing individual channel mass flow rate continuously (perfect control). The compensation method is compared to the use of a larger evaporator in order to study their trade-off in augmenting system performance (cooling capacity and COP). The studies are performed by numerical modeling...... profile across the A-coil evaporator was predicted by means of CFD simulation software STAR-CD 3.26 (2005) and applied in the numerical model. The main reason for the better face split evaporator performance at uniform conditions or when compensating, is that the superheated "weak" zones with low UA...

  4. Towards a sharp-interface volume-of-fluid methodology for modeling evaporation

    Science.gov (United States)

    Pathak, Ashish; Raessi, Mehdi

    2017-11-01

    In modeling evaporation, the diffuse-interface (one-domain) formulation yields inaccurate results. Recent efforts approaching the problem via a sharp-interface (two-domain) formulation have shown significant improvements. The reasons behind their better performance are discussed in the present work. All available sharp-interface methods, however, exclusively employ the level-set. In the present work, we develop a sharp-interface evaporation model in a volume-of-fluid (VOF) framework in order to leverage its mass-conserving property as well as its ability to handle large topographical changes. We start with a critical review of the assumptions underlying the mathematical equations governing evaporation. For example, it is shown that the assumption of incompressibility can only be applied in special circumstances. The famous D2 law used for benchmarking is valid exclusively to steady-state test problems. Transient is present over significant lifetime of a micron-size droplet. Therefore, a 1D spherical fully transient model is developed to provide a benchmark transient solution. Finally, a 3D Cartesian Navier-Stokes evaporation solver is developed. Some preliminary validation test-cases are presented for static and moving drop evaporation. This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy and the Department of Defense, Tank and Automotive Research, Development, and Engineering Center, under Award Number DEEE0007292.

  5. Experience with the TRIUMF Main Tank Vacuum Control System

    International Nuclear Information System (INIS)

    Sarkar, S.; Yandon, J.C.; Sievers, W.; Bennett, P.; Gurd, D.P.; Harmer, P.; Nelson, J.

    1993-01-01

    The TRIUMF Main Tank Vacuum Control System was upgraded in 1984. The earlier system, which consisted of a collection of hardwired relay logic boxes housed in three standard instrumentation racks, was replaced with a compact and flexible microprocessor-based control system. The user interface, previously distributed over the three racks, was consolidated into a single hardwired control and mimic panel. Since 1984, the Main Tank Vacuum System has undergone a series of changes in configuration and vacuum pumping hardware with necessary changes being implemented in the control system logic. Corresponding changes to the user interface were sometimes difficult to implement and in time exhausted the spare input/output capacity which had been built into the panel. The availability of inexpensive personal computers with adequate graphics capability and the ease of modifying, or adding to a programmable user interface precipitated the retirement of the hardwired panel and its replacement by a PC-based graphics user interface. System configuration, safety considerations, the hardware and the software implementation using the open-quote C close-quote programming language are described. The evolution of the control system and its performance, both over the years and in adapting to the vacuum system changes, are discussed

  6. Concentration of a sodium nitrate-based waste with a wiped film evaporation

    International Nuclear Information System (INIS)

    Farr, L.L.; Boring, M.D.; Fowler, V.L.; Hewitt, J.D.

    1995-01-01

    Oak Ridge National Laboratory (ORNL) currently has an inventory of 500,000 gallons of sodium nitrate-based radioactive liquid waste which is currently stored in the Melton Valley Storage Tanks (MVST). This waste needs to be treated and one option being considered is concentration of the wastes using evaporation. Testing is underway to determine whether a Wiped Film Evaporator (WFE) can be used to concentrate these wastes in an economical and reliable manner. The capability of the evaporator to process a non-radioactive simulant of the MVST wastes over a range of operating conditions is being studied. The equipment has to be checked for reliability, potential corrosion problems, and the effects of the waste on the efficiency of heat transfer due to scaling. Physical and chemical characteristics of the product and distillate are being investigated. Heat transfer coefficients and volume reductions are being determined under different operating conditions. Decontamination factors are being calculated to determine the necessity for further treatment of the distillate and off-gas

  7. Prevention for possible microbiologically influenced corrosion (MIC) in RHLWE flush water system

    International Nuclear Information System (INIS)

    Hsu, T.C.; Jenkins, C.F.

    1995-01-01

    This report is in response to the request to provide a recommendation for the prevention of possible microbiologically influenced corrosion (MIC) for the RHLWE (Replacement High-Level Waste Evaporator) flush water (FW) system. The recent occurrences of MIC at DWPF prompted HLWE to evaluate the possibility of MIC occurring in this 304L stainless steel RHLWE flush water system. Concern was heightened by the fact that the well water used and the other conditions at H-Tank Farm are similar to those at DWPF. However, only one known leak has occurred in the existing 304L evaporator flush water systems in either tank farm (in 1H system), and no MIC Corrosion has been confirmed in the tank farm area. The design of the RHLWE flush water system (completed long before the occurrence of MIC at DWPF) was modeled after the existing evaporator flush water systems and did not specifically include MIC prevention considerations. Therefore, MIC prevention was not specifically considered during the design phase of this flush water system. The system is presently being installed. After an extensive evaluation, a task team concluded that the best biocide to prevent the occurrence of MIC would be NaOH at fairly low concentration. Sodium hydroxide (NaOH) is optimal in this application, because of its effectiveness, low cost, and familiarity to the Operations personnel (see Appendix A). However, it is the opinion of the task group that application should be withheld until MIC corrosion is demonstrated in the system

  8. 40 CFR 267.198 - What are the general operating requirements for my tank systems?

    Science.gov (United States)

    2010-07-01

    ... FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.198 What are the general operating... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What are the general operating requirements for my tank systems? 267.198 Section 267.198 Protection of Environment ENVIRONMENTAL PROTECTION...

  9. Fabrication of a Sludge-Conditioning System for processing legacy wastes from the Gunite and Associated Tanks

    International Nuclear Information System (INIS)

    Randolph, J.D.; Lewis, B.E.; Farmer, J.R.; Johnson, M.A.

    2000-01-01

    The Sludge Conditioning System (SCS) for the Gunite and Associated Tanks (GAATs) is designed to receive, monitor, characterize and process legacy waste materials from the South Tank Farm tanks in preparation for final transfer of the wastes to the Melton Valley Storage Tanks (MVSTs), which are located at Oak Ridge National Laboratory. The SCS includes (1) a Primary Conditioning System (PCS) Enclosure for sampling and particle size classification, (2) a Solids Monitoring Test Loop (SMTL) for slurry characterization, (3) a Waste Transfer Pump to retrieve and transfer waste materials from GAAT consolidation tank W-9 to the MVSTs, (4) a PulsAir Mixing System to provide mixing of consolidated sludges for ease of retrieval, and (5) the interconnecting piping and valving. This report presents the design, fabrication, cost, and fabrication schedule information for the SCS

  10. Thermoeconomic analysis of storage systems for solar heating and cooling systems: A comparison between variable-volume and fixed-volume tanks

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; Calise, Francesco; Ferruzzi, Gabriele

    2013-01-01

    The paper investigates different control strategies for the thermal storage management in SHC (Solar Heating and Cooling) systems. The SHC system under investigation is based on a field of evacuated solar collectors coupled with a single-stage LiBr–H 2 O absorption chiller; auxiliary thermal energy is supplied by a gas-fired boiler. The SHC is also equipped with a novel thermal storage system, consisting in a variable volume storage tank. It includes three separate tanks and a number of mixers and diverters managed by novel control strategies, based on combinations of series/parallel charging and discharging approaches. The aim of this component is to vary the thermal storage capacity as a function of the combinations of solar radiation availability and user thermal/cooling energy demands. The system allows one to increase the number of active tanks when the time shift between solar energy and user demand is high. Conversely, when this time shift is low, the number of active tanks is automatically reduced. In addition, when the solar energy in excess cannot be stored in such tanks, a heat exchanger is also used in the solar loop for producing DHW (Domestic Hot Water). The analysis is carried out by means of a zero-dimensional transient simulation model, developed by using the TRNSYS software. In order to assess the operating and capital costs of the systems under analysis, an economic model is also proposed. In addition, in order to determine the set of the synthesis/design variables which maximize the system profitability, a parametric analysis was implemented. The novel variable-volume storage system, in both the proposed configurations, was also compared with a constant-volume storage system from the energy and economic points of view. The results showed that the presented storage system allows one to save up to 20% of the natural gas used by the auxiliary boiler only for very high solar fractions. In all the other cases, marginal savings are achieved by the

  11. Waste volume reduction factors for potential 242-A evaporator feed

    International Nuclear Information System (INIS)

    Sederburg, J.P.

    1995-01-01

    Double-shell tank (DST) storage space requirements have been shown to be highly dependent on the end point of 242-A operations. Consequences to the DST of various waste volumes, and concentrations, are evaluated. Only waste streams that are currently planned to be stored in the DST system before the year 2004 are discussed. As of January 1, 1995, approximately 27-million L (7.2-million gal) of dilute wastes are stored in the DSTs available for evaporator processing. Waste streams planned to be transferred to the DSTs before December 31, 2004, are identified. The DST volume for storing slurry from these wastes is presented in this document. At a final slurry specific gravity of -1.35, 22.5-million L (5.93-million gal) of DST space would be needed on December 31, 2004, to store the product from evaporator processing of these feedstocks. The expected volume needed if the resultant slurry were concentrated to the traditional double-shell slurry feed (DSSF) phase boundary (a specific gravity of ∼1.5) would be 17.7-million L (4.67-million gal). An additional 4.8-million L (1.26-million gal) is therefore needed if these wastes are concentrated to a specific gravity of 1.35 instead of the DSSF limit

  12. CSER 94-09: Implications of the heat anomaly in Tank 106-C to criticality safety

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.A.

    1994-10-01

    Water is periodically added to Tank C-106 to cool its waste. In March 1994 addition of water was temporarily discontinued to determine if the tank could be adequately cooled at a lower water level. Following an addition of water, a temperature fluctuation was observed on one of the thermocouple trees. This Criticality Safety Evaluation Report (CSER) explains why the anomalous temperature measurements could not have been caused by nuclear criticality. Waste in Tank C-106 was discharged from processing facilities under controls designed to ensure that the contents of the tank would remain well subcritical under all credible conditions. The observed temperature profile does not fit the profile expected from a criticality event. In addition, there has been no indication of any significant increase in the rate of water evaporation.

  13. High-heat tank safety issue resolution program plan

    International Nuclear Information System (INIS)

    Wang, O.S.

    1993-12-01

    The purpose of this program plan is to provide a guide for selecting corrective actions that will mitigate and/or remediate the high-heat waste tank safety issue for single-shell tank (SST) 241-C-106. This program plan also outlines the logic for selecting approaches and tasks to mitigate and resolve the high-heat safety issue. The identified safety issue for high-heat tank 241-C-106 involves the potential release of nuclear waste to the environment as the result of heat-induced structural damage to the tank's concrete, if forced cooling is interrupted for extended periods. Currently, forced ventilation with added water to promote thermal conductivity and evaporation cooling is used to cool the waste. At this time, the only viable solution identified to resolve this safety issue is the removal of heat generating waste in the tank. This solution is being aggressively pursued as the permanent solution to this safety issue and also to support the present waste retrieval plan. Tank 241-C-106 has been selected as the first SST for retrieval. The program plan has three parts. The first part establishes program objectives and defines safety issues, drivers, and resolution criteria and strategy. The second part evaluates the high-heat safety issue and its mitigation and remediation methods and alternatives according to resolution logic. The third part identifies major tasks and alternatives for mitigation and resolution of the safety issue. Selected tasks and best-estimate schedules are also summarized in the program plan

  14. Chemical heat pump and chemical energy storage system

    Science.gov (United States)

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  15. Tank characterization report for Single-Shell Tank B-111

    International Nuclear Information System (INIS)

    Remund, K.M.; Tingey, J.M.; Heasler, P.G.; Toth, J.J.; Ryan, F.M.; Hartley, S.A.; Simpson, D.B.; Simpson, B.C.

    1994-09-01

    Tank 241-B-111 (hereafter referred to as B-111) is a 2,006,300 liter (530,000 gallon) single-shell waste tank located in the 200 East B tank farm at Hanford. Two cores were taken from this tank in 1991 and analysis of the cores was conducted by Battelle's 325-A Laboratory in 1993. Characterization of the waste in this tank is being done to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05. Tank B-111 was constructed in 1943 and put into service in 1945; it is the second tank in a cascade system with Tanks B-110 and B-112. During its process history, B-111 received mostly second-decontamination-cycle waste and fission products waste via the cascade from Tank B-110. This tank was retired from service in 1976, and in 1978 the tank was assumed to have leaked 30,300 liters (8,000 gallons). The tank was interim stabilized and interim isolated in 1985. The tank presently contains approximately 893,400 liters (236,000 gallons) of sludge-like waste and approximately 3,800 liters (1,000 gallons) of supernate. Historically, there are no unreviewed safety issues associated with this tank and none were revealed after reviewing the data from the latest core sampling event in 1991. An extensive set of analytical measurements was performed on the core composites. The major constituents (> 0.5 wt%) measured in the waste are water, sodium, nitrate, phosphate, nitrite, bismuth, iron, sulfate and silicon, ordered from largest concentration to the smallest. The concentrations and inventories of these and other constituents are given. Since Tanks B-110 and B-111 have similar process histories, their sampling results were compared. The results of the chemical analyses have been compared to the dangerous waste codes in the Washington Dangerous Waste Regulations (WAC 173-303). This assessment was conducted by comparing tank analyses against dangerous waste characteristics 'D' waste codes; and against state waste codes

  16. Engineering task plan for development, fabrication, and deployment of nested, fixed depth fluidic sampling and at-tank analysis systems

    International Nuclear Information System (INIS)

    REICH, F.R.

