WorldWideScience

Sample records for evaporative heat loss

  1. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin

    NARCIS (Netherlands)

    Havenith, G.; Bröde, P.; Hartog, E.A. den; Kuklane, K.; Holmer, I.; Rossi, R.M.; Richards, M.; Farnworth, B.; Wang, X.

    2013-01-01

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has

  2. Assessment of evaporative water loss from Dutch cities

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Elbers, J.A.; Brolsma, R.; Hartogensis, O.K.; Moors, E.J.; Rodríguez-CarreteroMárquez, M.T.; Hove, van B.

    2015-01-01

    Reliable estimates of evaporative water loss are required to assess the urban water budget in support of division of water resources among various needs, including heat mitigation measures in cities relying on evaporative cooling. We report on urban evaporative water loss from Arnhem and Rotterdam

  3. Heat loss of heat pipelines in insulation moisture conditions with the evaporation

    Directory of Open Access Journals (Sweden)

    Polovnikov Vyacheslav Yu.

    2014-01-01

    Full Text Available Results of numerical simulation of heat and mass transfer in a wet fibroporous material in conditions of evaporation and steam diffusion were obtained. Values of heat and mass fluxes were established. The contribution of evaporation effect to total heat flux and need to consider volume fractions of water and steam into the structure of fibroporous material in calculation of effective thermal conductivity were shown. Nonstationarity of heat and mass transfer in conditions of considered problem can be ignored.

  4. Fitness-related differences in the rate of whole-body evaporative heat loss in exercising men are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Louie, Jeffrey C; Poirier, Martin P; Kenny, Glen P

    2018-01-01

    What is the central question of this study? Aerobic fitness modulates heat loss, but the heat-load threshold at which fitness-related differences in heat loss occur in young healthy men remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that aerobic fitness modulates heat loss in a heat-load-dependent manner, with fitness-related differences occurring between young men who have low and high fitness when the heat load is ∼≥500 W. Although aerobic fitness has been known for some time to modulate heat loss, our findings define the precise heat-load threshold at which fitness-related differences occur. The effect of aerobic fitness (defined as rate of peak oxygen consumption) on heat loss during exercise is thought to be related to the level of heat stress. However, it remains unclear at what combined exercise and environmental (net) heat-load threshold these fitness-related differences occur. To identify this, we assessed whole-body heat exchange (dry and evaporative) by direct calorimetry in young (22 ± 3 years) men matched for physical characteristics with low (Low-fit; 39.8 ± 2.5 ml O 2  kg -1  min -1 ), moderate (Mod-fit; 50.9 ± 1.2 ml O 2  kg -1  min -1 ) and high aerobic fitness (High-fit; 62.0 ± 4.4 ml O 2  kg -1  min -1 ; each n = 8), during three 30 min bouts of cycling in dry heat (40°C, 12% relative humidity) at increasing rates of metabolic heat production of 300 (Ex1), 400 (Ex2) and 500 W (Ex3), each followed by a 15 min recovery period. Each group was exposed to a similar net heat load (metabolic plus ∼100 W dry heat gain; P = 0.83) during each exercise bout [∼400 (Ex1), ∼500 (Ex2) and ∼600 W (Ex3); P fit (Ex2, 466 ± 21 W; Ex3, 557 ± 26 W) compared with the Low-fit group (Ex2, 439 ± 22 W; Ex3, 511 ± 20 W) during Ex2 and Ex3 (P ≤ 0.03). Conversely, evaporative heat loss for the Mod-fit group did not differ from either the High-fit or Low

  5. Human local and total heat losses in different temperature.

    Science.gov (United States)

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A method for the measurement of physiologic evaporative water loss.

    Science.gov (United States)

    1963-10-01

    The precise measurement of evaporative water loss is essential to an accurate evaluation of this avenue of heat loss in acute and chronic exposures to heat. In psychological studies, the quantitative measurement of palmar sweating plays an equally im...

  7. Evaluation of the correlations for predicting evaporative loss from water body

    International Nuclear Information System (INIS)

    Yilmaz, T.P.; Aybar, H.S.

    1999-01-01

    Water evaporation (evaporation from here on) is a natural phenomenon that is important for system design and system safety in many engineering branches. Indeed, evaporative heat and mass loss are observed and calculated in very diverse situations, such as irrigation plants, water purification plants, cooling ponds, lakes, dams, swimming pools, health spas, management of liquid wastes as in evaporation pools, and spent fuel pools in nuclear power plants. There are a number of correlations obtained from experimental studies that predict the evaporative heat and mass loss from a water body. This study aims to summarize and to compare the existing evaporation correlations to determine the upper and lower bounding correlations for use in various thermal-hydraulic analyses of systems. Currently and widely used, six correlations found in the literature have been selected and tested using the major parameters of evaporation such as water temperature, air relative humidity, air velocity, and temperature. The comparison test cases show that ASHRAE (1991) and Ryan et al. (1974) equations result in the highest evaporative loss, while the Brady et al. (1969) equation provides the lowest evaporative loss in most conditions. Engineering designers may sometimes need the upper bound value of evaporative loss or sometimes the lower bound value for a conservative calculation. The authors conclude that using a single equation does not provide the conservative calculation for every situation and show which correlation gives the lower or upper bound for different conditions

  8. Evaporators

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard

    1996-01-01

    Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients.......Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients....

  9. Steady parallel flow in an evaporating fluid heated from sidewalls

    International Nuclear Information System (INIS)

    Das, Kausik S.

    2009-01-01

    Evaporation is ubiquitous in nature, but very few attempts have been made in the past to couple the effects of evaporation with fluid flow behavior. In this theoretical paper we have discussed the effects of evaporation on the dynamics of steady state thermocapillary convection in a two-dimensional rectangular container. The liquid is heated by differentially heated sidewalls and mass loss from the interface due to evaporation is compensated by the liquid entering into the container through a lower inlet, thus keeping the thickness of the liquid layer constant. We show that for an evaporating liquid one can obtain a plane parallel base state profile which depends on the evaporative mass flux.

  10. Effect of human skin grafts on whole-body heat loss during exercise heat stress: a case report.

    Science.gov (United States)

    Ganio, Matthew S; Gagnon, Daniel; Stapleton, Jill; Crandall, Craig G; Kenny, Glen P

    2013-01-01

    When exposed to heat stress, increases in cutaneous blood flow and sweating in well-healed grafted skin are severely attenuated, which could impair whole-body heat loss if skin grafts cover a large portion of total body surface area (TBSA). It is unknown to what extent whole-body heat loss is impaired when skin grafts cover a significant (eg, >50%) proportion of TBSA. The authors examined whole-body heat exchange during and after 60 min of cycling exercise in the heat (35°C; 25% relative humidity), at a fixed rate of metabolic heat production (~400 W) in a woman (age, 36 years; mass, 78.2 kg) with well-healed (17+ years) skin grafts covering 75% of TBSA. Her responses were compared with two noninjured control subjects. Whole-body evaporative and dry heat exchange were measured by direct calorimetry. While exercising in the same ambient conditions and at the same rate of heat production, relative evaporative heat loss of nongrafted skin in the grafted subject (ie, evaporative heat loss per m) was nearly twice that of the control subjects. However, total rate of evaporative heat loss reached only 59% of the amount required for heat balance in the skin-grafted subject compared with 92 ± 3% in controls. Thus, the increase in core temperature was 2-fold greater for the grafted (1.22°C) vs control (0.61 ± 0.19°C) individuals. This case study demonstrates that a large area of grafted skin greatly diminishes maximum evaporative heat loss during exercise in the heat, making a compensable environment for control subjects uncompensable for skin-grafted individuals.

  11. Method of suppressing evaporation loss of ruthenium

    International Nuclear Information System (INIS)

    Muromura, Tadazumi; Sato, Tadashi.

    1987-01-01

    Purpose: To prevent evaporation loss of ruthenium from liquid wastes by adding an aluminum compound upon applying evaporating and drying to solid treatment to reprocessing liquid wastes for spent fuels. Method: An aluminum compound such as aluminum nitrate or aluminum hydroxide to reprocessing liquid wastes of spent fuels such that aluminum/ruthenium mixing ratio corresponds to 1.3 - 70.0 by g/atom ratio (0.34 - 187 by weight ratio), and the liquid mixture is heated to a temperature of about 130 deg C to be evaporated and dried to solidness. This enables to recover ruthenium without settling and depositing insoluble matters in the liquid wastes and without decomposing nitric acid. (Yoshino, Y.)

  12. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  13. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.

    2013-02-01

    A brief summary of new models for droplet heating and evaporation, developed mainly at the Sir Harry Ricardo Laboratory of the University of Brighton during 2011-2012, is presented. These are hydrodynamic models for mono-component droplet heating and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono-component droplet heating and evaporation, and a model for mono-component droplet evaporation, based on molecular dynamics simulation. The results, predicted by the new models are compared with experimental data and the prehctions of the previously developed models where possible. © 2013 Asian Network for Scientific Information.

  14. Dual manifold heat pipe evaporator

    Science.gov (United States)

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  15. Physiological Responses and Lactation to Cutaneous Evaporative Heat Loss in , , and Their Crossbreds

    Directory of Open Access Journals (Sweden)

    Wang Jian

    2015-11-01

    Full Text Available Cutaneous evaporative heat loss in Bos indicus and Bos taurus has been well documented. Nonetheless, how crossbreds with different fractional genetic proportions respond to such circumstances is of interest. A study to examine the physiological responses to cutaneous evaporative heat loss, also lactation period and milk yield, were conducted in Sahiwal (Bos indicus, n = 10, 444±64.8 kg, 9±2.9 years, Holstein Friesian (Bos taurus, HF100% (n = 10, 488±97.9 kg, 6±2.8 years and the following crossbreds: HF50% (n = 10, 355±40.7 kg, 2±0 years and HF87.5% (n = 10, 489±76.8 kg, 7±1.8 years. They were allocated so as to determine the physiological responses of sweating rate (SR, respiration rate (RR, rectal temperature (RT, and skin temperature (ST with and without hair from 06:00 h am to 15:00 h pm. And milk yield during 180 days were collected at days from 30 to 180. The ambient temperature-humidity-index (THI increased from less than 80 in the early morning to more than 90 in the late afternoon. The interaction of THI and breed were highly affected on SR, RR, RT, and ST (p0.05 but did change over time. The ST with and without hair were similar, and was higher in HF100% (37.4°C; 38.0°C and their crossbred HF50% (35.5°C; 35.5°C and HF87.5% (37.1°C; 37.9°C than Sahiwal (34.8°C; 34.8°C (p<0.01. Moreover, the early lactation were higher at HF100% (25 kg and 87.5% (25 kg than HF50% (23 kg which were higher than Sahiwal (18 kg while the peak period of lactation was higher at HF100% (35 kg than crossbreds both HF87.5% and HF50% (32 kg which was higher than Sahiwal (26 kg (p<0.05. In conclusion, sweating and respiration were the main vehicle for dissipating excess body heat for Sahiwal, HF and crossbreds, respectively. The THI at 76 to 80 were the critical points where the physiological responses to elevated temperature displayed change.

  16. Estimation of evaporative losses during storage of crude oil and petroleum products

    Directory of Open Access Journals (Sweden)

    Mihajlović Marina A.

    2013-01-01

    Full Text Available Storage of crude oil and petroleum products inevitably leads to evaporative losses. Those losses are important for the industrial plants mass balances, as well as for the environmental protection. In this paper, estimation of evaporative losses was performed using software program TANKS 409d which was developed by the Agency for Environmental Protection of the United States - US EPA. Emissions were estimated for the following types of storage tanks: fixed conical roof tank, fixed dome roof tank, external floating roof tank, internal floating roof tank and domed external floating roof tank. Obtained results show quantities of evaporated losses per tone of stored liquid. Crude oil fixed roof storage tank losses are cca 0.5 kg per tone of crude oil. For floating roof, crude oil losses are 0.001 kg/t. Fuel oil (diesel fuel and heating oil have the smallest evaporation losses, which are in order of magnitude 10-3 kg/tone. Liquids with higher Reid Vapour Pressure have very high evaporative losses for tanks with fixed roof, up to 2.07 kg/tone. In case of external floating roof tank, losses are 0.32 kg/tone. The smallest losses are for internal floating roof tank and domed external floating roof tank: 0.072 and 0.044, respectively. Finally, it can be concluded that the liquid with low volatility of low BTEX amount can be stored in tanks with fixed roof. In this case, the prevailing economic aspect, because the total amount of evaporative loss does not significantly affect the environment. On the other hand, storage of volatile derivatives with high levels of BTEX is not justified from the economic point of view or from the standpoint of the environment protection.

  17. The Evaporation of Liquid Micro-Drops on the Heated Substrate

    Directory of Open Access Journals (Sweden)

    Semenov Andrey

    2017-01-01

    Full Text Available Evaporation of a heated sessile water micro-drop was studied experimentally at the substrate temperature and surrounding atmosphere from 30 to 50 °C. The studies were performed on the float glass substrate with aluminum nanocoating of optical quality. The research has shown that the specific rate of evaporation (mass loss per unit of the drop surface area increases with the decrease in droplet volume and at the last stage several times exceeds the initial value.

  18. Evaporation of nanofluid droplet on heated surface

    Directory of Open Access Journals (Sweden)

    Yeung Chan Kim

    2015-04-01

    Full Text Available In this study, an experiment on the evaporation of nanofluid sessile droplet on a heated surface was conducted. A nanofluid of 0.5% volumetric concentration mixed with 80-nm-sized CuO powder and pure water were used for experiment. Droplet was applied to the heated surface, and images of the evaporation process were obtained. The recorded images were analyzed to find the volume, diameter, and contact angle of the droplet. In addition, the evaporative heat transfer coefficient was calculated from experimental result. The results of this study are summarized as follows: the base diameter of the droplet was maintained stably during the evaporation. The measured temperature of the droplet was increased rapidly for a very short time, then maintained constantly. The nanofluid droplet was evaporated faster than the pure water droplet under the experimental conditions of the same initial volume and temperature, and the average evaporative heat transfer coefficient of the nanofluid droplet was higher than that of pure water. We can consider the effects of the initial contact angle and thermal conductivity of nanofluid as the reason for this experimental result. However, the effect of surface roughness on the evaporative heat transfer of nanofluid droplet appeared unclear.

  19. Respiratory evaporative water loss during hovering and forward flight in hummingbirds.

    Science.gov (United States)

    Powers, Donald R; Getsinger, Philip W; Tobalske, Bret W; Wethington, Susan M; Powers, Sean D; Warrick, Douglas R

    2012-02-01

    Hummingbirds represent an end point for small body size and water flux in vertebrates. We explored the role evaporative water loss (EWL) plays in management of their large water pool and its use in dissipating metabolic heat. We measured respiratory evaporative water loss (REWL) in hovering hummingbirds in the field (6 species) and over a range of speeds in a wind tunnel (1 species) using an open-circuit mask respirometry system. Hovering REWL during the active period was positively correlated with operative temperature (T(e)) likely due to some combination of an increase in the vapor-pressure deficit, increase in lung ventilation rate, and reduced importance of dry heat transfer at higher T(e). In rufous hummingbirds (Selasphorus rufus; 3.3g) REWL during forward flight at 6 and 10 m/s was less than half the value for hovering. The proportion of total dissipated heat (TDH) accounted for by REWL during hovering at T(e)> 40°C was hummingbirds is a relatively small component of the water budget compared with other bird species (hummingbirds. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Performance of evaporator-collector and air collector in solar assisted heat pump dryer

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Rahman, S.M.A.; Jahangeer, K.A.

    2008-01-01

    A solar assisted heat pump dryer has been designed, fabricated and tested. This paper presents the performance of the evaporator-collector and the air collector when operated under the same meteorological conditions. ASHRAE standard procedure for collector testing has been followed. The evaporator-collector of the heat pump is acting directly as the solar collector, and the temperature of the refrigerant at the inlet to the evaporator-collector always remained below the ambient temperature. Because of the rejection of sensible and latent heats of air at the dehumidifier, the temperature at the inlet to the air collector is lower than that of the ambient air. Hence, the thermal efficiency of the air collector also increases due to a reduction of losses from the collector. The efficiencies of the evaporator-collector and the air collector were found to vary between 0.8-0.86 and 0.7-0.75, respectively, when operated under the meteorological conditions of Singapore

  1. Evaporation thermal anslysis of Swallow-tailed Axial-grooved Heat Pipe

    Science.gov (United States)

    Zhang, Renping

    2018-03-01

    A detailed mathematical model that describes evaporating characteristics through thin liquid film at the evaporator section of swallow-tailed axial-grooved heat pipe was developed. The numerical simulation results about thin film profile, liquid-vapour interface temperature, evaporating rate and heat flux at the evaporating thin film region were given by the current investigation and the effect of superheat on the liquid-vapour interface temperature, evaporating mass rate and heat flux was discussed. Meanwhile, thermal model of the meniscus region at the evaporating section was developed to calculate the rate of heat transfer. The ratio of the heat conduction in the evaporating thin liquid film region and total heat rate were also discussed. It is indicated that the thickness of thin liquid film rises in a nearly linear fashion. The disjoining pressure can be neglected with increasing the liquid film thickness, tends to be negligibly small. The heat transfer rate at the intrinsic meniscus cannot be compared with that of the evaporating liquid film region.

  2. Heat and mass transfer analogies for evaporation models at high evaporation rate

    OpenAIRE

    Trontin , P.; Villedieu , P.

    2014-01-01

    International audience; In the framework of anti and deicing applications, heated liquid films can appear above the ice thickness, or directly above the wall. Then, evaporation plays a major role in the Messinger balance and evaporated mass has to be predicted accurately. Unfortunately, it appears that existing models under-estimate evaporation at high temperature. In this study, different evaporation models at high evaporation rates are studied. The different hypothesis on which these models...

  3. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.; Elwardani, Ahmed Elsaid; Gusev, Ivan G.; Xie, Jianfei; Shishkova, Irina N.; Cao, Bingyang; Snegirev, Alexander Yu.; Heikal, Morgan Raymond

    2013-01-01

    and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono

  4. Measurements of the evaporation rate upon evaporation of thin layer at different heating modes

    OpenAIRE

    Gatapova E.Ya.; Korbanova E.G.

    2017-01-01

    Technique for measurements of the evaporation rate of a heated liquid layer is presented. The local minimum is observed which is associated with the point of equilibrium of the liquid–gas interface. It is shown when no heat is applied to the heating element temperature in gas phase is larger than in liquid, and evaporation occurs with the rate of 0.014–0.018 μl/s. Then evaporation rate is decreasing with increasing the heater temperature until the equilibrium point is reached at the liquid–ga...

  5. A phylogenetic approach to total evaporative water loss in mammals.

    Science.gov (United States)

    Van Sant, Matthew J; Oufiero, Christopher E; Muñoz-Garcia, Agustí; Hammond, Kimberly A; Williams, Joseph B

    2012-01-01

    Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat.

  6. Evaporational losses under different soil moisture regimes and atmospheric evaporativities using tritium

    International Nuclear Information System (INIS)

    Saxena, P.; Chaudhary, T.N.; Mookerji, P.

    1991-01-01

    Tritium as tracer was used in a laboratory study to estimate the contribution of moisture from different soil depths towards actual soil water evaporation. Results indicated that for comparable amounts of free water evaporation (5 cm), contribution of moisture from 70-80 cm soil layer towards total soil moisture loss through evaporation increased nearly 1.5 to 3 folds for soils with water table at 90 cm than without water table. Identical initial soil moistures were exposed to different atmospheric evaporativities. Similarly, for a given initial soil moisture status, upward movement of moisture from 70-80 cm soil layer under low evaporativity was nearly 8 to 12 times that of under high evaporativity at 5 cm free water evaporation value. (author). 6 refs., 4 tabs., 2 figs

  7. Evaporative water loss from welded tuff

    International Nuclear Information System (INIS)

    Hadley, G.R.; Turner, J.R. Jr.

    1980-04-01

    Welded tuff is one of the many candidate rocks presently being considered as a host medium for the disposal of radioactive waste. In the case where the disposal site lies above the water table, the host rock will in general be only partially saturated. This condition leads to a number of mass transfer processes of interest, including evaporative drying, two-phase water flow due to pressure gradients, capillary movement, plus others. Although these processes have all been known about for decades, it is not clear at this time what the relative importance of each is with regard to geologic media in a waste disposal environment. In particular, there seems to be no data available for tuff that would allow an investigator to sort out mechanisms. This work is intended to be a start in that direction. This paper reports the measurement of water loss rate for welded tuff at various temperatures due to the action of evaporative drying. The initial saturation was unknown, but the average initial water content was found to be 7% by weight. The resulting data show that the water loss rate declines monotonically with time at a given temperature and increases with increasing temperature as expected. Somewhat surprising, however, is the fact that over 90% of the water from a sample was lost by evaporation at room temperature within 72 hours. All the water loss data, including that taken at temperatures as high as 150 0 C, are explained to within a factor of two by a simple evaporation front model. The latter assumes the water is lost by the molecular diffusion of water vapor from a receding evaporation front. The motion of the evaporation front seems to depend on mass balance rather than energy balance. Capillary forces and the resulting liquid diffusion are evidently not strong enough to wash out the evaporation front, since the front model seems to fit the data well

  8. Black hole evaporation in a heat bath as a nonequilibrium process and its final fate

    International Nuclear Information System (INIS)

    Saida, Hiromi

    2007-01-01

    We consider a black hole in a heat bath, and the whole system which consists of the black hole and the heat bath is isolated from outside environments. When the black hole evaporates, the Hawking radiation causes an energy flow from the black hole to the heat bath. Therefore, since no energy flow arises in an equilibrium state, the thermodynamic state of the whole system is not in equilibrium. That is, in a region around the black hole, the matter field of Hawking radiation and that of heat bath should be in a nonequilibrium state due to the energy flow. Using a simple model which reflects the nonequilibrium nature of energy flow, we find the nonequilibrium effect on a black hole evaporation as follows: if the nonequilibrium region around a black hole is not so large, the evaporation time scale of a black hole in a heat bath becomes longer than that in an empty space (a situation without heat bath), because of the incoming energy flow from the heat bath to the black hole. However, if the nonequilibrium region around a black hole is sufficiently large, the evaporation time scale in a heat bath becomes shorter than that in an empty space, because a nonequilibrium effect of the temperature difference between the black hole and heat bath appears as a strong energy extraction from the black hole by the heat bath. Further, a specific nonequilibrium phenomenon is found: a quasi-equilibrium evaporation stage under the nonequilibrium effect proceeds abruptly to a quantum evaporation stage at a semi-classical level (at black hole radius R g > Planck length) within a very short time scale with a strong burst of energy. (Contrarily, when the nonequilibrium effect is not taken into account, a quasi-equilibrium stage proceeds smoothly to a quantum stage at R g < Planck length without so strong an energy burst.) That is, the nonequilibrium effect of energy flow tends to make a black hole evaporation process more dynamical and to accelerate that process. Finally, on the final fate

  9. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor

    Science.gov (United States)

    Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.

    2013-01-01

    This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

  10. Experimental Study of Evaporative Heat Transfer Characteristics of R-134a with Channel-Bending Angle in Microchannel Heat Exchangers

    International Nuclear Information System (INIS)

    Lee, Hae Seung; Jeon, Dong Soon; Kim, Young Lyoul; Kim, Seon Chang

    2010-01-01

    Experimental investigations have been carried out to examine the evaporative heat transfer characteristics of R-134a with the channel-bending angle (CBA) in microchannel heat exchangers. In this study, we examined the effects of evaporation temperature and Reynolds number of R-134a on the evaporative heat transfer characteristics of R-134a in microchannel heat exchangers with CBAs of 120 .deg. , 150 .deg. , and 180 .deg. under counterflow conditions. Experimental results show that the evaporative heat transfer rate and evaporative heat transfer coefficient increased with an increase in the Reynolds number of R-134a. Further, the evaporative heat transfer rate corresponding to CBAs of 120 .deg. and 150 .deg. increased to values greater than the evaporative heat transfer rate corresponding to 180 .deg. by approximately 17.1% and 13.3%, respectively, for evaporating temperatures in the range 4.9-14.9 .deg. C. The evaporative heat transfer coefficient was affected by the channel angle with increasing evaporative heat transfer coefficient at small channel bending angle

  11. Evaporative water loss, relative water economy and evaporative partitioning of a heterothermic marsupial, the monito del monte (Dromiciops gliroides).

    Science.gov (United States)

    Withers, Philip C; Cooper, Christine E; Nespolo, Roberto F

    2012-08-15

    We examine here evaporative water loss, economy and partitioning at ambient temperatures from 14 to 33°C for the monito del monte (Dromiciops gliroides), a microbiotheriid marsupial found only in temperate rainforests of Chile. The monito's standard evaporative water loss (2.58 mg g(-1) h(-1) at 30°C) was typical for a marsupial of its body mass and phylogenetic position. Evaporative water loss was independent of air temperature below thermoneutrality, but enhanced evaporative water loss and hyperthermia were the primary thermal responses above the thermoneutral zone. Non-invasive partitioning of total evaporative water loss indicated that respiratory loss accounted for 59-77% of the total, with no change in respiratory loss with ambient temperature, but a small change in cutaneous loss below thermoneutrality and an increase in cutaneous loss in and above thermoneutrality. Relative water economy (metabolic water production/evaporative water loss) increased at low ambient temperatures, with a point of relative water economy of 15.4°C. Thermolability had little effect on relative water economy, but conferred substantial energy savings at low ambient temperatures. Torpor reduced total evaporative water loss to as little as 21% of normothermic values, but relative water economy during torpor was poor even at low ambient temperatures because of the relatively greater reduction in metabolic water production than in evaporative water loss. The poor water economy of the monito during torpor suggests that negative water balance may explain why hibernators periodically arouse to normothermia, to obtain water by drinking or via an improved water economy.

  12. Avian thermoregulation in the heat: evaporative cooling capacity of arid-zone Caprimulgiformes from two continents.

    Science.gov (United States)

    Talbot, William A; McWhorter, Todd J; Gerson, Alexander R; McKechnie, Andrew E; Wolf, Blair O

    2017-10-01

    Birds in the order Caprimulgiformes (nightjars and allies) have a remarkable capacity for thermoregulation over a wide range of environmental temperatures, exhibiting pronounced heterothermy in cool conditions and extreme heat tolerance at high environmental temperatures. We measured thermoregulatory responses to acute heat stress in three species of Caprimulgiformes that nest in areas of extreme heat and aridity, the common poorwill ( Phalaenoptilus nuttallii : Caprimulgidae) and lesser nighthawk ( Chordeiles acutipennis : Caprimulgidae) in the Sonoran Desert of Arizona, and the Australian owlet-nightjar ( Aegotheles cristatus : Aegothelidae) in the mallee woodlands of South Australia. We exposed wild-caught birds to progressively increasing air temperatures ( T a ) and measured resting metabolic rate (RMR), evaporative water loss (EWL), body temperature ( T b ) and heat tolerance limit (HTL; the maximum T a reached). Comparatively low RMR values were observed in all species (0.35, 0.36 and 0.40 W for the poorwill, nighthawk and owlet-nightjar, respectively), with T b approximating T a at 40°C and mild hyperthermia occurring as T a reached the HTL. Nighthawks and poorwills reached HTLs of 60 and 62°C, respectively, whereas the owlet-nightjar had a HTL of 52°C. RMR increased gradually above minima at T a of 42, 42 and 35°C, and reached 1.7, 1.9 and 2.0 times minimum resting values at HTLs in the poorwill, nighthawk and owlet-nightjar, respectively. EWL increased rapidly and linearly as T a exceeded T b and resulted in maximum rates of evaporative heat dissipation equivalent to 237-424% of metabolic heat production. Bouts of gular flutter resulted in large transient increases in evaporative heat loss (50-123%) accompanied by only small increments in RMR (<5%). The cavity-nesting/roosting owlet-nightjar had a lower HTL and less efficient evaporative cooling compared with the species that nest and/or roost on open desert surfaces. The high efficiency of gular

  13. Evaporation heat transfer of hot water from horizontal free service

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ebihara, Y.; Hirota, T.; Murase, M.

    2011-01-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35 o C ~ 65 o C. Cold air was approximately 25 o C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  14. Evaporation heat transfer of hot water from horizontal free service

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Y.; Ebihara, Y.; Hirota, T. [Shinshu Univ., Ueda, Nagano (Japan); Murase, M. [INSS, Mihama-cho, Fukui (Japan)

    2011-07-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35{sup o}C ~ 65{sup o}C. Cold air was approximately 25{sup o}C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  15. Latent heat loss and sweat gland histology of male goats in an equatorial semi-arid environment

    Science.gov (United States)

    de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Neto, José Domingues Fontenele; Oliveira, Steffan Edward Octávio; de Queiroz, João Paulo Araújo Fernandes

    2014-03-01

    The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands ( P < 0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23 ± 0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51 ± 778.71 μm2) and quantity per square centimeter (390 ± 9 cm-2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03 ± 1.75 W m-2) and possessed the highest surface temperatures (39.47 ± 0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.

  16. Heat Fluxes and Evaporation Measurements by Multi-Function Heat Pulse Probe: a Laboratory Experiment

    Science.gov (United States)

    Sharma, V.; Ciocca, F.; Hopmans, J. W.; Kamai, T.; Lunati, I.; Parlange, M. B.

    2012-04-01

    values obtained are matched with the overall evaporation, estimated through the scale in terms of weight loss. A numerical model able to solve the coupled heat-moisture diffusive equations is used to interpolate the obtained measures in the second and third step.

  17. Mixed phase evaporation source

    International Nuclear Information System (INIS)

    1975-01-01

    Apparatus for reducing convection current heat loss in electron beam evaporator is described. A material to be evaporated (evaporant) is placed in the crucible of an electron beam evaporation source along with a porous mass formed of a powdered or finely divided solid to act as an impedance to convection currents. A feed system is employed to replenish the supply of evaporant as it is vaporized

  18. Intensification of Evaporation and Condensation Processes in Heat Exchange Apparatus

    Directory of Open Access Journals (Sweden)

    L. L. Vasiliev

    2005-01-01

    Full Text Available The paper describes proposed design solutions for an intensification of heat transfer in evaporation and condensation heat exchangers. Complex experimental research of heat and mass transfer processes in flat and round cross-section miniature heat pipes is carried out. Optimization, development, manufacturing and an experimental investigation of copper miniature heat pipes with sintered powder are executed. Investigation results of capillary-porous structure properties that are used in evaporation and condensation heat-exchange apparatus are presented.

  19. Evaporation and condensation heat transfer with a noncondensable gas present

    International Nuclear Information System (INIS)

    Murase, M.; Kataoka, Y.; Fujii, T.

    1993-01-01

    To evaluate the system pressure of an external water wall type containment vessel, which is one of the passive systems for containment cooling, the evaporation and condensation behavior under a noncondensable gas presence has been experimentally examined. In the system, steam evaporated from the suppression pool surface into the wetwell, filled with noncondensable gas, and condensed on the containment vessel wall. The system pressure was the sum of the noncondensable gas pressure and saturated steam pressure in the wetwell. The wetwell temperature was, however, lower than the suppression pool temperature and depended on the thermal resistance on the suppression pool surface. The evaporation and condensation heat transfer coefficients in the presence of air as noncondensable gas were measured and expressed by functions of steam/air mass ratio. The evaporation heat transfer coefficients were one order higher than the condensation heat transfer coefficients because the local noncondensable gas pressure was much lower on the evaporating pool surface than on the condensing liquid surface. Using logal properties of the heat transfer surfaces, there was a similar trend between evaporation and condensation even with a noncondensable gas present. (orig.)

  20. Seasonal and geographical variation in heat tolerance and evaporative cooling capacity in a passerine bird.

    Science.gov (United States)

    Noakes, Matthew J; Wolf, Blair O; McKechnie, Andrew E

    2016-03-01

    Intraspecific variation in avian thermoregulatory responses to heat stress has received little attention, despite increasing evidence that endothermic animals show considerable physiological variation among populations. We investigated seasonal (summer versus winter) variation in heat tolerance and evaporative cooling in an Afrotropical ploceid passerine, the white-browed sparrow-weaver (Plocepasser mahali; ∼ 47 g) at three sites along a climatic gradient with more than 10 °C variation in mid-summer maximum air temperature (Ta). We measured resting metabolic rate (RMR) and total evaporative water loss (TEWL) using open flow-through respirometry, and core body temperature (Tb) using passive integrated transponder tags. Sparrow-weavers were exposed to a ramped profile of progressively higher Ta between 30 and 52 °C to elicit maximum evaporative cooling capacity (N=10 per site per season); the maximum Ta birds tolerated before the onset of severe hyperthermia (Tb ≈ 44 °C) was considered to be their hyperthermia threshold Ta (Ta,HT). Our data reveal significant seasonal acclimatisation of heat tolerance, with a desert population of sparrow-weavers reaching significantly higher Ta in summer (49.5 ± 1.4 °C, i.e. higher Ta,HT) than in winter (46.8 ± 0.9 °C), reflecting enhanced evaporative cooling during summer. Moreover, desert sparrow-weavers had significantly higher heat tolerance and evaporative cooling capacity during summer compared with populations from more mesic sites (Ta,HT=47.3 ± 1.5 and 47.6 ± 1.3 °C). A better understanding of the contributions of local adaptation versus phenotypic plasticity to intraspecific variation in avian heat tolerance and evaporative cooling capacity is needed for modelling species' responses to changing climates. © 2016. Published by The Company of Biologists Ltd.

  1. Analytical Investigation of the Heat-Transfer Limits of a Novel Solar Loop-Heat Pipe Employing a Mini-Channel Evaporator

    Directory of Open Access Journals (Sweden)

    Thierno M. O. Diallo

    2018-01-01

    Full Text Available This paper presents an analytical investigation of heat-transfer limits of a novel solar loop-heat pipe developed for space heating and domestic hot water use. In the loop-heat pipe, the condensate liquid returns to the evaporator via small specially designed holes, using a mini-channel evaporator. The study considered the commonly known heat-transfer limits of loop-heat pipes, namely, the viscous, sonic, entrainment, boiling and heat-transfer limits due to the two-phase pressure drop in the loop. The analysis considered the main factors that affect the limits in the mini-channel evaporator: the operating temperature, mini-channel aspect ratio, evaporator length, evaporator inclination angle, evaporator-to-condenser height difference and the dimension of the holes. It was found that the entrainment is the main governing limit of the system operation. With the specified loop design and operational conditions, the solar loop-heat pipe can achieve a heat-transport capacity of 725 W. The analytical model presented in this study can be used to optimise the heat-transfer capacity of the novel solar loop-heat pipe.

  2. Performance investigation of advanced adsorption desalination cycle with condenser-evaporator heat recovery scheme

    KAUST Repository

    Thu, Kyaw

    2013-01-01

    Energy or heat recovery schemes are keys for the performance improvement of any heat-activated cycles such as the absorption and adsorption cycles. We present two innovative heat recovery schemes between the condensing and evaporating units of an adsorption desalination (AD) cycle. By recovering the latent heat of condenser and dumping it into the evaporative process of the evaporator, it elevates the evaporating temperature and hence the adsorption pressure seen by the adsorbent. From isotherms, this has an effect of increasing the vapour uptake. In the proposed configurations, one approach is simply to have a run-about water circuit between the condenser and the evaporator and a pump is used to achieve the water circulation. This run-around circuit is a practical method for retrofitting purposes. The second method is targeted towards a new AD cycle where an encapsulated condenser-evaporator unit is employed. The heat transfer between the condensing and evaporative vapour is almost immediate and the processes occur in a fully integrated vessel, thereby minimizing the heat transfer resistances of heat exchangers. © 2013 Desalination Publications.

  3. Design and development of a split-evaporator heat-pump system

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, M.H.; Penoncello, S.G.

    1981-12-01

    The designs and experimental results of three types of multiple source heat pumps are presented. The three designs are the parallel evaporator, the series evaporator, and the parallel evaporator with active subcooling, with the parallel evaporator with the active subcooling showing the most promise for solving the problem of defrosting of air evaporators. Three design procedures for multiple source heat pumps were developed. One of these is a hand calculational procedure, the others are computer based. The models are based upon the refrigerant flow rate, rather than the refrigeration effect of the evaporator. The technical results of a detailed analytical and experimental model of the heat transfer rates on a flat plate ice maker are presented. It is shown, both analytically and experimentally, that the temperature of the air surrounding the flat plate ice maker can play a dominant role in the rate of ice formation. A detailed weather analysis for forty cities located throughout the nation was completed. These data were processed to allow easy computation of thermal storage requirements for full, partial, or minimum ACES systems, or upon other design requirements, such as off-peak air conditioning. The results of an innovative ice storage system that is thermally coupled to the earth are described. This system has the potential for meeting both the off-peak air conditioning needs and the thermal storage requirements for the heating cycle. An economic and energy comparison of multiple source heat pumps with ACES, and air-to-air heat pump systems is presented.

  4. INTENSIFICATION OF HEAT- AND MASS TRANSFER IN EVAPORATION - CONDENSATION DEVICES

    Directory of Open Access Journals (Sweden)

    A. G. Kulakov

    2005-01-01

    Full Text Available Results of investigation of capillary structure properties used in evaporation – condensation devices are presented.Constructive solutions for intensification of heat transfer in evaporation and condensation heat exchangers are offered. The obtained heat transfer experimental data at film-type vapor conden-sation are generalized in criterion form.Description of general rule of heat and mass transfer processes in miniature heat pipes with three various capillary structures at wide range of operating parameters is given in the paper.

  5. Heat pulse probe measurements of soil water evaporation in a corn field

    Science.gov (United States)

    Latent heat fluxes from cropped fields consist of soil water evaporation and plant transpiration. It is difficult to accurately separate evapotranspiration into evaporation and transpiration. Heat pulse probes have been used to measure bare field subsurface soil water evaporation, however, the appl...

  6. Experimental study of interfacial shear stress for an analogy model of evaporative heat transfer

    International Nuclear Information System (INIS)

    Kwon, Hyuk; Park, GoonCherl; Min, ByungJoo

    2008-01-01

    In this study, we conducted measurements of an evaporative interfacial shear stress in a passive containment cooling system (PCCS). An interfacial shear stress for a counter-current flow was measured from a momentum balance equation and the interfacial friction factor for evaporation was evaluated by using experimental data. A model for the evaporative heat transfer coefficient of a vertical evaporative flat surface was developed based on an analogy between heat and momentum transfer. It was found that the interfacial shear stress increases with the Jacob number, which incorporates the evaporation rate, and the air and water Reynolds numbers. The relationship between the evaporative heat transfer and the interfacial shear stress was evaluated by using the experimental results. This relationship was used to develop a model for an evaporative heat transfer coefficient by using an analogy between heat and mass transfer. The prediction of this model were found to be in good agreement with the experimental data obtained for evaporative heat transfer by Kang and Park. (author)

  7. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses

    Science.gov (United States)

    Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy

    2018-06-01

    Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.

  8. Aging Impairs Whole-Body Heat Loss in Women under Both Dry and Humid Heat Stress.

    Science.gov (United States)

    Notley, Sean R; Poirier, Martin P; Hardcastle, Stephen G; Flouris, Andreas D; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P

    2017-11-01

    This study was designed to determine whether age-related impairments in whole-body heat loss, which are known to exist in dry heat, also occur in humid heat in women. To evaluate this possibility, 10 young (25 ± 4 yr) and 10 older (51 ± 7 yr) women matched for body surface area (young, 1.69 ± 0.11; older, 1.76 ± 0.14 m, P = 0.21) and peak oxygen consumption (V˙O2peak) (young, 38.6 ± 4.6; older, 34.8 ± 6.6 mL·kg·min, P = 0.15) performed four 15-min bouts of cycling at a fixed metabolic heat production rate (300 W; equivalent to ~45% V˙O2peak), each separated by a 15-min recovery, in dry (35°C, 20% relative humidity) and humid heat (35°C, 60% relative humidity). Total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and loss. Total heat loss was lower in humid conditions compared with dry conditions during all exercise bouts in both groups (all P body heat storage in young and older women, respectively (both P body heat storage was 29% and 16% greater in older women compared with young women in dry and humid conditions, respectively (both P < 0.05). Increasing ambient humidity reduces heat loss capacity in young and older women. However, older women display impaired heat loss relative to young women in both dry and humid heat, and may therefore be at greater risk of heat-related injury during light-to-moderate activity.

  9. Maldistribution in airewater heat pump evaporators. Part 1: Effects on evaporator, heat pump and system level

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2015-01-01

    This paper presents an approach to quantify the effect of evaporator maldistribution onoperating costs of air-water heat pumps. In the proposed simulation model maldistributionis induced by two parameters describing refrigerant phase and air flow distribution.Annual operating costs are calculated...

  10. Evaporation equipment for the rational measurement of the radioactivity of water

    International Nuclear Information System (INIS)

    Hasenjager, H.

    1960-01-01

    An apparatus is described whereby the water can be evaporated directly in the radioactive sample holder in which the sample is counted. Rapid evaporation is obtained by the heating of the dish combined with the application of a jet of hot air. Liquid is added to the dish and the heating stopped automatically at the end of evaporation. The speed of evaporation and the Losses in activity as a function of the degree of heating were studied for various substances and different qualities of water (permuted water, tap water, rainwater). Complexones are added to avoid losses of activity. (author) [fr

  11. Study on heat transfer from hot water to air with evaporation. 2nd report

    International Nuclear Information System (INIS)

    Yamaji, Tatsuya; Hirota, Tatsuya; Koizumi, Yasuo; Murase, Michio

    2013-01-01

    Heat transfer from hot water flow to cold air flow was examined. In the present study, the air flow was in turbulent flow condition. When the heat flux from the water flow to the air flow is divides into two terms of an evaporation term and a convection term, the evaporation term is much higher than the convection term; approximately 80 ∼ 60% of the total heat flux since latent heat is taken into the air flow by evaporating vapor. The convection term was approximately two times of the single-phase heat transfer rate with no evaporation. By making use of the analogy between the mass transfer and the heat transfer, and the single-phase heat transfer correlation, the predicting method of the heat transfer rate with the evaporation was developed. (author)

  12. Derivation of guidelines for the design of plate evaporators in heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Mancini, Roberta; Zühlsdorf, Benjamin

    2017-01-01

    integration in a spray drying facility. A numerical model of the evaporator is combined with cycle calculations, for estimating the impact of heat transfer area and pressure drop on the coefficient of performance and costs. Common trends are obtained as optimal configurations for the four considered fluids...... minimization of area and pressure drop is found by assessing the relative impact on costs of the heat exchanger area and pressure losses of both working fluid and heat source. The result shows that it is not always convenient to minimize the heat transfer area, since the mixture pressure drop negatively...

  13. Evaporation and condensation devices for passive heat removal systems in nuclear power engineering

    International Nuclear Information System (INIS)

    Gershuni, A.N.; Pis'mennyj, E.N.; Nishchik, A.P.

    2016-01-01

    The paper justifies advantages of evaporation and condensation heat transfer devices as means of passive heat removal and thermal shielding in nuclear power engineering. The main thermophysical factors that limit heat transfer capacity of evaporation and condensation systems have been examined in the research. The results of experimental studies of heat engineering properties of elongated (8-m) vertically oriented evaporation and condensation devices (two-phase thermosyphons), which showed a high enough heat transfer capacity, as well as stability and reliability both in steady state and in start-up modes, are provided. The paper presents the examples of schematic designs of evaporation and condensation systems for passive heat removal and thermal shielding in application to nuclear power equipment

  14. Heat Load Sharing in a Capillary Pumped Loop with Multiple Evaporators and Multiple Condensers

    Science.gov (United States)

    Ku, Jentung

    2005-01-01

    This paper describes the heat load sharing function among multiple parallel evaporators in a capillary pumped loop (CPL). In the normal mode of operation, the evaporators cool the instruments by absorbing the waste heat. When an instruments is turned off, the attached evaporator can keep it warm by receiving heat from other evaporators serving the operating instruments. This is referred to as heat load sharing. A theoretical basis of heat load sharing is given first. The fact that the wicks in the powered evaporators will develop capillary pressure to force the generated vapor to flow to cold locations where the pressure is lower leads to the conclusion that heat load sharing is an inherent function of a CPL with multiple evaporators. Heat load sharing has been verified with many CPLs in ground tests. Experimental results of the Capillary Pumped Loop 3 (CAPL 3) Flight Experiment are presented in this paper. Factors that affect the amount of heat being shared are discussed. Some constraints of heat load sharing are also addressed.

  15. Effects of heating method and conditions on the evaporation rate and quality attributes of black mulberry (Morus nigra) juice concentrate.

    Science.gov (United States)

    Fazaeli, Mahboubeh; Hojjatpanah, Ghazale; Emam-Djomeh, Zahra

    2013-02-01

    Black mulberry juice was concentrated by different heating methods, including conventional heating and microwave heating, at different operational pressures (7.3, 38.5 and 100 kPa). The effects of each method on evaporation rate, quality attributes of concentrated juice were investigated. The final juice concentration of 42° Brix was achieved in 140, 120, and 95 min at 100, 38.5, and 7.3 kPa respectively by using a rotary evaporator. Applying microwave energy decreased required times to 115, 95, and 60 min. The changes in color, anthocyanin content during the concentration processes were investigated. Hunter parameters (L, a, and b) were measured to estimate the intensity of color loss. All Hunter color parameters decreased with time. Results showed that the degradation of color and consequently anthocyanins, was more pronounced in rotary evaporation compared to microwave heating method.

  16. Cooling high heat flux micro-electronic systems using refrigerants in high aspect ratio multi-microchannel evaporators

    International Nuclear Information System (INIS)

    Costa-Patry, E.

    2011-11-01

    Improving the energy efficiency of cooling systems can contribute to reduce the emission of greenhouse gases. Currently, most microelectronic applications are air-cooled. Switching to two-phase cooling systems would decrease power consumption and allow for the reuse of the extracted heat. For this type of application, multi-microchannel evaporators are thought to be well adapted. However, such devices have not been tested for a wide range of operating conditions, such that their thermal response to the high non-uniform power map typically generated by microelectronics has not been studied. This research project aims at clarifying these gray areas by investigating the behavior of the two-phase flow of different refrigerants in silicon and copper multi-microchannel evaporators under uniform, non-uniform and transient heat fluxes operating conditions. The test elements use as a heat source a pseudo-chip able to mimic the behavior of a CPU. It is formed by 35 independent sub-heaters, each having its own temperature sensor, such that 35 temperature and 35 heat flux measurements can be made simultaneously. Careful measurements of each pressure drop component (inlet, microchannels and outlet) found in the micro-evaporators showed the importance of the inlet and outlet restriction pressure losses. The overall pressure drop levels found in the copper test section were low enough to possibly be driven by a thermosyphon system. The heat transfer coefficients measured for uniform heat flux conditions were very high and typically followed a V-shape curve. The first branch was associated to the slug flow regime and the second to the annular flow regime. By tracking the minimum level of heat transfer, a transition criteria between the regimes was established, which included the effect of heat flux on the transition. Then for each branch, a different prediction method was used to form the first flow pattern-based prediction method for two-phase heat transfer in microchannels. A

  17. Simulation of air-heated evaporators using a method of local analysis

    International Nuclear Information System (INIS)

    Parise, J.A.R.; Cartwright, W.G.

    1983-01-01

    The development and application of an analytical method for the performance prediction of air-heated evaporators are presented. A local analysis is employed in which the evaporator is considered as a three dimensional matrix of elementary heat transfer modules. For each element, local film coefficients for both air and the evaporating fluid are determined appropriate to the local conditions, including the two-phase flow regime. An application of the method is considered. (Author) [pt

  18. Refrigerant falling film evaporation review: Description, fluid dynamics and heat transfer

    International Nuclear Information System (INIS)

    Fernández-Seara, José; Pardiñas, Ángel Á.

    2014-01-01

    Falling film horizontal tube evaporators for refrigeration equipment are an interesting alternative to pool boiling evaporators concerning operation costs, safety, thermodynamic efficiency, charge of refrigerant or size. Plenty of literature works studied falling film evaporation, but for its application in fields such as desalination and petrochemical industry or OTEC. This review focuses mainly on those works from the literature that analysed the main issues of falling film evaporation of refrigerants, to better understand heat transfer and fluid dynamics in such evaporators. First, falling film evaporation is described and compared to pool boiling, to define its main advantages and inconveniences. Then, the literature concerning film around the tubes and between them is analysed, as well as the phenomenon of film breakdown, which sharply deteriorates the heat transfer performance of falling film evaporators. After it, the results from those works that studied analytically and experimentally the heat transfer coefficients (HTCs) with different types of tubes and refrigerants are discussed. The review finishes with a brief summary of important parameters of falling film evaporation, which might be useful for the design of such equipment. - Highlights: •We defined falling film evaporation and compared it with pool boiling. •We reviewed works from the literature concerning refrigerant falling film evaporation. •We classified the ideas from the works attending to crucial aspects of the process. •We developed a summary of the main ideas which could be useful for design purpose

  19. Operational characteristics of miniature loop heat pipe with flat evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Dongxing; Liu, Zhichun; Liu, Wei; Yang, Jinguo [Huazhong University of Science and Technology, School of Energy and Power Engineering, Wuhan, Hubei (China)

    2009-12-15

    Loop heat pipes are heat transfer devices whose operating principle is based on the evaporation and condensation of a working fluid, and which use the capillary pumping forces to ensure the fluid circulation. A series of tests have been carried out with a miniature loop heat pipe (mLHP) with flat evaporator and fin-and-tube type condenser. The loop is made of pure copper with stainless mesh wick and methanol as the working fluid. Detailed study is conducted on the start-up reliability of the mLHP at high as well as low heat loads. During the testing of mLHP under step power cycles, the thermal response presented by the loop to achieve steady state is very short. At low heat loads, temperature oscillations are observed throughout the loop. The amplitudes and frequencies of these fluctuations are large at evaporator wall and evaporator inlet. It is expected that the extent and nature of the oscillations occurrence is dependent on the thermal and hydrodynamic conditions inside the compensation chamber. The thermal resistance of the mLHP lies between 0.29 and 3.2 C/W. The effects of different liquid charging ratios and the tilt angles to the start-up and the temperature oscillation are studied in detail. (orig.)

  20. Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube

    Science.gov (United States)

    Yoon, Jung-In; Son, Chang-Hyo; Jung, Suk-Ho; Jeon, Min-Ju; Yang, Dong-Il

    2017-05-01

    In this paper, the evaporation heat transfer coefficient of carbon dioxide at low temperature of -30 to -20 °C in a horizontal smooth tube was investigated experimentally. The test devices consist of mass flowmeter, pre-heater, magnetic gear pump, test section (evaporator), condenser and liquid receiver. Test section is made of cooper tube. Inner and outer diameter of the test section is 8 and 9.52 mm, respectively. The experiment is conducted at mass fluxes from 100 to 300 kg/m2 s, saturation temperature from -30 to -20 °C. The main results are summarized as follows: In case that the mass flux of carbon dioxide is 100 kg/m2 s, the evaporation heat transfer coefficient is almost constant regardless of vapor quality. In case of 200 and 300 kg/m2 s, the evaporation heat transfer coefficient increases steadily with increasing vapor quality. For the same mass flux, the evaporation heat transfer coefficient increases as the evaporation temperature of the refrigerant decreases. In comparison of heat transfer correlations with the experimental result, the evaporation heat transfer correlations do not predict them exactly. Therefore, more accurate heat transfer correlation than the previous one is required.

  1. Simulation of boiling flow in evaporator of separate type heat pipe with low heat flux

    International Nuclear Information System (INIS)

    Kuang, Y.W.; Wang, Wen; Zhuan, Rui; Yi, C.C.

    2015-01-01

    Highlights: • A boiling flow model in a separate type heat pipe with 65 mm diameter tube. • Nucleate boiling is the dominant mechanism in large pipes at low mass and heat flux. • The two-phase heat transfer coefficient is less sensitive to the total mass flux. - Abstract: The separate type heat pipe heat exchanger is considered to be a potential selection for developing passive cooling spent fuel pool – for the passive pressurized water reactor. This paper simulates the boiling flow behavior in the evaporator of separate type heat pipe, consisting of a bundle of tubes of inner diameter 65 mm. It displays two-phase characteristic in the evaporation section of the heat pipe working in low heat flux. In this study, the two-phase flow model in the evaporation section of the separate type heat pipe is presented. The volume of fluid (VOF) model is used to consider the interaction between the ammonia gas and liquid. The flow patterns and flow behaviors are studied and the agitated bubbly flow, churn bubbly flow are obtained, the slug bubble is likely to break into churn slug or churn froth flow. In addition, study on the heat transfer coefficients indicates that the nucleate boiling is the dominant mechanism in large pipes at low mass and heat flux, with the heat transfer coefficient being less sensitive to the total mass flux

  2. A remote sensing method for estimating regional reservoir area and evaporative loss

    Science.gov (United States)

    Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.; Zhang, Xiaodong

    2017-12-01

    Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. We propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporation volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. This study demonstrates the advantage of combining satellite remote sensing and

  3. Modeling of Evaporation Losses in Sewage Sludge Drying Bed ...

    African Journals Online (AJOL)

    A model for evaporation losses in sewage sludge drying bed was derived from first principles. This model was developed based on the reasoning that the rate at which evaporation is taking place is directly proportional to the instantaneous quantity of water in the sludge. The aim of this work was to develop a model to assist ...

  4. Evaporation equipment with electron beam heating for the evaporation of metals and other conducting materials

    International Nuclear Information System (INIS)

    Mueller, P.

    1977-01-01

    Equipment for the evaporation of metals and other conducting materials by electron beam heating is to be improved by surrou nding the evaporation equipment with a grid, which has a negative voltage compared to the cathode. This achieves the state where the cathode is hit and damaged less by the ions formed, so that its life period is prolonged. (UWI) [de

  5. Evaporation of R134a in a horizontal herringbone microfin tube: heat transfer and pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Wellsandt, S; Vamling, L [Chalmers University of Technology, Gothenburg (Sweden). Department of Chemical Engineering and Environmental Science, Heat and Power Technology

    2005-09-01

    An experimental investigation of in-tube evaporation of R134a has been carried out for a 4 m long herringbone microfin tube with an outer diameter of 9.53 mm. Measured local heat transfer coefficients and pressure losses are reported for evaporation temperatures between -0.7 and 10.1 {sup o}C and mass flow rates between 162 and 366 kg m{sup -2} s{sup -1}. Results from this work are compared to experimental results from literature as well as predicted values from some available helical microfin correlations. Differences in heat transfer mechanisms between helical and herringbone microfin tubes are discussed, as heat transfer coefficients in the investigated herringbone tube tend to peak at lower vapour qualities compared to helical microfins. Correlations developed for helical microfin tubes generally predict experimental values within {+-}30% for vapour qualities below 50%. However, at higher qualities none of the correlations are able to reflect the early peak of heat transfer coefficients. Predicted pressure gradients reproduce measured values in general within {+-}20%. (author)

  6. Evaporation of R407C and R410A in a horizontal herringbone microfin tube: heat transfer and pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Wellsandt, S; Vamling, L [Chalmers University of Technology, Gothenburg (Sweden). Department of Chemical Engineering and Environmental Science, Heat and Power Technology

    2005-09-01

    An experimental investigation of in-tube evaporation of R410A and R407C has been carried out for a 4 m long herringbone microfin tube with an outer diameter of 9.53 mm. Measured local heat transfer coefficients and pressure losses are reported for evaporation temperatures for R410A and R407C between -2.2 and 9.5 {sup o}C and between -5.5 and 13.8 {sup o}C, respectively. Mass flow rates between 162 and 366 kg m{sup -2} s{sup -1} have been investigated. Results from this work are compared to R134a data from an earlier work by the present authors, and also to predicted values from some available helical microfin correlations. Compared to R134a data, heat transfer coefficients for the investigated mixtures are generally lower, especially at low mass flow rates. No major effect of heat flux on heat transfer coefficients was found, with the exception of the high quality region. Predicted heat transfer coefficients from helical microfin correlations strongly overpredict the present data. Global pressure losses are predicted well, even though local deviations are found. (author)

  7. Latent heat transport and microlayer evaporation in nucleate boiling

    International Nuclear Information System (INIS)

    Jawurek, H.H.

    1977-08-01

    Part 1 of this work provides a broad overview and, where possible, a quantitative assessment of the complex physical processes which together constitute the mechanism of nucleate boiling heat transfer. It is shown that under a wide range of conditions the primary surface-to-liquid heat flows within an area of bubble influence are so redistributed as to manifest themselves predominantly as latent heat transport, that is, as vaporisation into attached bubbles. Part 2 deals in greater detail with one of the component processes of latent heat transport, namely microlayer evaporation. A literature review reveals the need for synchronised records of microlayer geometry versus time and of normal bubble growth and departure. An apparatus developed to provide such records is described. High-speed cine interference photography from beneath and through a transparent heating surface provided details of microlayer geometry and an image reflection system synchronised these records with the bubble profile views. Results are given for methanol and ethanol boiling at sub-atmospheric pressures and at various heat fluxes and bulk subcoolings. In all cases it is found that microlayers were of sub-micron thickness, that microlayer thinning was restricted to the inner layer edge (with the thickness elsewhere remaining constant or increasing with time) and that the contribution of this visible evaporation to the total vapour flow into bubbles was negligible. The observation of thickening towards the outer microlayer edge, however, demonstrates that a liquid replenishment flow occurred simultaneously with the evaporation process

  8. Evaporation equipment for the rational measurement of the radioactivity of water; Dispositif d'evaporation pour la mesure rationnelle de la radioactivite de l'eau

    Energy Technology Data Exchange (ETDEWEB)

    Hasenjager, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-07-01

    An apparatus is described whereby the water can be evaporated directly in the radioactive sample holder in which the sample is counted. Rapid evaporation is obtained by the heating of the dish combined with the application of a jet of hot air. Liquid is added to the dish and the heating stopped automatically at the end of evaporation. The speed of evaporation and the Losses in activity as a function of the degree of heating were studied for various substances and different qualities of water (permuted water, tap water, rainwater). Complexones are added to avoid losses of activity. (author) [French] Un ensemble d'appareils permet d'evaporer l'eau directement dans la coupelle de mesure. Le chauffage de la coupelle combine avec l'application d'un jet d'air chaud assure une evaporation rapide. L'alimentation de la coupelle et l'arret du chauffage a la fin de l'evaporation sont automatiques. La vitesse d'evaporation et les pertes d'activite en fonction de l'intensite de chauffage ont ete etudiees pour differents corps et differentes qualites d'eau (eau permutee, eau de ville, eau de pluie). On ajoute des complexons pour eviter des pertes d'activites. (auteur)

  9. Modeling heat loss from the udder of a dairy cow.

    Science.gov (United States)

    Gebremedhin, Kifle G; Wu, Binxin

    2016-07-01

    A mechanistic model that predicts sensible and latent heat fluxes from the udder of a dairy cow was developed. The prediction of the model was spot validated against measured data from the literature, and the result agreed within 7% of the measured value for the same ambient temperature. A dairy cow can lose a significant amount of heat (388W/m(2)) from the udder. This suggests that the udder could be considered as a heat sink. The temperature profile through the udder tissue (core to skin) approached the core temperature for an air temperature ≥37°C whereas the profile decreased linearly from the core to skin surface for an air temperature less than 37°C. Sensible heat loss was dominant when ambient air temperature was less than 37.5°C but latent heat loss was greater than sensible heat loss when air temperature was ≥37.5°C. The udder could lose a total (sensible + latent) heat flux of 338W/m(2) at an ambient temperature of 35°C and blood-flow rate of 3.2×10(-3)m(3)/(sm(3) tissue). The results of this study suggests that, in time of heat stress, a dairy cow could be cooled by cooling the udder only (e.g., using an evaporative cooling jacket). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Development of Falling Film Heat Transfer Coefficient for Industrial Chemical Processes Evaporator Design

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ng, Kim Choon

    2018-01-01

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This chapter presents the heat transfer behaviour for evaporative

  11. Modelling water evaporation during frying with an evaporation dependent heat transfer coefficient

    NARCIS (Netherlands)

    Koerten, van K.N.; Somsen, D.; Boom, R.M.; Schutyser, M.A.I.