    1999-01-01

    An engineering task plan was developed that presents the resources, responsibilities, and schedules for the development, test, and deployment of the nested, fixed-depth fluidic sampling and at-tank analysis system. The sampling system, deployed in the privatization contract double-shell tank feed tank, will provide waste samples for assuring the readiness of the tank for shipment to the privatization contractor for vitrification. The at-tank analysis system will provide ''real-time'' assessments of the sampled wastes' chemical and physical properties. These systems support the Hanford Phase 1B Privatization Contract

  17. Receipt and processing of RBOF/RRF liquid waste in H-Tank Farm

    International Nuclear Information System (INIS)

    Marra, J.E.

    1994-01-01

    The Receiving Basin for Off-Site Fuels/Resin Regeneration Facility (RBOF/RRF) currently generates approximately 50,000 gallons of wastewater per month. This waste is sent to the 211-H General Purpose (GP) evaporator and/or the 241-H Tank Farm (HTF). The primary criteria for selecting the destination of the waste are solids content and radioactively.The waste is typically sent to the GP evaporator if it has low solids content and low activity. Currently, approximately 70% of the waste water produced at RBOF/RRF meets the criteria for acceptance by the GP evaporator. In June 1993, High Level Waste Engineering opened a Technical Issue (TI) related to processing of RBOF/RRF directly through the 1H Cesium Removal Column (CRC) to the F/H Effluent Treatment Facility (ETF). In March 1994, additional emphasis was placed on this effort after it was determined that the 1H evaporator had a failed tube bundle. As a result, The TI was expanded to include evaluations of methods to increase the acceptance rate of wastewater at the GP (i.e., to ensure that the 70% of RBOF/RRF wastewater that currently meets the GP acceptance criteria is actually processed at the GP). Since March 1994, waste receipts from RBOF/RRF have averaged less than the 30,000 gallons/month allotted in the HLW System Plan. In addition, the RBOF/RRF waste sent to HTF has successfully been processed through the 2H evaporator. Based on this progress, no additional effort should be expended to reduce the amount of RBOF/RRF sent to HTF, either by increasing the criteria for acceptance of RBOF/RRF waste at the GP evaporator or by evaluating alternate treatment options (such as processing through the 1H CRC or installing treatment equipment in the RBOF/RRF)

  18. Long term measurement of lake evaporation using a pontoon mounted Eddy Covariance system

    Science.gov (United States)

    McGowan, H. A.; McGloin, R.; McJannet, D.; Burn, S.

    2011-12-01

    Accurate quantification of evaporation from water storages is essential for design of water management and allocation policy that aims to balance demands for water without compromising the sustainability of future water resources, particularly during periods of prolonged and severe drought. Precise measurement of evaporation from lakes and dams however, presents significant research challenges. These include design and installation of measurement platforms that can withstand a range of wind and wave conditions; accurate determination of the evaporation measurement footprint and the influence of changing water levels. In this paper we present results from a two year long deployment of a pontoon mounted Eddy Covariance (EC) system on a 17.2ha irrigation reservoir in southeast Queensland, Australia. The EC unit included a CSAT-3 sonic anemometer (Campbell Scientific, Utah, United States) and a Li-Cor CS7500 open-path H2O/CO2 infrared gas analyzer (LiCor, Nebraska, United States) at a height of 2.2m, a net radiometer (CNR1, Kipp & Zonen, Netherlands) at a height of 1.2m and a humidity and temperature probe (HMP45C,Vaisala, Finland) at 2.3m. The EC unit was controlled by a Campbell Scientific CR3000 data logger with flux measurements made at 10 Hz and block averaged values logged every 15 minutes. Power to the EC system was from mounted solar panels that charged deep cycle lead-acid batteries while communication was via a cellphone data link. The pontoon was fitted with a weighted central beam and gimbal ring system that allowed self-levelling of the instrumentation and minimized dynamic influences on measurements (McGowan et al 2010; Wiebe et al 2011). EC measurements were corrected for tilt errors using the double rotation method for coordinate rotation described by Wilczak et al. (2001). High and low frequency attenuation of the measured co-spectrum was corrected using Massman's (2000) method for estimating frequency response corrections, while measurements were

  19. Tank vapor mitigation requirements for Hanford Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  20. Tank vapor mitigation requirements for Hanford Tank Farms

    International Nuclear Information System (INIS)

    Rakestraw, L.D.

    1994-01-01

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks

  1. Fuzzy Nonlinear Dynamic Evaporator Model in Supercritical Organic Rankine Cycle Waste Heat Recovery Systems

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2018-04-01

    Full Text Available The organic Rankine cycle (ORC-based waste heat recovery (WHR system operating under a supercritical condition has a higher potential of thermal efficiency and work output than a traditional subcritical cycle. However, the operation of supercritical cycles is more challenging due to the high pressure in the system and transient behavior of waste heat sources from industrial and automotive engines that affect the performance of the system and the evaporator, which is the most crucial component of the ORC. To take the transient behavior into account, the dynamic model of the evaporator using renowned finite volume (FV technique is developed in this paper. Although the FV model can capture the transient effects accurately, the model has a limitation for real-time control applications due to its time-intensive computation. To capture the transient effects and reduce the simulation time, a novel fuzzy-based nonlinear dynamic evaporator model is also developed and presented in this paper. The results show that the fuzzy-based model was able to capture the transient effects at a data fitness of over 90%, while it has potential to complete the simulation 700 times faster than the FV model. By integrating with other subcomponent models of the system, such as pump, expander, and condenser, the predicted system output and pressure have a mean average percentage error of 3.11% and 0.001%, respectively. These results suggest that the developed fuzzy-based evaporator and the overall ORC-WHR system can be used for transient simulations and to develop control strategies for real-time applications.

  2. Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    are facing west. The collector tilt is 15° from horizontal for all collectors. Both the east-facing and the west-facing collectors have their own solar collector loop, circulation pump, external heat exchanger and control system. The external heat exchangers are used to transfer the heat from the solar......In year 2000 a 336 m² solar domestic hot water system was built in Sundparken, Elsinore, Denmark. The solar heating system is a low flow system with a 10000 l hot-water tank. Due to the orientation of the buildings half of the solar collectors are facing east, half of the solar collectors...... collector fluid to the domestic water. The domestic water is pumped from the bottom of the hot-water tank to the heat exchanger and back to the hot-water tank through stratification inlet pipes. The return flow from the DHW circulation pipe also enters the tank through stratification inlet pipes. The tank...

  3. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40

  4. Evaporative cooling system for storage of fruits and vegetables - a review.

    Science.gov (United States)

    Lal Basediya, Amrat; Samuel, D V K; Beera, Vimala

    2013-06-01

    Horticultural produce are stored at lower temperature because of their highly perishable nature. There are many methods to cool the environment. Hence, preserving these types of foods in their fresh form demands that the chemical, bio-chemical and physiological changes are restricted to a minimum by close control of space temperature and humidity. The high cost involved in developing cold storage or controlled atmosphere storage is a pressing problem in several developing countries. Evaporative cooling is a well-known system to be an efficient and economical means for reducing the temperature and increasing the relative humidity in an enclosure and this effect has been extensively tried for increasing the shelf life of horticultural produce in some tropical and subtropical countries. In this review paper, basic concept and principle, methods of evaporative cooling and their application for the preservation of fruits and vegetables and economy are also reported. Thus, the evaporative cooler has prospect for use for short term preservation of vegetables and fruits soon after harvest. Zero energy cooling system could be used effectively for short-duration storage of fruits and vegetables even in hilly region. It not only reduces the storage temperature but also increases the relative humidity of the storage which is essential for maintaining the freshness of the commodities.

  5. Do Fish Enhance Tank Mixing?

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Laursen, Jesper; Craig, Steven R.

    2005-01-01

    The design of fish rearing tanks represents a critical stage in the development of optimal aquaculture systems, especially in the context of recirculating systems. Poor hydrodynamics can compromise water quality, waste management and the physiology and behaviour of fish, and thence, production...... potential and operational profitability. The hydrodynamic performance of tanks, therefore, represents an important parameter during the tank design process. Because there are significant complexities in combining the rigid principles of hydrodynamics with the stochastic behaviour of fish, however, most data...... upon tank hydrokinetics has been derived using tanks void of fish. Clearly, the presence of randomly moving objects, such as fish, in a water column will influence not only tank volumes by displacing water, but due to their activity, water dynamics and associated in-tank processes. In order...

  6. Numerical simulation on stir system of jet ballast in high level liquid waste storage tank

    International Nuclear Information System (INIS)

    Lu Yingchun

    2012-01-01

    The stir system of jet ballast in high level liquid waste storage tank was simulation object. Gas, liquid and solid were air, sodium nitrate liquor and titanium whitening, respectively. The mathematic model based on three-fluid model and the kinetic theory of particles was established for the stir system of jet ballast in high level liquid waste storage tank. The CFD commercial software was used for solving this model. The detail flow parameters as three phase velocity, pressure and phase loadings were gained. The calculated results agree with the experimental results, so they can well define the flow behavior in the tank. And this offers a basic method for the scale-up and optimization design of the stir system of jet ballast in high level liquid waste storage tank. (author)

  7. Systems Engineering Implementation Plan for Single-Shell Tanks (SST) Retrieval Projects

    International Nuclear Information System (INIS)

    LEONARD, M.W.; HOFFERBER, G.A.

    2000-01-01

    This document communicates the planned implementation of the Systems Engineering processes and products for the SST retrieval projects as defined in the Systems Engineering Management Plan for the Tank Farm Contractor

  8. Systems Engineering Implementation Plan for Single Shell Tanks (SST) Retrieval Projects

    Energy Technology Data Exchange (ETDEWEB)

    LEONARD, M.W.; HOFFERBER, G.A.

    2000-11-30

    This document communicates the planned implementation of the Systems Engineering processes and products for the SST retrieval projects as defined in the Systems Engineering Management Plan for the Tank Farm Contractor.

  9. Nonradioactive air emissions notice of construction, Project W-320, 241-C-106 tank sluicing

    International Nuclear Information System (INIS)

    Hays, C.B.

    1998-01-01

    This document serves as a Notice of Construction for the Phase 2 activities of Project W-320, 241-C-106 Tank Sluicing, pursuant to the requirements of Washington Administrative Codes (WAC) 173-400 and 173-460. Phased permitting for Project W-320 was discussed with the Washington State Department of Ecology (Ecology) on November 2, 1993. In April 1994, it was deemed unnecessary because the Phase 1 activities did not constitute a new source of emissions and therefore did not require approval from Ecology. The 241-C-106 tank is a 2-million liter capacity, single-shell tank (SST) used for radioactive waste storage since 1947. Between mid-1963 and mid-1969, 241-C-106 tank received high-heat waste, PUREX (plutonium-uranium extraction) Facility high-level waste, and strontium-bearing solids from the strontium and cesium recovery activities. In 1971, temperatures exceeding 99 C were observed in the tank, and therefore, a ventilation system was installed to cool the tank. In addition, approximately 22,712 liters of cooling water are added to the tank each month to prevent the sludge from drying out and overheating. Excessive drying of the sludge could result in possible structural damage. The current radiolytic heat generation rate has been calculated at 32 kilowatts (kW) plus or minus 6 kW. The 241-C-106 tank was withdrawn from service in 1979 and currently is categorized as not leaking. The heat generation in 241-C-106 tank has been identified as a key safety issue on the Hanford Site. The evaporative cooling provided by the added water during operation and/or sluicing maintains the 241-C-106 tank within its specified operating temperature limits. Project W-320, 241-C-106 Tank Sluicing, will mobilize and remove the heat-generating sludge, allowing the water additions to cease. Following sludge removal, the 241-C-106 tank could be placed in a safe, interim stabilized condition. Tank-to-tank sluicing, an existing, proven technology, will provide the earliest possible

  10. Nonradioactive air emissions notice of construction, Project W-320, 241-C-106 tank sluicing

    Energy Technology Data Exchange (ETDEWEB)

    Hays, C.B.

    1998-01-28

    This document serves as a Notice of Construction for the Phase 2 activities of Project W-320, 241-C-106 Tank Sluicing, pursuant to the requirements of Washington Administrative Codes (WAC) 173-400 and 173-460. Phased permitting for Project W-320 was discussed with the Washington State Department of Ecology (Ecology) on November 2, 1993. In April 1994, it was deemed unnecessary because the Phase 1 activities did not constitute a new source of emissions and therefore did not require approval from Ecology. The 241-C-106 tank is a 2-million liter capacity, single-shell tank (SST) used for radioactive waste storage since 1947. Between mid-1963 and mid-1969, 241-C-106 tank received high-heat waste, PUREX (plutonium-uranium extraction) Facility high-level waste, and strontium-bearing solids from the strontium and cesium recovery activities. In 1971, temperatures exceeding 99 C were observed in the tank, and therefore, a ventilation system was installed to cool the tank. In addition, approximately 22,712 liters of cooling water are added to the tank each month to prevent the sludge from drying out and overheating. Excessive drying of the sludge could result in possible structural damage. The current radiolytic heat generation rate has been calculated at 32 kilowatts (kW) plus or minus 6 kW. The 241-C-106 tank was withdrawn from service in 1979 and currently is categorized as not leaking. The heat generation in 241-C-106 tank has been identified as a key safety issue on the Hanford Site. The evaporative cooling provided by the added water during operation and/or sluicing maintains the 241-C-106 tank within its specified operating temperature limits. Project W-320, 241-C-106 Tank Sluicing, will mobilize and remove the heat-generating sludge, allowing the water additions to cease. Following sludge removal, the 241-C-106 tank could be placed in a safe, interim stabilized condition. Tank-to-tank sluicing, an existing, proven technology, will provide the earliest possible

  11. Project Specific Quality Assurance Plan Project (QAPP) W-211 Initial Tank Retrieval Systems (ITRS)

    International Nuclear Information System (INIS)

    HALL, L.R.

    2000-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Project Hanford Quality Assurance Program is implemented by CH2M HILL Hanford Group Inc (CHG) for managing the Initial Tank Retrieval Systems (ITRS), Project W-211. This QAPP is responsive to the CHG Quality Assurance Program Description (QAPD) (LMH-MP-599) which provides direction for compliance to 10 CFR 830 120, ''Nuclear Safety Management, Quality Assurance Requirements'', and DOE Order 5700 6C, ''Quality Assurance'' Project W-211 modifies existing facilities and provides systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. This project includes the design, procurement, construction, startup and turnover of these retrieval systems This QAPP identifies organizational structures and responsibilities. Implementing procedures used by CHG project management can be found in the CHG Quality Assurance Program (CHG QAP) Implementation Matrix located in HNF-IP-0842, Volume XI, Attachment Proposed verification and inspection activities for critical items within the scope of project W-211 are identified in Attachment 1 W-211. Project participants will identify the implementing procedures used by their organization within their QAF'Ps. This project specific QAPP is used to identify requirements in addition to the QAPD and provide, by reference, additional information to other project documents

  12. HOUDINI: RECONFIGURABEL IN-TANK ROBOT

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Thompson; Adam Slifko

    1997-02-12

    This report details the development of a reconfigurable in-tank robotic cleanup systems called Houdini{trademark}. Driven by the general need to develop equipment for the removal of radioactive waste from hundreds of DOE waste storage tanks and the specific needs of DOE sites such as Oak Ridge National Laboratory and Fernald, Houdini{trademark} represents one of the possible tools that can be used to mobilize and retrieve this waste material for complete remediation. Houdini{trademark} is a hydraulically powered, track driven, mobile work vehicle with a collapsible frame designed to enter underground or above ground waste tanks through existing 24 inch riser openings. After the vehicle has entered the waste tank, it unfolds and lands on the waste surface or tank floor to become a remotely operated mini-bulldozer. Houdini{trademark} utilizes a vehicle mounted plow blade and 6-DOF manipulator to mobile waste and carry other tooling such as sluicing pumps, excavation buckets, and hydraulic shears. The complete Houdini{trademark} system consists of the tracked vehicle and other support equipment (e.g., control console, deployment system, hydraulic power supply, and controller) necessary to deploy and remotely operate this system at any DOE site. Inside the storage tanks, the system is capable of performing heel removal, waste mobilization, waste size reduction, and other tank waste retrieval and decommissioning tasks. The first Houdini{trademark} system was delivered on September 24, 1996 to Oak Ridge National Laboratory (ORNL). The system acceptance test was successfully performed at a cold test facility at ORNL. After completion of the cold test program and the training of site personnel, ORNL will deploy the system for clean-up and remediation of the Gunite storage tanks.

  13. HOUDINI: RECONFIGURABEL IN-TANK ROBOT

    International Nuclear Information System (INIS)

    Bruce Thompson; Adam Slifko

    1997-01-01

    This report details the development of a reconfigurable in-tank robotic cleanup systems called Houdini(trademark). Driven by the general need to develop equipment for the removal of radioactive waste from hundreds of DOE waste storage tanks and the specific needs of DOE sites such as Oak Ridge National Laboratory and Fernald, Houdini(trademark) represents one of the possible tools that can be used to mobilize and retrieve this waste material for complete remediation. Houdini(trademark) is a hydraulically powered, track driven, mobile work vehicle with a collapsible frame designed to enter underground or above ground waste tanks through existing 24 inch riser openings. After the vehicle has entered the waste tank, it unfolds and lands on the waste surface or tank floor to become a remotely operated mini-bulldozer. Houdini(trademark) utilizes a vehicle mounted plow blade and 6-DOF manipulator to mobile waste and carry other tooling such as sluicing pumps, excavation buckets, and hydraulic shears. The complete Houdini(trademark) system consists of the tracked vehicle and other support equipment (e.g., control console, deployment system, hydraulic power supply, and controller) necessary to deploy and remotely operate this system at any DOE site. Inside the storage tanks, the system is capable of performing heel removal, waste mobilization, waste size reduction, and other tank waste retrieval and decommissioning tasks. The first Houdini(trademark) system was delivered on September 24, 1996 to Oak Ridge National Laboratory (ORNL). The system acceptance test was successfully performed at a cold test facility at ORNL. After completion of the cold test program and the training of site personnel, ORNL will deploy the system for clean-up and remediation of the Gunite storage tanks

  14. Automatic drafting system for lined tanks used for nuclear power plants

    International Nuclear Information System (INIS)

    Sasaki, Ryoichi; Kikuchi, Nobuo

    1981-01-01

    The concrete vessels lined with metallic sheets are used widely in chemical and food industries and nuclear power plants. Especially in nuclear power plants, rectangular lined tanks have been adopted mainly to store radioactive liquid and solid wastes recently, because of the good volume efficiency. Though the basic structure of the lined tanks is the same, the volume and the form change according to the kinds of stored matters and the positions of pipe connections, and the form of individual lining sheets diversifies. As much labor and time are consumed for the drawing, automatic drafting was planned, and the conditions of application were studied. As for the conditions of application, the following metters are conceivable: the standardized method of design of equipments, the handling of figures numerically or by mathematical formulas, troublesome calculation, the works likely to cause mistake, many drawings for production and so on. The lined tanks almost satisfy these conditions, therefore the automatic drafting was promoted, and good results were obtained. the range of application of the automatic drafting system, the standardization of the form of lined tanks, the size of lining sheets, part number and welding number, the composition of the automatic drafting system, the outline of the program, and the effectiveness of automatic drafting are described. (Kako, I.)

  15. Advanced Air Evaporation System with Reusable Wicks for Water Recovery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Advanced Air Evaporation System (AAES) is proposed for recovering nearly 100% of water from highly contaminated wastewater without concern...

  16. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations

  17. Development of smart solar tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    The aim of the project is to develop smart solar tanks. A smart solar tank is a tank in which the domestic water can bee heated both by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply system heats up the hot-water tank from the top and the water volume heated...... by the auxiliary energy supply system is fitted to the hot water consumption and consumption pattern. In periods with a large hot-water demand the volume is large, in periods with a small hot-water demand the volume is small. Based on measurements and calculations the advantage of smart SDHW systems is visualised....

  18. Dynamic simulation of the in-tank precipitation process

    International Nuclear Information System (INIS)

    Hang, T.; Shanahan, K.L.; Gregory, M.V.; Walker, D.D.

    1993-01-01

    As part of the High-Level Waste Tank Farm at the Savannah River Site (SRS), the In-Tank Precipitation (ITP) facility was designed to decontaminate the radioactive waste supernate by removing cesium as precipitated cesium tetraphenylborate. A dynamic computer model of the ITP process was developed using SPEEDUP TM software to provide guidance in the areas of operation and production forecast, production scheduling, safety, air emission, and process improvements. The model performs material balance calculations in all phase (solid, liquid, and gas) for 50 key chemical constituents to account for inventory accumulation, depletion, and dilution. Calculations include precipitation, benzene radiolytic reactions, evaporation, dissolution, adsorption, filtration, and stripping. To control the ITP batch operation a customized FORTRAN program was generated and linked to SPEEDUP TM simulation This paper summarizes the model development and initial results of the simulation study

  19. Temperature control of evaporators in automotive waste heat recovery systems

    NARCIS (Netherlands)

    Oom, M.E.E.; Feru, E.; de Jager, A.G.; de Lange, H.C.; Ouwerkerk, H.

    2017-01-01

    his paper presents a control strategy for the steam generation process in automotive waste heat recovery systems that are based on the subcritical Rankine cycle. The central question is how to regulate the flow of water into the evaporator such that dry steam is generated at its outlet, subject to

  20. 2005 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action

    International Nuclear Information System (INIS)

    D. Shanklin

    2006-01-01

    This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report describes inspection and monitoring activities for the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action is functioning adequately to meet the objectives stated in the Operable Unit 3-13, Record of Decision for the Group 1, Tank Farm Interim Action, (DOE/ID-10660) and as amended by the agreement to resolve dispute, which was effective in February 2003

  1. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 5

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Fire Protection functional area for the Hanford Site Tank Farm facilities and support structures is based on the application of relevant DOE orders, regulations, and industry codes and standards. The fire protection program defined in this document may be divided into three areas: (1) organizational, (2) administrative programmatic features, and (3) technical features. The information presented in each section is in the form of program elements and orders, regulations, industry codes, and standards that serve as the attributes of a fire protection program for the Tank Farm facilities. Upon completion this document will be utilized as the basis to evaluate compliance of the fire protection program being implemented for the Tank Farm facilities with the requirements of DOE orders and industry codes and standards.

  2. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 5

    International Nuclear Information System (INIS)

    1994-04-01

    The Fire Protection functional area for the Hanford Site Tank Farm facilities and support structures is based on the application of relevant DOE orders, regulations, and industry codes and standards. The fire protection program defined in this document may be divided into three areas: (1) organizational, (2) administrative programmatic features, and (3) technical features. The information presented in each section is in the form of program elements and orders, regulations, industry codes, and standards that serve as the attributes of a fire protection program for the Tank Farm facilities. Upon completion this document will be utilized as the basis to evaluate compliance of the fire protection program being implemented for the Tank Farm facilities with the requirements of DOE orders and industry codes and standards

  3. Tank waste remediation system mission analysis report

    International Nuclear Information System (INIS)

    Acree, C.D.

    1998-01-01

    This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors' facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission

  4. A Computer Model of the Evaporator for the Development of an Automatic Control System

    Science.gov (United States)

    Kozin, K. A.; Efremov, E. V.; Kabrysheva, O. P.; Grachev, M. I.

    2016-08-01

    For the implementation of a closed nuclear fuel cycle it is necessary to carry out a series of experimental studies to justify the choice of technology. In addition, the operation of the radiochemical plant is impossible without high-quality automatic control systems. In the technologies of spent nuclear fuel reprocessing, the method of continuous evaporation is often used for a solution conditioning. Therefore, the effective continuous technological process will depend on the operation of the evaporation equipment. Its essential difference from similar devices is a small size. In this paper the method of mathematic simulation is applied for the investigation of one-effect evaporator with an external heating chamber. Detailed modelling is quite difficult because the phase equilibrium dynamics of the evaporation process is not described. Moreover, there is a relationship with the other process units. The results proved that the study subject is a MIMO plant, nonlinear over separate control channels and not selfbalancing. Adequacy was tested using the experimental data obtained at the laboratory evaporation unit.

  5. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- and H-Areas at the Savannah River Site

    International Nuclear Information System (INIS)

    1996-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40

  6. WTP Pilot-Scale Evaporation Tests

    International Nuclear Information System (INIS)

    QURESHI, ZAFAR

    2004-01-01

    This report documents the design, assembly, and operation of a Pilot-Scale Evaporator built and operated by SRTC in support of Waste Treatment Plant (WTP) Project at the DOE's Hanford Site. The WTP employs three identical evaporators, two for the Waste Feed and one for the Treated LAW. The Pilot-Scale Evaporator was designed to test simulants for both of these waste streams. The Pilot-Scale Evaporator is 1/76th scale in terms of evaporation rates. The basic configuration of forced circulation vacuum evaporator was employed. A detailed scaling analysis was performed to preserve key operating parameters such as basic loop configuration, system vacuum, boiling temperature, recirculation rates, vertical distances between important hardware pieces, reboiler heat transfer characteristics, vapor flux, configuration of demisters and water spray rings. Three evaporation test campaigns were completed. The first evaporation run used water in order to shake down the system. The water runs were important in identifying a design flaw that inhibited mixing in the evaporator vessel, thus resulting in unstable boiling operation. As a result the loop configuration was modified and the remaining runs were completed successfully. Two simulant runs followed the water runs. Test 1: Simulated Ultrafiltration Recycles with HLW SBS, and Test 2: Treated AN102 with Envelop C LAW. Several liquid and offgas samples were drawn from the evaporator facility for regulatory and non-regulatory analyses. During Test 2, the feed and the concentrate were spiked with organics to determine organic partitioning. The decontamination factor (DF) for Test 1 was measured to be 110,000 (more than the expected value of 100,000). Dow Corning Q2-3183A antifoam agent was tested during both Tests 1 and 2. It was determined that 500 ppm of this antifoam agent was sufficient to control the foaminess to less than 5 per cent of the liquid height. The long-term testing (around 100 hours of operation) did not show any

  7. mathematical model for direct evaporative space cooling systems

    African Journals Online (AJOL)

    eobe

    of the sensible heat of the air is transferred to the water and becomes latent heat by evaporating some of the water. The latent heat follows the water vapour and diffuses into the air. In a DEC (direct evaporative cooling), the heat and mass transferred between air and water decreases the air dry bulb temperature (DBT) and ...