    2017-01-01

    In this study a cylindrical crust-core frying model was developed including an evaporation rate dependent heat transfer coefficient. For this, we applied a Nusselt relation for cylindrical bodies and view the release of vapour bubbles during the frying process as a reversed fluidised bed. The

  12. A kinetic model of droplet heating and evaporation: Effects of inelastic collisions and a non-unity evaporation coefficient

    KAUST Repository

    Sazhin, Sergei S.; Xie, Jianfei; Shishkova, Irina N.; Elwardani, Ahmed Elsaid; Heikal, Morgan Raymond

    2013-01-01

    The previously developed kinetic model for droplet heating and evaporation into a high pressure air is generalised to take into account the combined effects of inelastic collisions between molecules in the kinetic region, a non-unity evaporation

  13. Evaporation Loss of Light Elements as a Function of Cooling Rate: Logarithmic Law

    Science.gov (United States)

    Xiong, Yong-Liang; Hewins, Roger H.

    2003-01-01

    Knowledge about the evaporation loss of light elements is important to our understanding of chondrule formation processes. The evaporative loss of light elements (such as B and Li) as a function of cooling rate is of special interest because recent investigations of the distribution of Li, Be and B in meteoritic chondrules have revealed that Li varies by 25 times, and B and Be varies by about 10 times. Therefore, if we can extrapolate and interpolate with confidence the evaporation loss of B and Li (and other light elements such as K, Na) at a wide range of cooling rates of interest based upon limited experimental data, we would be able to assess the full range of scenarios relating to chondrule formation processes. Here, we propose that evaporation loss of light elements as a function of cooling rate should obey the logarithmic law.

  14. Modelling of heating and evaporation of n-Heptane droplets

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    This study is a part of a project that is targeted to optimize the pyrolysis process of biomass pellets for bio-oil production and to develop new technology to upgrade the bio-oil for use in transportation. Among others, study of pyrolysis of the biomass pellets and evaporation of the pyrolysis bio...... and azimuthal directions, respectively, on each of which the flow, heat and mass transfer are numerically solved using the finite volume method. During the transient heating and evaporation process, the interaction between the moving droplets and free-stream flow are properly considered. Droplet dynamics...

  15. Evaporation

    International Nuclear Information System (INIS)

    Delaney, B.T.; Turner, R.J.

    1989-01-01

    Evaporation has long been used as a unit operation in the manufacture of various products in the chemical-process industries. In addition, it is currently being used for the treatment of hazardous wastes such as radioactive liquids and sludges, metal-plating wastes, and other organic and inorganic wastes. Design choice is dependent on the liquid to be evaporated. The three most common types of evaporation equipment are the rising-film, falling-film, and forced-circulation evaporators. The first two rely on boiling heat transfer and the latter relies on flash vaporization. Heat exchangers, flash tanks, and ejectors are common auxiliary equipment items incorporated with evaporator bodies to complete an evaporator system. Properties of the liquid to be evaporated are critical in final selection of an appropriate evaporator system. Since operating costs are a significant factor in overall cost, heat-transfer characteristics and energy requirements are important considerations. Properties of liquids which are critical to the determination of final design include: heat capacity, heat of vaporization, density, thermal conductivity, boiling point rise, and heat-transfer coefficient. Evaporation is an expensive technology, both in terms of capital costs and operating costs. Additionally, mechanical evaporation produces a condensate and a bottoms stream, one or both of which may require further processing or disposal. 3 figs

  16. Numerical study of evaporation in a vertical annulus heated at the inner wall

    International Nuclear Information System (INIS)

    Ben Radhia, R.; Ben Jabrallah, S.; Ben Jabrallah, S.; Corriou, J.P.; Harmand, S.

    2011-01-01

    Mixed convection during evaporation of a water falling film in a vertical concentric annulus was studied numerically. The water thin film falls on the inner tube and is subjected to a constant heat flux density, whereas the outer cylinder is assumed to be insulated and dry. An imposed air flow circulates within the gap between the two concentric tubes. The objective of this work is to understand the evaporation phenomenon in order to improve the average evaporated mass flux density and heat and mass transfer. Conservative equations governing the gas phase are solved numerically using the finite volume method. In the liquid phase, a method based on local heat and mass balances on each level is used. Thus, the following liquid film parameters, feed water mass flow, feed temperature and heat flux density, are taken into account. The obtained results are analyzed to emphasize and evaluate the influence of the previous operating parameters and the annulus curvature on the effective evaporation surface and on the mass flux density of evaporated water. (authors)

  17. An experimental observation of the effect of flow direction for evaporation heat transfer in plate heat exchanger

    International Nuclear Information System (INIS)

    Lin, Yueh-Hung; Li, Guang-Cheng; Yang, Chien-Yuh

    2015-01-01

    This study provides an Infrared Thermal Image observation on the evaporation heat transfer of refrigerant R-410A in plate heat exchanger with various flow arrangement and exit superheat conditions. An experimental method was derived for estimating the superheat region area of two-phase refrigerant evaporation in plate heat exchanger. The experimental results show that the superheat region area for parallel flow is much larger than that for counter flow as that estimated by Yang et al. [9]. There is an early superheated region at the central part of the plate heat exchanger for parallel flow arrangement. This effect is not significant for counter flow arrangement. The Yang et al. [9] method under estimated the superheat area approximately 40%–53% at various flow rates and degree of exit superheat. Even though the flow inside a plate heat exchanger is extremely turbulent because of the chevron flow passages, the assumption of uniform temperature distribution in the cross section normal to the bulk flow direction will cause significant uncertainties for estimating the superheat area for refrigerant evaporating in a plate heat exchanger

  18. Heat transfer in condensation and evaporation. Application to industrial and environmental processes

    Energy Technology Data Exchange (ETDEWEB)

    Marvillet, C [CEA/Grenoble, Dept. de Thermohydraulique et de Physique (DRN-GRETh), 38 (France); Vidil, R [CEA/Saclay, Direction des Technologies Avancees (DTA), 38 - Grenoble (France)

    1999-07-01

    Eurotherm Seminar number 62 objective is to provide a European forum for the presentation and the discussion of recent researches on heat transfer in condensation and evaporation and recent developments relevant to evaporators, condensers technology for: industrial processes; air conditioning and refrigeration processes; environmental processes; food industry processes; cooling processes of electronic or mechanical devices. The following topics are to be addressed: fundamentals of phase with pure fluids and mixtures; enhanced surfaces for improved tubular or plate heat exchangers; advanced methods and software for condenser and evaporator simulation and design; innovative design and concept of heat exchangers. This 2-days Seminar will be interest to a large group of researches and engineers from universities, research centres and industry. (authors)

  19. Heat loss may explain bill size differences between birds occupying different habitats.

    Directory of Open Access Journals (Sweden)

    Russell Greenberg

    Full Text Available Research on variation in bill morphology has focused on the role of diet. Bills have other functions, however, including a role in heat and water balance. The role of the bill in heat loss may be particularly important in birds where water is limiting. Song sparrows localized in coastal dunes and salt marsh edge (Melospiza melodia atlantica are similar in size to, but have bills with a 17% greater surface area than, those that live in mesic habitats (M. m. melodia, a pattern shared with other coastal sparrows. We tested the hypotheses that sparrows can use their bills to dissipate "dry" heat, and that heat loss from the bill is higher in M. m. atlantica than M. m. melodia, which would indicate a role of heat loss and water conservation in selection for bill size.Bill, tarsus, and body surface temperatures were measured using thermal imaging of sparrows exposed to temperatures from 15-37°C and combined with surface area and physical modeling to estimate the contribution of each body part to total heat loss. Song sparrow bills averaged 5-10°C hotter than ambient. The bill of M. m atlantica dissipated up to 33% more heat and 38% greater proportion of total heat than that of M. m. melodia. This could potentially reduce water loss requirements by approximately 7.7%.This >30% higher heat loss in the bill of M. m. atlantica is independent of evaporative water loss and thus could play an important role in the water balance of sparrows occupying the hot and exposed dune/salt marsh environments during the summer. Heat loss capacity and water conservation could play an important role in the selection for bill size differences between bird populations and should be considered along with trophic adaptations when studying variation in bill size.

  20. Analysis of heat transfer in a centrifugal film evaporator

    NARCIS (Netherlands)

    Bruin, S.

    1970-01-01

    Heat transfer in a centrifugal film evaporator with a conical heating surface is analyzed. Two regions of transfer can be distinguished: an entrance region, where the temp. profile in the film develops, and an evapn. region, where \\"surface evapn.\\" takes place. Relations are derived for liq.-film

  1. Effect of the Heat Flux Density on the Evaporation Rate of a Distilled Water Drop

    Directory of Open Access Journals (Sweden)

    Ponomarev Konstantin

    2016-01-01

    Full Text Available This paper presents the experimental dependence of the evaporation rate of a nondeaerated distilled water drop from the heat flux density on the surfaces of non-ferrous metals (copper and brass. A drop was placed on a heated substrate by electronic dosing device. To obtain drop profile we use a shadow optical system; drop symmetry was controlled by a high-speed video camera. It was found that the evaporation rate of a drop on a copper substrate is greater than on a brass. The evaporation rate increases intensively with raising volume of a drop. Calculated values of the heat flux density and the corresponding evaporation rates are presented in this work. The evaporation rate is found to increase intensively on the brass substrate with raising the heat flux density.

  2. New approaches to the modelling of multi-component fuel droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S

    2015-02-25

    The previously suggested quasi-discrete model for heating and evaporation of complex multi-component hydrocarbon fuel droplets is described. The dependence of density, viscosity, heat capacity and thermal conductivity of liquid components on carbon numbers n and temperatures is taken into account. The effects of temperature gradient and quasi-component diffusion inside droplets are taken into account. The analysis is based on the Effective Thermal Conductivity/Effective Diffusivity (ETC/ED) model. This model is applied to the analysis of Diesel and gasoline fuel droplet heating and evaporation. The components with relatively close n are replaced by quasi-components with properties calculated as average properties of the a priori defined groups of actual components. Thus the analysis of the heating and evaporation of droplets consisting of many components is replaced with the analysis of the heating and evaporation of droplets consisting of relatively few quasi-components. It is demonstrated that for Diesel and gasoline fuel droplets the predictions of the model based on five quasi-components are almost indistinguishable from the predictions of the model based on twenty quasi-components for Diesel fuel droplets and are very close to the predictions of the model based on thirteen quasi-components for gasoline fuel droplets. It is recommended that in the cases of both Diesel and gasoline spray combustion modelling, the analysis of droplet heating and evaporation is based on as little as five quasi-components.

  3. Evaporation equipment for the rational measurement of the radioactivity of water; Dispositif d'evaporation pour la mesure rationnelle de la radioactivite de l'eau

    Energy Technology Data Exchange (ETDEWEB)

    Hasenjager, H. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-07-01

    An apparatus is described whereby the water can be evaporated directly in the radioactive sample holder in which the sample is counted. Rapid evaporation is obtained by the heating of the dish combined with the application of a jet of hot air. Liquid is added to the dish and the heating stopped automatically at the end of evaporation. The speed of evaporation and the Losses in activity as a function of the degree of heating were studied for various substances and different qualities of water (permuted water, tap water, rainwater). Complexones are added to avoid losses of activity. (author) [French] Un ensemble d'appareils permet d'evaporer l'eau directement dans la coupelle de mesure. Le chauffage de la coupelle combine avec l'application d'un jet d'air chaud assure une evaporation rapide. L'alimentation de la coupelle et l'arret du chauffage a la fin de l'evaporation sont automatiques. La vitesse d'evaporation et les pertes d'activite en fonction de l'intensite de chauffage ont ete etudiees pour differents corps et differentes qualites d'eau (eau permutee, eau de ville, eau de pluie). On ajoute des complexons pour eviter des pertes d'activites. (auteur)

  4. 24 CFR 3280.506 - Heat loss/heat gain.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heat loss/heat gain. 3280.506... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat loss/heat gain shall be determined by methods outlined in...

  5. Thermoregulation and evaporative water loss in growing African ...

    African Journals Online (AJOL)

    Kalahari Gemsbok National Park, Private Bag X5890, Upington, 8800 Republic of South AfricaWith an increase in mass, weaned giant rat pups Cricetomys gambianus, showed a corresponding decline in mass specific metabolism, conductance and evaporative water loss. The decline in metabolism correlates better with ...

  6. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    Science.gov (United States)

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here.

  7. Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2015-12-01

    Full Text Available The evaporator is an important component in the Organic Rankine Cycle (ORC-based Waste Heat Recovery (WHR system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.

  8. Effect of evaporation section and condensation section length on thermal performance of flat plate heat pipe

    International Nuclear Information System (INIS)

    Wang Shuangfeng; Chen Jinjian; Hu Yanxin; Zhang Wei

    2011-01-01

    Flat plate heat pipes (FPHPs) are one of the available technologies to deal with the high density electronic cooling problem due to their high thermal conductivity, reliability, and low weight penalty. A series of experiments were performed to investigate the effect of evaporation and condensation length on thermal performance of flat plate heat pipes. In the experiments, the FPHP had heat transfer length of 255 mm and width of 25 mm, and pure water was used as the working fluid. The results show that comparing to vapor chamber, the FPHP could realize long-distance heat transfer; comparing to the traditional heat pipe, the FPHP has large area contact with heat sources; the thermal resistance decreased and the heat transfer limit increased with the increase of evaporation section length; the FPHP would dry out at a lower heating power with the increase of condensation section length, which indicated that the heat transfer limit decreased, but the evaporator temperature also decreased; when the condensation section length approached to evaporation section length, the FPHP had a better thermal performance. - Highlights: → A strip sintered FPHP is proposed and tested. → The total heat transfer length reaches 255 mm → The efficiency of heat transport reaches 94.4%. → When the condensation section length approached to evaporation section length, the FPHP has better overall performance.

  9. Analysis of the heat transfer and friction factor correlations influence in the prediction of evaporating flows inside tubes

    Energy Technology Data Exchange (ETDEWEB)

    Raush, G.; Rigola, J.; Morales-Ruiz, S.; Oliva, A.; Perez-Segarra, C.D. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), ETSEIAT, C. Colom 11, 08222 Terrassa (Barcelona) (Spain)

    2009-11-15

    A methodology for analysing the influence of the heat transfer and friction factor correlations in the prediction of the two-phase flows inside horizontal ducts under evaporation phenomena is presented. An experimental unit based on single stage vapor compression refrigerating system with two parallel evaporation devices has been built to work under real refrigeration conditions. The first evaporation device consists of a double pipe evaporator which allows determining the heat flux through the pipe. The second device is an electrically heated pipe evaporator with uniformly distributed temperature and pressure sensors along the fluid path. The experimental data of temperature and pressure distribution along the smooth heated duct is compared with a selected set of heat transfer and friction factor correlations through a detailed numerical evaporation model. The aim of this paper is to determine possible criteria to select the most suitable heat transfer and friction factor correlations available. (author)

  10. Heat enhancement of radiation resistivity of evaporated CsI, KI and KBr photocathodes

    CERN Document Server

    Tremsin, A S

    2000-01-01

    The photoemissive stability of as-deposited and heat-treated CsI, KI and KBr evaporated thin films under UV radiation is examined in this paper. After the deposition, some photocathodes were annealed for several hours at 90 deg. C in vacuum and their performance was then compared to the performance of non-heated samples. We observed that the post-evaporation thermal treatment not only increases the photoyield of CsI and KI photocathodes in the spectral range of 115-190 nm, but also reduces CsI, KI and KBr photocurrent degradation that occurs after UV irradiation. KBr evaporated layers appeared to be more radiation-resistant than CsI and KI layers. Post-deposition heat treatment did not result in any significant variation of KBr UV sensitivity.

  11. Development of Falling Film Heat Transfer Coefficient for Industrial Chemical Processes Evaporator Design

    KAUST Repository

    Shahzad, Muhammad Wakil

    2018-03-07

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This chapter presents the heat transfer behaviour for evaporative film boiling on horizontal tubes, but working at low pressures of 0.93–3.60 kPa as well as seawater salinity of 15,000–90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling at these conditions, the chapter is motivated by the importance of evaporative film-boiling in the process industries. It is observed that in addition to the above-mentioned parameters, evaporative heat transfer of seawater is affected by the emergence of micro-bubbles within the thin film layer, particularly when the liquid saturation temperatures drop below 25°C (3.1 kPa). Such micro-bubbles are generated near to the tube wall surfaces, and they enhanced the heat transfer by two or more folds when compared with the predictions of conventional evaporative film-boiling. The appearance of micro-bubbles is attributed to the rapid increase in the specific volume of vapour, i.e. dv/dT, at low saturation temperature conditions. A new correlation is thus proposed in this chapter and it shows good agreement to the measured data with an experimental uncertainty less than ±8%.

  12. Use of Artificial Neural Networks for Prediction of Convective Heat Transfer in Evaporative Units

    Directory of Open Access Journals (Sweden)

    Romero-Méndez Ricardo

    2014-01-01

    Full Text Available Convective heat transfer prediction of evaporative processes is more complicated than the heat transfer prediction of single-phase convective processes. This is due to the fact that physical phenomena involved in evaporative processes are very complex and vary with the vapor quality that increases gradually as more fluid is evaporated. Power-law correlations used for prediction of evaporative convection have proved little accuracy when used in practical cases. In this investigation, neural-network-based models have been used as a tool for prediction of the thermal performance of evaporative units. For this purpose, experimental data were obtained in a facility that includes a counter-flow concentric pipes heat exchanger with R134a refrigerant flowing inside the circular section and temperature controlled warm water moving through the annular section. This work also included the construction of an inverse Rankine refrigeration cycle that was equipped with measurement devices, sensors and a data acquisition system to collect the experimental measurements under different operating conditions. Part of the data were used to train several neural-network configurations. The best neural-network model was then used for prediction purposes and the results obtained were compared with experimental data not used for training purposes. The results obtained in this investigation reveal the convenience of using artificial neural networks as accurate predictive tools for determining convective heat transfer rates of evaporative processes.

  13. Influence of heat consumers distribution and flashing vapours effect on steam consumption of evaporation plant of sugar factory

    Directory of Open Access Journals (Sweden)

    A. A. Gromkovskii

    2016-01-01

    Full Text Available The article considered the influence of the heat consumers distribution and the flashing vapours effect juice for multipleevaporator sugar factory on the consumption the main production flow of heat transfer agent – water vapor. The problem of rational distribution of heat transfer agent for of the corps multiple-evaporator is relevant from point of view of energy saving and energysaving heat of the sugar factory. The solution to this problem is advantageously carried out on the basis of quantitative mathematical description of the distribution of vapor on the corps of the evaporation plant. The heat consumers distribution should be based on technical and economic calculation. To solve this problem it is advisable to use a single equation that determines the dependence of the steam flow in the first unit evaporator on the amount of evaporated water and the method of heat consumers distribution for housing. Evaporators sugar factory has two functions – technology and heat, each of which is described by its equation. On the basis of the material and heat balance equations for the realization of the basic functions of the system evaporator written multipleevaporator equations. The solution of this system allows you to obtain the equation of the steam flow and the amount of evaporated water, taking into account the flashing vapours effect. Solution of the system should take into account the accepted design standards of sugar factories. As a result of solving the system of equation is obtained, which allows you to organize and optimize the heat consumers distribution of the corps evaporator. The equation can be used for any number of units evaporator. This equation allows you to assess the efficiency of the evaporation plant of a sugar factory. This is of great practical importance in the modernization of thermal schemes of sugar factories.

  14. Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat.

    Science.gov (United States)

    Kondjoyan, Alain; Oillic, Samuel; Portanguen, Stéphane; Gros, Jean-Bernard

    2013-10-01

    A heat transfer model was used to simulate the temperature in 3 dimensions inside the meat. This model was combined with a first-order kinetic models to predict cooking losses. Identification of the parameters of the kinetic models and first validations were performed in a water bath. Afterwards, the performance of the combined model was determined in a fan-assisted oven under different air/steam conditions. Accurate knowledge of the heat transfer coefficient values and consideration of the retraction of the meat pieces are needed for the prediction of meat temperature. This is important since the temperature at the center of the product is often used to determine the cooking time. The combined model was also able to predict cooking losses from meat pieces of different sizes and subjected to different air/steam conditions. It was found that under the studied conditions, most of the water loss comes from the juice expelled by protein denaturation and contraction and not from evaporation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Heat transfer of a helical double-pipe vertical evaporator: Theoretical analysis and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Colorado-Garrido, D.; Santoyo-Castelazo, E. [Posgrado en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001. Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico); Hernandez, J.A.; Siqueiros, J.; Juarez-Romero, D. [Centro de Investigacion en Ingenieria y Ciencia Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001. Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico); Garcia-Valladares, O. [Centro de Investigacion en Energia (CIE), Universidad Nacional Autonoma de Mexico(UNAM), Privada Xochicalco S/N, Temixco, 62580 Morelos (Mexico)

    2009-07-15

    A predictive model is developed to describe heat transfer and fluid dynamic behavior of a helical double-pipe vertical evaporator used in an absorption heat transformer integrated to a water purification process. The evaporator uses water as working fluid connected in countercurrent. Heat transfer by conduction in the internal tube wall is considered; in addition the change of phase is carried out into the internal tube. The dynamic model considers equations of continuity, momentum and energy in each flow. The discretized governing equations are coupled using an implicit step by step method. The results of this model are compared with the experimental data in steady state, obtaining good agreement in the evaporation process. The model is also evaluated of form dynamic to determine the principal operation variables that affect the evaporator with the main objective to optimize and control the system. (author)

  16. The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Xu

    2012-03-01

    Full Text Available The subcritical Organic Rankine Cycle (ORC with 28 working fluids for waste heat recovery is discussed in this paper. The effects of the temperature of the waste heat, the critical temperature of working fluids and the pinch temperature difference in the evaporator on the optimal evaporation temperature (OET of the ORC have been investigated. The second law efficiency of the system is regarded as the objective function and the evaporation temperature is optimized by using the quadratic approximations method. The results show that the OET will appear for the temperature ranges investigated when the critical temperatures of working fluids are lower than the waste heat temperatures by 18 ± 5 K under the pinch temperature difference of 5 K in the evaporator. Additionally, the ORC always exhibits the OET when the pinch temperature difference in the evaporator is raised under the fixed waste heat temperature. The maximum second law efficiency will decrease with the increase of pinch temperature difference in the evaporator.

  17. Sensible heat balance measurements of soil water evaporation beneath a maize canopy

    Science.gov (United States)

    Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...

  18. Rapid heating evaporation of Pb(NO3)2. Evidence for heterogeneous ion-molecule reactions

    International Nuclear Information System (INIS)

    Radus, T.P.; Udseth, H.R.; Friedman, L.

    1979-01-01

    A mass spectrometric investigation of the lead nitrate system is reported in which the lead nitrate was evaporated from a probe filament that was heated as rapidly as 5000 0 C/s. Both electron impact (EI) and chemical ionization (CI) source techniques were used in this study. Fragment ions and decomposition products were observed under EI conditions. Under CI conditions solvated fragment ions and protonated solvated molecular ions were detected. Temperature measurements of rates of evaporation were made by monitoring the resistance of the probe filament as it was heated. Activation energies calculated by using these temperature coefficients of evaporation rates indicate that evaporations under CI conditions are assisted by heterogeneous ion-molecule reactions

  19. Modeling of Heating and Evaporation of FACE I Gasoline Fuel and its Surrogates

    KAUST Repository

    Elwardani, Ahmed Elsaid

    2016-04-05

    The US Department of Energy has formulated different gasoline fuels called \\'\\'Fuels for Advanced Combustion Engines (FACE)\\'\\' to standardize their compositions. FACE I is a low octane number gasoline fuel with research octane number (RON) of approximately 70. The detailed hydrocarbon analysis (DHA) of FACE I shows that it contains 33 components. This large number of components cannot be handled in fuel spray simulation where thousands of droplets are directly injected in combustion chamber. These droplets are to be heated, broken-up, collided and evaporated simultaneously. Heating and evaporation of single droplet FACE I fuel was investigated. The heating and evaporation model accounts for the effects of finite thermal conductivity, finite liquid diffusivity and recirculation inside the droplet, referred to as the effective thermal conductivity/effective diffusivity (ETC/ED) model. The temporal variations of the liquid mass fractions of the droplet components were used to characterize the evaporation process. Components with similar evaporation characteristics were merged together. A representative component was initially chosen based on the highest initial mass fraction. Three 6 components surrogates, Surrogate 1-3, that match evaporation characteristics of FACE I have been formulated without keeping same mass fractions of different hydrocarbon types. Another two surrogates (Surrogate 4 and 5) were considered keeping same hydrocarbon type concentrations. A distillation based surrogate that matches measured distillation profile was proposed. The calculated molar mass, hydrogen-to-carbon (H/C) ratio and RON of Surrogate 4 and distillation based one are close to those of FACE I.

  20. The Misselhorn Cycle: Batch-Evaporation Process for Efficient Low-Temperature Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Moritz Gleinser

    2016-05-01

    Full Text Available The concept of the Misselhorn cycle is introduced as a power cycle that aims for efficient waste heat recovery of temperature sources below 100 °C. The basic idea shows advantages over a standard Organic Rankine Cycle (ORC in overall efficiency and utilization of the heat source. The main characteristic of this cycle is the use of at least three parallel batch evaporators instead of continuous heat exchangers. The operational phases of the evaporators are shifted so that there is always one vaporizer in discharge mode. A transient MATLAB® model (The MathWorks: Natick, MA, USA is used to simulate the achievable performance of the Misselhorn cycle. The calculations of the thermodynamic states of the system are based on the heat flux, the equations for energy conservation and the equations of state found in the NIST Standard Reference Database 23 (Reference Fluid Thermodynamic and Transport Properties - REFPROP, National Institute of Standards and Technology: Gaithersburg, MD, USA. In the isochoric batch evaporation, the pressure and the corresponding boiling temperature rise over time. With a gradually increasing boiling temperature, no pinch point limitation occurs. Furthermore, the heat source medium is passed through the evaporators in serial order to obtain a quasi-counter flow setup. It could be shown that these features offer the possibility to gain both high thermal efficiencies and an enhanced utilization of the heat source at the same time. A basic model with a fixed estimated heat transfer coefficient promises a possible system exergy efficiency of 44.4%, which is an increase of over 60% compared to a basic ORC with a system exergy efficiency of only 26.8%.

  1. Performance investigation of advanced adsorption desalination cycle with condenser-evaporator heat recovery scheme

    KAUST Repository

    Thu, Kyaw; Kim, Youngdeuk; Myat, Aung; Chakraborty, Anutosh; Ng, K. C.

    2013-01-01

    Energy or heat recovery schemes are keys for the performance improvement of any heat-activated cycles such as the absorption and adsorption cycles. We present two innovative heat recovery schemes between the condensing and evaporating units

  2. Urban evaporation rates for water-permeable pavements.

    Science.gov (United States)

    Starke, P; Göbel, P; Coldewey, W G

    2010-01-01

    In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.

  3. Modelling and performance of heat pipes with long evaporator sections

    Science.gov (United States)

    Wits, Wessel W.; te Riele, Gert Jan

    2017-11-01

    This paper presents a planar cooling strategy for advanced electronic applications using heat pipe technology. The principle idea is to use an array of relatively long heat pipes, whereby heat is disposed to a long section of the pipes. The proposed design uses 1 m long heat pipes and top cooling through a fan-based heat sink. Successful heat pipe operation and experimental performances are determined for seven heating configurations, considering active bottom, middle and top sections, and four orientation angles (0°, 30°, 60° and 90°). For all heating sections active, the heat pipe oriented vertically in an evaporator-down mode and a power input of 150 W, the overall thermal resistance was 0.014 K/W at a thermal gradient of 2.1 K and an average operating temperature of 50.7 °C. Vertical operation showed best results, as can be expected; horizontally the heat pipe could not be tested up to the power limit and dry-out occurred between 20 and 80 W depending on the heating configuration. Heating configurations without the bottom section active demonstrated a dynamic start-up effect, caused by heat conduction towards the liquid pool and thereafter batch-wise introducing the working fluid into the two-phase cycle. By analysing the heat pipe limitations for the intended operating conditions, a suitable heat pipe geometry was chosen. To predict the thermal performance a thermal model using a resistance network was created. The model compares well with the measurement data, especially for higher input powers. Finally, the thermal model is used for the design of a 1 kW planar system-level electronics cooling infrastructure featuring six 1 m heat pipes in parallel having a long ( 75%) evaporator section.

  4. Indirect evaporative coolers with enhanced heat transfer

    Science.gov (United States)

    Kozubal, Eric; Woods, Jason; Judkoff, Ron

    2015-09-22

    A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.

  5. Evaporation at microscopic scale and at high heat flux

    International Nuclear Information System (INIS)

    Janecek, V.

    2012-01-01

    This thesis theoretically investigates the transport processes in the vicinity of the triple gas-liquid-solid contact line and its impact on macroscopic evaporation. In the first part of the thesis, the hydrodynamics close to the contact line at partial wetting is studied. Specifically, evaporation into the atmosphere of pure vapor driven by heating of the substrate is considered. The question of singularity relaxation is addressed. The main finding of the thesis is that the Kelvin effect (dependence of saturation temperature on pressure) is sufficient by itself to relax the hydrodynamic contact line singularity. The proposed microregion (the contact line vicinity) model for small interface slopes is solved numerically. Asymptotic solutions are found for some specific cases. The governing length scales of the problem are identified and the multi-scale nature of the phenomenon is addressed. Parametric studies revealing the role of the thermal resistance of vapor-liquid interface, slip length, thermo-capillary term, the vapor recoil and surface forces are also performed. An extension of the lubrication approximation for high slopes of the gas-liquid interface at evaporation is discussed. In the second part of the thesis, the previously established microregion model is coupled to a simplified single vapor bubble growth numerical simulation. The bubble departure from the heater at boiling is also studied. It was proposed in the thesis, that under high heat loads, the increase of the apparent contact angle causes the vapor bubble to spread over the heated substrate. Such a behavior may cause the heater dry-out that occurs during the boiling crisis. (author) [fr

  6. Evaporating heat transfer of R22 and R410A in horizontal smooth and microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man-Hoe; Shin, Joeng-Seob [Korea Advanced Institute of Science and Technology, Daejeon (Korea). Department of Mechanical Engineering

    2005-09-01

    An experimental investigation of evaporating heat transfer in 9.52 mm O.D. horizontal copper tubes was conducted. The refrigerants tested were R22 and the near-azeotropic mixture, R410A. The test rig had a straight, horizontal test section with an active length of 0.92 m and was heated by the heat transfer fluid (hot water) circulated in a surrounding annulus. Constant heat flux of 11.0 kW/m{sup 2} was maintained and refrigerant quality varied from 0.2 to 0.8.. The results were reported for evaporation at 15 {sup o}C in a 0.92 m long test section for 30-60 kg/h mass flow rate. The local and average heat transfer coefficients for seven microfin tubes were presented compared to those for a smooth tube. The average evaporation heat transfer coefficients of R22 and R410A for the microfin tubes were 1.86-3.27 and 1.64-2.99 times higher than those for the smooth tube, respectively. When compared to R22 at the same test conditions, the evaporating heat transfer coefficients for R410A were 97-129% of R22. (author)

  7. Streamer Evaporation

    Science.gov (United States)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  8. Heat transfer characteristics for evaporation of R417A flowing inside horizontal smooth and internally grooved tubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoyan, Zhang [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China); School of Energy Engineering, Xi' an University of Science and Technology, 58 Yanta Street, Xi' an, Shaanxi 710054 (China)], E-mail: gqzxy@sohu.com; Xingqun, Zhang; Yunguang, Chen; Xiuling, Yuan [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)

    2008-06-15

    The experimental study on evaporation heat transfer of R417A (R125/R134a/R600) flowing inside horizontal smooth and two internally grooved tubes with different geometrical parameters was conducted with the mass flow rate range from 176 to 344 kg m{sup -2} s{sup -1}, heat flux from 11 to 32 kW m{sup -2}, evaporation temperature from 0 to 5.5 deg. C and vapor quality from 0.2 to 1. Based on the experimental results, the mechanism and role of the mass flow rate, heat flux, vapor quality and enhanced surface influencing the evaporation heat transfer coefficients were analyzed and discussed. In comparison to R22, the evaporation heat transfer coefficients for R417A were lower and much lower in the internally grooved tubes than in the smooth tube. The present experimental results are also compared with the existing correlations, and the modified Kattan model is found to be in much better agreement with the experimental results than the Kattan model. The Koyama and Wellsandt microfin models all tend to over predict the evaporation heat transfer coefficients rather strongly for R417A inside internally grooved tubes.

  9. Heat transfer characteristics for evaporation of R417A flowing inside horizontal smooth and internally grooved tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyan [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China); School of Energy Engineering, Xi' an University of Science and Technology, 58 Yanta Street, Xi' an, Shaanxi 710054 (China); Zhang, Xingqun; Chen, Yunguang; Yuan, Xiuling [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)

    2008-06-15

    The experimental study on evaporation heat transfer of R417A (R125/R134a/R600) flowing inside horizontal smooth and two internally grooved tubes with different geometrical parameters was conducted with the mass flow rate range from 176 to 344 kg m{sup -2} s{sup -1}, heat flux from 11 to 32 kW m{sup -2}, evaporation temperature from 0 to 5.5{sup o}C and vapor quality from 0.2 to 1. Based on the experimental results, the mechanism and role of the mass flow rate, heat flux, vapor quality and enhanced surface influencing the evaporation heat transfer coefficients were analyzed and discussed. In comparison to R22, the evaporation heat transfer coefficients for R417A were lower and much lower in the internally grooved tubes than in the smooth tube. The present experimental results are also compared with the existing correlations, and the modified Kattan model is found to be in much better agreement with the experimental results than the Kattan model. The Koyama and Wellsandt microfin models all tend to over predict the evaporation heat transfer coefficients rather strongly for R417A inside internally grooved tubes. (author)

  10. Heat transfer characteristics for evaporation of R417A flowing inside horizontal smooth and internally grooved tubes

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Zhang Xingqun; Chen Yunguang; Yuan Xiuling

    2008-01-01

    The experimental study on evaporation heat transfer of R417A (R125/R134a/R600) flowing inside horizontal smooth and two internally grooved tubes with different geometrical parameters was conducted with the mass flow rate range from 176 to 344 kg m -2 s -1 , heat flux from 11 to 32 kW m -2 , evaporation temperature from 0 to 5.5 deg. C and vapor quality from 0.2 to 1. Based on the experimental results, the mechanism and role of the mass flow rate, heat flux, vapor quality and enhanced surface influencing the evaporation heat transfer coefficients were analyzed and discussed. In comparison to R22, the evaporation heat transfer coefficients for R417A were lower and much lower in the internally grooved tubes than in the smooth tube. The present experimental results are also compared with the existing correlations, and the modified Kattan model is found to be in much better agreement with the experimental results than the Kattan model. The Koyama and Wellsandt microfin models all tend to over predict the evaporation heat transfer coefficients rather strongly for R417A inside internally grooved tubes

  11. Targeting the maximum heat recovery for systems with heat losses and heat gains

    International Nuclear Information System (INIS)

    Wan Alwi, Sharifah Rafidah; Lee, Carmen Kar Mun; Lee, Kim Yau; Abd Manan, Zainuddin; Fraser, Duncan M.

    2014-01-01

    Graphical abstract: Illustration of heat gains and losses from process streams. - Highlights: • Maximising energy savings through heat losses or gains. • Identifying location where insulation can be avoided. • Heuristics to maximise heat losses or gains. • Targeting heat losses or gains using the extended STEP technique and HEAT diagram. - Abstract: Process Integration using the Pinch Analysis technique has been widely used as a tool for the optimal design of heat exchanger networks (HENs). The Composite Curves and the Stream Temperature versus Enthalpy Plot (STEP) are among the graphical tools used to target the maximum heat recovery for a HEN. However, these tools assume that heat losses and heat gains are negligible. This work presents an approach that considers heat losses and heat gains during the establishment of the minimum utility targets. The STEP method, which is plotted based on the individual, as opposed to the composite streams, has been extended to consider the effect of heat losses and heat gains during stream matching. Several rules to guide the proper location of pipe insulation, and the appropriate procedure for stream shifting have been introduced in order to minimise the heat losses and maximise the heat gains. Application of the method on two case studies shows that considering heat losses and heat gains yield more realistic utility targets and help reduce both the insulation capital cost and utility cost of a HEN

  12. A kinetic model of droplet heating and evaporation: Effects of inelastic collisions and a non-unity evaporation coefficient

    KAUST Repository

    Sazhin, Sergei S.

    2013-01-01

    The previously developed kinetic model for droplet heating and evaporation into a high pressure air is generalised to take into account the combined effects of inelastic collisions between molecules in the kinetic region, a non-unity evaporation coefficient and temperature gradient inside droplets. It is pointed out that for the parameters typical for Diesel engine-like conditions, the heat flux in the kinetic region is a linear function of the vapour temperature at the outer boundary of this region, but practically does not depend on vapour density at this boundary for all models, including and not including the effects of inelastic collisions, and including and not including the effects of a non-unity evaporation coefficient. For any given temperature at the outer boundary of the kinetic region the values of the heat flux are shown to decrease with increasing numbers of internal degrees of freedom of the molecules. The rate of this decrease is strong for small numbers of these degrees of freedom but negligible when the number of these degrees exceeds 20. This allows us to restrict the analysis to the first 20 arbitrarily chosen degrees of freedom of n-dodecane molecules when considering the effects of inelastic collisions. The mass flux at this boundary decreases almost linearly with increasing vapour density at the same location for all above-mentioned models. For any given vapour density at the outer boundary of the kinetic region the values of the mass flux are smaller for the model, taking into account the contribution of internal degrees of freedom, than for the model ignoring these degrees of freedom. It is shown that the effects of inelastic collisions lead to stronger increase in the predicted droplet evaporation time in Diesel engine-like conditions relative to the hydrodynamic model, compared with the similar increase predicted by the kinetic model considering only elastic collisions. The effects of a non-unity evaporation coefficient are shown to be

  13. Simulation of Patterned Glass Film Formation in the Evaporating Colloidal Liquid under IR Heating

    Science.gov (United States)

    Kolegov, K. S.

    2018-02-01

    The paper theoretically studies the method of evaporative lithography in combination with external infrared heating. This method makes it possible to form solid microstructures of the required relief shape as a result of evaporation of the liquid film of the colloidal solution under the mask. The heated particles are sintered easier, so there are no cracks in the obtained structure, unlike the structure obtained employing the standard method of evaporative lithography. The paper puts forward a modification of the mathematical model which allows to describe not only heat and mass transfer at the initial stage of the process, but also the phase transition of colloidal solution into glass. Aqueous latex is taken as an example. The resulting final form of solid film is in good agreement with the experimental data of other authors.

  14. Improving the Efficiency of the Heat Pump Control System of Carbon Di-oxide Heat Pump with Several Evaporators and Gas Coolers

    OpenAIRE

    Sit, M.L.; Juravliov, A.A.; Sit, B.M.; Timchenko, D.

    2016-01-01

    The problem of coordination of the values of the refrigerant flow through the evaporators and gas coolers of the heat pump for the simultaneous production of heat and cold is studied. The compensation of the variations of the total flow through the evaporators is implemented using the variation of the capacity of the compressor and a corresponding change in flow through the auxiliary gas cooler of the heat pump. Control system of this gas cooler is constructed using the invariance principle o...

  15. Effects of the generator and evaporator temperature differences on a double absorption heat transformer—Different control strategies on utilizing heat sources

    International Nuclear Information System (INIS)

    Wang, Hanzhi; Li, Huashan; Bu, Xianbiao; Wang, Lingbao

    2017-01-01

    Highlights: • Effects of the GETD on the DAHT system performance are analyzed. • Three different configurations are compared in detail. • Suggestions on the heat source control strategies are given. - Abstract: The combination of the absorption heat transformer with renewable energy systems, like solar thermal systems, is raising more and more concern. In those combined systems the strategies on utilizing heat sources can affect system thermodynamic performance significantly. Therefore, this study presents a detailed analysis on the effect of the heat source temperature and different heat source flow patterns on the performance of a double absorption heat transformer (DAHT). A detailed comparative study is carried out to clarify the impact of the generator and evaporator temperature differences (GETD) on the coefficient of performance (COP), exergy efficient (ECOP), exergy destruction rates in the individual components and heat transfer areas needed for each component. The results show that the generator, condenser and absorber-evaporator are responsible for most of the exergy destruction rate in the DAHT system; the parallel-flow configuration (the generator temperature is equal to the evaporator temperature) performs better under the high gross temperature lift conditions; in the case of the counter-flow configuration (the generator temperature is relatively higher), better performance can be obtained in both the COP and ECOP under the proper heat source temperature (85 and 95 °C); the fair-flow configuration (higher temperature in the evaporator) is not recommended in this paper due to no advantages found in either thermodynamic performance or system size.

  16. Increase of the efficiency of heat pumps by partial defrosting of evaporator during the heating operation; Effizienzsteigerung von Waermepumpen durch partielle Verdampferabtauung waehrend des Heizbetriebs

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Gunda; Thybo, Claus [Danfoss A/S, Nordborg (Denmark)

    2011-07-01

    At low ambient temperatures, the evaporation temperature in air-to-water heat pumps may fall below the freezing point of water; the water content of the air will then form a frost layer on the outside of the heat exchanger. This increases the pressure drop on the air side and reduces the heat transfer capacity, i.e. the energy efficiency of the system. Finally, if operation in these conditions continues, the evaporator may freeze in parts or even wholly. In order to prevent failure and damage, regular defrosting will be necessary. One common method is the reversal of the coolant flow by leading hot gas into the evaporator from the condenser. Apart from the loss of efficiency, this will incur material problems and, in some cases, loss of comfort. Partial thawing attempts to reduce or avoid flow reversal by deactivating evaporator lines one at a time in order to enable thawing by air flow, while the other parts of the evaporator will continue operation. This is made possible by a special type of valve that combines expansion and distribution for selective operation of individual evaporator tubes. Using a mathematical model, details of the method are presented and discussed. Experiments on air-to-air heat pumps show that the whole system can be defrosted this way in standard operating conditions with air temperatures above freezing point, so that flow reversal will not be necessary. [German] Bei niedrigen Aussentemperaturen kann die Verdampfungstemperatur in Luft-Waermepumpen unter den Gefrierpunkt von Wasser fallen, der Wassergehalt der Luft bildet dann auf der Aussenseite des Waermeuebertragers eine Frostschicht. Dies fuehrt zu einem erhoehten luftseitigen Druckabfall und reduzierter Waermeuebertragungsleistung des Verdampfers und mindert folglich die Energieeffizienz des Systems. Bei andauerndem Betrieb schliesslich kann der Verdampfer gaenzlich oder in grossen Bereichen zufrieren. Um einen Ausfall oder gar eine Beschaedigung der Anlage zu verhindern, muss daher

  17. Results from evaporation tests to support the MWTF heat removal system design

    International Nuclear Information System (INIS)

    Crea, B.A.

    1994-01-01

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system

  18. Fundamental basis and implementation of shell and tube heat exchanger project design: condenser and evaporator study

    Science.gov (United States)

    Dalkilic, A. S.; Acikgoz, O.; Tapan, S.; Wongwises, S.

    2016-12-01

    A shell and tube heat exchanger is used as a condenser and an evaporator in this theoretical study. Parametric performance analyses for various actual refrigerants were performed using well-known correlations in open sources. Condensation and evaporation were occurred in the shell side while the water was flowing in the tube side of heat exchanger. Heat transfer rate from tube side was kept constant for condenser and evaporator design. Condensing temperatures were varied from 35 to 60 °C whereas evaporating temperatures were ranging from -15 to 10 °C for the refrigerants of R12, R22, R134a, R32, R507A, R404A, R502, R407C, R152A, R410A and R1234ZE. Variation of convective heat transfer coefficients of refrigerants, total heat transfer coefficients with Reynolds numbers and saturation temperatures were given as validation process considering not only fouling resistance and omission of it but also staggered (triangular) and line (square) arrangements. The minimum tube lengths and necessary pumping powers were calculated and given as case studies for the investigated refrigerants considering validation criteria. It was understood that refrigerant type, fouling resistance and arrangement type are one of the crucial issues regarding the determination of heat exchanger's size and energy consumption. Consequently, R32 and R152a were found to require the shortest tube length and lowest pumping power in the condenser, whereas R507 and R407C have the same advantages in the evaporator. Their heat transfer coefficients were also determined larger than others as expectedly.

  19. Heat transfer from the evaporator outlet to the charge of thermostatic expansion valves

    DEFF Research Database (Denmark)

    Langmaack, Lasse Nicolai; Knudsen, Hans-Jørgen Høgaard

    2006-01-01

    outlet with a special mounting strap. The heat transfer is quite complex because it takes place both directly through the contact points between bulb and pipe and indirectly through the mounting strap The TXV has to react to temperature changes at the evaporator outlet. Therefore, the dynamic behavior...... of the valve (and thereby the whole refrigeration system) depends greatly on the heat transfer between the evaporator outlet tube and the charge in the bulb. In this paper a model for the overall heat transfer between the pipe and the charge is presented. Geometrical data and material properties have been kept...... been found to predict the time constant for the temperature development in the bulb within 1-10 %. Furthermore it has been found that app. 20% of the heat transfer takes place trough the mounting strap....

  20. A study on heat transfer through the fin-wick structure mounted in the evaporator for a plate loop heat pipe system

    International Nuclear Information System (INIS)

    Nguyen, Xuan Hung; Sung, Byung Ho; Choi, Jee Hoon; Kim, Chul Ju; Yoo, Jung Hyung; Seo, Min Whan

    2008-01-01

    This paper investigates the plate loop heat pipe system with an evaporator mounted with fin-wick structure to dissipate effectively the heat generated by the electronic components. The heat transfer formulation is modeled and predicted through thermal resistance analysis of the fin-wick structure in the evaporator. The experimental approach measures the thermal resistances and the operating characteristics. These results gathered in this investigation have been used to the objective of the information to improve the LHP system design so as to apply as the future cooling devices of the electronic components

  1. New Correlation Methods of Evaporation Heat Transfer in Horizontal Microfine Tubes

    Science.gov (United States)

    Makishi, Osamu; Honda, Hiroshi

    A stratified flow model and an annular flow model of evaporation heat transfer in horizontal microfin tubes have been proposed. In the stratified flow model, the contributions of thin film evaporation and nucleate boiling in the groove above a stratified liquid were predicted by a previously reported numerical analysis and a newly developed correlation, respectively. The contributions of nucleate boiling and forced convection in the stratified liquid region were predicted by the new correlation and the Carnavos equation, respectively. In the annular flow model, the contributions of nucleate boiling and forced convection were predicted by the new correlation and the Carnavos equation in which the equivalent Reynolds number was introduced, respectively. A flow pattern transition criterion proposed by Kattan et al. was incorporated to predict the circumferential average heat transfer coefficient in the intermediate region by use of the two models. The predictions of the heat transfer coefficient compared well with available experimental data for ten tubes and four refrigerants.

  2. Heat and mass transfer at adiabatic evaporation of binary zeotropic solutions

    Science.gov (United States)

    Makarov, M. S.; Makarova, S. N.

    2016-01-01

    Results of numerical simulation of heat and mass transfer in a laminar flow of three-component gas at adiabatic evaporation of binary solutions from a flat plate are presented. The studies were carried out for the perfect solution of ethanol/methanol and zeotrope solutions of water/acetone, benzene/acetone, and ethanol/acetone. The liquid-vapor equilibrium is described by the Raoult law for the ideal solution and Carlson-Colburn model for real solutions. The effect of gas temperature and liquid composition on the heat and diffusion flows, and temperature of vapor-gas mixture at the interface is analyzed. The formula for calculating the temperature of the evaporation surface for the binary liquid mixtures using the similarity of heat and mass transfer was proposed. Data of numerical simulations are in a good agreement with the results of calculations based on the proposed dependence for all examined liquid mixtures in the considered range of temperatures and pressures.

  3. Heat transfer property of refrigerant-oil mixture in a flooded evaporator: The role of bubble formation and oil retention

    International Nuclear Information System (INIS)

    Koo, Kyoung-Min; Kim, Sung-Gyu; Jeong, Young-Man; Lee, Jae-Keun; Kim, Soo Hyung; Lee, Soowon; Park, Nae-Hyun; Na, Byung-Chul; Hwang, Yoon-Jae; Kim, Byung-Soon; Hwang, Joon-Hyun

    2013-01-01

    We examined the effect of oil retention on the heat transfer performance of a shell-and-tube-type evaporator which had 26 inner tubes and was filled with the refrigerant R-134a. The refrigerant was boiled on the surface of the inner tubes in the evaporator, while chilled water circulated through these tubes. An experimental apparatus was designed to measure both the pressure and temperature profiles at the inlet and outlet of the flooded evaporator. Four windows were installed for observing the operation of the flooded evaporator. A series of experiments were carried out under the following conditions: the refrigerant saturation temperature, 5 .deg. C; refrigerant inlet quality, 0.1; heat fluxes from water to the refrigerant, 5-7 kW/m"2.. The concentration of the oil retained in the refrigerant was then varied up to approximately 10% to observe the effect on the heat transfer performance of the flooded evaporator. Increasing the oil content (i.e., increasing the concentration up to a maximum of approximately 10%) in the refrigerant R134a did not lead to any appreciable reduction in the overall heat transfer coefficient of a flooded evaporator with multiple-inner-tubes. When the oil concentration in the refrigerant was approximately 10%, the heat transfer degradation in the case of the flooded evaporator with multiple-inner-tubes was approximately 11%, which was found to be much smaller than the heat transfer degradation in the case of a flooded evaporator with a single-tube (26-49%). This observation suggested that the oil retained in the refrigerant did not significantly deteriorate the heat transfer performance of the flooded evaporator, presumably because the presence of tube bundles promoted forced convection by agitating bubbles

  4. A multi-component evaporation model for beam melting processes

    Science.gov (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  5. Fabrication of Anodic Aluminum Oxide Membrane for High Heat Flux Evaporation

    OpenAIRE

    McGrath, Kristine

    2016-01-01

    As electronics become more powerful and have higher energy densities, it is becoming more and more necessary to find solutions to dissipate these high heat fluxes. One solution to this problem is nanopore evaporative cooling. Based on current literature, the experimental data is far below what is expected from the theoretical calculations.In this thesis, the experimental results produced heat fluxes much closer to the theoretical values. Experimentally, a maximum heat dissipation of 103 W was...

  6. Heat transfer in an evaporation-condensation system in simulated weightlessness conditions

    Science.gov (United States)

    Bologa, M. K.; Grosu, F. P.; Kozhevnikov, I. V.; Motorin, O. V.; Polikarpov, A. A.

    2017-10-01

    The process of heat transfer in an evaporation-condensation system (ECS) at circulation of dielectric liquid in a closed thermoelectrohydrodynamic (TEHD) loop consisting of an evaporator, a condenser and electrohydrodynamic (EHD) pump for pumping of heat carrier, is considered. Previously, the authors studied the dependence of heat transfer on the angle of rotation of TEHD loop in a vertical plane. The report contains the results of studies of heat transfer at electrohydrodynamic pumping of the heat carrier (8% solution of acetone in Freon 113) in the condenser area by means of EHD pump of “cone-cone” type. All elements of the ECS are arranged in a horizontal plane and the heat transfer from the heater to the condenser without EHD pumping is impossible. A pulsating heat carrier flow mode, depending on the heat input and the voltage applied to the pump, takes place at EHD pumping. As the input power is decreasing the frequency of the coolant pulsations as well as the departure diameter and number of vapour bubbles are also decreasing. At some critical heat input the pulsations disappear and the transition from turbulent mode to the laminar one takes place causing the decrease of the heat transfer coefficient. The increase of the pumping flow rate by raising the voltage applied to the EHD pump, results in a partial suppression of boiling. The maximum intensification of heat transfer is reached at pulsation frequency of 1.25 Hz. The maximum heat flow from the heater was 4.2·104 W/m2. Graphical representation and the physical interpretation of the results, which reflect the essence of the process, are given.

  7. Comparison of tubeside condensation and evaporation characteristics of smooth and enhanced heat transfer 1EHT tubes

    International Nuclear Information System (INIS)

    Kukulka, David J.; Smith, Rick; Li, Wei

    2015-01-01

    Results are presented here from an experimental investigation that was performed to evaluate the inside condensation and evaporation heat transfer of R410A, R22 and R32 that took place in a 12.7 mm (0.5 in) O.D. horizontal copper tube at low mass fluxes. Tubes considered in this evaluation consisted of a smooth tube (inner diameter 11.43 mm) and a newly developed enhanced surface Vipertex™ 1EHT tube. Heat transfer enhancement is an important factor in obtaining energy efficiency improvements in a variety of heat transfer applications. Utilization of enhanced heat transfer tubes is often utilized in the development of high performance air conditioning and refrigeration systems. Vipertex™ has designed and produced these surfaces through three dimensional material surface modifications which produces flow optimized, enhanced heat transfer tubes that increase heat transfer. Heat transfer enhancement plays an important role in improving energy efficiencies and developing high performance thermal systems. This study details the evaluation of the in-tube evaporation and condensation that takes place in these tubes over a wide range of conditions. The test apparatus utilized included a straight horizontal test section with an active length heated by water circulated in the surrounding annulus. Constant heat flux was maintained and refrigerant quality varied. In-tube evaporation measurements of R22, R32 and R410A are reported for evaporation at 10 °C with mass flow rates in the range of 15–40 kg h"−"1. Single phase measurements are reported for mass flow rates from 15 kg h"−"1 to 80 kg h"−"1. Condensation tests were conducted at a saturation temperature of 47 °C, with an inlet quality of 0.8 and an outlet quality of 0.1. In a comparison to smooth tubes, the average heat transfer coefficients for the Vipertex 1EHT tube exceeded those of a smooth tube. Average evaporation and condensation heat transfer coefficients for R22, R32 and R410A in the 1EHT

  8. Separate effects tests for GOTHIC condensation and evaporative heat transfer models

    International Nuclear Information System (INIS)

    George, T.L.; Singh, A.

    1994-01-01

    The GOTHIC computer program, under development at EPRI/NAI, is a general purpose thermal hydraulics computer program for design, licensing, safety and operating analysis of nuclear containments and other confinement buildings. The code solves a nine equation model for three dimensional multiphase flow with separate mass, momentum and energy equations for vapor, liquid and drop phases. The vapor phase can be a gas mixture of steam and non-condensing gases. The phase balance equations are coupled by mechanistic and empirical models for interface mass, energy and momentum transfer that cover the entire flow regime from bubbly flow to film/drop flow. A variety of heat transfer correlations are available to model the fluid coupling to active and passive solid conductors. This paper focuses on the application of GOTHIC to two separate effects tests; condensation heat transfer on a vertical flat plate with varying bulk velocity, steam concentration and temperature, and evaporative heat transfer from a hot pool to a dry (superheated) atmosphere. Comparisons with experimental data is included for both tests. Results show the validity of two condensation heat transfer correlations as incorporated into GOTHIC and the interfacial heat and mass transfer models for the range of the experimental test conditions. Comparisons are also made for lumped versus multidimensional modeling for buoyancy controlled flow with evaporative heat transfer. (author). 13 refs., 1 tab., 10 figs

  9. Separate effects tests for GOTHIC condensation and evaporative heat transfer models

    International Nuclear Information System (INIS)

    George, T.L.; Singh, A.

    1996-01-01

    The GOTHIC computer program, under development at NAI for EPRI, is a general purpose thermal hydraulics computer program for design, licensing, safety and operating analysis of nuclear containments and other confinement buildings. The code solves a nine-equation model for three-dimensional multiphase flow with separate mass, momentum and energy equations for vapor, liquid and drop phases. The vapor phase can be a gas mixture of steam and non-condensing gases. The phase balance equations are coupled by mechanistic and empirical models for interface mass, energy and momentum transfer that cover the entire flow regime from bubbly flow to film-drop flow. A variety of heat transfer correlations are available to model the fluid coupling to active and passive solid conductors. This paper focuses on the application of GOTHIC to two separate effects tests: condensation heat transfer on a vertical flat plate with varying bulk velocity, steam concentration and temperature, and evaporative heat transfer from a hot pool to a dry (superheated) atmosphere. Comparisons with experimental data are included for both tests. Results show the validity of two condensation heat transfer correlations as incorporated into GOTHIC and the interfacial heat and mass transfer models for the range of the experimental test conditions. Comparisons are also made for lumped vs. multidimensional modeling for buoyancy-controlled flow with evaporative heat transfer. (orig.)