  8. Treatment of septic tank effluents by a full-scale capillary seepage soil biofiltration system.

    Science.gov (United States)

    Fan, Chihhao; Chang, Fang-Chih; Ko, Chun-Han; Teng, Chia-Ji; Chang, Tzi-Chin; Sheu, Yiong-Shing

    2009-03-01

    The purpose of this study is to evaluate the efficiency of septic tank effluent treatment by an underground capillary seepage soil biofiltration system in a suburban area of Taipei, Taiwan. In contrast to traditional subsurface wastewater infiltration systems, capillary seepage soil biofiltration systems initially draw incoming influent upwards from the distribution pipe by capillary and siphonage actions, then spread influent throughout the soil biofiltration bed. The underground capillary seepage soil biofiltration system consists of a train of underground treatment units, including one wastewater distribution tank, two capillary seepage soil biofiltration units in series, and a discharge tank. Each capillary seepage soil biofiltration unit contains one facultative digestion tank and one set of biofiltration beds. At the flow rate of 50 m3/day, average influent concentrations of biochemical oxygen demand (BOD), suspended solid (SS), ammonia nitrogen (NH3-N), and total phosphates (TP), were 36.15 mg/L, 29.14 mg/L, 16.05 mg/L, and 1.75 mg/L, respectively. After 1.5 years of system operation, the measured influent and effluent results show that the treatment efficiencies of the soil biofiltration system for BOD, SS, NH3-N, TP, and total coliforms are 82.96%, 60.95%, 67.17%, 74.86%, and 99.99%, respectively.

  9. Tank 241-BY-108 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-108 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-108 using the vapor sampling system (VSS) on october 27, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 25.7 C. Air from the Tank BY-108 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 1, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples

  10. Tank 241-BY-105 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-105 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-105 using the vapor sampling system (VSS) on July 7, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 26 C. Air from the Tank BY-105 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories

  11. Tank 241-BY-110 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-110 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-110 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-110 using the vapor sampling system (VSS) on November 11, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-110 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 12B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples

  12. Development of assessment system for tank earthquake-proof design (ASTEP code) installing automatic operation and knowledge database

    International Nuclear Information System (INIS)

    Maekawa, Akira; Suzuki, Michiaki; Fujii, Yuzo

    2004-01-01

    In a nuclear power station, seismic-proof design of the various tanks classified as auxiliary installation are required to follow technical guideline for the seismic-proof design of nuclear power station, which is called JEAC4601 for short in below. This guideline uses simple mechanical multi-mass model but a rather complicated evaluation method requires designers to have knowledge and experience and consumes both time and labor. On purpose to resolve those difficulties, Assessment System for Tank Earthquake-Proof Design, which is called ASTEP in short, has been developed and equipped with automated process and knowledge database. For this system, the targeted types of tank are a vertical cylindrical tank that has four supports or a skirt support, a horizontal cylindrical tank that has two saddle supports, and vertical cylindrical tank or water storage tank with a flat bottom. The system integrated all the seismic-proof design evaluation related tools and equipped with step by step menus in order of the flowchart, so enables designers to use them easily. In addition, it has a input aid that enables users to input with ease and a tool that automatically calculates input parameters. So this system reduces seismic-proof design evaluation related work load dramatically and also does not require much knowledge and experience related to this field. Further more, this system organized seismic-proof design related past statement and technical documents as a knowledge database so user could obtain the identical output as of the manual calculation results. Comparing output of ASTEP code and the manual calculation results of a typical tank that requires government approval of its design evaluation document, the error was within less than a percent so validity of the system was confirmed. This system has gained favorable comment during the trial run, and it was beyond our expectation. (author)

  13. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  14. Tank waste remediation system engineering plan

    International Nuclear Information System (INIS)

    Rifaey, S.H.

    1998-01-01

    This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ''as is'' condition of engineering practice, systems, and facilities to the desired ''to be'' configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively

  15. 242-A Evaporator waste analysis plan. Revision 4

    International Nuclear Information System (INIS)

    Basra, T.S.; Mulkey, C.H.

    1994-01-01

    This waste analysis plan (WAP) provides the plan for obtaining information needed for proper waste handling and processing in the 242-A Evaporator located on the Hanford Site. Regulatory and safety issues are addressed by establishing boundary conditions for waste received and treated at the 242-A Evaporator. The boundary conditions are set by establishing limits for items such as potential exothermic reactions, waste compatibility, and control of vessel vent organic emissions. Boundary conditions are also set for operational considerations and to ensure waste acceptance at receiving facilities. The issues that are addressed in this plan include prevention of exotherms in the waste, waste compatibility, vessel vent emissions, and compatibility with the liner in the Liquid Effluent Retention Facility (LERF). The 242-A Evaporator feed stream is separated into two liquid streams: a concentrated slurry stream and a process condensate. A gaseous exhaust stream is also produced. The slurry contains the majority of the radionuclides and inorganic constituents. This stream is pumped back to the double shell tanks (DSTs) and stored for further treatment after being concentrated to target levels. The process condensate (PC) is primarily water that contains trace amounts of organic material and a greatly reduced concentration of radionuclides. The process condensate is presently stored in the (LERF) until it can be further processed in the Effluent Treatment Facility once it is operational

  16. Distributed model based control of multi unit evaporation systems

    International Nuclear Information System (INIS)

    Yudi Samyudia

    2006-01-01

    In this paper, we present a new approach to the analysis and design of distributed control systems for multi-unit plants. The approach is established after treating the effect of recycled dynamics as a gap metric uncertainty from which a distributed controller can be designed sequentially for each unit to tackle the uncertainty. We then use a single effect multi-unit evaporation system to illustrate how the proposed method is used to analyze different control strategies and to systematically achieve a better closed-loop performance using a distributed model-based controller

  17. Dew-point hygrometry system for measurement of evaporative water loss in infants.

    Science.gov (United States)

    Ariagno, R L; Glotzbach, S F; Baldwin, R B; Rector, D M; Bowley, S M; Moffat, R J

    1997-03-01

    Evaporation of water from the skin is an important mechanism in thermal homeostasis. Resistance hygrometry, in which the water vapor pressure gradient above the skin surface is calculated, has been the measurement method of choice in the majority of pediatric investigations. However, resistance hygrometry is influenced by changes in ambient conditions such as relative humidity, surface temperature, and convection currents. We have developed a ventilated capsule method that minimized these potential sources of measurement error and that allowed second-by-second, long-term, continuous measurements of evaporative water loss in sleeping infants. Air with a controlled reference humidity (dew-point temperature = 0 degree C) is delivered to a small, lightweight skin capsule and mixed with the vapor on the surface of the skin. The dew point of the resulting mixture is measured by using a chilled mirror dew-point hygrometer. The system indicates leaks, is mobile, and is accurate within 2%, as determined by gravimetric calibration. Examples from a recording of a 13-wk-old full-term infant obtained by using the system give evaporative water loss rates of approximately 0.02 mgH2O.cm-2.min-1 for normothermic baseline conditions and values up to 0.4 mgH2O.cm-2. min-1 when the subject was being warmed. The system is effective for clinical investigations that require dynamic measurements of water loss.

  18. High-heat tank safety issue resolution program plan. Revision 2

    International Nuclear Information System (INIS)

    Wang, O.S.

    1994-12-01

    The purpose of this program plan is to provide a guide for selecting corrective actions that will mitigate and/or remediate the high-heat waste tank safety issue for single-shell tank 241-C-106. The heat source of approximately 110,000 Btu/hr is the radioactive decay of the stored waste material (primarily 90 Sr) inadvertently transferred into the tank in the later 1960s. Currently, forced ventilation, with added water to promote thermal conductivity and evaporation cooling, is used for heat removal. The method is very effective and economical. At this time, the only viable solution identified to permanently resolve this safety issue is the removal of heat-generating waste in the tank. This solution is being aggressively pursued as the only remediation method to this safety issue, and tank 241-C-106 has been selected as the first single-shell tank for retrieval. The current cooling method and other alternatives are addressed in this program as means to mitigate this safety issue before retrieval. This program plan has three parts. The first part establishes program objectives and defines safety issue, drivers, and resolution criteria and strategy. The second part evaluates the high-heat safety issue and its mitigation and remediation methods and other alternatives according to resolution logic. The third part identifies major tasks and alternatives for mitigation and resolution of the safety issue. A table of best-estimate schedules for the key tasks is also included in this program plan

  19. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  20. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  1. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The purpose of this Requirements Identification Document (RID) section is to identify, in one location, all of the facility specific requirements and good industry practices which are necessary or important to establish an effective Issues Management Program for the Tank Farm Facility. The Management Systems Functional Area includes the site management commitment to environmental safety and health (ES&H) policies and controls, to compliance management, to development and management of policy and procedures, to occurrence reporting and corrective actions, resource and issue management, and to the self-assessment process.

  2. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 1

    International Nuclear Information System (INIS)

    1994-04-01

    The purpose of this Requirements Identification Document (RID) section is to identify, in one location, all of the facility specific requirements and good industry practices which are necessary or important to establish an effective Issues Management Program for the Tank Farm Facility. The Management Systems Functional Area includes the site management commitment to environmental safety and health (ES ampersand H) policies and controls, to compliance management, to development and management of policy and procedures, to occurrence reporting and corrective actions, resource and issue management, and to the self-assessment process

  3. Tank 241-C-101 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank C-101 headspace gas and vapor samples were collected and analyzed to help determine the potential risks of fugitive emissions to tank farm workers. Gas and vapor samples from the Tank C-101 headspace were collected on July 7, 1994 using the in situ sampling (ISS) method, and again on September 1, 1994 using the more robust vapor sampling system (VSS). Gas and vapor concentrations in Tank C-101 are influenced by its connections to other tanks and its ventilation pathways. At issue is whether the organic vapors in Tank C-101 are from the waste in that tank, or from Tanks C-102 or C-103. Tank C-103 is on the Organic Watch List; the other two are not. Air from the Tank C-101 headspace was withdrawn via a 7.9-m long heated sampling probe mounted in riser 8, and transferred via heated tubing to the VSS sampling manifold. The tank headspace temperature was determined to be 34.0 C, and all heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories

  4. System Safety Program Plan for Project W-314, tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Boos, K.A.

    1996-01-01

    This System Safety Program Plan (SSPP) outlines the safety analysis strategy for project W-314, ''Tank Farm Restoration and Safe Operations.'' Project W-314 will provide capital improvements to Hanford's existing Tank Farm facilities, with particular emphasis on infrastructure systems supporting safe operation of the double-shell activities related to the project's conceptual Design Phase, but is planned to be updated and maintained as a ''living document'' throughout the life of the project to reflect the current safety analysis planning for the Tank Farm Restoration and Safe Operations upgrades. This approved W-314 SSPP provides the basis for preparation/approval of all safety analysis documentation needed to support the project

  5. Modeling and Simulation of a Modified Quadruple Tank System

    DEFF Research Database (Denmark)

    Mohd. Azam, Sazuan Nazrah; Jørgensen, John Bagterp

    2015-01-01

    to model and control. In this paper, a modified quadruple-tank system has been described, all the important variables has been outlined and a mathematical model has been presented. We developed deterministic and stochastic models using differential equations and simulate the models using Matlab...

  6. A computational study on the performance of a solar air-conditioning system with a partitioned storage tank

    International Nuclear Information System (INIS)

    Li, Z.F.; Sumathy, K.

    2003-01-01

    This paper reports the performance of a modified solar powered air-conditioning system, which is integrated with a partitioned storage tank. In addition, the effect of two main parameters that influence the system performance is presented and discussed. The study shows that by partitioning the storage tank, the solar cooling effect can be realized much earlier and could attain a total solar cooling COP of 12% higher compared to the conventional whole-tank mode. Simulation results also indicate that there exists an optimum ratio of storage tank volume over collector area

  7. High efficiency two-step evaporator in a cooling system; Hocheffiziente zweistufige Verdampfung in einer Kaelteanlage - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Meister, R.; Haenni, E. [BMS-Energieanlagen AG, Wilderswil (Switzerland)

    2005-07-01

    A two-step evaporator was installed in parallel in an existing refrigeration plant with an operating capacity Q{sub o} of 130 kW. This ensured the possibility of a practical comparison between conventional evaporation and our high-efficiency two-step evaporator, without having to resort only to theoretical data. The result of this virtually one-on-one comparison in identical ambient conditions (which is not normally possible, as two systems cannot generally be installed in parallel) has confirmed what the advance calculations demonstrated, i.e. a 10% improvement in performance provided by the high-efficiency two-step evaporator. Thanks to the changeover from semi-floated to overflow operation (only tested in winter) it was possible, again as shown in previous calculations, to achieve an additional increase in performance of 5%. A basic objective was to use the high-efficiency two-step evaporator to provide stable performance in any operating situation - i.e. even after defrosting. This objective was achieved in both operating modes: semi-floated and overflow. Summer operation in overflow mode remains to be tested however, as the system has only been running in this mode since November 2004. (author)

  8. Nuclear dissipation effects on fission and evaporation in systems of intermediate fissility

    Directory of Open Access Journals (Sweden)

    Gelli N.

    2010-03-01

    Full Text Available The systems of intermediate fissility 132Ce and 158Er have been studied experimentally and theoretically in order to investigate the dissipation properties of nuclear matter. Cross sections of fusion-fission and evaporation residues channels together with charged particles multiplicities in both channels, their spectra, angular correlations and mass-energy distribution of fission fragments have been measured. Theoretical analysis has been performed using multi-dimensional stochastic approach with realistic treatment of particle evaporation. The results of analysis show that full one-body or unusually strong two-body dissipation allows to reproduce experimental data. No temperature dependent dissipation was needed.

  9. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 1. Commercial plant conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The conceptual design of the 100-MW solar tower focus commercial power plant is described in detail. Sodium is pumped up to the top of a tall tower where the receiver is located. The sodium is heated in the receiver and then flows down the tower, through a pressure reducing device, and thence into a large, hot storage tank which is located at ground level and whose size is made to meet a specific thermal energy storage capacity requirement. From this tank, the sodium is pumped by a separate pump, through a system of sodium-to-water steam generators. The steam generator system consists of a separate superheater and reheater operating in parallel and an evaporator unit operating in series with the other two units. The sodium flowing from the evaporator unit is piped to a cold storage tank. From the cold storage tank, sodium is then pumped up to the tip of the tower to complete the cycle. The steam generated in the steam generators is fed to a conventional off-the-shelf, high-efficiency turbine. The steam loop operates in a conventional rankine cycle with the steam generators serving the same purpose as a conventional boiler and water being fed to the evaporator with conventional feedwater pumps. The pressure reducing device (a standard drag valve, for example) serves to mitigate the pressure caused by the static head of sodium and thus allows the large tanks to operate at ambient pressure conditions. (WHK)

  10. Seven Operation Modes and Simulation Models of Solar Heating System with PCM Storage Tank

    Directory of Open Access Journals (Sweden)

    Juan Zhao

    2017-12-01

    Full Text Available A physical model and dynamic simulation models of a solar phase-change heat storage heating system with a plate solar collector, phase-change material (PCM storage tank, plate heat exchanger, and auxiliary heat sources were established. A control strategy and numerical models for each of seven different operation modes that cover the entire heating season of the system were developed for the first time. The seven proposed operation modes are Mode 1: free cooling; Mode 2: reservation of heat absorbed by the solar collector in the PCM storage tank when there is no heating demand; Mode 3: direct supply of the heating demand by the solar collector; Mode 4: use of the heat absorbed by the solar collector to meet the heating demands, with the excess heat stored in the PCM storage tank; Mode 5: use of heat stored in the PCM storage tank to meet the heating demands, Mode 6: combined use of heat stored in the PCM storage tank and the auxiliary heating sources to meet the heating demands; and Mode 7: exclusive use of the auxiliary heat sources in order to meet the heating demands. Mathematical models were established for each of the above seven operation modes, taking into consideration the effects of the outdoor meteorological parameters and terminal load on the heating system. The real-time parameters for the entire heating season of the system with respect to the different operation modes can be obtained by solving the simulation models, and used as reference for the optimal design and operation of the actual system.

  11. Application of a temperature selective heat storage tank to a solar system. Part 3. Solar heat collecting system; Ondo sentaku chikunetsuso no solar system eno tekiyo. 3. Shunetsu hoshiki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Y [Kanto Gakuin University, Yokohama (Japan); Kanayama, K [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-27

    The tank system and tank-less system when the temperature selective heat storage tank is applied to a solar system were considered. In the tank system, the simulation shows that the annual supplementary heat consumption is reduced as the tank capacity becomes lower. The most suitable operating time set for determining the reference time is about five hours in winter and about nine hours in summer. The annual operating time is about 6.5 hours. In the tank-less system, the most suitable minimum flow rate per solar collector area of a heating medium in Tokyo and its districts is 10 L/hm{sup 2} for both three-step flow control and constant flow control. The tank-less system is slightly lower in annual supplementary heat consumption than the tank system. For the three-step flow control, a change in the annual supplementary heat consumption is lower than that in the minimum flow rate. For the constant flow control, however, the annual supplementary heat consumption rapidly increases when the flow rate more decreases than the optimum value. The number of pump start/stop counts for the three-step flow control is less than two times as high as for the constant flow control. 4 refs., 6 figs., 1 tab.

  12. Recommendations for erosion-corrosion allowance for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.; Brehm, W.F.; Larrick, A.P.; Divine, J.R.

    1994-10-01

    The Multi-Function Waste Tank Facility carbon steel tanks will contain mixer pumps that circulate the waste. On the basis of flow characteristics of the system and data from the literature, an erosion allowance of 0.075 mm/y (3 mil/year) was recommended for the tank bottoms, in addition to the 0.025 mm/y (1 mil/year) general corrosion allowance

  13. Double-Shell Tank (DST) Ventilation System Vapor Sampling and Analysis Plan

    International Nuclear Information System (INIS)

    SASAKI, L.M.

    2000-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples from the primary ventilation systems of the AN, AP, AW, and AY/AZ tank farms. Sampling will be performed in accordance with Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Air DQO) (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications. Vapor samples will be obtained from tank farm ventilation systems, downstream from the tanks and upstream of any filtration. Samples taken in support of the DQO will consist of SUMMA(trademark) canisters, triple sorbent traps (TSTs), sorbent tube trains (STTs), polyurethane foam (PUF) samples. Particulate filter samples and tritium traps will be taken for radiation screening to allow the release of the samples for analysis. The following sections provide the general methodology and procedures to be used in the preparation, retrieval, transport, analysis, and reporting of results from the vapor samples

  14. Preoperational test report, recirculation condenser cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  15. Preoperational test report, recirculation condenser cooling systems

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  16. Remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1992-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy. The ICPP's mission is to process government-owned spent nuclear fuel. The process involves dissolving the fuel, extracting off uranium, and calcining the waste to a solid form for storage, Prior to calcining, WINCO temporarily stores the liquid waste from this process in eleven 1,135,600-l(300,000-gal), 15,2-m (50-ft)-diam, high-level liquid waste tanks. Each of these stainless steel tanks is contained within an underground concrete vault. The only access to the interior of the tanks is through risers that extend from ground level to the dome of the tanks. WINCO is replacing these tanks because of their age and the fact that they do not meet all of the current design requirements. The tanks will be replaced in two phases. WINCO is now in the Title I design stage for four new tank and vault systems to replace five of the existing systems. The integrity of the six remaining tanks must be verified to continue their use until they can be replaced in the second phase. To perform any integrity analysis, the inner surface of the tanks must be inspected. The remote tank inspection (RTI) robotic system, designed by RedZone Robotics of Pittsburgh, Pennsylvania, was developed to access the interior of the tanks and position various end effectors required to perform tank wall inspections

  17. Quantifying the impact of septic tank systems on eutrophication risk in rural headwaters.

    Science.gov (United States)

    Withers, P J A; Jarvie, H P; Stoate, C

    2011-04-01

    Septic tank systems (STS) are a potential source of nutrient emissions to surface waters but few data exist in the UK to quantify their significance for eutrophication. We monitored the impact of STS on nutrient concentrations in a stream network around a typical English village over a 1-year period. Septic tank effluent discharging via a pipe directly into one stream was highly concentrated in soluble N (8-63mgL(-1)) and P (septic tank systems. The very high concentrations, intercorrelation and dilution patterns of SRP, NH(4)-N and the effluent markers Na and B suggested that soakaways in the heavy clay catchment soils were not retaining and treating the septic tank effluents efficiently, with profound implications for stream biodiversity. Water companies, water regulators and rural communities therefore need to be made more aware of the potential impacts of STS on water quality so that their management can be optimised to reduce the risk of potential eutrophication and toxicity to aquatic ecosystems during summer low flow periods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Controlling water evaporation through self-assembly.

    Science.gov (United States)

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  19. Dryout modeling in support of the organic tank safety project

    International Nuclear Information System (INIS)

    Simmons, C.S.

    1998-08-01

    This work was performed for the Organic Tank Safety Project to evaluate the moisture condition of the waste surface organic-nitrate bearing tanks that are classified as being conditionally safe because sufficient water is present. This report describes the predictive modeling procedure used to predict the moisture content of waste in the future, after it has been subjected to dryout caused by water vapor loss through passive ventilation. This report describes a simplified procedure for modeling the drying out of tank waste. Dryout occurs as moisture evaporates from the waste into the headspace and then exits the tank through ventilation. The water vapor concentration within the waste of the headspace is determined by the vapor-liquid equilibrium, which depends on the waste's moisture content and temperature. This equilibrium has been measured experimentally for a variety of waste samples and is described by a curve called the water vapor partial pressure isotherm. This curve describes the lowering of the partial pressure of water vapor in equilibrium with the waste relative to pure water due to the waste's chemical composition and hygroscopic nature. Saltcake and sludge are described by two distinct calculations that emphasize the particular physical behavior or each. A simple, steady-state model is devised for each type to obtain the approximate drying behavior. The report shows the application of the model to Tanks AX-102, C-104, and U-105

  20. Robotic system for remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1990-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO), operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE). WINCO's mission is to process government owned spent nuclear fuel. The process involves dissolving the fuel and extracting off uranium. The waste from this process is temporarily stored at the ICPP in underground storage tanks. The tanks were put in service between 1953 and 1966 and are operating 10 to 15 years beyond their design life. Five of the tanks will be replaced by 1998. The integrity of the remaining six tanks must be verified to continue their use until they can be replaced at a later data. In order to verify the tank integrity, a complete corrosion analysis must be performed. This analysis will require a remote visual inspection of the tank surfaces

  1. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment

  2. Tank Characterization report for single-shell tank 241-SX-103

    International Nuclear Information System (INIS)

    WILMARTH, S.R.

    1999-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-SX-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-SX-103 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for fiscal year 1999'' (Adams et al. 1998)

  3. Tank characterization report for single-shell tank 241-U-103

    Energy Technology Data Exchange (ETDEWEB)

    SASAKI, L.M.

    1999-02-24

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-U-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-U-103 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with Waste Information Requirements Documents developed for 1998.''

  4. Tank Monitor and Control System sensor acceptance test procedure. Revision 5

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1994-01-01

    The purpose of this acceptance test procedure (ATP) is to verify the correct reading of sensor elements connected to the Tank Monitor and Control System (TMACS). This ATP is intended to be used for testing of the connection of existing temperature sensors, new temperature sensors, pressure sensing equipment, new Engraf level gauges, sensors that generate a current output, and discrete (on/off) inputs. It is intended that this ATP will be used each time sensors are added to the system. As a result, the data sheets have been designed to be generic. The TMACS has been designed in response to recommendations from the Defense Nuclear Facilities Safety Board primarily for improved monitoring of waste tank temperatures. The system has been designed with the capability to monitor other types of sensor input as well

  5. Rapid Evaporation of microbubbles

    Science.gov (United States)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  6. Soil-structure interaction effects for laterally excited liquid-tank system

    International Nuclear Information System (INIS)

    Tang, Yu; Veletsos, A.S.

    1992-01-01

    Following a brief review of the mechanical model for liquid-storage tanks which permits consideration of the effects of tank and ground flexibility, and lateral and rocking base excitations, the effects of both kinematic and inertia interaction effects on the response of the tank-liquid system are examined and elucidated. The free-field motion is defined by a power spectral density function and an incoherence function, which characterizes the spatial variability of the ground motion due to the vertically incident incoherence waves. The quantities examined are the ensemble means of the peak values of the response. The results are compared with those obtained for no soil-structure interaction and for kinematic interaction to elucidate the nature and relative importance of the two interactions. Only the impulsive actions are examined, the convective actions are for all practical purposes unaffected by both kinematic and inertia interactions. It is shown that the major reduction of the response is attributed to inertia interaction. 20 refs

  7. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems

    Directory of Open Access Journals (Sweden)

    Talita Baumgratz Cachapuz CHIMELI

    2014-07-01

    Full Text Available Objective: To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake and nanoleakage of adhesive systems. Material and Methods: Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness were produced (N=48 using the adhesives: Clearfil S3 Bond (CS3/Kuraray, Clearfil SE Bond - control group (CSE/Kuraray, Optibond Solo Plus (OS/Kerr and Scotchbond Universal Adhesive (SBU/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group, and then photoactivated for 80 s (550 mW/cm2. After desiccation, the specimens were weighed and stored in distilled water (N=12 or mineral oil (N=12 to evaluate the water diffusion over a 7-day period. Net water uptake (% was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%. The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results: Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05. Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control presented significantly lower net uptake (5.4%. The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions: Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.

  8. Investigation and optimisation of heat storage tanks for low-flow SDHW systems[Solar Domestic Hot Water

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Soeren

    2004-07-01

    This thesis, 'Investigation and optimisation of heat storage tanks for low-flow SDHW systems', describes a study of the heat transfer and flow structure in vertical mantle heat exchangers for low-flow Solar Domestic Hot Water (SDHW) systems. The heat storage is a key component in SDHW systems and the vertical mantle heat exchanger is one of the most promising heat storage designs for low-flow SDHW systems. The study was carried out using a combination of experimental and numerical methods. Thermal experiments of mantle heat exchangers with different mantle inlet designs showed that the mantle inlet port with advantage can be located a distance from the top of the mantle. Consequently, the mantle heat exchangers marketed today can be improved by changing the mantle inlet position. The heat transfer and flow structure in mantle heat exchangers are rather complex and the thermal experiments were followed by investigations by means of advanced experimental and numerical techniques such as Particle Image Velocimetry (PIV) and Computational Fluid Dynamics (CFD). Using a transparent glass mantle tank, experimental flow visualisation was carried out with a PIV system. The flow structures inside the mantle and inside the tank were visualised and then compared with the flow structures predicted by CFD-models. The investigations showed that the CFD-models were able to model the flow in the mantle and in the tank correctly. The CFD-models were also validated by means of thermal experiments with a steel mantle tank. With the verified CFD-models, a parameter analysis was carried out for differently designed mantle heat exchangers for different typical conditions to reveal how the mantle tank parameters influence the flow structure and heat transfer in mantle heat exchangers. The heat transfer in the mantle near the mantle inlet port showed to be in the mixed convection regime, and as the distance from the inlet increased, natural convection started to dominate. The

  9. Testing underground tanks for leak tightness at LLNL

    International Nuclear Information System (INIS)

    Henry, R.K.; Sites, R.L.; Sledge, M.