  10. Bypass line assisted start-up of a loop heat pipe with a flat evaporator

    International Nuclear Information System (INIS)

    Boo, Joon Hong; Jung, Eui Guk

    2009-01-01

    Loop heat pipes often experience start-up problems especially under low thermal loads. A bypass line was installed between the evaporator and the liquid reservoir to alleviate the difficulties associated with start-up of a loop heat pipe with flat evaporator. The evaporator and condenser had dimensions of 40 mm (W) by 50 mm (L). The wall and tube materials were stainless steel and the working fluid was methanol. Axial grooves were provided in the flat evaporator to serve as vapor passages. The inner diameters of liquid and vapor transport lines were 2 mm and 4 mm, respectively, and the length of the two lines was 0.5 m each. The thermal load range was up to 130 W for horizontal alignment with the condenser temperature of 10 .deg. C. The experimental results showed that the minimum thermal load for start-up was lowered by 37% when the bypass line was employed

  11. Optimized evaporative cooling for sodium Bose-Einstein condensation against three-body loss

    International Nuclear Information System (INIS)

    Shobu, Takahiko; Yamaoka, Hironobu; Imai, Hiromitsu; Morinaga, Atsuo; Yamashita, Makoto

    2011-01-01

    We report on a highly efficient evaporative cooling optimized experimentally. We successfully created sodium Bose-Einstein condensates with 6.4x10 7 atoms starting from 6.6x10 9 thermal atoms trapped in a magnetic trap by employing a fast linear sweep of radio frequency at the final stage of evaporative cooling so as to overcome the serious three-body losses. The experimental results such as the cooling trajectory and the condensate growth quantitatively agree with the numerical simulations of evaporative cooling on the basis of the kinetic theory of a Bose gas carefully taking into account our specific experimental conditions. We further discuss theoretically a possibility of producing large condensates, more than 10 8 sodium atoms, by simply increasing the number of initial thermal trapped atoms and the corresponding optimization of evaporative cooling.

  12. Theoretical study of evaporation heat transfer in horizontal microfin tubes: stratified flow model

    Energy Technology Data Exchange (ETDEWEB)

    Honda, H; Wang, Y S [Kyushu Univ., Inst. for Materials Chemistry and Engineering, Kasuga, Fukuoka (Japan)

    2004-08-01

    The stratified flow model of evaporation heat transfer in helically grooved, horizontal microfin tubes has been developed. The profile of stratified liquid was determined by a theoretical model previously developed for condensation in horizontal microfin tubes. For the region above the stratified liquid, the meniscus profile in the groove between adjacent fins was determined by a force balance between the gravity and surface tension forces. The thin film evaporation model was applied to predict heat transfer in the thin film region of the meniscus. Heat transfer through the stratified liquid was estimated by using an empirical correlation proposed by Mori et al. The theoretical predictions of the circumferential average heat transfer coefficient were compared with available experimental data for four tubes and three refrigerants. A good agreement was obtained for the region of Fr{sub 0}<2.5 as long as partial dry out of tube surface did not occur. (Author)

  13. Regulation of Heat Exchange across the Hornbill Beak: Functional Similarities with Toucans?

    Science.gov (United States)

    van de Ven, T M F N; Martin, R O; Vink, T J F; McKechnie, A E; Cunningham, S J

    2016-01-01

    Beaks are increasingly recognised as important contributors to avian thermoregulation. Several studies supporting Allen's rule demonstrate how beak size is under strong selection related to latitude and/or air temperature (Ta). Moreover, active regulation of heat transfer from the beak has recently been demonstrated in a toucan (Ramphastos toco, Ramphastidae), with the large beak acting as an important contributor to heat dissipation. We hypothesised that hornbills (Bucerotidae) likewise use their large beaks for non-evaporative heat dissipation, and used thermal imaging to quantify heat exchange over a range of air temperatures in eighteen desert-living Southern Yellow-billed Hornbills (Tockus leucomelas). We found that hornbills dissipate heat via the beak at air temperatures between 30.7°C and 41.4°C. The difference between beak surface and environmental temperatures abruptly increased when air temperature was within ~10°C below body temperature, indicating active regulation of heat loss. Maximum observed heat loss via the beak was 19.9% of total non-evaporative heat loss across the body surface. Heat loss per unit surface area via the beak more than doubled at Ta > 30.7°C compared to Ta hornbills, and thus had a larger potential for heat loss at lower air temperatures. Respiratory cooling (panting) thresholds were also lower in toucans compared to hornbills. Both beak vasodilation and panting threshold temperatures are potentially explained by differences in acclimation to environmental conditions and in the efficiency of evaporative cooling under differing environmental conditions. We speculate that non-evaporative heat dissipation may be a particularly important mechanism for animals inhabiting humid regions, such as toucans, and less critical for animals residing in more arid conditions, such as Southern Yellow-billed Hornbills. Alternatively, differences in beak morphology and hardness enforced by different diets may affect the capacity of birds to use

  14. Evaporation of Ventilated Water Droplet: Connection Between Heat and Mass Transfer

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Ondráčková, Lucie; Schwarz, Jaroslav; Kulmala, M.

    2001-01-01

    Roč. 32, č. 6 (2001), s. 739-748 ISSN 0021-8502 Institutional research plan: CEZ:AV0Z4072921 Keywords : droplet evaporation * heat and mass transfer Subject RIV: CC - Organic Chemistry Impact factor: 1.605, year: 2001

  15. Dew-point hygrometry system for measurement of evaporative water loss in infants.

    Science.gov (United States)

    Ariagno, R L; Glotzbach, S F; Baldwin, R B; Rector, D M; Bowley, S M; Moffat, R J

    1997-03-01

    Evaporation of water from the skin is an important mechanism in thermal homeostasis. Resistance hygrometry, in which the water vapor pressure gradient above the skin surface is calculated, has been the measurement method of choice in the majority of pediatric investigations. However, resistance hygrometry is influenced by changes in ambient conditions such as relative humidity, surface temperature, and convection currents. We have developed a ventilated capsule method that minimized these potential sources of measurement error and that allowed second-by-second, long-term, continuous measurements of evaporative water loss in sleeping infants. Air with a controlled reference humidity (dew-point temperature = 0 degree C) is delivered to a small, lightweight skin capsule and mixed with the vapor on the surface of the skin. The dew point of the resulting mixture is measured by using a chilled mirror dew-point hygrometer. The system indicates leaks, is mobile, and is accurate within 2%, as determined by gravimetric calibration. Examples from a recording of a 13-wk-old full-term infant obtained by using the system give evaporative water loss rates of approximately 0.02 mgH2O.cm-2.min-1 for normothermic baseline conditions and values up to 0.4 mgH2O.cm-2. min-1 when the subject was being warmed. The system is effective for clinical investigations that require dynamic measurements of water loss.

  16. Technical Solution for Protection of Heat Pump Evaporators Against Freezing the Moisture Condensed

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.

    2016-01-01

    Full Text Available This article is dedicated to the study of the processes of formation and freezing of condensate in heat exchangers using ambientair heat and is prepared according to the results of experimental investigations. The aim of this work has been set to elaboratean energy-independent technical solution for protection of heat-exchange equipment against freezing the moisture condensed on the heat-exchange surfaces while using the low-potential heat of ambient air in heat pump systems. The investigations have shown that at the temperatures of ambient air close to 0°C when using the «traditional» way of defrostation, which means the reverse mode of operation of heat pump, an intensive formation of ice is observed at the bottom part of evaporator (if not provided with tray heater. This effect is provoked by downward flow of thawed water and it’s freezing in the lower part of the heat-exchanger due to the fact that the tray and housing of heat pump have a temperature below zero. Thereafter, while the defrostation mode has been periodically used, the ice coat would be going to continue its growth, and by time significant area of evaporator could appear to be covered with ice. The results of the investigations presented in the article could be applied both to air-source heat pumps and to ventilation air heat recuperators.

  17. Temperature control of evaporators in automotive waste heat recovery systems

    NARCIS (Netherlands)

    Oom, M.E.E.; Feru, E.; de Jager, A.G.; de Lange, H.C.; Ouwerkerk, H.

    2017-01-01

    his paper presents a control strategy for the steam generation process in automotive waste heat recovery systems that are based on the subcritical Rankine cycle. The central question is how to regulate the flow of water into the evaporator such that dry steam is generated at its outlet, subject to

  18. Simplified models for assessing heat and mass transfer in evaporative towers

    CERN Document Server

    Angelis, Alessandra De; Lorenzini, Giulio

    2013-01-01

    The aim of this book is to supply valid and reasonable parameters in order to guide the choice of the right model of industrial evaporative tower according to operating conditions which vary depending on the particular industrial context: power plants, chemical plants, food processing plants and other industrial facilities are characterized by specific assets and requirements that have to be satisfied. Evaporative cooling is increasingly employed each time a significant water flow at a temperature which does not greatly differ from ambient temperature is needed for removing a remarkable heat l

  19. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  20. Adaptation of metabolism and evaporative water loss along an aridity gradient

    NARCIS (Netherlands)

    Tieleman, BI; Williams, JB; Bloomer, P

    2003-01-01

    Broad-scale comparisons of birds indicate the possibility of adaptive modification of basal metabolic rate (BMR) and total evaporative water loss (TEWL) in species from desert environments, but these might be confounded by phylogeny or phenotypic plasticity. This study relates variation in avian BMR

  1. Experimental study on operating parameters of miniature loop heat pipe with flat evaporator

    International Nuclear Information System (INIS)

    Wang Shuangfeng; Huo Jiepeng; Zhang Xianfeng; Lin Zirong

    2012-01-01

    Miniature loop heat pipe (MLHP) with flat evaporator has been proved that it has the capability to fulfill the demand for the thermal management of high-power electronic system. To employ MLHP into practical application and obtain the best operating parameters, a copper-water MLHP with flat evaporator of 8 mm thick was fabricated and tested in the condition of different condenser locations and operating orientations. The results show that the condenser located close to the evaporator outlet and adverse orientation have positive impact on the operating temperature of the loop, but negative impact on the cooling capability of condenser. For better understanding of their effect on the heat transfer characteristics of MLHP, the start-up behaviors, thermal performance and the operating regimes are explored in detail. - Highlights: ► A copper-water MLHP with flat evaporator of only 8 mm thick was fabricated. ► The MLHP can be applied to electronic cooling. ► The effect of condenser locations was investigated for the first time. ► The experimental results were discussed and analyzed comprehensively. ► Some practical solutions for disadvantages of LHP operation were provided.

  2. Identification of Heat Transfer Resistance of Scale Deposit on theEvaporator of Radioactive Waste Management Installation

    International Nuclear Information System (INIS)

    Zainus-Salimin

    2000-01-01

    Identification of heat transfer resistance of scale deposit from fixedhardness of liquid waste in the form of CaSO 4 and MgSO 4 ratio 2:1 has beendone on the evaporation system of Serpong Nuclear Facilities fordetermination of the quality of heat transfer obstruction from heating sourceto solution. Evaporation simulation of solution containing hardness withconcentration 0.5; 1; 2; and 2.5% mass were done on the stainless steelcontainer of 1 / volume with electrical heater in which a stainless-steeltube is put down on the base container. After 24, 168, 336, 504 and 672 hoursevaporation process it is obtained the thickness of scale deposit on thesurface of tube for determining the fouling factor. Heat transfer resistanceof scale deposit from 672 hours evaporation of solution 2.5% concentrationhampered heat transfer, the value of fouling factor be superior to limitsvalue of 0.000515 hours.m 2 . o C/kcal.The fouling factor from the evaporationof solution of 0.5; 1; and 2% concentration during 672 hours be inferior tolimits value. (author)

  3. Improving the Efficiency of the Heat Pump Control System of Carbon Dioxide Heat Pump with Several Evaporators and Gas Coolers

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2016-12-01

    Full Text Available The problem of coordination of the values of the refrigerant flow through the evaporators and gas coolers of the heat pump for the simultaneous production of heat and cold is studied. The compensation of the variations of the total flow through the evaporators is implemented using the variation of the capacity of the compressor and a corresponding change in flow through the auxiliary gas cooler of the heat pump. Control system of this gas cooler is constructed using the invariance principle of the output value (outlet temperature of the heated agent with respect to perturbations on the control channel (the refrigerant flow through the gas cooler. Principle of dual-channel compensation of the disturbance and advancing signal on input of control valve of the refrigerant through the gas cooler is ensured. Due to proposed solution, the intensity of the disturbances on the flow of refrigerant is reduced. Due to proposed technical solution power consumed by the heat pump compressor drive under transients is decreased.

  4. Evaluation of three energy balance-based evaporation models for estimating monthly evaporation for five lakes using derived heat storage changes from a hysteresis model

    NARCIS (Netherlands)

    Duan, Z.; Bastiaanssen, W.G.M.

    2017-01-01

    The heat storage changes (Qt) can be a significant component of the energy balance in lakes, and it is important to account for Qt for reasonable estimation of evaporation at monthly and finer timescales if the energy balance-based evaporation models are used. However, Qt has been often neglected in

  5. An analogy for evaporative heat transfer with wavy/stratified air-water flow in vertical counter-current flow conditions

    International Nuclear Information System (INIS)

    Kweon, H.; Park, K. C.

    2001-01-01

    An analogy for evaporative heat transfer with mass transfer was derived. From von-Karman analogy which has been applied between heat and momentum transfer in single phase turbulent flow, a modified Karman analogy was suggested at present paper. Nusselt number from this analogy showed good agreement with experimental results. Such a result shows that the analogy for a complex heat transfer mode between heat transfer and momentum transfer accompanying evaporation or condensation on the interface can be established

  6. Effects of spray axis incident angle on heat transfer performance of rhombus-pitch shell-and-tube interior spray evaporator

    International Nuclear Information System (INIS)

    Lin, Ru-Li; Chang, Tong-Bou; Liang, Chih-Chang

    2012-01-01

    An interior spray method is proposed for enhancing the heat transfer performance of a compact rhombus-pitch shell-and-tube spray evaporator. The experimental results show that the shell-side heat transfer coefficient obtained using the proposed spray method is significantly higher than that achieved in a conventional flooded-type evaporator. Four different spray axis incident angles (0 .deg., 45 .deg., 60 .deg. and 75 .deg.) are tested in order to investigate the effect of the spray inclination angle on the heat transfer performance of the spray evaporator system. It is shown that the optimal heat transfer performance is obtained using a spray axis incident angle of 60 .deg.

  7. Evaporation and condensation heat transfer in a suppression chamber of the water wall type passive containment cooling system

    International Nuclear Information System (INIS)

    Fujii, Tadashi; Kataoka, Yoshiyuki; Murase, Michio

    1996-01-01

    To evaluate the system pressure response of a water wall type containment cooling system, which is one of the passive safety systems, the evaporation and condensation behaviors in a suppression chamber have been experimentally examined. In the system, the suppression pool water evaporates from the pool surface, passing into the wetwell due to pool temperature rise, while steam in the wetwell condenses on the steel containment vessel wall due to the heat release through the wall. The wetwell is a gas phase region in the suppression chamber and its pressure, which is expressed as the sum of the noncondensable gas pressure and saturated steam pressure, is strongly affected by the evaporation heat transfer from the suppression pool surface and condensation heat transfer on the containment vessel wall. Based on the measured temperature profiles near the heat transfer surface and the wetwell pressure using two apparatuses, evaporation and condensation heat transfer coefficients were evaluated. The following results were obtained. (1) Both heat transfer coefficients increased as the ratio of the steam partial pressure to the total pressure increased. (2) Comparison of the results from two types of test apparatuses confirmed that the size of the heat transfer surface did not affect the heat transfer characteristics within these tests. (3) The heat transfer coefficients were expressed by the ratio of the steam to noncondensable gas logarithmic mean concentration, which considered the steam and gas concentration gradient from the heat transfer surface to the wetwell bulk. (author)

  8. A simple method to determine evaporation and compensate for liquid losses in small-scale cell culture systems.

    Science.gov (United States)

    Wiegmann, Vincent; Martinez, Cristina Bernal; Baganz, Frank

    2018-04-24

    Establish a method to indirectly measure evaporation in microwell-based cell culture systems and show that the proposed method allows compensating for liquid losses in fed-batch processes. A correlation between evaporation and the concentration of Na + was found (R 2  = 0.95) when using the 24-well-based miniature bioreactor system (micro-Matrix) for a batch culture with GS-CHO. Based on these results, a method was developed to counteract evaporation with periodic water additions based on measurements of the Na + concentration. Implementation of this method resulted in a reduction of the relative liquid loss after 15 days of a fed-batch cultivation from 36.7 ± 6.7% without volume corrections to 6.9 ± 6.5% with volume corrections. A procedure was established to indirectly measure evaporation through a correlation with the level of Na + ions in solution and deriving a simple formula to account for liquid losses.

  9. Heat transfer correlations for evaporation of refrigerant mixtures flowing inside horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyan [School of Energy Engineering, Xi' an University of Science and Technology, 58 Yanta Street, Xi' an, Shaanxi 710054 (China); School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China); Yuan, Xiuling [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)

    2008-11-15

    Based on the experimental results of R417A flowing inside horizontal microfin tubes, the present work deals with the development of prediction methods for evaporation heat transfer of refrigerant mixtures in microfin tube. The microfin model by Thome et al. is modified by adjusting the convective heat transfer term, and the other microfin model is developed by introducing the enhancement factor into the modified-Kattan model. The comparison of the calculations by several microfin models and the experimental results reveals that the new microfin models developed at the present study are in much better agreement with the experimental results with the reducing average deviation by 30-50% than the models by Thome et al. and Cavallini et al., and are recommended for the prediction of evaporation heat transfer coefficients for non-azeotropic refrigerant mixtures inside microfin tubes. (author)

  10. Heat transfer correlations for evaporation of refrigerant mixtures flowing inside horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoyan, Zhang [School of Energy Engineering, Xi' an University of Science and Technology, 58 Yanta Street, Xi' an, Shaanxi 710054 (China); School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)], E-mail: gqzxy@sohu.com; Xiuling, Yuan [School of Energy and Power Engineering, Xi' an Jiaotong University, 28 Xianning Road, Xi' an, Shaanxi 710049 (China)

    2008-11-15

    Based on the experimental results of R417A flowing inside horizontal microfin tubes, the present work deals with the development of prediction methods for evaporation heat transfer of refrigerant mixtures in microfin tube. The microfin model by Thome et al. is modified by adjusting the convective heat transfer term, and the other microfin model is developed by introducing the enhancement factor into the modified-Kattan model. The comparison of the calculations by several microfin models and the experimental results reveals that the new microfin models developed at the present study are in much better agreement with the experimental results with the reducing average deviation by 30-50% than the models by Thome et al. and Cavallini et al., and are recommended for the prediction of evaporation heat transfer coefficients for non-azeotropic refrigerant mixtures inside microfin tubes.

  11. Heat transfer correlations for evaporation of refrigerant mixtures flowing inside horizontal microfin tubes

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Yuan Xiuling

    2008-01-01

    Based on the experimental results of R417A flowing inside horizontal microfin tubes, the present work deals with the development of prediction methods for evaporation heat transfer of refrigerant mixtures in microfin tube. The microfin model by Thome et al. is modified by adjusting the convective heat transfer term, and the other microfin model is developed by introducing the enhancement factor into the modified-Kattan model. The comparison of the calculations by several microfin models and the experimental results reveals that the new microfin models developed at the present study are in much better agreement with the experimental results with the reducing average deviation by 30-50% than the models by Thome et al. and Cavallini et al., and are recommended for the prediction of evaporation heat transfer coefficients for non-azeotropic refrigerant mixtures inside microfin tubes

  12. Numerical analysis of the heat and mass transfer processes in selected M-Cycle heat exchangers for the dew point evaporative cooling

    International Nuclear Information System (INIS)

    Pandelidis, Demis; Anisimov, Sergey

    2015-01-01

    Highlights: • The comparative numerical study of the eight M-Cycle heat exchangers was presented. • The mathematical model is compared against the experimental data. • The results show, that the original M-Cycle heat and mass exchanger can be improved. • The effectiveness of the heat and mass exchangers depends strongly on the inlet air parameters. - Abstract: This paper investigates a mathematical simulation of heat and mass transfer in eight different types of the Maisotsenko Cycle (M-Cycle) heat and mass exchangers (HMXs) used for indirect evaporative air cooling. A two-dimensional heat and mass transfer model is developed to perform the thermal calculations of the indirect evaporative cooling process and quantifying the overall performance. The mathematical model was validated against experimental data. A numerical simulation reveals many unique features of the considered HMXs, enabling an accurate prediction of their performance. Results of the model allow for comparison of the analyzed devices in order to improve the performance of the original HMX

  13. Steady 3D Numerical Simulation of the Evaporator and Compensation Chamber of a Loop Heat Pipe

    Directory of Open Access Journals (Sweden)

    A. V. Nedayvozov

    2017-01-01

    Full Text Available The paper presents results of a steady three-dimensional numerical simulation of a flat evaporator and compensation chamber (CC of a loop heat pipe (LHP and describes a procedure of the thermal state calculation of the evaporator and the compensation chamber.The LHP is an efficient heat transfer device operating on the principle of evaporation-condensation cycle. It is successfully used in space technology and also to cool the heat-stressed components of electronic devices and computer equipment. The authors carried out a numerical study of the influence of the condensate pipeline length, immersed in water, on the thermal state of the evaporator and the compensation chamber.  The paper shows the influence of the mass forces field on the calculation results. Presents all the numerical studies carried out by the authors for a brass flat evaporator with a thermal load of 80 W. Water is used as a LHP heat-transfer fluid. Fields of temperature, pressure and velocity are presented for each design option.Based on the calculation results, the authors came to the following conclusions:Influence of the mass forces field for the LHP of this type is significant and leads to arising water vortex flow in the condensate pipeline and CC, thereby mixing and equalizing the water temperature in the CC and in the porous element, reducing the maximum temperature of the porous element;The increasing section length of the condensate pipeline in the CC leads to increasing velocity of the heat-transfer fluid in the CC and in the porous element, decreasing mixing zone of the condensate in the CC, and increasing temperature non-uniformity of the porous element.

  14. Winter-regime surface heat loss from heated streams

    International Nuclear Information System (INIS)

    Paily, P.P.; Macagno, E.O.; Kennedy, J.F.

    1974-01-01

    Evaluation of the rate of surface heat exchange between the water and air is a significant factor in any study of the thermal response of heated streams to heat inputs. Existing methods to determine the amount of heat transfer across the water surface are surveyed, and the different formulas developed for determining the heat exchange components are compiled. Heat-transfer models that have been proposed in the literature are reviewed, and a new linearized model for determining the rate of surface heat exchange is proposed. Generalized relations between the major climatological factors and the coefficients of the linearized heat-loss rate are established by multiple-regression analysis. The analysis is limited to cold-period conditions, in the sense that air temperatures below the freezing point of water only are considered in developing the regression equations. A computer program, using FORTRAN, is presented which enables the computation of the coefficients appearing in the linearized heat-loss rate for all combinations of the various climatological factors

  15. Fitness-related differences in the rate of whole-body total heat loss in exercising young healthy women are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Poirier, Martin P; Kenny, Glen P

    2018-03-01

    What is the central question of this study? Aerobic fitness modulates heat loss, albeit the heat load at which fitness-related differences occur in young healthy women remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that fitness modulates heat loss in a heat-load dependent manner, with differences occurring between young women of low and high fitness and matched physical characteristics when the metabolic heat load is at least 400 W in hot, dry conditions. Although fitness has been known for some time to modulate heat loss, our findings define the metabolic heat load at which fitness-related differences occur. Aerobic fitness has recently been shown to alter heat loss capacity in a heat-load dependent manner in young men. However, given that sex-related differences in heat loss capacity exist, it is unclear whether this response is consistent in women. We therefore assessed whole-body total heat loss in young (21 ± 3 years old) healthy women matched for physical characteristics, but with low (low-fit; 35.8 ± 4.5 ml O 2  kg -1  min -1 ) or high aerobic fitness (high-fit; 53.1 ± 5.1 ml O 2  kg -1  min -1 ; both n = 8; indexed by peak oxygen consumption), during three 30 min bouts of cycling performed at increasing rates of metabolic heat production of 250 (Ex1), 325 (Ex2) and 400 W (Ex3), each separated by a 15 min recovery, in hot, dry conditions (40°C, 11% relative humidity). Whole-body total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat content was measured as the temporal summation of heat production and loss. Total heat loss did not differ during Ex1 (low-fit, 215 ± 16 W; high-fit, 231 ± 20 W; P > 0.05) and Ex2 (low-fit, 278 ± 15 W; high-fit, 301 ± 20 W; P > 0.05), but was lower in the low-fit (316 ± 21 W) compared with the high-fit women (359 ± 32

  16. Heat loss from an open cavity

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

    1995-12-01

    Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

  17. To the generalization of experimental data on heat and mass transfer in evaporation and condensation

    International Nuclear Information System (INIS)

    Berman, L.D.

    1980-01-01

    Similarity equations for heat-and-mass transfer in binary gas or steam-gas layers in the processes of liquid evaporation, condensation and desublimation of vapours, desorption and absorption and porous body cooling are considered. It is accepted that steam-gas components obey to the equation of ideal gas state and that evaporation and condensation condititons permit to neglect the influence of compressability of gas (steam-gas) mixture, non-isothermality of boundary layer and interphase kinetic resistance to mass transfer onto the interfaces. It is concluded that the results of considered experimental and theoretical investigations of the above processes are in a satisfactory agreement and show insignificance of the effect of hydrodynamic conditions determining the regime of main steam-gas mixture flow on relative heat-and-mass transfer coefficients. According to the theoretical calculation results with increase of the factor of M steam-gas mixture non-uniformity mass transfer intensity in evaporation decreases, while in condensation it grows, but M effect on the mass transfer coefficient is rather small and sowhat increases in the case of a turbulent boundary layer evaporation. In condensation it is less than in evaporation

  18. Sensitivity and Design of a Transcritical CO2 Cooling and Heating System

    DEFF Research Database (Denmark)

    Nguyen, Chan; Veje, Christian; Willatzen, Morten

    2012-01-01

    This paper presents a theoretical design study of a transcritical CO2 heat pump system for simultaneous cooling and heating. The heat pump model consists of the components: compressor, internal heat exchanger, valve, evaporator and gas cooler. The evaporator and the gas cooler are both water...... exchangers. The results show that COP is particular sensitive to the pinch temperature in the gas cooler and to the compressor isentropic efficiency but not to pressure loss. However it is found that the heat exchanger weights are very sensitive to pressure loss. The thermodynamic and heat exchanger models...

  19. Contribution to the heat transfer analysis of substitute refrigerants in evaporator tubes with smooth or enhanced tube surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kattan, N

    1997-12-31

    The substitution of CFC refrigerants in refrigeration systems, heat pumps and organic Rankine cycles for heat recovery, requests a good knowledge of heat transfer properties of substitute fluids. A new test facility has been built at the Laboratory for Industrial Energy Systems (LENI) to contribute to this international effort. It consists of two sets of concentric tubes allowing either annular or inside tube convective boiling with a counter current water flow heating to be studied. A new data base including heat transfer coefficients and pressure drop measurements for four new refrigerants (R123, R134A, R402A and R404A) and three older refrigerants (R11, R12 and R502) has been collected. Flow boiling measurements covered a broad range of mass velocities, vapor qualities and heat fluxes. Some of the tests included plain tubes and others enhanced surface tubes (microfilms from Wieland) in horizontal and vertical orientations. An improved Wilson plot technique, that covers both the transition and turbulent flow regimes of the water flowing in the annular channel for the inside tube boiling tests, is proposed to overcome the severe limitations of conventional Wilson plots, to improve accuracy and to facilitate data processing. Mean flow boiling heat transfer coefficients were measured for R12 and R134A evaporating inside a horizontal plain tube and for R11 and R123 evaporating inside a horizontal plain tube. Local flow boiling heat transfer coefficients were measured for : R134A, R123, R404A and R502 evaporating inside a horizontal plain tube, for R134A and R123 evaporating inside a horizontal microfin tube and for R134 evaporating inside a vertical microfin tube. In addition microfin heat transfer augmentation relative to plain tube test data was investigated. The measured heat transfer coefficients were compared to different existing inside tube flow boiling correlations. (author) figs., tabs., refs.

  20. Heat conduction problem of an evaporating liquid wedge

    Directory of Open Access Journals (Sweden)

    Tomas Barta

    2015-02-01

    Full Text Available We consider the stationary heat transfer near the contact line of an evaporating liquid wedge surrounded by the atmosphere of its pure vapor. In a simplified setting, the problem reduces to the Laplace equation in a half circle, subject to a non-homogeneous and singular boundary condition. By classical tools (conformal mapping, Green's function, we reformulate the problem as an integral equation for the unknown Neumann boundary condition in the setting of appropriate fractional Sobolev and weighted space. The unique solvability is then obtained by means of the Fredholm theorem.

  1. Measurement of evaporative water loss in small animals by dew-point hygrometry.

    Science.gov (United States)

    Bernstein, M H; Hudson, D M; Stearns, J M; Hoyt, R W

    1977-08-01

    This paper presents the procedures and equations to be utilized for measurement of evaporative water loss (mw), by use of the dew-point hygrometer, in small animals exposed to air containing water vapor in an open-flow system. The system accounted accurately for the water evaporated from a bubble flask. In addition, hygrometric measurements of pulmocutaneous mw in pigeons (Columba livia, mean mass 0.31 kg) agreed closely with simultaneous gravimetric measurements, utilizing a desiccant in the sample stream, in a manner independently of air temperature (Ta, 20 or 40 degrees C), ambient water vapor pressure (PW, 4-16 10(2) Pa), or mw (5-66 mg-min-1). Evaporation in pigeons was independent of PW at 20 degrees C, but increased with decreasing PW at 40 degrees C, suggesting differences in ventilatory adjustments to changes in PW at the two temperatures.

  2. Mild evaporative cooling applied to the torso provides thermoregulatory benefits during running in the heat.

    Science.gov (United States)

    Filingeri, D; Fournet, D; Hodder, S; Havenith, G

    2015-06-01

    We investigated the effects of mild evaporative cooling applied to the torso, before or during running in the heat. Nine male participants performed three trials: control-no cooling (CTR), pre-exercise cooling (PRE-COOL), and during-exercise cooling (COOL). Trials consisted of 10-min neutral exposure and 50-min heat exposure (30 °C; 44% humidity), during which a 30-min running protocol (70% VO2max ) was performed. An evaporative cooling t-shirt was worn before the heat exposure (PRE-COOL) or 15 min after the exercise was started (COOL). PRE-COOL significantly lowered local skin temperature (Tsk ) (up to -5.3 ± 0.3 °C) (P benefits during exercise in the heat. However, the timing of application was critical in inducing different thermoregulatory responses. These findings provide novel insights on the thermoregulatory role of Tsk during exercise in the heat. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Power balance equation in electron beam evaporation process

    International Nuclear Information System (INIS)

    Blumenfeld, L.; Soubbaramayer.

    1994-01-01

    The aim of the paper is to solve the equation giving the total power of the gun, used in the electron beam evaporation process, in terms of the power used to generated the vapor stream and the three main power losses due to three parasite phenomena: turbulent thermal convection in the molten pool, electron back scattering and heat radiation from the vapor emitting surface. Scaling laws are first reviewed and results are given with the example of the evaporation of aluminium with a 5 kW axisymmetric gun working in steady state mode. The influence of an applied magnetic field on the evaporation rate is also examined. 5 refs., 3 figs., 1 tab

  4. Updated Heat Atlas calculation method. Layout of flooded evaporators; Aktualisierte Waermeatlas-Rechenmethode. Auslegung ueberfluteter Verdampfer

    Energy Technology Data Exchange (ETDEWEB)

    Gorenflo, Dieter; Baumhoegger, Elmar; Herres, Gerhard [Paderborn Univ. (Germany). Thermodynamik und Energietechnik; Kotthoff, Stephan [Siemens AG, Goerlitz (Germany)

    2012-07-01

    For years, the most precise forecast of the heat transfer performance of evaporators is a current topic with regard to an efficient energy utilization. An established calculation method for the new edition of the Heat Atlas was updated with regard to flooded evaporators which especially were implemented in air-conditioning and cooling systems. The contribution under consideration outlines this method and enlarges upon the innovations in detail. The impact of the heat flow density and boiling pressure on the heat transfer during pool boiling is modified by means of measurement in the case of a single, horizontal vaporizer tube. Above all, the impact of the fluid can be described easier and more exact. The authors compare the forecasting results with the experimental results regarding the ribbing of the heating surface and impact of the bundle. Furthermore, examples of close boiling and near azeotropic mixtures were admitted to the Heat Atlas. The authors also consider the positive effect of the rising bubble swarm when boiling the mixture in horizontal tube bundles.

  5. Metabolic rate and evaporative water loss of Mexican Spotted and Great Horned Owls

    Science.gov (United States)

    Joseph L. Ganey; Russell P. Balda; Rudy M. King

    1993-01-01

    We measured rates of oxygen consumption and evaporative water loss (EWL) of Mexican Spotted (Strix occidentalis lucida) and Great Horned (Bubo virginianus) owls in Arizona. Basal metabolic rate averaged 0.84 ccO2. g-1. h-1...

  6. Regulation of Heat Exchange across the Hornbill Beak: Functional Similarities with Toucans?

    Directory of Open Access Journals (Sweden)

    T M F N van de Ven

    Full Text Available Beaks are increasingly recognised as important contributors to avian thermoregulation. Several studies supporting Allen's rule demonstrate how beak size is under strong selection related to latitude and/or air temperature (Ta. Moreover, active regulation of heat transfer from the beak has recently been demonstrated in a toucan (Ramphastos toco, Ramphastidae, with the large beak acting as an important contributor to heat dissipation. We hypothesised that hornbills (Bucerotidae likewise use their large beaks for non-evaporative heat dissipation, and used thermal imaging to quantify heat exchange over a range of air temperatures in eighteen desert-living Southern Yellow-billed Hornbills (Tockus leucomelas. We found that hornbills dissipate heat via the beak at air temperatures between 30.7°C and 41.4°C. The difference between beak surface and environmental temperatures abruptly increased when air temperature was within ~10°C below body temperature, indicating active regulation of heat loss. Maximum observed heat loss via the beak was 19.9% of total non-evaporative heat loss across the body surface. Heat loss per unit surface area via the beak more than doubled at Ta > 30.7°C compared to Ta < 30.7°C and at its peak dissipated 25.1 W m-2. Maximum heat flux rate across the beak of toucans under comparable convective conditions was calculated to be as high as 61.4 W m-2. The threshold air temperature at which toucans vasodilated their beak was lower than that of the hornbills, and thus had a larger potential for heat loss at lower air temperatures. Respiratory cooling (panting thresholds were also lower in toucans compared to hornbills. Both beak vasodilation and panting threshold temperatures are potentially explained by differences in acclimation to environmental conditions and in the efficiency of evaporative cooling under differing environmental conditions. We speculate that non-evaporative heat dissipation may be a particularly important

  7. Theoretical study of soil water balance and process of soil moisture evaporation

    Directory of Open Access Journals (Sweden)

    Yu. A. Savel'ev

    2017-01-01

    Full Text Available Nearly a half of all grain production in the Russian Federation is grown in dry regions. But crop production efficiency there depends on amount of moisture, available to plants. However deficit of soil moisture is caused not only by a lack of an atmospheric precipitation, but also inefficient water saving: losses reach 70 percent. With respect thereto it is important to reveal the factors influencing intensity of soil moisture evaporation and to develop methods of decrease in unproductive moisture losses due to evaporation. The authors researched soil water balance theoretically and determined the functional dependences of moisture loss on evaporation. Intensity of moisture evaporation depends on physicomechanical characteristics of the soil, a consistence of its surface and weather conditions. To decrease losses of moisture for evaporation it is necessary, first, to improve quality of crumbling of the soil and therefore to reduce the evaporating surface of the soil. Secondly - to create the protective mulching layer which will allow to enhance albedo of the soil and to reduce its temperature that together will reduce unproductive evaporative water losses and will increase its inflow in case of condensation from air vapors. The most widespread types of soil cultivation are considered: disk plowing and stubble mulch plowing. Agricultural background «no tillage» was chosen as a control. Subsoil mulching tillage has an essential advantage in a storage of soil moisture. So, storage of soil moisture after a disking and in control (without tillage decreased respectively by 24.9 and 19.8 mm while at the mulching tillage this indicator revised down by only 15.6 mm. The mulching layer has lower heat conductivity that provides decrease in unproductive evaporative water losses.

  8. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  9. Thermogravimetric analysis of fuel film evaporation

    Institute of Scientific and Technical Information of China (English)

    HU Zongjie; LI Liguang; YU Shui

    2006-01-01

    Thermogravimetric analysis (TGA) was compared with the petrochemical distillation measurement method to better understand the characteristics of fuel film evaporation at different wall tem- peratures. The film evaporation characteristics of 90# gasoline, 93# gasoline and 0# diesel with different initial thicknesses were investigated at different environmental fluxes and heating rates. The influences of heating rate, film thickness and environmental flux on fuel film evaporation for these fuels were found. The results showed that the environmental conditions in TGA were similar to those for fuel films in the internal combustion engines, so data from TGA were suitable for the analysis of fuel film evaporation. TGA could simulate the key influencing factors for fuel film evaporation and could investigate the basic quantificational effect of heating rate and film thickness. To get a rapid and sufficient fuel film evaporation, sufficiently high wall temperature is necessary. Evaporation time decreases at a high heating rate and thin film thickness, and intense gas flow is important to promoting fuel film evaporation. Data from TGA at a heating rate of 100℃/min are fit to analyze the diesel film evaporation during cold-start and warming-up. Due to the tense molecular interactions, the evaporation sequence could not be strictly divided according to the boiling points of each component for multicomponent dissolved mixture during the quick evaporation process, and the heavier components could vaporize before reaching their boiling points. The 0# diesel film would fully evaporate when the wall temperature is beyond 250℃.

  10. Evaporating heat transfer characteristics of R22 and R410A in 9.52 mm O.D. smooth and microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M H; Shin, J S; Lim, B H [Sam Sung Electronics Corporation Limited (Korea, Republic of)

    1998-10-01

    An experimental investigation of evaporating heat transfer in 9.52 mm horizontal copper tubes was conducted. The refrigerant tested were R22 and near-azeotropic mixture, R410A. The test rig had a straight, horizontal test section with an active length of 0.92 m and was heated by the heat transfer fluid(hot water) circulated in a surrounding annulus. Constant heat flux of 11.0 kW/m{sup 2} was maintained and refrigerant quality varied from 0.2 to 0.8. The results were reported for evaporation at 15 deg. C in a 0.92 m long test section for 30{approx}60 kg/h mass flow rate. The local and average heat transfer coefficients for seven microfin tubes were presented compared to those for a smooth tube. The average evaporation heat transfer coefficients of R22 and R410A for the microfin tubes were 86{approx}227% and 64{approx}199%, respectively, higher than those for the smooth tube. When compared to R22 at the same test conditions, the evaporating heat transfer coefficients for R410A were 97{approx}129% of R22. (author). 23 refs., 9 figs., 4 tabs.

  11. Modelling the evaporation of a tear film over a contact lens.

    Science.gov (United States)

    Talbott, Kevin; Xu, Amber; Anderson, Daniel M; Seshaiyer, Padmanabhan

    2015-06-01

    A contact lens (CL) separates the tear film into a pre-lens tear film (PrLTF), the fluid layer between the CL and the outside environment, and a post-lens tear film (PoLTF), the fluid layer between the CL and the cornea. We examine a model for evaporation of a PrLTF on a modern permeable CL allowing fluid transfer between the PrLTF and the PoLTF. Evaporation depletes the PrLTF, and continued evaporation causes depletion of the PoLTF via fluid loss through the CL. Governing equations include Navier-Stokes, heat and Darcy's equations for the fluid flow and heat transfer in the PrLTF and porous layer. The PoLTF is modelled by a fixed pressure condition on the posterior surface of the CL. The original model is simplified using lubrication theory for the PrLTF and CL applied to a sagittal plane through the eye. We obtain a partial differential equation (PDE) for the PrLTF thickness that is first-order in time and fourth-order in space. This model incorporates evaporation, conjoining pressure effects in the PrLTF, capillarity and heat transfer. For a planar film, we find that this PDE can be reduced to an ordinary differential equation (ODE) that can be solved analytically or numerically. This reduced model allows for interpretation of the various system parameters and captures most of the basic physics contained in the model. Comparisons of ODE and PDE models, including estimates for the loss of fluid through the lens due to evaporation, are given. © The Authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  12. Experimental and theoretical investigation of an evaporative fuel system for heat engines

    International Nuclear Information System (INIS)

    Thern, Marcus; Lindquist, Torbjoern; Torisson, Tord

    2007-01-01

    The evaporative gas turbine (EvGT) pilot plant has been in operation at Lund University in Sweden since 1997. This project has led to improved knowledge of evaporative techniques and the concept of introducing fuel into gas turbines by evaporation. This results in, amongst others, power augmentation, efficiency increase and lower emissions. This article presents the experimental and theoretical results of the evaporation of a mixture of ethanol and water into an air stream at elevated pressures and temperatures. A theoretical model has been established for the simultaneous heat and mass transfer occurring in the ethanol humidification tower. The theoretical model has been validated through experiments at several operating conditions. It has been shown that the air, water and ethanol can be calculated throughout the column in a satisfactory way. The height of the column can be estimated within an error of 15% compared with measurements. The results from the model are most sensitive to the properties of diffusion coefficient, viscosity, thermal conductivity and activity coefficient due to the complexity of the polar gas mixture of water and air

  13. Thermodynamic and heat transfer analysis of heat recovery from engine test cell by Organic Rankine Cycle

    Science.gov (United States)

    Shokati, Naser; Mohammadkhani, Farzad; Farrokhi, Navid; Ranjbar, Faramarz

    2014-12-01

    During manufacture of engines, evaluation of engine performance is essential. This is accomplished in test cells. During the test, a significant portion of heat energy released by the fuel is wasted. In this study, in order to recover these heat losses, Organic Rankine Cycle (ORC) is recommended. The study has been conducted assuming the diesel oil to be composed of a single hydrocarbon such as C12H26. The composition of exhaust gases (products of combustion) have been computed (and not determined experimentally) from the stoichiometric equation representing the combustion reaction. The test cell heat losses are recovered in three separate heat exchangers (preheater, evaporator and superheater). These heat exchangers are separately designed, and the whole system is analyzed from energy and exergy viewpoints. Finally, a parametric study is performed to investigate the effect of different variables on the system performance characteristics such as the ORC net power, heat exchangers effectiveness, the first law efficiency, exergy destruction and heat transfer surfaces. The results of the study show that by utilizing ORC, heat recovery equivalent to 8.85 % of the engine power is possible. The evaporator has the highest exergy destruction rate, while the pump has the lowest among the system components. Heat transfer surfaces are calculated to be 173.6, 58.7, and 11.87 m2 for the preheater, evaporator and superheater, respectively.

  14. Calculation of Thermal Mode of Flat Irradiated Ceramic Mass Sample’ while Evaporating Moisture from Heated-up Surface

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2004-01-01

    Full Text Available The solution of a differential heat conduction equation is given in view of cooling effect of moisture evaporation from a heated surface. In this case heating heat flow is diminishing in time exponentially. The most typical nomographic temperature and temperature gradient charts of heated surface and mean temperature of a plate are presented in the paper.

  15. Analytical Solutions of Heat Transfer and Film Thickness with Slip Condition Effect in Thin-Film Evaporation for Two-Phase Flow in Microchannel

    Directory of Open Access Journals (Sweden)

    Ahmed Jassim Shkarah

    2015-01-01

    Full Text Available Physical and mathematical model has been developed to predict the two-phase flow and heat transfer in a microchannel with evaporative heat transfer. Sample solutions to the model were obtained for both analytical analysis and numerical analysis. It is assumed that the capillary pressure is neglected (Morris, 2003. Results are provided for liquid film thickness, total heat flux, and evaporating heat flux distribution. In addition to the sample calculations that were used to illustrate the transport characteristics, computations based on the current model were performed to generate results for comparisons with the analytical results of Wang et al. (2008 and Wayner Jr. et al. (1976. The calculated results from the current model match closely with those of analytical results of Wang et al. (2008 and Wayner Jr. et al. (1976. This work will lead to a better understanding of heat transfer and fluid flow occurring in the evaporating film region and develop an analytical equation for evaporating liquid film thickness.

  16. Influence of three different concentration techniques on evaporation rate, color and phenolics content of blueberry juice.

    Science.gov (United States)

    Elik, Aysel; Yanık, Derya Koçak; Maskan, Medeni; Göğüş, Fahrettin

    2016-05-01

    The present study was undertaken to assess the effects of three different concentration processes open-pan, rotary vacuum evaporator and microwave heating on evaporation rate, the color and phenolics content of blueberry juice. Kinetics model study for changes in soluble solids content (°Brix), color parameters and phenolics content during evaporation was also performed. The final juice concentration of 65° Brix was achieved in 12, 15, 45 and 77 min, for microwave at 250 and 200 W, rotary vacuum and open-pan evaporation processes, respectively. Color changes associated with heat treatment were monitored using Hunter colorimeter (L*, a* and b*). All Hunter color parameters decreased with time and dependently studied concentration techniques caused color degradation. It was observed that the severity of color loss was higher in open-pan technique than the others. Evaporation also affected total phenolics content in blueberry juice. Total phenolics loss during concentration was highest in open-pan technique (36.54 %) and lowest in microwave heating at 200 W (34.20 %). So, the use of microwave technique could be advantageous in food industry because of production of blueberry juice concentrate with a better quality and short time of operation. A first-order kinetics model was applied to modeling changes in soluble solids content. A zero-order kinetics model was used to modeling changes in color parameters and phenolics content.

  17. Exergoeconomic analysis and optimization of an evaporator for a binary mixture of fluids in an organic Rankine cycle

    Science.gov (United States)

    Li, You-Rong; Du, Mei-Tang; Wang, Jian-Ning

    2012-12-01

    This paper focuses on the research of an evaporator with a binary mixture of organic working fluids in the organic Rankine cycle. Exergoeconomic analysis and performance optimization were performed based on the first and second laws of thermodynamics, and the exergoeconomic theory. The annual total cost per unit heat transfer rate was introduced as the objective function. In this model, the exergy loss cost caused by the heat transfer irreversibility and the capital cost were taken into account; however, the exergy loss due to the frictional pressure drops, heat dissipation to surroundings, and the flow imbalance were neglected. The variation laws of the annual total cost with respect to the number of transfer units and the temperature ratios were presented. Optimal design parameters that minimize the objective function had been obtained, and the effects of some important dimensionless parameters on the optimal performances had also been discussed for three types of evaporator flow arrangements. In addition, optimal design parameters of evaporators were compared with those of condensers.

  18. Regenerator heat exchanger – calculation of heat recovery efficiency and pressure loss

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per Kvols

    Performance of heat exchangers is determined based on two main parameters: efficiency to exchange / recover heat and pressure loss due to friction between fluid and exchanger surfaces. These two parameters are contradicting each other which mean that the higher is efficiency the higher becomes...... pressure loss. The aim of the optimized design of heat exchanger is to reach the highest or the required heat efficiency and at the same time to keep pressure losses as low as possible keeping total exchanger size within acceptable size. In this report is presented analytical calculation method...... to calculate efficiency and pressure loss in the regenerator heat exchanger with a fixed matrix that will be used in the decentralized ventilation unit combined in the roof window. Moreover, this study presents sensitivity study of regenerator heat exchanger performance, taking into account, such parameters as...

  19. Flash evaporator

    OpenAIRE

    1997-01-01

    A device and method for flash evaporating a reagent includes an evaporation chamber that houses a dome on which evaporation occurs. The dome is solid and of high thermal conductivity and mass, and may be heated to a temperature sufficient to vaporize a specific reagent. The reagent is supplied from an external source to the dome through a nozzle, and may be supplied as a continuous stream, as a shower, and as discrete drops. A carrier gas may be introduced into the evaporation chamber and cre...

  20. Heat loss mechanisms in a measurement of specific heat capacity of graphite

    International Nuclear Information System (INIS)

    Shipley, D.R.; Duane, S.

    1996-01-01

    Absorbed dose to graphite in electron beams with nominal energies in the range 3-20 MeV is determined by measuring the temperature rise in the core of a primary standard graphite calorimeter. This temperature rise is related to absorbed dose by a separate measurement of the specific heat capacity of the graphite core. There is, however, a small but significant amount of heat loss from the sample in the determination of specific heat capacity and corrections for these losses are required. This report discusses the sources of heat loss in the measurements and, where possible, provides estimates for the magnitude of these losses. For those mechanisms which are significant, a more realistic model of the measurement system is analysed and corrections for the losses are provided. (UK)

  1. Heat transfer correlation models for electrospray evaporative cooling chambers of different geometry types

    International Nuclear Information System (INIS)

    Wang, Hsiu-Che; Mamishev, Alexander V.

    2012-01-01

    Development of future electronics for high speed computing requires a silent thermal management method capable of dissipating a broad range of heat generated from application-specific integrated circuits, while keeping the skin temperature below 45 °C. Electrospray evaporative cooling (ESEC) chambers show promise because of their ability to dissipate a broad range of heat within a relatively small size. However, the development and the optimization of ESEC chambers are currently restricted, in part due to the lack of sufficient empirical heat transfer correlations. This paper investigates empirical heat transfer correlations for ESEC chambers with three different geometry types. Since the unstable multi-jet behavior of an ESEC chamber is similar to that of a free-surface traditional impinging liquid jet, these correlations are based on the traditional impinging liquid jet’s empirical correlations, yet are modified to factor in the electric field effect. The results show that the heat transfer enhancement ratio correlations and the Nusselt number correlations for different ESEC chambers cover more than 83% of the experimental data, within ±10% deviation. The sensitivity analysis results and experimental data prove that the variation in the enhancement ratio is sensitive to that of the potential and the flow rate. It is not sensitive to the geometric factor of the same ESEC type. This paper presents a natural convection correlation for chip-scale, heated, flat surfaces when the Rayleigh number is below 3000. Further investigation is necessary to extend these heat transfer correlations to cover additional parameters for different thermal management applications. - Highlights: ► We develop empirical heat transfer correlations for electrospray evaporative cooling chambers. ► The developed heat transfer enhancement correlations fit more than 83% experimental data. ► The developed Nusselt number correlations fit more than 89% experimental data. ► We present a

  2. Turbulent energy losses during orchard heating

    Energy Technology Data Exchange (ETDEWEB)

    Bland, W.L.

    1979-01-01

    Two rapid-response drag anemometers and low time constant thermocouples, all at 4 m above a heated orchard floor, sampled wind component in the vertical direction and temperature at 30 Hz. The turbulent heat flux calculated revealed not more than 10% of the heat lost from the orchard was via turbulent transort. The observations failed to support previous estimates that at least a third of the energy applied was lost through turbulent transport. Underestimation of heat loss due to mean flow and a newly revealed flux due to spatial variations in the mean flow may explain the unaccounted for loss.

  3. Evaporation of Droplets in Plasma Spray-Physical Vapor Deposition Based on Energy Compensation Between Self-Cooling and Plasma Heat Transfer

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-10-01

    In the plasma spray-physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter <0.28 μm and an initial temperature of 3247 K can be completely evaporated within the axial distance of 450 mm by heat transfer.

  4. Hydric "Costs" of Reproduction: Pregnancy Increases Evaporative Water Loss in the Snake Vipera aspis.

    Science.gov (United States)

    Lourdais, Olivier; Dupoué, Andréaz; Guillon, Michaël; Guiller, Gaëtan; Michaud, Bruno; DeNardo, Dale F

    Water constraints can mediate evolutionary conflict either among individuals (e.g., parent-offspring conflict, sexual conflict) or within an individual (e.g., cost of reproduction). During pregnancy, water is of particular importance because the female provides all water needed for embryonic development and experiences important maternal shifts in behavior and physiology that, together, can compromise female water balance if water availability is limited. We examined the effect of pregnancy on evaporative water loss and microhabitat selection in a viviparous snake, the aspic viper. We found that both physiological (increased metabolism and body temperature) and morphological (body distension) changes contribute to an increased evaporative water loss in pregnant females. We also found that pregnant females in the wild select warmer and moister basking locations than nonreproductive females, likely to mitigate the conflict between thermal needs and water loss. Water resources likely induce significant reproductive constraints across diverse taxa and thus warrant further consideration in ecological research. From an evolutionary perspective, water constraints during reproduction may contribute to shaping reproductive effort.

  5. Heat losses in power boilers caused by thermal bridges

    Directory of Open Access Journals (Sweden)

    Kocot Monika

    2017-01-01

    Full Text Available In this article the analysis of heat losses caused by thermal bridges that occur in the steam boiler OP-140 is presented. Identification of these bridges were conducted with use of thermographic camera. Heat losses were evaluated based on methodology of VDI 4610 standard, but instead of its simplified equations, criterial equations based on Nusselt number were used. Obtained values of annual heat losses and heat flux density corresponding to the fully insulated boiler surfaces were compared to heat losses generated by thermal bridges located in the same areas. The emphasis is put on the role of industrial insulation in heat losses reduction.

  6. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    Kakac, S.

    1991-01-01

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  7. Experimental study of heat transfer in regenerators-evaporators with dissociating coolant

    International Nuclear Information System (INIS)

    Kolykhan, L.I.; Golovnya, V.N.

    1983-01-01

    The results of experimental study of heat transfer in two parallel-flow regenerators-evaporators are given. One of the regenerators represents a counterflow heat exchanger of the tube-in-tube type with longitudinal roughness of the outside of the inner tube. In the second regenerator at the three intervals between roughness, recombiner-Chambers have been installed for fivefold increase of residence time of recombining warming gas mixture 2NO+O 2 reversible 2NO 2 reversible N 2 O 4 . The conducted experiments have shown that in the regenerators, having recombiners, more heat has been transfered (up to 15-20%) in comparison with conven=. tional construction at the expense of approximation of heating gas conditions to equitidrium and increasing of temperature drop. On the basis of conducted investigation the possibility of utilization of developed calculation methods is concluded for reliable design of regenerators of different types with equilibrium and non-equilibrium proceeding of chemical reactions in the coolant and with marked temperature heads between heating gas and heated medium

  8. Numerical study of heat and mass transfer during evaporation of a turbulent binary liquid film

    Directory of Open Access Journals (Sweden)

    Khalal Larbi

    2015-01-01

    Full Text Available This paper deals with a computational study for analysing heat and mass exchanges in the evaporation of a turbulent binary liquid film (water-ethanol and water-methanol along a vertical tube. The film is in co-current with the dry air and the tube wall is subjected to a uniform heat flux. The effect of gas-liquid phase coupling, variable thermophysical properties and film vaporization are considered in the analysis. The numerical method applied solves the coupled governing equations together with the boundary and interfacial conditions. The algebraic systems of equations obtained are solved using the Thomas algorithm. The results concern the effects of the inlet liquid Reynolds number and inlet film composition on the intensity of heat and mass transfer. In this study, results obtained show that heat transferred through the latent mode is more pronounced when the concentration of volatile components is higher in the liquid mixture .The comparisons of wall temperature and accumulated mass evaporation rate with the literature results are in good agreement.

  9. Experimental investigation on the evaporation of a wet porous layer inside a vertical channel with resolution of the heat equation by inverse method

    International Nuclear Information System (INIS)

    Terzi, A.; Foudhil, W.; Harmand, S.; Ben Jabrallah, S.

    2016-01-01

    Highlights: • Experimental study of the evaporation of a wet porous layer inside a vertical channel. • Resolution of the heat equation by inverse method. • The use of the porous layer is more efficient for high heating flux and low liquid inlet flow. • To improve the evaporation, the system must operate at low water inlet flow. - Abstract: In this paper, we realize an Experimental study of the evaporation of a wet porous layer inside a vertical channel. To develop this study, an experimental dispositive was realised. We measure the temperature along the plate and the evaporated flow rate using the test bed. From these measurements we note that the profiles of the temperature are divided into two areas: the heating and the evaporation zone. We also note that the use of the porous layer is more efficient for high heating flux and low liquid inlet flow. In addition, we studied different dimensionless numbers by solving the energy equation by inverse method. We note that the latent Nusselt number is more important than the sensible Nusselt Number, which proves that the flow dissipated by evaporation is greater than the one used by the film to increase its temperature.

  10. Characteristics of heat transfer fouling of thin stillage using model thin stillage and evaporator concentrates

    Science.gov (United States)

    Challa, Ravi Kumar

    The US fuel ethanol demand was 50.3 billion liters (13.3 billion gallons) in 2012. Corn ethanol was produced primarily by dry grind process. Heat transfer equipment fouling occurs during corn ethanol production and increases the operating expenses of ethanol plants. Following ethanol distillation, unfermentables are centrifuged to separate solids as wet grains and liquid fraction as thin stillage. Evaporator fouling occurs during thin stillage concentration to syrup and decreases evaporator performance. Evaporators need to be shutdown to clean the deposits from the evaporator surfaces. Scheduled and unscheduled evaporator shutdowns decrease process throughput and results in production losses. This research were aimed at investigating thin stillage fouling characteristics using an annular probe at conditions similar to an evaporator in a corn ethanol production plant. Fouling characteristics of commercial thin stillage and model thin stillage were studied as a function of bulk fluid temperature and heat transfer surface temperature. Experiments were conducted by circulating thin stillage or carbohydrate mixtures in a loop through the test section which consisted of an annular fouling probe while maintaining a constant heat flux by electrical heating and fluid flow rate. The change in fouling resistance with time was measured. Fouling curves obtained for thin stillage and concentrated thin stillage were linear with time but no induction periods were observed. Fouling rates for concentrated thin stillage were higher compared to commercial thin stillage due to the increase in solid concentration. Fouling rates for oil skimmed and unskimmed concentrated thin stillage were similar but lower than concentrated thin stillage at 10% solids concentration. Addition of post fermentation corn oil to commercial thin stillage at 0.5% increments increased the fouling rates up to 1% concentration but decreased at 1.5%. As thin stillage is composed of carbohydrates, protein, lipid

  11. Analysis of the internal heat losses in a thermoelectric generator

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Christensen, Dennis Valbjørn; Eriksen, Dan

    2014-01-01

    and radiative heat losses, including surface to surface radiation. For radiative heat losses it is shown that for the temperatures considered here, surface to ambient radiation is a good approximation of the heat loss. For conductive heat transfer the module efficiency is shown to be comparable to the case...... of radiative losses. Finally, heat losses due to internal natural convection in the module is shown to be negligible for the millimetre sized modules considered here. The combined case of radiative and conductive heat transfer resulted in the lowest efficiency. The optimized load resistance is found...... to decrease for increased heat loss. The leg dimensions are varied for all heat losses cases and it is shown that the ideal way to construct a TEG module with minimal heat losses and maximum efficiency is to either use a good insulating material between the legs or evacuate the module completely, and use...