    1986-01-01

    Two types of tank systems are present at the Livermore Site: tanks and associated piping for the storage of fuel (forty-three systems), and tanks or sumps and associated piping for the retention of potentially contaminated wastewater (forty systems). The fuel systems were tested using commercially available test methods: Petro-Tite, Hunter Leak Lokator, Ezy-Chek, and Associated Environmental Systems (A.E.S.). In contrast to fuel tank systems, wastewater systems have containers that are predominantly open at the top and not readily testable. Therefore, a project to test and evaluate all available testing methods was initiated and completed. The commercial method Tank Auditor was determined to be appropriate for testing open-top tanks and sumps and this was the method used to test the majority of the open-top containers. Of the 81 tanks tested, 61 were found to be leak tight, 9 were shown to have leaks, and 11 yielded inconclusive results. Two tanks have not yet been tested because of operational constraints; they are sheduled to be tested within the next two months. Schedules are being developed for the retesting of tanks and for remedial actions

  10. Software configuration management plan, 241-AY and 241-AZ tank farm MICON automation system

    International Nuclear Information System (INIS)

    Hill, L.F.

    1997-01-01

    This document establishes a Computer Software Configuration Management Plan (CSCM) for controlling software for the MICON Distributed Control System (DCS) located at the 241-AY and 241-AZ Aging Waste Tank Farm facilities in the 200 East Area. The MICON DCS software controls and monitors the instrumentation and equipment associated with plant systems and processes. A CSCM identifies and defines the configuration items in a system (section 3.1), controls the release and change of these items throughout the system life cycle (section 3.2), records and reports the status of configuration items and change requests (section 3.3), and verifies the completeness and correctness of the items (section 3.4). All software development before initial release, or before software is baselined, is considered developmental. This plan does not apply to developmental software. This plan applies to software that has been baselined and released. The MICON software will monitor and control the related instrumentation and equipment of the 241-AY and 241-AZ Tank Farm ventilation systems. Eventually, this software may also assume the monitoring and control of the tank sludge washing equipment and other systems as they are brought on line. This plan applies to the System Cognizant Manager and MICON Cognizant Engineer (who is also referred to herein as the system administrator) responsible for the software/hardware and administration of the MICON system. This document also applies to any other organizations within Tank Farms which are currently active on the system including system cognizant engineers, nuclear operators, technicians, and control room supervisors

  11. Design demonstrations for Category B tank systems piping at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-12-01

    Demonstration of the design of the piping systems described in this report is stipulated by the Federal Facility Agreement (FFA) between the U.S. Environmental Protection Agency (EPA)-Region IV, the Tennessee Department of Environment and Conservation (TDEC), and the U.S. Department of Energy (DOE). This report provides a design demonstration of the secondary containment and ancillary equipment of 30 piping systems designated in the FFA as Category B (i.e., existing tank systems with secondary containment). Based on the findings of the Design Demonstrations for the Remaining 19 Category B Tank Systems, (DOE/OR/03-1150 ampersand D2), three tank systems originally designated as Category B have been redesignated as Category C (i.e., existing tank systems without secondary containment). The design demonstrations were developed using information obtained from design drawings (as-built when available), construction specifications, and interviews with facility operators. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Section C). Deficiencies or restrictions regarding the ability to demonstrate that each of the containment systems conforms to FFA requirements are noted in the discussion of each piping system and presented in Table 2.0-1

  12. Chemical characterization of SRP waste tank sludges and supernates

    International Nuclear Information System (INIS)

    Gray, L.W.; Donnan, M.Y.; Okamoto, B.Y.

    1979-08-01

    Most high-level liquid wastes at the Savannah River Plant (SRP) are byproducts from plutonium and enriched uranium recovery processes. The high-level liquid wastes generated by these separations processes are stored in large, underground, carbon-steel tanks. The liquid wastes consist of: supernate (an aqueous solution containing sodium, nitrate, nitrite, hydroxyl, and aluminate ions), sludge (a gelatinous material containing insoluble components of the waste, such as ferric and aluminum hydroxides, and mercuric and manganese oxides), and salt cake (crystals, such as sodium nitrate, formed by evaporation of water from supernate). Analyses of SRP wastes by laser-Raman spectrometry, atomic absorption spectrometry, spark-source mass spectrometry, neutron activation analysis, colorimetry, ion chromatography, and various other wet-chemical and radiochemical methods are discussed. These analyses are useful in studies of waste tank corrosion and of forms for long-term waste storage

  13. Preliminary characterization of abandoned septic tank systems. Volume 2: Appendix D

    International Nuclear Information System (INIS)

    1995-12-01

    In an effort to support remedial investigations of abandoned septic tanks by US DOE, this report contains the results of chemical analyses of the contents of these abandoned tanks. Analytical data are presented for the following: volatile/TCLP volatile organics; semivolatile/TCLP semivolatile organics; PCB organics; total petroleum hydrocarbons; and total metals. The abandoned systems potentially received wastes or effluent from buildings which could have discharged non-domestic, petroleum hydrocarbons, hazardous, radioactive and/or mixed wastes. The 20 sites investigated are located on the Nevada Test Site

  14. WWTP Process Tank Modelling

    DEFF Research Database (Denmark)

    Laursen, Jesper

    The present thesis considers numerical modeling of activated sludge tanks on municipal wastewater treatment plants. Focus is aimed at integrated modeling where the detailed microbiological model the Activated Sludge Model 3 (ASM3) is combined with a detailed hydrodynamic model based on a numerical...... solution of the Navier-Stokes equations in a multiphase scheme. After a general introduction to the activated sludge tank as a system, the activated sludge tank model is gradually setup in separate stages. The individual sub-processes that are often occurring in activated sludge tanks are initially...... hydrofoil shaped propellers. These two sub-processes deliver the main part of the supplied energy to the activated sludge tank, and for this reason they are important for the mixing conditions in the tank. For other important processes occurring in the activated sludge tank, existing models and measurements...

  15. Evaluation of AY/AZ tank farm ventilation system during aging waste retrieval operations

    International Nuclear Information System (INIS)

    Wong, J.J.; Waters, E.D.

    1995-01-01

    Waste Management is currently planning to demonstrate mobilization of radioactive waste sludges in Tank 101-AZ beginning in October 1991. The retrieval system being designed will utilize mixer pumps that generate high-velocity, high-volume submerged liquid jets to mobilize settled solids. There is concern that these jets may also generate radioactive aerosols, some of which may be carried into the tank Ventilation system. The purpose of this study is to determine if the current AY/AZ ventilation system or the proposed ventilation system upgrade (Project W-030) will provide adequate deentrainment of liquid and solid aerosols during mixer pump operations, or if the radioactive aerosols will overload the HEPA filters

  16. The Auto control System Based on InTouch Configuration software for High-gravity Oil Railway Tank Feeding

    Directory of Open Access Journals (Sweden)

    Xu De-Kai

    2015-01-01

    Full Text Available This paper provides automatic design for high-gravity oil railway tank feeding system of some refinery uses distributive control system. The system adopts the automatic system of Modicon TSX Quantum or PLC as monitor and control level and uses a PC-based plat form as principal computer running on the Microsoft Windows2000. An automatic control system is developed in the environment of InTouch configuration software. This system implements automatic high-gravity oil tank feeding with pump controlling function. And it combines automatic oil feeding controlling, pump controlling and tank monitoring function to implement the automation of oil feeding with rations and automatic control.

  17. Optimization of the Retrieval of Waste from Hanford Tank S-109 through Numerical Modeling

    International Nuclear Information System (INIS)

    Patel, R.; Tachiev, G.; Mulchandani, A.; Roelant, D.

    2009-01-01

    This report covers 10 different retrieval scenarios to support the U.S. Department of Energy's Office of River Protection in its mission to facilitate the retrieval and treatment of high-level radioactive waste stored in underground tanks at the Hanford site by investigating the transport properties of the salt-cake. Salt-cake consists of salts precipitated out of the brines during evaporation and storage. The main objective of this study is to gain a better understanding of the dissolution process that will occur in Tank 241-S-109 as it is retrieved to provide waste for Vitrification at the Demonstration Bulk Vitrification System Facility (DBVS). Double Shell Tank (DST) space is extremely limited and will continue to be until the Waste Treatment Plant becomes operational. Maximizing the utilization of DST space is the goal of the S-109 Partial Waste Retrieval Project that will provide waste feed to the Demonstration Bulk Vitrification System (DBVS). Florida International University, FIU has developed a 2-D axisymmetric numerical model which will assist the Department of Energy (DOE) and Savannah River Site (SRS) in evaluating the potential of selective salt-cake retrieval for schedule acceleration and significant cost savings by analyzing the performance of different retrieval scenarios with the prediction of Cs breakthrough curves in the resulting salt-cake brine and to determine the displacement patterns of Cs. This predictive information is critical for scheduling and operational purposes. Ten retrieval scenarios which include addition of flushing liquid at the entire surface of the tank or at a side peripheral channel were simulated. All retrieval scenarios were analyzed for incremental retrieval (saturation of the tank with flushing liquid followed by complete drainage at the central well) versus continuous retrieval (water is continuously added at the top and retrieved at a central well). Furthermore, the specifics of the tank hydrology were approximated

  18. Uncertainties in the measured quantities of water leaving waste Tank 241-C-106 via the ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Minteer, D.J.

    1995-01-23

    The purpose of this analysis is to estimate the uncertainty in the measured quantity of water which typically leaves Tank 241-C-106 via the ventilation system each month. Such measurements are essential for heat removal estimation and tank liquid level verification purposes. The uncertainty associated with the current, infrequent, manual method of measurement (involves various psychrometric and pressure measurements) is suspected to be unreasonably high. Thus, the possible reduction of this uncertainty using a continuous, automated method of measurement will also be estimated. There are three major conclusions as a result of this analysis: (1) the uncertainties associated with the current (infrequent, manual) method of measuring the water which typically leaves Tank 241-C-106 per month via the ventilation system are indeed quite high (80% to 120%); (2) given the current psychrometric and pressure measurement methods and any tank which loses considerable moisture through active ventilation, such as Tank 241-C-106, significant quantities of liquid can actually leak from the tank before a leak can be positively identified via liquid level measurement; (3) using improved (continuous, automated) methods of taking the psychrometric and pressure measurements, the uncertainty in the measured quantity of water leaving Tank 241-C-106 via the ventilation system can be reduced by approximately an order of magnitude.

  19. Uncertainties in the measured quantities of water leaving waste Tank 241-C-106 via the ventilation system

    International Nuclear Information System (INIS)

    Minteer, D.J.

    1995-01-01

    The purpose of this analysis is to estimate the uncertainty in the measured quantity of water which typically leaves Tank 241-C-106 via the ventilation system each month. Such measurements are essential for heat removal estimation and tank liquid level verification purposes. The uncertainty associated with the current, infrequent, manual method of measurement (involves various psychrometric and pressure measurements) is suspected to be unreasonably high. Thus, the possible reduction of this uncertainty using a continuous, automated method of measurement will also be estimated. There are three major conclusions as a result of this analysis: (1) the uncertainties associated with the current (infrequent, manual) method of measuring the water which typically leaves Tank 241-C-106 per month via the ventilation system are indeed quite high (80% to 120%); (2) given the current psychrometric and pressure measurement methods and any tank which loses considerable moisture through active ventilation, such as Tank 241-C-106, significant quantities of liquid can actually leak from the tank before a leak can be positively identified via liquid level measurement; (3) using improved (continuous, automated) methods of taking the psychrometric and pressure measurements, the uncertainty in the measured quantity of water leaving Tank 241-C-106 via the ventilation system can be reduced by approximately an order of magnitude

  20. Tank Waste Remediation System retrieval and disposal mission technical baseline summary description

    International Nuclear Information System (INIS)

    McLaughlin, T.J.

    1998-01-01

    This document is prepared in order to support the US Department of Energy's evaluation of readiness-to-proceed for the Waste Retrieval and Disposal Mission at the Hanford Site. The Waste Retrieval and Disposal Mission is one of three primary missions under the Tank Waste Remediation System (TWRS) Project. The other two include programs to characterize tank waste and to provide for safe storage of the waste while it awaits treatment and disposal. The Waste Retrieval and Disposal Mission includes the programs necessary to support tank waste retrieval, wastefeed, delivery, storage and disposal of immobilized waste, and closure of tank farms. This mission will enable the tank farms to be closed and turned over for final remediation. The Technical Baseline is defined as the set of science and engineering, equipment, facilities, materials, qualified staff, and enabling documentation needed to start up and complete the mission objectives. The primary purposes of this document are (1) to identify the important technical information and factors that should be used by contributors to the mission and (2) to serve as a basis for configuration management of the technical information and factors

  1. DEVELOPMENT OF A SMART SOLAR TANK

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    Theoretical and experimental investigations of small SDHW systems based on so-called smart solar tanks are presented. A smart solar tank is a hot water tank in which the domestic water can both be heated by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply sys...