  12. Organic evaporator steam valve failure

    International Nuclear Information System (INIS)

    Jacobs, R.A.

    1992-01-01

    Defense Waste Processing Facility (DWPF) Technical has requested an analysis of the capacity of the Organic Evaporator (OE) condenser (OEC) be performed to determine its capability in the case where the OE steam flow control valve fails open. Calculations of the OE boilup and the OEC heat transfer coefficient indicate the OEC will have more than enough capacity to remove the heat at maximum OE boilup. In fact, the Salt Cell Vent Condenser (SCVC) should also have sufficient capacity to handle the maximum OE boilup. Therefore, it would require simultaneous loss of OEC and/or SCVC condensing capacity for the steam valve failure to cause high benzene in the Process Vessel Vent System (PVVS)

  13. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  14. Water based suspensions of iron oxide obtained by laser target evaporation for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Novoselova, I.P. [Ural Federal University, Department of Magnetism and Magnetic Nanomaterials, Lenin Ave. 51, 620083 Yekaterinburg (Russian Federation); Immanuel Kant Baltic Federal University, Science and Technology Park “Fabrica”, Gaidara St. 6, 236022 Kaliningrad (Russian Federation); Safronov, A.P. [Ural Federal University, Department of Magnetism and Magnetic Nanomaterials, Lenin Ave. 51, 620083 Yekaterinburg (Russian Federation); Institute of Electrophysics UD RAS, Amundsena St. 106, 620016 Yekaterinburg (Russian Federation); Samatov, O.M. [Institute of Electrophysics UD RAS, Amundsena St. 106, 620016 Yekaterinburg (Russian Federation); Beketov, I.V.; Medvedev, A.I. [Ural Federal University, Department of Magnetism and Magnetic Nanomaterials, Lenin Ave. 51, 620083 Yekaterinburg (Russian Federation); Institute of Electrophysics UD RAS, Amundsena St. 106, 620016 Yekaterinburg (Russian Federation); Kurlyandskaya, G.V. [Ural Federal University, Department of Magnetism and Magnetic Nanomaterials, Lenin Ave. 51, 620083 Yekaterinburg (Russian Federation); Universidad del País Vasco, UPV/EHU, Dpto. de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain)

    2016-10-01

    In this work spherical magnetic nanoparticles (MNPs) of iron oxide were obtained by laser target evaporation technique (LTE). Water based suspensions were prepared on the basis of obtained MNPs and their properties were also studied including inductive heat capacity. Their structure and properties were studied by a number of techniques including magnetometry and heat capacity measurements. Magnetic induction heating experiment show the specific loss power (SLP) value in the narrow range from 1.30 to 1.45 W/g for all samples under consideration when using alternating magnetic field of 1.7 kA/m and frequency of 210 kHz. These parameters insure that LTE MNPs are interesting materials promising for magnetic fluid hyperthermia. - Highlights: • Spheric oxide nanoparticles obtained by productive laser target evaporation method. • Experiment shows the specific loss power value in the narrow range for all samples. • Obtained results insure these objects as interesting material for hyperthermia.

  15. Water based suspensions of iron oxide obtained by laser target evaporation for biomedical applications

    International Nuclear Information System (INIS)

    Novoselova, I.P.; Safronov, A.P.; Samatov, O.M.; Beketov, I.V.; Medvedev, A.I.; Kurlyandskaya, G.V.

    2016-01-01

    In this work spherical magnetic nanoparticles (MNPs) of iron oxide were obtained by laser target evaporation technique (LTE). Water based suspensions were prepared on the basis of obtained MNPs and their properties were also studied including inductive heat capacity. Their structure and properties were studied by a number of techniques including magnetometry and heat capacity measurements. Magnetic induction heating experiment show the specific loss power (SLP) value in the narrow range from 1.30 to 1.45 W/g for all samples under consideration when using alternating magnetic field of 1.7 kA/m and frequency of 210 kHz. These parameters insure that LTE MNPs are interesting materials promising for magnetic fluid hyperthermia. - Highlights: • Spheric oxide nanoparticles obtained by productive laser target evaporation method. • Experiment shows the specific loss power value in the narrow range for all samples. • Obtained results insure these objects as interesting material for hyperthermia.

  16. Influence of radiative heat and mass transfer mechanism in system “water droplet-high-temperature gases” on integral characteristics of liquid evaporation

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available Physical and mathematical (system of differential equations in private derivatives models of heat and mass transfer were developed to investigate the evaporation processes of water droplets and emulsions on its base moving in high-temperature (more than 1000 K gas flow. The model takes into account a conductive and radiative heat transfer in water droplet and also a convective, conductive and radiative heat exchange with high-temperature gas area. Water vapors characteristic temperature and concentration in small wall-adjacent area and trace of the droplet, numerical values of evaporation velocities at different surface temperature, the characteristic time of complete droplet evaporation were determined. Experiments for confidence estimation of calculated integral characteristics of processes under investigation - mass liquid evaporation velocities were conducted with use of cross-correlation recording video equipment. Their satisfactory fit (deviations of experimental and theoretical velocities were less than 15% was obtained. The influence of radiative heat and mass transfer mechanism on characteristics of endothermal phase transformations in a wide temperature variation range was established by comparison of obtained results of numerical simulation with known theoretical data for “diffusion” mechanisms of water droplets and other liquids evaporation in gas.

  17. Heat transfer and evaporative cooling in the function of pot-in-pot coolers

    Science.gov (United States)

    Chemin, Arsène; Levy Dit Vehel, Victor; Caussarieu, Aude; Plihon, Nicolas; Taberlet, Nicolas

    2018-03-01

    A pot-in-pot cooler is an affordable electricity-free refrigerator which uses the latent heat of vaporization of water to maintain a low temperature inside an inner compartment. In this article, we experimentally investigate the influence of the main physical parameters in model pot-in-pot coolers. The effect of the wind on the evaporation rate of the cooling fluid is studied in model experiments while the influence of the fluid properties (thermal conductivity, specific heat, and latent heat) is elucidated using a variety of cooling fluids (water, ethanol, and ether). A model based on a simplified heat conduction equation is proposed and is shown to be in good quantitative agreement with the experimental measurements.

  18. Improving MODPRESS heat loss calculations for PWR pressurizers

    International Nuclear Information System (INIS)

    Ramos, Natalia V.; Lira, Carlos A. Brayner O.; Castrillho, Lazara S.

    2009-01-01

    The improvement of heat loss calculations in MODPRESS transient code for PWR pressurizer analysis is the main focus of this investigation. Initially, a heat loss model was built based on heat transfer coefficient (HTC) correlations obtained in handbooks of thermal engineering. A hand calculation for Neptunus experimental test number U47 yielded a thermal power loss of 11.2 kW against 17.3 kW given by MODPRESS at the same conditions, while the experimental estimate is given as 17 kW. This comparison is valid only for steady state or before starting the transient experiment, because MODPRESS does not update HTC's when the transient phase begins. Furthermore, it must be noted that MODPRESS heat transfer coefficients are adjusted to reproduce the experimental value of the specific type of pressurizer. After inserting the new routine for HTC's into MODPRESS, the heat loss was calculated as 11.4 kW, a value very close to the first estimate but far below 17 kW found in the U47 experiment. In this paper, the heat loss model and results will be described. Further research is being developed to find a more general HTC that allows the analysis of the effects of heat losses on transient behavior of Neptunus and IRIS pressurizers. (author)

  19. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been defined. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  20. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration.

    Science.gov (United States)

    Albright, Thomas P; Mutiibwa, Denis; Gerson, Alexander R; Smith, Eric Krabbe; Talbot, William A; O'Neill, Jacqueline J; McKechnie, Andrew E; Wolf, Blair O

    2017-02-28

    Extreme high environmental temperatures produce a variety of consequences for wildlife, including mass die-offs. Heat waves are increasing in frequency, intensity, and extent, and are projected to increase further under climate change. However, the spatial and temporal dynamics of die-off risk are poorly understood. Here, we examine the effects of heat waves on evaporative water loss (EWL) and survival in five desert passerine birds across the southwestern United States using a combination of physiological data, mechanistically informed models, and hourly geospatial temperature data. We ask how rates of EWL vary with temperature across species; how frequently, over what areas, and how rapidly lethal dehydration occurs; how EWL and die-off risk vary with body mass; and how die-off risk is affected by climate warming. We find that smaller-bodied passerines are subject to higher rates of mass-specific EWL than larger-bodied counterparts and thus encounter potentially lethal conditions much more frequently, over shorter daily intervals, and over larger geographic areas. Warming by 4 °C greatly expands the extent, frequency, and intensity of dehydration risk, and introduces new threats for larger passerine birds, particularly those with limited geographic ranges. Our models reveal that increasing air temperatures and heat wave occurrence will potentially have important impacts on the water balance, daily activity, and geographic distribution of arid-zone birds. Impacts may be exacerbated by chronic effects and interactions with other environmental changes. This work underscores the importance of acute risks of high temperatures, particularly for small-bodied species, and suggests conservation of thermal refugia and water sources.

  1. Deriving guidelines for the design of plate evaporators in heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Mancini, Roberta; Zühlsdorf, Benjamin; Jensen, Jonas Kjær

    2018-01-01

    This paper presents a derivation of design guidelines for plate heat exchangers used for evaporation of zeotropic mixtures in heat pumps. A mapping of combined heat exchanger and cycle calculations for different combinations of geometrical parameters and working fluids allowed estimating the trade....... It was found that the pressure drop limit leading to infeasible designs was dependent on the working fluid, thereby making it impossible to define a guideline based on maximum allowable pressure drops. It was found that economically feasible designs could be obtained by correlating the vapour Reynolds number...

  2. A heat transfer model for evaporating micro-channel coalescing bubble flow

    International Nuclear Information System (INIS)

    Consolini, L.; Thome, J.R.

    2009-01-01

    The current study presents a one-dimensional model of confined coalescing bubble flow for the prediction of micro-channel convective boiling heat transfer. Coalescing bubble flow has recently been identified as one of the characteristic flow patterns to be found in micro-scale systems, occurring at intermediate vapor qualities between the isolated bubble and the fully annular regimes. As two or more bubbles bond under the action of inertia and surface tension, the passage frequency of the bubble liquid slug pair declines, with a redistribution of liquid among the remaining flow structures. Assuming heat transfer to occur only by conduction through the thin evaporating liquid film surrounding individual bubbles, the present model includes a simplified description of the dynamics of the thin film evaporation process that takes into account the added mass transfer by breakup of the bridging liquid slugs. The new model has been confronted against experimental data taken within the coalescing bubble flow mode that have been identified by a diabatic micro-scale flow pattern map. The comparisons for three different fluids (R-134a, R-236fa and R-245fa) gave encouraging results with 83% of the database predicted within a ± 30% error band. (author)

  3. Effect of Liquid/Vapour Maldistribution on the Performance of Plate Heat Exchanger Evaporators

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Kærn, Martin Ryhl; Ommen, Torben Schmidt

    2015-01-01

    Plate heat exchangers are often applied as evaporators in industrial refrigeration and heat pump systems. In the design and modelling of such heat exchangers the flow and liquid/vapour distribution is often assumed to be ideal. However, maldistribution may occur and will cause each channel...... to behave differently due to the variation of the mass flux and vapour quality. To evaluate the effect of maldistribution on the performance of plate heat exchangers, a numerical model is developed in which the mass, momentum and energy balances are applied individually to each channel, including suitable...... correlations for heat transfer and pressure drop. The flow distribution on both the refrigerant and secondary side is determined based on equal pressure drop while the liquid/vapour distribution is imposed to the model. Results show that maldistribution may cause up to a 25 % reduction of the overall heat...

  4. Transient heating and evaporation of moving mono-component liquid fuel droplets

    DEFF Research Database (Denmark)

    Yin, Chungen

    2016-01-01

    of which the flow and energy transport equations are numerically solved using the finite volume method. The computer code for the model is developed in a generic 3D framework and verified in different ways (e.g., by comparison against analytical solutions for simplified cases, and against experimental......This paper presents a complete description of a model for transient heating and evaporation of moving mono-component liquid fuel droplets. The model mainly consists of gas phase heat and mass transfer analysis, liquid phase analysis, and droplet dynamics analysis, which address the interaction...... between the moving droplets and free-stream flow, the flow and heat and mass transfer within the droplets, and the droplet dynamics and size, respectively. For the liquid phase analysis, the droplets are discretized into a number of control volumes along the radial, polar and azimuthal directions, on each...

  5. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  6. Investigation of the effect of rollbond evaporator design on the performance of direct expansion heat pump experimentally

    International Nuclear Information System (INIS)

    Cerit, Emine; Erbay, L. Berrin

    2013-01-01

    Highlights: • Effect of rollbond evaporator design to performance of the DX-SAHP is investigated. • Experiments performed on three identical DX-SAHP systems except evaporator design. • Evaporators’ material is aluminum and R134a is the working fluid. • Empirical correlation derived for system COP in terms of radiation and temperature. • The correlation provides the average deviation of 9% with the experimental data. - Abstract: In this study, the rollbond evaporator design which gives maximum coefficient of performance for the direct expansion solar assisted heat pump (DX-SAHP) water heater is investigated experimentally on the three separate heat pump systems due to the lack of studies on the effect of collector-evaporator design to the system performance. Three DX-SAHP systems are identical except collector-evaporator design. Aluminum is preferred for the evaporator material and R134a as the working fluid. Maximum COP value was obtained as 3.30 for System-1 while COP values for System-2 and System-3 were 3.14 and 2.42 respectively at the same conditions. An empirical correlation which gives the COP value of the System-1, which provides highest COP, with respect to the solar radiation and outdoor temperature of the system has been found using the experimental results obtained during the study. The correlation was found to be in good agreement with the average deviation of 9% with the experimental data

  7. Heat Loss Evaluation of the SMART-ITL Primary System

    International Nuclear Information System (INIS)

    Ryu, Sung Uk; Bae, Hwang; Kim, Dong Eok; Park, Keun Tae; Park, Hyun Sik; Yi, Sung Jae

    2013-01-01

    It is considered that the heat loss rate is one of the critical factors affecting the transient behavior of an integral effect test facility. This paper presents the experimental results of the heat loss rate for the primary system of a SMART-ITL (System-Integrated Modular Advanced ReacTor-Integral Test Loop) facility including the pressurizer (PZR). To evaluate the heat loss rate of the primary system, two different approaches were pursued, i. e., integral and differential approaches. The integral approach is a constant temperature method which controls the core and PZR powers at a desired temperature condition and the differential approach is a natural cooling-down measurement method that lasts for a long period of time. In the present work, the heat losses derived from integral and differential approaches were acquired for the primary system of the SMART-ITL. The results obtained by the two approaches were very similar. In addition, an empirical correlation with respect to the difference between the wall temperature and the ambient temperature was proposed to represent the heat loss characteristics of the SMART-ITL facility. The estimated heat losses could be used to estimate the heat loss during the tests and code simulations

  8. Drop evaporation and triple line dynamics

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerome; Université de Provence Team; Cea Liten Team

    2011-03-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop deposited on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (PTFE, SiOx, SiOc and CF), the influence of the dynamic of the triple line on the evaporation process. The experiment consists in analyzing simultaneously the motion of the triple line, the kinetics of evaporation, the internal thermal motion and the heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamics of the evaporative heat flux appears clearly different depending of the motion of the triple line

  9. Prediction of transient maximum heat flux based on a simple liquid layer evaporation model

    International Nuclear Information System (INIS)

    Serizawa, A.; Kataoka, I.

    1981-01-01

    A model of liquid layer evaporation with considerable supply of liquid has been formulated to predict burnout characteristics (maximum heat flux, life, etc.) during an increase of the power. The analytical description of the model is built upon the visual and photographic observations of the boiling configuration at near peak heat flux reported by other investigators. The prediction compares very favourably with water data presently available. It is suggested from the work reported here that the maximum heat flux occurs because of a balance between the consumption of the liquid film on the heated surface and the supply of liquid. Thickness of the liquid film is also very important. (author)

  10. Analysis of heat and mass transfer to determine heat loss and the rate of condensation of the MVSTs off-gas ducts

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Yang, G.; Bigzadeh, E.; Walker, J.F.; Abraham, T.J.

    1992-01-01

    Reduction of the existing nuclear waste in the Melton Valley Storage Tanks (MVSTs) at the Oak Ridge National Laboratory (ORNL) is of utmost concern to the scientists at this facility. This paper provides proof that a combination of vault heating, sparged air heating, and prevention of condensation is the best alternative to achieve this goal. Therefore, in this study a general system of mathematical equations has been developed taking into account all of the parameters affecting evaporation and condensation. This evaporation process has been analyzed by the careful modeling of a bubble chain through the extremely viscous, radioactive liquid contained in the storage tanks. This paper discusses in detail the evaporation procedure using bubble formation, air velocity, and determining the rate at which this liquid waste can be removed from the MVSTs by evaporation under different conditons of the sparging air. An additional objective is to study the heating/cooling of the condensation process of the off-gas piping inside the vault. A laboratory scale model has also been assembled for this purpose at ORNL to verify the accuracy of the mathematical modeling. A comparison of the experimental findings with the mathematical modeling shows excellent agreement. (orig.)

  11. Void fraction correlations analysis and their influence on heat transfer of helical double-pipe vertical evaporator

    International Nuclear Information System (INIS)

    Parrales, Arianna; Colorado, Dario; Huicochea, Armando; Díaz, Juan; Alfredo Hernández, J.

    2014-01-01

    Highlights: • 50 void fraction correlations were evaluated on heat transfer in vertical evaporators. • Two-phase flow model based on control volume formulation was used. • The drift flux parameter is common in all correlations with satisfactory results. - Abstract: An analysis of 50 void fraction correlations available in the literature was performed to describe two-phase flow mechanism inside two helical double-pipe vertical evaporators. The evaporators considered water as working fluid connected in countercurrent so the change of phase was carried out into the internal tube. The discretized equations of continuity, momentum and energy in each flow were coupled using an implicit step by step method. The selection of the void fraction correlations for the mathematical model was based on inclusion of some theoretical limits. The results of this analysis were compared with the experimental data in steady state for two different evaporators, obtaining good agreement in the evaporation process for only 7 void fraction correlations. The Armand and Massena correlation had a mean percentage error (MPE) of 3.08%, followed by Rouhanni and Axelsson I adquired MPE=3.16%, Chisholm and Armand obtained MPE=3.18%, Steiner as well as Rouhanni and Axelsson II with MPE=3.19%, Bestion reached MPE=3.20% and Flanigan presented MPE=3.21%. Furthermore, the experimental and simulated heat flux were acceptable (R 2 =0.939). Finally, the results showed that the drift flux parameter was important to evaluate the void fraction

  12. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    Science.gov (United States)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.

  13. Numerical study of heat and mass transfer during evaporation of a thin liquid film

    Directory of Open Access Journals (Sweden)

    Oubella M’hand

    2015-01-01

    Full Text Available A numerical study of mixed convection heat and mass transfer with film evaporation in a vertical channel is developed. The emphasis is focused on the effects of vaporization of three different liquid films having widely different properties, along the isothermal and wetted walls on the heat and mass transfer rates in the channel. The induced laminar downward flow is a mixture of blowing dry air and vapour of water, methanol or acetone, assumed as ideal gases. A two-dimensional steady state and elliptical flow model, connected with variable thermo-physical properties, is used and the phase change problem is based on thin liquid film assumptions. The governing equations of the model are solved by a finite volume method and the velocity-pressure fields are linked by SIMPLE algorithm. The numerical results, including the velocity, temperature and concentration profiles, as well as axial variations of Nusselt numbers, Sherwood number and dimensionless film evaporation rate are presented for two values of inlet temperature and Reynolds number. It was found that lower the inlet temperature and Re, the higher the induced flows cooling with respect of most volatile film. The better mass transfer rates related with film evaporation are found for a system with low mass diffusion coefficient.

  14. MATHEMATICAL MODELLING OF OPERATION HEAT NETWORKS IN VIEW OF HEAT LOSS

    Directory of Open Access Journals (Sweden)

    ZBARAZ L. I.

    2016-08-01

    Full Text Available Goal. In recent years, due to a significant rise in price of energy, the reduction of direct costs for heating becomes a priority. In the utilities especially important to optimization of energy heating system equipment. During transport of thermal energy in the distribution networks thermal losses occur along the length of the hydraulic pipes and the coolant pumping losses. These loss-dependence of the particular distribution network. Changing temperature and the hydraulic regime at the source necessary to achieve the minimum cost of transport for today acting tariffs for energy. Scientific novelty. The studies received law changes head to the source at the qualitative and quantitative methods of regulation. Results. A mathematical model of an extensive network of decentralized heat source heating, which are analyzed using different methods of regulating and found the best.

  15. Ion heat conduction losses in Extrap

    International Nuclear Information System (INIS)

    Tennfors, E.

    1989-08-01

    The classical ion heat conduction losses in Extrap discharges are calculated using polynomial magnetic field profiles and compared to the power input. For polynomials matched to magnetic field profiles measured in present experiments, these losses are small. By varying the coefficients of the polynomials, a region is found, where the power input can balance the classical heat conduction losses. Each set of coefficients corresponds to values of the parameters F and Θ used in RFP physics. The region determines a region in an F-Θ diagram, including the usual RFP region but extending to higher values of Θ and βΘ

  16. Fuzzy Nonlinear Dynamic Evaporator Model in Supercritical Organic Rankine Cycle Waste Heat Recovery Systems

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2018-04-01

    Full Text Available The organic Rankine cycle (ORC-based waste heat recovery (WHR system operating under a supercritical condition has a higher potential of thermal efficiency and work output than a traditional subcritical cycle. However, the operation of supercritical cycles is more challenging due to the high pressure in the system and transient behavior of waste heat sources from industrial and automotive engines that affect the performance of the system and the evaporator, which is the most crucial component of the ORC. To take the transient behavior into account, the dynamic model of the evaporator using renowned finite volume (FV technique is developed in this paper. Although the FV model can capture the transient effects accurately, the model has a limitation for real-time control applications due to its time-intensive computation. To capture the transient effects and reduce the simulation time, a novel fuzzy-based nonlinear dynamic evaporator model is also developed and presented in this paper. The results show that the fuzzy-based model was able to capture the transient effects at a data fitness of over 90%, while it has potential to complete the simulation 700 times faster than the FV model. By integrating with other subcomponent models of the system, such as pump, expander, and condenser, the predicted system output and pressure have a mean average percentage error of 3.11% and 0.001%, respectively. These results suggest that the developed fuzzy-based evaporator and the overall ORC-WHR system can be used for transient simulations and to develop control strategies for real-time applications.

  17. Potential for natural evaporation as a reliable renewable energy resource.

    Science.gov (United States)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  18. Sodium evaporation into a forced argon flow

    International Nuclear Information System (INIS)

    Kumada, Toshiaki; Kasahara, Fumio; Ishiguro, Ryoji

    1975-01-01

    Evaporation from a rectangular sodium free surface into an argon flow was measured. Tests were carried out with varying sodium temperature, argon velocity and argon temperature respectively under conditions of fog formation being possible. In order to clarify the enhancement of evaporation by fog formation, convection heat transfer from a plate of the same geometry into an air flow was also measured. The evaporation rate and Sherwood number were compared with those predicted by both the heat transfer experiment and the theory proposed by Hill and Szekely, and also a comparison was run with the previously reported experimental results of sodium evaporation. As a result it was shown that the sodium evaporation rate in this experiment is at least four times as large as that predicted by the heat transfer experiment and varies almost linearly with the heat transfer rate and the sodium vapour pressure. (auth.)

  19. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...... loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......, calculations show that the yearly thermal performance of solar domestic hot water systems is strongly reduced if the hot water tank has a thermal bridge located at the top of the tank....

  20. Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation: Neural control of skin blood flow and sweating in humans.

    Science.gov (United States)

    Smith, Caroline J; Johnson, John M

    2016-04-01

    Under normothermic, resting conditions, humans dissipate heat from the body at a rate approximately equal to heat production. Small discrepancies between heat production and heat elimination would, over time, lead to significant changes in heat storage and body temperature. When heat production or environmental temperature is high the challenge of maintaining heat balance is much greater. This matching of heat elimination with heat production is a function of the skin circulation facilitating heat transport to the body surface and sweating, enabling evaporative heat loss. These processes are manifestations of the autonomic control of cutaneous vasomotor and sudomotor functions and form the basis of this review. We focus on these systems in the responses to hyperthermia. In particular, the cutaneous vascular responses to heat stress and the current understanding of the neurovascular mechanisms involved. The available research regarding cutaneous active vasodilation and vasoconstriction is highlighted, with emphasis on active vasodilation as a major responder to heat stress. Involvement of the vasoconstrictor and active vasodilator controls of the skin circulation in the context of heat stress and nonthermoregulatory reflexes (blood pressure, exercise) are also considered. Autonomic involvement in the cutaneous vascular responses to direct heating and cooling of the skin are also discussed. We examine the autonomic control of sweating, including cholinergic and noncholinergic mechanisms, the local control of sweating, thermoregulatory and nonthermoregulatory reflex control and the possible relationship between sudomotor and cutaneous vasodilator function. Finally, we comment on the clinical relevance of these control schemes in conditions of autonomic dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Evaporation studies of liquid oxide fuel at very high temperatures using laser beam heating

    International Nuclear Information System (INIS)

    Bober, M.; Breitung, W.; Karow, H.U.; Schretzmann, K.

    1976-11-01

    Evaporation experiments with oxide fuel are carried out based laser beam heating of the fuel specimen surface. The measuring quantities are the recoil momentum of the target, the evaporation area, the evaporation time and the mass and momentum of the supersonic vapor jet expanding into vacuum, and the thermal radiation density of the evaporating surface. From the mechanical measuring quantities we derive the vapor pressure of the target material and, in a first approach, also the evaporation temperature by applying a gas dynamic evaluation model. In a second approach, after having measured the spectral emissivity of liquid UO 2 at 633 nm, we determine the evaporation temperature at the liquid surface also from its thermal radiation. For the determination of the vapor pressure from the measured quantities a gas dynamic evaluation model has been developed. An application limit of the measuring technique is given by onset of plasma interaction of the vapor plume with the incident laser beam at temperatures above 4500 K. Experimental values for the saturated vapor pressure of UO 2 are presented, determined from three series of laser evaporation measurements obtained at temperatures around 3500 K, 3950 K, and 4200 K. The average vapor pressures found are 0.6 bar, 3 bar, and 7 bar, respectively. Laser vapor pressure measurements performed by other authors and theoretical extrapolations of the UO 2 vapor pressure curve known from literature show fairly good agreement within their confidence interval with the vapor pressure measurements reported here. (orig./HR) [de

  2. How internal drainage affects evaporation dynamics from soil surfaces ?

    Science.gov (United States)

    Or, D.; Lehmann, P.; Sommer, M.

    2017-12-01

    Following rainfall, infiltrated water may be redistributed internally to larger depths or lost to the atmosphere by evaporation (and by plant uptake from depths at longer time scales). A large fraction of evaporative losses from terrestrial surfaces occurs during stage1 evaporation during which phase change occurs at the wet surface supplied by capillary flow from the soil. Recent studies have shown existence of a soil-dependent characteristic length below which capillary continuity is disrupted and a drastic shift to slower stage 2 evaporation ensues. Internal drainage hastens this transition and affect evaporative losses. To predict the transition to stage 2 and associated evaporative losses, we developed an analytical solution for evaporation dynamics with concurrent internal drainage. Expectedly, evaporative losses are suppressed when drainage is considered to different degrees depending on soil type and wetness. We observe that high initial water content supports rapid drainage and thus promotes the sheltering of soil water below the evaporation depth. The solution and laboratory experiments confirm nonlinear relationship between initial water content and total evaporative losses. The concept contributes to establishing bounds on regional surface evaporation considering rainfall characteristics and soil types.

  3. Sessile Drop Evaporation and Leidenfrost Phenomenon

    OpenAIRE

    A. K. Mozumder; M. R. Ullah; A. Hossain; M. A. Islam

    2010-01-01

    Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot...

  4. Heat and mass transfer of a fuel droplet evaporating in oscillatory flow

    International Nuclear Information System (INIS)

    Jangi, M.; Kobayashi, H.

    2009-01-01

    A numerical study of the heat and mass transfer from an evaporating fuel droplet in oscillatory flow was performed. The flow was assumed to be laminar and axisymmetric, and the droplet was assumed to maintain its spherical shape during its lifetime. Based on these assumptions, the conservation equations in a general curvilinear coordinate were solved numerically. The behaviors of droplet evaporation in the oscillatory flow were investigated by analyzing the effects of flow oscillation on the evaporation process of a n-heptane fuel droplet at high pressure. The response of the time history of the square of droplet diameter and space-averaged Nusselt numbers to the main flow oscillation were investigated in frequency band of 1-75 Hz with various oscillation amplitudes. Results showed that, depending on the frequency and amplitude of the oscillation, there are different modes of response of the evaporation process to the flow oscillation. One response mode is synchronous with the main flow oscillation, and thus the quasi-steady condition is attained. Another mode is asynchronous with the flow oscillation and is highly unsteady. As for the evaporation rate, however, in all conditions is more greatly enhanced in oscillatory flow than in quiescent air. To quantify the conditions of the transition from quasi-steady to unsteady, the response of the boundary layer around the droplet surface to the flow oscillation was investigated. The results led to including the oscillation Strouhal number as a criteria for the transition. The numerical results showed that at a low Strouhal number, a quasi-steady boundary layer is formed in response to the flow oscillation, whereas by increasing the oscillation Strouhal number, the phenomena become unsteady.

  5. Estimates of run off, evaporation and precipitation for the Bay of Bengal on seasonal basis

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Sastry, J.S.

    Mean seasonal river discharge rates (R) of the major rivers along the east coast of India, Bangla Desh and Burma; evaporation rates (E) computed for 5 degrees lat-long. Squares from data on heat loss and mean yearly precipitation (P) values at 5...

  6. The Roles of Tidal Evolution and Evaporative Mass Loss in the Origin of CoRoT-7 b

    Science.gov (United States)

    Jackson, Brian; Miller, Neil; Barnes, Rory; Raymond, Sean N.; Fortney, Jonathan J.; Greenberg, Richard

    2010-01-01

    CoRoT-7 b is the first confirmed rocky exoplanet, but, with an orbital semimajor axis of 0.0172 au, its origins may be unlike any rocky planet in our Solar System. In this study, we consider the roles of tidal evolution and evaporative mass loss in CoRoT-7 b's history, which together have modified the planet's mass and orbit. If CoRoT-7 b has always been a rocky body, evaporation may have driven off almost half its original mass, but the mass loss may depend sensitively on the extent of tidal decay of its orbit. As tides caused CoRoT-7 b's orbit to decay, they brought the planet closer to its host star, thereby enhancing the mass loss rate. Such a large mass loss also suggests the possibility that CoRoT-7 b began as a gas giant planet and had its original atmosphere completely evaporated. In this case, we find that CoRoT-7 b's original mass probably did not exceed 200 Earth masses (about two-third of a Jupiter mass). Tides raised on the host star by the planet may have significantly reduced the orbital semimajor axis, perhaps causing the planet to migrate through mean-motion resonances with the other planet in the system, CoRoT-7 c. The coupling between tidal evolution and mass loss may be important not only for CoRoT-7 b but also for other close-in exoplanets, and future studies of mass loss and orbital evolution may provide insight into the origin and fate of close-in planets, both rocky and gaseous.

  7. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  8. UHS, Ultimate Heat Sink Cooling Pond Analysis

    International Nuclear Information System (INIS)

    Codell, R.; Nuttle, W.K.

    1998-01-01

    1 - Description of program or function: Three programs model performance of an ultimate heat sink cooling pond. National Weather Service data is read and analyzed to predict periods of lowest cooling performance and highest evaporative loss. The data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. Five programs model performance of an ultimate heat sink spray pond. The cooling performance, evaporative water loss, and drift water loss as a function of wind speed are estimated for a spray field. These estimates are used in conjunction with National Weather Service data to predict periods of lowest cooling performance and highest evaporative loss. This data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. 2 - Method of solution: The transfer of heat and water vapor is modeled using an equilibrium temperature procedure for an UHS cooling pond. The UHS spray pond model considers heat, mass, and momentum transfer from a single water drop with the surrounding air, and modification of the surrounding air resulting from the heat, mass, and momentum transfer from many drops in different parts of a spray field. 3 - Restrictions on the complexity of the problem: The program SPRCO uses RANF, a uniform random number generator which is an intrinsic function on the CDC. All programs except COMET use the NAMELIST statement, which is non standard. Otherwise these programs conform to the ANSI Fortran 77 standard. The meteorological data scanning procedure requires tens of years of recorded data to be effective. The models and methods, provided as useful tool for UHS analyses of cooling ponds and spray ponds, are intended as guidelines only. Use of these methods does not automatically assure NRC approval, nor are they required procedures for nuclear-power-plant licensing

  9. Plasma Heating and Losses in Toroidal Multipole Fields

    International Nuclear Information System (INIS)

    Armentrout, C. J.; Barter, J. D.; Breun, R. A.; Cavallo, A. J.; Drake, J. R.; Etzweiler,; Greenwood, J. R.

    1974-01-01

    The heating and loss of plasmas have been studied in three pulsed, toroidal multipole devices: a large levitated octupole, a small supported octupole and a very small supported quadrupole. Plasmas are produced by gun injection and heated by electron and ion cyclotron resonance heating and ohmic heating. Electron cyclotron heating rates have been measured over a wide range of parameters, and the results are in quantitative agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies larger than predicted by theory. With the addition of a toroidal field, ohmic heating gives densities as high as 10 13 cm -3 in the toroidal quadrupole and 10 12 cm -3 in the small octupole. Plasma losses for n=5 x 10 9 cm -3 plasmas are inferred from Langmuir probe and Fabry-Perot interferometer measurements, and measured with special striped collectors on the wall and rings. The loss to a levitated ring is measured using a modulated light beam telemeter. The confinement is better than Bohm but considerably worse than classical. Low frequency convective cells which are fixed in space are observed. These cells around the ring are diminished when a weak toroidal field is added, and loss collectors show a vastly reduced flux to the rings. Analysis of the spatial density profile shows features of B-independent diffusion. The confinement is sensitive to some kinds of dc field errors, but surprisingly insensitive to perturbations of the ac confining field

  10. A surrogate fuel formulation to characterize heating and evaporation of light naphtha droplets

    KAUST Repository

    Kabil, I.

    2018-03-08

    Light naphtha (LN) is gaining interest in internal combustion (IC) engine applications due to its low refining cost and higher heating values compared to commercial gasoline. To properly describe the chemical and physical behavior of the LN fuel under IC engine conditions, a systematic procedure to develop unified physical and chemical surrogates is described. The reduced component models to describe the chemical characteristics of LN are combined with the effective thermal conductivity/effective diffusivity (ETC/ED) model to represent the accurate evaporation behavior. Three surrogate fuels consisting of three to five components are presented and their performance in heating and evaporation of a single LN droplet is compared against the conventional primary reference fuel (PRF65) surrogate which is based on chemical aspects only. Unlike the previous approaches, the new surrogates also target matching the hydrogen-to-carbon ratio and research octane number in order to accurately describe the chemical behavior of the fuel. Subsequently, the performance of the surrogates in describing spray characteristics is tested by computational simulations compared with experimental measurements. The simulations were carried out using CONVERGE CFD package. The ETC/ED model was implemented into CONVERGE using user-defined functions. The predicted spray penetration length for the developed surrogates shows good agreement with the experimental data. At engine-like conditions, the ETC/ED model predicts higher vapor mass than the infinite thermal conductivity/infinite diffusivity model, hence showing the expected trend by incorporating the realistic droplet heating process.

  11. A surrogate fuel formulation to characterize heating and evaporation of light naphtha droplets

    KAUST Repository

    Kabil, I.; Sim, J.; Badra, J.A.; Eldrainy, Y.; Abdelghaffar, W.; Mubarak Ali, M. Jaasim; Ahmed, Ahfaz; Sarathy, Mani; Im, Hong G.; Elwardani, Ahmed Elsaid

    2018-01-01

    Light naphtha (LN) is gaining interest in internal combustion (IC) engine applications due to its low refining cost and higher heating values compared to commercial gasoline. To properly describe the chemical and physical behavior of the LN fuel under IC engine conditions, a systematic procedure to develop unified physical and chemical surrogates is described. The reduced component models to describe the chemical characteristics of LN are combined with the effective thermal conductivity/effective diffusivity (ETC/ED) model to represent the accurate evaporation behavior. Three surrogate fuels consisting of three to five components are presented and their performance in heating and evaporation of a single LN droplet is compared against the conventional primary reference fuel (PRF65) surrogate which is based on chemical aspects only. Unlike the previous approaches, the new surrogates also target matching the hydrogen-to-carbon ratio and research octane number in order to accurately describe the chemical behavior of the fuel. Subsequently, the performance of the surrogates in describing spray characteristics is tested by computational simulations compared with experimental measurements. The simulations were carried out using CONVERGE CFD package. The ETC/ED model was implemented into CONVERGE using user-defined functions. The predicted spray penetration length for the developed surrogates shows good agreement with the experimental data. At engine-like conditions, the ETC/ED model predicts higher vapor mass than the infinite thermal conductivity/infinite diffusivity model, hence showing the expected trend by incorporating the realistic droplet heating process.

  12. mathematical model for direct evaporative space cooling systems

    African Journals Online (AJOL)

    eobe

    of the sensible heat of the air is transferred to the water and becomes latent heat by evaporating some of the water. The latent heat follows the water vapour and diffuses into the air. In a DEC (direct evaporative cooling), the heat and mass transferred between air and water decreases the air dry bulb temperature (DBT) and ...

  13. Impact of Next Generation District Heating Systems on Distribution Network Heat Losses: A Case Study Approach

    Science.gov (United States)

    Li, Yu; Rezgui, Yacine

    2018-01-01

    District heating (DH) is a promising energy pathway to alleviate environmental negative impacts induced by fossil fuels. Improving the performance of DH systems is one of the major challenges facing its wide adoption. This paper discusses the heat losses of the next generation DH based on the constructed Simulink model. Results show that lower distribution temperature and advanced insulation technology greatly reduce network heat losses. Also, the network heat loss can be further minimized by a reduction of heat demand in buildings.

  14. Boundary conditions for heat transfer and evaporative cooling in the trachea and air sac system of the domestic fowl: a two-dimensional CFD analysis.

    Directory of Open Access Journals (Sweden)

    Nina S Sverdlova

    Full Text Available Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.

  15. The 2014 water release into the arid Colorado River delta and associated water losses by evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Daesslé, L.W., E-mail: walter@uabc.edu.mx [Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, CarreteraTranspeninsular Tijuana-Ensenada No. 3917, Fraccionamiento Playitas, CP 22860 Ensenada, Baja California (Mexico); Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany); Geldern, R. van [Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany); Orozco-Durán, A. [Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, CarreteraTranspeninsular Tijuana-Ensenada No. 3917, Fraccionamiento Playitas, CP 22860 Ensenada, Baja California (Mexico); Barth, J.A.C. [Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany)

    2016-01-15

    For the first time in history, water was intentionally released for environmental purposes into the final, otherwise dry, 160-km stretch of the Colorado River basin, south of the Mexican border. Between March and May 2014 three pulses of water with a total volume of 132 × 10{sup 6} m{sup 3} were released to assess the restoration potential of endemic flora along its course and to reach its estuary. The latter had not received a sustained input of fresh water and nutrients from its main fluvial source for over 50 years because of numerous upstream dam constructions. During this pulse flow large amounts of water were lost and negligible amounts reached the ocean. While some of these water losses can be attributed to plant uptake and infiltration, we were able to quantify evaporation losses between 16.1 to 17.3% of the original water mass % within the first 80 km after the Morels Dam with water stable isotope data. Our results showed no evidence for freshwater reaching the upper Colorado River estuary and it is assumed that the pulse flow had only negligible influences on the coastal ecosystem. Future water releases that aim on ecological restoration need to become more frequent and should have larger volumes if more significant effects are to be established on the area. - Highlights: • Isotope ratios of oxygen and hydrogen quantify water lost through evaporation. • Evaporation losses between 16.1 and 17.3% during the 2014 Colorado River • Larger water volumes are required to influence the estuary ecosystem.

  16. The 2014 water release into the arid Colorado River delta and associated water losses by evaporation

    International Nuclear Information System (INIS)

    Daesslé, L.W.; Geldern, R. van; Orozco-Durán, A.; Barth, J.A.C.

    2016-01-01

    For the first time in history, water was intentionally released for environmental purposes into the final, otherwise dry, 160-km stretch of the Colorado River basin, south of the Mexican border. Between March and May 2014 three pulses of water with a total volume of 132 × 10"6 m"3 were released to assess the restoration potential of endemic flora along its course and to reach its estuary. The latter had not received a sustained input of fresh water and nutrients from its main fluvial source for over 50 years because of numerous upstream dam constructions. During this pulse flow large amounts of water were lost and negligible amounts reached the ocean. While some of these water losses can be attributed to plant uptake and infiltration, we were able to quantify evaporation losses between 16.1 to 17.3% of the original water mass % within the first 80 km after the Morels Dam with water stable isotope data. Our results showed no evidence for freshwater reaching the upper Colorado River estuary and it is assumed that the pulse flow had only negligible influences on the coastal ecosystem. Future water releases that aim on ecological restoration need to become more frequent and should have larger volumes if more significant effects are to be established on the area. - Highlights: • Isotope ratios of oxygen and hydrogen quantify water lost through evaporation. • Evaporation losses between 16.1 and 17.3% during the 2014 Colorado River • Larger water volumes are required to influence the estuary ecosystem.

  17. Long Duration Testing of a Spacesuit Water Membrane Evaporator Prototype

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice; Cox, Marlon; Watts, Carly; Campbell, Colin; Vogel, Matthew; Colunga, Aaron; Conger, Bruce

    2012-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is a heat-rejection device that is being developed to perform thermal control for advanced spacesuits. Cooling is achieved by circulating water from the liquid cooling garment (LCG) through hollow fibers (HoFi s), which are small hydrophobic tubes. Liquid water remains within the hydrophobic tubes, but water vapor is exhausted to space, thereby removing heat. A SWME test article was tested over the course of a year, for a total of 600 cumulative hours. In order to evaluate SWME tolerance to contamination due to constituents caused by distillation processes, these constituents were allowed to accumulate in the water as evaporation occurred. A test article was tested over the course of a year for a total of 600 cumulative hours. The heat rejection performance of the SWME degraded significantly--below 700 W, attributable to the accumulation of rust in the circulating loop and biofilm growth. Bubble elimination capability, a feature that was previously proven with SWME, was compromised during the test, most likely due to loss of hydrophobic properties of the hollow fibers. The utilization of water for heat rejection was shown not to be dependent on test article, life cycle, heat rejection rate, or freezing of the membranes.

  18. Orbit losses of strongly ICRF-heated ions

    International Nuclear Information System (INIS)

    Anderson, A.; Dillner, Oe.; Lisak, M.

    1992-01-01

    An approximate analytical investigation is made to assess the importance of orbit losses of strongly ICRF-heated minority ions. Explicit expressions for the fraction of lost minority ions are derived and shown to be in good agreement with numerical simulation results. The results indicate that present day ICRF heating power density levels cannot be raised significantly without causing important particle and energy losses due to unconfined particle orbits. 6 refs., 5 figs

  19. Algebraic modeling and thermodynamic design of fan-supplied tube-fin evaporators running under frosting conditions

    International Nuclear Information System (INIS)

    Ribeiro, Rafael S.; Hermes, Christian J.L.

    2014-01-01

    In this study, the method of entropy generation minimization (i.e., design aimed at facilitating both heat, mass and fluid flows) is used to assess the evaporator design (aspect ratio and fin density) considering the thermodynamic losses due to heat and mass transfer, and viscous flow processes. A fully algebraic model was put forward to simulate the thermal-hydraulic behavior of tube-fin evaporator coils running under frosting conditions. The model predictions were validated against experimental data, showing a good agreement between calculated and measured counterparts. The optimization exercise has pointed out that high aspect ratio heat exchanger designs lead to lower entropy generation in cases of fixed cooling capacity and air flow rate constrained by the characteristic curve of the fan. - Highlights: • An algebraic model for frost accumulation on tube-fin heat exchangers was advanced. • Model predictions for cooling capacity and air flow rate were compared with experimental data, with errors within ±5% band. • Minimum entropy generation criterion was used to optimize the evaporator geometry. • Thermodynamic analysis led to slender designs for fixed cooling capacity and fan characteristics

  20. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    Science.gov (United States)

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-07

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.

  1. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  2. Evaporation and Vapor Shielding of CFC Targets Exposed to Plasma Heat Fluxes Relevant to ITER ELMs

    International Nuclear Information System (INIS)

    Safronov, V.; Arkhipov, N.I.; Toporkov, D.A.; Zhitlukhin, A.M.; Landman, I.

    2007-01-01

    Full text of publication follows: Carbon-fibre composite (CFC) is foreseen presently as armour material for the divertor target in ITER. During the transient processes such as instabilities of Edge Localized Modes (ELMs) the target as anticipated will be exposed to the plasma heat loads of a few MJ/m 2 on the time scale of a fraction of ms, which causes an intense evaporation at the target surface and contaminates tokamak plasma by evaporated carbon. The ITER transient loads are not achievable at existing tokamaks therefore for testing divertor armour materials other facilities, in particular plasma guns are employed. In the present work the CFC targets have been tested for ITER at the plasma gun facility MK- 200 UG in Troitsk by ELM relevant heat fluxes. The targets in the applied magnetic field up to 2 T were irradiated by hydrogen plasma streams of diameter 6 - 8 cm, impact ion energy 2 - 3 keV, pulse duration 0.05 ms and energy density varying in the range 0.05 - 1 MJ/m 2 . Primary attention has been focused on the measurement of evaporation threshold and investigation of carbon vapor properties. Fast infrared pyrometer, optical and VUV spectrometers, framing cameras and plasma calorimeters were applied as diagnostics. The paper reports the results obtained on the evaporation threshold of CFC, the evaporation rate of the carbon fibers oriented parallel and perpendicular to the exposed target surface, the velocity of carbon vapor motion along and across the magnetic field lines, and the parameters of carbon plasma such as temperature, density and ionization state measured up to the distance 15 cm at varying plasma load. First experimental results on investigation of the vapor shield onset conditions are presented also. (authors)

  3. Parametric study of thin film evaporation from nanoporous membranes

    Science.gov (United States)

    Wilke, Kyle L.; Barabadi, Banafsheh; Lu, Zhengmao; Zhang, TieJun; Wang, Evelyn N.

    2017-10-01

    The performance and lifetime of advanced electronics are often dictated by the ability to dissipate heat generated within the device. Thin film evaporation from nanoporous membranes is a promising thermal management approach, which reduces the thermal transport distance across the liquid film while also providing passive capillary pumping of liquid to the evaporating interface. In this work, we investigated the dependence of thin film evaporation from nanoporous membranes on a variety of geometric parameters. Anodic aluminum oxide membranes were used as experimental templates, where pore radii of 28-75 nm, porosities of 0.1-0.35, and meniscus locations down to 1 μm within the pore were tested. We demonstrated different heat transfer regimes and observed more than an order of magnitude increase in dissipated heat flux by operating in the pore-level evaporation regime. The pore diameter had little effect on pore-level evaporation performance due to the negligible conduction resistance from the pore wall to the evaporating interface. The dissipated heat flux scaled with porosity as the evaporative area increased. Furthermore, moving the meniscus as little as 1 μm into the pore decreased the dissipated heat flux by more than a factor of two due to the added resistance to vapor escaping the pore. The experimental results elucidate thin film evaporation from nanopores and confirm findings of recent modeling efforts. This work also provides guidance for the design of future thin film evaporation devices for advanced thermal management. Furthermore, evaporation from nanopores is relevant to water purification, chemical separations, microfluidics, and natural processes such as transpiration.

  4. Calculation of critical heat transfer in horizontal evaporator pipes in cooling systems of high-rise buildings

    Science.gov (United States)

    Aksenov, Andrey; Malysheva, Anna

    2018-03-01

    An exact calculation of the heat exchange of evaporative surfaces is possible only if the physical processes of hydrodynamics of two-phase flows are considered in detail. Especially this task is relevant for the design of refrigeration supply systems for high-rise buildings, where powerful refrigeration equipment and branched networks of refrigerants are used. On the basis of experimental studies and developed mathematical model of asymmetric dispersed-annular flow of steam-water flow in horizontal steam-generating pipes, a calculation formula has been obtained for determining the boundaries of the zone of improved heat transfer and the critical value of the heat flux density. A new theoretical approach to the solution of the problem of the flow structure of a two-phase flow is proposed. The applied method of dissipative characteristics of a two-phase flow in pipes and the principle of a minimum rate of entropy increase in stabilized flows made it possible to obtain formulas that directly reflect the influence of the viscous characteristics of the gas and liquid media on their distribution in the flow. The study showed a significant effect of gravitational forces on the nature of the phase distribution in the cross section of the evaporative tubes. At a mass velocity of a two-phase flow less than 700 kg / m2s, the volume content of the liquid phase near the upper outer generating lines of the tube is almost an order of magnitude lower than the lower one. The calculation of the heat transfer crisis in horizontal evaporative tubes is obtained. The calculated dependence is in good agreement with the experimental data of the author and a number of foreign researchers. The formula generalizes the experimental data for pipes with the diameter of 6-40 mm in the pressure of 2-7 MPa.

  5. Heat loss from Buildings

    DEFF Research Database (Denmark)

    Karlsson, Kenneth; Næraa, Rikke

    1997-01-01

    Determination of heat loss coefficients for buildings in Denmark. The coefficient are determined for 15 building groups and 3 year intervals. They are based on the BBR-registre and assumptions of U-values(W/K*m2)and computed in a simple spreed sheet model.The results are used in the REVEILLE...

  6. Characteristics of a micro-fin evaporator: Theoretical analysis and experimental verification

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2013-01-01

    Full Text Available A theoretical analysis and experimental verification on the characteristics of a micro-fin evaporator using R290 and R717 as refrigerants were carried out. The heat capacity and heat transfer coefficient of the micro-fin evaporator were investigated under different water mass flow rate, different refrigerant mass flow rate, and different inner tube diameter of micro-fin evaporator. The simulation results of the heat transfer coefficient are fairly in good agreement with the experimental data. The results show that heat capacity and the heat transfer coefficient of the micro-fin evaporator increase with increasing logarithmic mean temperature difference, the water mass flow rate and the refrigerant mass flow rate. Heat capacity of the micro-fin evaporator for diameter 9.52 mm is higher than that of diameter 7.00 mm with using R290 as refrigerant. Heat capacity of the micro-fin evaporator with using R717 as refrigerant is higher than that of R290 as refrigerant. The results of this study can provide useful guidelines for optimal design and operation of micro-fin evaporator in its present or future applications.

  7. Visualization of steam bubbles with evaporation in molten alloy

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi; Takenaka, Nobuyuki; Matsubayashi, Masahito

    1997-01-01

    An innovative Steam Generator concept of Fast Breeder Reactors by using liquid-liquid direct contact heat transfer has been developed. In this concept, the SG shell is filled with a molten alloy heated by primary sodium. Water is fed into the high temperature molten alloy, and evaporates by direct contact heating. In order to obtain the fundamental information to discuss the heat transfer mechanisms of the direct contact between the water and the molten alloy, this phenomenon was visualized by neutron radiography. JRR-3M radiography in Japan Atomic Energy Research Institute was used. Followings are main results. (1) The bubbles with evaporation are risen with vigorous form changing, coalescence and break-up. Because of these vigorous evaporation, this system have the high heat transfer performance. (2) The rising velocities and volumes of bubbles are calculated from pixcel values of images. The velocities of the bubbles with evaporation are about 60 cm/s, which is larger than that of inert gas bubbles in molten alloy (20-40 cm/s). (3) The required heat transfer length of evaporation is calculated from pixcel values of images. The relation between heat transfer length and superheat temperature, obtained through the heat transfer test, is conformed by this calculation. (author)

  8. Sodium evaporation into a forced argon flow, (1)

    International Nuclear Information System (INIS)

    Kumada, Toshiaki; Kasahara, Fumio; Ishiguro, Ryoji

    1976-01-01

    Measurements were made on the rate of evaporation from a rectangular-shaped free surface of liquid sodium into argon flow. Tests were carried out at various levels of sodium temperature, of argon velocity and of argon temperature, under conditions where fog formation could be expected. To gain information on the enhancement of evaporation occasioned by fog formation, a supplementary experiment was performed on convection heat transfer into flowing air from a heated plate of the same geometry as the free surface of the sodium in the preceding measurements. The values obtained for the rate of evaporation and Sherwood number were compared with those predicted by the heat transfer experiment and by the theory by Hill and Szekely. The overall results revealed that the rate of sodium evaporation can amount to as much as three times that predicted by the heat transfer experiment, and that it varies roughly linearly with the heat transfer rate and with the sodium vapor pressure prevailing at the free surface. (auth.)

  9. Evaluation of three energy balance-based evaporation models for estimating monthly evaporation for five lakes using derived heat storage changes from a hysteresis model

    Science.gov (United States)

    Duan, Zheng; Bastiaanssen, W. G. M.

    2017-02-01

    The heat storage changes (Q t) can be a significant component of the energy balance in lakes, and it is important to account for Q t for reasonable estimation of evaporation at monthly and finer timescales if the energy balance-based evaporation models are used. However, Q t has been often neglected in many studies due to the lack of required water temperature data. A simple hysteresis model (Q t = a*Rn + b + c* dRn/dt) has been demonstrated to reasonably estimate Q t from the readily available net all wave radiation (Rn) and three locally calibrated coefficients (a-c) for lakes and reservoirs. As a follow-up study, we evaluated whether this hysteresis model could enable energy balance-based evaporation models to yield good evaporation estimates. The representative monthly evaporation data were compiled from published literature and used as ground-truth to evaluate three energy balance-based evaporation models for five lakes. The three models in different complexity are De Bruin-Keijman (DK), Penman, and a new model referred to as Duan-Bastiaanssen (DB). All three models require Q t as input. Each model was run in three scenarios differing in the input Q t (S1: measured Q t; S2: modelled Q t from the hysteresis model; S3: neglecting Q t) to evaluate the impact of Q t on the modelled evaporation. Evaluation showed that the modelled Q t agreed well with measured counterparts for all five lakes. It was confirmed that the hysteresis model with locally calibrated coefficients can predict Q t with good accuracy for the same lake. Using modelled Q t as inputs all three evaporation models yielded comparably good monthly evaporation to those using measured Q t as inputs and significantly better than those neglecting Q t for the five lakes. The DK model requiring minimum data generally performed the best, followed by the Penman and DB model. This study demonstrated that once three coefficients are locally calibrated using historical data the simple hysteresis model can offer

  10. Heat loss investigation from spherical cavity receiver of solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Shewale, V. C. [Dept. of Mechanical Engineering, NDMVPS KBT College of Engineering, Nashik (India); Dongarwar, P. R. [Dept. of Mechanical Engineering, College of Military Engineering, Pune (India); Gawande, R. P. [Dept. of Mechanical Engineering, B.D.C.O.E. Wardha, Nagpur University, NagpurI (India)

    2016-11-15

    The heat losses are mainly affects on the performance of cavity receiver of solar concentrator. In this paper, the experimental and numerical study is carried out for different heat losses from spherical cavity receiver of 0.385 m cavity diameter and 0.154 m opening diameter. The total and convection losses are studied experimentally to no wind and wind conditions for the temperature range of 150 °C to 300 °C at 0°, 30°, 45°, 60° and 90° inclination angle of cavity receiver. The experimental set up mainly consists of copper tube material cavity receiver wrapped with nichrome heating coil to heat the cavity and insulated with glasswool insulation. The numerical analysis was carried out with Fluent Computational fluid dynamics (CFD) software, to study connective heat losses for no wind condition only. The numerical results are compared with experimental results and found good agreement with maximum deviation of 12 %. The effect of inclination angle of cavity receiver on total losses and convection losses shows that as the inclination angle increases from 0o to 90o, both losses decreased due to decreased in convective zone into the cavity receiver. The effect of operating temperature of cavity shows that as the temperature of cavity receiver increases, the total and convective losses goes on increasing. The effect of external wind at 2 m/s and 4 m/s in two directions (side-on wind and head-on wind) is also studied experimentally for total and convective heat losses. The result shows that the heat losses are higher for head-on wind condition compared to side-on wind and no wind condition at all inclination angle of cavity receiver. The present results are also compared to the convective losses obtained from the correlations of Stine and Mcdonald and M. Prakash. The convective loss from these correlations shows nearest prediction to both experimental and numerical results.

  11. Heat loss investigation from spherical cavity receiver of solar concentrator

    International Nuclear Information System (INIS)

    Shewale, V. C.; Dongarwar, P. R.; Gawande, R. P.

    2016-01-01

    The heat losses are mainly affects on the performance of cavity receiver of solar concentrator. In this paper, the experimental and numerical study is carried out for different heat losses from spherical cavity receiver of 0.385 m cavity diameter and 0.154 m opening diameter. The total and convection losses are studied experimentally to no wind and wind conditions for the temperature range of 150 °C to 300 °C at 0°, 30°, 45°, 60° and 90° inclination angle of cavity receiver. The experimental set up mainly consists of copper tube material cavity receiver wrapped with nichrome heating coil to heat the cavity and insulated with glasswool insulation. The numerical analysis was carried out with Fluent Computational fluid dynamics (CFD) software, to study connective heat losses for no wind condition only. The numerical results are compared with experimental results and found good agreement with maximum deviation of 12 %. The effect of inclination angle of cavity receiver on total losses and convection losses shows that as the inclination angle increases from 0o to 90o, both losses decreased due to decreased in convective zone into the cavity receiver. The effect of operating temperature of cavity shows that as the temperature of cavity receiver increases, the total and convective losses goes on increasing. The effect of external wind at 2 m/s and 4 m/s in two directions (side-on wind and head-on wind) is also studied experimentally for total and convective heat losses. The result shows that the heat losses are higher for head-on wind condition compared to side-on wind and no wind condition at all inclination angle of cavity receiver. The present results are also compared to the convective losses obtained from the correlations of Stine and Mcdonald and M. Prakash. The convective loss from these correlations shows nearest prediction to both experimental and numerical results

  12. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2016-01-01

    change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20...

  13. Effect of the Evaporative Cooling on the Human Thermal Comfort and Heat Stress in a Greenhouse under Arid Conditions

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available Thermal sensation and heat stress were evaluated in a plastic greenhouse, with and without evaporative cooling, under arid climatic conditions in Riyadh, Saudi Arabia. Suitable thermal comfort and heat stress scales were selected for the evaluation. Experiments were conducted in hot sunny days to measure the required parameters (i.e., the dry and wet bulb temperatures, globe temperature, natural wet bulb temperature, and solar radiation flux in the greenhouse. The results showed that in the uncooled greenhouse, workers are exposed to strong heat stress and would feel very hot most of the day time; they are safe from heat stress risk and would feel comfortable during night. An efficient evaporative cooling is necessary during the day to reduce heat stress and to improve the comfort conditions and is not necessary at night. In the cooled greenhouse, workers can do any activity: except at around noon they should follow a proposed working schedule, in which the different types of work were scheduled along the daytimes based on the heat stress value. To avoid heat stress and to provide comfort conditions in the greenhouses, the optimum ranges of relative humidity and air temperature are 48–55% and 24–28°C, respectively.

  14. Assessment of heat loss for RSG-GAS primary cooling system

    International Nuclear Information System (INIS)

    Dibyo, S.

    1998-01-01

    Heat Loss is part term of energy balance equation of system, therefore heat loss very important thing in the thermal dynamic analysis. Heat energy loosed from the surface pipe to the air in the room was calculated. Heat energy pass through by conduction, convection and radiation. The convection process are caused by moving of air density, i.e up flow of the hot air return to be down flow. The heat transfer phenomenon could be determined by empirical correlation of Heilman. The primary cooling system is consisted to the 3 zone : 1). Zone of (safety valves-heat exchanger), 2). Zone of heat exchanger surfaces, 3). Zone of heat exchanger-reactor pool. By using input data of air temperature are about 25 o C, temperature of primary coolant about 45 o C, The heat Loss along the pipes to the air are 23.9 k watt or 0.1%

  15. 平板型MLHP温度波动研究%Investigation of Temperature Oscillation in Miniature Loop Heat Pipe with Flat Evaporator

    Institute of Scientific and Technical Information of China (English)

    盖东兴; 刘伟; 刘志春; 杨金国

    2009-01-01

    环路热管(Loop Heat Pipe,LHP)是一种靠蒸发器的毛细芯产生毛细力驱动回路运行,利用工质相变来传递热量的高效传热装置.研制了一套平板式蒸发器、风冷式冷凝器的小型环路热管(MLHP),MLHP的毛细芯为500目不锈钢丝网,工质为丙酮,蒸发器、冷凝器以及所有管路均由紫铜制成.主要研究了平板型MLHP在不同热负荷条件下的温度波动特性,并重点研究了倾角以及充灌量等对MLHP系统温度波动的影响,且给出相应的合理解释.实验结果表明,平板式MLHP在2~3W/cm~2热流密度区间范围内容易发生温度波动.%Loop heat pipes are heat transfer devices based on the evaporation and condensation of a working fluid, and using capillary pumping forces to ensure the fluid circulation. A series of tests have been carried out with a miniature loop heat pipe (MLHP) with flat evaporator and a fin-and-tube type condenser. The loop was made of pure copper with stainless mesh wick and acetone was used as the working fluid. At low heat loads, temperature oscillations were observed throughout the loop. The characteristics of temperature oscillation of the flat MLHP at heat fluxes from 2W/cm~2 to 3W/cm~2were studied. The compensation chamber was considered as the most critical component of the MLHP and its hydrodynamic state dictated the extent and the characteristics of the temperature oscillations for the input heat load. The heat leaks from the evaporator to the compensation chamber, the heat loss to ambient and subcooled liquid temperature dictated the vapor condition inside the compensation chamber, and the rate of vapor growth or dissipation dictated the nature of the temperature oscillation. The effects of different liquid charging ratio and the tilt angle to the temperature oscillations were studied in detail.

  16. Steady-state heat losses in pipes for low-energy district heating

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2010-01-01

    The synergy between highly energy efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy saving policies and energy supply systems based on renewable energy (RE). Distribution heat losses represent a key factor in the design o...

  17. Heat pump using dual heat sources of air and water. Performance with heat sources arranged in parallel; Mizu kuki ryonetsugen heat pump no kenkyu. Netsugen heiretsu unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N; Sato, S [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y; Hamada, K [Kubota Corp., Osaka (Japan)

    1996-10-27

    A heat pump system using water and air as heat sources was built and evaluated for its performance. In this system, evaporators may be operated singly or as connected in parallel or series, and, for each case, the quantity of heat acquired may be measured and system performance may be quantitatively evaluated. The findings follow. When the two heat sources are equal in temperature in the single-evaporator operation, the evaporation temperature is about 7{degree}C higher on the water side than on the air side, and the performance coefficient is about 0.7 higher. When the air heat source temperature is 25{degree}C in the parallel operation, like quantities of heat are obtained from both heat sources, and collection of heat from the water increases with a decrease in the air heat source temperature but, with an increase, collection from the air increases. When the air heat source temperature decreases, the evaporation temperature decreases in the single-evaporator working on the air and in the parallel operation but it levels off in the single-evaporator working on the water alone. When the water heat source temperature decreases, evaporation temperature drop is sharper in the single-evaporator working on the water than in the parallel operation, which suggests the transfer from the parallel operation to the single-evaporator working on the air. In the single-evaporator operation on the water heat source, the evaporation temperature linearly decreases with an increase in superheating. 1 ref., 10 figs.

  18. Improvements of evaporation drag model

    International Nuclear Information System (INIS)

    Li Xiaoyan; Yang Yanhua; Xu Jijun

    2004-01-01

    A special observable experiment facility has been established, and a series of experiments have been carried out on this facility by pouring one or several high-temperature particles into a water pool. The experiment has verified the evaporation drag model, which believe the non-symmetric profile of the local evaporation rate and the local density of the vapor would bring about a resultant force on the hot particle so as to resist its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface and all of the radiation energy is deposited on the vapor-liquid interface, thus contributing to the vaporization rate and mass balance of the vapor film. So, the heat conduction and the heat convection are taken into account in improved model. At the same time, the improved model given by this paper presented calculations of the effect of hot particles temperature on the radiation absorption behavior of water

  19. Enhanced Evaporation and Condensation in Tubes

    Science.gov (United States)

    Honda, Hiroshi

    A state-of-the-art review of enhanced evaporation and condensation in horizontal microfin tubes and micro-channels that are used for air-conditioning and refrigeration applications is presented. The review covers the effects of flow pattern and geometrical parameters of the tubes on the heat transfer performance. Attention is paid to the effect of surface tension which leads to enhanced evaporation and condensation in the microfin tubes and micro-channels. A review of prior efforts to develop empirical correlations of the heat transfer coefficient and theoretical models for evaporation and condensation in the horizontal microfin tubes and micro-channels is also presented.

  20. Thermocapillary flow about an evaporating meniscus

    Science.gov (United States)

    Schmidt, G. R.; Chung, T. J.

    1992-01-01

    The steady motion and thermal behavior of an evaporating superheated liquid in a small cavity bounded by isothermal sidewalls is examined. Scaling analyses and a two-dimensional finite element model are used to investigate the influence of thermocapillarity, buoyancy, and temperature-dependent mass flux on flowfield, interfacial heat transfer, and meniscus morphology. Numerical investigations indicate the existence of two counter-rotating cells symmetric about the cavity center. Results also show that evaporation tends to counteract this circulation by directing flow toward the hotter sidewalls. Although thermocapillarity and evaporation yield different flowfield distributions, both effects tend to increase interfacial temperature and heat transfer.

  1. Heat pump control method based on direct measurement of evaporation pressure to improve energy efficiency and indoor air temperature stability at a low cooling load condition

    International Nuclear Information System (INIS)

    Park, Young Sung; Jeong, Ji Hwan; Ahn, Byoung Ha

    2014-01-01

    Highlights: • New heat pump control method was developed. • Experimental investigation on performance of heat pump with various control method. • New control method appeared to improve the stability of indoor air temperature. • New control method appeared to have a potential to reduce power consumption. - Abstract: The control systems of conventional heat pumps have an input of refrigerant temperature at the evaporator outlet to maintain superheat at proper level. In order to develop a control method that can be used to achieve better indoor thermal comfort and energy efficiency at a low cooling load condition than the current control method, a new method of the evaporation pressure control based on the evaporator outlet pressure reading (EPCP) was developed. The changes in the stability of indoor air temperature and power consumption were measured while changing the compressor frequency in accordance with the new control method. Compared with the evaporation pressure control based on the evaporator outlet temperature reading, the EPCP control method appeared to improve the stability of room air temperature or occupant thermal comfort significantly

  2. Comparison of boiling heat transfer coefficient and pressure drop correlations for evaporators

    International Nuclear Information System (INIS)

    Eskin, N.; Arslan, G.

    2009-01-01

    Evaporator design is an important aspect for the HVAC industry. As the demand for more efficient and compact heat exchangers increase, researches on estimation of two-phase flow heat transfer and pressure drop gain importance. Due to complexity of the hydrodynamic and heat transfer of the two-phase flow, there are many experimental studies available for refrigerants int he literature. In this study, a model for boiling heat transfer in a horizontal tube has been developed and the simulation results are compared with experimental ones published in the literature. In these comparisons, heat transfer coefficient is calculated by using Kattan-Thome-Favrat (1998), Shah (1982), Kandilikar (1990), Chaddock and Brunemann (1967) correlations under different operational conditions such as saturation pressure, mass flux, the type of refrigerant and two phase flow pattern. Besides that flow pattern has also been considered in the simulation by using Thome and El Hajal (2002) model. For pressure drop Lockhart-Martinelli (1949), Mueller-Steinhagen-Hack (1986) and Groennerund (1979) correlations are used in simulations. Local vapor quality change at each experimental condition through the model is determined. Roughness is an important parameter for frictional pressure drop. Friction coefficient is determined by using Churchill (1977) model. (author)

  3. Multi-Temperature Heat Pump with Cascade Compressor Connection

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2017-08-01

    Full Text Available The object of the study is a multifunctional heat pump with several evaporators and condensers designed for simultaneous provision of technological processes with heat and cold. The aim of the work is the development and study of the scheme for this type of heat pumps, which ensures minimum irreversibility in the "compressor-gas coolers" chain, without the use of adjustable ejectors installed after evaporators and used as flow mixers. The obtained technical solution ensures the stabilization of the heat pump coefficient of performance (COP and prescribed thermal regimes of heat exchangers at a variable flow rate of the refrigerant. The novelty of the elaboration is inclusion a compressor of the first stage with a serially connected intermediate heat exchanger and a control valve that are located before the compressor inlet of the second stage of the heat pump, which allows to establish a rational pressure after the first stage of the compressors. A scheme is proposed for regulating the temperature at the inlet of the first stage compressors by regulating the flow through the primary circuits of the recuperative heat exchangers. The first stage compressor control system allows providing the required modes of operation of the heat pump. It is established, because of the exergetic analysis of the sections of the hydraulic circuit of heat pump located between the evaporators and gas coolers that the reduction of irreversible losses in the heat pump is ensured due to the optimal choice of the superheat value of the gas after the evaporators.

  4. THE EFFECT OF MASS LOSS ON THE TIDAL EVOLUTION OF EXTRASOLAR PLANET

    International Nuclear Information System (INIS)

    Guo, J. H.

    2010-01-01

    By combining mass loss and tidal evolution of close-in planets, we present a qualitative study on their tidal migrations. We incorporate mass loss in tidal evolution for planets with different masses and find that mass loss could interfere with tidal evolution. In an upper limit case (β = 3), a significant portion of mass may be evaporated in a long evolution timescale. Evidence of greater modification of the planets with an initial separation of about 0.1 AU than those with a = 0.15 AU can be found in this model. With the assumption of a large initial eccentricity, the planets with initial mass ≤1 M J and initial distance of about 0.1 AU could not survive. With the supposition of β = 1.1, we find that the loss process has an effect on the planets with low mass at a ∼ 0.05 AU. In both cases, the effect of evaporation on massive planets can be neglected. Also, heating efficiency and initial eccentricity have significant influence on tidal evolution. We find that even low heating efficiency and initial eccentricity have a significant effect on tidal evolution. Our analysis shows that evaporation on planets with different initial masses can accelerate (decelerate) the tidal evolution due to the increase (decrease) in tide of the planet (star). Consequently, the effect of evaporation cannot be neglected in evolutionary calculations of close-in planets. The physical parameters of HD 209458b can be fitted by our model.

  5. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    Science.gov (United States)

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  6. Experimental study on Rankine cycle evaporator efficiency intended for exhaust waste heat recovery of a diesel engine

    Directory of Open Access Journals (Sweden)

    Milkov Nikolay

    2017-01-01

    Full Text Available The paper pressents an experimental study of Rankine cycle evaporator efficiency. Water was chosen as the working fluid in the system. The experimental test was conducted on a test bench equipped with a burner charged by compressed fresh air. Generated exhaust gases parameters were previously determined over the diesel engine operating range (28 engine operating points were studied. For each test point the working fluid parameters (flow rate and evaporating pressure were varied. Thus, the enthalpy flow through the heat exchanger was determined. Heat exchanger was designed as 23 helical tubes are inserted. On the basis of the results, it was found out that efficiency varies from 25 % to 51,9 %. The optimal working fluid pressure is 20 bar at most of the operating points while the optimum fluid mass flow rate varies from 2 g/s to 10 g/s.

  7. Lake Nasser evaporation reduction study

    Directory of Open Access Journals (Sweden)

    Hala M.I. Ebaid

    2010-10-01

    Full Text Available This study aims to evaluate the reduction of evaporation of Lake Nasser’s water caused by disconnecting (fully or partially some of its secondary channels (khors. This evaluation integrates remote sensing, Geographic Information System (GIS techniques, aerodynamic principles, and Landsat7 ETM+ images. Three main procedures were carried out in this study; the first derived the surface temperature from Landsat thermal band; the second derived evaporation depth and approximate evaporation volume for the entire lake, and quantified evaporation loss to the secondary channels’ level over one month (March by applied aerodynamic principles on surface temperature of the raster data; the third procedure applied GIS suitability analysis to determine which of these secondary channels (khors should be disconnected. The results showed evaporation depth ranging from 2.73 mm/day at the middle of the lake to 9.58 mm/day at the edge. The evaporated water-loss value throughout the entire lake was about 0.86 billion m3/month (March. The analysis suggests that it is possible to save an approximate total evaporation volume loss of 19.7 million m3/month (March, and thus 2.4 billion m3/year, by disconnecting two khors with approximate construction heights of 8 m and 15 m. In conclusion, remote sensing and GIS are useful for applications in remote locations where field-based information is not readily available and thus recommended for decision makers remotely planning in water conservation and management.

  8. Treatment of liquid radioactive waste: Evaporation

    International Nuclear Information System (INIS)

    Pfeiffer, R.

    1982-01-01

    About 10.000 m 3 of low active liquid waste (LLW) arise in the Nuclear Research Center Karlsruhe. Chemical contents of this liquid waste are generally not declared. Resulting from experiments carried out in the Center during the early sixties, the evaporator facility was built in 1968 for decontamination of LLW. The evaporators use vapor compression and concentrate recirculation in the evaporator sump by pumps. Since 1971 the medium active liquid waste (MLW) from the Karlsruhe Reprocessing Plant (WAK) was decontaminated in this evaporator facility, too. By this time the amount of low liquid waste (LLW) had been decontaminated without mentionable interruptions. Afterwards a lot of interruptions of operations occurred, mainly due to leakages of pumps, valves and pipes. There was also a very high radiation level for the operating personnel. As a consequence of this experience a new evaporator facility for decontamination of medium active liquid waste was built in 1974. This facility started operation in 1976. The evaporator has natural circulation and is heated by steam through a heat exchanger. (orig./RW)

  9. Advanced multi-evaporator loop thermosyphon

    International Nuclear Information System (INIS)

    Mameli, M.; Mangini, D.; Vanoli, G.F.T.; Araneo, L.; Filippeschi, S.; Marengo, M.

    2016-01-01

    A novel prototype of multi-evaporator closed loop thermosyphon is designed and tested at different heaters position, inclinations and heat input levels, in order to prove that a peculiar arrangement of multiple heaters may be used in order to enhance the flow motion and consequently the thermal performance. The device consists in an aluminum tube (Inner/Outer tube diameter 3.0 mm/5.0 mm), bent into a planar serpentine with five U-turns and partially filled with FC-72, 50% vol. The evaporator zone is equipped with five heated patches (one for each U-turn) in series with respect to the flow path. In the first arrangement, heaters are wrapped on each bend symmetrically, while in the second layout heaters are located on the branch just above the U-turn, non-symmetrical with respect to the gravity direction, in order to promote the fluid circulation in a preferential direction. The condenser zone is cooled by forced air and equipped with a 50 mm transparent section for the flow pattern visualization. The non-symmetrical heater arrangement effectively promotes a stable fluid circulation and a reliable operation for a wider range of heat input levels and orientations with respect to the symmetrical case. In vertical position, the heat flux dissipation exceeds the pool boiling heat transfer limit for FC-72 by 75% and the tube wall temperatures in the evaporator zone are kept lower than 80 °C. Furthermore, the heat flux capability is up to five times larger with respect to the other existing wickless heat pipe technologies demonstrating the attractiveness of the new concept for electronic cooling thermal management. - Highlights: • A novel passive heat transfer device named Multi-Evaporator Loop Thermosyphon is tested. • The loop is investigated at different heating patterns, inclinations and heat power levels. • The non-symmetrical heating configuration promotes the fluid circulation within the loop. • The performance in terms of maximum heat flux exceeds the

  10. Performance of evaporative condensers

    Energy Technology Data Exchange (ETDEWEB)

    Ettouney, Hisham M.; El-Dessouky, Hisham T.; Bouhamra, Walid; Al-Azmi, Bader

    2001-07-01

    Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data. (Author)

  11. Exploring Ultimate Water Capillary Evaporation in Nanoscale Conduits.

    Science.gov (United States)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Zhao, Yihong; Duan, Chuanhua

    2017-08-09

    Capillary evaporation in nanoscale conduits is an efficient heat/mass transfer strategy that has been widely utilized by both nature and mankind. Despite its broad impact, the ultimate transport limits of capillary evaporation in nanoscale conduits, governed by the evaporation/condensation kinetics at the liquid-vapor interface, have remained poorly understood. Here we report experimental study of the kinetic limits of water capillary evaporation in two dimensional nanochannels using a novel hybrid channel design. Our results show that the kinetic-limited evaporation fluxes break down the limits predicated by the classical Hertz-Knudsen equation by an order of magnitude, reaching values up to 37.5 mm/s with corresponding heat fluxes up to 8500 W/cm 2 . The measured evaporation flux increases with decreasing channel height and relative humidity but decreases as the channel temperature decreases. Our findings have implications for further understanding evaporation at the nanoscale and developing capillary evaporation-based technologies for both energy- and bio-related applications.

  12. General thermodynamic performance of irreversible absorption heat pump

    International Nuclear Information System (INIS)

    Zhao Xiling; Fu Lin; Zhang Shigang

    2011-01-01

    The absorption heat pump (AHP) was studied with thermodynamics. A four reservoirs model of absorption heat pump was established considering the heat resistance, heat leak and the internal irreversibility. The reasonable working regions, the performance effects of irreversibility, heat leak and the correlation of four components were studied. When studying the effects of internal irreversibility, two internal irreversibility parameters (I he for generator-absorber assembly and I re for evaporator-condenser assembly) were introduced to distinguish the different effects. When studying the heat transfer relations of four components, a universal relationship between the main parameters were deduced. The results which have more realized meaning show that, the reduction of the friction, heat loss, and internal dissipations of the evaporator-condenser assembly are more important than its reduction of generator-absorber assembly, and lessening the heat leak of generator are more important than its reduction of other components to improve the AHP performance.

  13. Suppression of the sonic heat transfer limit in high-temperature heat pipes

    Science.gov (United States)

    Dobran, Flavio

    1989-08-01

    The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.

  14. Developments in Zedivap evaporators; Zedivap jatkokehitys - EKY 01

    Energy Technology Data Exchange (ETDEWEB)

    Jaakkola, H. [Ahlstrom Machinery Oy, Helsinki (Finland). Heat Engineering

    1998-12-31

    Pulp and paper industry is looking forward to find economical ways to minimize their fresh water consumption and to reduce their impact in environment. One way to achieve the target is to replace fresh water by producing pure water from effluent. Zedivap technology has been developed to evaporate effluents and have been operated in full scale for few years. In this project Zedivap-technology was developed further to minimize fouling of heat transfer surfaces, to improve evaporator availability and to increase the knowledge of wastewater properties. To reach an uniform evaporator body construction to utilise different sources of energy, like electricity, high pressure steam or low temperature waste heat, the heat transfer surfaces will in most cases be of lamella type made of metallic sheets improving remarkably the availability compared to original design with plastic heating surfaces. As a result also the cleaning demands for a wastewater evaporator has reduced remarkably by replacing liquid distributor tray by spray nozzles. (orig.)

  15. Developments in Zedivap evaporators; Zedivap jatkokehitys - EKY 01

    Energy Technology Data Exchange (ETDEWEB)

    Jaakkola, H [Ahlstrom Machinery Oy, Helsinki (Finland). Heat Engineering

    1999-12-31

    Pulp and paper industry is looking forward to find economical ways to minimize their fresh water consumption and to reduce their impact in environment. One way to achieve the target is to replace fresh water by producing pure water from effluent. Zedivap technology has been developed to evaporate effluents and have been operated in full scale for few years. In this project Zedivap-technology was developed further to minimize fouling of heat transfer surfaces, to improve evaporator availability and to increase the knowledge of wastewater properties. To reach an uniform evaporator body construction to utilise different sources of energy, like electricity, high pressure steam or low temperature waste heat, the heat transfer surfaces will in most cases be of lamella type made of metallic sheets improving remarkably the availability compared to original design with plastic heating surfaces. As a result also the cleaning demands for a wastewater evaporator has reduced remarkably by replacing liquid distributor tray by spray nozzles. (orig.)

  16. Bubble-assisted film evaporation correlation for saline water at sub-atmospheric pressures in horizontal-tube evaporator

    KAUST Repository

    Shahzad, Muhammad Wakil

    2013-01-01

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This article presents the heat transfer behavior for evaporative film boiling on horizontal tubes, but working at low pressures of 0.93-3.60 kPa (corresponding solution saturation temperatures of 279-300 K) as well as seawater salinity of 15,000 to 90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling at these conditions, the article is motivated by the importance of evaporative film boiling in the desalination processes such as the multi-effect distillation (MED) or multi-stage flashing (MSF): It is observed that in addition to the above-mentioned parameters, evaporative heat transfer of seawater is affected by the emergence of micro-bubbles within the thin film layer, particularly when the liquid saturation temperatures drop below 298 K (3.1 kPa). Such micro bubbles are generated near to the tube wall surfaces and they enhanced the heat transfer by two or more folds when compared with the predictions of conventional evaporative film boiling. The appearance of micro-bubbles is attributed to the rapid increase in the specific volume of vapor, i.e., dv/dT, at low saturation temperature conditions. A new correlation is thus proposed in this article and it shows good agreement to the measured data with an experimental uncertainty of 8% and regression RMSE of 3.5%. © 2012 Elsevier Ltd. All rights reserved.

  17. Heat loss and fluid leakage tests of the ROSA-III facility

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Tasaka, Kanji; Shiba, Masayoshi

    1981-12-01

    The report presents characteristic test results about the steady state heat loss, one of the inherent characteristics of the ROSA-III test facility. The steady state heat loss tests were conducted at five different temperature conditions between 111 0 C and 290 0 C . Net heat loss rates were obtained by estimating the electric power supplied to the core, heat input from the recirculation pumps and steam leakage rate. The heat loss characteristics have important contribution to analyses of the ROSA-III small break tests. A following simple relation was obtained between the net heat loss rate Q*sub(HL) (kJ/s) (*: radical) of the ROSA-III facility and the temperature difference ΔT ( 0 C) between the fluid temperature of the system and the room temperature, Q*sub(HL) = 0.56 x ΔT. (*: radical) And the steam leak flow at normal operating condition of the ROSA-III test, (P = 7.2 MPa) was obtained as 8.9 x 10 -3 kg/s and corresponding steam leakage energy as 10.5 kJ/s. The heat input from the recirculation pumps was indirectly estimated under a constant speed by assuming the heat input was equal to the brake horce power of the pumps. (author)

  18. LOREF: Air cooler optimisation with reduction of ice and frost formation - Optimisation of lamella air-coolers/evaporators of air/water heat pumps - Part 1: theoretical and experimental research; LOREF: Luftkuehler-Optimierung mit Reduktion von Eis- und Frostbildung - Optimierung des Lamellenluftkuehlers/Verdampfers von Luft/Wasser-Waermepumpen - Teil 1: theoretische und experimentelle Untersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    Berlinger, L.; Imholz, M.; Albert, M.; Wellig, B.; Hilfiker, K.

    2008-04-15

    The use of air/water heat pumps for heating of houses is progressively increasing. It is to be expected that the average coefficient of performance (COP) can be improved substantially over the next decade. Its success will depend on controlling and reducing the formation of frost and ice which reduce the air flow and the heat and mass transfer in the fin tube evaporator. In the LOREF research project a mathematical-physical simulation program has been developed which permits to calculate the formation of condensate, ice and frost and also the pressure loss of the air as a function of space and time at any condition of the ambient air. The theoretical results have been validated by numerous experiments in which the air temperature and humidity, the temperature difference and the air velocity have been systematically varied. Particular emphasis has been given to the geometries of the fin tube evaporator. Several fin partitions along the cooler have been investigated. Using the simulation program the evaporator of a commercial heat pump was optimized and experimentally compared to the original evaporator. The resulting seasonal performance factors were nearly equal what confirms the small differences obtained by simulations. Nevertheless, the optimized evaporator features advantages in respect of the defrosting with ambient air because of its bigger fin spacing and the resulting decrease in pressure drop. The results of the LOREF research project are now the basis for the overall optimization of air/water heat pumps. (author)

  19. Ripple losses during ICRF heating in Tore Supra

    International Nuclear Information System (INIS)

    Basiuk, V.; Eriksson, L.-G.; Bergeaud, V.; Chantant, M.; Martin, G.; Nguyen, F.; Reichle, R.; Vallet, J.C.; Delpeche, L.; Surle, F.

    2004-01-01

    The toroidal field coils in Tore Supra are supra-conducting, and their number is restricted to 18. As a result, the ripple is fairly large, about 7% at the plasma boundary. Tore Supra has consequently been equipped with dedicated ripple loss diagnostics, which has allowed ripple loss studies. This paper reports on the measurements made with these diagnostics and provides an analysis of the experimental results, comparing them with theoretical expectations whenever possible. Furthermore, the main heating source accelerating ions in Tore Supra is ion cyclotron resonance range of frequency (ICRF) heating, and the paper provides new information on the ripple losses of ICRF accelerated ions. (author)

  20. Evaporative cooling in polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Shimotori, S; Sonai, A [Toshiba Corp. Tokyo (Japan)

    1996-06-05

    The concept of the evaporative cooling for the internally humidified PEFC was confirmed by the experiment. The evaporative cooling rates at the anode and the cathode were mastered under the various temperatures and air utilizations. At a high temperature the proportion of the evaporative cooling rate to the heat generation rate got higher, the possibility of the evaporative cooling was demonstrated. 2 refs., 7 figs., 1 tab.

  1. Test bench HEATREC for heat loss measurement on solar receiver tubes

    Science.gov (United States)

    Márquez, José M.; López-Martín, Rafael; Valenzuela, Loreto; Zarza, Eduardo

    2016-05-01

    In Solar Thermal Electricity (STE) plants the thermal energy of solar radiation is absorbed by solar receiver tubes (HCEs) and it is transferred to a heat transfer fluid. Therefore, heat losses of receiver tubes have a direct influence on STE plants efficiency. A new test bench called HEATREC has been developed by Plataforma Solar de Almería (PSA) in order to determinate the heat losses of receiver tubes under laboratory conditions. The innovation of this test bench consists in the possibility to determine heat losses under controlled vacuum.

  2. Recent progress in design of evaporators and condensors

    International Nuclear Information System (INIS)

    Semeria, R.

    1981-01-01

    Heat transfer coefficients for boilers and condensors have been improved very much during the two last decades. Particularly, for sea water desalination plants, the falling liquid film evaporator and the horizontal tube evaporator were improved for having good performances with small temperature differences. A discussion follows of research undertaken at C.E.N. Grenoble (France) which leads to heat transfer enhancement in evaporators or in condensors. Principles are investigated such as role of interfaces and effect of a good nucleation in boiling. Examples of improved techniques are given; namely: - evaporators: falling film, fluted tubes, specific liquids, - condensors: fluted tubes, special materials such as titanium, droplet condensation [fr

  3. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation.

    Science.gov (United States)

    Zhakhovsky, Vasily V; Kryukov, Alexei P; Levashov, Vladimir Yu; Shishkova, Irina N; Anisimov, Sergey I

    2018-04-16

    Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase. The equilibrium density of vapor obtained in MD simulation of phase coexistence is used in BKE calculations for consistency of BKE results with MD data. The collision cross-section is also adjusted to provide a thermal flux in vapor identical to that in MD. Our MD simulations of evaporation toward a nonreflective absorbing boundary show that the velocity distribution function (VDF) of evaporated atoms has the nearly semi-Maxwellian shape because the binding energy of atoms evaporated from the interphase layer between bulk phase and vapor is much smaller than the cohesive energy in the condensed phase. Indeed, the calculated temperature and density profiles within the interphase layer indicate that the averaged kinetic energy of atoms remains near-constant with decreasing density almost until the interphase edge. Using consistent BKE and MD methods, the profiles of gas density, mass velocity, and temperatures together with VDFs in a gap of many mean free paths between the evaporation and condensation surfaces are obtained and compared. We demonstrate that the best fit of BKE results with MD simulations can be achieved with the evaporation and condensation coefficients both close to unity.

  4. Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization

    KAUST Repository

    Tay-Wo-Chong, Luis

    2015-11-16

    The present paper argues that the prediction of turbulent premixed flames under non-adiabatic conditions can be improved by considering the combined effects of strain and heat loss on reaction rates. The effect of strain in the presence of heat loss on the consumption speed of laminar premixed flames was quantified by calculations of asymmetric counterflow configurations (“fresh-to-burnt”) with detailed chemistry. Heat losses were introduced by setting the temperature of the incoming stream of products on the “burnt” side to values below those corresponding to adiabatic conditions. The consumption speed decreased in a roughly exponential manner with increasing strain rate, and this tendency became more pronounced in the presence of heat losses. An empirical relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability density function for strain in turbulent flows, an attenuation factor that accounts for the effect of strain and heat loss on the reaction rate in turbulent flows was deduced and implemented into a turbulent combustion model. URANS simulations of a premixed swirl burner were carried out and validated against flow field and OH chemiluminescence measurements. Introducing the effects of strain and heat loss into the combustion model, the flame topology observed experimentally was correctly reproduced, with good agreement between experiment and simulation for flow field and flame length.

  5. Study of high energy ion loss during hydrogen minority heating in TFTR

    International Nuclear Information System (INIS)

    Park, J.; Zweben, S.J.

    1994-03-01

    High energy ion loss during hydrogen minority ICRF heating is measured and compared with the loss of the D-D fusion products. During H minority heating a relatively large loss of high energy ions is observed at 45 degrees below the outer midplane, with or without simultaneous NBI heating. This increase is most likely due to a loss of the minority tail protons, a possible model for this process is described

  6. Mathematical modeling of wiped-film evaporators

    International Nuclear Information System (INIS)

    Sommerfeld, J.T.

    1976-05-01

    A mathematical model and associated computer program were developed to simulate the steady-state operation of wiped-film evaporators for the concentration of typical waste solutions produced at the Savannah River Plant. In this model, which treats either a horizontal or a vertical wiped-film evaporator as a plug-flow device with no backmixing, three fundamental phenomena are described: sensible heating of the waste solution, vaporization of water, and crystallization of solids from solution. Physical property data were coded into the computer program, which performs the calculations of this model. Physical properties of typical waste solutions and of the heating steam, generally as analytical functions of temperature, were obtained from published data or derived by regression analysis of tabulated or graphical data. Preliminary results from tests of the Savannah River Laboratory semiworks wiped-film evaporators were used to select a correlation for the inside film heat transfer coefficient. This model should be a useful aid in the specification, operation, and control of the full-scale wiped-film evaporators proposed for application under plant conditions. In particular, it should be of value in the development and analysis of feed-forward control schemes for the plant units. Also, this model can be readily adapted, with only minor changes, to simulate the operation of wiped-film evaporators for other conceivable applications, such as the concentration of acid wastes

  7. Thermoregulatory responses to acute heat loads in rats following spontaneous running.

    Science.gov (United States)

    Sugimoto, N; Shido, O; Sakurada, S; Nagasaka, T

    1999-02-01

    Earlier studies showed that spontaneous exercise training in rodents shifted their core temperature and thermoeffector thresholds to high levels. The present study investigated heat loss and heat production responses to acute heat loads of exercise-trained rats. The exercise-trained rats were allowed to run in a running wheel freely for 6 months, while the sedentary controls were denied access to the wheel during the same period. Then, they were loosely restrained and put in a direct calorimeter. After thermal equilibrium had been attained, they were warmed for 30 min with an intraperitoneal electric heater (internal heating). At least 2 h later, the rats were externally warmed for 90 min by raising the ambient temperature from 24 to 38C (external warming). Hypothalamic temperature (Thy), evaporative and nonevaporative heat loss (R+C+K) and heat production were measured. Internal and external heating significantly increased Thy. During internal heating, the magnitude of the increase in Thy was significantly smaller and the amount of increase in (R+C+K) was significantly greater in the exercise-trained rats than in the controls. The slope showing the relationship between Thy and (R+C+K) in the trained rats was significantly steeper than that in the controls. During external warming, the magnitude of increase in Thy of the exercise-trained rats was significantly greater than that of the controls. The slope showing the relationship between Thy and (R+C+K) in the trained rats was not different from that in the controls. Changes in evaporative heat loss and heat production during the two types of heat load did not differ between the two groups. The results suggest that, in rats, exercise training with voluntary running improves heat tolerance through enhancing nonevaporative heat loss response. However, this may be the case only when the rats are subjected to a direct internal heat load.

  8. Characteristics of a micro-fin evaporator: Theoretical analysis and experimental verification

    OpenAIRE

    Zheng Hui-Fan; Fan Xiao-Wei; Wang Fang; Liang Yao-Hua

    2013-01-01

    A theoretical analysis and experimental verification on the characteristics of a micro-fin evaporator using R290 and R717 as refrigerants were carried out. The heat capacity and heat transfer coefficient of the micro-fin evaporator were investigated under different water mass flow rate, different refrigerant mass flow rate, and different inner tube diameter of micro-fin evaporator. The simulation results of the heat transfer coefficient are fairly in good a...

  9. Numerical study of the influence of water evaporation on radiofrequency ablation.

    Science.gov (United States)

    Zhu, Qing; Shen, Yuanyuan; Zhang, Aili; Xu, Lisa X

    2013-12-10

    Radiofrequency ablation is a promising minimal invasive treatment for tumor. However, water loss due to evaporation has been a major issue blocking further RF energy transmission and correspondently eliminating the therapeutic outcome of the treatment. A 2D symmetric cylindrical mathematical model coupling the transport of the electrical current, heat, and the evaporation process in the tissue, has been developed to simulate the treatment process and investigate the influence of the excessive evaporation of the water on the treatment. Our results show that the largest specific absorption rate (QSAR) occurs at the edge of the circular surface of the electrode. When excessive evaporation takes place, the water dehydration rate in this region is the highest, and after a certain time, the dehydrated tissue blocks the electrical energy transmission in the radial direction. It is found that there is an interval as long as 65 s between the beginning of the evaporation and the increase of the tissue impedance. The model is further used to investigate whether purposely terminating the treatment for a while allowing diffusion of the liquid water into the evaporated region would help. Results show it has no obvious improvement enlarging the treatment volume. Treatment with the cooled-tip electrode is also studied. It is found that the cooling conditions of the inside agent greatly affect the water loss pattern. When the convection coefficient of the cooling agent increases, excessive evaporation will start from near the central axis of the tissue cylinder instead of the edge of the electrode, and the coagulation volume obviously enlarges before a sudden increase of the impedance. It is also found that a higher convection coefficient will extend the treatment time. Though the sudden increase of the tissue impedance could be delayed by a larger convection coefficient; the rate of the impedance increase is also more dramatic compared to the case with smaller convection

  10. Energy consumption during Refractance Window evaporation of selected berry juices

    Energy Technology Data Exchange (ETDEWEB)

    Nindo, C.I.; Tang, J. [Washington State University, Pullman, WA (United States). Dept. of Biological Systems Engineering; Powers, J.R. [Washington State University, Pullman, WA (United States). Dept. of Food Science and Human Nutrition; Bolland, K. [MCD Technologies, Tacoma, WA (United States)

    2004-07-01

    The Refractance Window evaporator represents a novel concept in the design of evaporation systems for small food processing plants. In this system thermal energy from circulating hot water is transmitted through a plastic sheet to evaporate water from a liquid product flowing concurrently on the top surface of the plastic. The objectives of this study were to investigate the heat transfer characteristics of this evaporator, determine its energy consumption, and capacity at different tilt angles and product flow rates. The system performance was evaluated with tap water, raspberry juice, and blueberry juice and puree as feed. With a direct steam injection heating method, the steam economy ranged from 0.64 to 0.84, while the overall heat transfer coefficient (U) was 666 W m{sup -2} {sup o}C{sup -1}. Under this condition, the highest evaporation capacity was 27.1 kg h{sup -1} m{sup -2} for blueberry juice and 31.8 kg h{sup -1} m{sup -2} for blueberry puree. The energy consumption was 2492-2719 kJ kg{sup -1} of water evaporated. Installation of a shell and tube heat exchanger with better temperature control minimized incidences of boiling and frequent discharge of condensate. The steam economy, highest evaporation rate and overall heat transfer coefficient increased to 0.99, 36.0 kg h{sup -1} m{sup -2} and 733 W m{sup -2} {sup o}C{sup -1}, respectively. [Author].

  11. Radiative evaporation of oil spills on seas or rivers

    International Nuclear Information System (INIS)

    Summerfield, M.

    1993-01-01

    Because of the self-evident drawbacks of in situ oil burning as a means of removing spilled oil from water surfaces, a similar technique suggests itself: evaporation of the oil by absorbed heat. Of the various ways in which heat may be brought to the oil surface, intense radiation seems to be the most convenient technique. Oil spilled on water surfaces can be collected by a boom floating in the water, gathered in a catenary-like contour, and deep enough to absorb the beam of radiation near the apex of the catenary. It seems likely that the circulation of oil in the gathered oil layer would serve to assure the minimum of heat conduction (loss of heat) to the water below. The question is, does a radiator intense enough to evaporate oil at a fast enough rate exist? The answer seems to be that a system does indeed exist, developed by the Gas Research Institute, Chicago, Illinois, and manufactured under GRI sponsorship by at least two companies. It was developed for such applications as paint drying. The radiator is heated to over 1400 K by natural gas combustion (with air); the hot surface is made of a ceramic. The efficiency of the overall process, from the standard heat of combustion to the radiation beam emitted, is about 40 percent. If one assumes a reasonable efficiency for the absorption of radiation and its conversion to heat and then its conversion to evaporated oil, one can compute the beam size, the radiator dimensions, the duration required for a boom-full of oil (only one) and the cost. It turns out that, for a 1,000 gal spill (more than the daily average), a duration of about 5 hours suffices for a single overhead radiator; the cost would be about $400 in fuel. A boat carrying the fuel tanks to feed the radiator, trailing the boom apex, is probably the best way to direct the radiation to the oil surface. Cleanup of a spill in this way is assured. One drawback is the smell of the atmosphere laden with the vapor

  12. Trade Study for 9 kW Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant C.; Ungar, Gene; Stephan, Ryan

    2010-01-01

    Sublimators have been proposed and used in spacecraft for heat rejection. Sublimators are desirable heat rejection devices for short duration use because they can transfer large amounts of heat using little mass and are self-regulating devices. Sublimators reject heat into space by freezing water inside a porous substrate, allowing it to sublimate into vapor, and finally venting it into space. The state of the art thermal control system in orbiting spacecraft is a two loop, two fluid system. The external coolant loop typically uses a toxic single phase fluid that acquires heat from the spacecraft and rejects most of it via a radiator. The sublimator functions as a transient topper for orbiting spacecraft during day pass periods when radiator efficiency decreases. The sublimator interfaces with the internal loop through a built in heat exchanger. The internal loop fluid is non-toxic and is typically a propylene glycol and water solution with inhibitors to prevent corrosion with aluminum fins of the heat exchangers. Feedwater is supplied from a separate line to the sublimator to maintain temperature control of the cabin and vehicle hardware. Water membrane evaporators have been developed for spacecraft and spacesuits. They function similar to a sublimator but require a backpressure valve which could be actuated for this application with a simple fully open or fully closed modes. This technology would be applied to orbital thermal control (lunar or planetary). This paper details a trade study showing that evaporators would greatly reduce the consumable that is used, effectively wasted, by sublimators during start up and shut down during the topping phases of each orbit. State of the art for 9 kW sublimators reject about 870 W per kilogram of mass and 1150 W per liter of volume. If water with corrosion inhibitors is used the evaporators would be about 80% of the mass and volume of the equivalent system. The size and mass increases to about 110% if the internal fluid is

  13. Mathematical modelling and simulation of the thermal performance of a solar heated indoor swimming pool

    Directory of Open Access Journals (Sweden)

    Mančić Marko V.

    2014-01-01

    Full Text Available Buildings with indoor swimming pools have a large energy footprint. The source of major energy loss is the swimming pool hall where air humidity is increased by evaporation from the pool water surface. This increases energy consumption for heating and ventilation of the pool hall, fresh water supply loss and heat demand for pool water heating. In this paper, a mathematical model of the swimming pool was made to assess energy demands of an indoor swimming pool building. The mathematical model of the swimming pool is used with the created multi-zone building model in TRNSYS software to determine pool hall energy demand and pool losses. Energy loss for pool water and pool hall heating and ventilation are analyzed for different target pool water and air temperatures. The simulation showed that pool water heating accounts for around 22%, whereas heating and ventilation of the pool hall for around 60% of the total pool hall heat demand. With a change of preset controller air and water temperatures in simulations, evaporation loss was in the range 46-54% of the total pool losses. A solar thermal sanitary hot water system was modelled and simulated to analyze it's potential for energy savings of the presented demand side model. The simulation showed that up to 87% of water heating demands could be met by the solar thermal system, while avoiding stagnation. [Projekat Ministarstva nauke Republike Srbije, br. III 42006: Research and development of energy and environmentally highly effective polygeneration systems based on using renewable energy sources

  14. Novel approach to evaluate the dynamic variation of wind drift and evaporation losses under moving irrigation systems

    Science.gov (United States)

    Sayed-Hossein Sadeghi; Troy R. Peters; Mohammad Z. Amini; Sparkle L. Malone; Hank W. Loescher

    2015-01-01

    The increased need for water and food security requires the development of new approaches to save water through irrigation management strategies, particularly for center pivot irrigation. To do so entails monitoring of the dynamic variation in wind drift and evaporation losses (WDELs) of irrigation systems under different weather conditions and for relatively long time...

  15. Water Evaporation in Swimming Baths

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are repres......This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which...... are represented in instructions for carrying out and running swimming baths. If you follow the instructions you can achieve less investments, less heat consumption and a better comfort to the bathers....

  16. Thermal management optimization of a thermoelectric-integrated methanol evaporator using a compact CFD modeling approach

    DEFF Research Database (Denmark)

    Xin, Gao; Chen, Min; Snyder, G. Jeffrey

    2013-01-01

    exchange structure. The structure transfers the fuel cell exhaust heat to the evaporation chamber to evaporate the methanol, where TE modules are installed in between to facilitate the heat regulation. In this work, firstly, a numerical study is conducted to determine the working currents and working modes......To better manage the magnitude and the direction of the heat flux in an exchanger-based methanol evaporator of a fuel cell system, thermoelectric (TE) modules can be deployed as TE heat flux regulators (TERs). The performance of the TE-integrated evaporator is strongly influenced by its heat......, and uses a different material property acquisition method based on module manufacturers’ datasheets. Secondly, a simulation study is carried out on the novel evaporator to minimize its thermal resistance and to assess the evaporator pressure drop. The factors studied include: type of the fins of the heat...

  17. Effect of heat loss in a geothermal reservoir

    NARCIS (Netherlands)

    Ganguly, Sayantan; Tan, Lippong; Date, Abhijit; Mohan Kumar, Mandalagiri Subbarayappa

    This paper reports a three-dimensional (3D) numerical study to determine the effect of heat loss on the transient heat transport and temperature distribution in a geothermal reservoir. The operation of a geothermal power plant, which is essentially an injection-production process, involves

  18. Energy savings in cooling systems through use of new heat exchanger type with flat aluminium pipes and fins; Energibesparelser i koeleanlaeg ved anvendelse af ny varmevekslertype med flade aluminiumsroer og finner

    Energy Technology Data Exchange (ETDEWEB)

    Mulvad, R. (Aluventa A/S, Svendborg (Denmark)); Schneider, P. (Teknologisk Institut, Koele- og Varmepumpeteknik, AArhus (Denmark))

    2008-12-15

    This report describes the theoretical and practical work carried out to characterize and size air-cooled condensers and evaporators manufactured in MPE-tubes. Test heat exchangers were constructed for which capacity and pressure loss was measured. The measurements are compared with equations from the literature, and the most appropriate equations were selected. An analytical comparison of heat exchangers made with round tubes and fins of different types shows that by using heat exchangers with MPE-tubes and louvered fins lower air side pressure loss and higher performance can be achieved. Similarly, the refrigerant filling in MPE heat exchangers lower than in conventional heat exchangers with round tubes. This has great significance in the choice of heat exchangers because of the high price per kilo of HCF refrigerants. Correlations for heat transfer and pressure loss by condensation / evaporation and correlations for heat transfer and pressure drop were implemented in the calculation programs for design of condensers and evaporators. The calculation programs developed in the project are compared with a non-commercially available program designed for heat exchangers with MPE-tubes. The comparison shows good agreement. (ln)

  19. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    Science.gov (United States)

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat

  20. A computational study of droplet evaporation with fuel vapor jet ejection induced by localized heat sources

    KAUST Repository

    Sim, Jaeheon

    2015-05-12

    Droplet evaporation by a localized heat source under microgravity conditions was numerically investigated in an attempt to understand the mechanism of the fuel vapor jet ejection, which was observed experimentally during the flame spread through a droplet array. An Eulerian-Lagrangian method was implemented with a temperature-dependent surface tension model and a local phase change model in order to effectively capture the interfacial dynamics between liquid droplet and surrounding air. It was found that the surface tension gradient caused by the temperature variation within the droplet creates a thermo-capillary effect, known as the Marangoni effect, creating an internal flow circulation and outer shear flow which drives the fuel vapor into a tail jet. A parametric study demonstrated that the Marangoni effect is indeed significant at realistic droplet combustion conditions, resulting in a higher evaporation constant. A modified Marangoni number was derived in order to represent the surface force characteristics. The results at different pressure conditions indicated that the nonmonotonic response of the evaporation rate to pressure may also be attributed to the Marangoni effect.

  1. Oceans and continents: Similarities and differences in the mechanisms of heat loss

    International Nuclear Information System (INIS)

    Sclater, J.G.; Parsons, B.; Jaupart, C.

    1981-01-01

    The principal objective of this paper is to present a simple and self-consistent review of the basic physical processes controlling heat loss from the earth. To accomplish this objective, we give a short summary of the oceanic and continental data and compare and contrast the respective mechanisms of heat loss . In the oceans we concentrate on the effect of hydrothermal circulation, and on the continents we consider in some detail a model relating surface heat flow to varying depth scales for the distribution of potassium, thorium, and uranium. From this comparison we conclude that the range in possible geotherms at depths below 100 to 150 km under continents and oceans overlaps and the thermal structure beneath an old stable continent is indistinguishable from that beneath an ocean were it at equilibrium. Oceans and continents are part of the same thermal system. Both have an upper rigid mechanical layer where heat loss is by conduction and a lower thermal boundary layer where convection is dominant. The simple conductive definition of the plate thickness is an oversimplification. The observed distribution of area versus age in the ocean allows us to investigate the dominant mechanism of heat loss which is plate creation. This distribution and an understanding of the heat flow through oceans and continents can be used to calculate the heat loss of the earth. This heat loss is 10 13 cal/s (4.2 x 10 13 W) of which more than 60% results from the creation of oceanic plate. The relation between area and age of the oceans is coupled to the ridge and subducting slab forces that contribute to the driving mechanism for plate motions. These forces are self-regulating and maintain the rate of plate generation required to achieve a balance between heat loss and heat generation

  2. Coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; YANG Yan-Hua; XU Ji-Jun

    2003-01-01

    Extremely rapid evaporation could occur when high-temperature particles contact withlow-temperature liquid. This kind of phenomenon is associated with the engineering safety and the problems inhigh-transient multi-phase fluid and heat transfer. The aim of our study was to design and build an observable ex-periment facility. The first series of experiments were performed by pouring one or six high-temperature particles intoa low saturated temperature liquid pool. The particle's falling-down speed was recorded by a high-speed camera, thuswe can find the special resistant feature of the moving high-temperature particles, which is induced by the high-speedevaporation surrounding the particles. The study has experimentally verified the theory of evaporation drag model.

  3. Mathematical modelling and simulation of the thermal performance of a solar heated indoor swimming pool

    OpenAIRE

    Mančić Marko V.; Živković Dragoljub S.; Milosavljević Peđa M.; Todorović Milena N.

    2014-01-01

    Buildings with indoor swimming pools have a large energy footprint. The source of major energy loss is the swimming pool hall where air humidity is increased by evaporation from the pool water surface. This increases energy consumption for heating and ventilation of the pool hall, fresh water supply loss and heat demand for pool water heating. In this paper, a mathematical model of the swimming pool was made to assess energy demands of an indoor swimming po...

  4. Mathematical model of compact type evaporator

    Science.gov (United States)

    Borovička, Martin; Hyhlík, Tomáš

    2018-06-01

    In this paper, development of the mathematical model for evaporator used in heat pump circuits is covered, with focus on air dehumidification application. Main target of this ad-hoc numerical model is to simulate heat and mass transfer in evaporator for prescribed inlet conditions and different geometrical parameters. Simplified 2D mathematical model is developed in MATLAB SW. Solvers for multiple heat and mass transfer problems - plate surface temperature, condensate film temperature, local heat and mass transfer coefficients, refrigerant temperature distribution, humid air enthalpy change are included as subprocedures of this model. An automatic procedure of data transfer is developed in order to use results of MATLAB model in more complex simulation within commercial CFD code. In the end, Proper Orthogonal Decomposition (POD) method is introduced and implemented into MATLAB model.

  5. HEAT LOSS FROM HOT WATER SUPPLY LINE IN A RESIDENTIAL BUILDING

    OpenAIRE

    近藤, 修平; 鉾井, 修一

    2011-01-01

    In order to the evaluate heat loss from hot water supply lines in a residential building, hot water demand in a house in Chiba prefecture was measured and analyzed. The following results were obtained. 1. The heat loss of the hot water supply line was about 132kJ for the shower and 110kJ for the bathtub in winter. Since the temperature difference between the inlet and outlet of the hot water supply line is small, the measured heat loss from the hot water supply line sometimes becomes negative...

  6. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface.

    Science.gov (United States)

    Wang, Zhenhui; Liu, Yanming; Tao, Peng; Shen, Qingchen; Yi, Nan; Zhang, Fangyu; Liu, Quanlong; Song, Chengyi; Zhang, Di; Shang, Wen; Deng, Tao

    2014-08-27

    Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems

    International Nuclear Information System (INIS)

    Islam, M.R.; Jahangeer, K.A.; Chua, K.J.

    2015-01-01

    The performance of an air-conditioning unit with evaporately-cooled condenser coil is studied experimentally and numerically. An experimental setup is fabricated by retrofitting a commercially available air-conditioning unit and installing comprehensive measuring sensors and controllers. Experimental result shows that the COP (Coefficient of Performance) of the evaporately-cooled air-conditioning unit increases by about 28% compared to the conventional air cooled air-conditioning unit. To analyze the heat and mass transfer processes involved in the evaporately-cooled condenser, a detailed theoretical model has been developed based on the fluid flow characteristics of the falling film and the thermodynamic aspect of the evaporation process. Simulated results agree well with experimental data. The numerical model provides new insights into the intrinsic links between operating variables and heat transfer characteristics of water film in evaluating the performance of evaporatively-cooled condenser system. Two heat transfer coefficients, namely, wall to bulk and bulk to interface are introduced and computed from the simulation results under different operating conditions. Finally, the overall heat transfer coefficient for the water film is computed and presented as a function of dimensionless variables which can conveniently be employed by engineers to design and analyze high performance evaporatively-cooled heat exchangers. - Highlights: • Performance of evaporatively-cooled condenser is investigated. • Local convective heat transfer coefficients of water film are determined. • Thermal resistance of water film is negligible. • Heat transfer with evaporated vapor plays significant role on performance. • Better condenser performance translates to an improvement in COP

  8. Evaporation Induced Oxygen Isotope Fractionation in Impact Ejecta

    Science.gov (United States)

    Macris, C. A.; Young, E. D.; Kohl, I. E.; zur Loye, T. E.

    2017-12-01

    Tektites are natural glasses formed as quenched impact melt ejecta. Because they experienced extreme heating while entrained in a hot impact vapor plume, tektites allow insight into the nature of these ephemeral events, which play a critical role in planetary accretion and evolution. During tektite formation, the chemical and isotopic composition of parent materials may be modified by (1) vapor/liquid fractionation at high T in the plume, (2) incorporation of meteoric water at the target site, (3) isotope exchange with atmospheric oxygen (if present), or some combination of the three. Trends from O isotope studies reveal a dichotomy: some tektite δ18O values are 4.0-4.5‰ lower than their protoliths (Luft et al. 1987; Taylor & Epstein 1962), opposite in direction to a vaporization induced fractionation; increases in δ18O with decreasing SiO2 in tektites (Taylor & Epstein 1969) is consistent with vapor fractionation. Using an aerodynamic levitation laser furnace (e.g. Macris et al. 2016), we can experimentally determine the contributions of processes (1), (2) and (3) above to tektite compositions. We conducted a series of evaporation experiments to test process (1) using powdered tektite fused into 2 mm spheres and heated to 2423-2473 K for 50-90 s while levitated in Ar in the furnace. Mass losses were from 23 to 26%, reflecting evaporation of Si and O from the melt. The starting tektite had a δ18O value of 10.06‰ (±0.01 2se) and the residues ranged from 13.136‰ (±0.006) for the least evaporated residue to 14.30‰ (±0.02) for the most evaporated (measured by laser fluorination). The increase in δ18O with increasing mass loss is consistent with Rayleigh fractionation during evaporation, supporting the idea that O isotopes are fractionated due to vaporization at high T in an impact plume. Because atmospheric O2 and water each have distinctive Δ17O values, we should be able to use departures from our measured three-isotope fractionation law to evaluate

  9. Steady state operation of a copper-water LHP with a flat-oval evaporator

    International Nuclear Information System (INIS)

    Becker, S.; Vershinin, S.; Sartre, V.; Laurien, E.; Bonjour, J.; Maydanik, Yu.F.

    2011-01-01

    In order to dissipate the heat generated by electronic boxes in avionic systems, a copper-water LHP with a flat-oval evaporator was fabricated and tested at steady state. The LHP consists of a flat shaped evaporator, 7 mm thick, including compensation chamber with attached heat exchanger. The condenser is cooled by forced convection of liquid. The variable parameters are the heat sink and ambient temperatures (20 and 55 o C), the orientation (-90 o to +90 o in two perpendicular planes) and the power input (0-100 W). Evaporator wall temperatures are higher when the evaporator is placed above the condenser. For heat sink and ambient temperature of 20 o C the evaporator wall temperature does not vary much with heat load for all measured elevations. But it fluctuates at heat sink and ambient temperature equal to 55 o C when the evaporator is placed below the condenser. The LHP total thermal resistance is governed by the condenser resistance. It decreases with increasing heat load, whatever the operating conditions, because the part of the condenser internal surface area used for condensation increases too. A minimum thermal resistance of 0.2 K/W was obtained. The maximum thermal resistance was 2.7 K/W.

  10. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    This paper presents numerical investigations of thermal stratification in a vertical cylindrical hot water tank established by standby heat loss from the tank. The transient fluid flow and heat transfer in the tank during cooling caused by standby heat loss are calculated by means of validated...... computational fluid dynamics (CFD) models. The measured heat loss coefficient for the different parts of the tank is used as input to the CFD model. Parametric studies are carried out using the validated models to investigate the influence on thermal stratification of the tank by the downward flow...... the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions. The results show that 20–55% of the side heat loss drops to layers below in the part of the tank without the presence of thermal stratification. A heat loss removal factor is introduced...

  11. Quantitative thermography and methods for in-situ determination of heat losses from district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B. [ed.

    1996-11-01

    The course and seminar summarizing application of infrared thermography in district heating systems control gathered Danish specialists with 5 contributions on the subject. Maintenance of the heat distribution pipelines and thermographic inspection of the systems are essential in order to avoid heat losses. (EG)

  12. Start-up Characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources

    Science.gov (United States)

    Zhang, Renping

    2017-12-01

    A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.