  2. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 1: Executive summary

    International Nuclear Information System (INIS)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program to aid technology development funding decisions for radioactive tank waste remediation. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. These methods do not show the relative effect of new technologies on tank remediation systems as a whole. Consequently, DOE may spend its resources on technologies that promise to improve a single function but have a small or possibly negative, impact on the overall system, or DOE may overlook a technology that does not address a high priority problem in the system but that does, if implemented, offer sufficient overall improvements. Systems engineering and detailed analyses often conducted under the National Environmental Policy Act (NEPA 1969) use a ''whole system'' approach but are costly, too time-consuming, and often not sufficiently focused to support the needs of the technology program decision-makers. An alternative approach is required to evaluate these systems impacts but still meet the budget and schedule needs of the technology program

  3. Preliminary safety equipment list for Tank 241-C-106 Manipulator Retrieval System, Project W-340

    International Nuclear Information System (INIS)

    Guthrie, R.L.

    1994-01-01

    This document identifies the anticipated safety classification of the estimated major subsystems, based on the projected major functions, that will be used as guidance for the development of the conceptual design of the Manipulator Retrieval System for Tank 241-C-106. This document is intended to be updated as the design of the Manipulator Retrieval System evolves through the conceptual and definitive design phases. The Manipulator Retrieval System is to be capable of removing the hardened sludge heel at the bottom of single shell Tank 241-C-106 and to perform an overall clean out of the tank that leaves a maximum of 360 ft 3 (TPA milestone M-45-00). The thickness of the heel prior to initiation of waste retrieval with the Manipulator Retrieval System is estimated to be 1- to 2-ft. The Manipulator Retrieval System is currently in the pre-conceptual phase with no definitive systems or subsystems. The anticipated retrieval functions for the Manipulator Retrieval System is based on Table 6-2 of WHC-SD-W340-ES-001, Rev. 1. Projected equipment to accomplish these functions were based on the following systems and equipment: Rotary Mode Core Sampling Equipment (WHC-SD-WM-SEL-032); Light Duty Utility Arm System Equipment (WHC-SD-WM-SEL-034); Single Shell Tanks Equipment (WHC-SD-WM-SEL-020)

  4. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    International Nuclear Information System (INIS)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    The objective of DOE's Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ''demonstration'' version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing

  5. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D. [Enserch Environmental Corp., Richland, WA (United States)

    1994-08-01

    The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

  6. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume IV

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 4, describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington

  7. Hanford tanks initiative plan

    International Nuclear Information System (INIS)

    McKinney, K.E.

    1997-01-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy's Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System's tank waste retrieval Program

  8. Unsteady-state analysis of a counter-flow dew point evaporative cooling system

    KAUST Repository

    Lin, J.

    2016-07-19

    Understanding the dynamic behavior of the dew point evaporative cooler is crucial in achieving efficient cooling for real applications. This paper details the development of a transient model for a counter-flow dew point evaporative cooling system. The transient model approaching steady conditions agreed well with the steady state model. Additionally, it is able to accurately predict the experimental data within 4.3% discrepancy. The transient responses of the cooling system were investigated under different inlet air conditions. Temporal temperature and humidity profiles were analyzed for different transient and step responses. The key findings from this study include: (1) the response trend and settling time is markedly dependent on the inlet air temperature, humidity and velocity; (2) the settling time of the transient response ranges from 50 s to 300 s when the system operates under different inlet conditions; and (3) the average transient wet bulb effectiveness (1.00–1.06) of the system is observed to be higher than the steady state wet bulb effectiveness (1.01) for our range of study. © 2016 Elsevier Ltd

  9. Second Order Sliding Mode Control of the Coupled Tanks System

    Directory of Open Access Journals (Sweden)

    Fayiz Abu Khadra

    2015-01-01

    Full Text Available Four classes of second order sliding mode controllers (2-SMC have been successfully applied to regulate the liquid level in the second tank of a coupled tanks system. The robustness of these classes of 2-SMC is investigated and their performances are compared with a first order controller to show the merits of these controllers. The effectiveness of these controllers is verified through computer simulations. Comparison between the controllers is based on the time domain performance measures such as rise time, settling time, and the integral absolute error. Results showed that controllers are able to regulate the liquid level with small differences in their performance.

  10. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems

    Science.gov (United States)

    Liu, Yao; Liu, Baoliang; Lei, Jilin; Guan, Changtao; Huang, Bin

    2017-07-01

    A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k- ɛ turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k- ɛ model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of ≤ 5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.

  11. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  12. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    International Nuclear Information System (INIS)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board's view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program

  13. Inerting ballast tanks

    Energy Technology Data Exchange (ETDEWEB)

    Baes, Gabriel L.; Bronneberg, Jos [SBM Offshore, AA Schiedam (Netherlands); Barros, Maria A.S.D. de [Universidade Estadual de Maringa (UEM), PR (Brazil)

    2012-07-01

    This report expands upon the work conducted by SBM Offshore to develop a tank preservation treatment, which is intended to achieve a service life of 30 years. This work focuses on the corrosion problems, in the ballast tanks, based on new built hulls, both for the Gas Exploration Market, the FLNG - Floating Liquefied Natural Gas, and for the Oil Exploration market - FPSO's - Floating Production Storage and offloading Units. Herein, the corrosion rate input comes from the various references related to the process of nitrogen injection, which is expected to extend the vessel's time life. The essential elements of this solution comprise the deoxygenation process, corrosion models, coating effects, tests from laboratory, shipboard tests, corrosion institutes and regulations applicable to the operation. The best corrosion protection system for ballast tanks area combines a coating system and an inert gas system. The condition of the tanks will be dependent upon the level of protection applied to the steel structure, including, but not limited to coating, cathodic protection, etc. There is a need for products which extend the life time. It is not sufficient, only have good theoretical base for the corrosion and an excellent treatment system. In addition, the design of the ships structure must also eliminate the presence of local stress concentrations which can result in fatigue cracking and rupture of the protective coating barrier starting the corrosion. As a direct result of this, more problems in corrosion can be mitigated, vessels can have a better corrosion performance with less maintenance and repairs to coating systems in ballast tanks. Furthermore ships will be positively impacted operationally due to less frequent dry docking. There is a huge potential in the application of inert gas to combat the corrosion rate inside the ballast tanks, one of the most corrosive environments on earth. This application can have a direct impact on vessel structure

  14. Implementation of a model reference adaptive control system using neural network to control a fast breeder reactor evaporator

    International Nuclear Information System (INIS)

    Ugolini, D.; Yoshikawa, S.; Endou, A.

    1994-01-01

    Artificial intelligence is foreseen as the base for new control systems aimed to replace traditional controllers and to assist and eventually advise plant operators. This paper discusses the development of an indirect model reference adaptive control (MRAC) system, using the artificial neural network (ANN) technique, and its implementation to control the outlet steam temperature of a sodium to water evaporator. The ANN technique is applied in the identification and in the control process of the indirect MRAC system. The emphasis is placed on demonstrating the efficacy of the indirect MRAC system in controlling the outlet steam temperature of the evaporator, and on showing the important function covered by the ANN technique. An important characteristic of this control system is that it relays only on some selected input variables and output variables of the evaporator model. These are the variables that can be actually measured or calculated in a real environment. The results obtained applying the indirect MRAC system to control the evaporator model are quite remarkable. The outlet temperature of the steam is almost perfectly kept close to its desired set point, when the evaporator is forced to depart from steady state conditions, either due to the variation of some input variables or due to the alteration of some of its internal parameters. The results also show the importance of the role played by the ANN technique in the overall control action. The connecting weights of the ANN nodes self adjust to follow the modifications which may occur in the characteristic of the evaporator model during a transient. The efficiency and the accuracy of the control action highly depends on the on-line identification process of the ANN, which is responsible for upgrading the connecting weights of the ANN nodes. (J.P.N.)

  15. Analysis Bounding Double Shell Tank (DST) Performance for the Hanford Tank Waste Operation Simulator Case 2

    International Nuclear Information System (INIS)

    SMITH, D.F.

    2002-01-01

    The purpose of this analysis is to compare the latest Tank Farm Contractor Operation and Utilization Plan (HNF-SD-WM-SP-012, Rev. 3) ''Case 2'' operating scenarios with a previous bounding analysis for the Double-Shell Tank (DST) System in order to provide a technical assessment against the current set of DST System performance requirements. A later update to HNF-SD-WM-SP-012 (i.e., Rev. 3A), released in late December 2001, did not impact the results of this analysis. This analysis provides technical support for revising the Performance Requirements for the Double-Shell Tank System, HNF-2168, Rev. 3, used as the basis for defining performance requirements noted in System Specification for the Double-Shell Tank System, HNF-SD-WM-TRD-007. Rev. 1

  16. Miniature electron bombardment evaporation source: evaporation rate measurement

    International Nuclear Information System (INIS)

    Nehasil, V.; Masek, K.; Matolin, V.; Moreau, O.

    1997-01-01

    Miniature electron beam evaporation sources which operate on the principle of vaporization of source material, in the form of a tip, by electron bombardment are produced by several companies specialized in UHV equipment. These sources are used primarily for materials that are normally difficult to deposit due to their high evaporation temperature. They are appropriate for special applications such as heteroepitaxial thin film growth requiring a very low and well controlled deposition rate. A simple and easily applicable method of evaporation rate control is proposed. The method is based on the measurement of ion current produced by electron bombardment of evaporated atoms. The absolute evaporation flux values were measured by means of the Bayard-Alpert ion gauge, which enabled the ion current vs evaporation flux calibration curves to be plotted. (author). 1 tab., 4 figs., 6 refs

  17. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    Kakac, S.

    1991-01-01

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  18. SRS tank closure. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-08-01

    High-level waste (HLW) tank closure technology is designed to stabilize any remaining radionuclides and hazardous constituents left in a tank after bulk waste removal. Two Savannah River Site (SRS) HLW tanks were closed after cleansing and then filling each tank with three layers of grout. The first layer consists of a chemically reducing grout. The fill material has chemical properties that retard the movement of some radionuclides and chemical constituents. A layer of controlled low-strength material (CLSM), a self-leveling fill material, is placed on top of the reducing grout. CLSM provides sufficient strength to support the overbearing weight. The final layer is a free-flowing, strong grout similar to normal concrete. After the main tank cavity is filled, risers are filled with grout, and all waste transfer piping connected to the tank is isolated. The tank ventilation system is dismantled, and the remaining systems are isolated. Equipment that remains with the tank is filled with grout. The tank and ancillary systems are left in a state requiring only limited surveillance. Administrative procedures are in place to control land use and access. DOE eventually plans to remove all of its HLW storage tanks from service. These tanks are located at SRS, Hanford, and Idaho National Engineering and Environmental Laboratory. Low-activity waste storage tanks at Oak Ridge Reservation are also scheduled for closure

  19. Ventilation system consequence calculations to support salt well pumping single-shell tank 241-A-101

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, G.W.

    1997-05-07

    This document presents the radiological dose and toxicological exposure calculations for an accident scenario involved with the ventilation system used to support salt well pumping single-shell tank 241-A-101. This tank has been listed on the Hydrogen Watch List.

  20. Ventilation system consequence calculations to support salt well pumping single-shell tank 241-A-101

    International Nuclear Information System (INIS)

    Ryan, G.W.

    1997-01-01

    This document presents the radiological dose and toxicological exposure calculations for an accident scenario involved with the ventilation system used to support salt well pumping single-shell tank 241-A-101. This tank has been listed on the Hydrogen Watch List

  1. Application of an H-infinity based FDI and control scheme for the three tank system

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2000-01-01

    The three tank benchmark system is considered in this paper in connection with combined feedback control and fault detection and identification (FDI). The combined design problem is formulated as an H-infinity design problem by using a standard system setup......The three tank benchmark system is considered in this paper in connection with combined feedback control and fault detection and identification (FDI). The combined design problem is formulated as an H-infinity design problem by using a standard system setup...

  2. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single household

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Yang, Wenyuan

    2014-01-01

    In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit of deliver......In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit...... of delivering hot water for the household and returning the coldest fluid back to SOFC heat recovery heat-exchanger. A model of the SOFC system is developed to determine the energy required to meet the hourly average electric load of the residence. The model evaluates the amount of heat generated and the amount...... of heat used for thermal loads of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation is used to size the SOFC system and storage heat tank to provide energy for a small...

  3. Improving of Mixing by Submerged Rotary Jet (SRJ) System in a Large Industrial Storage Tank by CFD Techniques

    Science.gov (United States)

    Barekatain, H.; Hashemabadi, S. H.

    2011-09-01

    This paper reports the result of a CFD (Computational Fluid Dynamics) study on the Submerged Rotary Jet (SRJ) mixing system in a large industrial crude oil storage tank (one million barrels). This system has been installed on the tank just for reduction of sludge, but improper installation causes more accumulation of sludge on one side of tank. The main question is: How can we improve the mixing operation in this tank? For the purpose, a three dimensional modeling is carried out using an in-house CFD code and RNG k-ɛ model for turbulence prediction. The results show that pump suction location and crude oil velocity in tank are most effective factors on the sludge amount. Then, different ways such as increasing of jet flow rate, increasing and decreasing of tank height and reducing of nozzle diameter have been investigated. Finally, in this case, the results show the sedimentation of sludge in whole tank can be removed by 20% increasing of jet flow rate.