  13. Abnormal excess heat observed during Mizuno-type experiments

    International Nuclear Information System (INIS)

    Fauvarque, Jean-Francois; Clauzon, Pierre Paul; Lalleve, Gerard Jean-Michel

    2006-01-01

    A simple calorimeter has been designed that works at constant temperature; that of boiling water. Heat Losses can be estimated accurately with an ohmic heater. As expected, losses are independent of the electric power input to the heater and the amount of evaporated water is linearly dependant on the power input. The device has been used to determine the heating power of a plasma electrolysis (the Ohmori-Mizuno experiment). We confirm that in this experiment, the heat output from electrolysis is greater than the electrical power input. The excess energy increases as the electrolysis voltage is increased from 200 up to 350 V (400 V input). The excess energy may be as high as 120 W. (author)

  14. Experimental and Numerical Study of the Evaporation of Water at Low Pressures.

    Science.gov (United States)

    Kazemi, Mohammad Amin; Nobes, David S; Elliott, Janet A W

    2017-05-09

    Although evaporation is considered to be a surface phenomenon, the rate of molecular transport across a liquid-vapor boundary is strongly dependent on the coupled fluid dynamics and heat transfer in the bulk fluids. Recent experimental thermocouple measurements of the temperature field near the interface of evaporating water into its vapor have begun to show the role of heat transfer in evaporation. However, the role of fluid dynamics has not been explored sufficiently. Here, we have developed a mathematical model to describe the coupling of the heat, mass, and momentum transfer in the fluids with the transport phenomena at the interface. The model was used to understand the experimentally obtained velocity field in the liquid and temperature profiles in the liquid and vapor, in evaporation from a concave meniscus for various vacuum pressures. By using the model, we have shown that an opposing buoyancy flow suppressed the thermocapillary flow in the liquid during evaporation at low pressures in our experiments. As such, in the absence of thermocapillary convection, the evaporation is controlled by heat transfer to the interface, and the predicted behavior of the system is independent of choosing between the existing theoretical expressions for evaporation flux. Furthermore, we investigated the temperature discontinuity at the interface and confirmed that the discontinuity strongly depends on the heat flux from the vapor side, which depends on the geometrical shape of the interface.

  15. Self-heating, gamma heating and heat loss effects on resistance temperature detector (RTD) accuracy

    International Nuclear Information System (INIS)

    Qian, T.; Hinds, H.W.; Tonner, P.

    1997-01-01

    Resistance temperature detectors (RTDs) are extensively used in CANDU nuclear power stations for measuring various process and equipment temperatures. Accuracy of measurement is an important performance parameter of RTDs and has great impact on the thermal power efficiency and safety of the plant. There are a number of factors that contribute to some extent to RTD measurement error. Self-heating, gamma heating and the heat-loss throughout conduction of the thermowell are three of these factors. The degree to which these three affect accuracy of RTDs used for the measurement of reactor inlet header temperature (RIHT) has been analyzed and is presented in this paper. (author)

  16. Heat And Mass Transfer Analysis of a Film Evaporative MEMS Tunable Array

    Science.gov (United States)

    O'Neill, William J.

    This thesis details the heat and mass transfer analysis of a MEMs microthruster designed to provide propulsive, attitude control and thermal control capabilities to a cubesat. This thruster is designed to function by retaining water as a propellant and applying resistive heating in order to increase the temperature of the liquid-vapor interface to either increase evaporation or induce boiling to regulate mass flow. The resulting vapor is then expanded out of a diverging nozzle to produce thrust. Because of the low operating pressure and small length scale of this thruster, unique forms of mass transfer analysis such as non-continuum gas flow were modeled using the Direct Simulation Monte Carlo method. Continuum fluid/thermal simulations using COMSOL Multiphysics have been applied to model heat and mass transfer in the solid and liquid portions of the thruster. The two methods were coupled through variables at the liquid-vapor interface and solved iteratively by the bisection method. The simulations presented in this thesis confirm the thermal valving concept. It is shown that when power is applied to the thruster there is a nearly linear increase in mass flow and thrust. Thus, mass flow can be regulated by regulating the applied power. This concept can also be used as a thermal control device for spacecraft.

  17. Heat loss prediction of a confined premixed jet flame using a conjugate heat transfer approach

    NARCIS (Netherlands)

    Gövert, S.; Mira, D.; Zavala-Ake, M.; Kok, J.B.W.; Vázquez, M.; Houzeaux, G.

    2017-01-01

    The presented work addresses the investigation of the heat loss of a confined turbulent jet flame in a lab-scale combustor using a conjugate-heat transfer approach and large-eddy simulation. The analysis includes the assessment of the principal mechanisms of heat transfer in this combustion chamber:

  18. Prediction of evaporation heat transfer coefficient based on gas-liquid two-phase annular flow regime in horizontal microfin tubes

    International Nuclear Information System (INIS)

    Wang Yueshe; Wang Yanling; Wang, G.-X.; Honda, Hiroshi

    2009-01-01

    A physical model of gas-liquid two-phase annular flow regime is presented for predicting the enhanced evaporation heat transfer characteristics in horizontal microfin tubes. The model is based on the equivalence of a periodical distortion of the disturbance wave in the substrate layer. Corresponding to the stratified flow model proposed previously by authors, the dimensionless quantity Fr 0 = G/[gd e ρ v (ρ l - ρ v )] 0.5 may be used as a measure for determining the applicability of the present theoretical model, which was used to restrict the transition boundary between the stratified-wavy flow and the annular/intermittent flows. Comparison of the prediction of the circumferential average heat transfer coefficient with available experimental data for four tubes and three refrigerants reveals that a good agreement is obtained or the trend is better than that of the previously developed stratified flow model for Fr 0 > 4.0 as long as the partial dry out of tube does not occur. Obviously, the developed annular model is applicable and reliable for evaporation in horizontal microfin tubes under the case of high heat flux and high mass flux.

  19. Prediction of evaporation heat transfer coefficient based on gas-liquid two-phase annular flow regime in horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yueshe, E-mail: wangys@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Yanling, Wang [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, G -X [Mechanical Engineering Department, The University of Akron, Akron, OH 44325-3903 (United States); Honda, Hiroshi [Kyushu University, 337 Kasuya-machi, Kasuya-gun, Kukuoka 811-2307 (Japan)

    2009-10-15

    A physical model of gas-liquid two-phase annular flow regime is presented for predicting the enhanced evaporation heat transfer characteristics in horizontal microfin tubes. The model is based on the equivalence of a periodical distortion of the disturbance wave in the substrate layer. Corresponding to the stratified flow model proposed previously by authors, the dimensionless quantity Fr{sub 0} = G/[gd{sub e}{rho}{sub v}({rho}{sub l} - {rho}{sub v})]{sup 0.5} may be used as a measure for determining the applicability of the present theoretical model, which was used to restrict the transition boundary between the stratified-wavy flow and the annular/intermittent flows. Comparison of the prediction of the circumferential average heat transfer coefficient with available experimental data for four tubes and three refrigerants reveals that a good agreement is obtained or the trend is better than that of the previously developed stratified flow model for Fr{sub 0} > 4.0 as long as the partial dry out of tube does not occur. Obviously, the developed annular model is applicable and reliable for evaporation in horizontal microfin tubes under the case of high heat flux and high mass flux.

  20. Falling film evaporation on a tube bundle with plain and enhanced tubes

    International Nuclear Information System (INIS)

    Habert, M.

    2009-04-01

    The complexities of two-phase flow and evaporation on a tube bundle present important problems in the design of heat exchangers and the understanding of the physical phenomena taking place. The development of structured surfaces to enhance boiling heat transfer and thus reduce the size of evaporators adds another level of complexity to the modeling of such heat exchangers. Horizontal falling film evaporators have the potential to be widely used in large refrigeration systems and heat pumps, in the petrochemical industry and for sea water desalination units, but there is a need to improve the understanding of falling film evaporation mechanisms to provide accurate thermal design methods. The characterization of the effect of enhanced surfaces on the boiling phenomena occurring in falling film evaporators is thus expected to increase and optimize the performance of a tube bundle. In this work, the existing LTCM falling film facility was modified and instrumented to perform falling film evaporation measurements on single tube row and a small tube bundle. Four types of tubes were tested including: a plain tube, an enhanced condensing tube (Gewa-C+LW) and two enhanced boiling tubes (Turbo-EDE2 and Gewa-B4) to extend the existing database. The current investigation includes results for two refrigerants, R134a and R236fa, at a saturation temperature of T sat = 5 °C, liquid film Reynolds numbers ranging from 0 to 3000, at heat fluxes between 20 and 60 kW/m² in pool boiling and falling film configurations. Measurements of the local heat transfer coefficient were obtained and utilized to improve the current prediction methods. Finally, the understanding of the physical phenomena governing the falling film evaporation of liquid refrigerants has been improved. Furthermore, a method for predicting the onset of dry patch formation has been developed and a local heat transfer prediction method for falling film evaporation based on a large experimental database has been proposed

  1. Evaporation of Sunscreen Films: How the UV Protection Properties Change.

    Science.gov (United States)

    Binks, Bernard P; Brown, Jonathan; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-06-01

    We have investigated the evaporation of thin sunscreen films and how the light absorption and the derived sun protection factor (SPF) change. For films consisting of solutions of common UV filters in propylene glycol (PG) as solvent, we show how evaporation generally causes three effects. First, the film area can decrease by dewetting leading to a transient increase in the average film thickness. Second, the film thins by evaporative loss of the solvent. Third, precipitation of the UV filter occurs when solvent loss causes the solubility limit to be reached. These evaporation-induced changes cause the UV absorbance of the film to decrease with resultant loss of SPF over the time scale of the evaporation. We derive an approximate model which accounts semiquantitatively for the variation of SPF with evaporation. Experimental results for solutions of different UV filters on quartz, different skin mimicking substrates, films with added nanoparticles, films with an added polymer and films with fast-evaporating decane as solvent (instead of slow evaporating PG) are discussed and compared with model calculations. Addition of either nanoparticles or polymer suppress film dewetting. Overall, it is hoped that the understanding gained about the mechanisms whereby film evaporation affects the SPF will provide useful guidance for the formulation of more effective sunscreens.

  2. Inspection of heat transfer tubes after mock-up tests of miniaturized apparatus for the acid recovery evaporator. Contract research

    International Nuclear Information System (INIS)

    Hamada, Shozo; Fukaya, Kiyoshi; Kato, Chiaki; Yanagihara, Takao; Doi, Masamitu; Kiuchi, Kiyoshi

    2001-10-01

    The demonstration test for the acid recovery evaporator and the dissolver used in the major equipment of Rokkasho Reprocessing Plant (RRP), has been carried out. The mock-up miniature equipment has been employed to it. This test had been performed from April in 1998. The total time of demonstration test using the mock-up equipment is about two and half years, which corresponds to about 20,000 hours. After that, four of the seven heat transfer tubes used in the evaporator were drawn out and the corrosion level and the mechanical properties were evaluated for one of them. As a result, intergranular corrosion was recognized in the inner surface of the heat transfer tube and the corrosion depth at the grain boundary was statistically shown to be about one grain from the inner surface. Further, no change in mechanical properties was observed and growth of intergranular cracks in the inner surface of the specimen was found after flattering test. (author)

  3. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    International Nuclear Information System (INIS)

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of 4 He adsorbed on metallic films. In contrast to measurements of 4 He adsorbed on all other insulating substrates, we have shown that 4 He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, 4 He adsorbed on sapphire and on Ag films and H 2 adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs

  4. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  5. Experimental and numerical analysis of convective heat losses from spherical cavity receiver of solar concentrator

    Directory of Open Access Journals (Sweden)

    Shewale Vinod C.

    2017-01-01

    Full Text Available Spherical cavity receiver of solar concentrator is made up of Cu tubing material having cavity diameter 385 mm to analyze the different heat losses such as conduction, convection and radiation. As the convection loss plays major role in heat loss analysis of cavity receiver, the experimental analysis is carried out to study convective heat loss for the temperature range of 55-75°C at 0°, 15°, 30°, 45°, 60°, and 90° inclination angle of downward facing cavity receiver. The numerical analysis is carried out to study convective heat loss for the low temperature range (55-75°C as well as high temperature range (150-300 °C for no wind condition only. The experimental set-up mainly consists of spherical cavity receiver which is insulated with glass wool insulation to reduce the heat losses from outside surface. The numerical analysis is carried out by using CFD software and the results are compared with the experimental results and found good agreement. The result shows that the convective loss increases with decrease in cavity inclination angle and decreases with decrease in mean cavity receiver temperature. The maximum losses are obtained at 0° inclination angle and the minimum losses are obtained at 90° inclination angle of cavity due to increase in stagnation zone in to the cavity from 0° to 90° inclination. The Nusselt number correlation is developed for the low temperature range 55-75°C based on the experimental data. The analysis is also carried out to study the effect of wind speed and wind direction on convective heat losses. The convective heat losses are studied for two wind speeds (3 m/s and 5 m/s and four wind directions [α is 0° (Side-on wind, 30°, 60°, and 90° (head-on wind]. It is found that the convective heat losses for both wind speed are higher than the losses obtained by no wind test. The highest heat losses are found for wind direction α is 60° with respect to receiver stand and lowest heat losses are found

  6. Measurement of grassland evaporation using a surface-layer ...

    African Journals Online (AJOL)

    Measurement of grassland evaporation using a surface-layer scintillometer. ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... of soil heat flux and net irradiance, evaporation rates were calculated as a residual of the ...

  7. Heat transfer during phase change. Evaporation. Application to cooling towers

    International Nuclear Information System (INIS)

    Merigoux, J.

    1973-01-01

    Evaporation near a water sheet, without convection, is considered. The displacement of water molecules in the gaseous phase, due to concentration gradients, is especially studied. This displacement governs the development of evaporation. The calculation is made to derive the velocity of water evaporation as a function of the partial pressure of the surrounding air, the temperature and physical properties of the air and steam. Diffusion laws are used. The calculation is applied to cooling towers, according to Merkel theory [fr

  8. Effects of synthetic oil in a compression refrigeration system using R410A. Part II: quality of heat transfer and pressure losses within the heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Lottin, O.; Guillemet, P. [Ecole Polytechnique de l' Universite de Nantes (France). Laboratoire de Thermocinetique; Lebreton, J-M. [Electricite de France, Moret sur Loing (France)

    2003-11-01

    The consequences of the oil rejected by the compressor of a vapour-compression refrigeration system on the operation of the evaporator and condenser are analysed. The modelled prototype uses the mixture of HFC R410A and a synthetic polyolester (POE) oil. The rise of the amount of lubricant circulating in the system leads to a progressive change in the behaviour of the mixture of refrigerant and oil that, for the higher oil mass fraction, evolves like a zeotropic mixture. One also observes that the presence of lubricant is generally associated with a fall of the performances of the heat exchangers, except however in the evaporator where an optimum is observed when the quantity of oil is equal to 0.1% of the total mass of the mixture. Some conclusions are drawn about the choice of correlations for the calculation of the refrigerant side heat transfer coefficient in a plate evaporator. (author)

  9. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  10. Evaporator bulb

    International Nuclear Information System (INIS)

    Stoll, W.

    1977-01-01

    In order to prevent the hazard of a possible excursion in an evaporator bulb for radioactive liquids there is provided in the bottom of the vessel a recess filled with a neutron-absorbing and moderating material. The bottom drain pipe is coming out sideways and connected with a heated pipe feeding above into the vessel tangentially. (TK) [de

  11. Buoyancy driven flow in a hot water tank due to standby heat loss

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    Results of experimental and numerical investigations of thermal behavior in a vertical cylindrical hot water tank due to standby heat loss of the tank are presented. The effect of standby heat loss on temperature distribution in the tank is investigated experimentally on a slim 150l tank...... show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow...... with a height to diameter ratio of 5. A tank with uniform temperatures and with thermal stratification is studied. A detailed computational fluid dynamics (CFD) model of the tank is developed to calculate the natural convection flow in the tank. The distribution of the heat loss coefficient for the different...

  12. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers

    Science.gov (United States)

    Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-01-01

    This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems. PMID:26606898

  13. Evaporation from Lake Mead, Nevada and Arizona, March 2010 through February 2012

    Science.gov (United States)

    Moreo, Michael T.; Swancar, Amy

    2013-01-01

    Evaporation from Lake Mead was measured using the eddy-covariance method for the 2-year period starting March 2010 and ending February 2012. When corrected for energy imbalances, annual eddy-covariance evaporation was 2,074 and 1,881 millimeters (81.65 and 74.07 inches), within the range of previous estimates. There was a 9-percent decrease in the evaporation rate and a 10-percent increase in the lake surface area during the second year of the study compared to the first. These offsetting factors resulted in a nearly identical 720 million cubic meters (584,000 acre feet) evaporation volume for both years. Monthly evaporation rates were best correlated with wind speed, vapor pressure difference, and atmospheric stability. Differences between individual monthly evaporation and mean monthly evaporation were as much as 20 percent. Net radiation provided most of the energy available for evaporative processes; however, advected heat from the Colorado River was an important energy source during the second year of the study. Peak evaporation lagged peak net radiation by 2 months because a larger proportion of the net radiation that reaches the lake goes to heating up the water column during the spring and summer months. As most of this stored energy is released, higher evaporation rates are sustained during fall months even though net radiation declines. The release of stored heat also fueled nighttime evaporation, which accounted for 37 percent of total evaporation. The annual energy-balance ratio was 0.90 on average and varied only 0.01 between the 2 years, thus implying that 90 percent of estimated available energy was accounted for by turbulent energy measured using the eddy-covariance method. More than 90 percent of the turbulent-flux source area represented the open-water surface, and 94 percent of 30-minute turbulent-flux measurements originated from wind directions where the fetch ranged from 2,000 to 16,000 meters. Evaporation uncertainties were estimated to be 5

  14. Film flow analysis for a vertical evaporating tube with inner evaporation and outer condensation

    International Nuclear Information System (INIS)

    Park, Il Seouk

    2008-01-01

    A numerical study for the flow, heat and mass transfer characteristics of the evaporating tube with the films flowing down on both the inside and outside tube walls has been carried out. The condensation occurs along the outside wall while the evaporation occurs at the free surface of the inside film. The transport equations for momentum and energy are parabolized by the boundary-layer approximation and solved by using the marching technique. The calculation domain of 2 film flow regions (evaporating and condensation films at the inside and outside tube wall respectively) and tube wall is solved simultaneously. The coupling technique for the problem with the 3 different regions and the 2 interfaces of them has been developed to calculated the temperature field. The velocity and temperature fields and the amount of the condensed and evaporated mass as well as the position where the evaporating film is completely dried out are successfully predicted for various inside pressures and inside film inlet flow rates

  15. Heat Loss Measurements in Buildings Utilizing a U-value Meter

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    Heating of buildings in Denmark accounts for approximately 40% of the entire national energy consumption. For this reason, a reduction of heat losses from building envelopes are of great importance in order to reach the Bologna CO2 emission reduction targets. Upgrading of the energy performance...... of buildings is a topic of huge global interest these years. Not only heating in the temperate and arctic regions are important, but also air conditioning and mechanical ventilation in the tropical countries contribute to an enormous energy consumption and corresponding CO2 emission. In order to establish...... the best basis for upgrading the energy performance, it is important to measure the heat losses at different locations on a building facade, in order to optimize the energy performance. The author has invented a U-value meter, enabling measurements of heat transfer coefficients. The meter has been used...

  16. Heat stress causes substantial labour productivity loss in Australia

    Science.gov (United States)

    Zander, Kerstin K.; Botzen, Wouter J. W.; Oppermann, Elspeth; Kjellstrom, Tord; Garnett, Stephen T.

    2015-07-01

    Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11-27% by 2080 in hot regions such as Asia and the Caribbean, and globally by up to 20% in hot months by 2050. Using an approach derived from health economics, we describe self-reported estimates of work absenteeism and reductions in work performance caused by heat in Australia during 2013/2014. We found that the annual costs were US$655 per person across a representative sample of 1,726 employed Australians. This represents an annual economic burden of around US$6.2 billion (95% CI: 5.2-7.3 billion) for the Australian workforce. This amounts to 0.33 to 0.47% of Australia’s GDP. Although this was a period when many Australians experienced what is at present considered exceptional heat, our results suggest that adaptation measures to reduce heat effects should be adopted widely if severe economic impacts from labour productivity loss are to be avoided if heat waves become as frequent as predicted.

  17. Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization

    KAUST Repository

    Tay-Wo-Chong, Luis; Zellhuber, Mathieu; Komarek, Thomas; Im, Hong G.; Polifke, Wolfgang

    2015-01-01

    relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability

  18. The evaluation of a small capacity shell and tube ammonia evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O.; Hernandez, J.I.; Best y Brown, R. [Centro de Investigacion en Energia de la UNAM, Morelos (Mexico); Gonzalez, J.C. [Universidad Autonoma de Campeche (Mexico). Programa CADETRAA

    2003-12-01

    The use of ammonia as refrigerant is widespread in vapour compression and ammonia/water absorption systems. Ammonia is not actually used in low capacity applications mainly because of the lack of economical available equipment. For this reason, the objective of this study is the numerical and experimental evaluation of a small capacity ammonia shell and tube evaporator with enhanced heat transfer surfaces. An experimental system to evaluate small capacity heat exchangers was developed. A shell and tube evaporator with external low fin tubes was successfully tested. The experimental uncertainty for the evaporator capacity has been estimated within {+-}5.5%. The experimental results were used to validate a heat exchanger numerical tool that predicts reasonably well the cooling capacity and load outlet temperatures. The methodology presented in this work can be applied to evaluate other refrigerants in similar shell and tube evaporators and to optimize the design of an evaporator for a specific application. (author)

  19. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  20. Performance investigation of a waste heat-driven 3-bed 2-evaporator adsorption cycle for cooling and desalination

    KAUST Repository

    Thu, Kyaw

    2016-06-13

    Environment-friendly adsorption (AD) cycles have gained much attention in cooling industry and its applicability has been extended to desalination recently. AD cycles are operational by low-temperature heat sources such as exhaust gas from processes or renewable energy with temperatures ranging from 55 °C to 85 °C. The cycle is capable of producing two useful effects, namely cooling power and high-grade potable water, simultaneously. This article discusses a low temperature, waste heat-powered adsorption (AD) cycle that produces cooling power at two temperature-levels for both dehumidification and sensible cooling while providing high-grade potable water. The cycle exploits faster kinetics for desorption process with one adsorber bed under regeneration mode while full utilization of the uptake capacity by adsorbent material is achieved employing two-stage adsorption via low-pressure and high-pressure evaporators. Type A++ silica gel with surface area of 863.6 m2/g and pore volume of 0.446 cm3/g is employed as adsorbent material. A comprehensive numerical model for such AD cycle is developed and the performance results are presented using assorted hot water and cooling water inlet temperatures for various cycle time arrangements. The cycle is analyzed in terms of key performance indicators i.e.; the specific cooling power (SCP), the coefficient of performance (COP) for both evaporators and the overall system, the specific daily water production (SDWP) and the performance ratio (PR). Further insights into the cycle performance are scrutinized using a Dühring diagram to depict the thermodynamic states of the processes as well as the vapor uptake behavior of adsorbent. In the proposed cycle, the adsorbent materials undergo near saturation conditions due to the pressurization effect from the high pressure evaporator while faster kinetics for desorption process is exploited, subsequently providing higher system COP, notably up to 0.82 at longer cycle time while the

  1. A New Microstructure Device for Efficient Evaporation of Liquids

    Science.gov (United States)

    Brandner, Juergen J.; Maikowske, Stefan; Vittoriosi, Alice

    Evaporation of liquids is of major interest for many topics in process engineering. One of these is chemical process engineering, where evaporation of liquids and generation of superheated steam is mandatory for numerous processes. Generally, this is performed by use of classical pool boiling and evaporation process equipment. Another possibility is creating mixtures of gases and liquids, combined with a heating of this haze. Both methods provide relatively limited performance. Due to the advantages of microstructure devices especially in chemical process engineering [1] the interest in microstructure evaporators and steam generators have been increased through the last decade. In this publication several microstructure devices used for evaporation and generation of steam as well as superheating will be described. Here, normally electrically powered devices containing micro channels as well as non-channel microstructures are used due to better controllability of the temperature level. Micro channel heat exchangers have been designed, manufactured and tested at the Institute for Micro Process Engineering of the Karlsruhe Institute of Technology for more than 15 years. Starting with the famous Karlsruhe Cube, a cross-flow micro channel heat exchanger of various dimensions, not only conventional heat transfer between liquids or gases have been theoretically and experimentally examined but also phase transition from liquids to gases (evaporation) and condensation of liquids. However, the results obtained with sealed microstructure devices have often been unsatisfying. Thus, to learn more onto the evaporation process itself, an electrically powered device for optical inspection of the microstructures and the processes inside has been designed and manufactured [2]. This was further optimized and improved for better controllability and reliable experiments [3]. Exchangeable metallic micro channel array foils as well as an optical inspection of the evaporation process by

  2. Analysis of decay heat removal following loss of RHR

    International Nuclear Information System (INIS)

    Naff, S.A.; Ward, L.W.

    1991-01-01

    Recent plant experience has included many events occurring during outages at pressurized water reactors. A recent example is the loss of residual heat removal system event that occurred March 20, 1990 at the Vogtle-1 plant following refueling. Plant conditions during outages differ markedly from those prevailing at normal full-power operation on which most past research has concentrated. Specifically, during outages the core power is low, the coolant system may be in a drained state with air or nitrogen present, and various reactor coolant system closures may be unsecured. With the residual heat removal system operating, the core decay heat is readily removed. However, if the residual heat removal system capability is lost and alternative heat removal means cannot be established, heat up of the coolant could lead to core coolant boil-off, fuel rod heat up, and core damage. A study was undertaken by the Nuclear Regulatory Commission to identify what information was needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that might be used, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain into the reactor coolant system, core water boil-off, and reflux condensation cooling processes

  3. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  4. Surface wettability and triple line behavior controlled by nano-coatings: effects on the sessile drop evaporation

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerôme

    2010-11-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop posed on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (SiOx, SiOc and CF), the wettability and the triple line dynamic of a sessile drop under natural phase change. The experiment consists in analyzing simultaneously the kinetics of evaporation, internal thermal motion and heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamic of the evaporative heat flux appears clearly different for a drop evaporating in pinned mode than in receding mode. Moreover, the kinetics of evaporation, the internal flow structure and the evaporative heat flux are drastically influenced by the wettability the substrate.

  5. A phylogenetic analysis of basal metabolism, total evaporative water loss, and life-history among foxes from desert and mesic regions

    NARCIS (Netherlands)

    Williams, JB; Munoz-Garcia, A; Ostrowski, S; Tieleman, BI

    We measured basal metabolic rate (BMR) and total evaporative water loss (TEWL) of species of foxes that exist on the Arabian Peninsula, Blanford's fox (Vulpes cana) and two subspecies of Red fox (Vulpes vulpes). Combining these data with that on other canids from the literature, we searched for

  6. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  7. Measuring and heat losses for district heating systems in detached house areas; Maet- och vaermefoerluster foer fjaerrvaermesystem i smaahusomraaden

    Energy Technology Data Exchange (ETDEWEB)

    Cederborg, Frederick; Nordgren, Ola [FVB Sverige ab, Vaesteraas (Sweden)

    2005-07-01

    Within 'low heat load' areas e.g. residential areas, with low energy consumption per individual customer, the resulting relationship between the heat loss and the energy sales is big. For these customers with low energy consumption, in particular during the summer season, concerns have been raised regarding the ability of the heat volume meters to register the true energy consumption. In order to determine the magnitude of the losses, the Swedish District Heating Association, has initiated a measuring project where measurements have been made in two separate residential areas with different system configurations and different temperature control programs. The measurements were performed from May 15, 2003 to September 23, 2004. The main objective for the project was to gather data and to analyse the magnitude of the total losses in the building systems. The relation between the heat losses and the measuring losses was also studied briefly. Two types of systems have been studied, on one hand a conventional district heating area with primary connected houses and on the other hand an area with secondary connected houses with PEX-pipes in Enkoeping. The heat and measuring losses at the area Munksundet in Enkoeping is 17 % at a 'load density' of 0,84. This value is somewhat lower than the accounted annual relative loss of 22-23 % stated in the report 'FVF 1997:11 Fjaerrvaerme till smaahus'. The results show that a secondary connected low temperature system with PEX-pipes is an interesting connection alternative for small houses. Also at the residential area Rotskaer in Skutskaer, the heat and measuring losses are lower than the accounted annual relative loss, about 24 % at a 'load density' of 0,49,which is to be compared with about 33 % annual relative loss according to the report 'FVF 1997:11'. Within this assignment there are difficulties to divide the measuring losses in short circuit flows and errors in the heat

  8. CAPSULE REPORT: EVAPORATION PROCESS

    Science.gov (United States)

    Evaporation has been an established technology in the metal finishing industry for many years. In this process, wastewaters containing reusable materials, such as copper, nickel, or chromium compounds are heated, producing a water vapor that is continuously removed and condensed....

  9. Simulation of the heat and mass transfer processes during the vacuum frying of potato chips

    Directory of Open Access Journals (Sweden)

    Ram Yamsaengsung

    2008-01-01

    Full Text Available A fundamental two-dimensional model to predict the heat and mass transfer that occur during the vacuum frying of potato chips was solved using the Finite Element toolbox in MATLAB 6.1. The simulation of the heat transfer process included the convection of heat from the surface to the product, the conduction of heat into the product, and a loss of heat using the heat source term representing evaporation. The mass transfer process was divided into two periods: (1 water loss and (2 oil absorption. The first scenario included a diffusion term and a source term. The source term represented the convection and evaporation of water from the product. For the second period, the diffusion term represented the gradual absorption of oil through capillary diffusion.From the simulation, a good agreement between the experimental data and the predicted values was obtained. From the heat transfer model, the rapid increase in temperature of the product toward the boiling point of water (at the associated pressure followed by its steady increase toward the temperature of the oil was validated. Furthermore, by separating the rate of moisture loss into two parts to represent the constant rate and falling rate period of drying, the model was able to predict an initial period of rapid moisture loss followed by a decreasing rate of moisture loss. The simulation also demonstrated the formation of the crust and the gradual movement of the crust inward. Finally, using two sets of diffusion coefficients that correlated to the two schemes of moisture loss, the model predicted the rapid flux of oil into the product during the constant drying stage, followed by a small amount of oil absorption into its interior once the crust had been established.

  10. The impact of surface chemistry on the performance of localized solar-driven evaporation system.

    Science.gov (United States)

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-09-04

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.

  11. Heat loss during carbon dioxide insufflation: comparison of a nebulization based humidification device with a humidification and heating system.

    Science.gov (United States)

    Noll, Eric; Schaeffer, Roland; Joshi, Girish; Diemunsch, Sophie; Koessler, Stefanie; Diemunsch, Pierre

    2012-12-01

    This study compared the heat loss observed with the use of MR860 AEA Humidifier™ system (Fisher & Paykel Healthcare, New Zealand), which humidifies and heats the insufflated CO(2), and the use of the AeronebPro™ device (Aerogen, Ireland), which humidifies but does not heat the insufflated CO(2). With institutional approval, 16 experiments were conducted in 4 pigs. Each animal, acting as its own control, was studied at 8-day intervals in randomized sequence with the following four conditions: (1) control (C) no pneumoperitoneum; (2) standard (S) insufflation with nonhumidified, nonheated CO(2); (3) Aeroneb™ (A): insufflation with humidified, nonheated CO(2); and (4) MR860 AEA humidifier™ (MR): insufflation with humidified and heated CO(2). The measured heat loss after 720L CO(2) insufflation during the 4 h was 1.03 ± 0.75 °C (mean ± SEM) in group C; 3.63 ± 0.31 °C in group S; 3.03 ± 0.39 °C in group A; and 1.98 ± 0.09 °C in group MR. The ANOVA showed a significant difference with time (p = 0.0001) and with the insufflation technique (p = 0.024). Heat loss in group C was less than in group S after 60 min (p = 0.03), less than in group A after 70 min (p = 0.03), and less than in group MR after 150 min (p = 0.03). The heat loss in group MR was less than in group S after 50 min (p = 0.04) and less than in group A after 70 min (p = 0.02). After 160 min, the heat loss in group S was greater than in group A (p = 0.03). As far as heat loss is concerned, for laparoscopic procedures of less than 60 min, there is no benefit of using any humidification with or without heating. However, for procedures greater than 60 min, use of heating along with humidification, is superior.

  12. A Multiple-Scale Analysis of Evaporation Induced Marangoni Convection

    KAUST Repository

    Hennessy, Matthew G.

    2013-04-23

    This paper considers the stability of thin liquid layers of binary mixtures of a volatile (solvent) species and a nonvolatile (polymer) species. Evaporation leads to a depletion of the solvent near the liquid surface. If surface tension increases for lower solvent concentrations, sufficiently strong compositional gradients can lead to Bénard-Marangoni-type convection that is similar to the kind which is observed in films that are heated from below. The onset of the instability is investigated by a linear stability analysis. Due to evaporation, the base state is time dependent, thus leading to a nonautonomous linearized system which impedes the use of normal modes. However, the time scale for the solvent loss due to evaporation is typically long compared to the diffusive time scale, so a systematic multiple scales expansion can be sought for a finite-dimensional approximation of the linearized problem. This is determined to leading and to next order. The corrections indicate that the validity of the expansion does not depend on the magnitude of the individual eigenvalues of the linear operator, but it requires these eigenvalues to be well separated. The approximations are applied to analyze experiments by Bassou and Rharbi with polystyrene/toluene mixtures [Langmuir, 25 (2009), pp. 624-632]. © 2013 Society for Industrial and Applied Mathematics.

  13. Evaporation-induced gas-phase flows at selective laser melting

    Science.gov (United States)

    Zhirnov, I.; Kotoban, D. V.; Gusarov, A. V.

    2018-02-01

    Selective laser melting is the method for 3D printing from metals. A solid part is built from powder layer-by-layer. A continuum-wave laser beam scans every powder layer to fuse powder. The process is studied with a high-speed CCD camera at the frame rate of 104 fps and the resolution up to 5 µm per pixel. Heat transfer and evaporation in the laser-interaction zone are numerically modeled. Droplets are ejected from the melt pool in the direction around the normal to the melt surface and the powder particles move in the horizontal plane toward the melt pool. A vapor jet is observed in the direction of the normal to the melt surface. The velocities of the droplets, the powder particles, and the jet flow and the mass loss due to evaporation are measured. The gas flow around the vapor jet is calculated by Landau's model of submerged jet. The measured velocities of vapor, droplets, and powder particles correlate with the calculated flow field. The obtained results show the importance of evaporation and the flow of the vapor and the ambient gas. These gas-dynamic phenomena can explain the formation of the denudated zones and the instability at high-energy input.

  14. A Multiple-Scale Analysis of Evaporation Induced Marangoni Convection

    KAUST Repository

    Hennessy, Matthew G.; Mü nch, Andreas

    2013-01-01

    This paper considers the stability of thin liquid layers of binary mixtures of a volatile (solvent) species and a nonvolatile (polymer) species. Evaporation leads to a depletion of the solvent near the liquid surface. If surface tension increases for lower solvent concentrations, sufficiently strong compositional gradients can lead to Bénard-Marangoni-type convection that is similar to the kind which is observed in films that are heated from below. The onset of the instability is investigated by a linear stability analysis. Due to evaporation, the base state is time dependent, thus leading to a nonautonomous linearized system which impedes the use of normal modes. However, the time scale for the solvent loss due to evaporation is typically long compared to the diffusive time scale, so a systematic multiple scales expansion can be sought for a finite-dimensional approximation of the linearized problem. This is determined to leading and to next order. The corrections indicate that the validity of the expansion does not depend on the magnitude of the individual eigenvalues of the linear operator, but it requires these eigenvalues to be well separated. The approximations are applied to analyze experiments by Bassou and Rharbi with polystyrene/toluene mixtures [Langmuir, 25 (2009), pp. 624-632]. © 2013 Society for Industrial and Applied Mathematics.

  15. Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment.

    Science.gov (United States)

    Wang, F; Annaheim, S; Morrissey, M; Rossi, R M

    2014-06-01

    Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing distance between the evaporation locations and the human skin. However, it is still unclear how evaporative cooling efficiency decreases as the moisture is transported from the skin to the clothing layer. In this study, we performed experiments with a sweating torso manikin to mimic three different phases of moisture absorption in one-layer tight-fitting sportswear. Clothing materials Coolmax(®) (CM; INVISTA, Wichita, Kansas, USA; 100%, profiled cross-section polyester fiber), merino wool (MW; 100%), sports wool (SW; 50% wool, 50% polyester), and cotton (CO; 100%) were selected for the study. The results demonstrated that, for the sportswear materials tested, the real evaporative cooling efficiency linearly decreases with the increasing ratio of moisture being transported away from skin surface to clothing layer (adjusted R(2) >0.97). In addition, clothing fabric thickness has a negative effect on the real evaporative cooling efficiency. Clothing CM and SW showed a good ability in maintaining evaporative cooling efficiency. In contrast, clothing MW made from thicker fabric had the worst performance in maintaining evaporative cooling efficiency. It is thus suggested that thin fabric materials such as CM and SW should be used to manufacture one-layer tight-fitting sportswear. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Effects of biochar addition on evaporation in the five typical Loess Plateau soils

    Science.gov (United States)

    Soil evaporation is the main route of soil moisture loss and often exceeds precipitation in the arid and semi-arid regions of the Loess Plateau. This study was conducted to determine whether biochar addition could reduce soil evaporation in drylands. We measured the evaporative loss in five typical ...

  17. Metabolic rate, evaporative water loss and thermoregulatory state in four species of bats in the Negev desert.

    Science.gov (United States)

    Muñoz-Garcia, Agustí; Larraín, Paloma; Ben-Hamo, Miriam; Cruz-Neto, Ariovaldo; Williams, Joseph B; Pinshow, Berry; Korine, Carmi

    2016-01-01

    Life in deserts is challenging for bats because of their relatively high energy and water requirements; nevertheless bats thrive in desert environments. We postulated that bats from desert environments have lower metabolic rates (MR) and total evaporative water loss (TEWL) than their mesic counterparts. To test this idea, we measured MR and TEWL of four species of bats, which inhabit the Negev desert in Israel, one species mainly restricted to hyper-arid deserts (Otonycteris hemprichii), two species from semi-desert areas (Eptesicus bottae and Plecotus christii), and one widespread species (Pipistrellus kuhlii). We also measured separately, in the same individuals, the two components of TEWL, respiratory water loss (RWL) and cutaneous evaporative water loss (CEWL), using a mask. In all the species, MR and TEWL were significantly reduced during torpor, the latter being a consequence of reductions in both RWL and CEWL. Then, we evaluated whether MR and TEWL in bats differ according to their geographic distributions, and whether those rates change with Ta and the use of torpor. We did not find significant differences in MR among species, but we found that TEWL was lowest in the species restricted to desert habitats, intermediate in the semi-desert dwelling species, and highest in the widespread species, perhaps a consequence of adaptation to life in deserts. Our results were supported by a subsequent analysis of data collected from the literature on rates of TEWL for 35 bat species from desert and mesic habitats. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Evaluation of external heat loss from a small-scale expander used in organic Rankine cycle

    International Nuclear Information System (INIS)

    Li Jing; Pei Gang; Li Yunzhu; Ji Jie

    2011-01-01

    With the scaling down of the Organic Rankine Cycle (ORC), the engine shaft power is not only determined by the enthalpy drop in the expansion process but also the external heat loss from the expander. Theoretical and experimental support in evaluating small-scale expander heat loss is rare. This paper presents a quantitative study on the convection, radiation, and conduction heat transfer from a kW-scale expander. A mathematical model is built and validated. The results show that the external radiative or convective heat loss coefficient was about 3.2 or 7.0 W/K.m 2 when the ORC operated around 100 o C. Radiative and convective heat loss coefficients increased as the expander operation temperature increased. Conductive heat loss due to the connection between the expander and the support accounted for a large proportion of the total heat loss. The fitting relationships between heat loss and mean temperature difference were established. It is suggested that low conductivity material be embodied in the support of expander. Mattress insulation for compact expander could be eliminated when the operation temperature is around 100 o C. - Highlights: → A close examination of external heat loss from a small expander is presented. → Theoretical analysis and experimental test were conducted. → The established formulas can be applied to other small ORC expanders. → The results are useful in further research of small-scale ORC.

  19. Modelling refrigerant distribution in microchannel evaporators

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2009-01-01

    of the refrigerant distribution is carried out for two channels in parallel and for two different cases. In the first case maldistribution of the inlet quality into the channels is considered, and in the second case a non-uniform airflow on the secondary side is considered. In both cases the total mixed superheat...... out of the evaporator is kept constant. It is shown that the cooling capacity of the evaporator is reduced significantly, both in the case of unevenly distributed inlet quality and for the case of non-uniform airflow on the outside of the channels.......The effects of refrigerant maldistribution in parallel evaporator channels on the heat exchanger performance are investigated numerically. For this purpose a 1D steady state model of refrigerant R134a evaporating in a microchannel tube is built and validated against other evaporator models. A study...

  20. 40 CFR 52.2285 - Control of evaporative losses from the filling of gasoline storage vessels in the Houston and San...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control of evaporative losses from the filling of gasoline storage vessels in the Houston and San Antonio areas. 52.2285 Section 52.2285... of gasoline storage vessels in the Houston and San Antonio areas. (a) Definitions: (1) Gasoline means...

  1. Contrasting suspended covers reveal the impact of an artificial monolayer on heat transfer processes at the interfacial boundary layer.

    Science.gov (United States)

    Pittaway, P; Martínez-Alvarez, V; Hancock, N

    2015-01-01

    The highly variable performance of artificial monolayers in reducing evaporation from water storages has been attributed to wind speed and wave turbulence. Other factors operating at the interfacial boundary layer have seldom been considered. In this paper, two physical shade covers differing in porosity and reflectivity were suspended over 10 m diameter water tanks to attenuate wind and wave turbulence. The monolayer octadecanol was applied to one of the covered tanks, and micrometeorological conditions above and below the covers were monitored to characterise diurnal variation in the energy balance. A high downward (air-to-water) convective heat flux developed under the black cover during the day, whereas diurnal variation in the heat flux under the more reflective, wind-permeable white cover was much less. Hourly air and water temperature profiles under the covers over 3 days when forced convection was minimal (low wind speed) were selected for analysis. Monolayer application reduced temperature gain in surface water under a downward convective heat flux, and conversely reduced temperature loss under an upward convective heat flux. This 'dual property' may explain why repeat application of an artificial monolayer to retard evaporative loss (reducing latent heat loss) does not inevitably increase water temperature.

  2. Simulation study on the operating characteristics of the heat pipe for combined evaporative cooling of computer room air-conditioning system

    International Nuclear Information System (INIS)

    Han, Zongwei; Zhang, Yanqing; Meng, Xin; Liu, Qiankun; Li, Weiliang; Han, Yu; Zhang, Yanhong

    2016-01-01

    In order to improve the energy efficiency of air conditioning systems in computer rooms, this paper proposed a new concept of integrating evaporative cooling air-conditioning system with heat pipes. Based on a computer room in Shenyang, China, a mathematical model was built to perform transient simulations of the new system. The annual dynamical performance of the new system was then compared with a typical conventional computer room air-conditioning system. The result showed that the new integrated air-conditioning system had better energy efficiency, i.e. 31.31% reduction in energy consumption and 29.49% increase in COP (coefficient of performance), due to the adoption of evaporative condenser and the separate type heat pipe technology. Further study also revealed that the incorporated heat pipes enabled a 36.88% of decrease in the operation duration of the vapor compressor, and a 53.86% of reduction for the activation times of the compressor, which could lead to a longer lifespan of the compressor. The new integrated evaporative cooling air-conditioning system was also tested in different climate regions. It showed that the energy saving of the new system was greatly affected by climate, and it had the best effect in cold and dry regions like Shenyang with up to 31.31% energy saving. In some warm and humid climate regions like Guangzhou, the energy saving could be achieved up to 13.66%. - Highlights: • A novel combined air-conditioning system of computer room is constructed. • The performance of the system and conventional system is simulated and compared. • The applicability of the system in different climate regions is investigated.

  3. Repeatability and individual correlates of basal metabolic rate and total evaporative water loss in birds : A case study in European stonechats

    NARCIS (Netherlands)

    Versteegh, Maaike A.; Heim, Barbara; Dingemanse, Niels J.; Tieleman, B. Irene

    Basal metabolic rate (BMR) and total evaporative water loss (TEWL) are thought to have evolved in conjunction with life history traits and are often assumed to be characteristic features of an animal. Physiological traits can show large intraindividual variation at short and long timescales, yet

  4. Experimentally-determined external heat loss of automotive gas turbine engine

    Science.gov (United States)

    Meng, P. R.; Wulf, R. F.

    1975-01-01

    An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power.

  5. The TX-model - a quantitative heat loss analysis of district heating pipes by means of IR surface temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zinki, Heimo [ZW Energiteknik, Nykoeping (Sweden)

    1996-11-01

    The aim of this study was to investigate the possibility of analysing the temperature profile at the ground surface above buried district heating pipes in such a way that would enable the quantitative determination of heat loss from the pair of pipes. In practical applications, it is supposed that this temperature profile is generated by means of advanced IR-thermography. For this purpose, the principle of the TX - model has been developed, based on the fact that the heat losses from pipes buried in the ground have a temperature signature on the ground surface. Qualitative analysis of this temperature signature is very well known and in practical use for detecting leaks from pipes. These techniques primarily make use of relative changes of the temperature pattern along the pipe. In the quantitative heat loss analysis, however, it is presumed that the temperature profile across the pipes is related to the pipe heat loss per unit length. The basic idea is that the integral of the temperature profile perpendicular to the pipe, called TX, is a function of the heat loss, but is also affected by other parameters such as burial depth, heat diffusivity, wind, precipitation and so on. In order to analyse the parameters influencing the TX- factor, a simulation model for the energy balance at the ground surface has been developed. This model includes the heat flow from the pipe to the surface and the heat exchange at the surface with the environment due to convection, latent heat change, solar and long wave radiation. The simulation gives the surprising result that the TX factor is by and large unaffected during the course of a day even when the sun is shining, as long as other climate conditions are relatively stable (low wind, no rain, no shadows). The results from the simulations were verified at different sites in Denmark, Finland, Sweden and USA through a co-operative research program organised and partially financed by the IEA District Heating Programme, Task III, and

  6. Energy consumption for sugar manufacturing. Part I: Evaporation versus reverse osmosis

    International Nuclear Information System (INIS)

    Madaeni, S.S.; Zereshki, S.

    2010-01-01

    Removing water from various feeds is usually carried out using evaporation process especially in food industry. Due to the high latent heat of water, this unit operation results in consumption of unacceptable amount of energy. Finding low energy consuming processes which could be replaced with this process is still a challenge. The processes with no phase inversion may be considered for concentration purposes with reasonable energy consumption in comparison with the other various separation procedures. Reverse osmosis and most of the other membrane technologies are separation techniques without any change in the phase and therefore consume low amount of energy. Concentrating the sugar thin juice in the classical sugar manufacturing procedure is carried out using conventional evaporation. Reverse osmosis membranes may be used as a pre-concentration step to partially separate water from the sugar thin juice in combination with this part of the plant. Final concentration and thick juice preparation for crystallization may be carried out in the evaporation unit. In this study, membranes were employed for sugar thin juice concentration using a two-stage reverse osmosis process in two different arrangements. The energy consumption was calculated and compared for conventional evaporation versus reverse osmosis combined with evaporation. The results indicate that the employment of reverse osmosis membranes for concentrating the sugar thin juice leads to sensibly lower energy requirements. Furthermore, there is no thermal loss of sugar in the membrane process.

  7. Study on performance prediction and energy saving of indirect evaporative cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Yeon; Kim, Tae Ho; Kim, Myung Ho [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-15

    The purpose of this study is to predict the performance of an indirect evaporative cooling system, and to evaluate its energy saving effect when applied to the exhaust heat recovery system of an air-handling unit. We derive the performance correlation of the indirect evaporative cooling system using a plastic heat exchanger based on experimental data obtained in various conditions. We predict the variations in the performance of the system for various return and outdoor air conditioning systems using the obtained correlation. We also analyze the energy saving of the system realized by the exhaust heat recovery using the typical meteorological data for several cities in Korea. The average utilization rate of the sensible cooling system for the exhaust heat recovery is 44.3% during summer, while that of the evaporative cooling system is 96.7%. The energy saving of the evaporative cooling system is much higher compared to the sensible cooling system, and was about 3.89 times the value obtained in Seoul.

  8. Experimental study of falling film evaporation in large scale rectangular channel

    International Nuclear Information System (INIS)

    Huang, X.G.; Yang, Y.H.; Hu, P.

    2015-01-01

    Highlights: • This paper studies the falling film evaporation in large scale rectangular channel experimentally. • The effects of air flow rate, film temperature and film flow rate on falling film evaporation are analyzed. • Increasing the air flow rate is considered as an efficient method to enhance the evaporation rate. • A correlation including the wave effect for falling film evaporation is derived based on heat and mass transfer analogy. - Abstract: The falling film evaporation in a large scale rectangular channel is experimentally studied in this paper for the design and improvement of passive containment cooling system. The evaporation mass transfer coefficient h D is obtained by the evaporation rate and vapor partial pressure difference of film surface and air bulk. The experimental results indicate that increasing of air flow rate appears to enhance h D , while the film temperature and film flow rate have little effect on h D . Since the wave effect on evaporation is noticed in experiment, the evaporation mass transfer correlation including the wave effect is developed on the basis of heat and mass transfer analogy and experimental data

  9. Experimental Study of the Cooling of Electrical Components Using Water Film Evaporation

    Directory of Open Access Journals (Sweden)

    S. Harmand

    2012-01-01

    Full Text Available Heat and mass transfer, which occur in the evaporation of a falling film of water, are studied experimentally. This evaporation allows the dissipation of the heat flux produced by twelve resistors, which simulate electrical components on the back side of an aluminium plate. On the front side of the plate, a falling film of water flows by the action of gravity. An inverse heat conduction model, associated with a spatial regularisation, was developed and produces the local heat fluxes on the plate using the measured temperatures. The efficiency of this evaporative process has been studied with respect to several parameters: imposed heat flux, inlet mass flow rate, and geometry. A comparison of the latent and sensible fluxes used to dissipate the imposed heat flux was studied in the case of a plexiglass sheet in front of the falling film at different distances from the aluminium plate.

  10. Effect of refrigeration lubricants on the heat transfer performance in the microfin tube evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K N; Tae, S J [Sung Kyun Kwan University, Seoul (Korea)

    1999-01-01

    The present study experimentally investigated the defect of refrigeration lubricant on the heat transfer performance in the straight sections and U-bend of a microfin tube evaporator by using R-22/mineral oil and R-407C/POE oil. The apparatus consisted of test section with U-bend, preheater, condenser, oil injection and sampling devices, magnetic pump, mass flow meter etc. The experimental parameters were oil concentration of 0 to 5 wt%, inlet quality of 0.1 to 0.5, mass flux of 219 and 400 kg/m{sup 2}s and heat flux of 10 and 20 kw/m{sup 2}. The effects of parameters on the heat transfer coefficients were large in the order of inlet quality, mass flux and heat flux as oil concentration got increased. As oil concentration was increased, heat transfer coefficients were continuously decreased for R-22 and increased by 3% up to the concentration of 1% and then decreased for R-407C under the condition of large inlet quality, and small mass flux and heat flux. But, the heat transfer coefficients were increased up to the opposite conditions. The variation of enhancement factors for R-407C refrigerants under the opposite conditions. The variation of enhancement factors for R-407C was under 50% of that for R-22 and the variation with respect to the positions in the test section was small. The pressure drops were increased for both R-22 and R-407C refrigerants as oil concentration was increased. The pressure drops for R-407C were smaller by the maximum of 18% than those for R-22. 12 refs., 1 tab., 14 figs.

  11. Heat transfer characteristics of the two-phase closed thermosyphon (wickless heat pipe)

    International Nuclear Information System (INIS)

    Andros, F.E.; Florschuetz, L.W.

    1982-01-01

    Steady-state heat transfer characteristics and heat transfer limits (dry-out) for a vertical stainless steel tubular two-phase closed thermosyphon with Freon-113 working fluid are reported as a function of certain geometric parameters and liquid fill quantity. Condenser section heat transfer characteristics agreed reasonably well with existing laminar film condensation correlations and were found to be independent of the evaporator section, except for larger liquid fills. Evaporator characteristics were quite complex and appeared, under some conditions, to be coupled to condenser characteristics through effects of system pressure and/or surface wave as present on the descending condensate film. A laminar thin film evaporation model was found to give reasonable agreement with local evaporator temperature measurements in those regions of the evaporator where a continuous film apparently persisted. The measured heat transfer characteristics are interpreted relative to an earlier investigation by the authors in which flow characteristics in a similar device were visually and photographically observed. 10 references

  12. Molecular characterization and volatility evolution of α-pinene ozonolysis SOA during isothermal evaporations

    Science.gov (United States)

    D'Ambro, E.; Schobesberger, S.; Lopez-Hilfiker, F.; Shilling, J. E.; Lee, B. H.; Thornton, J. A.

    2017-12-01

    α-Pinene (C10H16), the most abundantly emitted monoterpene, is a large contributor to global biogenic secondary organic aerosol (SOA) budgets due to its high SOA yields upon oxidation. We probe the volatility and evaporation behavior upon dilution of α-pinene SOA to further our understanding of the nascent volatility distribution, viscosity, and how these evolve in time absent photochemical oxidation. We present molecular composition measurements of the gas and particle phases of α-pinene ozonolysis SOA formed at 0% and 50% relative humidity (RH), followed by room-temperature evaporation in ultra-high purity N2 humidified to 20-90% RH. Experiments were performed in the Pacific Northwest National Laboratory 10.6 m3 and the University of Washington 0.7 m3 environmental chambers utilizing a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time of flight chemical ionization mass spectrometer utilizing iodide adduct ionization. We present novel insights into the total mass that evaporates as a function of time from 10 min to 24 hours without heating, the molecular speciation of the evaporate, as well as the effective volatility and composition of the SOA mass remaining. Consistent with previous studies, we find two stages of evaporation: a rapid loss of a large portion of the total signal over the course of ≤3 hours, followed by a stage of much slower evaporation over the proceeding 21 hours. Varying the RH of formation effects evaporation rate on timescales ≤3 hours, however the mass fraction remaining after 24 hours converges to 30-50% under all formation and evaporation RHs. We simulate the evaporation behavior and remaining fractions desorbed via temperature programmed thermal desorption to derive effective saturation vapor concentrations, mass accommodation coefficients, and rates of chemical evolution producing both higher and lower volatility components during the evaporation time period.

  13. Leader completes installation of process water evaporation system

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-11-01

    The installation of a patent-pending evaporation system at a facility in northeast British Columbia was discussed. The system captures excess waste exhaust heat from natural gas-fired compressor engines and is used to evaporate process water. The disposal of process water is a major cost in the production of natural gas and is usually hauled and disposed at water disposal wells located off-site. The cost to truck and dispose of the water at the facility was estimated at between $30 to $40 per cubic metre. The evaporation system can evaporate 4 to 8 cubic metres of process water every 24 hours and has an estimated useful life of 20 years. The evaporator relies on heat that would otherwise be expelled directly into the atmosphere, and the systems are expected to provide substantial savings. A wide-ranging manufacturing and marketing strategy was expected to commence by the end of 2005. With rising energy prices, operators of facilities are seeking more efficient ways of managing energy needs. The system was created by Leader Energy Services Ltd., a company that provides essential field services for oil and gas well stimulation in Alberta.

  14. The evaporation of oil spills: prediction of equations using distillation data

    International Nuclear Information System (INIS)

    Fingas, M.

    1997-01-01

    The evaporative characteristics of 19 different crude oils and petroleum products were studied . Best-fit equation parameters were determined for percentage loss by time and absolute weight loss. Except in three cases, all oils were found to fit logarithmic curves. The equation constants were correlated with oil distillation data. Relationships enabling calculation of evaporation equations directly from distillation data have been developed. The high correlation of distillation data and evaporation data suggests that the two processes are analogous and that evaporation, like distillation, is largely governed by intrinsic oil properties rather than environmental properties such as boundary-layer factors

  15. Distribution of Evaporating CO2 in Parallel Microchannels

    DEFF Research Database (Denmark)

    Brix, Wiebke; Elmegaard, Brian

    2008-01-01

    The impact on the heat exchanger performance due to maldistribution of evaporating CO2 in parallel channels is investigated numerically. A 1D steady state simulation model of a microchannel evaporator is built using correlations from the literature to calculate frictional pressure drop and heat...... transfer coefficients. For two channels in parallel two different cases of maldistribution are studied. Firstly, the impact of a non-uniform air flow is considered, and secondly the impact of maldistribution of the two phases in the inlet manifold is investigated. The results for both cases are compared...

  16. Interactions of bluff-body obstacles with turbulent airflows affecting evaporative fluxes from porous surfaces

    Science.gov (United States)

    Haghighi, Erfan; Or, Dani

    2015-11-01

    Bluff-body obstacles interacting with turbulent airflows are common in many natural and engineering applications (from desert pavement and shrubs over natural surfaces to cylindrical elements in compact heat exchangers). Even with obstacles of simple geometry, their interactions within turbulent airflows result in a complex and unsteady flow field that affects surface drag partitioning and transport of scalars from adjacent evaporating surfaces. Observations of spatio-temporal thermal patterns on evaporating porous surfaces adjacent to bluff-body obstacles depict well-defined and persistent zonation of evaporation rates that were used to construct a simple mechanistic model for surface-turbulence interactions. Results from evaporative drying of sand surfaces with isolated cylindrical elements (bluff bodies) subjected to constant turbulent airflows were in good agreement with model predictions for localized exchange rates. Experimental and theoretical results show persistent enhancement of evaporative fluxes from bluff-rough surfaces relative to smooth flat surfaces under similar conditions. The enhancement is attributed to formation of vortices that induce a thinner boundary layer over part of the interacting surface footprint. For a practical range of air velocities (0.5-4.0 m/s), low-aspect ratio cylindrical bluff elements placed on evaporating sand surfaces enhanced evaporative mass losses (relative to a flat surface) by up to 300% for high density of elements and high wind velocity, similar to observations reported in the literature. Concepts from drag partitioning were used to generalize the model and upscale predictions to evaporation from surfaces with multiple obstacles for potential applications to natural bluff-rough surfaces.