  4. Tank characterization report for single-shell tank 241-C-109

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.

  5. Tank characterization report for single-shell tank 241-C-109

    International Nuclear Information System (INIS)

    Simpson, B.C.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices

  6. 2006 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action

    International Nuclear Information System (INIS)

    D. E. Shanklin

    2007-01-01

    This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report covers the time period from January 1 through December 31, 2006, and describes inspection and monitoring activities for the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action is functioning adequately to meet the objectives stated in the Operable Unit 3-13, Record of Decision for the Group 1, Tank Farm Interim Action (DOE/ID-10660) as described in the Group 1 Remedial Design/Remedial Action Work Plan (DOE/ID-10772)

  7. Decontamination factor Improvement and Waste Reduction of Full-scaled Evaporation System for Liquid Radioactive Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Ju, Young Jong; Seol, Jeung Gun; Cho, Nam Chan [KNF, Daejeon (Korea, Republic of); Ha, Dong Hwan; Kim, Yun Kwan [Jeontech Co., Suwon (Korea, Republic of)

    2016-05-15

    Liquid radioactive waste is produced from nuclear power plants, nuclear research centers, radiopharmaceuticals and nuclear fuel fabrication plants, etc. Ion-exchange, chemical precipitation, evaporation, filtration, liquid/solid extraction and centrifugal are applied to treat the liquid waste. Chemical precipitation requires low capital and operation cost. However, it produces large amount of secondary waste and has low DF (decontamination factor). Evaporation process removes variety of radionuclides in high DF. But, it also has problems in scaling and foaming [3, 4]. In this study, it is investigated that the effect of switching lime precipitation and centrifugal processes to evaporation system for improvement of removal efficiency and decrease of waste in full-scaled radioactive wastewater treatment plant. By swapping full-scaled wastewater treatment system from the centrifugal and the lime precipitation to the evaporator and the crystallizer in the nuclear fuel fabrication plant, it was possible to increase removal efficiency and to minimize waste productivity. Radioactivity concentration of effluent is decreased from 0.01 Bq/mL to ND level. Besides, waste production was reduced from 15 drums/yr to 2 drums/yr (87%).

  8. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume I

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 1 of the Final Environmental Impact Statement, analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  9. Characterization of the MVST waste tanks located at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1996-12-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ``denatured`` as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP.

  10. Characterization of the MVST waste tanks located at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1996-12-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ''denatured'' as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP

  11. Preliminary safety criteria for organic watch list tanks at the Hanford site

    International Nuclear Information System (INIS)

    Webb, A.B.; Stewart, J.L.; Turner, O.A.; Plys, M.G.; Malinovic, B.; Grigsby, J.M.; Camaioni, D.M.; Heasler, P.G.; Samuels, W.O.; Toth, J.J.

    1995-11-01

    Condensed-phase, rapid reactions of organic salts with nitrates/nitrites in Hanford High Level Radioactive Waste single-shell tanks could lead to structural failure of the tanks resulting in significant releases of radionuclides and toxic materials. This report establishes appropriate preliminary safety criteria to ensure that tank wastes will be maintained safe. These criteria show that if actual dry wastes contain less than 1.2 MJ/kg of reactants reaction energy or less 4.5 wt % of total organic carbon, then the waste will be safe and will not propagate if ignited. Waste moisture helps to retard reactions; when waste moisture exceeds 20 wt %, rapid reactions are prevented, regardless of organic carbon concentrations. Aging and degradation of waste materials has been considered to predict the types and amounts to organic compounds present in the waste. Using measurements of 3 waste phases (liquid, salt cake, and sludge) obtained from tank waste samples analyzed in the laboratory, analysis of variance (ANOVA) models were used to estimate waste states for unmeasured tanks. The preliminary safety criteria are based upon calorimetry and propagation testing of likely organic compounds which represent actual tank wastes. These included sodium salts of citrate, formate, acetate and hydroxyethylethylenediaminetricetate (HEDTA). Hot cell tests of actual tank wastes are planned for the future to confirm propagation tests performed in the laboratory. The effects of draining liquids from the tanks which would remove liquids and moisture were considered because reactive waste which is too dry may propagate. Evaporation effects which could remove moisture from the tanks were also calculated. The various ways that the waste could be heated or ignited by equipment failures or tank operations activities were considered and appropriate monitoring and controls were recommended

  12. Preliminary safety criteria for organic watch list tanks at the Hanford site

    Energy Technology Data Exchange (ETDEWEB)

    Webb, A.B.; Stewart, J.L.; Turner, O.A. [Westinghouse Hanford Co., Richland, WA (United States); Plys, M.G.; Malinovic, B. [Fauske and Associates, Inc., Burr Ridge, IL (United States); Grigsby, J.M. [G & P Consulting, Inc. (United States); Camaioni, D.M.; Heasler, P.G.; Samuels, W.O.; Toth, J.J. [Pacific Northwest Lab., Portland, OR (United States)

    1995-11-01

    Condensed-phase, rapid reactions of organic salts with nitrates/nitrites in Hanford High Level Radioactive Waste single-shell tanks could lead to structural failure of the tanks resulting in significant releases of radionuclides and toxic materials. This report establishes appropriate preliminary safety criteria to ensure that tank wastes will be maintained safe. These criteria show that if actual dry wastes contain less than 1.2 MJ/kg of reactants reaction energy or less 4.5 wt % of total organic carbon, then the waste will be safe and will not propagate if ignited. Waste moisture helps to retard reactions; when waste moisture exceeds 20 wt %, rapid reactions are prevented, regardless of organic carbon concentrations. Aging and degradation of waste materials has been considered to predict the types and amounts to organic compounds present in the waste. Using measurements of 3 waste phases (liquid, salt cake, and sludge) obtained from tank waste samples analyzed in the laboratory, analysis of variance (ANOVA) models were used to estimate waste states for unmeasured tanks. The preliminary safety criteria are based upon calorimetry and propagation testing of likely organic compounds which represent actual tank wastes. These included sodium salts of citrate, formate, acetate and hydroxyethylethylenediaminetricetate (HEDTA). Hot cell tests of actual tank wastes are planned for the future to confirm propagation tests performed in the laboratory. The effects of draining liquids from the tanks which would remove liquids and moisture were considered because reactive waste which is too dry may propagate. Evaporation effects which could remove moisture from the tanks were also calculated. The various ways that the waste could be heated or ignited by equipment failures or tank operations activities were considered and appropriate monitoring and controls were recommended.

  13. Grout and Glass Performance in Support of Stabilization/Solidification of the MVST Tank Sludges

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M.; Spence, R.D.

    1998-11-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) pending treatment for disposal. The waste separates into two phases: sludge and supematant. Some of the supematant from these tanks has been decanted, solidified into a grout, and stored for disposal as a solid low-level waste. The sludges in the tank bottoms have been accumulating ,for several years. Some of the sludges contain a high amount of gamma activity (e.g., `37CS concentration range of 0.01 3-11 MBq/g) and contain enough transuranic (TRU) radioisotopes to be classified as TRU wastes. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough in the available total constituent analysis for the MVST sludge to be classified as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste.

  14. 242-A Evaporator crystallizer facility integrated annual safety appraisal

    International Nuclear Information System (INIS)

    1991-01-01

    This report provides the results of the Fiscal Year (FY) 1991 Annual Integrated Safety Appraisal of the 242-A Evaporator Crystallizer Facility in the Hanford 200 East Area. The appraisal was conducted in December 1990 and January 1991, by the Waste Tank Safety Assurance (WTSA) organizations in conjunction with Radiological Engineering, Criticality Safety, Packaging and Shipping Safety, Emergency Preparedness, Environmental Compliance, and Quality Assurance. Reports of these eight organizations are presented as Sections 2 through 7 of this report. The purpose of the appraisal was to verify that the 242-A Evaporator meets US Department of Energy (DOE) and Westinghouse Hanford Company (WHC) requirements and current industry standards of good practice for the areas being appraised. A further purpose was to identify areas in which program effectiveness could be improved. In accordance with the guidance of WHC Management Requirements and Procedures (MRP)5.6, previously identified deficiencies which are being resolved by line management were not repeated as Findings or Observations unless progress or intended disposition was considered to be unsatisfactory

  15. Hanford Tank Farms Vadose Zone, Addendum to the TX Tank Farm Report

    International Nuclear Information System (INIS)

    Spatz, R.

    2000-01-01

    This addendum to the TX Tank Farm Report (GJO-97-13-TAR, GJO-HAN-11) published in September 1997 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TX Tank Farm at the DOE Hanford Site in the state of Washington

  16. Robotic system for decommissioning the Gunite tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Chesser, J.B.; Evans, J.H.; Norman, R.E.; Peishel, F.L.; Ruppel, F.R.

    1992-01-01

    Robotic systems and equipment to facilitate removal of the contents of the Oak Ridge National Laboratory (ORNL) Gunite Waste Tanks as well as the tanks themselves are one of several options being considered for this site. The technology described consists of proven remote systems and equipment or remote adaptations of proven industrial concepts. The proposed robotic system would be housed in a portable containment structure, fabricated from steel plate, and reinforced with structural shapes. The structure would be cylindrical and have a domed head. The containment structure would be sized to cover one tank. The tanks are in two sizes: 60 ft and 35 ft diameters. The structures would be supported on driven steel piles and would have an earthen berm around the base to enhance the effectiveness of the containment. Internal to the containment structure, a polar crane bridge equipped with a pair of trolley-mounted telescoping masts would be utilized to support and manipulate the systems, tools, etc., which would perform the individual tasks. The bridge and mast control system and the manipulator control system would provide both teleoperated and robotic modes to support either manual or preprogrammed operations. Equipment mounted at the end of the mast would include servomanipulators, water jet cutter, or a clam shell bucket. The mast would feature an interface plate allowing remote changeout of most mounted equipment. The operating system would be required to have the capability to decontaminate the dome and its equipment to the degree necessary to allow it to be relocated. Viewing would be provided by commercial closed-circuit TV (CCTV). It is believed that the systems described herein represent a feasible approach to removing the contents from the ORNL gunite tanks and implementing remediation of the site

  17. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    Science.gov (United States)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-12-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  18. TANK FARM ENVIRONMENTAL REQUIREMENTS

    International Nuclear Information System (INIS)

    TIFFT, S.R.

    2003-01-01

    Through regulations, permitting or binding negotiations, Regulators establish requirements, limits, permit conditions and Notice of Construction (NOC) conditions with which the Office of River Protection (ORP) and the Tank Farm Contractor (TFC) must comply. Operating Specifications are technical limits which are set on a process to prevent injury to personnel, or damage to the facility or environment, The main purpose of this document is to provide specification limits and recovery actions for the TFC Environmental Surveillance Program at the Hanford Site. Specification limits are given for monitoring frequencies and permissible variation of readings from an established baseline or previous reading. The requirements in this document are driven by environmental considerations and data analysis issues, rather than facility design or personnel safety issues. This document is applicable to all single-shell tank (SST) and double-shell tank (DST) waste tanks, and the associated catch tanks and receiver tanks, and transfer systems. This Tank Farm Environmental Specifications Document (ESD) implements environmental-regulatory limits on the configuration and operation of the Hanford Tank Farms facility that have been established by Regulators. This ESD contains specific field operational limits and recovery actions for compliance with airborne effluent regulations and agreements, liquid effluents regulations and agreements, and environmental tank system requirements. The scope of this ESD is limited to conditions that have direct impact on Operations/Projects or that Operations Projects have direct impact upon. This document does not supercede or replace any Department of Energy (DOE) Orders, regulatory permits, notices of construction, or Regulatory agency agreements binding on the ORP or the TFC. Refer to the appropriate regulation, permit, or Notice of Construction for an inclusive listing of requirements

  19. Strategy plan for management of Hanford tank wastes

    International Nuclear Information System (INIS)

    Humphreys, L.L.; Morgan, S.R.

    1993-01-01

    The Secretary of Energy in 1992 directed Hanford to plan for the retrieval and processing of all stored high level waste at Hanford for disposal at an offsite repository. This substantial change in the tank disposal program's assignment has resulted in a reevaluation of the entire Tank Waste Remediation System (TWRS) strategy. This strategic plan covers that portion of the TWRS strategy related to management of stored tank waste until it is retrieved, processed, and disposed by the disposal program and covers the responsibilities assigned to the ''manage tank waste'' function. The ''manage tank waste'' function is one of the level 2 functions as set forth in the Tank Waste Remediation System Mission Analysis Report (Baynes et al. 1993) and depicted in Figure 1. The following level 3 functions have been developed below the level 2, ''manage tank waste'' function: (1) Store waste; (2) Transfer waste; (3) Characterize, surveil and monitor waste; (4) Restore and upgrade systems; (5) Manage tank waste management system

  20. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Science.gov (United States)

    2010-10-01

    ... section. (v) Stainless steel flexible connectors with damaged reinforcement braid. (vi) Internal self... program for cargo tanks transporting liquefied compressed gases. 180.416 Section 180.416 Transportation... PACKAGINGS Qualification and Maintenance of Cargo Tanks § 180.416 Discharge system inspection and maintenance...