  17. Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley-Taylor, and Penman estimates

    Science.gov (United States)

    Metzger, Jutta; Nied, Manuela; Corsmeier, Ulrich; Kleffmann, Jörg; Kottmeier, Christoph

    2018-02-01

    The Dead Sea is a terminal lake, located in an arid environment. Evaporation is the key component of the Dead Sea water budget and accounts for the main loss of water. So far, lake evaporation has been determined by indirect methods only and not measured directly. Consequently, the governing factors of evaporation are unknown. For the first time, long-term eddy covariance measurements were performed at the western Dead Sea shore for a period of 1 year by implementing a new concept for onshore lake evaporation measurements. To account for lake evaporation during offshore wind conditions, a robust and reliable multiple regression model was developed using the identified governing factors wind velocity and water vapour pressure deficit. An overall regression coefficient of 0.8 is achieved. The measurements show that the diurnal evaporation cycle is governed by three local wind systems: a lake breeze during daytime, strong downslope winds in the evening, and strong northerly along-valley flows during the night. After sunset, the strong winds cause half-hourly evaporation rates which are up to 100 % higher than during daytime. The median daily evaporation is 4.3 mm d-1 in July and 1.1 mm d-1 in December. The annual evaporation of the water surface at the measurement location was 994±88 mm a-1 from March 2014 until March 2015. Furthermore, the performance of indirect evaporation approaches was tested and compared to the measurements. The aerodynamic approach is applicable for sub-daily and multi-day calculations and attains correlation coefficients between 0.85 and 0.99. For the application of the Bowen ratio energy budget method and the Priestley-Taylor method, measurements of the heat storage term are inevitable on timescales up to 1 month. Otherwise strong seasonal biases occur. The Penman equation was adapted to calculate realistic evaporation, by using an empirically gained linear function for the heat storage term, achieving correlation coefficients between 0

  18. Out of the frying pan into the air--emersion behaviour and evaporative heat loss in an amphibious mangrove fish (Kryptolebias marmoratus).

    Science.gov (United States)

    Gibson, Daniel J; Sylvester, Emma V A; Turko, Andy J; Tattersall, Glenn J; Wright, Patricia A

    2015-10-01

    Amphibious fishes often emerse (leave water) when faced with unfavourable water conditions. How amphibious fishes cope with the risks of rising water temperatures may depend, in part, on the plasticity of behavioural mechanisms such as emersion thresholds. We hypothesized that the emersion threshold is reversibly plastic and thus dependent on recent acclimation history rather than on conditions during early development. Kryptolebias marmoratus were reared for 1 year at 25 or 30°C and acclimated as adults (one week) to either 25 or 30°C before exposure to an acute increase in water temperature. The emersion threshold temperature and acute thermal tolerance were significantly increased in adult fish acclimated to 30°C, but rearing temperature had no significant effect. Using a thermal imaging camera, we also showed that emersed fish in a low humidity aerial environment (30°C) lost significantly more heat (3.3°C min(-1)) than those in a high humidity environment (1.6°C min(-1)). In the field, mean relative humidity was 84%. These results provide evidence of behavioural avoidance of high temperatures and the first quantification of evaporative cooling in an amphibious fish. Furthermore, the avoidance response was reversibly plastic, flexibility that may be important for tropical amphibious fishes under increasing pressures from climatic change. © 2015 The Author(s).

  19. Out of the frying pan into the air—emersion behaviour and evaporative heat loss in an amphibious mangrove fish (Kryptolebias marmoratus)

    Science.gov (United States)

    Gibson, Daniel J.; Sylvester, Emma V. A.; Turko, Andy J.; Tattersall, Glenn J.; Wright, Patricia A.

    2015-01-01

    Amphibious fishes often emerse (leave water) when faced with unfavourable water conditions. How amphibious fishes cope with the risks of rising water temperatures may depend, in part, on the plasticity of behavioural mechanisms such as emersion thresholds. We hypothesized that the emersion threshold is reversibly plastic and thus dependent on recent acclimation history rather than on conditions during early development. Kryptolebias marmoratus were reared for 1 year at 25 or 30°C and acclimated as adults (one week) to either 25 or 30°C before exposure to an acute increase in water temperature. The emersion threshold temperature and acute thermal tolerance were significantly increased in adult fish acclimated to 30°C, but rearing temperature had no significant effect. Using a thermal imaging camera, we also showed that emersed fish in a low humidity aerial environment (30°C) lost significantly more heat (3.3°C min−1) than those in a high humidity environment (1.6°C min−1). In the field, mean relative humidity was 84%. These results provide evidence of behavioural avoidance of high temperatures and the first quantification of evaporative cooling in an amphibious fish. Furthermore, the avoidance response was reversibly plastic, flexibility that may be important for tropical amphibious fishes under increasing pressures from climatic change. PMID:26490418

  20. An experimental study for the interface shear stress of near vertical air-water separated flow on evaporation

    International Nuclear Information System (INIS)

    Kwon, H.; Park, G. C.

    2000-01-01

    The object of experiment is improved model of evaporative heat transfer coefficient using interfacial friction factor on evaporation. Experiments have been conducted with near-vertical(87 .deg.) flat plate on evaporation for air-water countercurrent stratified flow. Experiment facility is consisted of 1.7m length and 0.2 X 0.005m cross section, the one side direct heating system which have 10kw power capacity. The interfacial shear stress, pressure drop and temperatures in test section were measured. These parameters were measured by DP-103 pressure transducer, K-type thermocouple, RTD and Hot Wire Anemometer(HWA). Experimental results were inclination as increased interfacial shear stress with increased the evaporation rate. Interfacial shear stress was increased as increased water flow rate and air flow rate too. For the evaluation of the measured evaporative heat transfer coefficients and physical understanding of the evaporation phenomena, the evaporative heat transfer coefficients were obtained through the simple calculation process by the use of mass transfer coefficient correlation and the experimental data of wavy film surface effect on shear and on evaporation

  1. [Interlaboratory Study on Evaporation Residue Test for Food Contact Products (Report 1)].

    Science.gov (United States)

    Ohno, Hiroyuki; Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Amano, Homare; Ishihara, Kinuyo; Ohsaka, Ikue; Ohno, Haruka; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kobayashi, Hisashi; Sakuragi, Hiroshi; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Takasaka, Noriko; Takenaka, Yu; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Tonooka, Hiroyuki; Nakanishi, Toru; Nomura, Chie; Haneishi, Nahoko; Hayakawa, Masato; Miura, Toshihiko; Yamaguchi, Miku; Watanabe, Kazunari; Sato, Kyoko

    2018-01-01

    An interlaboratory study was performed to evaluate the equivalence between an official method and a modified method of evaporation residue test using three food-simulating solvents (water, 4% acetic acid and 20% ethanol), based on the Japanese Food Sanitation Law for food contact products. Twenty-three laboratories participated, and tested the evaporation residues of nine test solutions as blind duplicates. For evaporation, a water bath was used in the official method, and a hot plate in the modified method. In most laboratories, the test solutions were heated until just prior to evaporation to dryness, and then allowed to dry under residual heat. Statistical analysis revealed that there was no significant difference between the two methods, regardless of the heating equipment used. Accordingly, the modified method provides performance equal to the official method, and is available as an alternative method.

  2. Systematic losses of outdoor production from heat stress and climate change

    Science.gov (United States)

    Buzan, J. R.; Huber, M.

    2017-12-01

    Heat stress impacts humans today with heat waves, worker reductions, and health issues. Here we show novel results in labor productivity for outdoor work due to global warming. We use the HumanIndexMod to calculate 4x daily values of Simplified Wet Bulb Globe Temperature index (sWBGT) from the CMIP5 archive normalized by global mean surface temperature changes. Previous work shows that scaling of sWBGT is robust across the CMIP5 archive. We calculate total annual outdoor labor capacity from our scaled sWBGT results. Our results show modern day losses due to heat stress impacting outdoor work for low latitudes (and parts of Eastern China and the Southern United States). At 2°C of climate change, up to 20% losses to total capacity impact Midwestern United States, while the Southern United States suffers >20% losses. Western Coastal Africa suffers annual losses at >80%, along with the Amazon Basin and the greater South East Asia region. India suffers losses >50% annually. At +5°C, the estimated mean global change by 2100, the Equatorial region (Northern Australia and Northern Bolivia to Western Coastal Africa and Southern India) has complete cessation of annual outdoor work. The Midwest United States suffers losses up to 30%, and the Gulf of Mexico suffers losses >50%. Our results imply that small changes in global mean surface temperature (2°C) will lead to crippling losses to outdoor work annually, and ≥5°C losses will lead to cessation of labor for more than half the world's population.

  3. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  4. Advanced thermal management of a solar cell by a nano-coated heat pipe plate: A thermal assessment

    International Nuclear Information System (INIS)

    Du, Yanping

    2017-01-01

    Highlights: • The nano-coated heat pipe plate provides sufficient cooling energy to the solar cell. • The induced solar cell temperature is below 40 °C in normal range of solar irradiance. • The evaporative heat flux is tuneable and varies with the change of operating conditions. • Additional cooling at the condenser is helpful to improve the heat removal of the device. - Abstract: The significant temperature effect on solar cells results in loss of photovoltaic (PV) efficiency by up to 20–25%, which may over-negate the efforts in technology development for promoting PV efficiency. This motivates studies in thermal management for solar cells. This study concerns the thermal assessment of an advanced system composed by a solar cell and a nano-coated heat pipe plate for thermal management. Solar cell temperature and the corresponding evaporative heat flux are evaluated based on a conjugated heat transfer model. It indicates that the solar cell can be cooled down to be below 40 °C and suffers no temperature effect due to the use of the heat pipe plate. The heat pipe plate can provide sufficient cooling to the solar cell under different solar irradiance. The analytical and experimental results show that the maximum evaporative heat flux of the current heat pipe plate is around 450 W/m"2. However, the practical heat removal flux at the condenser is 390 W/m"2. The loss of cooling energy is due to the gathered vapour at the condenser section, which prevents the liquid-vapour circulation inside the vacuum chamber of the device. By using additional cooling strategies (i.e. heat sink, PCMs, water jacket) at the condenser section, the heat removal ability can be further improved.

  5. Comparison of evaporation at two central Florida lakes, April 2005–November 2007

    Science.gov (United States)

    Swancar, Amy

    2015-09-25

    Evaporation from April 2005 through October 2007 at two central Florida lakes, one close to the Gulf of Mexico and one in the center of the peninsula, was 4.043 and 4.111 meters (m), respectively; evaporation for 2006 was 1.534 and 1.538 m, respectively. Although annual evaporation rates at the two lakes were similar, there were monthly differences between the two lakes because of changes in stored heat; the shallower Lake Calm (mean depth 3 m) stored less heat and exchanged heat more rapidly than the deeper Lake Starr (mean depth 5 m).

  6. Mass-loss evolution of close-in exoplanets: Evaporation of hot Jupiters and the effect on population

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, H. [Department of Physics, Nagoya Univsersity, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Nakamoto, T., E-mail: kurokawa@nagoya-u.jp [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2014-03-01

    During their evolution, short-period exoplanets may lose envelope mass through atmospheric escape owing to intense X-ray and extreme ultraviolet (XUV) radiation from their host stars. Roche-lobe overflow induced by orbital evolution or intense atmospheric escape can also contribute to mass loss. To study the effects of mass loss on inner planet populations, we calculate the evolution of hot Jupiters considering mass loss of their envelopes and thermal contraction. Mass loss is assumed to occur through XUV-driven atmospheric escape and the following Roche-lobe overflow. The runaway effect of mass loss results in a dichotomy of populations: hot Jupiters that retain their envelopes and super Earths whose envelopes are completely lost. Evolution primarily depends on the core masses of planets and only slightly on migration history. In hot Jupiters with small cores (≅ 10 Earth masses), runaway atmospheric escape followed by Roche-lobe overflow may create sub-Jupiter deserts, as observed in both mass and radius distributions of planetary populations. Comparing our results with formation scenarios and observed exoplanets populations, we propose that populations of closely orbiting exoplanets are formed by capturing planets at/inside the inner edges of protoplanetary disks and subsequent evaporation of sub-Jupiters.

  7. Mass-loss evolution of close-in exoplanets: Evaporation of hot Jupiters and the effect on population

    International Nuclear Information System (INIS)

    Kurokawa, H.; Nakamoto, T.

    2014-01-01

    During their evolution, short-period exoplanets may lose envelope mass through atmospheric escape owing to intense X-ray and extreme ultraviolet (XUV) radiation from their host stars. Roche-lobe overflow induced by orbital evolution or intense atmospheric escape can also contribute to mass loss. To study the effects of mass loss on inner planet populations, we calculate the evolution of hot Jupiters considering mass loss of their envelopes and thermal contraction. Mass loss is assumed to occur through XUV-driven atmospheric escape and the following Roche-lobe overflow. The runaway effect of mass loss results in a dichotomy of populations: hot Jupiters that retain their envelopes and super Earths whose envelopes are completely lost. Evolution primarily depends on the core masses of planets and only slightly on migration history. In hot Jupiters with small cores (≅ 10 Earth masses), runaway atmospheric escape followed by Roche-lobe overflow may create sub-Jupiter deserts, as observed in both mass and radius distributions of planetary populations. Comparing our results with formation scenarios and observed exoplanets populations, we propose that populations of closely orbiting exoplanets are formed by capturing planets at/inside the inner edges of protoplanetary disks and subsequent evaporation of sub-Jupiters.

  8. ANALYSIS AND MODELING OF SOLAR EVAPORATOR-COLLECTOR

    Directory of Open Access Journals (Sweden)

    Zakaria Mohd. Amin

    2015-11-01

    Full Text Available Solar energy is considered a sustainable resource that poses little to no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporator-collector (SEC is basically an unglazed flat plate collector where refrigerants, such as R134a is used as the working fluid. As the operating temperature of the SEC is very low, it utilizes both solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. This capability of SECs to utilize ambient energy also enables the system to operate at night. This type of collector can be locally made and is relatively much cheaper than the conventional collector.   At the National University of Singapore, the evaporator-collector was integrated to a heat pump and the performance was investigated for several thermal applications: (i water heating, (ii drying and (iii desalination. A 2-dimensional transient mathematical model of this system was developed and validated by experimental data. The present study provides a comprehensive study of performance. KEYWORDS: heat pump; evaporator-collector.

  9. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment

    Science.gov (United States)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42 %. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

  10. Mass-spectrometric study of thermodynamics of lithium molybdate evaporation

    International Nuclear Information System (INIS)

    Kazanas, E.K.; Samojlova, O.I.; Astakhova, G.K.; Ovchinnikova, O.A.

    1999-01-01

    Evaporation of lithium molybdate in 1403-1504 K range was investigated by the method og high-temperature mass-spectrometry. It was established that Li 2 MoO 4 (g), Li 2 O(g), MoO 3 (g) molecules were present during Li 2 MoO 4 (l) evaporation in gaseous phase. Heat of formation of Li 2 MoO 4 (g) molecule was calculated. Heat of LiMoO 4 (sol) sublimation was determined with the use of thermodynamics law [ru

  11. On Problem of Mathematical Modelling of Thermo-Physical Processes in Regenerative Water-Evaporating Coolers

    Science.gov (United States)

    Gulevsky, V. A.; Shatsky, V. P.; Osipov, E. I.; Menzhulova, A. S.

    2018-03-01

    For cooling the air environment of industrial premises water-evaporating air, conditioners are being increasingly applied. The simplicity of their construction, ecological safety and low power consumption distinguish them from the coolers of other types. Cooling the processed air is due to the loss of energy for the evaporation of moisture from the surface of the water-wetted plates that form air channels. As a result of this process, cooled air is often saturated with moisture, which limits the possibilities for the operation of the coolers of this type. In these cases, more complex coolers of indirect principle without such drawback should be applied. The most effective modification of indirect cooling is the installation of recuperative principle units. The paper presents a mathematical model of heat-mass transfer in such water-evaporating coolers. The scheme of realization of this model based on an iterative algorithm of solution of the system of finite–difference linear equations that takes into account longitudinal and transverse thermal conductivity of the heat transfer plates is suggested. The possibility of obtaining the optimal values of the redistribution of the main and auxiliary air flows through the substantiation of the aerodynamic resistance of the output grid is proved. This allows refusing the inclusion in the additional system cooling fan unit for discharging an auxiliary stream of air.

  12. Heat Transmission Coefficient Measurements in Buildings Utilizing a Heat Loss Measuring Device

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    2013-01-01

    Global energy efficiency can be obtained in two ordinary ways. One way is to improve the energy production and supply side, and the other way is, in general, to reduce the consumption of energy in society. This paper has focus on the latter and especially the consumption of energy for heating...... and cooling our houses. There is a huge energy-saving potential in this area for reducing both the global climate problems as well as economy challenges. Heating of buildings in Denmark accounts for approximately 40% of the entire national energy consumption. For this reason, a reduction of heat losses from...... building envelopes are of great importance in order to reach the Bologna CO2 emission reduction targets. Upgrading of the energy performance of buildings is a topic of huge global interest these years. Not only heating in the temperate and arctic regions are important, but also air conditioning...

  13. On the capillary restriction in start-up regimes of liquid metal evaporation from capillary-porous surfaces

    International Nuclear Information System (INIS)

    Prosvetov, V.V.

    1979-01-01

    Evaporation of liquid metals from capillary-porous structures is one of the most effective methods of surface cooling, to which essential heat quantity is delivered at high temperatures. The paper deals with heat flux limitation, caused by incapability of core capillary forces to overcome pressure differential in heat carrier circulation shape in such evaporation regimes, when average length of free path of vapour molecule exceeds core cell size. Suggested are theoretical correlations for determination of critical heat flux density and temperature of liquid surface in starting regimes of liquid metal evaporation from rectangular slots and compound cores with screens made of foil with round perforations. The catculative and experimental values of critical heat flux density in starting regimes of sodium evaporation from rectangular slots satisfactorily agree with each other

  14. Performance investigations of liquid-metal heat pipes for space and terrestrial applications

    International Nuclear Information System (INIS)

    Kemme, J.E.; Keddy, E.S.; Phillips, J.R.

    1978-01-01

    The high heat transfer capacity of liquid-metal heat pipes is demonstrated in performance tests with mercury, potassium, sodium, and lithium working fluids and wick structures which serve to minimize liquid pressure losses and vapor/liquid interactions. Appropriate wicks for horizontal and vertical operation are described. It is shown that heat-transfer with these wicks is limited by vapor flow effects. Examples are given of particular effects associated with a long adiabatic section between evaporator and condenser and with a heat source of uniform temperature as opposed to a source of uniform power

  15. Effect of different bulking agents on water variation and thermal balance and their respective contribution to bio-generated heat during long-term storage sludge biodrying process.

    Science.gov (United States)

    Liu, Tiantian; Cui, Chongwei; He, Junguo; Tang, Jian

    2018-04-17

    Biodrying was first used for the post-treatment of long-term storage sludge with vinasse as bulking agents. The effect of different bulking agents on water and heat variation and their respective contributions to bio-generated heat during storage sludge biodrying were investigated. Three different bulking agents (beer lees and distillers grains, with conventional straw used for comparison) were mixed with storage sludge for biodrying for an 18-day period. The results revealed the treatment with beer lees as bulking agent achieved the best performance with the highest water removal capacity (658 g kg -1 initial water). The extent of organic degradation in the mixture was related to the degradation ability of the bulking agents. The degradation of C- and H-containing materials (e.g., carboxylic acid) accounted for volatile solids (VS) loss. Water and thermal analyses showed that evaporation was the main way of water loss (accounting for 90%), while evaporation heat was the main component of heat consumption (accounting for 56.67-60.62%).The biodegradation of bulking agents contributed a high proportion of the bio-generated heat consumed by water evaporation (82.35-86.67%).

  16. Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery

    International Nuclear Information System (INIS)

    Shu, Gequn; Gao, Yuanyuan; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2014-01-01

    For high temperature ORC (Organic Rankine Cycle) used in engine waste heat recovery, it's very critical to select a high temperature working fluid. HCs (Hydrocarbons) usually have excellent cycle performance, but the flammability limits their practical application. Considering that some retardants can be used to suppress flammability, the paper presents an application of mixtures based on hydrocarbons blending with refrigerant retardants to engine waste heat ORC. Three pure hydrocarbons (cyclopentane, cyclohexane, benzene) and two retardants (R11, R123) are selected for combination. Thermal efficiency and exergy loss are selected as the main objective functions. Based on thermodynamic model, the effects of retardants mass fraction, evaporation temperature and IHE (internal heat exchanger) are investigated. Results show that zeotropic mixtures do have higher thermal efficiency and lower exergy loss than pure fluids, at a certain mixture ratio. There exists the OMR (optimal mixture ratio) for different mixtures, and it changes with the evaporation temperature. When adding IHE to system, cycle performance could be obviously improved, and for benzene/R11 (0.7/0.3), the efficiency growth is about 7.12%∼9.72%. Using it, the maximum thermal efficiency of the system can achieve 16.7%, and minimum exergy loss is only 30.76 kW. - Highlights: • A theoretical analysis of Organic Rankine Cycle for engine exhaust heat recovery is proposed. • Mixtures based on hydrocarbons as working fluids have been suggested. • Effects of the IHE (internal heat exchanger) on ORC system are investigated. • OMR (Optimal mixture ratio) changes with the evaporation temperature. • Using the system, maximum thermal efficiency can achieve 16.7%

  17. Water evaporation in silica colloidal deposits.

    Science.gov (United States)

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Study on dew point evaporative cooling system with counter-flow configuration

    International Nuclear Information System (INIS)

    Lin, J.; Thu, K.; Bui, T.D.; Wang, R.Z.; Ng, K.C.; Chua, K.J.

    2016-01-01

    Highlights: • Numerical model for a dew point evaporative cooler verified with experiments. • Saturation point of the working air is independent of the inlet air conditions. • The intensity of cooling capacity and water evaporation are studied. • The overall heat transfer coefficient for the working air is analyzed. • The conditions to achieve sub-wet bulb cooling are examined. - Abstract: Dew point evaporative cooling has great potential as a disruptive process for sensible cooling of air below its entering wet bulb temperature. This paper presents an improved mathematical model for a single-stage dew point evaporative cooler in a counter-flow configuration. Longitudinal heat conduction and mass diffusion of the air streams, channel plate and water film, as well as the temperature difference between the plate and water film, are accounted for in the model. Predictions of the product air temperature are validated using three sets of experimental data within a discrepancy of 4%. The cooler’s heat and mass transfer process is analyzed in terms of its cooling capacity intensity, water evaporation intensity, and overall heat transfer coefficient along the channel. Parametric studies are conducted at different geometric and operating conditions. For the conditions evaluated, the study reveals that (1) the saturation point of the working air occurs at a fixed point regardless of the inlet air conditions, and it is mainly influenced by the working air ratio and channel height; (2) the intensity of the water evaporation approaches a minimum at 0.2 to 0.3 m from the entrance; (3) the wet channel can be separated into two zones, and the overall heat transfer coefficient is above 100 W/(m"2·K) after the temperature of water film becomes higher than the working air temperature.

  19. Plate heat exchanger - inertia flywheel performance in loss of flow transient

    International Nuclear Information System (INIS)

    Abou-El-Maaty, Talal; Abd-El-Hady, Amr

    2009-01-01

    One of the most versatile types of heat exchangers used is the plate heat exchanger. It has principal advantages over other heat exchangers in that plates can be added and/or removed easily in order to change the area available for heat transfer and therefore its overall performance. The cooling systems of Egypt's second research reactor (ETRR 2) use this type of heat exchanger for cooling purposes in its primary core cooling and pool cooling systems. In addition to the change in the number of heat exchanger cooling channels, the effect of changing the amount of mass flow rate on the heat exchanger performance is an important issues in this study. The inertia flywheel mounted on the primary core cooling system pump with the plate heat exchanger plays an important role in the case of loss of flow transients. The PARET code is used to simulate the effect of loss of flow transients on the reactor core. Hence, the core outlet temperature with the pump-flywheel flow coast down is fed into the plate heat exchanger model developed to estimate the total energy transferred to the cooling tower, the primary side heat exchanger temperature variation, the transmitted heat exchanger power, and the heat exchanger effectiveness. In addition, the pressure drop in both, the primary side and secondary side of the plate heat exchanger is calculated in all simulated transients because their values have limits beyond which the heat exchanger is useless. (orig.)

  20. Influence of Variable Fluid Properties and Radiative Heat loss on ...

    African Journals Online (AJOL)

    Consequently, comparative analysis is also performed on the wall shear stress and local heat transfer of the present study with the available results.The results show that the inclusion variable viscosity and thermal conductivity, and radiative heat loss mechanism cause significant effects on the fluid flow velocity, temperature ...

  1. Predicting TDN losses from heat damaged hays and haylages with NIR

    Science.gov (United States)

    During the storage of hay or haylage, heating damage may occur and lead to losses of available protein and digestible nutrients. Recent research indicates that losses of TDN may be more significant economically than losses of available protein. Our objectives for this study were to establish a near-...

  2. Evaporation and vapor shielding of CFC targets exposed to plasma heat fluxes relevant to ITER ELMs

    International Nuclear Information System (INIS)

    Safronov, V.M.; Arkhipov, N.I.; Landman, I.S.; Pestchanyi, S.E.; Toporkov, D.A.; Zhitlukhin, A.M.

    2009-01-01

    Carbon fibre composite NB31 was tested at plasma gun facility MK-200UG by plasma heat fluxes relevant to Edge Localised Modes in ITER. The paper reports the results obtained on the evaporation threshold of carbon fibre composite, the velocity of carbon vapor motion along and across the magnetic field lines, and the parameters of carbon plasma such as temperature, density and ionization state. First experimental results on investigation of the vapor shield onset conditions are presented also. The obtained experimental data are compared with the results of numerical modeling.

  3. Method for optimal design of pipes for low-energy district heating, with focus on heat losses

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro; Li, Hongwei; Svendsen, Svend

    2011-01-01

    The synergy between highly energy-efficient buildings and low-energy district heating (DH) systems is a promising concept for the optimal integration of energy-saving policies and energy supply systems based on renewable energy (RE). Network transmission and distribution heat loss is one of the k...

  4. Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Li, Y.W.; Wang, R.Z.; Wu, J.Y.; Xu, Y.X.

    2007-01-01

    In this study, a direct expansion solar-assisted heat pump water heater (DX-SAHPWH) with rated input power 750 W was tested and analyzed. Through experimental research in spring and thermodynamics analysis about the system performance, some suggestions for the system optimization are proposed. Then, a small-type DX-SAHPWH with rated input power 400 W was built, tested and analyzed. Through exergy analysis for each component of DX-SAHPWH (A) and (B), it can be seen that the highest exergy loss occurs in the compressor and collector/evaporator, followed by the condenser and expansion valve, respectively. Furthermore, some methods are suggested to improve the performance of each component, especially the collector/evaporator. A methodology for the design optimization of the collector/evaporator was introduced and applied. In order to maintain a proper matching between the heat pumping capacity of the compressor and the evaporative capacity of the collector/evaporator under widely varying ambient conditions, the electronic expansion valve and variable frequency compressor are suggested to be utilized for the DX-SAHPWH

  5. Snap evaporation of droplets on smooth topographies.

    Science.gov (United States)

    Wells, Gary G; Ruiz-Gutiérrez, Élfego; Le Lirzin, Youen; Nourry, Anthony; Orme, Bethany V; Pradas, Marc; Ledesma-Aguilar, Rodrigo

    2018-04-11

    Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a "stick-slip" sequence-a combination of pinning and de-pinning events dominated by static friction or "pinning", caused by microscopic surface roughness. Here we show how smooth, pinning-free, solid surfaces of non-planar topography promote a different process called snap evaporation. During snap evaporation a droplet follows a reproducible sequence of configurations, consisting of a quasi-static phase-change controlled by mass diffusion interrupted by out-of-equilibrium snaps. Snaps are triggered by bifurcations of the equilibrium droplet shape mediated by the underlying non-planar solid. Because the evolution of droplets during snap evaporation is controlled by a smooth topography, and not by surface roughness, our ideas can inspire programmable surfaces that manage liquids in heat- and mass-transfer applications.

  6. The evaporation of crude oil and petroleum products

    International Nuclear Information System (INIS)

    Fingas, M. F.

    1996-01-01

    The physics of oil and petroleum evaporation was studied by means of an experimental apparatus. The evaporation was determined by weight loss and recorded on a computer. Examination of the data showed that most oil and petroleum products (those with seven to ten components) evaporate at a logarithmic rate with respect to time, while other petroleum products (those with fewer chemical components) evaporate at a rate which is square root with respect to time. Evaporation of oil and petroleum was not strictly boundary-layer regulated because the typical oil evaporation rate rates do not exceed that of molecular diffusion and thus turbulent diffusion does not increase the evaporation rates. Overall, boundary layer regulation can be ignored in the prediction of oil and petroleum evaporation. The simple equation relating only the logarithm of time (or the square root of time in the case of narrow-cut products) and temperature are sufficient to accurately describe oil evaporation. refs., figs

  7. The characteristic of evaporative cooling magnet for ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, B., E-mail: xiongbin@mail.iee.ac.cn [Institute of Electrical Engineering, CAS, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ruan, L.; Gu, G. B. [Institute of Electrical Engineering, CAS, Beijing 100190 (China); Lu, W.; Zhang, X. Z.; Zhan, W. L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China)

    2016-02-15

    Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquid coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm{sup 2}. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.

  8. The characteristic of evaporative cooling magnet for ECRIS

    Science.gov (United States)

    Xiong, B.; Ruan, L.; Gu, G. B.; Lu, W.; Zhang, X. Z.; Zhan, W. L.

    2016-02-01

    Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquid coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm2. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.

  9. Minimum success criteria at SGTR combined with loss of secondary heat sink

    International Nuclear Information System (INIS)

    Parzer, I.; Petelin, S.

    1993-01-01

    A parametric analysis has been performed investigating minimum success criteria for the hypothetical Steam Generator Tube Rupture (SGTR) accident in a Pressurized Water Reactor (PWR) Nuclear Power Plant, combined with the total loss of secondary heat sink. The analyses have been performed by RELAP5/MOD2 and MOD3 computer codes using Krsko NPP input deck. The Krsko NPP is a 2-loop Westinghouse PWR, 640 MWe, located in Slovenia and operating from 1981. Two break sizes have been chosen for the SGTR event: 2 and 5 double-ended broken tubes have been assumed. Total loss of secondary heat sink has been assumed from the beginning of the calculation. The ways of cooling down the plant after the postulated accident have been investigated, including Bleed ampersand Feed through the primary system. The NPP Krsko Emergency Operating Procedures (EOP) have been verified for this case. Some suggestions have been made, how to improve FR-H.1 procedure (Loss of Secondary Heat Sink), to include some steps, which take into account also SGTR when it is combined with loss of secondary heat sink. Possible misinterpretations of E-0 procedure (Reactor Trip or Safety Injection) have been studied

  10. Performance Analysis of an Evaporator for a Diesel Engine–Organic Rankine Cycle (ORC Combined System and Influence of Pressure Drop on the Diesel Engine Operating Characteristics

    Directory of Open Access Journals (Sweden)

    Chen Bei

    2015-06-01

    Full Text Available The main purpose of this research is to analyze the performance of an evaporator for the organic Rankine cycle (ORC system and discuss the influence of the evaporator on the operating characteristics of diesel engine. A simulation model of fin-and-tube evaporator of the ORC system is established by using Fluent software. Then, the flow and heat transfer characteristics of the exhaust at the evaporator shell side are obtained, and then the performance of the fin-and-tube evaporator of the ORC system is analyzed based on the field synergy principle. The field synergy angle (β is the intersection angle between the velocity vector and the temperature gradient. When the absolute values of velocity and temperature gradient are constant and β < 90°, heat transfer enhancement can be achieved with the decrease of the β. When the absolute values of velocity and temperature gradient are constant and β >90°, heat transfer enhancement can be achieved with the increase of the β. Subsequently, the influence of the evaporator of the ORC system on diesel engine performance is studied. A simulation model of the diesel engine is built by using GT–Power software under various operating conditions, and the variation tendency of engine power, torque, and brake specific fuel consumption (BSFC are obtained. The variation tendency of the power output and BSFC of diesel engine–ORC combined system are obtained when the evaporation pressure ranges from 1.0 MPa to 3.5 MPa. Results show that the field synergy effect for the areas among the tube bundles of the evaporator main body and the field synergy effect for the areas among the fins on the windward side are satisfactory. However, the field synergy effect in the areas among the fins on the leeward side is weak. As a result of the pressure drop caused by the evaporator of the ORC system, the diesel engine power and torque decreases slightly, whereas the BSFC increases slightly with the increase of exhaust back

  11. Heat pipe

    International Nuclear Information System (INIS)

    Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.

    1986-01-01

    A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)

  12. Influence of constructive parameters on the performance of two indirect evaporative cooler prototypes

    International Nuclear Information System (INIS)

    Tejero-González, Ana; Andrés-Chicote, Manuel; Velasco-Gómez, Eloy; Rey-Martínez, Francisco Javier

    2013-01-01

    Two equally-sized cross-flow heat-exchanger prototypes have been designed with a total heat exchange area of 6 m 2 and 3 m 2 respectively, constructed with polycarbonate hollow panels of different cross section. They are connected into a heat-recovery cycle within the whole experimental setup constructed for the tests, which mainly consists of: an Air Handling Unit to simulate the outdoor airstream conditions, a conditioned climate chamber, and a water circuit to provide the water supply required. They have been experimentally characterised in two operating modes in order to determine how evaporative cooling improves heat recovery in each case, focussing on the influence of modifying the constructive characteristics. To perform the evaporative cooling process, water is supplied to the exhaust airstream. Results are studied considering how constructive issues, outdoor air volume flow rate and temperature, as well as operating mode influence on the performance obtained. An Analysis of Variance shows how outdoor airflow has a key role in the performance of the systems; whereas entering outdoor air temperature determines cooling capacities. Improvements introduced by larger heat exchange areas compensate with their corresponding smaller cross sections, which hinder water – air distribution on the exhaust air side of the heat exchanger. Finally, these small devices achieve cooling capacities of up to 800 W, being able to partly support ventilation load and achieving around 50% of energy saving in ventilation cooling. -- Highlights: ► Two indirect evaporative cooler prototypes are experimentally characterised. ► Evaporative cooling improves heat recovery. ► Influence on performance of different heat exchange area and cross section is studied. ► Larger cross section favours evaporative cooling process. ► Effect of smaller heat exchange area is compensated by that of larger cross section

  13. An experimental investigation of the effects of spiral angle on the evaporation heat transfer coefficients in microfin tubes with visualization technique

    Science.gov (United States)

    Oh, Se-Yoon

    A smooth tube and five microfin tubes were tested, and evaporation heat transfer coefficients were measured and compared for mass fluxes, 50, 100 and 200 kg/m2 s, and heat fluxes, 5, 10 and 20 kW/m 2, with Refrigerant 134a as a working fluid. The evaporation heat transfer coefficients at quality 0.5 were compared among the smooth and five microfin tubes with spiral angles 6, 12, 18, 25 and 44 degrees. The effect of the spiral angle on the heat transfer coefficients was examined. It was found that the optimal spiral angle where the maximum heat transfer coefficient occurs, mainly depends on mass flux. The optimal spiral angle was 18 degrees for G=50 kg/m2 s, and 6 degrees for G=100 and 200 kg/m 2 s. A borescope was used to visualize the flow on the inside wall of test tubes. The purpose was to find out the effect of the grooves on the liquid flow in microfin tubes and to explain the mechanism of heat transfer enhancement. Temperatures on the tube wall were measured at the same axial location as the imaging sensor of the borescope, and were related to the behavior of the liquid flow on the inside wall of the tubes. The liquid flow in the grooves on the wall was found to be the most important factor in enhancing heat transfer coefficients. The liquid flowed upward along the grooves and covered the upper inside wall of the microfin tubes at G=50 kg/m2 s. When heat flux increases, the liquid flow was found at a higher position. Both liquid viscosity and surface tension decrease, when temperature increases. Thus, the lower viscosity at higher heat flux facilitated the upward motion of the liquid flow in the grooves, so that the momentum force as well as the capillary effect was found to push the liquid along the grooves.* *A CD is included with dissertation containing video clips in avi format which can be viewed with media player.

  14. Correlation to predict heat transfer of an oscillating loop heat pipe consisting of three interconnected columns

    International Nuclear Information System (INIS)

    Arslan, Goekhan; Ozdemir, Mustafa

    2008-01-01

    In this paper, heat transfer in an oscillating loop heat pipe is investigated experimentally. The oscillation of the liquid columns at the evaporator and condenser sections of the heat pipe are driven by gravitational force and the phase lag between evaporation and condensation because the dimensions of the heat pipe are large enough to neglect the effect of capillary forces. The overall heat transfer coefficient based on the temperature difference between the evaporator and condenser surfaces is introduced by a correlation function of dimensionless numbers such as kinetic Reynolds number, c p ΔT/h fg and the geometric parameters

  15. Droplet bubbling evaporatively cools a blowfly.

    Science.gov (United States)

    Gomes, Guilherme; Köberle, Roland; Von Zuben, Claudio J; Andrade, Denis V

    2018-04-19

    Terrestrial animals often use evaporative cooling to lower body temperature. Evaporation can occur from humid body surfaces or from fluids interfaced to the environment through a number of different mechanisms, such as sweating or panting. In Diptera, some flies move tidally a droplet of fluid out and then back in the buccopharyngeal cavity for a repeated number of cycles before eventually ingesting it. This is referred to as the bubbling behaviour. The droplet fluid consists of a mix of liquids from the ingested food, enzymes from the salivary glands, and antimicrobials, associated to the crop organ system, with evidence pointing to a role in liquid meal dehydration. Herein, we demonstrate that the bubbling behaviour also serves as an effective thermoregulatory mechanism to lower body temperature by means of evaporative cooling. In the blowfly, Chrysomya megacephala, infrared imaging revealed that as the droplet is extruded, evaporation lowers the fluid´s temperature, which, upon its re-ingestion, lowers the blowfly's body temperature. This effect is most prominent at the cephalic region, less in the thorax, and then in the abdomen. Bubbling frequency increases with ambient temperature, while its cooling efficiency decreases at high air humidities. Heat transfer calculations show that droplet cooling depends on a special heat-exchange dynamic, which result in the exponential activation of the cooling effect.

  16. Method for Calculation of Steam-Compression Heat Transformers

    Directory of Open Access Journals (Sweden)

    S. V. Zditovetckaya

    2012-01-01

    Full Text Available The paper considers a method for joint numerical analysis of cycle parameters and heatex-change equipment of steam-compression heat transformer contour that takes into account a non-stationary operational mode and irreversible losses in devices and pipeline contour. The method has been realized in the form of the software package and can be used while making design or selection of a heat transformer with due account of a coolant and actual equipment being included in its structure.The paper presents investigation results revealing influence of pressure loss in an evaporator and a condenser from the side of the coolant caused by a friction and local resistance on power efficiency of the heat transformer which is operating in the mode of refrigerating and heating installation and a thermal pump. Actually obtained operational parameters of the thermal pump in the nominal and off-design operatinal modes depend on the structure of the concrete contour equipment.

  17. Numerical study of droplet evaporation in an acoustic levitator

    Science.gov (United States)

    Bänsch, Eberhard; Götz, Michael

    2018-03-01

    We present a finite element method for the simulation of all relevant processes of the evaporation of a liquid droplet suspended in an acoustic levitation device. The mathematical model and the numerical implementation take into account heat and mass transfer across the interface between the liquid and gaseous phase and the influence of acoustic streaming on this process, as well as the displacement and deformation of the droplet due to acoustic radiation pressure. We apply this numerical method to several theoretical and experimental examples and compare our results with the well-known d2-law for the evaporation of spherical droplets and with theoretical predictions for the acoustic streaming velocity. We study the influence of acoustic streaming on the distribution of water vapor and temperature in the levitation device, with special attention to the vapor distribution in the emerging toroidal vortices. We also compare the evaporation rate of a droplet with and without acoustic streaming, as well as the evaporation rates in dependence of different temperatures and sound pressure levels. Finally, a simple model of protein inactivation due to heat damage is considered and studied for different evaporation settings and their respective influence on protein damage.

  18. Stable Isotope Mass Balance of the Laurentian Great Lakes to Constrain Evaporative Losses

    Energy Technology Data Exchange (ETDEWEB)

    Jasechko, S. [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario and Alberta Innovates, Technology Futures, Victoria, British Columbia (Canada); Gibson, J. J. [Canada Alberta Innovates, Technology Futures, Victoria, British Columbia and Department of Geography, University of Victoria, Victoria, British Columbia (Canada); Pietroniro, A. [National Water Research Institute, Environment Canada, Saskatoon, Saskatchewan (Canada); Edwards, T.W D. [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario (Canada)

    2013-07-15

    Evaporation is an important yet poorly constrained component of the water budget of the Laurentian Great Lakes, but is known historically to have a significant impact on regional climate, including enhanced humidity and downwind lake effect precipitation. Sparse over lake climate monitoring continues to limit ability to quantify bulk lake evaporation and precipitation rates by physical measurements, impeded by logistical difficulties and costs of instrumenting large areas of open water (10{sup 3}-10{sup 5} km2). Measurements of stable isotopes of oxygen and hydrogen in water samples of precipitation and surface waters within the great lakes basin are used to better understand the controls on the region's water cycle. A stable isotope mass balance approach to calculate long term evaporation as a proportion of input to each lake is discussed. The approach capitalizes on the well understood systematic isotopic separation of an evaporating water body, but includes added considerations for internal recycling of evaporated moisture in the overlying atmosphere that should be incorporated for surface waters sufficiently large to significantly influence surrounding climate. (author)

  19. Treatment of the loss of ultimate heat sink initiating events in the IRSN level 1 PSA

    International Nuclear Information System (INIS)

    Dupuy, Patricia; Georgescu, Gabriel; Corenwinder, Francois

    2014-01-01

    The total loss of the ultimate heat sink is an initiating event which, even it is mainly of external origin, has been considered in the frame of internal events Level 1 PSA by IRSN. The on-going actions on the development of external hazards PSA and the recent incident of loss of the heat sink induced by the ingress of vegetable matter that occurred in France in 2009 have pointed out the need to improve the modeling of the loss of the heat sink initiating event and sequences to better take into account the fact that this loss may be induced by external hazards and thus affect all the site units. The paper presents the historical steps of the modeling of the total loss of the heat sink, the safety stakes of this modeling, the main assumptions used by IRSN in the associated PSA for the 900 MWe reactors and the results obtained. The total loss of the heat sink was not initially addressed in the safety demonstration of French NPPs. On the basis of the insights of the first probabilistic assessments performed in the 80's, the risks associated to this 'multiple failure situation' turned out to be very significant and design and organisational improvements were implemented on the plants. Reviews of the characterization of external hazards and of their consequences on the installations and French operating feedback have revealed that extreme hazards may induce a total loss of the heat sink. Moreover, the accident that occurred at Fukushima in 2011 has pointed out the risk of such a loss of long duration at all site units in case of extreme hazards. In this context, it seems relevant to further improve the modelling of the total loss of the heat sink by considering the external hazards that may cause this loss. In a first step, IRSN has improved the assumptions and data used in the loss of the heat sink PSA model, in particular by considering that such a loss may affect all the site units. The next challenge will be the deeper analysis of the impact of external hazards on

  20. Reducing heat loss from the energy absorber of a solar collector

    Science.gov (United States)

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  1. A comparative study of the mass and heat transfer dynamics of evaporating ethanol/water, methanol/water, and 1-propanol/water aerosol droplets.

    Science.gov (United States)

    Hopkins, Rebecca J; Reid, Jonathan P

    2006-02-23

    The mass and heat transfer dynamics of evaporating multicomponent alcohol/water droplets have been probed experimentally by examining changes in the near surface droplet composition and average droplet temperature using cavity-enhanced Raman scattering (CERS) and laser-induced fluorescence (LIF). The CERS technique provides a sensitive measure of the concentration of the volatile alcohol component in the outer shell of the droplet, due to the exponential relationship between CERS intensity and species concentration. Such volatile droplets, which are probed on a millisecond time scale, evaporate nonisothermally, resulting in both temperature and concentration gradients, as confirmed by comparisons between experimental measurements and quasi-steady state model calculations. An excellent agreement between the experimental evaporation trends and quasi-steady state model predictions is observed. An unexpectedly slow evaporation rate is observed for the evaporation of 1-propanol from a multicomponent droplet when compared to the model; possible explanations for this observation are discussed. In addition, the propagation depth of the CERS signal, and, therefore, the region of the droplet from which compositional measurements are made, can be estimated. Such measurements, when considered in conjunction with quasi-steady state theory, can allow droplet temperature gradients to be measured and vapor pressures and activity coefficients of components within the droplet to be determined.

  2. Quantifying Evaporation and Evaluating Runoff Estimation Methods in a Permeable Pavement System - abstract

    Science.gov (United States)

    Studies on quantifying evaporation in permeable pavement systems are limited to few laboratory studies that used a scale to weigh evaporative losses and a field application with a tunnel-evaporation gauge. A primary objective of this research was to quantify evaporation for a la...

  3. Experimental Investigation of Double Effect Evaporative Cooling Unit

    Directory of Open Access Journals (Sweden)

    Ahmed Abd Mohammad Saleh

    2018-03-01

    Full Text Available This work presents the experimental investigation of double effect evaporative cooling unit with approximate capacity 7 kW. The unit consisted of two stages, the sensible heat exchanger and the cooling tower composing the external indirect regenerative evaporative cooling stage where a direct evaporative cooler represent the second stage. Testing results showed a maximum capacity and lowest supplied air temperature when the water flow rate in heat exchanger was 0.1 L/s. The experiment recorded the unit daily readings at two airflow rates (0.425 m3/s, 0.48 m3/s. The reading shows that unit inlet DBT is effect positively on unit wet bulb effectiveness and unit COP at constant humidity ratio. The air extraction ratio effected positively on the unit wet bulb effectiveness within a certain limit where maximum COP recorded 11.4 when the extraction ratio equal to 40%.

  4. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  5. EVAPORATIVE COOLING - CONCEPTUAL DESIGN FOR ATLAS SCT

    CERN Document Server

    Niinikoski, T O

    1998-01-01

    The conceptual design of an evaporative two-phase flow cooling system for the ATLAS SCT detector is described, using perfluorinated propane (C3F8) as a coolant. Comparison with perfluorinated butane (C4F10) is made, although the detailed design is presented only for C3F8. The two-phase pressure drop and heat transfer coefficient are calculated in order to determine the dimensions of the cooling pipes and module contacts for the Barrel SCT. The region in which the flow is homogeneous is determined. The cooling cycle, pipework, compressor, heat exchangers and other main elements of the system are calculated in order to be able to discuss the system control, safety and reliability. Evaporative cooling appears to be substantially better than the binary ice system from the point of view of safety, reliability, detector thickness, heat transfer coefficient, cost and simplicity.

  6. Tear-Film Evaporation Rate from Simultaneous Ocular-Surface Temperature and Tear-Breakup Area.

    Science.gov (United States)

    Dursch, Thomas J; Li, Wing; Taraz, Baseem; Lin, Meng C; Radke, Clayton J

    2018-01-01

    A corneal heat-transfer model is presented to quantify simultaneous measurements of fluorescein tear-breakup area (TBA) and ocular-surface temperature (OST). By accounting for disruption of the tear-film lipid layer (TFLL), we report evaporation rates through lipid-covered tear. The modified heat-transfer model provides new insights into evaporative dry eye. A quantitative analysis is presented to assess human aqueous tear evaporation rate (TER) through intact TFLLs from simultaneous in vivo measurement of time-dependent infrared OST and fluorescein TBA. We interpret simultaneous OST and TBA measurements using an extended heat-transfer model. We hypothesize that TBAs are ineffectively insulated by the TFLL and therefore exhibit higher TER than does that for a well-insulting TFLL-covered tear. As time proceeds, TBAs increase in number and size, thereby increasing the cornea area-averaged TER and decreasing OST. Tear-breakup areas were assessed from image analysis of fluorescein tear-film-breakup video recordings and are included in the heat-transfer description of OST. Model-predicted OSTs agree well with clinical experiments. Percent reductions in TER of lipid-covered tear range from 50 to 95% of that for pure water, in good agreement with literature. The physical picture of noninsulating or ruptured TFLL spots followed by enhanced evaporation from underlying cooler tear-film ruptures is consistent with the evaporative-driven mechanism for local tear rupture. A quantitative analysis is presented of in vivo TER from simultaneous clinical measurement of transient OST and TBA. The new heat-transfer model accounts for increased TER through expanding TBAs. Tear evaporation rate varies strongly across the cornea because lipid is effectively missing over tear-rupture troughs. The result is local faster evaporation compared with nonruptured, thick lipid-covered tear. Evaporative-driven tear-film ruptures deepen to a thickness where fluorescein quenching commences and local

  7. The impact of fouling on performance evaluation of evaporative coolers and condensers

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, B.A.; Zubair, S.M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia). Mechanical Engineering Dept.

    2005-11-15

    Fouling of evaporative cooler and condenser tubes is one of the most important factors affecting their thermal performance, which reduces effectiveness and heat transfer capability with time. In this paper, the experimental data on fouling reported in the literature are used to develop a fouling model for this class of heat exchangers. The model predicts the decrease in heat transfer rate with the growth of fouling. A detailed model of evaporative coolers and condensers, in conjunction with the fouling model, is used to study the effect of fouling on the thermal performance of these heat exchangers at different air inlet wet bulb temperatures. The results demonstrate that fouling of tubes reduces gains in performance resulting from decreasing values of air inlet wet bulb temperature. It is found that the maximum decrease in effectiveness due to fouling is about 55 and 78% for the evaporative coolers and condensers, respectively, investigated in this study. For the evaporative cooler, the value of process fluid outlet temperature T{sub p,out} varies by 0.66% only at the clean condition for the ambient wet bulb temperatures considered. (author)

  8. Microwave heating denitration device

    International Nuclear Information System (INIS)

    Sato, Hajime; Morisue, Tetsuo.

    1984-01-01

    Purpose: To suppress energy consumption due to a reflection of microwaves. Constitution: Microwaves are irradiated to the nitrate solution containing nuclear fuel materials, to cause denitrating reaction under heating and obtain oxides of the nuclear fuel materials. A microwave heating and evaporation can for reserving the nitrate solution is disposed slantwise relative to the horizontal plane and a microwave heating device is connected to the evaporation can, and inert gases for agitation are supplied to the solution within the can. Since the evaporation can is slanted, wasteful energy consumption due to the reflection of the microwaves can be suppressed. (Moriyama, K.)

  9. The evaporation of viscose process liquors: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, R

    1984-01-01

    A program of work aimed at producing designs for an energy efficient process for the evaporation of water from viscose process liquors has been completed. The process uses mechanical vapor recompression in conjunction with a thin plastic heat transfer surface. A bench laboratory evaporation rig was built to prove the technical viability of the process. This was followed by the construction of a research plant at a viscose production site. The capacity of this plant was 100 to 150 kg/h of water evaporated. The construction and operation of a plastic heat exchanger with thin walled plastic tubes was achieved with considerable success. The lining of the concrete containment vessel proved more difficult, and the technique employed may not be the best for commercial units. Heat transfer coefficients of up to 550 Wm/sup -2/ K/sup -1/ were measured on the research plant. These agreed well with results obtained from a mathematical model developed for the process. An optimum design for a commercial unit has been costed and the financial parameters determined. Courtaulds considers that the construction of a demonstration plant is justified. 3 refs., 8 figs.

  10. Experimental Investigation of Heat Pipe Startup Under Reflux Mode

    Science.gov (United States)

    Ku, Jentung

    2018-01-01

    In the absence of body forces such as gravity, a heat pipe will start as soon as its evaporator temperature reaches the saturation temperature. If the heat pipe operates under a reflux mode in ground testing, the liquid puddle will fill the entire cross sectional area of the evaporator. Under this condition, the heat pipe may not start when the evaporator temperature reaches the saturation temperature. Instead, a superheat is required in order for the liquid to vaporize through nucleate boiling. The amount of superheat depends on several factors such as the roughness of the heat pipe internal surface and the gravity head. This paper describes an experimental investigation of the effect of gravity pressure head on the startup of a heat pipe under reflux mode. In this study, a heat pipe with internal axial grooves was placed in a vertical position with different tilt angles relative to the horizontal plane. Heat was applied to the evaporator at the bottom and cooling was provided to the condenser at the top. The liquid-flooded evaporator was divided into seven segments along the axial direction, and an electrical heater was attached to each evaporator segment. Heat was applied to individual heaters in various combinations and sequences. Other test variables included the condenser sink temperature and tilt angle. Test results show that as long as an individual evaporator segment was flooded with liquid initially, a superheat was required to vaporize the liquid in that segment. The amount of superheat required for liquid vaporization was a function of gravity pressure head imposed on that evaporator segment and the initial temperature of the heat pipe. The most efficient and effective way to start the heat pipe was to apply a heat load with a high heat flux to the lowest segment of the evaporator.

  11. NLP modeling for the optimization of LiBr-H_2O absorption refrigeration systems with exergy loss rate, heat transfer area, and cost as single objective functions

    International Nuclear Information System (INIS)

    Mussati, Sergio F.; Gernaey, Krist V.; Morosuk, Tatiana; Mussati, Miguel C.

    2016-01-01

    be significantly improved by distributing additional heat transfer area among the process units. The optimal solution corresponding to this practical value significantly improves the upper bounds for an economic optimization problem with respect to the optimal solution corresponding to the theoretical value. The optimal solutions corresponding to the theoretical and the practical upper bound values for the total heat transfer area (100 m"2 and 61 m"2, respectively) as well as the optimal solution obtained by minimization of the total annual cost are discussed for a case study considering a cooling capacity of 50 kW, upon the model assumptions made and a given cost model. Around three-quarters of the minimal total annual cost correspond to capital expenditures and the rest to operating expenditures. The generator and evaporator represent together around 70% of the capital expenditures. The absorber is the largest contributor to both the total heat transfer area and the total exergy loss rate, with around 33.19 and 39.16%, respectively, when the total annual cost is minimized.

  12. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight

    KAUST Repository

    Wang, Peng

    2018-04-05

    Solar driven water evaporation and distillation is an ancient technology, but has been rejuvenated by nano-enabled photothermal materials in the past 4 years. The nano-enabled state-of-the-art photothermal materials are able to harvest a full solar spectrum and convert it to heat with extremely high efficiency. Moreover, photothermal structures with heat loss management have evolved in parallel. These together have led to the steadily and significantly improved energy efficiency of solar evaporation and distillation in the past 4 years. Some unprecedented clean water production rates have been reported in small-scale and fully solar-driven devices. This frontier presents a timely and systematic review of the impressive developments in photothermal nanomaterial discovery, selection, optimization, and photothermal structural designs along with their applications especially in clean water production. The current challenges and future perspectives are provided. This article helps inspire more research efforts from environmental nano communities to push forward practical solar-driven clean water production.

  13. Experimental study of evaporation of distilled water and 10% NaCl and СaCl2 aqueous salt solutions droplets under their free falling on a heated surface

    Directory of Open Access Journals (Sweden)

    Feoktistov D.V.

    2017-01-01

    Full Text Available The paper presents the experimental results of evaporation of distilled water and 10% aqueous salt solutions of NaCl and СaCl2 droplets under their free falling on a heated surface. It is proved that it is more expedient to conduct the experimental research in this field according to classical multifactorial experiment. Laser treatment of surfaces is found to increase the evaporation rate and to biases the point of boiling crisis in the region of lower surface temperatures. In this case, in the conditions of boiling crisis the frequency of contact of a droplet with a heated surface will decrease.

  14. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  15. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  16. The study on the evaporation cooling efficiency and effectiveness of cooling tower of film type

    International Nuclear Information System (INIS)

    Li Yingjian; You Xinkui; Qiu Qi; Li Jiezhi

    2011-01-01

    Based on heat and mass transport mechanism of film type cooling, which was combined with an on-site test on counter flow film type cooling tower, a mathematical model on the evaporation and cooling efficiency and effectiveness has been developed. Under typical climatic conditions, air conditioning load and the operating condition, the mass and heat balances have been calculated for the air and the cooling water including the volume of evaporative cooling water. Changing rule has been measured and calculated between coefficient of performance (COP) and chiller load. The influences of air and cooling water parameters on the evaporative cooling efficiency were analyzed in cooling tower restrained by latent heat evaporative cooling, and detailed derivation and computation revealed that both the evaporative cooling efficiency and effectiveness of cooling tower are the same characteristics parameters of the thermal performance of a cooling tower under identical assumptions.

  17. Cooling of a microchannel with thin evaporating liquid film sheared by dry gas flow

    Science.gov (United States)

    Kabova, Yu O.; Kuznetsov, V. V.

    2017-11-01

    A joint motion of thin liquid film and dry gas in a microchannel is investigated numerically at different values of initial concentration of the liquid vapor in the gas phase, taking into account the evaporation process. Major factors affecting the temperature distribution in the liquid and the gas phases are as follows: transfer of heat by liquid and gas flows, heat loses due to evaporation, diffusion heat exchange. Comparisons of the numerical results for the case of the dry gas and for the case of equilibrium concentration of vapor in the gas have been carried out. It is shown that use of dry gas enhances the heat dissipation from the heater. It is found out that not only intense evaporation occurs near the heating areas, but also in both cases vapor condensation takes place below the heater in streamwise direction.

  18. Modelling of boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2002-01-01

    the circulation in the evaporator circuit. The models have been developed as Differential-Algebraic-Equations (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for the relatively stiff equation systems. Experimental verification is planned...

  19. Modelling of a cross flow evaporator for CSP application

    DEFF Research Database (Denmark)

    Sørensen, Kim; Franco, Alessandro; Pelagotti, Leonardo

    2016-01-01

    ) applications. Heat transfer and pressure drop prediction methods are an important tool for design and modelling of diabatic, two-phase, shell-side flow over a horizontal plain tubes bundle for a vertical up-flow evaporator. With the objective of developing a model for a specific type of cross flow evaporator...... the available correlations for the definition of two-phase flow heat transfer, void fraction and pressure drop in connection with the operation of steam generators, focuses attention on a comparison of the results obtained using several different models resulting by different combination of correlations......Heat exchangers consisting of bundles of horizontal plain tubes with boiling on the shell side are widely used in industrial and energy systems applications. A recent particular specific interest for the use of this special heat exchanger is in connection with Concentrated Solar Power (CSP...

  20. Evaporation Kinetics of Polyol Droplets: Determination of Evaporation Coefficients and Diffusion Constants

    Science.gov (United States)

    Su, Yong-Yang; Marsh, Aleksandra; Haddrell, Allen E.; Li, Zhi-Ming; Reid, Jonathan P.

    2017-11-01

    In order to quantify the kinetics of mass transfer between the gas and condensed phases in aerosol, physicochemical properties of the gas and condensed phases and kinetic parameters (mass/thermal accommodation coefficients) are crucial for estimating mass fluxes over a wide size range from the free molecule to continuum regimes. In this study, we report measurements of the evaporation kinetics of droplets of 1-butanol, ethylene glycol (EG), diethylene glycol (DEG), and glycerol under well-controlled conditions (gas flow rates and temperature) using the previously developed cylindrical electrode electrodynamic balance technique. Measurements are compared with a model that captures the heat and mass transfer occurring at the evaporating droplet surface. The aim of these measurements is to clarify the discrepancy in the reported values of mass accommodation coefficient (αM, equals to evaporation coefficient based on microscopic reversibility) for 1-butanol, EG, and DEG and improve the accuracy of the value of the diffusion coefficient for glycerol in gaseous nitrogen. The uncertainties in the thermophysical and experimental parameters are carefully assessed, the literature values of the vapor pressures of these components are evaluated, and the plausible ranges of the evaporation coefficients for 1-butanol, EG, and DEG as well as uncertainty in diffusion coefficient for glycerol are reported. Results show that αM should be greater than 0.4, 0.2, and 0.4 for EG, DEG, and 1-butanol, respectively. The refined values are helpful for accurate prediction of the evaporation/condensation rates.

  1. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  2. The sustainability of LNG evaporation

    NARCIS (Netherlands)

    Stougie, L.; Van der Kooi, H.J.

    2011-01-01

    Numerous LNG (Liquefied Natural Gas) import terminals are under construction to fulfil the growing demand for energy carriers. After storage in tanks, the LNG needs to be heated and evaporated, also called ‘regasified’, to the natural gas needed in households and industry. Several options exist for

  3. Heat and mass transfer are in the interaction of multi-pulsed spray with vertical surfaces in the regime of evaporative cooling

    Science.gov (United States)

    Karpov, P. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2017-10-01

    Sprays with a periodic supply drop phase have great opportunities to control the processes of heat transfer. We can achieve optimal evaporative modes of cooling by changing the pulse duration and the repetition frequency while minimizing flow of the liquid phase. Experimental data of investigation of local heat transfer for poorly heated large surface obtained on the original stand with multi nozzle managed the irrigation system impact of the gas-droplet flow present in this work. Researches on the contribution to the intensification of spray options were conducted. Also the growth rate was integral and local heat. Information instantaneous distribution of the heat flux in the description of the processes have helped us. Managed to describe two basic modes of heat transfer: Mode “insular” foil cooling and thick foil with forming of streams. Capacitive sensors allow to monitor the dynamics of the foil thickness, the birth-belt flow, forming and the evolution of waves generated by “bombing” the surface with the droplets.

  4. STUDI EKSPERIMENTAL FALLING FILM EVAPORATOR PADA EVAPORASI NIRA KENTAL

    Directory of Open Access Journals (Sweden)

    Medya Ayunda Fitri

    2016-06-01

    Full Text Available Falling film evaporator is a constructed equipment for concentrating dilute solution that are sensitive to heat flowing form a thin film. This research aims to study the evaporation of cane juice concentrated with air flow on falling film evaporator and knowing evaporation rate occured in falling film evaporator used. In the process, cane juice from plant pumped to the falling film evaporator that used in this experiment. This research used concentrated cane juice and air flow rate for variables of this experiment. Cane juice flow from top of evaporator through distributor to form thin film and air flow from the bottom of evaporator. After that, temperatur of pipe wall, inlet and outlet temperature of cane juice and air were measured. This experiment concluded that the highest concentration of outlet solution is 59 brix for liquid flow rate 154 l/h and air flow rate 10 m3/h, and the other hand inlet solution concentration 51 brix. Optimum evaporation rate is 35 kg/m2.h for 51 brix and air flow rate 10 m3/h.

  5. Heat capacity of quantum adsorbates: Hydrogen and helium on evaporated gold films

    International Nuclear Information System (INIS)

    Birmingham, J.T.; Lawrence Berkeley National Lab., CA

    1996-06-01

    The author has constructed an apparatus to make specific heat measurements of quantum gases adsorbed on metallic films at temperatures between 0.3 and 4 K. He has used this apparatus to study quench-condensed hydrogen films between 4 and 923 layers thick with J = 1 concentrations between 0.28 and 0.75 deposited on an evaporated gold surface. He has observed that the orientational ordering of the J = 1 molecules depends on the substrate temperature during deposition of the hydrogen film. He has inferred that the density of the films condensed at the lowest temperatures is 25% higher than in bulk H 2 crystals and have observed that the structure of those films is affected by annealing at 3.4 K. The author has measured the J = 1 to J = 0 conversion rate to be comparable to that of the bulk for thick films; however, he found evidence that the gold surface catalyzes conversion in the first two to four layers. He has also used this apparatus to study films of 4 He less than one layer thick adsorbed on an evaporated gold surface. He shows that the phase diagram of the system is similar to that for 4 He/graphite although not as rich in structure, and the phase boundaries occur at different coverages and temperatures. At coverages below about half a layer and at sufficiently high temperatures, the 4 He behaves like a two-dimensional noninteracting Bose gas. At lower temperatures and higher coverages, liquidlike and solidlike behavior is observed. The Appendix shows measurements of the far-infrared absorptivity of the high-T c superconductor La 1.87 Sr 0.13 CuO 4

  6. Heat recovery system series arrangements

    Science.gov (United States)

    Kauffman, Justin P.; Welch, Andrew M.; Dawson, Gregory R.; Minor, Eric N.

    2017-11-14

    The present disclosure is directed to heat recovery systems that employ two or more organic Rankine cycle (ORC) units disposed in series. According to certain embodiments, each ORC unit includes an evaporator that heats an organic working fluid, a turbine generator set that expands the working fluid to generate electricity, a condenser that cools the working fluid, and a pump that returns the working fluid to the evaporator. The heating fluid is directed through each evaporator to heat the working fluid circulating within each ORC unit, and the cooling fluid is directed through each condenser to cool the working fluid circulating within each ORC unit. The heating fluid and the cooling fluid flow through the ORC units in series in the same or opposite directions.

  7. Heat loss in air of an Antarctic marine mammal, the Weddell seal.

    Science.gov (United States)

    Mellish, Jo-Ann; Hindle, Allyson; Skinner, John; Horning, Markus

    2015-01-01

    The conflicting needs of homeostasis in air versus water complicate our understanding of thermoregulation in marine mammals. Large-scale modeling efforts directed at predicting the energetic impact of changing sea ice conditions on polar ecosystems require a better understanding of thermoregulation in air of free-ranging animals. We utilized infrared imaging as an indirect approach to determine surface temperatures of dry, hauled-out Weddell seals (Leptonychotes weddellii, n = 35) of varying age and body condition during the Antarctic summer. The study groups provided a fivefold range in body mass and a threefold range in blubber depth. Surface temperature (T s) did not vary by body region (head, shoulder, axilla, torso, hip, flippers). Average seal T s (mean 13.9 ± 11.2 °C) was best described through a combination of the physical traits of body mass and environmental variables of ambient temperature T air, and wind speed. Additional factors of ice temperature (T ice), relative humidity and cloud cover did not improve the model. Heat transfer model estimates suggested that radiation contributed 56.6 ± 7.7 % of total heat loss. Convection and conduction accounted for the remaining 15.7 ± 12.3 and 27.7 ± 9.3 %, respectively. Heat loss by radiation was primarily influenced by body mass and wind speed, whereas convective heat loss was influenced primarily by blubber depth and wind speed. Conductive heat loss was modeled largely as a function of physical traits of mass and blubber depth rather than any environmental covariates, and therefore was substantially higher in animals in leaner condition.

  8. An experimental study of the enhanced heating capacity of an electric heat pump (EHP) using the heat recovered from a gas engine generator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Min; Chang, Se Dong [HAC R and D Laboratory, LG Electronics, 327-23 Gasan-Dong, Geumcheon-gu, Seoul 153-802 (Korea); Lee, Jaekeun; Hwang, Yujin [School of Mechanical Engineering, Pusan National University, San 30, Changjeon-Dong, Keumjeong-Ku, Busan 609-735 (Korea)

    2009-11-15

    This paper is concerned with the effect of recovered heat on the heating capacity of an Electric Heat Pump (EHP), which is supplied with electric power and recovered heat from a gas engine generator system. Two methods of supplying recovery heat are examined: (i) to the refrigerant with the discharge line heat exchanger (HEX), and (ii) to the refrigerant of the evaporator with the sub-evaporator. Heating capacity, input power and coefficient of performance (COP) were investigated and compared for each heat recovery method. Conclusively, we found that the second method was most reasonable to recover wasted heat and increased system COP by 215%. (author)

  9. Uncertainty in unprotected loss-of-heat-sink, loss-of-flow, and transient-overpower accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E. E.; Nuclear Engineering Division

    2007-10-08

    The sensitivities of various output parameters to selected input parameters in unprotected combined loss of heat-sink and loss-of-flow (ULOHS), loss-of-flow (ULOF), and transient-overpower (UTOP) accidents are explored in this report. This line of investigation was suggested by R. A. Wigeland. For an initial examination of potential sensitivities, the MATWS computer program has been compiled as part of a dynamic link library (DLL) so that uncertain input parameters can be sampled from their probability distributions using the GoldSim simulation software. The MATWS program combines the point-kinetics module from the SAS4A/SASSYS computer code with a simplified representation of the reactor heat removal system. Coupling with the GoldSim software by means of a DLL not only provides a convenient mechanism for sampling the stochastic input parameters but also allows the use of various tools that are available in GoldSim for analyzing the dependence of various MATWS outputs on these parameters. Should a decision be made to continue this investigation, the techniques used to couple MATWS and GoldSim could also be applied to couple the SAS4A/SASSYS computer code with GoldSim. The work described here illustrates the type of results that can be obtained from the stochastic analysis.

  10. Uncertainty in unprotected loss-of-heat-sink, loss-of-flow, and transient-overpower accidents

    International Nuclear Information System (INIS)

    Morris, E.E.

    2007-01-01

    The sensitivities of various output parameters to selected input parameters in unprotected combined loss of heat-sink and loss-of-flow (ULOHS), loss-of-flow (ULOF), and transient-overpower (UTOP) accidents are explored in this report. This line of investigation was suggested by R. A. Wigeland. For an initial examination of potential sensitivities, the MATWS computer program has been compiled as part of a dynamic link library (DLL) so that uncertain input parameters can be sampled from their probability distributions using the GoldSim simulation software. The MATWS program combines the point-kinetics module from the SAS4A/SASSYS computer code with a simplified representation of the reactor heat removal system. Coupling with the GoldSim software by means of a DLL not only provides a convenient mechanism for sampling the stochastic input parameters but also allows the use of various tools that are available in GoldSim for analyzing the dependence of various MATWS outputs on these parameters. Should a decision be made to continue this investigation, the techniques used to couple MATWS and GoldSim could also be applied to couple the SAS4A/SASSYS computer code with GoldSim. The work described here illustrates the type of results that can be obtained from the stochastic analysis

  11. MeV ion loss during 3He minority heating in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Hammett, G.; Boivin, R.; Phillips, C.; Wilson, R.

    1992-01-01

    The loss of MeV ions during 3 He ICRH minority heating experiments has been measured using scintillator detectors near the wall of TFTR. The observed MeV ion losses to the bottom (90 degrees poloidal) detector are generally consistent with the expected first-orbit loss of D- 3 He alpha particle fusion products, with an inferred global reaction rate up to ∼10 16 reactions/sec. A qualitatively similar but unexpectedly large loss occurs 45 degrees poloidally below the outer midplane. This additional loss might be due to ICRH tail ions or to ICRH wave-induced loss of previously confined fusion products

  12. Study on dew point evaporative cooling system with counter-flow configuration

    KAUST Repository

    Lin, J.

    2015-12-18

    Dew point evaporative cooling has great potential as a disruptive process for sensible cooling of air below its entering wet bulb temperature. This paper presents an improved mathematical model for a single-stage dew point evaporative cooler in a counter-flow configuration. Longitudinal heat conduction and mass diffusion of the air streams, channel plate and water film, as well as the temperature difference between the plate and water film, are accounted for in the model. Predictions of the product air temperature are validated using three sets of experimental data within a discrepancy of 4%. The cooler’s heat and mass transfer process is analyzed in terms of its cooling capacity intensity, water evaporation intensity, and overall heat transfer coefficient along the channel. Parametric studies are conducted at different geometric and operating conditions. For the conditions evaluated, the study reveals that (1) the saturation point of the working air occurs at a fixed point regardless of the inlet air conditions, and it is mainly influenced by the working air ratio and channel height; (2) the intensity of the water evaporation approaches a minimum at 0.2 to 0.3m from the entrance; (3) the wet channel can be separated into two zones, and the overall heat transfer coefficient is above 100W/(m2·K) after the temperature of water film becomes higher than the working air temperature.

  13. Evaluation of evaporation coefficient for micro-droplets exposed to low pressure: A semi-analytical approach

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Prodyut R., E-mail: pchakraborty@iitj.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, 342011 (India); Hiremath, Kirankumar R., E-mail: k.r.hiremath@iitj.ac.in [Department of Mathematics, Indian Institute of Technology Jodhpur, 342011 (India); Sharma, Manvendra, E-mail: PG201283003@iitj.ac.in [Defence Laboratory Jodhpur, Defence Research & Development Organisation, 342011 (India)

    2017-02-05

    Evaporation rate of water is strongly influenced by energy barrier due to molecular collision and heat transfer limitations. The evaporation coefficient, defined as the ratio of experimentally measured evaporation rate to that maximum possible theoretical limit, varies over a conflicting three orders of magnitude. In the present work, a semi-analytical transient heat diffusion model of droplet evaporation is developed considering the effect of change in droplet size due to evaporation from its surface, when the droplet is injected into vacuum. Negligible effect of droplet size reduction due to evaporation on cooling rate is found to be true. However, the evaporation coefficient is found to approach theoretical limit of unity, when the droplet radius is less than that of mean free path of vapor molecules on droplet surface contrary to the reported theoretical predictions. Evaporation coefficient was found to reduce rapidly when the droplet under consideration has a radius larger than the mean free path of evaporating molecules, confirming the molecular collision barrier to evaporation rate. The trend of change in evaporation coefficient with increasing droplet size predicted by the proposed model will facilitate obtaining functional relation of evaporation coefficient with droplet size, and can be used for benchmarking the interaction between multiple droplets during evaporation in vacuum.

  14. Evaluation of evaporation coefficient for micro-droplets exposed to low pressure: A semi-analytical approach

    International Nuclear Information System (INIS)

    Chakraborty, Prodyut R.; Hiremath, Kirankumar R.; Sharma, Manvendra

    2017-01-01

    Evaporation rate of water is strongly influenced by energy barrier due to molecular collision and heat transfer limitations. The evaporation coefficient, defined as the ratio of experimentally measured evaporation rate to that maximum possible theoretical limit, varies over a conflicting three orders of magnitude. In the present work, a semi-analytical transient heat diffusion model of droplet evaporation is developed considering the effect of change in droplet size due to evaporation from its surface, when the droplet is injected into vacuum. Negligible effect of droplet size reduction due to evaporation on cooling rate is found to be true. However, the evaporation coefficient is found to approach theoretical limit of unity, when the droplet radius is less than that of mean free path of vapor molecules on droplet surface contrary to the reported theoretical predictions. Evaporation coefficient was found to reduce rapidly when the droplet under consideration has a radius larger than the mean free path of evaporating molecules, confirming the molecular collision barrier to evaporation rate. The trend of change in evaporation coefficient with increasing droplet size predicted by the proposed model will facilitate obtaining functional relation of evaporation coefficient with droplet size, and can be used for benchmarking the interaction between multiple droplets during evaporation in vacuum.

  15. A flux-limited treatment for the conductive evaporation of spherical interstellar gas clouds

    Science.gov (United States)

    Dalton, William W.; Balbus, Steven A.

    1993-01-01

    In this work, we present and analyze a new analytic solution for the saturated (flux-limited) thermal evaporation of a spherical cloud. This work is distinguished from earlier analytic studies by allowing the thermal conductivity to change continuously from a diffusive to a saturated form, in a manner usually employed only in numerical calculations. This closed form solution will be of interest as a computational benchmark. Using our calculated temperature profiles and mass-loss rates, we model the thermal evaporation of such a cloud under typical interstellar medium (ISM) conditions, with some restrictions. We examine the ionization structure of the cloud-ISM interface and evaluate column densities of carbon, nitrogen, oxygen, neon, and silicon ions toward the cloud. In accord with other investigations, we find that ionization equilibrium is far from satisfied under the assumed conditions. Since the inclusion of saturation effects in the heat flux narrows the thermal interface relative to its classical structure, we also find that saturation effects tend to lower predicted column densities.

  16. Plate heat exchangers in air conditioning applications. Development of air-coolers, air-heaters and air-conditioning units with low pressure loss. Plattenwaermetauscher in raumlufttechnischen Anlagen. Entwicklung stroemungsoptimierter Luftkuehler, Lufterhitzer und Klimageraete

    Energy Technology Data Exchange (ETDEWEB)

    Bach, H; Diemer, R; Eisenmann, G; Goettling, D; Madjidi, M

    1989-08-01

    To prepare the development of a water to air plate heat exchanger the state of the art, i.e. the technological knowhow and the design basis are given. The concept and ideas are presented which lead to a slightly wavy plate. Furthermore an exemplary design of a plate heat exchanger and an air-conditioning unit is described and finally the application of plate heat exchangers as direct evaporators and the potential icing problems are investigated. Comparing measured and calculated data shows that the performance of plates with plane surfaces can be predicted fairly well by the presented design methods. The performance of plates with strongly wavy surface however has to be measured. Optimization calculations yield to an air gap of slightly over 4 mm. Comparison with an air-conditioning unit demonstrates that the strongest advantage is for the air cooler (one third of the pressure loss) that a new concept of an air-conditioning unit has lower losses in the fan unit and that it does not need an eliminator. This results in half the volume for the new unit, in a pressure drop of 88%, fan power of 90% and fan revolutions of 50%. (orig./GL).

  17. WTP Pilot-Scale Evaporation Tests

    International Nuclear Information System (INIS)

    QURESHI, ZAFAR

    2004-01-01

    This report documents the design, assembly, and operation of a Pilot-Scale Evaporator built and operated by SRTC in support of Waste Treatment Plant (WTP) Project at the DOE's Hanford Site. The WTP employs three identical evaporators, two for the Waste Feed and one for the Treated LAW. The Pilot-Scale Evaporator was designed to test simulants for both of these waste streams. The Pilot-Scale Evaporator is 1/76th scale in terms of evaporation rates. The basic configuration of forced circulation vacuum evaporator was employed. A detailed scaling analysis was performed to preserve key operating parameters such as basic loop configuration, system vacuum, boiling temperature, recirculation rates, vertical distances between important hardware pieces, reboiler heat transfer characteristics, vapor flux, configuration of demisters and water spray rings. Three evaporation test campaigns were completed. The first evaporation run used water in order to shake down the system. The water runs were important in identifying a design flaw that inhibited mixing in the evaporator vessel, thus resulting in unstable boiling operation. As a result the loop configuration was modified and the remaining runs were completed successfully. Two simulant runs followed the water runs. Test 1: Simulated Ultrafiltration Recycles with HLW SBS, and Test 2: Treated AN102 with Envelop C LAW. Several liquid and offgas samples were drawn from the evaporator facility for regulatory and non-regulatory analyses. During Test 2, the feed and the concentrate were spiked with organics to determine organic partitioning. The decontamination factor (DF) for Test 1 was measured to be 110,000 (more than the expected value of 100,000). Dow Corning Q2-3183A antifoam agent was tested during both Tests 1 and 2. It was determined that 500 ppm of this antifoam agent was sufficient to control the foaminess to less than 5 per cent of the liquid height. The long-term testing (around 100 hours of operation) did not show any

  18. Insights into Evaporative Droplet Dynamics in the High-Wind Atmospheric Boundary Layer

    Science.gov (United States)

    Peng, T.; Richter, D. H.

    2017-12-01

    Sea-spray droplets ejected into the air-sea boundary layer take part in a series of complex transport processes. To model the air-sea exchange of heat and moisture under high-wind conditions, it is important yet challenging to understand influences of evaporative droplets in the atmospheric boundary layer. We implement a high-resolution Eulerian-Lagrangian algorithm with droplets laden in a turbulent open-channel flow to reveal the dynamic and thermodynamic characteristics of evaporating sea spray. Our past numerical simulations demonstrated an overall weak modification to the total heat flux by evaporative droplets. This is due to redistributed sensible and latent heat fluxes from relatively small droplets that respond rapidly to the ambient environment or the limited residence time of larger droplets. However, droplets with a slower thermodynamic response to the environment indicate a potential to enhance the total heat flux, but this is dependent on concentration and suspension time. In the current study, we focus on correlations between the residence time and thermodynamic statistics of droplets in order to better understand how best to parameterize in large-scale models. In addition, we focus in detail on the different scales of turbulence to further characterize the range of influence that evaporating droplets have on the surrounding fluid.

  19. A High Performance Impedance-based Platform for Evaporation Rate Detection.

    Science.gov (United States)

    Chou, Wei-Lung; Lee, Pee-Yew; Chen, Cheng-You; Lin, Yu-Hsin; Lin, Yung-Sheng

    2016-10-17

    This paper describes the method of a novel impedance-based platform for the detection of the evaporation rate. The model compound hyaluronic acid was employed here for demonstration purposes. Multiple evaporation tests on the model compound as a humectant with various concentrations in solutions were conducted for comparison purposes. A conventional weight loss approach is known as the most straightforward, but time-consuming, measurement technique for evaporation rate detection. Yet, a clear disadvantage is that a large volume of sample is required and multiple sample tests cannot be conducted at the same time. For the first time in literature, an electrical impedance sensing chip is successfully applied to a real-time evaporation investigation in a time sharing, continuous and automatic manner. Moreover, as little as 0.5 ml of test samples is required in this impedance-based apparatus, and a large impedance variation is demonstrated among various dilute solutions. The proposed high-sensitivity and fast-response impedance sensing system is found to outperform a conventional weight loss approach in terms of evaporation rate detection.

  20. Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery

    International Nuclear Information System (INIS)

    Li, Yuzhong; Yan, Min; Zhang, Liqiang; Chen, Guifang; Cui, Lin; Song, Zhanlong; Chang, Jingcai; Ma, Chunyuan

    2016-01-01

    Highlights: • A method is developed for deep cooling of flue gas in coal-fired boilers. • The method can recover both latent heat and water from flue gas. • The method utilizes FGD scrubber as a deep cooling exchanger. • The method adopts the direct heat exchange mode to avoid the corrosion problem. - Abstract: Flue gas waste heat recovery and utilization is an efficient means to improve the energy efficiency of coal-fired power plants. At present, the surface corrosion and fouling problems of heat exchanger hinder the development of flue gas deep cooling. In this study, a novel flue gas deep cooling method that can reduce flue gas temperature below the dew point of vapor to recover latent heat and obtain clean water simultaneously is proposed to achieve improved energy efficiency. The heat transfer mode of this method is the direct contact mode, which takes the scrubber, e.g. the flue gas desulfurization (FGD) scrubber, as the deep cooling exchanger. The flash evaporation and condensation (FEC) device and heat pump (HP) are utilized to provide low-temperature medium, such as FGD slurry or water, for washing and deep cooling flue gas, to collect recovered water, and to absorb recovered waste heat. This method is called as the FEC–HP method. This paper elaborated on two optional models of the proposed method. The mechanism for recovering heat and water was also analyzed using the customized flue gas humidity chart, and the method to quantitate recovered heat and water, as well as the results of the case of a 300 MW coal-fired generator set were provided. Net present value calculations showed that this method is profitable in the scenario of burning high-water-content coals. Several potential advantages of this method and suggestions for practical application were also discussed.

  1. Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA

    International Nuclear Information System (INIS)

    Liu Heping; Blanken, Peter D; Weidinger, Tamas; Nordbo, Annika; Vesala, Timo

    2011-01-01

    Understanding seasonal variations in the evaporation of inland waters (e.g., lakes and reservoirs) is important for water resource management as well as the prediction of the hydrological cycles in response to climate change. We analyzed eddy covariance-based evaporation measurements from the Ross Barnett Reservoir (32 deg. 26'N, 90 0 02'W; which is always ice-free) in central Mississippi during the cool months (i.e., September-March) of 2007 and 2008, and found that the variability in cold front activities (i.e., passages of cold fronts and cold/dry air masses behind cold fronts) played an important role in modulating the exchange of sensible (H) and latent (λE) heat fluxes. Our analysis showed that 2007's warmer cool season had smaller mean H and λE than 2008's cooler cool season. This implies that the warmer cool season did not accelerate evaporation and heat exchange between the water surface and the atmosphere. Instead, more frequent cold fronts and longer periods of cold/dry air masses behind the cold fronts in 2008 resulted in overall larger H and λE as compared with 2007, this primarily taking the form of sporadic short-term rapid 'pulses' of H and λE losses from the water's surface. These results suggest that future climate-induced changes in frequency of cold fronts and the meteorological properties of the air masses behind cold fronts (e.g., wind speeds, temperature, and humidity), rather than other factors of climate change, would produce significant variations in the water surface's energy fluxes and subsequent evaporation rates.

  2. A New Eulerian Model for Turbulent Evaporating Sprays in Recirculating Flows

    NARCIS (Netherlands)

    Wittig, S.; Hallmann, M.; Scheurlen, M.; Schmehl, R.

    1993-01-01

    A new Eulerian model for the computation of turbulent evaporating sprays in recirculating flows is derived. It comprises droplet heating and evaporation processes by solving separate transport equations for the droplet's temperature and diameter. Full coupling of the droplet and the gaseous phase is

  3. Flashing evaporation under different pressure levels

    International Nuclear Information System (INIS)

    Liao, Yixiang; Lucas, Dirk; Krepper, Eckhard; Rzehak, Roland

    2013-01-01

    Highlights: • CFD simulation based on two-fluid model for flashing boiling inside a vertical pipe. • Effect of pressure level on the maximum thermal energy available for evaporation. • Effect of presumed bubble size on the onset of flashing as well as evaporation rate. • Effect of pressure level on the critical bubble size that can start stable flashing. • Effect of pressure level on nucleation rate and mechanism. - Abstract: Flashing evaporation of water inside a vertical pipe under four pressure levels is investigated both experimentally and numerically. In the experiment depressurization is realized through a blow-off valve, and the evaporation rate is controlled by the opening rate and degree of the valve. In the CFD simulation phase change is assumed to be caused by thermal heat transfer between steam–water interface and the surrounding water. Consequently, the evaporation rate is determined by heat transfer coefficient, interfacial area density as well as liquid superheat degree. The simulated temporal course of cross-section averaged steam volume fraction is compared with the measured one. It is found that the increasing rate and maximum value of steam volume fraction is over-predicted under low-pressure conditions, which is mainly caused by the neglect of bubble growth in the mono-dispersed simulation. The agreement is notably improved by performing poly-dispersed simulations with the inhomogeneous MUSIG approach (IMUSIG). On the other hand an underestimation of the maximum steam volume fraction is observed in high-pressure cases, since the contribution of nucleation to the total steam generation rate becomes large as the system pressure increases. Reliable models for nucleation rate as well as bubble detachment size are indispensable for reliable predictions. An effect of the system pressure level on the nucleation mechanism is observed in the experiment

  4. Effect of pipe insulation losses on a loss-of-heat sink accident for an LMR

    International Nuclear Information System (INIS)

    Horak, W.C.; Guppy, J.G.; Wood, P.M.

    1985-01-01

    The efficacy of pipe radiation losses as a heat sink during LOHS in a loop-type LMR plant is investigated. The Super System Code (SSC), which was modified to include pipe radiation losses, was used to simulate such an LOHS in an LMR plant. In order to enhance these losses, the pipes were assumed to be insulated by rock wool, a material whose thermal conductivity increases with increasing temperature. A transient was simulated for a total of eight days, during which the coolant temperatures peaked well below saturation conditions and then declined steadily. The coolant flow rate in the loop remained positive throughout the transient

  5. Partitioning evaporation and transpiration in a maize field with heat-pulse sensors used for evaporation

    Science.gov (United States)

    Evaporation (E) and transpiration (T) occur simultaneously in many systems with varying levels of importance, yet terms are typically lumped as evapotranspiration (ET) due to difficulty with distinguishing component fluxes. Few studies have measured all three terms (ET, E, and T), and in the few cas...

  6. Reactive Materials for Evaporating Samarium (Pre-Print)

    Science.gov (United States)

    2016-04-15

    further below  in  the  sample were not effectively  heated  and did not ignite.   Heat   transfer  was improved in pressed  pellets, which were, therefore...particles.  This combustion regime is most desired  for Sm  evaporation  based on the measured mass of the remaining coarse  condensed  combustion  products...the  evaporated  Sm could  condense  on top of the cooled burned out pellet,  forming  the surface coating.   Further EDX characterization qualitatively

  7. Influence of the evaporation rate and the evaporation mode on the hydrogen sorption kinetics of air-exposed magnesium films

    International Nuclear Information System (INIS)

    Leon, A.; Knystautas, E.J.; Huot, J.; Schulz, R.

    2006-01-01

    It has been shown that the hydrogen sorption properties of air-exposed magnesium films are influenced by the deposition parameters such as the evaporation rate or the evaporation mode used during their preparation. As the evaporation rate increases, the structure of the film tends to be highly oriented along the [002] direction and the kinetics of hydrogen absorption and desorption are faster. Moreover, the hydrogen sorption kinetics of magnesium films prepared with an electron beam source under a high vacuum are faster by almost a factor of two compared to those prepared using resistive heating under low vacuum. These two parameters reduce drastically the activation and the incubation period during hydrogen absorption and desorption, respectively

  8. Enhanced O2 Loss at Mars Due to an Ambipolar Electric Field from Electron Heating

    Science.gov (United States)

    Ergun, R. E.; Andersson, L. A.; Fowler, C. M.; Woodson, A. K.; Weber, T. D.; Delory, G. T.; Andrews, D. J.; Eriksson, A. I.; Mcenulty, T.; Morooka, M. W.; hide

    2016-01-01

    Recent results from the MAVEN Langmuir Probe and Waves (LPW) instrument suggest higher than predicted electron temperatures (T sub e) in Mars dayside ionosphere above approx. 180 km in altitude. Correspondingly, measurements from Neutral Gas and Ion Mass Spectrometer (NGIMS) indicate significant abundances of O2+ up to approx. 500 km in altitude, suggesting that O2+ may be a principal ion loss mechanism of oxygen. In this article, we investigate the effects of the higher T(sub e) (which results from electron heating) and ion heating on ion outflow and loss. Numerical solutions show that plasma processes including ion heating and higher T(sub e) may greatly increase O2+ loss at Mars. In particular, enhanced T(sub e) in Mars ionosphere just above the exobase creates a substantial ambipolar electric field with a potential (e) of several k(sub b)T(sub e), which draws ions out of the region allowing for enhanced escape. With active solar wind, electron and ion heating, direct O2+ loss could match or exceed loss via dissociative recombination of O2+. These results suggest that direct loss of O2+ may have played a significant role in the loss of oxygen at Mars over time.

  9. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  10. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters.

    Science.gov (United States)

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei

    2016-01-01

    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  11. A model for allometric scaling of mammalian metabolism with ambient heat loss

    KAUST Repository

    Kwak, Ho Sang

    2016-02-02

    Background Allometric scaling, which represents the dependence of biological trait or process relates on body size, is a long-standing subject in biological science. However, there has been no study to consider heat loss to the ambient and an insulation layer representing mammalian skin and fur for the derivation of the scaling law of metabolism. Methods A simple heat transfer model is proposed to analyze the allometry of mammalian metabolism. The present model extends existing studies by incorporating various external heat transfer parameters and additional insulation layers. The model equations were solved numerically and by an analytic heat balance approach. Results A general observation is that the present heat transfer model predicted the 2/3 surface scaling law, which is primarily attributed to the dependence of the surface area on the body mass. External heat transfer effects introduced deviations in the scaling law, mainly due to natural convection heat transfer which becomes more prominent at smaller mass. These deviations resulted in a slight modification of the scaling exponent to a value smaller than 2/3. Conclusion The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.

  12. Artificial weathering of oils by rotary evaporator

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Hollebone, B.P.; Singh, N.R.; Tong, T.S.; Mullin, J.

    2009-01-01

    Oil weathering has a considerable affect on the behaviour, impact and ultimate fate of an oil spill. As such, efforts have been made to study weathering as a whole using bench-scale procedures. The studies are generally divided into individual processes where the effect of other major processes are introduce as an amended sample input rather than a concurrent process. The weathering process that has the greatest effect immediately following an oil spill is evaporation, particularly for lighter oils. The rotary evaporator apparatus offers a convenient means of producing artificially weathered oil for laboratory studies. This paper reported on a study that examined the representativeness of samples obtained by this method compared to pan evaporation and the impact of changes to the apparatus or method parameters on sample chemistry. Experiments were performed on Alberta Sweet Mixed Blend no. 5 in a rotary evaporator under varying conditions of temperature and air flow at ambient pressure using 2 apparatus. The rate of mass loss increased with temperature and air flow rate as expected, but the quantitative relationships could not be defined from the data due to contributions by other uncontrolled factors. It was concluded that the rotary evaporator is not suited for evaporation rate studies, but rather for producing samples suitable for use in other studies. Chemical analysis showed that the relative abundance distributions of target n-alkane hydrocarbons varied with the degree of weathering of an oil in a consistent manner at ambient pressure, regardless of the temperature, rate of air exchange or other factors related to the apparatus and procedure. The composition of the artificially weathered oil was also consistent with that from an open pan simulation of a weathered oil slick. Loss of water content varied with the conditions of evaporation because of the differential rates of evaporation due to relative humidity considerations. It was concluded that weathering

  13. Waste Evaporator Accident Simulation Using RELAP5 Computer Code

    International Nuclear Information System (INIS)

    POLIZZI, L.M.

    2004-01-01

    An evaporator is used on liquid waste from processing facilities to reduce the volume of the waste through heating the waste and allowing some of the water to be separated from the waste through boiling. This separation process allows for more efficient processing and storage of liquid waste. Commonly, the liquid waste consists of an aqueous solution of chemicals that over time could induce corrosion, and in turn weaken the tubes in the steam tube bundle of the waste evaporator that are used to heat the waste. This chemically induced corrosion could escalate into a possible tube leakage and/or the severance of a tube(s) in the tube bundle. In this paper, analyses of a waste evaporator system for the processing of liquid waste containing corrosive chemicals are presented to assess the system response to this accident scenario. This accident scenario is evaluated since its consequences can propagate to a release of hazardous material to the outside environment. It is therefore important to ensure that the evaporator system component structural integrity is not compromised, i.e. the design pressure and temperature of the system is not exceeded during the accident transient. The computer code used for the accident simulation is RELAP5-MOD31. The accident scenario analyzed includes a double-ended guillotine break of a tube in the tube bundle of the evaporator. A mitigated scenario is presented to evaluate the excursion of the peak pressure and temperature in the various components of the evaporator system to assess whether the protective actions and controls available are adequate to ensure that the structural integrity of the evaporator system is maintained and that no atmospheric release occurs

  14. Evaporation effect on two-dimensional wicking in porous media.

    Science.gov (United States)

    Benner, Eric M; Petsev, Dimiter N

    2018-03-15

    We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Investigation of a novel dew point indirect evaporative air conditioning system for buildings

    OpenAIRE

    Duan, Zhiyin

    2011-01-01

    This study aims to improve the performance of existing indirect evaporative coolers. A new dew point indirect evaporative cooler with counter-current heat/mass exchanger was developed in this research by optimal design, material selection, numerical simulation, experimental investigations and economic, environmental, regional acceptance analysis. A new dew point heat/mass exchanger using a counter-current flow pattern was designed by numerical simulation in terms of material, structure, g...

  16. Thermoregulatory efficiency is increased after heat acclimation in tropical natives.

    Science.gov (United States)

    Magalhães, Flávio C; Passos, Renata L F; Fonseca, Michele A; Oliveira, Kenya P M; Ferreira-Júnior, João B; Martini, Angelo R P; Lima, Milene R M; Guimarães, Juliana B; Baraúna, Valério G; Silami-Garcia, Emerson; Rodrigues, Luiz O C

    2010-01-01

    To evaluate the effects of heat acclimation on sweat rate redistribution and thermodynamic parameters, 9 tropical native volunteers were submitted to 11 days of exercise-heat exposures (40+/-0 degrees C and 45.1+/-0.2% relative humidity). Sudomotor function was evaluated by measuring total and local (forehead, chest, arm, forearm, and thigh) sweat rates, local sweat sodium concentration, and mean skin and rectal temperatures. We also calculated heat production (H), heat storage (S), heat exchange by radiation (R) and by convection (C), evaporated sweat (E(sw)), sweating efficiency (eta(sw)), skin wettedness (w(sk)), and the ratio between the heat storage and the sum of heat production and heat gains by radiation and convection (S/(H+R+C)). The heat acclimation increased the whole-body sweat rate and reduced the mean skin temperature. There were changes in the local sweat rate patterns: on the arm, forearm, and thigh it increased significantly from day 1 to day 11 (all p<0.05) and the sweat rates from the forehead and the chest showed a small nonsignificant increase (p=0.34 and 0.17, respectively). The relative increase of local sweat rates on day 11 was not different among the sites; however, when comparing the limbs (arm, forearm, and thigh) with the trunk (forehead and chest), there was a significant higher increase in the limbs (32+/-5%) in comparison to the trunk (11+/-2%, p=0.001). After the heat acclimation period we observed higher w(sk) and E(sw) and reduced S/(H+R+C), meaning greater thermoregulatory efficiency. The increase in the limb sweat rate, but not the increase in the trunk sweat rate, correlated with the increased w(sk), E(sw), and reduced S/(H+R+C) (p<0.05 to all). Altogether, it can be concluded that heat acclimation increased the limbs' sweat rates in tropical natives and that this increase led to increased loss of heat through evaporation of sweat and this higher sweat evaporation was related to higher thermoregulatory efficiency.

  17. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2009-01-01

    Results of experimental and numerical investigations of thermal stratification and natural convection in a vertical cylindrical hot water tank during standby periods are presented. The transient fluid flow and heat transfer in the tank during cooling caused by heat loss are investigated...... on the natural buoyancy resulting in downward flow along the tank side walls due to heat loss of the tank and the influence on thermal stratification of the tank by the downward flow and the corresponding upward flow in the central parts of the tank. Water temperatures at different levels of the tank...... by computational fluid dynamics (CFD) calculations and by thermal measurements. A tank with uniform temperatures and thermal stratification is studied. The distribution of the heat loss coefficient for the different parts of the tank is measured by tests and used as input to the CFD model. The investigations focus...

  18. Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R.Y. [California State Polytechnic Univ., Pomoma, CA (United States). Dept. of Mechanical Engineering

    1993-09-01

    Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.

  19. Adaptation of metabolism and evaporative water loss along an aridity gradient.

    Science.gov (United States)

    Tieleman, B Irene; Williams, Joseph B; Bloomer, Paulette

    2003-01-22

    Broad-scale comparisons of birds indicate the possibility of adaptive modification of basal metabolic rate (BMR) and total evaporative water loss (TEWL) in species from desert environments, but these might be confounded by phylogeny or phenotypic plasticity. This study relates variation in avian BMR and TEWL to a continuously varying measure of environment, aridity. We test the hypotheses that BMR and TEWL are reduced along an aridity gradient within the lark family (Alaudidae), and investigate the role of phylogenetic inertia. For 12 species of lark, BMR and TEWL decreased along a gradient of increasing aridity, a finding consistent with our proposals. We constructed a phylogeny for 22 species of lark based on sequences of two mitochondrial genes, and investigated whether phylogenetic affinity played a part in the correlation of phenotype and environment. A test for serial independence of the data for mass-corrected TEWL and aridity showed no influence of phylogeny on our findings. However, we did discover a significant phylogenetic effect in mass-corrected data for BMR, a result attributable to common phylogenetic history or to common ecological factors. A test of the relationship between BMR and aridity using phylogenetic independent constrasts was consistent with our previous analysis: BMR decreased with increasing aridity.

  20. Analysis of a solid desiccant cooling system with indirect evaporative cooling

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo

    investigates the performance of a solid desiccant cooling system implementing in-direct evaporative cooling processes. The aim is to quantify the system thermal and electrical performance for varying component dimensions and operating conditions, and to identify its range of applicability. This information...... evaporative cooler. Detailed steady state numerical models are developed and implemented in MATLAB. The models need to be accurate and require low computational effort, for analysing the internal heat and mass transfer processes, as well as carrying out repetitive design and optimization simulations......-to-air heat exchanger for enhancing cooling capacity and thermal performance. The system perfor-mance is investigated considering regeneration temperatures between 50 ºC and 90 ºC, which enable low temperature heat sources, such as solar energy or waste heat, to be used. The effects of several geometrical...

  1. [Interlaboratory Study on Evaporation Residue Test for Food Contact Products (Report 2)].

    Science.gov (United States)

    Ohno, Hiroyuki; Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Amano, Homare; Ishihara, Kinuyo; Ohsaka, Ikue; Ohno, Haruka; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kobayashi, Hisashi; Sakuragi, Hiroshi; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Takasaka, Noriko; Takenaka, Yu; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Nakanishi, Toru; Nomura, Chie; Haneishi, Nahoko; Hayakawa, Masato; Miura, Toshihiko; Yamaguchi, Miku; Yamada, Kyohei; Watanabe, Kazunari; Sato, Kyoko

    2018-01-01

    An interlaboratory study was performed to evaluate the equivalence between an official method and a modified method of evaporation residue test using heptane as a food-simulating solvent for oily or fatty foods, based on the Japanese Food Sanitation Law for food contact products. Twenty-three laboratories participated, and tested the evaporation residues of nine test solutions as blind duplicates. In the official method, heating for evaporation was done with a water bath. In the modified method, a hot plate was used for evaporation, and/or a vacuum concentration procedure was skipped. In most laboratories, the test solutions were heated until just prior to dryness, and then allowed to dry under residual heat. Statistical analysis revealed that there was no significant difference between the two methods. Accordingly, the modified method provides performance equal to the official method, and is available as an alternative method. Furthermore, an interlaboratory study was performed to evaluate and compare two leaching solutions (95% ethanol and isooctane) used as food-simulating solvents for oily or fatty foods in the EU. The results demonstrated that there was no significant difference between heptane and these two leaching solutions.

  2. Heat and mass transport during microwave heating of mashed potato in domestic oven--model development, validation, and sensitivity analysis.

    Science.gov (United States)

    Chen, Jiajia; Pitchai, Krishnamoorthy; Birla, Sohan; Negahban, Mehrdad; Jones, David; Subbiah, Jeyamkondan

    2014-10-01

    A 3-dimensional finite-element model coupling electromagnetics and heat and mass transfer was developed to understand the interactions between the microwaves and fresh mashed potato in a 500 mL tray. The model was validated by performing heating of mashed potato from 25 °C on a rotating turntable in a microwave oven, rated at 1200 W, for 3 min. The simulated spatial temperature profiles on the top and bottom layer of the mashed potato showed similar hot and cold spots when compared to the thermal images acquired by an infrared camera. Transient temperature profiles at 6 locations collected by fiber-optic sensors showed good agreement with predicted results, with the root mean square error ranging from 1.6 to 11.7 °C. The predicted total moisture loss matched well with the observed result. Several input parameters, such as the evaporation rate constant, the intrinsic permeability of water and gas, and the diffusion coefficient of water and gas, are not readily available for mashed potato, and they cannot be easily measured experimentally. Reported values for raw potato were used as baseline values. A sensitivity analysis of these input parameters on the temperature profiles and the total moisture loss was evaluated by changing the baseline values to their 10% and 1000%. The sensitivity analysis showed that the gas diffusion coefficient, intrinsic water permeability, and the evaporation rate constant greatly influenced the predicted temperature and total moisture loss, while the intrinsic gas permeability and the water diffusion coefficient had little influence. This model can be used by the food product developers to understand microwave heating of food products spatially and temporally. This tool will allow food product developers to design food package systems that would heat more uniformly in various microwave ovens. The sensitivity analysis of this study will help us determine the most significant parameters that need to be measured accurately for reliable

  3. Characterization of lithium evaporators for LTX

    Science.gov (United States)

    Nieto-Perez, M.; Majeski, R.; Timberlake, J.; Lundberg, D.; Kaita, R.; Arevalo-Torres, B.

    2010-11-01

    The presence of lithium on the internal components of fusion devices has proven to be beneficial for reactor performance. The Lithium Tokamak Experiment (LTX) will be the first experimental fusion device operating with a significant portion of its internal surface coated with lithium. One of the key capabilities in the device is the reliable production of lithium films inside the reactor. This task is accomplished with the use of lithium evaporators, specially designed for LTX using resistively heated yttria crucibles. In the present work, results from the operation of one of these evaporators on a separate test stand are presented. Deposition measurements at different power levels were performed using a quartz crystal deposition monitor, and temperature distributions in the evaporator crucible and its content were obtained using an infrared camera and a dip-in thermocouple probe. Modeling of the evaporation cloud was done with the raytracing software OptiCAD, and comparisons between the computations and the temperature and flux measurements were performed, in order to accurately predict spatial lithium deposition rates in different locations of the LTX device.

  4. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    International Nuclear Information System (INIS)

    Coryell, E.W.; Siefken, L.J.; Paik, S.

    1998-01-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and non-porous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of non-porous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. A design is also described for implementing a model of heat transfer by radiation from debris to the interstitial fluid. A design is described for implementation of models for flow losses and interphase drag in porous debris. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region

  5. A study of the evaporation of heterogeneous water droplets under active heating

    Science.gov (United States)

    Piskunov, Maxim; Legros, Jean Claude; Strizhak, Pavel

    2016-11-01

    Using high-speed video registration tools with a sample rate of 102-104 frames per second (fps), we studied the patterns in the evaporation of water droplets containing 1 and 2 mm individual metallic inclusions in a high-temperature gas environment. The materials of choice for the inclusions were steels (AISI 1080 carbon steel and AISI type 316L stainless steel) and pure nickel. We established the lifetimes τh of the liquid droplets under study with a controlled increase in the gas environment temperature up to 900 K. We also considered the physical aspects behind the τh distribution in the experiments conducted and specified the conditions for more effective cooling of metallic inclusions. Following the experimental research findings, a method was devised for effective reactor vessel cooling to avoid a meltdown at a nuclear power plant. The optimization of heat and mass transfer modes was performed within the framework of the strategic plan for the development of National Research Tomsk Polytechnic University as one of the world-leading universities.

  6. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  7. Consequences in a long time of the forced loss of coolant in a pool type reactor

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1986-01-01

    The fuel and pool water temperatures are calculated as a function of time using unidimensional models of heat conduction and momentum conservation, to simulate the natural convection flow of the coolant. The reactor building pressure due to the pool water evaporation is calculated using a homogeneous model with thermal equilibrium. The heat loss from the three main components of the building volume (liquid water, air, and steam) to solid surfaces such as the building walls are taking into account. (Author) [pt

  8. Tank 241-A-105 evaporation estimate, 1970 through 1978

    International Nuclear Information System (INIS)

    Allen, G.K.

    1991-09-01

    Tank 241-A-105 was subjected to a severe steam explosion in January 1965 that caused the metal liner on the bottom to bulge upward approximately 8 feet above its concrete foundation. Shortly after this event, radiation was detected in drywells around the tank and it was declared a leaker. Sluicing operations to remove material from the tank began in August 1968 and continued through August 1970. After sluicing was completed, a significant amount of heat generating material still remained in the tank. To keep tank temperatures below operating limits, the water level in the tank was maintained at an approximate depth of 1.5 feet. This practice was continued until January 1979 when it was believed that the contents had decayed sufficiently to discontinue the water addition and put the tank on a portable exhauster system. Recent concern has focused on what portion of this cooling water added to Tank 241-A-105 actually evaporated and how much leaked into the soil during the nine year time period. This report presents the results of a study that estimates the amount of water evaporated from Tank 241-A-105 between 1970 and 1979. The problem was completed in two parts. The first part involved development of a three dimensional heat transfer model which was used to establish the tank heat load. The results of this model were validated against thermocouple data from Tank 241-A-105. The heat removed from the tank by the ventilation air was then used as input to a second computer code, which calculated the water evaporation. Based upon these two models, the amount of water evaporated from Tank 241-A-105, between 1970 and 1979, was between 378,000 and 410,000 gallons. 9 refs., 17 figs., 7 tabs

  9. THERMAL POWER LOSS COMPENSATION IN THE PRODUCTION OF COOKED AND DRIED GRAINS WITH HEAT PUMPS USING

    Directory of Open Access Journals (Sweden)

    S. A. Shevtsov

    2015-01-01

    Full Text Available Using scientificand practical experience and analysis of recent innovative activity on modernization of food concentrates production, a new variant of the energy-efficient processing of cereal crops using superheated steam and direct involvement in the cooking and drying process waste energy using the vapor compression heat pump was suggested. A method for production of cereal concentrates, which is realized using microprocessor control of technological parameters. According to the information on the processes of cereals washing, cooking, drying and cooling microprocessor provides regime parameters control under the restrictions due to both yield of cooked and dried cereal of high quality and economic feasibility. At the same time the amount of moisture is continuously determined in the recirculation loop formed by the evaporation from the cereals in the drying process. To implement the proposed method of cooked and dried cereals production it is offered to use refrigerationand compressor unit operating in a heat pump mode. The refrigerant to be used is khladon 12V1 CF2ClBr with a boiling point in the evaporator of 4°C and the condensing temperature of 153.7 °C. The use of the heat pump in the heat supply system of cooked and dried cereals production instead of electric heaters will reduce power costs by 1.72 times. The proposed method for the production and control of technological parameters in the field of the product acceptable technological properties will provide high quality cooked and dried cereals; an increase in thermal efficiency by making full use of the waste heat of superheated steam; the reduction of specific energy consumption by 25-30 %; the creation of waste-free and environmentally friendly technologies for cereal production.

  10. 242-A evaporator dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    The 242-A Evaporator is a waste management unit within the Hanford Facility that consists of process vessels and support systems for heating, evaporating, and condensing double-shell tank (DST) waste generated by Hanford Site operations. Operation of the 242-A Evaporator serves to reduce the volume of waste solutions within the DSTs that do not self-boil, while separating inorganic and radionuclide constituents from organic constituents. This operation reduces the number of underground DSTs required for waste storage and also makes the mixed waste more suitable for future treatment and disposal (i.e., grouting and vitrification). The 242-A Evaporator receives mixed-waste streams from the DSTs that contain organic and inorganic constituents and radionuclides. The waste is a dangerous waste (DW) because of corrosivity, reactivity, and toxicity characteristics, and is an extremely hazardous waste (EHW) as a result of toxicity (state criteria only), carcinogenicity, and persistence under the state mixture rule. The waste also contains spent nonhalogenated solvents

  11. Evaporation of petroleum products from contaminated soils

    International Nuclear Information System (INIS)

    Kang, S.H.

    1996-01-01

    Bioremediation can remove petroleum products from soil that has been contaminated by leaking underground storage tanks, but abiotic processes such as evaporation can contribute significantly to the overall removal process. The mathematical model described in this paper was developed to predict the evaporation rate of volatile liquids from petroleum-contaminated sand. The model is based on simple concepts relating to molecular diffusion embodied in the theory underlying the estimation of binary diffusivities using measurements made with an Arnold diffusion cell. The model in its simplified form indicates that the rate of evaporation for a particular volatile liquid is proportional to the square root of the product of diffusivity and partial pressure divided by the molecular weight of the liquid. This in part explains why evaporative losses from sand are so much higher for gasoline than for diesel fuel. The model also shows that the time for evaporation is directly proportional to the square of the depth dried out and inversely proportional to the vapor pressure of the volatile liquid. The model was tested using gravimetric measurements of the evaporation of n-heptane, unleaded gasoline, and diesel fuel from sand under laboratory conditions

  12. Effect of Wind Flow on Convective Heat Losses from Scheffler Solar Concentrator Receivers

    Science.gov (United States)

    Nene, Anita Arvind; Ramachandran, S.; Suyambazhahan, S.

    2018-05-01

    Receiver is an important element of solar concentrator system. In a Scheffler concentrator, solar rays get concentrated at focus of parabolic dish. While radiation losses are more predictable and calculable since strongly related to receiver temperature, convective looses are difficult to estimate in view of additional factors such as wind flow direction, speed, receiver geometry, prior to current work. Experimental investigation was carried out on two geometries of receiver namely cylindrical and conical with 2.7 m2 Scheffler to find optimum condition of tilt to provide best efficiency. Experimental results showed that as compared to cylindrical receiver, conical receiver gave maximum efficiency at 45° tilt angle. However effect of additional factors like wind speed, wind direction on especially convective losses could not be separately seen. The current work was undertaken to investigate further the same two geometries using computation fluid dynamics using FLUENT to compute convective losses considering all variables such at tilt angle of receiver, wind velocity and wind direction. For cylindrical receiver, directional heat transfer coefficient (HTC) is remarkably high to tilt condition meaning this geometry is critical to tilt leading to higher convective heat losses. For conical receiver, directional average HTC is remarkably less to tilt condition leading to lower convective heat loss.

  13. An example of R and D on safety assessment: study of a prolonged loss of cooling of halw (beyond design accident)

    International Nuclear Information System (INIS)

    Mercier, J.P.; Bonneval, F.; Martineau, D.; Gue, J.P.; Philippe, M.

    1991-01-01

    The consequences of a loss of cooling of storage tanks of fission products concentrated solutions were studied, for a variable period, in the context, of the safety analysis of the COGEMA spent fuel reprocessing plants of La Hague. As a result of fission products-induced heat emission, a prolonger loss of cooling could involve the progressive evaporation of solutions up to dryout and lead to the formation of radioactive aerosols and then of volatile species of ruthenium likely to be released in off gas circuits of the tanks. With the aim of determining the radioactivity fraction likely to be transferred throughout the loss of cooling out of the storage tanks, an extensive R and D programme was performed, including the main following stages: - experimental determination of the factor of radioactivity transfer through aerosols out of the tanks; - modelling, by means of a calculation code, of the aerosols transfer into the off gas circuits; - experimental study of the ruthenium behaviour with tests carried out in laboratory, by evaporation of samples representative of nitric solutions of fission products. The main conclusions can be summarized as follows (by assuming a heat power density of 10 watts per litre of solution and a storage system completely adiabatic): - the evaporation of solutions starts more than 5 hours after the total loss of cooling, the 10 -4 value being an over-estimated value of the factor of radioactivity transfer by aerosols out of the tanks; - transfer factor through the off gas circuits varies, according to the physical characteristics of aerosols, from 0 to 8.10 -2 ; - ruthenium volatilized only during the final stage of evaporation, shortly before dryout; the minimum time to reach dryness is about 90 hours

  14. An automated tunnel evaporation measurement system for confined spaces

    Science.gov (United States)

    Salve, Rohit

    2002-04-01

    An automated tunnel evaporation-rate measurement system (TEMS) has been designed to measure automatically the evaporation from a cylinder 0·30 m in diameter and 0·10 m tall. This cylinder continuously maintains a constant height of water, with losses to evaporation replenished from a stilling cylinder connected to a water reservoir. The evaporation rate is measured by a transducer located at the bottom of the stilling well. The TEMS was tested over a period of 3 months in an underground research facility with relatively strong wind effects, changing temperature, and changing humidity. During this period, the TEMS continued to function uninterrupted, automatically measuring the evaporation amounts along a tunnel and an enclosed niche. These observations suggest that this tool can be useful for investigations of evaporation processes both in enclosed and ventilated environments. Published in 2002 by John Wiley & Sons, Ltd.

  15. An aluminium evaporation source for ion plating

    International Nuclear Information System (INIS)

    Walley, P.A.; Cross, K.B.

    1977-01-01

    Ion plating with aluminium is becoming increasingly accepted as a method of anti-corrosion surface passivation, the usual requirements being for a layer between 12 and 50 microns in thickness, (0.0005 to 0.002). The evaporation system described here offers a number of advantages over high power electron beam sources when used for aluminium ion plating. The source consists of a resistively heated, specially shaped, boron nitride-titanium diboride boat and a metering feed system. Its main features are small physical size, soft vacuum compatibility, low power consumption and metered evaporation output. (author)

  16. Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency

    Science.gov (United States)

    2016-11-21

    through water evaporation , although some cooling also occurs due to sensible heat transfer . Cooling towers are very effective heat transfer devices... evaporator coil connected to the building heating , ventilation, and air conditioning (HVAC) system. The refrigerant evaporates in the coil, removing...vapor is directed to a condensing coil, where the refrigerant vapor condenses back into a liquid, releasing its heat of vaporization. During

  17. A model for allometric scaling of mammalian metabolism with ambient heat loss

    KAUST Repository

    Kwak, Ho Sang; Im, Hong G.; Shim, Eun Bo

    2016-01-01

    The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.

  18. Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    Directory of Open Access Journals (Sweden)

    Aboaltabooq Mahdi Hatf Kadhum

    2016-01-01

    Full Text Available This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement.

  19. A model of aerosol evaporation kinetics in a thermodenuder

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2010-05-01

    Full Text Available Aerosol thermodenuders provide a measure of particle volatility. The information provided by a thermodenuder is fundamentally related to the kinetics of evaporation and condensation within the device. Here, a time-dependent, multi-component model of particle and gas-phase mass transfer in a thermodenuder is described. This model empirically accounts for the temperature profile along the length of a typical thermodenuder and distinguishes between the influence of the heating section and of the adsorbent denuder section. It is shown that "semi-volatile" aerosol is particularly sensitive to the inclusion of an adsorbent denuder in the model. As expected, the mass loss from evaporation of particles as they pass through the thermodenuder is directly related to the compound vapor pressure, although the assumptions regarding the enthalpy of vaporization are shown to also have a large influence on the overall calculated mass thermograms. The model has been validated by comparison with previously measured mass thermograms for single-component aerosols and is shown to provide reasonable semi-quantitative agreement. The model that has been developed here can be used to provide quantitative understanding of aerosol volatility measurements of single and multi-component aerosol made using thermodenuders that include adsorbent denuder sections.

  20. Rate Control in Dual Source Evaporation

    NARCIS (Netherlands)

    Wielinga, T.; Gruisinga, W.; Leeuwis, H.; Lodder, J.C.; van Weers, J.F.; Wilmans, J.C.

    1980-01-01

    Two-component thin films are deposited in a high-vacuum system from two close sources, heated by an electron beam which is deflected between them. By using quartz-crystal monitors the evaporation rates are measured seperately, which is usually considered to be problematical. One rate signal is used